Depth interval estimates from motion parallax and binocular disparity beyond interaction space.
Gillam, Barbara; Palmisano, Stephen A; Govan, Donovan G
2011-01-01
Static and dynamic observers provided binocular and monocular estimates of the depths between real objects lying well beyond interaction space. On each trial, pairs of LEDs were presented inside a dark railway tunnel. The nearest LED was always 40 m from the observer, with the depth separation between LED pairs ranging from 0 up to 248 m. Dynamic binocular viewing was found to produce the greatest (ie most veridical) estimates of depth magnitude, followed next by static binocular viewing, and then by dynamic monocular viewing. (No significant depth was seen with static monocular viewing.) We found evidence that both binocular and monocular dynamic estimates of depth were scaled for the observation distance when the ground plane and walls of the tunnel were visible up to the nearest LED. We conclude that both motion parallax and stereopsis provide useful long-distance depth information and that motion-parallax information can enhance the degree of stereoscopic depth seen.
NASA Astrophysics Data System (ADS)
Pridasiwi, A. T.; Legowo, B.; Koesuma, S.
2018-03-01
The study of determination of bedrock depth has been done at Faculty of Medicine Sebelas Maret University Surakarta using seismic refraction method. The study was conducted on 3 lines using seismograph PASI type 16S24-P with spread length of 46 meters, interval between geophone 2 meters, 5 shots in each spread. Data processing is done using WinSism11.6 software and intercept time calculation method. Results of seismic data processing obtained 2 dimensions interpretation of 3 layers structure. In the first line, the P wave velocity (600-2000) m/s with the depth of 11 meters, the second line (400-2000) m/s with the depth of 11 meters and the third line (600-2000) m/s with the depth of 7 meters. Based on the P wave velocity that have been correlated with the drill data, the rock lithology of the 3 lines are consist of top soil, sand with silt and clay (massif). It was concluded that bedrock lies at depth 11 meters.
Overpressure and hydrocarbon accumulations in Tertiary strata, Gulf Coast of Louisiana
Nelson, Philip H.
2012-01-01
Many oil and gas reservoirs in Tertiary strata of southern Louisiana are located close to the interface between a sand-rich, normally pressured sequence and an underlying sand-poor, overpressured sequence. This association, recognized for many years by Gulf Coast explorationists, is revisited here because of its relevance to an assessment of undiscovered oil and gas potential in the Gulf Coast of Louisiana. The transition from normally pressured to highly overpressured sediments is documented by converting mud weights to pressure, plotting all pressure data from an individual field as a function of depth, and selecting a top and base of the pressure transition zone. Vertical extents of pressure transition zones in 34 fields across southern onshore Louisiana range from 300 to 9000 ft and are greatest in younger strata and in the larger fields. Display of pressure transition zones on geologic cross sections illustrates the relative independence of the depth of the pressure transition zone and geologic age. Comparison of the depth distribution of pressure transition zones with production intervals confirms previous findings that production intervals generally overlap the pressure transition zone in depth and that the median production depth lies above the base of the pressure transition zone in most fields. However, in 11 of 55 fields with deep drilling, substantial amounts of oil and gas have been produced from depths deeper than 2000 ft below the base of the pressure transition zone. Mud-weight data in 7 fields show that "local" pressure gradients range from 0.91 to 1.26 psi/ft below the base of the pressure transition zone. Pressure gradients are higher and computed effective stress gradients are negative in younger strata in coastal areas, indicating that a greater potential for fluid and sediment movement exists there than in older Tertiary strata.
Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.
2001-01-01
Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.
Freestall maintenance: effects on lying behavior of dairy cattle.
Drissler, M; Gaworski, M; Tucker, C B; Weary, D M
2005-07-01
In a series of 3 experiments, we documented how sand-bedding depth and distribution changed within freestalls after new bedding was added and the effect of these changes on lying behavior. In experiment 1, we measured changes in bedding depth over a 10-d period at 43 points in 24 freestalls. Change in depth of sand was the greatest the day after new sand was added and decreased over time. Over time, the stall surface became concave, and the deepest part of the stall was at the center. Based on the results of experiment 1, we measured changes in lying behavior when groups of cows had access to freestalls with sand bedding that was 0, 3.5, 5.2, or 6.2 cm at the deepest point, below the curb, while other dimensions remained fixed. We found that daily lying time was 1.15 h shorter in stalls with the lowest levels of bedding compared with stalls filled with bedding. Indeed, for every 1-cm decrease in bedding, cows spent 11 min less time lying down during each 24-h period. In a third experiment, we imposed 4 treatments that reflected the variation in sand depth within stalls: 0, 6.2, 9.9, and 13.7 cm below the curb. Again, lying times reduced with decreasing bedding, such that cows using the stalls with the least amount of bedding (13.7 cm below curb) spent 2.33 h less time per day lying down than when housed with access to freestalls filled with sand (0 cm below curb).
Jauniaux, Eric; Bhide, Amar
2017-07-01
Women with a history of previous cesarean delivery, presenting with a placenta previa, have become the largest group with the highest risk for placenta previa accreta. The objective of the study was to evaluate the accuracy of ultrasound imaging in the prenatal diagnosis of placenta accreta and the impact of the depth of villous invasion on management in women presenting with placenta previa or low-lying placenta and with 1 or more prior cesarean deliveries. We searched PubMed, Google Scholar, clinicalTrials.gov, and MEDLINE for studies published between 1982 and November 2016. Criteria for the study were cohort studies that provided data on previous mode of delivery, placenta previa, or low-lying placenta on prenatal ultrasound imaging and pregnancy outcome. The initial search identified 171 records, of which 5 retrospective and 9 prospective cohort studies were eligible for inclusion in the quantitative analysis. The studies were scored on methodological quality using the Quality Assessment of Diagnostic Accuracy Studies tool. The 14 cohort studies included 3889 pregnancies presenting with placenta previa or low-lying placenta and 1 or more prior cesarean deliveries screened for placenta accreta. There were 328 cases of placenta previa accreta (8.4%), of which 298 (90.9%) were diagnosed prenatally by ultrasound. The incidence of placenta previa accreta was 4.1% in women with 1 prior cesarean and 13.3% in women with ≥2 previous cesarean deliveries. The pooled performance of ultrasound for the antenatal detection of placenta previa accreta was higher in prospective than retrospective studies, with a diagnostic odds ratios of 228.5 (95% confidence interval, 67.2-776.9) and 80.8 (95% confidence interval, 13.0-501.4), respectively. Only 2 studies provided detailed data on the relationship between the depth of villous invasion and the number of previous cesarean deliveries, independently of the depth of the villous invasion. A cesarean hysterectomy was performed in 208 of 232 cases (89.7%) for which detailed data on management were available. Positive correlations were found in the largest prospective studies between the cumulative rates of the more invasive forms of accreta placentation and the sensitivity and specificity of ultrasound imaging but not with diagnostic odds ratio values. We found no data on the ultrasound screening of placenta accreta at the routine midtrimester ultrasound examination from the nonexpert ultrasound units. Planning individual management for delivery is possible only with accurate evaluation of prenatal risk of accreta placentation in women presenting with a low-lying placenta/previa and a history of prior cesarean delivery. Ultrasound is highly sensitive and specific in the prenatal diagnosis of accreta placentation when performed by skilled operators. Developing a prenatal screening protocol is now essential to further improve the outcome of this increasingly more common major obstetric complication. Copyright © 2017 Elsevier Inc. All rights reserved.
Pullin, A N; Pairis-Garcia, M D; Campbell, B J; Campler, M R; Proudfoot, K L
2017-11-01
When considering methodologies for collecting behavioral data, continuous sampling provides the most complete and accurate data set whereas instantaneous sampling can provide similar results and also increase the efficiency of data collection. However, instantaneous time intervals require validation to ensure accurate estimation of the data. Therefore, the objective of this study was to validate scan sampling intervals for lambs housed in a feedlot environment. Feeding, lying, standing, drinking, locomotion, and oral manipulation were measured on 18 crossbred lambs housed in an indoor feedlot facility for 14 h (0600-2000 h). Data from continuous sampling were compared with data from instantaneous scan sampling intervals of 5, 10, 15, and 20 min using a linear regression analysis. Three criteria determined if a time interval accurately estimated behaviors: 1) ≥ 0.90, 2) slope not statistically different from 1 ( > 0.05), and 3) intercept not statistically different from 0 ( > 0.05). Estimations for lying behavior were accurate up to 20-min intervals, whereas feeding and standing behaviors were accurate only at 5-min intervals (i.e., met all 3 regression criteria). Drinking, locomotion, and oral manipulation demonstrated poor associations () for all tested intervals. The results from this study suggest that a 5-min instantaneous sampling interval will accurately estimate lying, feeding, and standing behaviors for lambs housed in a feedlot, whereas continuous sampling is recommended for the remaining behaviors. This methodology will contribute toward the efficiency, accuracy, and transparency of future behavioral data collection in lamb behavior research.
Ege, John R.; Carroll, R.D.; Way, R.J.; Magner, J.E.
1969-01-01
USBM/AEC Colorado Core Hole No. 3 (Bronco BR-1) is located in the SW1/4SW1/4SW1/4 sec. 14, T. 1 N., R. 98 W., Rio Blanco County, Colorado. The collar is at a ground elevation of 6,356 feet. The hole was core drilled between depths of 964 and 3,325 feet with a total depth of 3,797 feet. The hole was drilled to investigate geologic, geophysical and hydrological conditions at a possible in situ oil-shale retorting experiment site. The drill hole passed through 1,157 feet of alluvium and the Evacuation Creek Member of the Green River Formation, 1,603 feet of the Parachute Creek Member and penetrated into the Garden Gulch Member of the Green River Formation. In-bole density log/oil yield ratio interpretation indicates that two oil-shale zones exist which yield more than 20 gallons of shale oil per ton of rock; an upper zone lying between 1,271 and 1,750 feet in depth and a lower zone lying between 1,900 and 2,964 feet. Halite (sodium chloride salt) is found between 2,140 and 2,185 feet and nahcolite (sodium bicarbonate salt) between 2,195 and 2,700 feet. Nahcolite was present at one time above 2,195 feet but has been subsequently dissolved out by ground water. The core can be divided into six structural units based upon degree of fracturing. A highly fractured interval is found between 1,646 and 1,899 feet, which coincides with the dissolution or leached nahcolite zone. Physical property tests made on core samples between 1,356 and 3,253 feet give average values of 11,988 psi for uniaxial compressive strength, 1.38 X 10[superscript]6[superscript] psi for static Young's modulus and 11,809 fps for compressional velocity.
Changes in dive profiles as an indicator of feeding success in king and Adélie penguins
NASA Astrophysics Data System (ADS)
Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.
2007-02-01
Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.
Powell, Charles L.
2008-01-01
Forty-four invertebrate taxa, including one coral, 40 mollusks (30 bivalves and 10 gastropods), and three echinoids are recognized from a thin marine interval of the Imperial Formation near Travertine Point, Imperial County, California. The Travertine Point outcrop lies about midway between exposures of the Imperial Formation around Palm Springs, Riverside County, and exposures centered at Coyote Mountain in Imperial and San Diego Counties. Based on faunal comparisons, the Travertine Point outcrop corresponds to the Imperial and San Diego outcrops. The Travertine Point fauna is inferred to have lived in subtropical to tropical waters at littoral to inner sublittorial (<50 m) water depths. Coral and molluscan species from the Travertine Point outcrop indicate a Pliocene age. Two extant bivalve mollusks present have not previously been reported as fossils Anadara reinharti and forms questionably referred to Dosinia semiobliterata.
Upper bounds on sequential decoding performance parameters
NASA Technical Reports Server (NTRS)
Jelinek, F.
1974-01-01
This paper presents the best obtainable random coding and expurgated upper bounds on the probabilities of undetectable error, of t-order failure (advance to depth t into an incorrect subset), and of likelihood rise in the incorrect subset, applicable to sequential decoding when the metric bias G is arbitrary. Upper bounds on the Pareto exponent are also presented. The G-values optimizing each of the parameters of interest are determined, and are shown to lie in intervals that in general have nonzero widths. The G-optimal expurgated bound on undetectable error is shown to agree with that for maximum likelihood decoding of convolutional codes, and that on failure agrees with the block code expurgated bound. Included are curves evaluating the bounds for interesting choices of G and SNR for a binary-input quantized-output Gaussian additive noise channel.
Preliminary Hydrogeologic Characterization Results from the Wallula Basalt Pilot Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.P. McGrail; E. C. Sullivan; F. A. Spane
2009-12-01
The DOE's Big Sky Regional Carbon Sequestration Partnership has completed drilling the first continental flood basalt sequestration pilot borehole to a total depth (TD) of 4,110 feet on the Boise White Paper Mill property at Wallula, Washington. Site suitability was assessed prior to drilling by the 2007-2008 acquisition, processing and analysis of a four-mile, five-line three component seismic swath, which was processed as a single data-dense line. Analysis of the seismic survey data indicated a composite basalt formation thickness of {approx}8,000 feet and absence of major geologic structures (i.e., faults) along the line imaged by the seismic swath. Drilling ofmore » Wallula pilot borehole was initiated on January 13, 2009 and reached TD on April 6, 2009. Based on characterization results obtained during drilling, three basalt breccia zones were identified between the depth interval of 2,716 and 2,910 feet, as being suitable injection reservoir for a subsequent CO2 injection pilot study. The targeted injection reservoir lies stratigraphically below the massive Umtanum Member of the Grande Ronde Basalt, whose flow-interior section possesses regionally recognized low-permeability characteristics. The identified composite injection zone reservoir provides a unique and attractive opportunity to scientifically study the reservoir behavior of three inter-connected reservoir intervals below primary and secondary caprock confining zones. Drill cuttings, wireline geophysical logs, and 31one-inch diameter rotary sidewall cores provided geologic data for characterization of rock properties. XRF analyses of selected rock samples provided geochemical characterizations of the rocks and stratigraphic control for the basalt flows encountered by the Wallula pilot borehole. Based on the geochemical results, the pilot borehole was terminated in the Wapshilla Ridge 1 flow of the Grande Ronde Basalt Formation. Detailed hydrologic test characterizations of 12 basalt interflow reservoir zones and 3 flow-interior/caprock intervals were performed during drilling and immediately following reaching the final borehole drilling depth (i.e., 4,110 ft). In addition, six of the 12 basalt interflow zones were selected for detailed hydrochemical characterization. Results from the detailed hydrologic test characterization program provided the primary information on basalt interflow zone transmissivity/injectivity, and caprock permeability characteristics.« less
40 CFR 147.2918 - Permit application information.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., including total dissolved solids, chlorides, and additives. (4) Geologic data on the injection and confining..., showing: (i) Total depth or plug-back depth; (ii) Depth to top and bottom of injection interval; (iii) Depths to tops and bottoms of casing and cemented intervals, and amount of cement to be used; (iv) Size...
40 CFR 147.2918 - Permit application information.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., including total dissolved solids, chlorides, and additives. (4) Geologic data on the injection and confining..., showing: (i) Total depth or plug-back depth; (ii) Depth to top and bottom of injection interval; (iii) Depths to tops and bottoms of casing and cemented intervals, and amount of cement to be used; (iv) Size...
40 CFR 147.2918 - Permit application information.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., including total dissolved solids, chlorides, and additives. (4) Geologic data on the injection and confining..., showing: (i) Total depth or plug-back depth; (ii) Depth to top and bottom of injection interval; (iii) Depths to tops and bottoms of casing and cemented intervals, and amount of cement to be used; (iv) Size...
40 CFR 147.2918 - Permit application information.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., including total dissolved solids, chlorides, and additives. (4) Geologic data on the injection and confining..., showing: (i) Total depth or plug-back depth; (ii) Depth to top and bottom of injection interval; (iii) Depths to tops and bottoms of casing and cemented intervals, and amount of cement to be used; (iv) Size...
The visual perception of exocentric distance in outdoor settings.
Norman, J Farley; Adkins, Olivia C; Pedersen, Lauren E; Reyes, Cecia M; Wulff, Rachel A; Tungate, Alex
2015-12-01
The ability of 20 younger (mean age was 21.8years) and older adults (mean age was 71.5years) to visually perceive exocentric distances outdoors was evaluated. The observers adjusted the extent of in-depth spatial intervals until they appeared identical to fronto-parallel intervals of 4 and 8m. The frontal and in-depth intervals were viewed from a distance of 8m. Almost all of the observers' judgments were inaccurate and most reflected perceptual compressions in depth: e.g., an in-depth interval of 10m would appear to have the same extent as a physically smaller 8m frontal interval. Some observers' judgments, however, were consistent with perceptual expansions of in-depth intervals. No significant effects of age were obtained in the current study: both younger and older adults exhibited perceptual compressions and expansions of in-depth intervals. This outcome differs from that of a recent experiment conducted by our laboratory (Vision Research 109 (2015) 52-58) that found the judgments of younger adults to be less accurate than those of older adults. A comparison of the former and current results revealed that while older adults perform similarly outdoors and indoors, the accuracy of younger adults' exocentric judgements improves substantially in outdoor settings (so that the accuracy becomes similar to that exhibited by older adults). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Datta, A.; Pokharel, R.; Toteva, T.
2007-12-01
Randolph College is located in Lynchburg, VA, in the eastern edge of the Blue Ridge Mountains. Lynchburg city lies in the James River Synclinorium and consists of metasedimentary and metaigneous rocks. As part of College's plan to expand, a new soccer field will be build. For that purpose, part of a hill has to be excavated. Information was needed on the depth to the bedrock at the site. We conducted a seismic refraction experiment as part of an eight week summer research program for undergraduate students. We used 24 vertical geophones, spaced at 1.5 m interval. Our recording device was a 12 channel Geometrics geode (ES 3000). The source was an 8 pound sledge hummer. Source positions were chosen to be at 5, 10, 15 and 20 m on both sides of the array. We collected data along a tree line (in two segments) and across a hockey field. The data collected from the hockey field had very low signal to noise ratio and clear refraction arrivals. The other two acquisition lines were much noisier and difficult to interpret. Our results are consistent with data from seven bore holes in close proximity to the field site. We interpreted depth to bedrock to be between 4 and 12 m. The bedrock velocities are consistent with weathered gneiss. To improve the interpretation of the tree line records, we conducted a GPR survey. The preliminary radar images are showing highly heterogeneous subsurface with multiple point reflectors.
Oono, Ryoko
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889
Summary of extensometric measurements in El Paso, Texas
Heywood, Charles E.
2003-01-01
Two counter-weighted-pipe borehole extensometers were installed on the left bank of the Rio Grande between El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico, in 1992. A shallow extensometer measures vertical compaction in the 6- to 100-meter aquifer-system depth interval. A deep extensometer measures vertical compaction in the 6- to 305-meter aquifer-system depth interval. Both extensometers are referenced to the same surface datum, which allows time-series differencing to determine vertical compaction in the depth interval between 100 and 305 meters. From April 2, 1993, through June 13, 2002, 1.6 centimeters of compaction occurred in the 6-to 305-m depth interval. Until February 1999, most aquifer-system compaction occurred in the deeper aquifer-system interval between 100 and 305 meters, from which ground water was extracted. After that time, compaction in the shallow interval from 6 to 100 meters was predominant and attained a maximum of 7.6 millimeters by June 13, 2002. Minor residual compaction is expected to continue; continued maintenance of the El Paso extensometers would document this process.
Payne, Thomas G.
1982-01-01
REGIONAL MAPPER is a menu-driven system in the BASIC language for computing and plotting (1) time, depth, and average velocity to geologic horizons, (2) interval time, thickness, and interval velocity of stratigraphic intervals, and (3) subcropping and onlapping intervals at unconformities. The system consists of three programs: FILER, TRAVERSER, and PLOTTER. A control point is a shot point with velocity analysis or a shot point at or near a well with velocity check-shot survey. Reflection time to and code number of seismic horizons are filed by digitizing tablet from record sections. TRAVERSER starts at a point of geologic control and, in traversing to another, parallels seismic events, records loss of horizons by onlap and truncation, and stores reflection time for geologic horizons at traversed shot points. TRAVERSER is basically a phantoming procedure. Permafrost thickness and velocity variations, buried canyons with low-velocity fill, and error in seismically derived velocity cause velocity anomalies that complicate depth mapping. Two depths to the top of the pebble is based shale are computed for each control point. One depth, designated Zs on seismically derived velocity. The other (Zw) is based on interval velocity interpolated linearly between wells and multiplied by interval time (isochron) to give interval thickness. Z w is computed for all geologic horizons by downward summation of interval thickness. Unknown true depth (Z) to the pebble shale may be expressed as Z = Zs + es and Z = Zw + ew where the e terms represent error. Equating the two expressions gives the depth difference D = Zs + Zw = ew + es A plot of D for the top of the pebble shale is readily contourable but smoothing is required to produce a reasonably simple surface. Seismically derived velocity used in computing Zs includes the effect of velocity anomalies but is subject to some large randomly distributed errors resulting in depth errors (es). Well-derived velocity used in computing Zw does not include the effect of velocity anomalies, but the error (ew) should reflect these anomalies and should be contourable (non-random). The D surface as contoured with smoothing is assumed to represent ew, that is, the depth effect of variations in permafrost thickness and velocity and buried canyon depth. Estimated depth (Zest) to each geologic horizon is the sum of Z w for that horizon and a constant e w as contoured for the pebble shale, which is the first highly continuous seismic horizon below the zone of anomalous velocity. Results of this 'depthing' procedure are compared with those of Tetra Tech, Inc., the subcontractor responsible for geologic and geophysical interpretation and mapping.
Paleocene-eocene lignite beds of southwest Alabama: Parasequence beds in highstand systems tracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mancini, E.A.; Tew, B.H.; Carroll, R.E.
1993-09-01
In southwest Alabama, lignite beds are present in at least four stratigraphic intervals that span approximately 8 m.y. of geologic time. Lignite is found in the Paleocene Oak Hill Member and Coal Bluff Member of the Naheola Formation of the Midway Group and the Paleocene Tuscahoma Sand and the Eocene Hatchetigbee Formation of the Wilcox Group. Lignite beds range in thickness from 0.5 to 11 ft and consist of 32-53% moisture, 13-39% volatile matter, 4-36% fixed carbon, and 5-51% ash. These Paleocene and Eocene lignite beds occur as parasequence deposits in highstand systems tracts of four distinct third-order depositional sequences.more » The lignite beds are interpreted as strata within highstand systems tract parasequences that occur in mud-dominated regressive intervals. Lignite beds were deposited in coastal marsh and low-lying swamp environments as part of deltaic systems that prograded into southwestern Alabama from the west. As sediment was progressively delivered into the basin from these deltas, the effects of relative sea level rise during an individual cycle were overwhelmed, producing a net loss of accommodation and concomitant overall basinward progradation of the shoreline (regression). Small-scale fluctuations in water depth resulting from the interaction of eustasy, sediment yield, and subsidence led to cyclical flooding of the low-lying coastal marshes and swamps followed by periods of progradational and regression. Highstand systems tract deposition within a particular depositional sequence culminated with a relative sea level fall that resulted in a lowering of base level and an abrupt basinward shift in coastal onlap. Following sea level fall and the subsequent accumulation of the lowstand deposits, significant relative sea level rise resulted in the marine inundation of the area previously occupied by coastal marshes and swamps and deposition of the transgressive systems tract of the overlying sequence.« less
1984-07-01
somewhere between 70 and 80 * degrees farenheit . Changing the "value" of its temperature to [70.0 85.01 doesn’t change our description of what’s happening...interval lies between them (i.e., in this representation, time is not dense). Instants are represented as "very short" intervals which have zero ...than the time of its start, so that the duration of an instant will be zero while the duration of an interval will be greater than zero . Finally, we
Towards a global harmonized permafrost soil organic carbon stock estimates.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Mishra, U.; Yang, Y.
2017-12-01
Permafrost affected soils store disproportionately large amount of organic carbon stocks due to multiple cryopedogenic processes. Previous permafrost soil organic carbon (SOC) stock estimates used a variety of approaches and reported substantial uncertainty in SOC stocks of permafrost soils. Here, we used spatially referenced data of soil-forming factors (topographic attributes, land cover types, climate, and bedrock geology) and SOC pedon description data (n = 2552) in a regression kriging approach to predict the spatial and vertical heterogeneity of SOC stocks across the Northern Circumpolar and Tibetan permafrost regions. Our approach allowed us to take into account both environmental correlation and spatial autocorrelation to separately estimate SOC stocks and their spatial uncertainties (95% CI) for three depth intervals at 250 m spatial resolution. In Northern Circumpolar region, our results show 1278.1 (1009.33 - 1550.45) Pg C in 0-3 m depth interval, with 542.09 (451.83 - 610.15), 422.46 (306.48 - 550.82), and 313.55 (251.02 - 389.48) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. In Tibetan region, our results show 26.68 (9.82 - 79.92) Pg C in 0 - 3 m depth interval, with 13.98 (6.2 - 32.96), 6.49 (1.73 - 25.86), and 6.21 (1.889 - 20.90) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. Our estimates show large spatial variability (50 - 100% coefficient of variation, depending upon the study region and depth interval) and higher uncertainty range in comparison to existing estimates. We will present the observed controls of different environmental factors on SOC at the AGU meeting.
NASA Astrophysics Data System (ADS)
Tachibana, Aiko; Watanabe, Yuko; Moteki, Masato; Hosie, Graham W.; Ishimaru, Takashi
2017-06-01
Copepods are one of the most important components of the Southern Ocean food web, and are widely distributed from surface to deeper waters. We conducted discrete depth sampling to clarify the community structure of copepods from the epi- to bathypelagic layers of the oceanic and neritic waters off Adélie and George V Land, East Antarctica, in the austral summer of 2008. Notably high diversity and species numbers were observed in the meso- and bathypelagic layers. Cluster analysis based on the similarity of copepod communities identified seven cluster groups, which corresponded well with water masses. In the epi- and upper- mesopelagic layers of the oceanic zone, the SB (Southern Boundary of the Antarctic Circumpolar Current) divided copepod communities. Conversely, in the lower meso- and bathypelagic layers (500-2000 m depth), communities were consistent across the SB. In these layers, the distributions of copepod species were separated by habitat depth ranges and feeding behaviour. The different food webs occur in the epipelagic layer with habitat segregation by zooplankton in their horizontal distribution ranges.
NASA Astrophysics Data System (ADS)
Nash, Ciaran; Bourke, Mary
2017-04-01
Coastal sand dune systems are some of the most physically dynamic landscapes; their susceptibility to geomorphic change is rooted in a host of interconnected processes and feedbacks. Soil moisture and salinity are two fundamental environmental variables capable of exerting a geomorphic influence but have not been thoroughly investigated in coastal dunes. In northwest Europe, coastal dunes are predominantly sediment-limited systems with reduced capacities to avoid severe morphological changes arising from storms. Climatic changes over the next century are predicted to manifest in more frequent and intense storms with the potential to enact severe geomorphic change in coastal settings. A lack of data pertaining to internal dune hydrosaline dynamics suggests we are missing part of the bigger picture. We conducted a pilot study of moisture and salinity dynamics within the upper 50 cm of the vadose zone in a vegetated dune system at Golden Strand, Achill Island on the west coast of Ireland. Golden Strand is a roughly 800 m long embayed sandy beach, backed by vegetated dunes that protect a low-lying machair grassland. A study transect was established across this dune-machair system, perpendicular to the shore. Innovative instrumentation in the form of capacitance probes and internal dune thermochrons were deployed to sample at 10 cm depth intervals at a sampling rate of 10 minutes and coupled with on-site rainfall data. Results indicate that dune moisture tracks rainfall inputs up to 30 cm depth. Antecedent moisture at depth was found to influence infiltration of water through the dune profile. Salinity within the study transect decreased with distance from the beach, suggesting that salt spray is the primary salt delivery mechanism in the dune system. We also noted that moisture and salinity below 30 cm depth failed to respond to rainfall events of varying intensities. Relatively constant moisture and salinity were observed at all depths within the machair. Predictions of climatic change for Ireland suggest more intense short-period precipitation events, this may increase infiltration depth. Baseline data collected will prove informative in predicting the response of Irish coastal dunes via changes in vegetation and dune stability.
Lunar igneous rocks and the nature of the lunar interior
NASA Technical Reports Server (NTRS)
Hays, J. F.; Walker, D.
1974-01-01
Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.
Lunar igneous rocks and the nature of the lunar interior
NASA Technical Reports Server (NTRS)
Hays, J. F.; Walker, D.
1977-01-01
Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.
2017-10-18
Objective To determine whether being upright in the second stage of labour in nulliparous women with a low dose epidural increases the chance of spontaneous vaginal birth compared with lying down. Design Multicentre pragmatic individually randomised controlled trial. Setting 41 UK hospital labour wards. Participants 3093 nulliparous women aged 16 or older, at term with a singleton cephalic presentation and in the second stage of labour with epidural analgesia. Interventions Women were allocated to an upright or lying down position, using a secure web based randomisation service, stratified by centre, with no masking of participants or clinicians to the trial interventions. Main outcome measures The primary outcome was spontaneous vaginal birth. Women were analysed in the groups into which they were randomly allocated, regardless of position recorded at any time during the second stage of labour (excluding women with no valid consent, who withdrew, or who did not reach second stage before delivery). Secondary outcomes included mode of birth, perineal trauma, infant Apgar score <4 at five minutes, admission to a neonatal unit, and longer term included maternal physical and psychological health, incontinence, and infant gross developmental delay. Results Between 4 October 2010 and 31 January 2014, 3236 women were randomised and 3093 (95.6%) included in the primary analysis (1556 in the upright group and 1537 in the lying down group). Significantly fewer spontaneous vaginal births occurred in women in the upright group: 35.2% (548/1556) compared with 41.1% (632/1537) in the lying down group (adjusted risk ratio 0.86, 95% confidence interval 0.78 to 0.94). This represents a 5.9% absolute increase in the chance of spontaneous vaginal birth in the lying down group (number needed to treat 17, 95% confidence interval 11 to 40). No evidence of differences was found for most of the secondary maternal, neonatal, or longer term outcomes including instrumental vaginal delivery (adjusted risk ratio 1.08, 99% confidence interval 0.99 to 1.18), obstetric anal sphincter injury (1.27, 0.88 to 1.84), infant Apgar score <4 at five minutes (0.66, 0.06 to 6.88), and maternal faecal incontinence at one year (1.18, 0.61 to 2.28). Conclusions Evidence shows that lying down in the second stage of labour results in more spontaneous vaginal births in nulliparous women with epidural analgesia, with no apparent disadvantages in relation to short or longer term outcomes for mother or baby. Trial registration Current Controlled Trials ISRCTN35706297. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
MOUNT SHASTA WILDERNESS STUDY AREA, CALIFORNIA.
Christiansen, Robert L.; Tuchek, Ernest T.
1984-01-01
The Mount Shasta Wilderness lies wholly on the slopes and summit area of Mount Shasta and consists almost entirely of the products of geologically young volcanism. Small deposits of volcanic cinders and pumice are present. The volcanic system of Mount Shasta is judged to have probable resource potential for geothermal energy but that potential is least within the wilderness study area boundaries. Because any geothermal energy resource beneath the volcano would lie at considerable depths, exploration or development would be most likely at lower altitudes on the gentler slopes outside the study area.
Into the Depths of the Lagoon Nebula
2011-09-16
Swirling dust clouds and bright newborn stars dominate the view in this image of the Lagoon nebula from NASA Spitzer Space Telescope. The nebula lies in the general direction of the center of our galaxy in the constellation Sagittarius.
Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming
NASA Astrophysics Data System (ADS)
Nelson, P. H.
2013-12-01
The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from the trendline is OT > OSC > OC > OM, that is, the velocity in the Mowry Shale is reduced the least and the velocity in the Thermopolis Shale is reduced the most. Velocity reductions are attributed to increases in pore pressure during burial, caused by the generation and retention of gas, with lithology playing a key role in the amount of reduction. Sonic velocity in the four shale units remains low to the present day, after uplift and erosion of as much as 6,500 ft in the deeper part of the basin and consequent possible reduction from maximum pore pressures reached when strata were more deeply buried. A model combining burial history, the decrease of effective stress with increasing pore pressure, and Bower's model for the dependence of sonic velocity on effective stress is proposed to explain the persistence of low velocity in shale units. Interruptions to compaction gradients associated with gas occurrences and overpressure are observed in correlative strata in other basins in Wyoming, so the general results for shales in the Bighorn Basin established in this paper should be applicable elsewhere.
Seligman, Katherine M; Weiniger, Carolyn F; Carvalho, Brendan
2017-08-30
This study investigated the accuracy of a wireless handheld ultrasound with pattern recognition software that recognizes lumbar spine bony landmarks and measures depth to epidural space (Accuro, Rivanna Medical, Charlottesville, VA) (AU). AU measurements to epidural space were compared to Tuohy needle depth to epidural space (depth to loss of resistance at epidural placement). Data from 47 women requesting labor epidural analgesia were analyzed. The mean difference between depth to epidural space measured by AU versus needle depth was -0.61 cm (95% confidence interval, -0.79 to -0.44), with a standard deviation of 0.58 (95% confidence interval, 0.48-0.73). Using the AU-identified insertion point resulted in successful epidural placement at first attempt in 87% of patients, 78% without redirects.
Real Time Correction of Aircraft Flight Fonfiguration
NASA Technical Reports Server (NTRS)
Schipper, John F. (Inventor)
2009-01-01
Method and system for monitoring and analyzing, in real time, variation with time of an aircraft flight parameter. A time-dependent recovery band, defined by first and second recovery band boundaries that are spaced apart at at least one time point, is constructed for a selected flight parameter and for a selected time recovery time interval length .DELTA.t(FP;rec). A flight parameter, having a value FP(t=t.sub.p) at a time t=t.sub.p, is likely to be able to recover to a reference flight parameter value FP(t';ref), lying in a band of reference flight parameter values FP(t';ref;CB), within a time interval given by t.sub.p.ltoreq.t'.ltoreq.t.sub.p.DELTA.t(FP;rec), if (or only if) the flight parameter value lies between the first and second recovery band boundary traces.
Impacts of Land use and Cover Change on Soil Hydraulic Properties, Rondonia, Brazil
NASA Astrophysics Data System (ADS)
Schultz, K. J.; McGlynn, B. L.; Elsenbeer, H.
2004-05-01
There is a great deal of concern in the scientific community and the popular media about the global impacts of tropical rainforest deforestation. Soil quality does not receive that same media coverage but is greatly affected by deforestation and is a major concern in the tropics, especially in areas undergoing rapid land use and land cover change. Deforestation can lead to changes in the hydrologic regime, loss of topsoil, increased sediment and nutrient loads in waterways, and decreased soil fertility. These impacts are often related to a soil's infiltration capacity and hydraulic conductivity (Ksat). Our research site, Rancho Grande, Rondonia, Brazil, lies in the heart of the most rapid tropical rainforest deforestation in the world. Two watersheds of similar size, comparable topographic relief, and same soil type, were tested for differences in hydraulic conductivity. The two watersheds are differentiated by land use and land cover; one in a primary forest and the other in an actively grazed pasture. We measured infiltration capacity at 13 locations in the primary forest watershed and at 24 locations in the actively grazed pasture. Approximately 150 measurements of Ksat were made at regular depth intervals in both watersheds. Our research focuses on assessing the impact of land use and land cover change (primary rainforest to pasture/grazing) on soil infiltration capacity and subsurface saturated hydraulic conductivity. Statistically significant differences in infiltration capacity and hydraulic conductivity were detected between the pasture and forest sites at depths of 0, 12.5, and 20 cm. Differences between the two sites at depths of 50 and 90cm were not significant. These results demonstrate that the affect of land cover and land use change on soil hydraulic conductivity was confined to shallower depths in the soil profile. Coupled with ongoing watershed runoff studies at Rancho Grande, this research will help clarify how land cover change affects soil hydraulic properties and resulting runoff dynamics.
Intervality and coherence in complex networks
NASA Astrophysics Data System (ADS)
Domínguez-García, Virginia; Johnson, Samuel; Muñoz, Miguel A.
2016-06-01
Food webs—networks of predators and prey—have long been known to exhibit "intervality": species can generally be ordered along a single axis in such a way that the prey of any given predator tend to lie on unbroken compact intervals. Although the meaning of this axis—usually identified with a "niche" dimension—has remained a mystery, it is assumed to lie at the basis of the highly non-trivial structure of food webs. With this in mind, most trophic network modelling has for decades been based on assigning species a niche value by hand. However, we argue here that intervality should not be considered the cause but rather a consequence of food-web structure. First, analysing a set of 46 empirical food webs, we find that they also exhibit predator intervality: the predators of any given species are as likely to be contiguous as the prey are, but in a different ordering. Furthermore, this property is not exclusive of trophic networks: several networks of genes, neurons, metabolites, cellular machines, airports, and words are found to be approximately as interval as food webs. We go on to show that a simple model of food-web assembly which does not make use of a niche axis can nevertheless generate significant intervality. Therefore, the niche dimension (in the sense used for food-web modelling) could in fact be the consequence of other, more fundamental structural traits. We conclude that a new approach to food-web modelling is required for a deeper understanding of ecosystem assembly, structure, and function, and propose that certain topological features thought to be specific of food webs are in fact common to many complex networks.
Geohydrology of Test Well USW H-3, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thordarson, W.; Rush, F.E.; Waddell, S.J.
Test well USW H-3 is one of several test wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1219 meters are volcanic tuff of Tertiary age. The composite hydraulic head in the zone 751 to 1219 meters was 733 meters above sea level, and at a depth below land surface of 751 meters. Below a depth of 1190 meters, the hydraulic head was 754 meters above sea level ormore » higher, suggesting an upward component of groundwater flow at the site. The most transmissive part of the saturated zone is in the upper part of the Tram Member of the Crater Flat Tuff in the depth interval from 809 to 841 meters, with an apparent transmissivity of about 7 x 10{sup -1} meter squared per day. The remainder of the penetrated rocks in the saturated zone, 841 to 1219 meters, has an apparent transmissivity of about 4 x 10{sup -1} meter squared per day. The most transmissive part of the lower depth interval is in the bedded tuff and Lithic Ridge Tuff, in the depth interval from 1108 to 1120 meters. The apparent hydraulic conductivity of the rocks in the lower depth interval from 841 to 1219 meters commonly ranges from about 10{sup -1} to 10{sup -4} meter per day. 32 references, 20 figures, 4 tables.« less
Automatic recognition of lactating sow behaviors through depth image processing
USDA-ARS?s Scientific Manuscript database
Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shiftin...
Spherical Acrylic Plastic Hulls under External Explosive Loading
1976-03-01
ACCESSION NO. 3 . RECIPIENT’S CATALOG NU04SER 4. TITLE (-d S.~bfffI.) HULL UNER seach HEIAACRYLIC JIASTICHULUNE LXTERNAL EXPLOSI L LOADIl§Go e"*N 7 AUHR,8...and opera ted inl thle 0- to 3 300-It depthI range. Several muiniersi lies with acri, lie plastic hulls have been alreadyv built and are operating...thermol’ormed spher4cal pentagOns1 that Were bonded~k togethler u ith either I’S- I -S or ’’- selt-pl\\ en ingadhesi~ e. The scale-site hltlk hiad po
NASA Astrophysics Data System (ADS)
Sharova, A. S.; Maklygina, YU S.; Lisichkin, G. V.; Mingalev, P. G.; Loschenov, V. B.
2016-08-01
The spectroscopic properties of potentially perspective nanostructure: diamond nanoparticles with a surface layer of IR-photosensitizer, bacteriochlorin, were experimentally investigated in this study. Such specific structure of the object encourages enhancement of the drug tropism to the tumor, as well as increasing of photodynamic penetration depth. The size distribution spectra of diamond nanoparticles; diamond nanoparticles, artificially covered with bacteriochlorin molecules layer, in aqueous solution, were obtained during the study. Based on the absorption and fluorescence spectra analysis, the benefits of functional nanostructure as a drug for deep-lying tumor diagnostics and therapy were reviewed.
NASA Astrophysics Data System (ADS)
Wienecke, B. C.; Lawless, R.; Rodary, D.; Bost, C.-A.; Thomson, R.; Pauly, T.; Robertson, G.; Kerry, K. R.; LeMaho, Y.
2000-08-01
The foraging behaviour of Adélie penguins Pygoscelis adeliae was studied simultaneously at Shirley Island (SI, 110°E) and at Petrel Island (PI, 140°E) in approximate conjunction with the ship-based krill survey conducted on board the RSV Aurora Australis. Acoustic and trawl data were collected near both study sites, albeit at the end of the penguins' breeding season. The distances travelled by Adélie penguins from Shirley Island were significantly greater than those travelled by penguins from Petrel Island (SI 31-144 km; PI 6-79 km). Mean foraging trip durations and mean maximal distances travelled were also significantly different between colonies (duration: SI guard 55±32 h, crèche 113±17 h; PI guard 32±9 h, crèche 25±7 h; distance: SI guard 182±135 km, crèche 353±93 km; PI guard 100±42 km, crèche 86±28 km). All penguins foraged over the continental shelf or the shelf break and not in oceanic waters. The percentage distribution of dive depths was similar at both colonies; nearly 70% of all dives were to <35 m. Trawls from the ship contained krill Euphausia superba and E. crystallorophias near SI but only E. superba near PI. Biomass measurements showed that near SI 61% of krill biomass occurred at 63-97 m but the penguins dived to this depth range only 12% of their time; near PI 83% of the biomass was found from 43 to 63 m and 20% of dives reached these depths. The diet of the SI penguins consisted mainly of E. crystallorophias (51-53% by mass), while penguins from PI ingested large amounts of both euphausiids (27-38% E. superba, 22-39% E. crystallorophias). At SI, the remainder of the diet consisted of fish, mainly Pleuragramma antarcticum (26-30%), and amphipods (<1%). Similarly, at PI, fish contributed 19-37% to the penguins' diet and amphipods constituted 1-3%.
Cow comfort in tie-stalls: increased depth of shavings or straw bedding increases lying time.
Tucker, C B; Weary, D M; von Keyserlingk, M A G; Beauchemin, K A
2009-06-01
Over half of US dairy operations use tie-stalls, but these farming systems have received relatively little research attention in terms of stall design and management. The current study tested the effects of the amount of 2 bedding materials, straw and shavings, on dairy cattle lying behavior. The effects of 4 levels of shavings, 3, 9, 15, and 24 kg/stall (experiment 1, n = 12), and high and low levels of straw in 2 separate experiments: 1, 3, 5, and 7 kg/stall (experiment 2, n = 12) and 0.5, 1, 2, and 3 kg/stall (experiment 3, n = 12) were assessed. Treatments were compared using a crossover design with lactating cows housed in tie-stalls fitted with mattresses. Treatments were applied for 1 wk. Total lying time, number of lying bouts, and the length of each lying bout was recorded with data loggers. In experiment 1, cows spent 3 min more lying down for each additional kilogram of shavings (11.0, 11.7, 11.6, and 12.1 +/- 0.24 h/d for 3, 9, 15, and 24 kg/stall shavings, respectively). In experiment 2, cows increased lying time by 12 min for every additional kilogram of straw (11.2, 12.0, 11.8, and 12.4 +/- 0.24 h/d for 1, 3, 5, and 7 kg/stall of straw, respectively). There were no differences in lying behavior among the lower levels of straw tested in experiment 3 (11.7 +/- 0.32 h/d). These results indicated that additional bedding above a scant amount improves cow comfort, as measured by lying time, likely because a well-bedded surface is more compressible.
NASA Astrophysics Data System (ADS)
Sun, M.; Bezada, M.
2017-12-01
Intermediate-depth seismicity outside active subduction zones is rare. However, there is a well-known occurrence of such events in a N-S elongated volume between Spain and Morocco, within what most researchers consider to be the relic Alboran slab. Partial subduction of, and tearing from the adjoining continental lithosphere have been suggested in this area. We investigate whether dehydration embrittlement or shear instability is more consistent with the Alboran intermediate depth seismicity by considering their location relative to the expected thermal structure and expected areas of high strain rate associated with thinning or tearing of the slab. We use a dense temporary seismograph deployment in Spain and Morocco to relocate 65 intermediate-depth events occurring between 2010 and 2013 in this region. The relocation procedure is realized by a grid-search approach that minimizes the normalized misfit between the picked times and travel times calculated using a regional 3D velocity model. Results indicate that, compared with catalog results, hypocenters after relocation are more concentrated in space; they tend to shift southward and eastward while no systematic shift in depth is observed. Relocated hypocenters concentrate at a depth range between 50-100 km and along a narrow longitude range around 4.5W. Investigation of the earthquake density distribution indicates these earthquakes concentrate into several clusters. One such cluster sits above the spain-arm of the Alboran slab and beneath the Spain continental lithosphere, indicating that it is likely associated to the thinning process of the Alboran slab. The other four clusters all lie within the interior of the slab. Interestingly, two of them are near the middle of the subducted lithosphere and the other two lie near its base. This observation seems at odds with expectations based on the two leading hypotheses for enabling brittle failure at intermediate depths.
Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah
Delaney, P.T.; Gartner, A.E.
1997-01-01
Some 200 shonkinite dikes, sills, and breccia bodies on the western Colorado Plateau of south-central Utah were intruded from approximately 3.7 to 4.6 Ma, contemporaneous with mafic volcanism along the nearby plateau margin. Thicknesses of dikes range to about 6 m; the log-normal mean thickness is 85 cm. Despite the excellent exposures of essentially all dikes in strata of the Jurassic San Rafael Group, their number is indeterminate from their outcrop and spacing because they are everywhere greatly segmented. By our grouping of almost 2000 dike segments, most dikes are less than 2 km in outcrop length; the longest is 9 km. Because the San Rafael magmas were primitive and probably ascended directly from the mantle, dike lengths in outcrop are much less than their heights. The present exposures probably lie along the irregular upper peripheries of dikes that lengthen and merge with depth. Orientations of steps on dike contacts record local directions of dike-fracture propagation; about half of the measurements plunge less than 30??, showing that lateral propagation at dike peripheries is as important as the vertical propagation ultimately responsible for ascent. The San Rafael dikes, now exposed after erosion of about 0.5-1.5 km, appear to thicken and shorten upward, probably because near-surface vesiculation enhanced magmatic driving pressures. Propagation likely ceased soon after the first dike segments began to feed nearby sills or vented to initiate small-volume eruptions. Most of the dikes are exposed in clastic strata of the Jurassic San Rafael Group. They probably acquired their strikes, however, while ascending along well-developed joints in massive sandstones of the underlying Glen Canyon Group. Rotation of far-field stresses during the emplacement interval cannot account for disparate strikes of the dikes, which vary through 110??, most lying between north and N25??W. Rather, the two regional horizontal principal stresses were probably nearly equal, and so the dominant N75??E direction of dike opening was not strongly favored. Across the center of the swarm, about 10 to 15 dikes overlap and produce 15-20 m of dilation. Many are in sufficient proximity that later dikes should be thinner than earlier ones if neither the magma pressures nor regional stresses were changing during the emplacement interval. However, dike thicknesses vary systematically neither along the length of the swarm nor in proportion to the number of neighboring dikes. It appears that crustal extension during the maginatic interval relieved compressive stresses localized by intrusion.
Enhancements of nonpoint source monitoring of volatile organic compounds in ground water
Lapham, W.W.; Moran, M.J.; Zogorski, J.S.
2000-01-01
The U.S. Geological Survey (USGS) has compiled a national retrospective data set of analyses of volatile organic compounds (VOCs) in ground water of the United States. The data are from Federal, State, and local nonpoint-source monitoring programs, collected between 1985–95. This data set is being used to augment data collected by the USGS National Water-Quality Assessment (NAWQA) Program to ascertain the occurrence of VOCs in ground water nationwide. Eleven attributes of the retrospective data set were evaluated to determine the suitability of the data to augment NAWQA data in answering occurrence questions of varying complexity. These 11 attributes are the VOC analyte list and the associated reporting levels for each VOC, well type, well-casing material, type of openings in the interval (screened interval or open hole), well depth, depth to the top and bottom of the open interval(s), depth to water level in the well, aquifer type (confined or unconfined), and aquifer lithology. VOCs frequently analyzed included solvents, industrial reagents, and refrigerants, but other VOCs of current interest were not frequently analyzed. About 70 percent of the sampled wells have the type of well documented in the data set, and about 74 percent have well depth documented. However, the data set generally lacks documentation of other characteristics, such as well-casing material, information about the screened or open interval(s), depth to water level in the well, and aquifer type and lithology. For example, only about 20 percent of the wells include information on depth to water level in the well and only about 14 percent of the wells include information about aquifer type. The three most important enhancements to VOC data collected in nonpoint-source monitoring programs for use in a national assessment of VOC occurrence in ground water would be an expanded VOC analyte list, recording the reporting level for each analyte for every analysis, and recording key ancillary information about each well. These enhancements would greatly increase the usefulness of VOC data in addressing complex occurrence questions, such as those that seek to explain the reasons for VOC occurrence and nonoccurrence in ground water of the United States.
Facilitation of intermediate-depth earthquakes by eclogitization-related stresses and H2O
NASA Astrophysics Data System (ADS)
Nakajima, J.; Uchida, N.; Hasegawa, A.; Shiina, T.; Hacker, B. R.; Kirby, S. H.
2012-12-01
Generation of intermediate-depth earthquakes is an ongoing enigma because high lithostatic pressures render ordinary dry frictional failure unlikely. A popular hypothesis to solve this conundrum is fluid-related embrittlement (e.g., Kirby et al., 1996; Preston et al., 2003), which is known to work even for dehydration reactions with negative volume change (Jung et al., 2004). One consequence of reaction with the negative volume change is the formation of a paired stress field as a result of strain compatibility across the reaction front (Hacker, 1996; Kirby et al., 1996). Here we analyze waveforms of a tiny seismic cluster in the lower crust of the downgoing Pacific plate at a depth of 155 km and propose new evidence in favor of this mechanism: tensional earthquakes lying 1 km above compressional earthquakes, and earthquakes with highly similar waveforms lying on well-defined planes with complementary rupture areas. The tensional stress is interpreted to be caused by the dimensional mismatch between crust transformed to eclogite and underlying untransformed crust, and the earthquakes are interpreted to be facilitated by fluid produced by eclogitization. These observations provide seismic evidence for the dual roles of volume-change related stresses and fluid-related embrittlement as viable processes for nucleating earthquakes in downgoing oceanic lithosphere.
Validation of triaxial accelerometers to measure the lying behaviour of adult domestic horses.
DuBois, C; Zakrajsek, E; Haley, D B; Merkies, K
2015-01-01
Examining the characteristics of an animal's lying behaviour, such as frequency and duration of lying bouts, has become increasingly relevant for animal welfare research. Triaxial accelerometers have the advantage of being able to continuously monitor an animal's standing and lying behaviour without relying on live observations or video recordings. Multiple models of accelerometers have been validated for use in monitoring dairy cattle; however, no units have been validated for use in equines. This study tested Onset Pendant G data loggers attached to the hind limb of each of two mature Standardbred horses for a period of 5 days. Data loggers were set to record their position every 20 s. Horses were monitored via live observations during the day and by video recordings during the night to compare activity against accelerometer data. All lying events occurred overnight (three to five lying bouts per horse per night). Data collected from the loggers was converted and edited using a macro program to calculate the number of bouts and the length of time each animal spent lying down by hour and by day. A paired t-test showed no significant difference between the video observations and the output from the data loggers (P=0.301). The data loggers did not distinguish standing hipshot from standing square. Predictability, sensitivity, and specificity were all >99%. This study has validated the use of Onset Pendant G data loggers to determine the frequency and duration of standing and lying bouts in adult horses when set to sample and register readings at 20 s intervals.
Yongjin, Chen; Weihong, Li; Jiazhen, Liu; Ming, Lu; Mengchen, Xu; Shengliang, Liu
2015-08-01
Based on monitoring data collected from 2006 to 2009 at the lower reaches of the Tarim River, tempo-spatial variations in groundwater depth and chemistry during an approximately 3-year interval of intermittent water delivery were studied. Results indicate that as the groundwater depth increased at the upper sector of the river's lower reaches from March 2007 to September 2009, so too did the main chemical composition of groundwater. Groundwater depth at the intermediate sector also increased, but major ions in groundwater declined. The groundwater depth at the lower sector started to decrease in August 2008, and the concentrations of main ions in the groundwater generally rose and fell along with the variations in groundwater depth. The groundwater depth and chemistry in the monitoring wells located at a distance from the aqueduct expressed complex changes at different sections. For instance, at the section near the Daxihaizi Reservoir Section B, groundwater depth increased gradually, but chemical composition changed little. In contrast, the groundwater depth of monitoring wells far from the Daxihaizi Reservoir (Section I) decreased and salt content in the groundwater increased. In sectors at a moderate distance from the reservoir, groundwater depth decreased and concentrations of main ions significantly increased.
The biological pump: Profiles of plankton production and consumption in the upper ocean
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.; Glen Harrison, W.
The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.
Relation of local scour to hydraulic properties at selected bridges in New York
Butch, Gerard K.; ,
1993-01-01
Hydraulic properties, bridge geometry, and basin characteristics at 31 bridges in New York are being investigated to identify factors that affect local scour. Streambed elevations measured by the U.S. Geological Survey and New York State Department of Transportation are used to estimate local-scour depth. Data that show zero or minor scour were included in the analysis to decrease bias and to estimate hydraulic properties related to local scour. The maximum measured local scour at the 31 bridges for a single peak flow was 5.4 feet, but the deepening of scour holes at two sites to 6.1 feet and 7.8 feet by multiple peak flows could indicate that the number or duration of high flows is a factor. Local scour at a pier generally increased as the recurrence interval (magnitude) of the discharge increased, but the correlation between local-scour depth and recurrence interval was inconsistent among study sites. For example, flows with a 2-year recurrence interval produced 2 feet of local scour at two sites, whereas a flow with a recurrence interval produced 2 feet of local scour at two sites, whereas a flow with a recurrence interval of 50 years produced only 0.5 feet of local scour at another site. Local-scour depth increased with water depth, stream velocity, and Reynolds number but did not correlate well with bed-material size, Froude number, pier geometry, friction slope, or several other hydraulic and basin characteristics.
Precipitation areal-reduction factor estimation using an annual-maxima centered approach
Asquith, W.H.; Famiglietti, J.S.
2000-01-01
The adjustment of precipitation depth of a point storm to an effective (mean) depth over a watershed is important for characterizing rainfall-runoff relations and for cost-effective designs of hydraulic structures when design storms are considered. A design storm is the precipitation point depth having a specified duration and frequency (recurrence interval). Effective depths are often computed by multiplying point depths by areal-reduction factors (ARF). ARF range from 0 to 1, vary according to storm characteristics, such as recurrence interval; and are a function of watershed characteristics, such as watershed size, shape, and geographic location. This paper presents a new approach for estimating ARF and includes applications for the 1-day design storm in Austin, Dallas, and Houston, Texas. The approach, termed 'annual-maxima centered,' specifically considers the distribution of concurrent precipitation surrounding an annual-precipitation maxima, which is a feature not seen in other approaches. The approach does not require the prior spatial averaging of precipitation, explicit determination of spatial correlation coefficients, nor explicit definition of a representative area of a particular storm in the analysis. The annual-maxima centered approach was designed to exploit the wide availability of dense precipitation gauge data in many regions of the world. The approach produces ARF that decrease more rapidly than those from TP-29. Furthermore, the ARF from the approach decay rapidly with increasing recurrence interval of the annual-precipitation maxima. (C) 2000 Elsevier Science B.V.The adjustment of precipitation depth of a point storm to an effective (mean) depth over a watershed is important for characterizing rainfall-runoff relations and for cost-effective designs of hydraulic structures when design storms are considered. A design storm is the precipitation point depth having a specified duration and frequency (recurrence interval). Effective depths are often computed by multiplying point depths by areal-reduction factors (ARF). ARF range from 0 to 1, vary according to storm characteristics, such as recurrence interval; and are a function of watershed characteristics, such as watershed size, shape, and geographic location. This paper presents a new approach for estimating ARF and includes applications for the 1-day design storm in Austin, Dallas, and Houston, Texas. The approach, termed 'annual-maxima centered,' specifically considers the distribution of concurrent precipitation surrounding an annual-precipitation maxima, which is a feature not seen in other approaches. The approach does not require the prior spatial averaging of precipitation, explicit determination of spatial correlation coefficients, nor explicit definition of a representative area of a particular storm in the analysis. The annual-maxima centered approach was designed to exploit the wide availability of dense precipitation gauge data in many regions of the world. The approach produces ARF that decrease more rapidly than those from TP-29. Furthermore, the ARF from the approach decay rapidly with increasing recurrence interval of the annual-precipitation maxima.
Transit Economy Market Challenge and University Respond
ERIC Educational Resources Information Center
Valiulis, Algirdas Vaclovas
2003-01-01
In an ever-changing labour market, university tries to make efforts to estimate the free labour market demands for university graduates. The strength of Engineering Education lies in the range and depth of fundamental knowledge the students acquire during their studies, but the abilities like: taking risk, taking initiative, teamwork,…
Determination of piglet location in farrowing crates based on depth and digital images
USDA-ARS?s Scientific Manuscript database
Understanding and properly managing behavioral responses of prewean piglets to the farrowing environment can improve well-being and pre-weaning performance of the piglets. This paper aims to quantify piglet location in the farrowing crate as affected by the lactating sow’s lying posture. Each farrow...
Event Structure and Grammatical Patterns: Resultative Constructions
ERIC Educational Resources Information Center
Lee, Leslie
2013-01-01
This thesis investigates the nature of grammatical patterns through an in-depth study of resultative constructions in Mandarin and Thai. At the heart of the thesis lies the proposal that event structure templates--complex, meaning-based grammatical patterns--must be recognised as primary objects of linguistic analysis. As content-theoretic objects…
Climate-driven Sympatry does not Lead to Foraging Competition Between Adélie and Gentoo Penguins
NASA Astrophysics Data System (ADS)
Cimino, M. A.; Moline, M. A.; Fraser, W.; Patterson-Fraser, D.; Oliver, M. J.
2016-02-01
Climate-driven sympatry may lead to competition for food resources between species, population shifts and changes in ecosystem structure. Rapid warming in the West Antarctic Peninsula (WAP) is coincident with increasing gentoo penguin and decreasing Adélie penguin populations, suggesting that competition for food may exacerbate the Adélie penguin decline. At Palmer Station, we tested for foraging competition between these species by comparing their prey, Antarctic krill, distributions and penguin foraging behaviors on fine scales. To study these predator-prey dynamics, we simultaneously deployed penguin satellite transmitters, and a REMUS autonomous underwater vehicle that acoustically detected krill aggregations and measured physical and biological properties of the water column. We detected krill aggregations within the horizontal and vertical foraging ranges of Adélie and gentoo penguin. In the upper 100 m of the water column, the distribution of krill aggregations were mainly associated with CHL and light, suggesting that krill selected for habitats that balance the need to consume food and avoid predation. Adélie and gentoo penguins mainly had spatially segregated foraging areas but in areas of overlap, gentoo penguins switched foraging behavior by foraging at deeper depths, a strategy which limits competition with Adélie penguins. This suggests that climate-driven sympatry does not necessarily result in competitive exclusion. Contrary to a recent theory, which suggests that increased competition for krill is the major driver of Adélie penguin population declines, we suggest that declines in Adélie penguins along the WAP are more likely due to direct and indirect climate impacts on their life histories.
Manipulating Digital Holograms to Modify Phase of Reconstructed Wavefronts
NASA Astrophysics Data System (ADS)
Ferraro, Pietro; Paturzo, Melania; Memmolo, Pasquale; Finizio, Andrea
2010-04-01
We show that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in the numerical reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in-focus, and in one reconstructed image plane, different objects lying at different distance from the hologram plane (i.e. CCD sensor), but in the same field of view. In the same way it is possible to extend the depth of field for 3D object having a tilted object whole in-focus.
Zindove, T J; Chimonyo, M
2015-09-01
The association of six linear type traits with calving interval, abortions, incidence of stillbirths and pre-weaning losses in Nguni cows in semi-arid and sub-humid communal areas was investigated. It was hypothesised that the odds of a cow having caving interval greater than 1 year, aborting, experiencing stillbirths or losing a calf from calving to weaning decreased with increase in body depth, rump height, flank circumference, chest circumference, navel height and body length. Navel height was measured as the distance from the ground to the lowest point of the cow's belly bottom (navel). Data were collected from a total of 200 Nguni cows from two sites experiencing sub-humid and semi-arid environments (100 each) between May and June 2013. Cows in sub-humid regions were 2.57 times more likely to have a calving interval of 1 year than cows in semi-arid areas. As body depth increased, the number of calves lost by a cow before weaning decreased linearly (p < 0.05) in all parities except parity 4. Cows in semi-arid regions were 2.13 times more likely to lose a calf from calving to weaning. For each unit increase in body depth, the odds of a cow aborting decreased by 1.12 and the odds of a cow having stillbirth decreased by 1.15. Rump height, flank circumference, chest circumference, navel height and body length were not associated with calving interval, abortions, incidence of stillbirths and pre-weaning losses. It was, therefore, concluded that body depth influences calving interval, incidence of stillbirths and abortions in Nguni cows. Copyright © 2015 Elsevier B.V. All rights reserved.
Extraction and LOD control of colored interval volumes
NASA Astrophysics Data System (ADS)
Miyamura, Hiroko N.; Takeshima, Yuriko; Fujishiro, Issei; Saito, Takafumi
2005-03-01
Interval volume serves as a generalized isosurface and represents a three-dimensional subvolume for which the associated scalar filed values lie within a user-specified closed interval. In general, it is not an easy task for novices to specify the scalar field interval corresponding to their ROIs. In order to extract interval volumes from which desirable geometric features can be mined effectively, we propose a suggestive technique which extracts interval volumes automatically based on the global examination of the field contrast structure. Also proposed here is a simplification scheme for decimating resultant triangle patches to realize efficient transmission and rendition of large-scale interval volumes. Color distributions as well as geometric features are taken into account to select best edges to be collapsed. In addition, when a user wants to selectively display and analyze the original dataset, the simplified dataset is restructured to the original quality. Several simulated and acquired datasets are used to demonstrate the effectiveness of the present methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-15
This report presents test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) UP-1 wells: 299-W19-48 (C4300/Well K), 699-30-66 (C4298/Well R), and 699-36-70B (C4299/Well P). These wells are located within, adjacent to, and to the southeast of the Hanford Site 200-West Area. The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » UP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spane, Frank A.; Newcomer, Darrell R.
2010-06-21
The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OUmore » ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.« less
McBride, W. Scott; Wacker, Michael A.
2015-01-01
A test well was drilled by the City of Tallahassee to assess the suitability of the site for the installation of a new well for public water supply. The test well is in Leon County in north-central Florida. The U.S. Geological Survey delineated high-permeability zones in the Upper Floridan aquifer, using borehole-geophysical data collected from the open interval of the test well. A composite water sample was collected from the open interval during high-flow conditions, and three discrete water samples were collected from specified depth intervals within the test well during low-flow conditions. Water-quality, source tracer, and age-dating results indicate that the open interval of the test well produces water of consistently high quality throughout its length. The cavernous nature of the open interval makes it likely that the highly permeable zones are interconnected in the aquifer by secondary porosity features.
NASA Astrophysics Data System (ADS)
Paramo, P.; Holbrook, W.; Brown, H.; Lizarralde, D.; Fletcher, J.; Umhoefer, P.; Kent, G.; Harding, A.; Gonzalez, A.; Axen, G.
2005-12-01
We present a velocity model from wide-angle data along with coincident prestack depth migration sections from seismic reflection data collected in the southern Gulf of California. Transect 0E runs NE to SW from the hills of Sierra Madre in mainland Mexico near Mazatlan to approximately 115 km into Gulf of California waters. Wide-angle data were recorded by 9 ocean bottom seismometers, deployed by the R/V New Horizon and 10 Reftek seismometers located along onshore extension of the transect. The average spacing for the OBS and Refteks is ~12 km and shots were fired from the R/V Maurice Ewing at 150 m intervals. Transect 0E crosses what it is believed to be extended continental crust and lies in the initial direction of extension characteristic of the proto-gulf. Preliminary results from the velocity model show upper crustal velocities of 6.1-6.3 km/s and lower crustal velocities of 6.7-7.0 km/s along the entire transect. Seismic velocities and crustal thicknesses observed along transect 0E are characteristic of non-volcanic margins.
40 CFR 147.102 - Aquifer exemptions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than the indicated depths below the ground surface, and described by a 1/4 mile area beyond and lying directly below the following oil and gas producing fields: (i) Swanson River Field—1700 feet. (ii) Beaver Creek Field—1650 feet. (iii) Kenai Gas Field—1300 feet. (2) The portion of aquifers beneath Cook Inlet...
40 CFR 147.102 - Aquifer exemptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... than the indicated depths below the ground surface, and described by a 1/4 mile area beyond and lying directly below the following oil and gas producing fields: (i) Swanson River Field—1700 feet. (ii) Beaver Creek Field—1650 feet. (iii) Kenai Gas Field—1300 feet. (2) The portion of aquifers beneath Cook Inlet...
40 CFR 147.102 - Aquifer exemptions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... than the indicated depths below the ground surface, and described by a 1/4 mile area beyond and lying directly below the following oil and gas producing fields: (i) Swanson River Field—1700 feet. (ii) Beaver Creek Field—1650 feet. (iii) Kenai Gas Field—1300 feet. (2) The portion of aquifers beneath Cook Inlet...
40 CFR 147.102 - Aquifer exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... than the indicated depths below the ground surface, and described by a 1/4 mile area beyond and lying directly below the following oil and gas producing fields: (i) Swanson River Field—1700 feet. (ii) Beaver Creek Field—1650 feet. (iii) Kenai Gas Field—1300 feet. (2) The portion of aquifers beneath Cook Inlet...
Two Tragic Forms of Child Sexual Abuse: Are They Often Overlooked?
ERIC Educational Resources Information Center
Lemmey, Dorothy E.; Tice, Pamela Paradis
2002-01-01
The persistence and pervasiveness of two forms of child sexual abuse in particular, pornography and prostitution, undoubtedly lie in the perpetuation of societal norms that unwittingly support such tragic behaviors. Argues that the overall problem of child sexual abuse must be reconceptualized, and in-depth, long-term investigations of both child…
May, Stefan
2018-01-01
This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients. PMID:29695098
Pfitzner, Christian; May, Stefan; Nüchter, Andreas
2018-04-24
This paper describes the estimation of the body weight of a person in front of an RGB-D camera. A survey of different methods for body weight estimation based on depth sensors is given. First, an estimation of people standing in front of a camera is presented. Second, an approach based on a stream of depth images is used to obtain the body weight of a person walking towards a sensor. The algorithm first extracts features from a point cloud and forwards them to an artificial neural network (ANN) to obtain an estimation of body weight. Besides the algorithm for the estimation, this paper further presents an open-access dataset based on measurements from a trauma room in a hospital as well as data from visitors of a public event. In total, the dataset contains 439 measurements. The article illustrates the efficiency of the approach with experiments with persons lying down in a hospital, standing persons, and walking persons. Applicable scenarios for the presented algorithm are body weight-related dosing of emergency patients.
NASA Astrophysics Data System (ADS)
Levesh, J. L.; McLindon, C.; Kulp, M. A.
2017-12-01
An in-depth field study of the Delacroix Island producing field illustrates the evolution of the main East-West trending Delacroix Island fault over the last thirteen million years. Well log correlation and 3-D seismic interpretation of eighteen bio-stratigraphic horizons across the fault reveal a range of stratigraphic thicknesses. A cross section, created with wells upthrown and downthrown to the fault, visually demonstrates varying degrees of thickening and displacement of the stratigraphic intervals across the fault. One upthrown and one downthrown well, with well log curve data up to 30 meters below the surface, were used to calculate interval thicknesses between the main tops as well as five more Pliocene/Pleistocene biostratigraphic markers. Isopach maps, created with these interval thicknesses, depict two styles of interval thickening both of which indicate differential subsidence across the fault. An interval thickness analysis was plotted in both depth and time as well as plots showing the rate of sediment accumulation and depth versus fault displacement. A lineation on the marsh surface consistent with a projection of the fault plane suggests that the fault movement has been episodically continuous to the present and that recent movement may have played a role in submerging the downthrown side of the surface fault trace.
Cluster-Randomized, Crossover Trial of Head Positioning in Acute Stroke.
Anderson, Craig S; Arima, Hisatomi; Lavados, Pablo; Billot, Laurent; Hackett, Maree L; Olavarría, Verónica V; Muñoz Venturelli, Paula; Brunser, Alejandro; Peng, Bin; Cui, Liying; Song, Lily; Rogers, Kris; Middleton, Sandy; Lim, Joyce Y; Forshaw, Denise; Lightbody, C Elizabeth; Woodward, Mark; Pontes-Neto, Octavio; De Silva, H Asita; Lin, Ruey-Tay; Lee, Tsong-Hai; Pandian, Jeyaraj D; Mead, Gillian E; Robinson, Thompson; Watkins, Caroline
2017-06-22
The role of supine positioning after acute stroke in improving cerebral blood flow and the countervailing risk of aspiration pneumonia have led to variation in head positioning in clinical practice. We wanted to determine whether outcomes in patients with acute ischemic stroke could be improved by positioning the patient to be lying flat (i.e., fully supine with the back horizontal and the face upwards) during treatment to increase cerebral perfusion. In a pragmatic, cluster-randomized, crossover trial conducted in nine countries, we assigned 11,093 patients with acute stroke (85% of the strokes were ischemic) to receive care in either a lying-flat position or a sitting-up position with the head elevated to at least 30 degrees, according to the randomization assignment of the hospital to which they were admitted; the designated position was initiated soon after hospital admission and was maintained for 24 hours. The primary outcome was degree of disability at 90 days, as assessed with the use of the modified Rankin scale (scores range from 0 to 6, with higher scores indicating greater disability and a score of 6 indicating death). The median interval between the onset of stroke symptoms and the initiation of the assigned position was 14 hours (interquartile range, 5 to 35). Patients in the lying-flat group were less likely than patients in the sitting-up group to maintain the position for 24 hours (87% vs. 95%, P<0.001). In a proportional-odds model, there was no significant shift in the distribution of 90-day disability outcomes on the global modified Rankin scale between patients in the lying-flat group and patients in the sitting-up group (unadjusted odds ratio for a difference in the distribution of scores on the modified Rankin scale in the lying-flat group, 1.01; 95% confidence interval, 0.92 to 1.10; P=0.84). Mortality within 90 days was 7.3% among the patients in the lying-flat group and 7.4% among the patients in the sitting-up group (P=0.83). There were no significant between-group differences in the rates of serious adverse events, including pneumonia. Disability outcomes after acute stroke did not differ significantly between patients assigned to a lying-flat position for 24 hours and patients assigned to a sitting-up position with the head elevated to at least 30 degrees for 24 hours. (Funded by the National Health and Medical Research Council of Australia; HeadPoST ClinicalTrials.gov number, NCT02162017 .).
Källman, Ulrika; Engström, Maria; Bergstrand, Sara; Ek, Anna-Christina; Fredrikson, Mats; Lindberg, Lars-Göran; Lindgren, Margareta
2015-03-01
Although repositioning is considered an important intervention to prevent pressure ulcers, tissue response during loading in different lying positions has not been adequately explored. To compare the effects of different lying positions on interface pressure, skin temperature, and tissue blood flow in nursing home residents. From May 2011 to August 2012, interface pressure, skin temperature, and blood flow at three tissue depths were measured for 1 hr over the sacrum in 30° supine tilt and 0° supine positions and over the trochanter major in 30° lateral and 90° lateral positions in 25 residents aged 65 years or older. Measurement of interface pressure was accomplished using a pneumatic pressure transmitter connected to a digital manometer, skin temperature using a temperature sensor, and blood flow using photoplethysmography and laser Doppler flowmetry. Interface pressure was significantly higher in the 0° supine and 90° lateral positions than in 30° supine tilt and 30° lateral positions. The mean skin temperature increased from baseline in all positions. Blood flow was significantly higher in the 30° supine tilt position compared to the other positions. A hyperemic response in the post pressure period was seen at almost all tissue depths and positions. The 30° supine tilt position generated less interface pressure and allowed greater tissue perfusion, suggesting that this position is the most beneficial. © The Author(s) 2014.
False Color Terrain Model of Phoenix Workspace
NASA Technical Reports Server (NTRS)
2008-01-01
This is a terrain model of Phoenix's Robotic Arm workspace. It has been color coded by depth with a lander model for context. The model has been derived using images from the depth perception feature from Phoenix's Surface Stereo Imager (SSI). Red indicates low-lying areas that appear to be troughs. Blue indicates higher areas that appear to be polygons. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.NASA Astrophysics Data System (ADS)
Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel
2014-07-01
We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.
Permeability of the continental crust: Implications of geothermal data and metamorphic systems
Manning, C.E.; Ingebritsen, S.E.
1999-01-01
In the upper crust, where hydraulic gradients are typically 10 MPa km-1, the mean permeabilities required to accommodate the estimated metamorphic fluid fluxes decrease from ~10-16 m2 to ~10-18 m2 between 5- and 12-km depth. Below ~12 km, which broadly corresponds to the brittle-plastic transition, mean k is effectively independent of depth at ~10(-18.5??1) m2. Consideration of the permeability values inferred from thermal modeling and metamorphic fluxes suggests a quasi-exponential decay of permeability with depth of log k ~ -3.2 log z - 14, where k is in meters squared and z is in kilometers. At mid to lower crustal depths this curve lies just below the threshold value for significant advection of heat. Such conditions may represent an optimum for metamorphism, allowing the maximum transport of fluid and solute mass that is possible without advective cooling.
The Use of Electrocortical Activity to Monitor Human Decision Making
1974-02-01
processor’ lies in a principle i of neural organization rather than in a specific locus in the CNS. We cannot assume that activity related to the...Slov potential changes and choice RT as a function cf Ir.terctlmitlua Interval, Acta Paychoiepical 37, 173-186, 1973. Gerbrandt, L. K., Coff , W. R
NASA Astrophysics Data System (ADS)
Ziegs, Volker; Mahlstedt, Nicolaj; Bruns, Benjamin; Horsfield, Brian
2015-09-01
The Berriasian Wealden Shale provides the favourable situation of possessing immature to overmature source rock intervals due to differential subsidence within the Lower Saxony Basin. Hydrocarbon generation kinetics and petroleum physical properties have been investigated on four immature Wealden Shale samples situated in different depth intervals and following the PhaseKinetics approach of di Primio and Horsfield (AAPG Bull 90(7):1031-1058, 2006). Kinetic parameters and phase prediction were applied to a thermally calibrated 1D model of the geodynamic evolution at the location of an overmature well. The immature source rocks of all depth intervals comprise kerogen type I being derived from the lacustrine algae Botryococcus braunii. Bulk kinetics of the lower three depth intervals (sample 2-4) can be described by one single activation energy E a, typical for homogeneous, lacustrine organic matter (OM), whereas sample 1 from the uppermost interval shows a slightly broader E a distribution which hints to a more heterogeneous, less stable OM, but still of lacustrine origin. Predicted physical properties of the generated petroleum fluids are characteristic of variably waxy, black oil possessing GOR's below 100 Sm3/Sm3 and saturations pressures below 150 bar. Petroleum fluids from the more heterogeneous OM-containing sample 1 can always be described by slightly higher values. Based on the occurrence of paraffinic, free hydrocarbons in the uppermost horizon of the overmature well and gas/condensate in the lower 3 depth intervals, two scenarios have been discussed. From the first and least realistic scenario assuming no expulsion from the source rock, it can be deduced that phase separation in the course of uplift can only have occurred in the uppermost interval containing the slightly less stable OM but not in the lower intervals being composed of a more stable OM. Therefore and taking secondary cracking into account, all depth intervals should contain gas/condensate. The free hydrocarbons in the upper horizon are interpreted as impregnation from migrated hydrocarbons. The second scenario assumes nearly complete expulsion due to fracturing by the so-called generation overpressure (Mann et al. in Petroleum and basin evolution. Springer, Berlin, 1997). The expelled petroleum might migrate into lower pressurised source rock horizons and reach bubble-point pressures leading to the exsolution of gas and "precipitation" of very high molecular weight bitumen unable to migrate. Subsequent burial of the latter in the course of the basin evolution would lead to secondary cracking and remaining pyrobitumen explaining the high amounts of pyrobitumen in the overmature well Ex-B and relatively enhanced TOC contents at such high maturity levels.
ERIC Educational Resources Information Center
Frantzich, Kirsten; Fels, Lynn
2018-01-01
This article presents a new approach to psychological practice that dwells within the somatic, expressive, imaginal, poetic, narrative, and performative. Embodied Theater Ecology (ETE) as a form of Performative Inquiry is introduced and presented. This approach involves the performative unfolding of unlanguaged stories that lie at the heart of our…
Glucose response to exercise in the post-prandial period is independent of exercise intensity.
Shambrook, P; Kingsley, M I; Wundersitz, D W; Xanthos, P D; Wyckelsma, V L; Gordon, B A
2018-03-01
This study investigated the acute glucose response to low-intensity, moderate-intensity, and high-intensity interval exercise compared to no-exercise in healthy insufficiently active males using a four-arm, randomized, crossover design. Ten males (age: 37.3 ± 7.3 years, BMI: 29.3 ± 6.5 kg·m -2 ) completed four 30-minute interventions at weekly intervals comprising low-intensity exercise (LIE) at ~35% V˙O 2 R, moderate-intensity exercise (MIE) at ~50% V˙O 2 R, high-intensity interval exercise (HIIE) at ~80% V˙O 2 R, and a no-exercise control. Participants performed cycle ergometer exercise 30 minutes after finishing breakfast. Glucose response was assessed using a continuous glucose monitor under free-living conditions with dietary intake replicated. A significant effect for intensity on energy expenditure was identified (P < .001) with similar energy cost in MIE (mean ± SD: 869 ± 148 kJ) and HIIE (806 ± 145 kJ), which were both greater than LIE (633 ± 129 kJ). The pattern of glucose response between the interventions over time was different (P = .02). Glucose was lower 25 minutes into each of the HIIE, MIE and LIE trials respectively (mean difference ± SD: -0.7 ± 1.1; -0.9 ± 1.1; -0.6 ± 0.9 mmol·L -1 ; P < .05) than in the no-exercise trial. Glucose response was not different between exercise intensities (P > .05). Twenty-four-hour AUC was not affected by exercise intensity (P = .75). There was a significant effect for exercise enjoyment (P = .02), with LIE (69 ± 4) preferred less than HIIE (mean ± SD: 84 ± 14; P = .02), MIE (73 ± 5; P = .03), and no-exercise (75 ± 4; P = .03). Exercise at any intensity 30 minutes after a meal affects glycemic regulation equally in insufficiently active males. Moderate to vigorous exercise intensities were preferred, and therefore, the exercise guidelines appear appropriate for the prevention of cardiometabolic disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Precipitation areal-reduction factor estimation using an annual-maxima centered approach
NASA Astrophysics Data System (ADS)
Asquith, W. H.; Famiglietti, J. S.
2000-04-01
The adjustment of precipitation depth of a point storm to an effective (mean) depth over a watershed is important for characterizing rainfall-runoff relations and for cost-effective designs of hydraulic structures when design storms are considered. A design storm is the precipitation point depth having a specified duration and frequency (recurrence interval). Effective depths are often computed by multiplying point depths by areal-reduction factors (ARF). ARF range from 0 to 1, vary according to storm characteristics, such as recurrence interval; and are a function of watershed characteristics, such as watershed size, shape, and geographic location. This paper presents a new approach for estimating ARF and includes applications for the 1-day design storm in Austin, Dallas, and Houston, Texas. The approach, termed "annual-maxima centered," specifically considers the distribution of concurrent precipitation surrounding an annual-precipitation maxima, which is a feature not seen in other approaches. The approach does not require the prior spatial averaging of precipitation, explicit determination of spatial correlation coefficients, nor explicit definition of a representative area of a particular storm in the analysis. The annual-maxima centered approach was designed to exploit the wide availability of dense precipitation gauge data in many regions of the world. The approach produces ARF that decrease more rapidly than those from TP-29. Furthermore, the ARF from the approach decay rapidly with increasing recurrence interval of the annual-precipitation maxima.
Geophysical setting of the Wabash Valley fault system
Hildenbrand, T.G.; Ravat, D.
1997-01-01
Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.
The decay pattern of the Pygmy Dipole Resonance of 140Ce
NASA Astrophysics Data System (ADS)
Löher, B.; Savran, D.; Aumann, T.; Beller, J.; Bhike, M.; Cooper, N.; Derya, V.; Duchêne, M.; Endres, J.; Hennig, A.; Humby, P.; Isaak, J.; Kelley, J. H.; Knörzer, M.; Pietralla, N.; Ponomarev, V. Yu.; Romig, C.; Scheck, M.; Scheit, H.; Silva, J.; Tonchev, A. P.; Tornow, W.; Wamers, F.; Weller, H.; Werner, V.; Zilges, A.
2016-05-01
The decay properties of the Pygmy Dipole Resonance (PDR) have been investigated in the semi-magic N = 82 nucleus 140Ce using a novel combination of nuclear resonance fluorescence and γ-γ coincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. A 10% mixing of the PDR and the [21+ × PDR ] is extracted.
NASA Astrophysics Data System (ADS)
Kasiviswanathan, K.; Sudheer, K.
2013-05-01
Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived prediction interval for a selected hydrograph in the validation data set is presented in Fig 1. It is noted that most of the observed flows lie within the constructed prediction interval, and therefore provides information about the uncertainty of the prediction. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs. Fig. 1 Prediction Interval for selected hydrograph
Vs30 mapping at selected sites within the Greater Accra Metropolitan Area
NASA Astrophysics Data System (ADS)
Nortey, Grace; Armah, Thomas K.; Amponsah, Paulina
2018-06-01
A large part of Accra is underlain by a complex distribution of shallow soft soils. Within seismically active zones, these soils hold the most potential to significantly amplify seismic waves and cause severe damage, especially to structures sited on soils lacking sufficient stiffness. This paper presents preliminary site classification for the Greater Accra Metropolitan Area of Ghana (GAMA), using experimental data from two-dimensional (2-D) Multichannel Analysis of Surface Wave (MASW) technique. The dispersive characteristics of fundamental mode Rayleigh type surface waves were utilized for imaging the shallow subsurface layers (approx. up to 30 m depth) by estimating the 1D (depth) and 2D (depth and surface location) shear wave velocities at 5 selected sites. The average shear wave velocity for 30 m depth (Vs30), which is critical in evaluating the site response of the upper 30 m, was estimated and used for the preliminary site classification of the GAM area, as per NEHRP (National Earthquake Hazards Reduction Program). Based on the Vs30 values obtained in the study, two common site types C, and D corresponding to shallow (>6 m < 30 m) weathered rock and deep (up 30 m thick) stiff soils respectively, have been identified within the study area. Lower velocity profiles are inferred for the residual soils (sandy to silty clays), derived from the Accraian Formation that lies mainly within Accra central. Stiffer soil sites lie to the north of Accra, and to the west near Nyanyano. The seismic response characteristics over the residual soils in the GAMA have become apparent using the MASW technique. An extensive site effect map and a more robust probabilistic seismic hazard analysis can now be efficiently built for the metropolis, by considering the site classes and design parameters obtained from this study.
Validity of a Self-Report Recall Tool for Estimating Sedentary Behavior in Adults.
Gomersall, Sjaan R; Pavey, Toby G; Clark, Bronwyn K; Jasman, Adib; Brown, Wendy J
2015-11-01
Sedentary behavior is continuing to emerge as an important target for health promotion. The purpose of this study was to determine the validity of a self-report use of time recall tool, the Multimedia Activity Recall for Children and Adults (MARCA) in estimating time spent sitting/lying, compared with a device-based measure. Fifty-eight participants (48% female, [mean ± standard deviation] 28 ± 7.4 years of age, 23.9 ± 3.05 kg/m(2)) wore an activPAL device for 24-h and the following day completed the MARCA. Pearson correlation coefficients (r) were used to analyze convergent validity of the adult MARCA compared with activPAL estimates of total sitting/lying time. Agreement was examined using Bland-Altman plots. According to activPAL estimates, participants spent 10.4 hr/day [standard deviation (SD) = 2.06] sitting or lying down while awake. The correlation between MARCA and activPAL estimates of total sit/lie time was r = .77 (95% confidence interval = 0.64-0.86; P < .001). Bland-Altman analyses revealed a mean bias of +0.59 hr/day with moderately wide limits of agreement (-2.35 hr to +3.53 hr/day). This study found a moderate to strong agreement between the adult MARCA and the activPAL, suggesting that the MARCA is an appropriate tool for the measurement of time spent sitting or lying down in an adult population.
Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.
Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît
2011-01-01
Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.
Burbey, T.J.
1997-01-01
Seventeen hydrographic areas in southern Nevada were assessed for the ground-water development potential of the underlying carbonate-rock aquifers on the basis of geologic and hydrologic information developed as part of the Nevada Carbonate Aquifers Study and information compiled from previous investigations. All selected areas lie within a miogeoclinal belt where thick accumulations of carbonate rock followed by major episodes of compression and extension have greatly modified the region. Most of the selected hydrographic areas lie within the less extended terranes; however, several areas, or parts of areas, lie within severely extended terranes where carbonate rocks have been greatly thinned, or where deformed blocks of carbonate rock are discontinuous and isolated from surrounding carbonate rock aquifers. Three principal criteria were used to assess the development potential of each selected hydrographic area. These quantitative criteria are: (1) depth to water, (2) depth to and thickness of carbonate rocks, and (3) water quality. Other site-specific factors, such as accessibility and potential effects of ground-water development, are also discussed. Results suggest that sites with high potential for development may be scarce in southern Nevada. Many areas described as favorable on the basis of the three quantitative criteria were deemed unfavorable on the basis of possible short- and long-term effects associated with development and on the amount of available data used to make the assessment. The most favorable sites may be in more severely extended terranes, where development of isolated blocks (of carbonate-rock aquifer material) would be less likely to affect neighboring areas.
Sapphire implant based neuro-complex for deep-lying brain tumors phototheranostics
NASA Astrophysics Data System (ADS)
Sharova, A. S.; Maklygina, YU S.; Yusubalieva, G. M.; Shikunova, I. A.; Kurlov, V. N.; Loschenov, V. B.
2018-01-01
The neuro-complex as a combination of sapphire implant optical port and osteoplastic biomaterial "Collapan" as an Aluminum phthalocyanine nanoform photosensitizer (PS) depot was developed within the framework of this study. The main goals of such neuro-complex are to provide direct access of laser radiation to the brain tissue depth and to transfer PS directly to the pathological tissue location that will allow multiple optical phototheranostics of the deep-lying tumor region without repeated surgical intervention. The developed complex spectral-optical properties research was carried out by photodiagnostics method using the model sample: a brain tissue phantom. The optical transparency of sapphire implant allows obtaining a fluorescent signal with high accuracy, comparable to direct measurement "in contact" with the tissue.
Allen, J D; Hall, L W; Collier, R J; Smith, J F
2015-01-01
Cattle show several responses to heat load, including spending more time standing. Little is known about what benefit this may provide for the animals. Data from 3 separate cooling management trials were analyzed to investigate the relationship between behavioral patterns in lactating dairy cows experiencing mild to moderate heat stress and their body temperature. Cows (n=157) were each fitted with a leg data logger that measured position and an intravaginal data logger that measures core body temperature (CBT). Ambient conditions were also collected. All data were standardized to 5-min intervals, and information was divided into several categories: when standing and lying bouts were initiated and the continuance of each bout (7,963 lying and 6,276 standing bouts). In one location, cows were continuously subjected to heat-stress levels according to temperature-humidity index (THI) range (THI≥72). The THI range for the other 2 locations was below and above a heat-stress threshold of 72 THI. Overall and regardless of period of day, cows stood up at greater CBT compared with continuing to stand or switching to a lying position. In contrast, cows lay down at lower CBT compared with continuing to lie or switching to a standing position, and lying bouts lasted longer when cows had lower CBT. Standing bouts also lasted longer when cattle had greater CBT, and they were less likely to lie down (less than 50% of lying bouts initiated) when their body temperature was over 38.8°C. Also, cow standing behavior was affected once THI reached 68. Increasing CBT decreased lying duration and increased standing duration. A CBT of 38.93°C marked a 50% likelihood a cow would be standing. This is the first physiological evidence that standing may help cool cows and provides insight into a communally observed behavioral response to heat. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Doubling Your Sunsets or How Anyone Can Measure the Earth's Size with Wristwatch and Meterstick.
ERIC Educational Resources Information Center
Rawlins, Dennis
1979-01-01
Describes a simple method to measure the size of the Earth to an accuracy of order of magnitude 10 percent. The procedure involves finding the time interval between two sunsets, a sunset observed at sea level while lying down, and a sunset viewed at eye height after standing up. (GA)
46 CFR 197.312 - Breathing supply hoses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... equivalent of the maximum depth of the dive relative to the supply source plus 100 psig; (2) Have a bursting... marked from the diver or open bell end in 10-foot intervals to 100 feet and in 50-foot intervals...
Temperature and petroleum generation history of the Wilcox Formation, Louisiana
Pitman, Janet K.; Rowan, Elisabeth Rowan
2012-01-01
A one-dimensional petroleum system modeling study of Paleogene source rocks in Louisiana was undertaken in order to characterize their thermal history and to establish the timing and extent of petroleum generation. The focus of the modeling study was the Paleocene and Eocene Wilcox Formation, which contains the youngest source rock interval in the Gulf Coast Province. Stratigraphic input to the models included thicknesses and ages of deposition, lithologies, amounts and ages of erosion, and ages for periods of nondeposition. Oil-generation potential of the Wilcox Formation was modeled using an initial total organic carbon of 2 weight percent and an initial hydrogen index of 261 milligrams of hydrocarbon per grams of total organic carbon. Isothermal, hydrous-pyrolysis kinetics determined experimentally was used to simulate oil generation from coal, which is the primary source of oil in Eocene rocks. Model simulations indicate that generation of oil commenced in the Wilcox Formation during a fairly wide age range, from 37 million years ago to the present day. Differences in maturity with respect to oil generation occur across the Lower Cretaceous shelf edge. Source rocks that are thermally immature and have not generated oil (depths less than about 5,000 feet) lie updip and north of the shelf edge; source rocks that have generated all of their oil and are overmature (depths greater than about 13,000 feet) are present downdip and south of the shelf edge. High rates of sediment deposition coupled with increased accommodation space at the Cretaceous shelf margin led to deep burial of Cretaceous and Tertiary source rocks and, in turn, rapid generation of petroleum and, ultimately, cracking of oil to gas.
NASA Astrophysics Data System (ADS)
Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.
2017-12-01
Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.
Tool Measures Depths of Defects on a Case Tang Joint
NASA Technical Reports Server (NTRS)
Ream, M. Bryan; Montgomery, Ronald B.; Mecham, Brent A.; Keirstead, Bums W.
2005-01-01
A special-purpose tool has been developed for measuring the depths of defects on an O-ring seal surface. The surface lies in a specially shaped ringlike fitting, called a capture feature tang, located on an end of a cylindrical segment of a case that contains a solid-fuel booster rocket motor for launching a space shuttle. The capture feature tang is a part of a tang-and-clevis, O-ring joint between the case segment and a similar, adjacent cylindrical case segment. When the segments are joined, the tang makes an interference fit with the clevis and squeezes the O-ring at the side of the gap.
Technique for estimating depth of floods in Tennessee
Gamble, C.R.
1983-01-01
Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)
Altuna, Alvaro
2017-11-23
During surveys in the Galicia Bank (northeastern Atlantic) in the years 2010-2011 (INDEMARES project), 25 species of scleractinian corals corals were collected in a depth interval of 744-1764 m. Most interesting species are described and depicted. Additionally, species list and remarks are given for the 23 species dredged in the bank during the 1987 SEAMOUNT 1 expedition at 675-1125 m depth.From a literature review and new records from Galicia Bank given herein, 31 species of scleractinian corals are known from this seamount in a depth interval of 614-1764 m depth. Six are colonial and 25 solitary, with 17 occurring on hard bottoms and 14 on soft bottoms. Desmophyllum dianthus, Lophelia pertusa and Madrepora oculata are the most widely distributed species in both number of stations and depth range of specimens collected alive. Some species were recorded outside their previously known bathymetric ranges in the northeastern Atlantic. Javania pseudoalabastra is first documented for the Iberian Peninsula and Spanish faunas. Thrypticotrochus sp. is first collected from the Atlantic Ocean.
Recall of Others' Actions after Incidental Encoding Reveals Episodic-like Memory in Dogs.
Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám
2016-12-05
The existence of episodic memory in non-human animals is a debated topic that has been investigated using different methodologies that reflect diverse theoretical approaches to its definition. A fundamental feature of episodic memory is recalling after incidental encoding, which can be assessed if the recall test is unexpected [1]. We used a modified version of the "Do as I Do" method [2], relying on dogs' ability to imitate human actions, to test whether dogs can rely on episodic memory when recalling others' actions from the past. Dogs were first trained to imitate human actions on command. Next, they were trained to perform a simple training exercise (lying down), irrespective of the previously demonstrated action. This way, we substituted their expectation to be required to imitate with the expectation to be required to lie down. We then tested whether dogs recalled the demonstrated actions by unexpectedly giving them the command to imitate, instead of lying down. Dogs were tested with a short (1 min) and a long (1 hr) retention interval. They were able to recall the demonstrated actions after both intervals; however, their performance declined more with time compared to conditions in which imitation was expected. These findings show that dogs recall past events as complex as human actions even if they do not expect the memory test, providing evidence for episodic-like memory. Dogs offer an ideal model to study episodic memory in non-human species, and this methodological approach allows investigating memory of complex, context-rich events. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.
The decay pattern of the Pygmy Dipole Resonance of 140Ce
Loher, B.; Savran, D.; Aumann, T.; ...
2016-02-23
The decay properties of the Pygmy Dipole Resonance (PDR) have been investigated in the semi-magic N = 82 nucleus 140Ce using a novel combination of nuclear resonance fluorescence and γ–γ coincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. In conclusion, a 10% mixingmore » of the PDR and the [2 1 + × PDR] is extracted.« less
NASA Technical Reports Server (NTRS)
Gose, W. A.; Helsley, C. E.
1972-01-01
Study of the Permian Cutler formation and the upper 15 meters of the Permian Elephant Canyon formation at 0.6-meter stratigraphic intervals southwest of Moab in eastern Utah. The directions of natural remanent magnetization show a pronounced streak distribution, but thermal demagnetization successfully isolates the stable paleomagnetic direction. All directions are reversed, and no significant long-term change in pole position is observed throughout the entire section. The pole calculated from the Elephant Canyon data lies at 43.6 N, 119.6 E; the Cutler pole lies at 44.4 N, 116.2 E. Rock-magnetic analyses suggest that the secondary magnetization results from the iron hydroxides and was acquired after recent surface exposure.
Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun
NASA Technical Reports Server (NTRS)
Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.
1994-01-01
The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.
Nearshore coastal mapping. [in Lake Michigan and Puerto Rico
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Lyzenga, D. R.
1975-01-01
Two test sites of different water quality and bottom topography were used to test for maximum water depth penetration using the Skylab S-192 MSS for measurement of nearshore coastal bathymetry. Sites under investigation lie along the Lake Michigan coastline where littoral transport acts to erode sand bluffs and endangers developments along 1,200 miles of shore, and on the west coast of Puerto Rico where unreliable shoal location and depth information constitutes a safety hazard to navigation. The S-192 and S-190A and B provide data on underwater features because of water transparency in the blue/green portion of the spectrum. Depth of 20 meters were measured with the S-192 in the Puerto Rico test site. The S-190B photography with its improved spatial resolution clearly delineates the triple sand bar topography in the Lake Michigan test site. Several processing techniques were employed to test for maximum depth measurement with least error. The results are useful for helping to determine an optimum spectral bandwidth for future space sensors that will increase depth measurements for different water attenuation conditions where a bottom reflection is detectable.
NASA Technical Reports Server (NTRS)
Bowin, C.
1982-01-01
A negative free-air gravity anomaly which occurs in the central part of the Philippine Sea was examined to determine the distribution and nature of possible regional mass excesses or deficiencies. Geoid anomalies from GEOS-3 observation were positive. A negative residual geoid anomaly consistent with the area of negative free-air gravity anomalies were found. Theoretical gravity-topography and geoid-topography admittance functions indicated that high density mantle at about 60 km dept could account for the magnitudes of the gravity and residual geoid anomaly and the 1 km residual water depth anomaly in the Philippine Sea. The negative residual depth anomaly may be compensated for by excess density in the uppermost mantle, but the residual geoid and regional free-air gravity anomalies and a slow surface wave velocity structure might result from low-density warm upper mantle material lying beneath the zone of high-density uppermost mantle. From a horizontal disk approximation, the depth of the low-density warm mantle was estimated to be on the order of 200 km.
Kılıç, D; Göksu, E; Kılıç, T; Buyurgan, C S
2018-05-01
The aim of this randomized cross-over study was to compare one-minute and two-minute continuous chest compressions in terms of chest compression only CPR quality metrics on a mannequin model in the ED. Thirty-six emergency medicine residents participated in this study. In the 1-minute group, there was no statistically significant difference in the mean compression rate (p=0.83), mean compression depth (p=0.61), good compressions (p=0.31), the percentage of complete release (p=0.07), adequate compression depth (p=0.11) or the percentage of good rate (p=51) over the four-minute time period. Only flow time was statistically significant among the 1-minute intervals (p<0.001). In the 2-minute group, the mean compression depth (p=0.19), good compression (p=0.92), the percentage of complete release (p=0.28), adequate compression depth (p=0.96), and the percentage of good rate (p=0.09) were not statistically significant over time. In this group, the number of compressions (248±31 vs 253±33, p=0.01) and mean compression rates (123±15 vs 126±17, p=0.01) and flow time (p=0.001) were statistically significant along the two-minute intervals. There was no statistically significant difference in the mean number of chest compressions per minute, mean chest compression depth, the percentage of good compressions, complete release, adequate chest compression depth and percentage of good compression between the 1-minute and 2-minute groups. There was no statistically significant difference in the quality metrics of chest compressions between 1- and 2-minute chest compression only groups. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mokeddem, Zohra; McManus, Jerry F.
2017-11-01
Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.
Prepartum Lying Behavior of Holstein Dairy Cows Housed on Pasture through Parturition
Rice, Christa A.; Eberhart, Nicole L.; Krawczel, Peter D.
2017-01-01
Simple Summary Dairy cows experience meaningful biological changes during gestation that impact cow comfort and alter behavior, particularly during late gestation and leading up to calving. The housing environment can also have a positive or negative effect on cow comfort. Pasture access allows cows the freedom of movement and an ability to express natural grazing and resting behaviors. After observing cows housed on pasture during the late gestation and calving periods, this study found that lying behaviors only differed on the day of calving and the day prior to calving. Additionally, the proportion of time spent lying per hour decreased in the hour prior to calving compared to 6 h prior to parturition. The altered lying behaviors and activity observed in the hours before calving may indicate a decrease in cow comfort experienced by the cow during parturition. However, discomfort is typical of parturition. These data suggest that cows were able to express natural behaviors associated with calving and pasture when provided an adequate environment for cows during the prepartum period. Abstract Utilizing pasture-based systems may increase cow comfort during late gestation and calving as it lacks the constraints of confinement housing. The objective of this study was to quantify lying behavior and activity of Holstein dairy cows housed on pasture during the 6 d before calving. Sixteen Holstein dairy cows were moved to pasture 3 weeks before their projected calving date. Data loggers were attached 14 d prior to projected calving date. Behavior was evaluated 6 d before calving for all cows (n = 16) and 6 h prior to calving for a subset of cows (n = 6) with known calving times. Data loggers recorded at 1-min intervals to determine lying time (h/d and %/h), lying bouts (n/d and n/h), lying bout duration (min/bout), and steps (n/d and n/h). A repeated measures analysis of variance with contrasts was performed to determine if lying behaviors and activity differed between baseline and day or hour of interest. Lying time was greater 6 d prior to calving compared to the day of and before calving. Cows had longer lying bouts 6 d prior to calving compared to day of calving. Cows spent less time lying in the hour before calving compared to 6 h prior to parturition. The lack of change in behavior and activity during the 7 d prior to calving may indicate that pasture provided an adequate environment for cows during the prepartum period but did not impact cow welfare in the hours leading up to calving. PMID:28420107
Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth
NASA Astrophysics Data System (ADS)
Cook, Carys P.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Iwai, Masao; Kobayashi, Munemasa; Jimenez-Espejo, Francisco J.; Escutia, Carlota; González, Jhon Jairo; Khim, Boo-Keun; McKay, Robert M.; Passchier, Sandra; Bohaty, Steven M.; Riesselman, Christina R.; Tauxe, Lisa; Sugisaki, Saiko; Galindo, Alberto Lopez; Patterson, Molly O.; Sangiorgi, Francesca; Pierce, Elizabeth L.; Brinkhuis, Henk; Klaus, Adam; Fehr, Annick; Bendle, James A. P.; Bijl, Peter K.; Carr, Stephanie A.; Dunbar, Robert B.; Flores, José Abel; Hayden, Travis G.; Katsuki, Kota; Kong, Gee Soo; Nakai, Mutsumi; Olney, Matthew P.; Pekar, Stephen F.; Pross, Jörg; Röhl, Ursula; Sakai, Toyosaburo; Shrivastava, Prakash K.; Stickley, Catherine E.; Tuo, Shouting; Welsh, Kevin; Yamane, Masako
2013-09-01
Warm intervals within the Pliocene epoch (5.33-2.58 million years ago) were characterized by global temperatures comparable to those predicted for the end of this century and atmospheric CO2 concentrations similar to today. Estimates for global sea level highstands during these times imply possible retreat of the East Antarctic ice sheet, but ice-proximal evidence from the Antarctic margin is scarce. Here we present new data from Pliocene marine sediments recovered offshore of Adélie Land, East Antarctica, that reveal dynamic behaviour of the East Antarctic ice sheet in the vicinity of the low-lying Wilkes Subglacial Basin during times of past climatic warmth. Sedimentary sequences deposited between 5.3 and 3.3 million years ago indicate increases in Southern Ocean surface water productivity, associated with elevated circum-Antarctic temperatures. The geochemical provenance of detrital material deposited during these warm intervals suggests active erosion of continental bedrock from within the Wilkes Subglacial Basin, an area today buried beneath the East Antarctic ice sheet. We interpret this erosion to be associated with retreat of the ice sheet margin several hundreds of kilometres inland and conclude that the East Antarctic ice sheet was sensitive to climatic warmth during the Pliocene.
Geomorphology of the north flank of the Uinta Mountains
Bradley, W.H.
1936-01-01
beds now form hogbacks ranked along the sides of the fold. In places large faults, approximating the regional strike, cut these steeply inclined beds. Gently warped Tertiary sediments, mostly of Eocene age, fill the large Green River Basin, which lies north of the range, to a depth of several thousand feet and lap up on the flanks of the mountains, from which they were chiefly derived.
ERIC Educational Resources Information Center
Coleyshaw, Liz
2010-01-01
The literature on bullying is vast and this social phenomenon has been studied in depth in relation to schooling and the workplace. Between school and workplace lies higher education (HE), but there is a marked absence of published work regarding undergraduate student-to-student bullying in this setting. This theoretical paper explores possible…
The Foraging Tunnel System of the Namibian Desert Termite, Baucaliotermes hainesi
Tschinkel, Walter R.
2010-01-01
The harvester termite, Baucaliotermes hainesi (Fuller) (Termitidae: Nasutitermitinae), is an endemic in southern Namibia, where it collects and eats dry grass. At the eastern, landward edge of the Namib Desert, the nests of these termites are sometimes visible above ground surface, and extend at least 60 cm below ground. The termites gain access to foraging areas through underground foraging tunnels that emanate from the nest. The looseness of the desert sand, combined with the hardness of the cemented sand tunnels allowed the use of a gasolinepowered blower and soft brushes to expose tunnels lying 5 to 15 cm below the surface. The tunnels form a complex system that radiates at least 10 to 15 m from the nest with crossconnections between major tunnels. At 50 to 75 cm intervals, the tunnels are connected to the surface by vertical risers that can be opened to gain foraging access to the surrounding area. Foraging termites rarely need to travel more than a meter on the ground surface. The tunnels swoop up and down forming high points at riser locations, and they have a complex architecture. In the center runs a smooth, raised walkway along which termites travel, and along the sides lie pockets that act as depots where foragers deposit grass pieces harvested from the surface. Presumably, these pieces are transported to the nest by a second group of termites. There are also several structures that seem to act as vertical highways to greater depths, possibly even to moist soil. A census of a single nest revealed about 45,000 termites, of which 71% were workers, 9% soldiers and 6% neotenic supplementary reproductives. The nest consisted of a hard outer “carapace” of cemented sand, with a central living space of smooth, sweeping arches and surfaces. A second species of termite, Promirotermes sp. nested in the outer carapace. PMID:20672982
NASA Astrophysics Data System (ADS)
Gayvoronskiy, S. A.; Ezangina, T. A.; Khozhaev, I. V.
2018-03-01
The paper is dedicated to examining dynamics of a submersible underwater garage in conditions of significant sea oscillation. During the considered research, the mathematical model of the electromechanical depth control system, considering interval parametric uncertainty of the system and distribution of tether mass, was developed. An influence of sea oscillation on submerging underwater garages and their depth stabilization processes was analyzed.
NASA Astrophysics Data System (ADS)
Woodland, Alan B.
The orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene with a mantle-relevant composition (XFs = 0.1) is expected to occur at ˜300 km depth [Woodland and Angel, 1997]. However, the divariant nature of the phase transition in the Mg-Fe system leaves the question open as to whether this transition occurs over a narrow enough pressure interval to cause a seismic discontinuity. New experimental results with binary Mg-Fe pyroxenes constrain the divariant loop to be 0.2 GPa wide at the composition of XFs = 0.4 and on the order of 0.15 GPa for a mantle-relevant composition. This implies that the phase transition will be complete over a depth interval of about 5-6 km in the mantle and it is concluded that the divariant loop of the orthorhombic to high-P monoclinic phase transition in (Mg,Fe)SiO3 pyroxene is indeed narrow enough to produce a “jump” in seismic velocities. The experimentally observed metastable behavior of orthopyroxene could further reduce the effective depth interval of this phase transition. The expected location of this phase transition coincides with a small magnitude seismic discontinuity, the “X-discontinuity”, occasionally observed in seismic profiles at ˜300 km depth, and thus provides a viable petrologic explanation for the origin of this discontinuity, if it truly exists.
A Depth Map Generation Algorithm Based on Saliency Detection for 2D to 3D Conversion
NASA Astrophysics Data System (ADS)
Yang, Yizhong; Hu, Xionglou; Wu, Nengju; Wang, Pengfei; Xu, Dong; Rong, Shen
2017-09-01
In recent years, 3D movies attract people's attention more and more because of their immersive stereoscopic experience. However, 3D movies is still insufficient, so estimating depth information for 2D to 3D conversion from a video is more and more important. In this paper, we present a novel algorithm to estimate depth information from a video via scene classification algorithm. In order to obtain perceptually reliable depth information for viewers, the algorithm classifies them into three categories: landscape type, close-up type, linear perspective type firstly. Then we employ a specific algorithm to divide the landscape type image into many blocks, and assign depth value by similar relative height cue with the image. As to the close-up type image, a saliency-based method is adopted to enhance the foreground in the image and the method combine it with the global depth gradient to generate final depth map. By vanishing line detection, the calculated vanishing point which is regarded as the farthest point to the viewer is assigned with deepest depth value. According to the distance between the other points and the vanishing point, the entire image is assigned with corresponding depth value. Finally, depth image-based rendering is employed to generate stereoscopic virtual views after bilateral filter. Experiments show that the proposed algorithm can achieve realistic 3D effects and yield satisfactory results, while the perception scores of anaglyph images lie between 6.8 and 7.8.
Aging and the visual perception of exocentric distance.
Norman, J Farley; Adkins, Olivia C; Norman, Hideko F; Cox, Andrea G; Rogers, Connor E
2015-04-01
The ability of 18 younger and older adults to visually perceive exocentric distances was evaluated. The observers judged the extent of fronto-parallel and in-depth spatial intervals at a variety of viewing distances from 50cm to 164.3cm. Most of the observers perceived in-depth intervals to be significantly smaller than fronto-parallel intervals, a finding that is consistent with previous studies. While none of the individual observers' judgments of exocentric distance were accurate, the judgments of the older observers were significantly more accurate than those of the younger observers. The precision of the observers' judgments across repeated trials, however, was not affected by age. The results demonstrate that increases in age can produce significant improvements in the visual ability to perceive the magnitude of exocentric distances. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geothermal studies in oil field districts of North China
NASA Astrophysics Data System (ADS)
Wang, Ji-An; Wang, Ji-Yang; Yan, Shu-Zhen; Lu, Xiu-Wen
In North China, Tertiary sediments give the main oil-genetic series. The mean value of terrestrial heat flow density has been considered to be 60 - 65 mW/m2, and the geothermal gradient in Tertiary sediments usually ranges from 30 to 40° C/km in the region studied. Supposing that the onset of oil generation lies at about 90° C, the upper limit of the depth of oil-generation is at about 2000 to 2500 m depth. Recent paleogeothermal studies using vitrinite reflectance, clay and authigenic minerals, as well as other methods showed that in Eocene the geothermal gradient has been higher than at present. Some results were obtained and discussed.
Age and paleoenvironment of the imperial formation near San Gorgonio Pass, Southern California
McDougall, K.; Poore, R.Z.; Matti, J.
1999-01-01
Microfossiliferous marine sediments of the Imperial Formation exposed in the Whitewater and Cabazon areas, near San Gorgonio Pass, southern California, are late Miocene in age and were deposited at intertidal to outer neritic depths, and possibly upper bathyal depths. A late Miocene age of 7.4 to >6.04 Ma is based on the ranges of age-diagnostic benthic foraminifers (Cassidulina delicata and Uvigerina peregrina), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes; zones N17-N19), and calcareous nannoplankton (Discoaster brouweri, D. aff. D. surculus, Reticulofenestra pseudoumbilicata, Sphenolithus abies, and S. neoabies; zones CN9a-CN11) coupled with published K/Ar dates from the underlying Coachella Formation (10.1 ?? 1.2 Ma; Peterson, 1975) and overlying Painted Hill Formation (6.04 ?? 0.18 and 5.94 ?? 0.18 Ma; J. L. Morton in Matti and others, 1985 and Matti and Morton, 1993). Paleoecologic considerations (sea-level fluctuations and paleotemperature) restrict the age of the Imperial Formation to 6.5 through 6.3 Ma. Benthic foraminiferal assemblages indicate that the Imperial Formation in the Whitewater and Cabazon sections accumulated at inner neritic to outer neritic (0-152 m) and possibly upper bathyal (152-244 m) depths. Shallowing to inner neritic depths occurred as the upper part of the section was deposited. This sea-level fluctuation corresponds to a global highstand at 6.3 Ma (Haq and others, 1987). Planktic foraminifers suggest an increase in surface-water temperatures upsection. A similar increase in paleotemperatures is interpreted for the North Pacific from 6.5 to 6.3 Ma (warm interval W10 of Barron and Keller, 1983). Environmental contrasts between the Whitewater and Cabazon sections of the Imperial Formation provide evidence for right-lateral displacements on the Banning fault, a late Miocene strand of the San Andreas fault system. The Cabazon section lies south of the Banning fault, and has been displaced west relative to the Whitewater sections. The Cabazon section was deposited at greater depths, suggesting that it accumulated farther offshore than the Whitewater section. If the Salton Trough was a southward-opening, elongated northwest-southeast basin similar to the modern Gulf of California, the Cabazon sequence probably has been displaced right-laterally from a position farther southeast of the Whitewater sequence. This relation requires late Miocene displacements greater than the present 12 km cross-fault separation between the two Imperial sections in the San Gorgonio Pass area.
Simplified estimation of age-specific reference intervals for skewed data.
Wright, E M; Royston, P
1997-12-30
Age-specific reference intervals are commonly used in medical screening and clinical practice, where interest lies in the detection of extreme values. Many different statistical approaches have been published on this topic. The advantages of a parametric method are that they necessarily produce smooth centile curves, the entire density is estimated and an explicit formula is available for the centiles. The method proposed here is a simplified version of a recent approach proposed by Royston and Wright. Basic transformations of the data and multiple regression techniques are combined to model the mean, standard deviation and skewness. Using these simple tools, which are implemented in almost all statistical computer packages, age-specific reference intervals may be obtained. The scope of the method is illustrated by fitting models to several real data sets and assessing each model using goodness-of-fit techniques.
Universal entanglement spectra of gapped one-dimensional field theories
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei
2017-03-01
We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.
Calculating depths to shallow magnetic sources using aeromagnetic data from the Tucson Basin
Casto, Daniel W.
2001-01-01
Using gridded high-resolution aeromagnetic data, the performance of several automated 3-D depth-to-source methods was evaluated over shallow control sources based on how close their depth estimates came to the actual depths to the tops of the sources. For all three control sources, only the simple analytic signal method, the local wavenumber method applied to the vertical integral of the magnetic field, and the horizontal gradient method applied to the pseudo-gravity field provided median depth estimates that were close (-11% to +14% error) to the actual depths. Careful attention to data processing was required in order to calculate a sufficient number of depth estimates and to reduce the occurrence of false depth estimates. For example, to eliminate sampling bias, high-frequency noise and interference from deeper sources, it was necessary to filter the data before calculating derivative grids and subsequent depth estimates. To obtain smooth spatial derivative grids using finite differences, the data had to be gridded at intervals less than one percent of the anomaly wavelength. Before finding peak values in the derived signal grids, it was necessary to remove calculation noise by applying a low-pass filter in the grid-line directions and to re-grid at an interval that enabled the search window to encompass only the peaks of interest. Using the methods that worked best over the control sources, depth estimates over geologic sites of interest suggested the possible occurrence of volcanics nearly 170 meters beneath a city landfill. Also, a throw of around 2 kilometers was determined for a detachment fault that has a displacement of roughly 6 kilometers.
NASA Astrophysics Data System (ADS)
Ren, Lixia; He, Li; Lu, Hongwei; Chen, Yizhong
2016-08-01
A new Monte Carlo-based interval transformation analysis (MCITA) is used in this study for multi-criteria decision analysis (MCDA) of naphthalene-contaminated groundwater management strategies. The analysis can be conducted when input data such as total cost, contaminant concentration and health risk are represented as intervals. Compared to traditional MCDA methods, MCITA-MCDA has the advantages of (1) dealing with inexactness of input data represented as intervals, (2) mitigating computational time due to the introduction of Monte Carlo sampling method, (3) identifying the most desirable management strategies under data uncertainty. A real-world case study is employed to demonstrate the performance of this method. A set of inexact management alternatives are considered in each duration on the basis of four criteria. Results indicated that the most desirable management strategy lied in action 15 for the 5-year, action 8 for the 10-year, action 12 for the 15-year, and action 2 for the 20-year management.
Flood of September 22, 1998, in Arecibo and Utuado, Puerto Rico
Torres-Sierra, Heriberto
2002-01-01
Hurricane Georges made landfall on the southeastern part of Puerto Rico during September 21, 1998. Georges, with maximum sustained winds of 185 kilometers per hour and gusts to 240 kilometers per hour, produced 24-hour total rainfall amounts of 770 millimeters on the island's mountainous interior. Severe flooding affected almost half of the island's 78 municipios during September 21-22, 1998. The most affected municipios were Adjuntas, Aguada, Aguadilla, A?asco, Arecibo, Cayey, Ciales, Comerio, Barceloneta, Dorado, Jayuya, Manati, Mayaguez, Morovis, Orocovis, Patillas, Toa Alta, Toa Baja, and Utuado. The combination of strong winds, intense rainfall and severe flooding caused widespread property damages. More than 20,000 houses were destroyed and more than 100,000 houses sustained damage. Floodwaters and landslides destroyed or damaged many bridges and roads throughout the island. Records indicate that Hurricane Georges induced flood discharges in the Rio Grande de Arecibo Basin that were the largest on record. Floodwaters inundated urban and rural areas, affecting urban subdivisions, businesses, vehicles, bridges, roads, and high-tension electric power lines. To define the extent and depth of inundation, more than 280 high-water marks were identified and surveyed in Arecibo and Utuado. In addition estimates of flood magnitude and frequency were made at selected gaging stations, and flood profiles were developed for certain stream reaches. Flooding was most severe in the towns of Arecibo and Utuado. In Arecibo, the most affected communities were the rural area of San Francisco, the urban subdivisions of Martell, Nolla, and Arecibo Gardens, and the low-lying areas of downtown Arecibo. In these areas, the water depths ranged from 0.6 to 1.8 meters. In Utuado, floodwaters from the Rio Vivi and the Rio Grande de Arecibo inundated the downtown area affecting homes, public facilities, and businesses. In the urban subdivision of Jesus Maria Lago, the depth of flooding exceeded 2.5 meters. Frequency analysis indicates that flood-peak discharges equaled or exceeded the 100-year recurrence interval at five streamflow-gaging stations in the Rio Grande de Arecibo Basin.
Fine-scale crustal structure of the Azores Islands from teleseismic receiver functions
NASA Astrophysics Data System (ADS)
Spieker, K.; Rondenay, S.; Ramalho, R. S.; Thomas, C.; Helffrich, G. R.
2016-12-01
The Azores plateau is located near the Mid-Atlantic Ridge (MAR) and consists of nine islands, most of which lie east of the MAR. Various methods including seismic reflection, gravity, and passive seismic imaging have been used to investigate the crustal thickness beneath the islands. They have yielded thickness estimates that range between roughly 10 km and 30 km, but until now models of the fine-scale crustal structure have been lacking. A comparison of the crustal structure beneath the islands that lie west and east of the MAR might give further constraints on the evolution of the islands. For example, geochemical studies carried out across the region predict the existence of volcanic interfaces that should be detected seismically within the shallow crust of some of the islands. In this study, we use data from ten seismic stations located on the Azores Islands to investigate the crustal structure with teleseismic P-wave receiver functions. We query our resulting receiver functions for signals associated with the volcanic edifice, the crust-mantle boundary, and potential underplated layers beneath the various islands. The islands west of the MAR have a crustal structure comprising two discontinuities - an upper one at 1-2 km depth marking the base of the volcanic edifice, and a lower one at 10 km depth that we interpret as crust-mantle boundary. The islands east of the MAR can be subdivided into two groups. The central islands that are closer to the MAR exhibit a crustal structure similar to that of the western islands, with a volcanic edifice reaching a depth of 2 km and an average crust-mantle boundary at around 12 km depth. The easternmost islands, located on the oldest lithosphere, exhibit a more complex crustal structure with evidence for a mid-crustal interface and an underplated layer, yielding an effective crust-mantle boundary at >15 km depth. The difference in structure between proximal and distal islands might be related to the age of the plate at the time of emplacement of the islands, with an older plate providing conditions that are more favourable for basaltic underplating.
Measurement of absorption and dispersion from check shot surveys
NASA Astrophysics Data System (ADS)
Ganley, D. C.; Kanasewich, E. R.
1980-10-01
The spectral ratio method for measuring absorption and also dispersion from seismic data has been examined. Corrections for frequency-dependent losses due to reflections and transmissions have been shown to be an important step in the method. Synthetic examples have been used to illustrate the method, and the method has been applied to one real data case from a sedimentary basin in the Beaufort Sea. Measured Q values were 43±2 for a depth interval of 549-1193 m and 67±6 for a depth interval of 945-1311 m. Dispersion was also measured in the data and is consistent with Futterman's model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomer, Darrell R.
2007-09-30
Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).
Diving Simulation concerning Adélie Penguin
NASA Astrophysics Data System (ADS)
Ito, Shinichiro; Harada, Masanori
Penguins are sea birds that swim using lift and drag forces by flapping their wings like other birds. Although diving data can be obtained using a micro-data logger which has improved in recent years, all the necessary diving conditions for analysis cannot be acquired. In order to determine all these hard-to-get conditions, the posture and lift and drag forces of penguins were theoretically calculated by the technique used in the analysis of the optimal flight path of aircrafts. In this calculation, the actual depth and speed of the dive of an Adélie penguin (Pygoscelis adeliae) were utilized. Then, the calculation result and experimental data were compared, and found to be in good agreement. Thus, it is fully possible to determine the actual conditions of dive by this calculation, even those that cannot be acquired using a data logger.
Adjoint affine fusion and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies
2016-06-15
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less
NASA Technical Reports Server (NTRS)
Roddy, D. J.
1979-01-01
The geologic and core drilling studies described in the present paper show that the Flynn Creek crater has such distinctive morphological features as a broad flat hummocky floor; large central peak; locally terraced crater walls; uplifted, as well as flat-lying rim segments; and a surrounding ejecta blanket. The major structural features include a shallow depth of total brecciation and excavation as compared with apparent crater diameter; a thin breccia lens underlain by a thin zone of disrupted strata; concentric ring fault zones in inner rim, beneath crater wall, and outer crater floor regions; a large central uplift underlain by a narrow dipping zone of deeply disrupted strata; faulted, folded, brecciated, and fractured rim strata; and uplifted rim strata, which dip away from the crater, and flat-lying rim strata, which terminate as inward dipping rocks.
Dentice, Ruth L; Elkins, Mark R; Dwyer, Genevieve M; Bye, Peter T P
2018-01-08
Inhalation of nebulised medications is performed in upright sitting to maximise lung volumes. The pattern of deposition is poor for inhaled medications in people with Cystic Fibrosis. The pattern tends to be non-uniform and typically the upper lobes receive a reduced dose compared to the rest of the lung. One strategy that has been proposed as having the potential to improve homogeneity of deposition is to adopt an alternate side lying position for the inhalation procedure. This study sought to determine whether, among adults with Cystic Fibrosis, there is any disadvantage to delivery time of nebulised medications with a strategy of alternate side lying, compared to upright sitting. A randomised crossover trial with concealed allocation, intention-to-treat analysis and blinded assessors was undertaken. The participants were 24 adults with stable Cystic Fibrosis. They inhaled 4 mL of normal saline via an LC Star™ nebuliser twice within 24 h. In random order, participants sat upright throughout nebulisation, or alternated between left and right side lying at each minute during the nebulisation period. The nebuliser was stopped and weighed each minute until the residual volume was reached. The primary outcome was the time required for 3.5 mL to be delivered. The secondary outcomes were: respiratory rate; ratio of the volume delivered on right and left sides; and calculation of how long the periods in side lying can be extended without causing greater than 20% discrepancy in dose delivered in the two positions. The delivery time did not significantly differ between sitting and side lying (mean difference 0.58 min, 95% confidence interval (CI) -1.40 to 0.24). There was no significant correlation between delivery time, lung function or subject height (all R 2 < 0.4). Increasing side lying duration from 1 to 2 min did not significantly impact the dose delivered on each side. Turning each 3 min however, significantly worsened the disparity (mean ratio 1.32, 95% CI 1.24 to 1.40). Side lying during inhalation therapy does not prolong nebulisation time. 2-min periods should provide an equal dose in the two side lying positions. Prospectively registered on 4 July 2011; ACTRN12611000672954 .
Smith, J F; Bradford, B J; Harner, J P; Potts, J C; Allen, J D; Overton, M W; Ortiz, X A; Collier, R J
2016-02-01
A trial was performed to assess the effect of evaporative pads on core body temperature (CBT) and lying behavior of lactating Holstein cows housed in cross-ventilated freestall facilities in a humid environment. This trial was undertaken in 2 barns equipped with (EP) or without (NP) evaporative pads. Each facility had 4 pens, 1 baffle/pen, and a nominal width of 122 m. Stocking density was higher (123.4 vs. 113.1%) and freestalls were slightly shorter (2.3 vs. 2.4 m) and narrower (1.16 vs. 1.21 m) in EP compared with NP barns. In each pen, lying behavior of 20 cows was monitored using electronic data loggers that recorded at 1-min intervals. A subset (n=14) of these cows within each pen were also fitted with temperature loggers attached to blank controlled intravaginal drug release devices to determine CBT every 5 min. Ambient conditions were collected every 15 min. Individual cow lying duration and lying bouts were assessed for each cow, as well as time spent standing and CBT within the following categories: CBT <38.6°C, and CBT >38.6, >38.9, >39.2, >39.4, and >39.7°C. These variables were analyzed using pen as the experimental unit, with cow and day as additional random effects. The average maximum ambient conditions over the 9 d were 25°C and 78.74% relative humidity. No differences were observed in lying duration and number of lying bouts over the 9-d period, with overall means of 696±31 min/d and 12.6±0.5 bouts/d. The EP cows spent 170 min/d longer with a CBT <38.6°C and 107 min/d less with CBT >39.2°C than did NP cows. Cooling with evaporative pads tended to increase time spent lying with a CBT >8.6°C and lying bouts/d for EP cows versus NP cows. Results from this trial show that even under mild heat stress, evaporative cooling in cross-ventilated facilities can decrease CBT and tended to increase lying time. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Coes, Alissa L.; Land, Michael; Densmore, Jill N.; Landrum, Michael T.; Beisner, Kimberly R.; Kennedy, Jeffrey R.; Macy, Jamie P.; Tillman, Fred D.
2015-01-01
During and after lining the All-American Canal (2007–11), groundwater elevations in the Lower Colorado Water Supply Project area declined, while total dissolved solids concentrations remained relatively constant. The total dissolved solids concentrations in well LCWSP-2 ranged from 650 to 800 milligrams per liter during this study. Depth-specific water-quality and isotope sampling at well LCWSP-2 indicated the groundwater pumped from the deeper part of the screened interval (240–280 feet below land surface) contained a greater proportion of historical groundwater than the groundwater pumped from the shallower part of the screened interval (350–385 feet below land surface). Age-tracer data at well LCWSP-2 indicated that all depths of the screened interval had received recent recharge from seepage of Colorado River water from the All-American Canal.
Measurement of the 1s2s ^1S0 - 1s2p ^3P1 interval in helium-like silicon.
NASA Astrophysics Data System (ADS)
Redshaw, M.; Harry, R.; Myers, E. G.; Weatherford, C. A.
2001-05-01
Accurate calculation of the energy levels of helium-like ions is a basic problem in relativistic atomic theory. For the n=3D2 levels at moderate Z, published calculations give all ``structure'' but not all explicit QED contributions to order (Zα)^4 a.u.(D.R. Plante, W.R. Johnson and J. Sapirstein, Phys. Rev. A 49), 3519 (1994).^, (K.T. Cheng, M.H. Chen, W.R. Johnson and J. Sapirstein, Phys. Rev. A 50), 247 (1994).. Measurements of the 1s2p ^3P - 1s2s ^3S transitions, which lie in the vacuum ultra-violet, are barely precise enough to challenge the theory. However, the intercombination 1s2s ^1S0 - 1s2p ^3P1 interval lies in the infra-red for Z<40 and enables precision measurements using laser spectroscopy(E.G. Myers, J.K. Thompson, E.P. Gavathas, N.R. Claussen, J.D. Silver and D.J.H. Howie, Phys. Rev. Lett. 75), 3637 (1995).. We aim to measure this interval in Si^12+ using a foil-stripped 1 MeV/u ion beam from the Florida State Van de Graaff accelerator and a single-mode c.w. Nd:YAG laser at 1.319 μm. To obtain a sufficient transition probability, the Si^12+ beam is merged co-linearly with the laser light inside an ultra-high finesse build-up cavity. The results should provide a clear test of current and developing calculations of QED contributions in two-electron ions.
Oceanic Residual Depth Anomalies Maintained by a Shallow Asthenospheric Channel
NASA Astrophysics Data System (ADS)
Richards, F. D.; Hoggard, M.; White, N.
2016-12-01
Oceanic residual depth anomalies vary on wavelengths of 800-2,000 km and have amplitudesof ±1 km. There is also evidence from glacio-isostatic adjustment, plate motions and seismicanisotropy studies for the existence of a low-viscosity asthenospheric channel immediately beneaththe lithospheric plates. Here, we investigate whether global residual depth anomalies are consistentwith temperature variations within a sub-plate channel. For a given channel thickness, we convertresidual depth anomalies into temperature anomalies, assuming thermal isostasy alone (i.e. no mantle flow). Using aparameterisation that is calibrated against stacked oceanic shear wave velocity profiles, we convertthese temperature anomalies into velocity variations. We then compare the inferred velocity vari-ations with published seismic tomographic models. We find that thermal anomalies of ±100 °Cwithin a 150 ± 50 km thick channel yield a good match to > 95% of global residual depth anoma-lies. These temperature variations are consistent with geochemical evidence from mid-oceanic ridgebasalts and oceanic crustal thicknesses. The apparent success of this simple isostatic approach sup-ports the existence of a low-viscosity asthenospheric channel that plays a key role in controllingresidual depth anomalies. Far from subduction zones and from plume conduits, dynamic topog-raphy in the oceanic realm appears to be primarily controlled by temperature-induced buoyancyvariations within this channel.
Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.
2016-05-25
In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea-level rises, partially fixing the local water table altitude.The region has a generally thick vadose zone with a mean of about 38 feet; areas with depths to water of 5 feet or less, as estimated from light detection and ranging (lidar) data from 2011 and simulated water table altitudes, currently [2011] occur over about 24.9 square miles, or about 8.4 percent of the total land area of the Sagamore and Monomoy flow lenses, generally in low-lying coastal areas and inland near ponds and streams. Excluding potentially submerged areas, an additional 4.5, 9.8, and 15.9 square miles would have shallow depths to water (5 feet or less) for projected sea-level rises of 2, 4, and 6 feet above levels in 2011. The additional areas with shallow depths to water generally occur in the same areas as the areas with current [2011] depths to water of 5 feet or less: low-lying coastal areas and near inland surface water features. Additional areas with shallow depths to water for the largest sea-level rise prediction (6 feet) account for about 5.7 percent of the total land area, excluding areas likely to be inundated by seawater. The numerous surface water drainages will dampen the response of the water table to sea-level rise. This dampening, combined with the region’s thick vadose zone, likely will mitigate the potential for groundwater inundation in most areas. The potential does exist for groundwater inundation in some areas, but the effects of sea-level rise on depths to water and infrastructure likely will not be substantial on a regional level.
Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia
Harlow, George E.; LeCain, Gary D.
1993-01-01
This report presents the results of a study by the U.S Geological Survey, in cooperation with the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and the Powell River Project, to describe the hydraulic characteristics of major water-bearing zones in the coal-bearing rocks of southwestern Virginia and to develop a conceptual model of the ground-water-flow system. Aquifer testing in1987 and 1988 of 9-ft intervals in coal-exploration coreholes indicates that transmissivity decreases with increasing depth. Most rock types are permeable to a depth of approximately 100 ft; however, only coal seams are consistently permeable (transmissivity greater than 0.001 ft/d) at depths greater than 200 ft . Constant-head injection testing of rock intervals adjacent to coal seams usually indicated lower values of transmissivity than those values obtained when coal seams were isolated within the test interval; thus, large values of horizontal hydraulic conductivity at depth are associated with coal seams. Potentiometric-head measurements indicate that high topographic areas (ridges) function as recharge areas; water infiltrates through the surface, percolates into regolith, and flows downward and laterally through fractures in the shallow bedrock. Hydraulic conductivity decreases with increasing depth, and ground water flows primarily in the lateral direction along fractures or bedding planes or through coal seams. If vertical hydraulic conductivity is negligible, ground water continues to flow laterally, discharging as springs or seeps on hill slopes. Where vertical hydraulic conductivity is appreciable, groundwater follows a stair step path through the regolith, fractures, bedding planes, and coal seams, discharging to streams and (or) recharging coal seams at depth. Permeable coal seams probably underlie valleys in the region; however, aquifer-test data indicate that the horizontal hydraulic conductivity of coal is a function of depth and probably decreases under ridges because of increased overburden pressures. Ground water beneath valleys that does not discharge to streams probably flows down gradient as underflow beneath the streams. Topographic relief in the area provides large hydraulic-head differences (greater than 300 ft in some instances) for the ground-water-flow system. Transmissivity data from the range of depths tested during this study indicate that most ground-water flow takes place at moderate depths (less than 300 ft) and that little deep regional ground-water flow occurs.
NASA Astrophysics Data System (ADS)
Danovaro, Roberto; Carugati, Laura; Corinaldesi, Cinzia; Gambi, Cristina; Guilini, Katja; Pusceddu, Antonio; Vanreusel, Ann
2013-08-01
The deep sea is the largest biome of the biosphere. The knowledge of the spatial variability of deep-sea biodiversity is one of the main challenges of marine ecology and evolutionary biology. The choice of the observational spatial scale is assumed to play a key role for understanding processes structuring the deep-sea benthic communities and one of the most typical features of marine biodiversity distribution is the existence of bathymetric gradients. However, the analysis of biodiversity bathymetric gradients and the associated changes in species composition (beta diversity) typically compared large depth ranges (with intervals of 500 to 1000 or even 2000 m depth among sites). To test whether significant changes in alpha and beta diversity occur also at fine-scale bathymetric gradients (i.e., within few hundred-meter depth intervals) the variability of deep-sea nematode biodiversity and assemblage composition along a bathymetric transect (200-1200 m depth) with intervals of 200 m among sampling depths, was investigated. A hierarchical sampling strategy for the analysis of nematode species richness, beta diversity, functional (trophic) diversity, and related environmental variables, was used. The results indicate the lack of significant differences in taxonomic and functional diversity across sampling depths, but the presence of high beta diversity at all spatial scales investigated: between cores collected from the same box corer (on average 56%), among deployments at the same depth (58%), and between all sampling depths (62%). Such high beta diversity is influenced by the presence of small-scale patchiness in the deep sea and is also related to the large number of rare or very rare species (typically accounting for >80% of total species richness). Moreover, the number of ubiquitous nematode species across all sampling depths is quite low (ca. 15%). Multiple regression analyses provide evidence that such patterns could be related to the different availability, composition and size spectra of food particles in the sediments. Additionally, though to a lesser extent, our results indicate, that selective predation can influence the nematode trophic composition. These findings suggest that a multiple scale analysis based on a nested sampling design could significantly improve our knowledge of bathymetric patterns of deep-sea biodiversity and its drivers.
A semi-automatic 2D-to-3D video conversion with adaptive key-frame selection
NASA Astrophysics Data System (ADS)
Ju, Kuanyu; Xiong, Hongkai
2014-11-01
To compensate the deficit of 3D content, 2D to 3D video conversion (2D-to-3D) has recently attracted more attention from both industrial and academic communities. The semi-automatic 2D-to-3D conversion which estimates corresponding depth of non-key-frames through key-frames is more desirable owing to its advantage of balancing labor cost and 3D effects. The location of key-frames plays a role on quality of depth propagation. This paper proposes a semi-automatic 2D-to-3D scheme with adaptive key-frame selection to keep temporal continuity more reliable and reduce the depth propagation errors caused by occlusion. The potential key-frames would be localized in terms of clustered color variation and motion intensity. The distance of key-frame interval is also taken into account to keep the accumulated propagation errors under control and guarantee minimal user interaction. Once their depth maps are aligned with user interaction, the non-key-frames depth maps would be automatically propagated by shifted bilateral filtering. Considering that depth of objects may change due to the objects motion or camera zoom in/out effect, a bi-directional depth propagation scheme is adopted where a non-key frame is interpolated from two adjacent key frames. The experimental results show that the proposed scheme has better performance than existing 2D-to-3D scheme with fixed key-frame interval.
A Control Algorithm for Chaotic Physical Systems
1991-10-01
revision expands the grid to cover the entire area of any attractor that is present. 5 Map Selection The final choices of the state- space mapping process...interval h?; overrange R0 ; control parameter interval AkO and range [kbro, khigh]; iteration depth. "* State- space mapping : 1. Set up grid by expanding
NASA Astrophysics Data System (ADS)
Gorshkov, A. M.; Kudryashova, L. K.; Lee-Van-Khe, O. S.
2016-09-01
The article presents the results of studying petrophysical rock properties of the Bazhenov Formation of the South-Eastern part of Kaymysovsky Vault with the Gas Research Institute (GRI) method. The authors have constructed dependence charts for bulk and grain density, open porosity and matrix permeability vs. depth. The results of studying petrophysical properties with the GRI method and core description have allowed dividing the entire section into three intervals each of which characterized by different conditions of Bazhenov Formation rock formation. The authors have determined a correlation between the compensated neutron log and the rock density vs. depth chart on the basis of complex well logging and petrophysical section analysis. They have determined a promising interval for producing hydrocarbons from the Bazhenov Formation in the well under study. Besides, they have determined the typical behavior of compensated neutron logs and SP logs on well logs for this interval. These studies will allow re-interpreting available well logs in order to determine the most promising interval to be involved in Bazhenov Formation development in Tomsk Region.
Should Security Researchers Experiment More and Draw More Inferences?
2011-08-01
knowledge would be enormous. To obtain a large and representative sample of keystroke-dynamics research papers, we consulted the IEEE Xplore database... IEEE Xplore are similar to those published elsewhere), these confidence intervals estimate the re- gions where those true percentages would lie with 95...of articles and conference pro- ceedings published by the IEEE , to which our university maintains a subscription. We conducted two keyword searches for
Finding Mass Constraints Through Third Neutrino Mass Eigenstate Decay
NASA Astrophysics Data System (ADS)
Gangolli, Nakul; de Gouvêa, André; Kelly, Kevin
2018-01-01
In this paper we aim to constrain the decay parameter for the third neutrino mass utilizing already accepted constraints on the other mixing parameters from the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS). The main purpose of this project is to determine the parameters that will allow the Jiangmen Underground Neutrino Observatory (JUNO) to observe a decay parameter with some statistical significance. Another goal is to determine the parameters that JUNO could detect in the case that the third neutrino mass is lighter than the first two neutrino species. We also replicate the results that were found in the JUNO Conceptual Design Report (CDR). By utilizing Χ2-squared analysis constraints have been put on the mixing angles, mass squared differences, and the third neutrino decay parameter. These statistical tests take into account background noise and normalization corrections and thus the finalized bounds are a good approximation for the true bounds that JUNO can detect. If the decay parameter is not included in our models, the 99% confidence interval lies within The bounds 0s to 2.80x10-12s. However, if we account for a decay parameter of 3x10-5 ev2, then 99% confidence interval lies within 8.73x10-12s to 8.73x10-11s.
Sun, J
1995-09-01
In this paper we discuss the non-parametric estimation of a distribution function based on incomplete data for which the measurement origin of a survival time or the date of enrollment in a study is known only to belong to an interval. Also the survival time of interest itself is observed from a truncated distribution and is known only to lie in an interval. To estimate the distribution function, a simple self-consistency algorithm, a generalization of Turnbull's (1976, Journal of the Royal Statistical Association, Series B 38, 290-295) self-consistency algorithm, is proposed. This method is then used to analyze two AIDS cohort studies, for which direct use of the EM algorithm (Dempster, Laird and Rubin, 1976, Journal of the Royal Statistical Association, Series B 39, 1-38), which is computationally complicated, has previously been the usual method of the analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: girs@ispms.tsc.ru; Meisner, L. L., E-mail: lm@ispms.tsc.ru
The effect of the Ta-ion beam implantation on the micro- and nanostructures of the surface layers of NiTi alloy was investigated using transmission electron microscopy and Auger spectroscopy. It is found that the elements are distributed non-uniformly with depth, so that the sublayers differ significantly in structure. The modified surface layer was found to consist of two sublayers, i.e. the upper oxide layer and the lower-lying amorphous layer that contains a maximum of Ta atoms.
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodrigues-Iturbe, I.
1986-01-01
Eight years of summer raingage observations are analyzed for a dense, 93 gage, network operated by the U. S. Department of Agriculture, Agricultural Research Service, in their 150 sq km Walnut Gulch catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon to noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storms, the 93 gage depths are interpolated onto a dense grid and the resulting random field is anlyzed. Presented are: storm depth isohyets at 2 mm contour intervals, first three moments of point storm depth, spatial correlation function, spatial variance function, and the spatial distribution of total rainstorm depth.
Shallow Depth Study Using Gravity & Magnetics Data in Central Java - Yogyakarta
NASA Astrophysics Data System (ADS)
Fawzy Ismullah M, Muhammad; Altin Massinai, Muhammad; Maria
2018-03-01
Gravity and magnetics measurements carried out in Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region as much as 34 points for subsurface identification. Modeling and interpretation using both data at 3 sections. Section A lies on Karangsambung area and reach to 1900 m. Section A showed formation of 0.000001 - 0.0014 nT and 2.00 - 2.80 g/cm3 like alluvium, basalt and tuff. Section B lies on Wates - Yogyakarta area and reach to 1700 m. Section B showed formation of (-0.01) - 0.02 nT and 2.40 - 3.00 g/cm3 like andesite intrusive and Merapi volcano sediments. Section C lies on Bayat - Wonosari area and reach to 2000 m. Section C showed formation of 0.00016 - 0.0005 nT and 2.30 - 3.14 g/cm3 like limestone, tuff and diorite intrusive. Based on modeling results from 2D structure inversion method can identify the formation of sediments from volcano activity on Karangsambung - Bayat - Wonosari track, Central Java - Yogyakarta region. The method of this study shows potential application for identify the formation of volcano activity from 2D structure.
Predator Foraging in Response to the Mcmurdo Sound Preyscape
NASA Astrophysics Data System (ADS)
Daly, K. L.; Ainley, D. G.; Saenz, B.; Ballard, G.; Kim, S.; Jongsomjit, D.
2016-02-01
Growing recent evidence indicates that the Ross Sea, Antarctica, food web is structured as a `wasp-waist' system, in which krill and fish constitute the restriction. The abundance/availability of these prey appears to be affected by top-down predation, and to have only minimal coupling with phytoplankton/primary productivity processes. We investigated this issue further by quantifying prey abundance, depth and distribution along the McMurdo Sound fast-ice edge, using an ROV equipped with acoustic sensors and fluorescence sensors and a CTD equipped with a fluorometer, at the same time that we bio-logged the foraging behavior of Adélie Penguins from an adjacent colony and logged the abundance of trophically competing cetaceans and seals. Early in the study period, concentrations of seals and emperor penguins coincided with a location at which high abundance of an under-ice dwelling fish occurred; these predators disappeared with reduction in that prey's abundance and/or the arrival of seal/penguin-eating killer whales at the fast ice edge. The diet of Adélie penguins changed from 100% krill to 50% krill-fish upon the arrival of minke and fish-eating killer whales. Penguin diving depth did not change, nor did they lengthen foraging range as has been observed in the past upon cetacean arrival. However, the prevalence of the mid-water dwelling forage fish (silverfish) decreased within the penguins' foraging range. Apparently, given the chance penguins and cetaceans appear to have targeted the high-energy dense fish instead of krill, and as a result changed prey availability. Penguin diving depth was just beneath an intense phytoplankton bloom of markedly reduced visibility. Our study brings added support for a food web in which top-down forcing is as important as primary production, having implications for managing fisheries in the region.
Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Kramer, M. J.
1983-01-01
The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.
Results of infiltration tests near Scott City, western Kansas
Gillespie, Joe B.; Hargadine, G.D.
1976-01-01
Several types of ring infiltrometers were used to determine infiltration rates in loessial soil near Scott City, Kansas. Test results were evaluated for consistency, and were compared with infiltration rates in the underlying loess and with hydraulic conductivities in the unsaturated zone.Average daily infiltration rates in the Richfield soil ranged from 3 to 5 feet or 0.9 to 1.5 m (metres) after 16 days using 22-inch or 560mm (millimetre) ring infiltrometers; 2.3 feet (0.7 m) after 68 days using a 10-inch (250-mm) ring infiltrometer; and from 1.3 to 2.2 feet (0.4 to 0.7 m) after 38 days using double-ring infiltrometers. By comparison, the average daily infiltration rate in the underlying Peoria Loess using a 10-inch (250-mm) ring infiltrometer was about 13 feet (4.0 m) after 7 days.Tests using the double-ring infiltrometer, a paraffin seal in the 22-inch (560-mm) infiltrometer, and the measurement of flow through concentric areas of the soil core indicated that leakage of water between the infiltrometer wall and the soil was not significant. Lateral movement of the wetting front extended radially 4.7 feet (1.4 m) from the infiltrometer wall.Laboratory tests of a soil core indicated that the lowest hydraulic conductivity was in the depth interval from 3.9 to 8.6 inches (99 to 218 mm). Soil in this interval, which coincides with the depth of cultivation, evidently limits the rate of infiltration.Air-permeability tests in the unsaturated deposits gave a hydraulic conductivity of 0.2 foot per day (0.1 m/day) for the depth interval from 57 to 75 feet (17.0 to 23.0 m) as compared to a hydraulic conductivity of 1.9 feet per day (0.6 m/day) for the depth interval from 0 to 5 feet (0 to 1.5 m). A perched water table probably would occur above this interval during prolonged infiltration.Infiltration rates determined from the different types of ring infiltrometers were not consistent, but the tests showed that substantial quantities of water could infiltrate the Richfield soil.
Extreme Dead Sea drying event during the last interglacial from the ICDP Dead Sea Deep Drill Core
NASA Astrophysics Data System (ADS)
Goldstein, S.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.
2012-04-01
The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes in a deep and a shallow site extending to ~450 meters. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments are an archive of the evolving climatic conditions. During glacials the sediments comprise intervals of marl (aragonite, gypsum and detritus) and during interglacials they are salts and marls. We estimate that the deep site core spans ~200 kyr (to early MIS 7). A dramatic discovery is a ~40 cm interval of rounded pebbles at ~235 m below the lake floor, the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.
High Spectral Resolution Lidar Data
Eloranta, Ed
2004-12-01
The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.
Coherent orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relatemore » these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines the corresponding OP family. •Generalized coherent polynomials are obtained from OP.« less
Community walking speed, sedentary or lying down time, and mortality in peripheral artery disease
McDermott, Mary M; Guralnik, Jack M; Ferrucci, Luigi; Tian, Lu; Kibbe, Melina R; Greenland, Philip; Green, David; Liu, Kiang; Zhao, Lihui; Wilkins, John T; Huffman, Mark D; Shah, Sanjiv J; Liao, Yihua; Gao, Ying; Lloyd-Jones, Donald M; Criqui, Michael H
2017-01-01
We studied whether slower community walking speed and whether greater time spent lying down or sleeping were associated with higher mortality in people with lower extremity peripheral artery disease (PAD). Participants with an ankle–brachial index (ABI) < 0.90 were identified from Chicago medical centers. At baseline, participants reported their usual walking speed outside their home and the number of hours they spent lying down or sleeping per day. Cause of death was adjudicated using death certificates and medical record review. Analyses were adjusted for age, sex, race, comorbidities, ABI, and other confounders. Of 1314 PAD participants, 189 (14.4%) died, including 63 cardiovascular disease (CVD) deaths. Mean follow-up was 34.9 months ± 18.1. Relative to average or normal pace (2–3 miles/hour), slower walking speed was associated with greater CVD mortality: no walking at all: hazard ratio (HR) = 4.17, 95% confidence interval (CI) = 1.46–11.89; casual strolling (0–2 miles/hour): HR = 2.24, 95% CI = 1.16–4.32; brisk or striding (>3 miles/hour): HR = 0.55, 95% CI = 0.07–4.30. These associations were not significant after additional adjustment for the six-minute walk. Relative to sleeping or lying down for 8–9 hours, fewer or greater hours sleeping or lying down were associated with higher CVD mortality: 4–7 hours: HR = 2.08, 95% CI = 1.06–4.05; 10–11 hours: HR = 4.07, 95% CI = 1.86–8.89; ⩾12 hours: HR = 3.75, 95% CI = 1.47–9.62. These associations were maintained after adjustment for the six-minute walk. In conclusion, slower walking speed outside the home and less than 8 hours or more than 9 hours lying down per day are potentially modifiable behaviors associated with increased CVD mortality in patients with PAD. PMID:26873873
INNOVATIVE TECHNOLOGY EVALUATION REPORT ...
The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the sampler?s ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Russian Peat Borer and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Russian Peat Borer was the only sampler that collected samples in the deep depth interval (4 to 11 feet below sediment surface). It collected representative and relatively uncompressed core samples of consolidated sediment in discrete depth intervals. The reference samplers collected relatively compressed samples of both consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved only for consolidated sediment samples collected by the Russian Peat Borer but for bo
High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals
NASA Astrophysics Data System (ADS)
Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak
2018-02-01
Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.
Fiore, Lorenzo; Lorenzetti, Walter; Ratti, Giovannino
2005-11-30
A procedure is proposed to compare single-unit spiking activity elicited in repetitive cycles with an inhomogeneous Poisson process (IPP). Each spike sequence in a cycle is discretized and represented as a point process on a circle. The interspike interval probability density predicted for an IPP is computed on the basis of the experimental firing probability density; differences from the experimental interval distribution are assessed. This procedure was applied to spike trains which were repetitively induced by opening-closing movements of the distal article of a lobster leg. As expected, the density of short interspike intervals, less than 20-40 ms in length, was found to lie greatly below the level predicted for an IPP, reflecting the occurrence of the refractory period. Conversely, longer intervals, ranging from 20-40 to 100-120 ms, were markedly more abundant than expected; this provided evidence for a time window of increased tendency to fire again after a spike. Less consistently, a weak depression of spike generation was observed for longer intervals. A Monte Carlo procedure, implemented for comparison, produced quite similar results, but was slightly less precise and more demanding as concerns computation time.
A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes.
Pritchard, Matthew E; Simons, Mark
2002-07-11
Surface deformation in volcanic areas usually indicates movement of magma or hydrothermal fluids at depth. Stratovolcanoes tend to exhibit a complex relationship between deformation and eruptive behaviour. The characteristically long time spans between such eruptions requires a long time series of observations to determine whether deformation without an eruption is common at a given edifice. Such studies, however, are logistically difficult to carry out in most volcanic arcs, as these tend to be remote regions with large numbers of volcanoes (hundreds to even thousands). Here we present a satellite-based interferometric synthetic aperture radar (InSAR) survey of the remote central Andes volcanic arc, a region formed by subduction of the Nazca oceanic plate beneath continental South America. Spanning the years 1992 to 2000, our survey reveals the background level of activity of about 900 volcanoes, 50 of which have been classified as potentially active. We find four centres of broad (tens of kilometres wide), roughly axisymmetric surface deformation. None of these centres are at volcanoes currently classified as potentially active, although two lie within about 10 km of volcanoes with known activity. Source depths inferred from the patterns of deformation lie between 5 and 17 km. In contrast to the four new sources found, we do not observe any deformation associated with recent eruptions of Lascar, Chile.
Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.
1997-01-01
A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.
Measurement of geothermal flux through poorly consolidated sediments
Sass, J.H.; Munroe, R.J.; Lachenbruch, A.H.
1968-01-01
In many regions, crystalline rocks are covered by hundreds of meters of unconsolidated and poorly consolidated sediments. Estimates of heat flux within these sediments using standard continental techniques (temperature and conductivity measurements at intervals of 10 to 30 meters) are unreliable, mainly because of the difficulty in obtaining and preserving representative lengths of core. However, it is sometimes feasible to use what amounts to an oceanographic technique by making closely spaced temperature and conductivity measurements within short cored intervals. This is demonstrated in a borehole at Menlo Park, California (37??27???N, 122??10???W, elevation 16 meters), where heat flows determined over 12 separate 1-meter intervls al lie within 10% of their mean value; 2.2 ??cal/cm2 sec. ?? 1968.
Stiell, Ian G; Brown, Siobhan P; Nichol, Graham; Cheskes, Sheldon; Vaillancourt, Christian; Callaway, Clifton W; Morrison, Laurie J; Christenson, James; Aufderheide, Tom P; Davis, Daniel P; Free, Cliff; Hostler, Dave; Stouffer, John A; Idris, Ahamed H
2014-11-25
The 2010 American Heart Association guidelines suggested an increase in cardiopulmonary resuscitation compression depth with a target >50 mm and no upper limit. This target is based on limited evidence, and we sought to determine the optimal compression depth range. We studied emergency medical services-treated out-of-hospital cardiac arrest patients from the Resuscitation Outcomes Consortium Prehospital Resuscitation Impedance Valve and Early Versus Delayed Analysis clinical trial and the Epistry-Cardiac Arrest database. We calculated adjusted odds ratios for survival to hospital discharge, 1-day survival, and any return of circulation. We included 9136 adult patients from 9 US and Canadian cities with a mean age of 67.5 years, mean compression depth of 41.9 mm, and a return of circulation of 31.3%, 1-day survival of 22.8%, and survival to hospital discharge of 7.3%. For survival to discharge, the adjusted odds ratios were 1.04 (95% CI, 1.00-1.08) for each 5-mm increment in compression depth, 1.45 (95% CI, 1.20-1.76) for cases within 2005 depth range (>38 mm), and 1.05 (95% CI, 1.03-1.08) for percentage of minutes in depth range (10% change). Covariate-adjusted spline curves revealed that the maximum survival is at a depth of 45.6 mm (15-mm interval with highest survival between 40.3 and 55.3 mm) with no differences between men and women. This large study of out-of-hospital cardiac arrest patients demonstrated that increased cardiopulmonary resuscitation compression depth is strongly associated with better survival. Our adjusted analyses, however, found that maximum survival was in the depth interval of 40.3 to 55.3 mm (peak, 45.6 mm), suggesting that the 2010 American Heart Association cardiopulmonary resuscitation guideline target may be too high. http://www.clinicaltrials.gov. Unique identifier: NCT00394706. © 2014 American Heart Association, Inc.
Flooding Hazard Maps of Different Land Uses in Subsidence Area
NASA Astrophysics Data System (ADS)
Lin, Yongjun; Chang, Hsiangkuan; Tan, Yihchi
2017-04-01
This study aims on flooding hazard maps of different land uses in the subsidence area of southern Taiwan. Those areas are low-lying due to subsidence resulting from over pumping ground water for aquaculture. As a result, the flooding due to storm surges and extreme rainfall are frequent in this area and are expected more frequently in the future. The main land uses there include: residence, fruit trees, and aquaculture. The hazard maps of the three land uses are investigated. The factors affecting hazards of different land uses are listed below. As for residence, flooding depth, duration of flooding, and rising rate of water surface level are factors affecting its degree of hazard. High flooding depth, long duration of flooding, and fast rising rate of water surface make residents harder to evacuate. As for fruit trees, flooding depth and duration of flooding affects its hazard most due to the root hypoxia. As for aquaculture, flooding depth affects its hazard most because the high flooding depth may cause the fish flush out the fishing ponds. An overland flow model is used for simulations of hydraulic parameters for factors such as flooding depth, rising rate of water surface level and duration of flooding. As above-mentioned factors, the hazard maps of different land uses can be made and high hazardous are can also be delineated in the subsidence areas.
Lau, Condon; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X
2011-04-29
The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different.
NASA Astrophysics Data System (ADS)
Tibi, R.; Wiens, D. A.; Shiobara, H.; Sugioka, H.; Yuan, X.
2006-12-01
We use P-to-S converted teleseismic phases recorded at island and ocean bottom stations in Mariana to image the subducting plate and the upper mantle seismic discontinuities in the Mariana subduction zone. The land and seafloor stations which operated from June 2003 to May 2004, were deployed within the framework of the MARGINS Subduction Factory experiment of the Mariana system. The crust in the sudducting plate is observed at about 80--90 km depth beneath the islands of Saipan, Tinian and Rota. For most of the island stations, a low velocity layer is imaged in the forearc at depth between about 20 and 60 km, with decreasing depths toward the arc. The nature of this feature is not yet clear. We found evidence for double seismic discontinuities at the base of the transition zone near the Mariana slab. A shallower discontinuity is imaged at depths of ~650--715 km, and a deeper interface lies at ~740-- 770 km depth. The amplitudes of the seismic signals suggest that the shear velocity contrasts across the two features are comparable. These characteristics support the interpretation that the discontinuities are the results of the phase transformations in olivine (ringwoodite to post-spinel) and garnet (ilminite to perovskite), respectively, for the pyrolite model of mantle composition.
Calculating broad neutron resonances in a cut-off Woods-Saxon potential
NASA Astrophysics Data System (ADS)
Baran, Á.; Noszály, Cs.; Salamon, P.; Vertse, T.
2015-07-01
In a cut-off Woods-Saxon (CWS) potential with realistic depth S -matrix poles being far from the imaginary wave number axis form a sequence where the distances of the consecutive resonances are inversely proportional with the cut-off radius value, which is an unphysical parameter. Other poles lying closer to the imaginary wave number axis might have trajectories with irregular shapes as the depth of the potential increases. Poles being close repel each other, and their repulsion is responsible for the changes of the directions of the corresponding trajectories. The repulsion might cause that certain resonances become antibound and later resonances again when they collide on the imaginary axis. The interaction is extremely sensitive to the cut-off radius value, which is an apparent handicap of the CWS potential.
NASA Astrophysics Data System (ADS)
Almeida, Rafael V.; Hubbard, Judith; Liberty, Lee; Foster, Anna; Sapkota, Soma Nath
2018-07-01
Because great earthquakes in the Himalaya have an average recurrence interval exceeding 500 yr, most of what we know about past earthquakes comes from paleoseismology and tectonic geomorphology studies of the youngest fault system there, the Main Frontal Thrust (MFT). However, these data are sparse relative to fault segmentation and length, and interpretations are often hard to validate in the absence of information about fault geometry. Here, we image the upper two km of strata in the vicinity of the fault tip of the MFT in central Nepal (around the town of Bardibas) applying a pre-stack migration approach to two new seismic reflection profiles that we interpret using quantitative fault-bend folding theory. Our results provide direct evidence that a shallow décollement produces both emergent (Patu thrust) and blind (Bardibas thrust) fault strands. We show that the décollement lies about 2 km below the land surface near the fault tip, and steps down to a regional 5 km deep décollement level to the north. This implies that there is significant variation in the depth of the décollement. We demonstrate that some active faults do not reach the surface, and therefore paleoseismic trenching alone cannot characterize the earthquake history at these locations. Although blind, these faults have associated growth strata that allow us to infer their most recent displacement history. We present the first direct evidence of fault dip on two fault strands of the MFT at depth that can allow terrace uplift measurements to be more accurately converted to fault slip. We identify a beveled erosional surface buried beneath Quaternary sediments, indicating that strath surface formation is modulated by both climate-related base level changes and tectonics. Together, these results indicate that subsurface imaging, in conjunction with traditional paleoseismological tools, can best characterize the history of fault slip in the Himalaya and other similar thrust fault systems.
Gonthier, Gerard
2013-01-01
The hydrogeology and water quality of the Dublin and Midville aquifer systems were characterized in the City of Waynesboro area in Burke County, Georgia, based on geophysical and drillers’ logs, flowmeter surveys, a 24-houraquifer test, and the collection and chemical analysis of water samples in a newly constructed well. At the test site, the Dublin aquifer system consists of interlayered sands and clays between depths of 396 and 691 feet, and the Midville aquifer system consists of a sandy clay layer overlying a sand and gravel layer between depths of 728 and 936 feet. The new well was constructed with three screened intervals in the Dublin aquifer system and four screened intervals in the Midville aquifer system. Wellbore-flowmeter testing at a pumping rate of 1,000 gallons per minute indicated that 52.2 percent of the total flow was from the shallower Dublin aquifer system with the remaining 47.8 percent from the deeper Midville aquifer system. The lower part of the lower Midville aquifer (900 to 930 feet deep), contributed only 0.1 percent of the total flow. Hydraulic properties of the two aquifer systems were estimated using data from two wellbore-flowmeter surveys and a 24-hour aquifer test. Estimated values of transmissivity for the Dublin and Midville aquifer systems were 2,000 and 1,000 feet squared per day, respectively. The upper and lower Dublin aquifers have a combined thickness of about 150 feet and the horizontal hydraulic conductivity of the Dublin aquifer system averages 10 feet per day. The upper Midville aquifer, lower Midville confining unit, and lower Midville aquifer have a combined thickness of about 210 feet, and the horizontal hydraulic conductivity of the Midville aquifer system averages 6 feet per day. Storage coefficient of the Dublin aquifer system, computed using the Theis method on water-level data from one observation well, was estimated to be 0.0003. With a thickness of about 150 feet, the specific storage of the Dublin aquifer system averages about 2×10-6 per foot. Water quality of the Dublin and Midville aquifer systems was characterized during the aquifer test on the basis of water samples collected from composite well flow originating from five depths in the completed production well during the aquifer test. Samples were analyzed for total dissolved solids, specific conductance, pH, alkalinity, and major ions. Water-quality results from composite samples, known flow contribution from individual screens, and a mixing equation were used to calculate water-quality values for sample intervals between sample depths or below the bottom sample depth. With the exception of iron and manganese, constituent concentrations of water from each of the sampled intervals and total flow from the well were within U.S. Environmental Protection Agency primary and secondary drinking-water standards. Water from the bottommost sample interval in the lower part of the lower Midville aquifer (900 to 930 feet) contained manganese and iron concentrations of 59.1 and 1,160 micrograms per liter, respectively, which exceeded secondary drinking-water standards. Because this interval contributed only 0.1 percent of the total flow to the well, water quality of this interval had little effect on the composite well water quality. Two other sample intervals from the Midville aquifer system and the total flow from both aquifer systems contained iron concentrations that slightly exceeded the secondary drinking-water standard of 300 micrograms per liter.
Katz, Brian G.; Crandall, Christy A.; Metz, Patricia A.; McBride, W. Scott; Berndt, Marian P.
2007-01-01
In 2001, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey began a series of studies on the transport of anthropogenic and natural contaminants (TANC) to public-supply wells. The main goal of the TANC program was to better understand the source, transport, and receptor factors that control contaminant movement to public-supply wells in representative aquifers of the United States. Studies were first conducted at regional scales at four of the eight TANC study areas during 2002-03 and at small (local) scales during 2003-05 in California, Nebraska, Connecticut, and Florida. In the Temple Terrace study area near Tampa, Florida, multiple chemical indicators and geochemical and ground-water flow modeling techniques were used to assess the vulnerability of a public-supply well in the karstic Upper Floridan aquifer to contamination from anthropogenic and naturally occurring contaminants. During 2003-05, water samples were collected from the public-supply well and 13 surrounding monitoring wells that all tap the Upper Floridan aquifer, and from 15 monitoring wells in the overlying surficial aquifer system and the intermediate confining unit that are located within the modeled ground-water contributing recharge area of the public-supply well. Six volatile organic compounds and four pesticides were detected in trace concentrations (well below drinking-water standards) in water from the public-supply well, which had an open interval from 36 to 53 meters below land surface. These contaminants were detected more frequently in water samples from monitoring wells in the overlying clastic surficial aquifer system than in water from monitoring wells in the Upper Floridan aquifer in the study area. Likewise, nitrate-N concentrations in the public-supply well (0.72-1.4 milligrams per liter) were more similar to median concentrations in the oxic surficial aquifer system (2.1 milligrams per liter) than to median nitrate-N concentrations in the anoxic Upper Floridan aquifer (0.06 milligram per liter) under sulfate-reducing conditions. High concentrations of radon-222 and uranium in the public-supply well compared to those in monitoring wells in the Upper Floridan aquifer appear to originate from water moving downward through sands and discontinuous clay lenses that overlie the aquifer. Water samples also were collected from three overlapping depth intervals (38-53, 43-53, and 49-53 meters below land surface) in the public-supply well. The 49- to 53-meter interval was identified as a high-flow zone during geophysical logging of the wellbore. Water samples were collected from these depth intervals at a low pumping rate by placing a low-capacity submersible pump (less than 0.02 cubic meter per minute) at the top of each interval. To represent higher pumping conditions, a large-capacity portable submersible pump (1.6 cubic meters per minute) was placed near the top of the open interval; water-chemistry samples were collected using the low-capacity submersible pump. The 49- to 53-meter depth interval had distinctly different chemistry than the other two sampled intervals. Higher concentrations of nitrate-N, atrazine, radon, trichloromethane (chloroform), and arsenic (and high arsenic (V)/arsenic (III) ratios); lower concentrations of dissolved solids, strontium, iron, manganese, and lower nitrogen and sulfur isotope ratios were found in this highly transmissive zone in the limestone than in water from the two other depth intervals. Movement of water likely occurs from the overlying sands and clays of the oxic surficial aquifer system and intermediate confining unit (that contains high radon-222 and nitrate-N concentrations) into the anoxic Upper Floridan aquifer (that contains low radon-222 and nitrate-N concentrations). Differences in arsenic concentrations in water from the various depth intervals in the public-supply well (3.2-19.0 micrograms per liter) were related to pumping conditions. The high arsenic
Warner, Kelly L.
2000-01-01
The lower Illinois River Basin (LIRB) study unit is part of the National Water-Quality Assessment program that includes studies of most major aquifer systems in the United States. Retrospective water-quality data from community-supply wells in the LIRB and in the rest of Illinois are grouped by aquifer and depth interval. Concentrations of selected chemical constituents in water samples from community-supply wells within the LIRB vary with aquifer and depth of well. Ranked data for 16 selected trace elements and nutrients are compared by aquifer, depth interval, and between the LIRB and the rest of Illinois using nonparametric statistical analyses. For all wells, median concentrations of nitrate and nitrite (as Nitrogen) are highest in water samples from the Quaternary aquifer at well depths less than 100 ft; ammonia concentrations (as Nitrogen), however, are highest in samples from well depths greater than 200 ft. Chloride and sulfate concentrations are higher in samples from the older bedrock aquifers. Arsenic, lead, sulfate, and zinc concentrations are appreciably different between samples from the LIRB and samples from the rest of Illinois for ground water from the Quaternary aquifer. Arsenic concentration is highest in the deep Quaternary aquifer. Chromium, cyanide, lead, and mercury are not frequently detected in water samples from community-supply wells in Illinois.
Areal-reduction factors for the precipitation of the 1-day design storm in Texas
Asquith, William H.
1999-01-01
The reduction of the precipitation depth from a design storm for a point to an effective (mean) depth over a watershed often is important for cost-effective design of hydraulic structures by reducing the volume of precipitation. A design storm for a point is the depth of precipitation that has a specified duration and frequency (recurrence interval). The effective depth can be calculated by multiplying the design-storm depth by an areal-reduction factor (ARF). ARF ranges from 0 to 1, varies with the recurrence interval of the design storm, and is a function of watershed characteristics such as watershed size and shape, geographic location, and time of year that the design storm occurs. This report documents an investigation of ARF by the U.S. Geological Survey, in cooperation with the Texas Department of Transportation, for the 1-day design storm for Austin, Dallas, and Houston, Texas. The ?annual maxima-centered? approach used in this report specifically considers the distribution of concurrent precipitation surrounding an annual precipitation maxima. Unlike previously established approaches, the annual maxima-centered approach does not require the spatial averaging of precipitation nor explicit definition of a representative area of a particular storm in the analysis. Graphs of the relation between ARF and circular watershed area (to about 7,000 square miles) are provided, and a technique to calculate ARF for noncircular watersheds is discussed.
Soil organic carbon and biological fertility in a Mediterranean forest area (Italy)
NASA Astrophysics Data System (ADS)
Francaviglia, Rosa; Benedetti, Anna
2015-04-01
The study was performed at Castelporziano Estate, a natural ecosystem with high environmental value, and not concerned with any direct sources of pollution. However, it is situated near the city of Rome, some industrial plants, the international airport of Fiumicino, and some highways that can represent an external source of pollutants. Castelporziano lies in Central Italy at the western outskirts of Rome, about 20 km from the city centre and in front of the Tyrrhenian Sea. Soil morphology is mainly plain (30 m mean elevation) with sandy materials of alluvial nature, and only the inner part is formed of volcanic and alluvial materials with a slight elevation above the sea level (85 m). The total area is about 6000 ha, the climate is Mediterranean, total rainfall is 700 mm, and mean temperatures range from 4 ° C in winter and 30 ° C in summer. The vegetation is typically Mediterranean, mainly oaks, mixed broadleaf groves, and Mediterranean maquis along the seacoast. Areas with reforestation of pines, as well as corkwoods, pastures, and small agricultural fields are also present. Soils were sampled at five different sites: QI, forest of Quercus ilex L.; MM, Mediterranean maquis; PP, Pinus pinea L. reforestation (60 years old); MF, mixed hygrophilous back-dune forest; AR, arable land. Five soil samples from each site were collected (0-20 cm of depth), about 2 m far from each other. Soil organic carbon (SOC), total N (Ntot), microbial biomass carbon (Cmic), basal and cumulative respiration (Cbas and Ccum), the metabolic quotient (qCO2), and the mineralisation quotient (qM) were determined. The index of biological fertility (IBF), a comprehensive indicator considering SOM, Cbas, Ccum, Cmic, qCO2 and qM was also calculated for the different land uses. Five intervals of values have been set for each parameter, and a score increasing from 1 to 5 has been assigned to each interval; the algebraic sum of the score for each parameter gives the classes of biological fertility.
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.
2011-12-01
We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.
Subduction zone evolution and low viscosity wedges and channels
NASA Astrophysics Data System (ADS)
Manea, Vlad; Gurnis, Michael
2007-12-01
Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile budget such that the dehydration front moves to shallower depths. Our flat-slab models shed some light on puzzling flat subduction systems, like in Central Mexico, where there is no deformation within the overriding plate above the flat segment. The lack of in-plane compression in Central Mexico suggests the presence of a low viscosity shear zone above the flat slab.
NASA Astrophysics Data System (ADS)
Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong
2018-01-01
The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.
ERIC Educational Resources Information Center
Kalpouzos, Gregoria; Chetelat, Gael; Landeau, Brigitte; Clochon, Patrice; Viader, Fausto; Eustache, Francis; Desgranges, Beatrice
2009-01-01
This study set out to establish the relationship between changes in episodic memory retrieval in normal aging on the one hand and gray matter volume and [superscript 18]FDG uptake on the other. Structural MRI, resting-state [superscript 18]FDG-PET, and an episodic memory task manipulating the depth of encoding and the retention interval were…
Late Miocene to Pleistocene Mineralogy of ODP Site 1146
NASA Astrophysics Data System (ADS)
Arnold, E. M.
2001-12-01
ODP Site 1146 (19° 27.40'N, 116° 16.37'E, 2092 m depth) was drilled on the continental slope of the South China Sea. A composite section, comprised of three stratigraphic units, extends down to 640 mcd. Unit 1 is late Pliocene to Pleistocene nannofossil clay (0 - 243 mcd); Unit 2, middle Miocene to Late Pliocene foraminifera - nannofossil - clay mixed sediment (243 - 553 mcd); Unit 3, early to middle Miocene nannofossil clay (553 - 642 mcd). This study reports the < 2 μ m mineralogy from the late Miocene through early Pleistocene. Samples were analyzed at approximately 1.5 m intervals from 150 to 225 mcd, and 1 m intervals from 225 to 440 mcd, with an age resolution of ~25 ka and ~35 ka, respectively. Illite, chlorite, quartz and plagioclase concentrations decrease with increasing depth through Unit 1. Kaolinite and calcite concentrations increase with depth, while smectite values are constant in this unit. Illite, quartz and plagioclase show high variability in Unit 1 compared with the underlying Unit 2. Unit 2 has more uniform sediment composition, with constant illite, chlorite, and quartz concentrations. Kaolinite concentration increases with depth, following a drop in concentration across the Unit 1/2 boundary. Plagioclase concentration shows a small, steady decrease throughout this unit. Smectite concentration does not change across the Unit 1/2 boundary, decreases to a steady low value from 310 - 400 mcd, and increases again towards the bottom. The mineralogy of sediments recovered at Site 1146 suggest a classic pattern of source region aridification from the middle Pliocene through the Pleistocene, indicated in Unit 1 mineralogy as a decrease in kaolinite with decreasing depth, concomitant with an increase in quartz, plagioclase, illite and chlorite. The mineral variability in this interval suggests glacial - interglacial control of the terrigenous sedimentation. The sediment sources and source area weathering regimes were relatively constant throughout Unit 2, as indicated by low mineral variability and relatively constant mineral concentrations.
Estimating soil water content from ground penetrating radar coarse root reflections
NASA Astrophysics Data System (ADS)
Liu, X.; Cui, X.; Chen, J.; Li, W.; Cao, X.
2016-12-01
Soil water content (SWC) is an indispensable variable for understanding the organization of natural ecosystems and biodiversity. Especially in semiarid and arid regions, soil moisture is the plants primary source of water and largely determine their strategies for growth and survival, such as root depth, distribution and competition between them. Ground penetrating radar (GPR), a kind of noninvasive geophysical technique, has been regarded as an accurate tool for measuring soil water content at intermediate scale in past decades. For soil water content estimation with surface GPR, fixed antenna offset reflection method has been considered to have potential to obtain average soil water content between land surface and reflectors, and provide high resolution and few measurement time. In this study, 900MHz surface GPR antenna was used to estimate SWC with fixed offset reflection method; plant coarse roots (with diameters greater than 5 mm) were regarded as reflectors; a kind of advanced GPR data interpretation method, HADA (hyperbola automatic detection algorithm), was introduced to automatically obtain average velocity by recognizing coarse root hyperbolic reflection signals on GPR radargrams during estimating SWC. In addition, a formula was deduced to determine interval average SWC between two roots at different depths as well. We examined the performance of proposed method on a dataset simulated under different scenarios. Results showed that HADA could provide a reasonable average velocity to estimate SWC without knowledge of root depth and interval average SWC also be determined. When the proposed method was applied to estimation of SWC on a real-field measurement dataset, a very small soil water content vertical variation gradient about 0.006 with depth was captured as well. Therefore, the proposed method could be used to estimate average soil water content from ground penetrating radar coarse root reflections and obtain interval average SWC between two roots at different depths. It is very promising for measuring root-zone-soil-moisture and mapping soil moisture distribution around a shrub or even in field plot scale.
NASA Astrophysics Data System (ADS)
Rahimi, Ayda; Welford, Kim; Hall, Jeremy; Hübscher, Christian; Louden, Keith; Ehrhardt, Axel
2013-04-01
Cyprus lies at the southern edge of the Aegean-Anatolian microplate, caught in the convergence of Africa and Eurasia. Subduction of the African plate below Cyprus has probably ceased and this has been attributed to the docking in the subduction zone of the Eratosthenes Seamount microcontinental fragment on the northern edge of the African plate. In early 2010, on R.V. Maria S. Merian, we conducted a wide-angle seismic survey to test the hypothesis that the Hecataeus Ridge, another possible microcontinental block lying immediately offshore SE Cyprus, might be related to an earlier docking event. The upper crust of southern Cyprus is dominated by ophiolites, with seismic velocities of up to 7 km s-1. A wide angle seismic profile along Hecataeus Ridge was populated with 15 Canadian and German ocean-bottom seismographs at 5 km intervals and these recorded shots from a 6000 cu. in. air gun array, fired approximately every 100 m. Rough topography of the seabed has made picking of phases and their modelling a demanding task. Bandpass and coherency filtering have enabled us to pick phases out to around 80 km. Tomographic inversion of short-range first arrivals provided an initial model of the shallow sub-seabed structure. Forward modelling by ray-tracing, using the code of Zelt and Smith, was then used to model crustal structure down to depths of around 20 km, with occasional evidence of reflections from deeper boundaries (Moho?). Modelling results provide good control on P-wave velocities in the top 20 km and some indications of deeper events. There is no evidence of true velocities approaching 7 km/s in the top 20 km below the Ridge that might indicate the presence of ophiolitic rocks. Regional gravity and magnetic field data tend to support this proposition. We thus conclude that Hecataeus Ridge is not composed of characteristically ophiolitic, Cyprus (upper plate) crust, and it might well be derived from the African (lower) plate.
NASA Astrophysics Data System (ADS)
Heusser, L. E.
2014-12-01
Rice Lake, (40'41" N; 123'30" W, 1109 m elev.) lies in the transition zone of the precipitation dipole in the western United States, which is reflected by the present vegetation - a mosaic of mesic northern mixed hardwood-evergreen forests (Quercus spp., Pinus spp., Calocedrus/Juniperus) and more arid southern oak foothill woodlands (Quercus spp.) that borders the westernmost edge of coastal redwoods (Sequoia sempervirens) forest. The site, which lies on the active Lake Mountain fault zone, is now a large (~15 ha) sagpond that dries in summer. Between ~26,600 yr - ~15,000 yr, a permanent lake with aquatic vegetation (Isoetes) occupied the core site. Montane conifer forests, with pine (Pinus, spp.), mountain hemlock (Tsuga mertensiana), spruce (Picea spp), and western hemlock (T. heterophylla) covered the region. Climatic parameters of modern montane coniferous forest and the continued presence of aquatic vegetation (Isoetes) suggest higher precipitation and lower temperatures during the last glacial. Charcoal (fire event frequency) was minimal. Rapid oscillations of oak, the riparian alder (Alnus), pine, Cupressaceae (Juniperus, Calocedrus), Douglas fir (Pseudotsuga menzeii), and fir (Abies) characterize the deglacial, and reflect rapid changes in precipitation and temperatures, e.g, Bølling-Allerød warming and Younger Dryas cooling. Between ~15,000 yr and ~13,000 yr, aquatic vegetation of the lake abruptly decreased. Expansion of oak, tanoak (Lithocarpus), shrubs (cf. Ceanothus) and decline of pine and montane conifers, along with the development of marshes with Typha and Cyperaceae on the former lakebed, imply early Holocene warming and decreasing precipitation. This is supported by an increase in charcoal, which is attributed to forest fires. Between ~5,000 yr - ~6,000 yr, a short interval of increased precipitation (inferred from a peak in alder and decrease in Cupressaceae) initiates the development of modern mixed hardwood-evergreen forest. Correlative data from terrestrial and marine climate proxies from a core located 33 km off the mouth of the Eel River, (TN062 0550, 40.9°N, 124.6°W, 569 m water depth) suggest that ENSO-like conditions typified the Holocene.
Effect of Periodic Burning on Soil Nitrogen Concentrations in Ponderosa Pine
W. W. Covington; S. S. Sackett
1986-01-01
To determine the effects of different burning intervals on soil N status in substands of sapling-, pole-, and sawtimber-sized ponderosa pine (Pinus ponderosa Laws.) we sampled plots burned at 1-, 2-, and 4-yr intervals by three strata at two depths (0-5 and 5-15 cm). Generally, NH4 +; and NO3 - concentrations were higher on plots repeatedly burned than on unburned...
NASA Astrophysics Data System (ADS)
Minderhoud, Philip S. J.; Cohen, Kim M.; Toonen, Willem. H. J.; Erkens, Gilles; Hoek, Wim Z.
2017-04-01
Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation. The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from 4.7 to 2.9 ka cal BP and consists of 5.5 meters of laminated lacustrine, organo-clastic mud, covered by 1 meter of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in sedimentation rate. Especially the organo-clastic muddy facies subdivides in centennial intervals of relative faster and slower accumulation. For such intervals, sedimentation rates are produced that deviate 10 to 20% from that in simpler stepped linear age-models. For irregularly laminated muddy intervals of the oxbow fill - from which meaningful sampling for radiocarbon dating is more difficult than from peaty or slowly accumulating organic lake sediments - supplementing spotty radiocarbon sampling with continuous sedimentary proxy data creates more realistic age-depth modelling results.
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Makhoul, J.; Schwartz, R. M.; Huggins, A. W. F.
1982-04-01
The variable frame rate (VFR) transmission methodology developed, implemented, and tested in the years 1973-1978 for efficiently transmitting linear predictive coding (LPC) vocoder parameters extracted from the input speech at a fixed frame rate is reviewed. With the VFR method, parameters are transmitted only when their values have changed sufficiently over the interval since their preceding transmission. Two distinct approaches to automatic implementation of the VFR method are discussed. The first bases the transmission decisions on comparisons between the parameter values of the present frame and the last transmitted frame. The second, which is based on a functional perceptual model of speech, compares the parameter values of all the frames that lie in the interval between the present frame and the last transmitted frame against a linear model of parameter variation over that interval. Also considered is the application of VFR transmission to the design of narrow-band LPC speech coders with average bit rates of 2000-2400 bts/s.
NASA Astrophysics Data System (ADS)
Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.
1986-04-01
This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).
Dwyer, Tim; Martin, C Ryan; Kendra, Rita; Sermer, Corey; Chahal, Jaskarndip; Ogilvie-Harris, Darrell; Whelan, Daniel; Murnaghan, Lucas; Nauth, Aaron; Theodoropoulos, John
2017-06-01
To determine the interobserver reliability of the International Cartilage Repair Society (ICRS) grading system of chondral lesions in cadavers, to determine the intraobserver reliability of the ICRS grading system comparing arthroscopy and video assessment, and to compare the arthroscopic ICRS grading system with histological grading of lesion depth. Eighteen lesions in 5 cadaveric knee specimens were arthroscopically graded by 7 fellowship-trained arthroscopic surgeons using the ICRS classification system. The arthroscopic video of each lesion was sent to the surgeons 6 weeks later for repeat grading and determination of intraobserver reliability. Lesions were biopsied, and the depth of the cartilage lesion was assessed. Reliability was calculated using intraclass correlations. The interobserver reliability was 0.67 (95% confidence interval, 0.5-0.89) for the arthroscopic grading, and the intraobserver reliability with the video grading was 0.8 (95% confidence interval, 0.67-0.9). A high correlation was seen between the arthroscopic grading of depth and the histological grading of depth (0.91); on average, surgeons graded lesions using arthroscopy a mean of 0.37 (range, 0-0.86) deeper than the histological grade. The arthroscopic ICRS classification system has good interobserver and intraobserver reliability. A high correlation with histological assessment of depth provides evidence of validity for this classification system. As cartilage lesions are treated on the basis of the arthroscopic ICRS classification, it is important to ascertain the reliability and validity of this method. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Brown, Angus M
2010-04-01
The objective of the method described in this paper is to develop a spreadsheet template for the purpose of comparing multiple sample means. An initial analysis of variance (ANOVA) test on the data returns F--the test statistic. If F is larger than the critical F value drawn from the F distribution at the appropriate degrees of freedom, convention dictates rejection of the null hypothesis and allows subsequent multiple comparison testing to determine where the inequalities between the sample means lie. A variety of multiple comparison methods are described that return the 95% confidence intervals for differences between means using an inclusive pairwise comparison of the sample means. 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McEvilly, A.; Abimbola, A.; Chan, J. H.; Strayer, L. M.
2015-12-01
California State University, East Bay (CSUEB), located in Hayward, California, lies atop the San Leandro block (SLB) in the Hayward fault zone. The SLB is a J-K aged lithotectonic assemblage dominated by gabbro and intercalated with minor volcanics and sediments. It is bound by the subparallel northwest-trending western Hayward and eastern Chabot (CF) faults and pervasively cut by anastomosing secondary faults. The block itself is ~30 km along strike and 2-3 km wide. Previous studies suggest the block dips steeply to the northeast and extends to a depth of at least 7 km. In May of 2015, as part of an ongoing collaborative effort led by the USGS to create a 3D velocity model of the San Francisco Bay Area, researchers from CSUEB and the USGS conducted a seismic survey on the CSUEB campus. The primary goal of this pilot study was to locate the trace of the CF on the CSUEB campus and to determine bedrock depth. We deployed a 60-channel, 300m profile using 4.5Hz sensors spaced at 5m intervals. Active seismic sources were used at each geophone location. A 226kg accelerated weight-drop was used to generate P and Rayleigh waves for P-wave tomography and multichannel analysis of surface waves (MASW), and a 3.5kg sledgehammer and block were used to generate S and Love waves for S-wave tomography and multichannel analysis of Love waves (MALW). Preliminary P-wave tomography, MASW, and MALW results from this pilot study suggest the location of an eastward-dipping CF as well as the presence of a high-velocity unit at about 20m depth, presumably an unmapped sliver of bedrock from the San Leandro block. Further studies planned for the fall of 2015 include additional seismic lines and surface mapping along the Chabot fault on and near the CSUEB campus. These new geophysical, GPS, and field geological data will be integrated with LiDAR imagery and existing geological, gravity and magnetic maps to create a 3-dimensional model of the portion of the SLB that contains the CSUEB campus.
G. L. Wooldridge; R. C. Musselman; R. A. Sommerfeld; D. G. Fox; B. H. Connell
1996-01-01
1. Deformations of Engelmann spruce and subalpine fir trees were surveyed for the purpose of determining climatic wind speeds and directions and snow depths in the Glacier Lakes Ecosystem Experiments Site (GLEES) in the Snowy Range of southeastern Wyoming, USA. Tree deformations were recorded at 50- and 100-m grid intervals over areas of c. 30 ha and 300 ha,...
Moisture patterns in douglas-fir and tanoak slash
Norman C. Scott
1964-01-01
Moisture content in Douglas-fir cull logs and boles of felled tanoaks was sampled periodically at 2-inch intervals to a depth of 6 inches from October 1960-0ctober 1961. The study area had been clear cut in 1958 and the hardwoods felled in 1959. Analysis of the data showed that the moisture level in tanoak stems decreased at an increasing rate from a 6-inch depth to...
1994-03-18
Paillard, 1960). The benefit of movement chunks would lie in the associated reduction of storage and retrieval capacity (see e.g. Gallistel , 1980; Jones...1983; Fromkin, 1981; Gallistel , 1980; Zimmer & Korndle, 1988) but interval durations should be affected as well. The notion of sequence-specific...point where they can be made more rapidly and accurately with little variation. Then they become welded together into ’chunks’" ( Gallistel , 1980, p.367
Carbon and its isotopes in mid-oceanic basaltic glasses
Des Marais, D.J.; Moore, J.G.
1984-01-01
Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8??? enriched in 13C, relative to dissolved carbon. Despite this fractionation, ??13CPDB values for all spreading ridge glasses lie within the range -5.6 and -7.5, and the ??13CPDB of mantle carbon likely lies between -5 and -7. The carbon abundances and ??13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 ?? 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory. ?? 1984.
Oh, Je Hyeok; Kim, Chan Woong; Kim, Sung Eun; Lee, Sang Jin; Lee, Dong Hoon
2014-07-01
When rescuers perform cardiopulmonary resuscitation (CPR) from a standing position, the height at which chest compressions are carried out is raised. To determine whether chest compressions delivered on a bed adjusted to rescuer's knee height are as effective as those delivered on the floor. A total of 20 fourth-year medical students participated in the study. The students performed chest compressions for 2 min each on a manikin lying on the floor (test 1) and on a manikin lying on a bed (test 2). The average compression rate (ACR) and the average compression depth (ACD) were compared between the two tests. The ACR was not significantly different between tests 1 and 2 (120.1 to 132.9 vs 115.7 to 131.2 numbers/min, 95% CI, p=0.324). The ACD was also not significantly different between tests 1 and 2 (51.2 to 56.6 vs 49.4 to 55.7 mm, 95% CI, p=0.058). The results suggest that there may be no significant differences in compression rate and depth between CPR performed on manikins placed on the floor and those placed at a rescuer's knee height. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Geologic evidence for age of deposits at Hueyatlaco archeological site, Vasequillo, Mexico
Steen-McIntyre, V.; Fryxell, R.; Malde, H.E.
1981-01-01
Direct tracing of beds during excavation in May 1973, confirmed that the artifact-bearing layers at Hueyatlaco underlie 10 m of fine-grained, water-laid deposits that constitute part of the wide-spread Valsequillo gravels. Dissection of these deposits by the adjacent Ri??o Atoyac has reached a depth of 50 m. The stratigraphic section at Hueyatlaco includes four distinctive tephra units. The oldest one occupies a small channel in a series of cut-and-fill stream deposits that have yielded bifacial tools. It lies more than a meter above flat-lying, fine-grained beds from which edge-retouched tools have been recovered. The three other tephra units occur higher in the section. Fission-track ages on zircon phenocrysts from two of the younger tephra layers (370,000 ?? 200,000 and 600,000 ?? 340,000 yr, 2??) agree with concordant uranium-series dates for a camel pelvis that was found associated with bifacial tools at Hueyatlaco (245,000 ?? 40,000 yr by 230Th and > 180,000 yr by 231Pa). These dates are compatible with the depth of burial and subsequent dissection of the Hueyatlaco deposits, as well as with the degree of hydration of volcanic glass shards and with the extent of etching of heavy-mineral phenocrysts from within the tephra layers. These findings suggest to us that further search for archaeological remains in deposits as old as those at Hueyatlaco would be warranted. ?? 1981.
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2011 CFR
2011-07-01
... well and for well control, including the following: (i) Pore pressure; (ii) Formation fracture..., fracture gradients of the exposed formations, casing setting depths, and cementing intervals, total well...
Depth-to-Ice Map of a Southern Mars Site Near Melea Planum
NASA Technical Reports Server (NTRS)
2007-01-01
Color coding in this map of a far-southern site on Mars indicates the change in nighttime ground-surface temperature between summer and fall. This site, like most of high-latitude Mars, has water ice mixed with soil near the surface. The ice is probably in a rock-hard frozen layer beneath a few centimeters or inches of looser, dry soil. The amount of temperature change at the surface likely corresponds to how close to the surface the icy material lies. The dense, icy layer retains heat better than the looser soil above it, so where the icy layer is closer to the surface, the surface temperature changes more slowly than where the icy layer is buried deeper. On the map, areas of the surface that cooled more slowly between summer and autumn (interpreted as having the ice closer to the surface) are coded blue and green. Areas that cooled more quickly (interpreted as having more distance to the ice) are coded red and yellow. The depth to the top of the icy layer estimated from these observations suggests that in some areas, but not others, water is being exchanged by diffusion between atmospheric water vapor and subsurface water ice. Differences in what type of material lies above the ice appear to affect the depth to the ice. The area in this image with the greatest seasonal change in surface temperature corresponds to an area of sand dunes. This map and its interpretation are in a May 3, 2007, report in the journal Nature by Joshua Bandfield of Arizona State University, Tempe. The Thermal Emission Imaging System camera on NASA's Mars Odyssey orbiter collected the data presented in the map. The site is centered near 67 degrees south latitude, 36.5 degrees east longitude, near a plain named Melea Planum. This site is within the portion of the planet where, in 2002, the Gamma Ray Spectrometer suite of instruments on Mars Odyssey found evidence for water ice lying just below the surface. The information from the Gamma Ray Spectrometer is averaged over patches of ground hundreds of kilometers or miles wide. The information from the Thermal Emission Imaging System allows more than 100-fold higher resolution in mapping variations in the depth to ice. The Thermal Emission Imaging System observed the site in infrared wavelengths during night time, providing surface-temperature information. It did so once on Dec. 27, 2005, during late summer in Mars' southern hemisphere, and again on Jan. 22, 2006, the first day of autumn there. The colors on this map signify relative differences in how much the surface temperature changed between those two observations. Blue indicates the locations with the least change. Red indicates areas with most change. Modeling provides estimates that the range of temperature changes shown in this map corresponds to a range in depth-to-ice of less than 1 centimeter (0.4 inch) to more than 19 centimeters (more than 7.5 inches). The sensitivity of this method for estimating the depth is not good for depths greater than about 20 centimeters (8 inches). The temperature-change data are overlaid on a mosaic of black-and-white, daytime images taken in infrared wavelengths by the same camera, providing information about shapes in the landscape. The 20-kilometer scale bar is 12.4 miles long. NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Science Mission Directorate, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. Lockheed Martin Space Systems, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Monocular zones in stereoscopic scenes: A useful source of information for human binocular vision?
NASA Astrophysics Data System (ADS)
Harris, Julie M.
2010-02-01
When an object is closer to an observer than the background, the small differences between right and left eye views are interpreted by the human brain as depth. This basic ability of the human visual system, called stereopsis, lies at the core of all binocular three-dimensional (3-D) perception and related technological display development. To achieve stereopsis, it is traditionally assumed that corresponding locations in the right and left eye's views must first be matched, then the relative differences between right and left eye locations are used to calculate depth. But this is not the whole story. At every object-background boundary, there are regions of the background that only one eye can see because, in the other eye's view, the foreground object occludes that region of background. Such monocular zones do not have a corresponding match in the other eye's view and can thus cause problems for depth extraction algorithms. In this paper I will discuss evidence, from our knowledge of human visual perception, illustrating that monocular zones do not pose problems for our human visual systems, rather, our visual systems can extract depth from such zones. I review the relevant human perception literature in this area, and show some recent data aimed at quantifying the perception of depth from monocular zones. The paper finishes with a discussion of the potential importance of considering monocular zones, for stereo display technology and depth compression algorithms.
Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan
2011-01-01
Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.
On the Redshift Distribution and Physical Properties of ACT-Selected DSFGs
NASA Technical Reports Server (NTRS)
Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dunner, R.; Farrah, D.; Frayer, D. T.;
2016-01-01
We present multi-wavelength detections of nine candidate gravitationally-lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of 4.1 (+ 1.1, -10) (68 percent confidence interval), as expected for 218 GHz selection and an apparent total infrared luminosity of log 10(uL(sub IR)/solar luminosity) = 13.86(+0.33, -0.30), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is square root of mu d = 4.2 (+ 1.7, -1.0) kpc, further evidence of strong lensing of multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of opticaly thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = (4.2+, -1.9) of dust around the peak in the modified blackbody spectrum (lambda obs is less than 500 micrometers), a result that is robust to model choice.
On the redshift distribution and physical properties of ACT-selected DSFGs
NASA Astrophysics Data System (ADS)
Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dünner, R.; Farrah, D.; Frayer, D. T.; Gralla, M. B.; Hall, K.; Halpern, M.; Harris, A. I.; Hilton, M.; Hincks, A. D.; Hughes, J. P.; Niemack, M. D.; Page, L. A.; Partridge, B.; Rivera, J.; Scott, D.; Sievers, J. L.; Thornton, R. J.; Viero, M. P.; Wang, L.; Wollack, E. J.; Zemcov, M.
2017-01-01
We present multi-wavelength detections of nine candidate gravitationally lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z=4.1^{+1.1}_{-1.0} (68 per cent confidence interval), as expected for 218 GHz selection, and an apparent total infrared luminosity of log _{10}(μ L_IR/L_{odot }) = 13.86^{+0.33}_{-0.30}, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is sqrt{μ }d= 4.2^{+1.7}_{-1.0} kpc, further evidence of strong lensing or multiplicity, since the typical diameter of DSFGs is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2^{+3.7}_{-1.9}) to dust around the peak in the modified blackbody spectrum (λobs ≤ 500 μm), a result that is robust to model choice.
Space geodesy validation of the global lithospheric flow
NASA Astrophysics Data System (ADS)
Crespi, M.; Cuffaro, M.; Doglioni, C.; Giannone, F.; Riguzzi, F.
2007-02-01
Space geodesy data are used to verify whether plates move chaotically or rather follow a sort of tectonic mainstream. While independent lines of geological evidence support the existence of a global ordered flow of plate motions that is westerly polarized, the Terrestrial Reference Frame (TRF) presents limitations in describing absolute plate motions relative to the mantle. For these reasons we jointly estimated a new plate motions model and three different solutions of net lithospheric rotation. Considering the six major plate boundaries and variable source depths of the main Pacific hotspots, we adapted the TRF plate kinematics by global space geodesy to absolute plate motions models with respect to the mantle. All three reconstructions confirm (i) the tectonic mainstream and (ii) the net rotation of the lithosphere. We still do not know the precise trend of this tectonic flow and the velocity of the differential rotation. However, our results show that assuming faster Pacific motions, as the asthenospheric source of the hotspots would allow, the best lithospheric net rotation estimate is 13.4 +/- 0.7 cm yr-1. This superfast solution seems in contradiction with present knowledge on the lithosphere decoupling, but it matches remarkably better with the geological constraints than those retrieved with slower Pacific motion and net rotation estimates. Assuming faster Pacific motion, it is shown that all plates move orderly `westward' along the tectonic mainstream at different velocities and the equator of the lithospheric net rotation lies inside the corresponding tectonic mainstream latitude band (~ +/-7°), defined by the 1σ confidence intervals.
NASA Astrophysics Data System (ADS)
Tychkov, Nikolay; Agashev, Alexey; Malygina, Elena; Pokhilenko, Nikolay
2014-05-01
Integrated study of 250 peridotite xenoliths from Udachnaya -East pipe show difference in mineral paragenesises and textural-structural peculiarities in the different level of cratonic lithosphere mantle (CLM). The compositions of minerals were determined using EPMA. Thermobarometric parameters (Brey, Kohller, 1990) were determined for all rocks occupying different fields on geothermal curve. The deepest layer (the pressure interval of 5.0-7.0 GPa) contains mostly pophyroclastic lherzolites. Anyway, some rocks of this layer have an idiomorphic texture being also enriched in incompatible components. Higher in the CLM sequence, the interval (4.2-6.3 GPa) is composed of the most depleted rocks: megacristalline ultradepleted harzburgite-dunites and depleted granular harzburgite-dunites, as well as lherzolites in a subordinate amount. They correspond strate to 35 mW/m2 and partly overlap the deeper layer in dapth. It is likely that rocks of this layer are in equilibrium and were not subject to significant secondary changes due to kimberlite magma intrusion. Thus, this interval of the CLM sequence reflects the true (relic) geotherm for the area of the Udachnaya kimberlite pipe. Moreover, it is obvious that this interval was a major supplier of diamonds into kimberlites of the Udachnaya pipe. The interval of 4.2-2.0 GPa in the CLM sequence is also composed of coarse depleted lherzolites and harzburgites. Rocks of this interval are slightly more enriched than those of the underlying interval. This is confirmed by the distinct predominance of lherzolites over harzburgite-dunites. The heat flow in this layer varies in the range of 38-45 mW/m2 and shows a general tendency to increase with decreasing depth. According to occurrence of nonequilibrium mineral assemblages and increased heat flow relative to the major heat flow of 35 mW/m2, this interval is similar to the deepest interval of secondary enriched rocks. Interval of less than 2.0 GPa composed of spinel lherzolites and harzburgites. The temperature range of stability of these rocks is 600-900oC (average 754oC) for the geotherm curve of 45 mW/m2. The paleogeotherm obtained as a result of our study has a relatively complicated stepped structure. The geotherm knee in the deep part of the sequence, described for different regions, is connected with the temperature perturbations at the lithosphere-asthenosphere boundary. The increased heat flow at the depth corresponding to a pressure of <4.2 GPa is rather unusual. It is obvious that it is not connected with deep processes on the CLM bottom. We assume, that thermal perturbations of this interval are due to large-scale crystallization and heating when going up silicate-carbonate kimberlitic magma reach the depth of peridotite+CO2 solidus curve bend. 11-05-91060-PICS
Phasic heart rate responses and cardiac cycle time in auditory choice reaction time.
van der Molen, M W; Somsen, R J; Orlebeke, J F
1983-01-01
This study investigated the cardiovascular-behavioral interaction under short and long stimulus interval conditions. In addition, the cardiovascular-behavioral interaction was studied as affected by cardiac cycle duration. Fourteen subjects performed a choice reaction time (RT) task employing a mixed speed-accuracy tradeoff design in which reactions were paced to coincide with a signal that occurs randomly at either 200 or 500 msec after the reaction stimulus. The preparatory interval between a warning stimulus and a lead-reaction stimulus complex was also varied (2 vs. 4.5 sec). Anticipatory deceleration occurred within the 4.5 sec interval but not in the 2 sec interval. The depth of anticipatory deceleration did not discriminate between fast and slow reactions; but an earlier shift from deceleration to acceleration was associated with fast reactions. The effect of stimulus timing relative to the R-wave of the electrocardiogram was also analysed. Meaningful stimuli tended to produce cardiac slowing as previously described in the literature. Early occurring stimuli prolong the cycle of their occurrence more than late occurring stimuli. The later prolong the subsequent cycle. Cardiac cycle time effects were absent for unattended stimuli. The results of anticipatory deceleration suggested that the depth of deceleration was regulated by time-uncertainty and speed-accuracy criterion.
Resolution of a Low-Lying Placenta and Placenta Previa Diagnosed at the Midtrimester Anatomy Scan.
Durst, Jennifer K; Tuuli, Methodius G; Temming, Lorene A; Hamilton, Owen; Dicke, Jeffrey M
2018-02-05
To identify the incidence and resolution rates of a low-lying placenta or placenta previa and to assess the optimal time to perform follow-up ultrasonography (US) to assess for resolution. We conducted a retrospective cohort study of women with a diagnosis of a low-lying placenta or placenta previa at routine anatomic screening. Follow-up US examinations were reviewed to estimate the proportion of women who had resolution. A Kaplan-Meier survival curve was generated to estimate the median time to resolution. The distance of the placental edge from the internal cervical os was used to categorize the placenta as previa or low-lying (0.1-10 or ≥ 10-20 mm). A time-to-event analysis was used to estimate predictive factors and the time to resolution by distance from the os. A total of 1663 (8.7%) women had a diagnosis of a low-lying placenta or placenta previa. The cumulative resolution for women who completed 1 or more additional US examinations was 91.9% (95% confidence interval, 90.2%-93.3%). The median time to resolution was 10 (interquartile range [IQR], 7-13) weeks. The distance from the internal cervical os was known for 658 (51.0%) women. The probability of resolution was inversely proportional to the distance from the internal os: 99.5% (≥10-20 mm), 95.4% (0.1-10 mm), and 72.3% (placenta previa; P < .001). The median times to resolution were 9 (IQR, 7-12) weeks for 10 to 20 mm, 10 (IQR, 7-13) weeks for 0.1 to 10 mm, and 12 (IQR, 9-15) weeks for placenta previa (P = .0003, log rank test). A low-lying placenta or placenta previa diagnosed at the midtrimester anatomy survey resolves in most patients. Resolution is near universal in patients with an initial distance from the internal os of 10 mm or greater. © 2018 by the American Institute of Ultrasound in Medicine.
Todd, B.J.; Valentine, Page C.
2010-01-01
This map is part of a three-map series of German Bank, located on the Scotian Shelf off southern Nova Scotia. This map is the product of a number of surveys (1997-2003) that used a multibeam sonar system to map 5321 km2 of the seafloor. Other surveys collected geological data for scientific interpretation. This map sheet shows the seafloor topography of German Bank in shaded-relief view and seafloor depth (coded by colour) at a scale of 1:1000,000. Topographic contours generated from the multibeam data are shown (in white) on the colour-coded multibeam topography at a depth interval of 20 m. Bathymetic contours (in blue) outside the multibeam survey area, presented at a depth interval of 10 m, are from the Natural Resource Map series (Canadian Hydrographic Service, 1967, 1971a, 1971b, 1972). Sheet 2 shows coloured backscatter strength in shaded-relief view. Sheet 3 shows seafloor topography in shaded-relief view with colour-coded surficial geological units.
Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada
Whitfield, M.S.; Eshom, E.P.; Thordarson, William; Schaefer, D.H.
1985-01-01
Test well USW H-4 is one of several wells drilled in the southwestern part of the Nevada Test Site for hydraulic testing, hydrologic monitoring, and geophysical logging. The work was performed in cooperation with the U.S. Department of Energy. The rocks penetrated by the well to a total depth of 1,219 m were volcanic tuffs of Tertiary age. Hydraulic coefficients calculated from pumping test data indicate that transmissivity ranged from 200 to 790 sq m/day. A radioactive tracer, borehole flow survey indicated that the two most productive zones during this borehole flow survey occurred in the upper part of the Bullfrog Member of the Crater Flat Tuff, depth interval from 721 to 731.5m, and in the underlying part of the Tram Member, depth interval from 864 to 920m. The water is predominantly a sodium biocarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by carbon-14 date of 17,200 years before present. (USGS)
Structure of the crust and upper mantle beneath the Balearic Islands (Western Mediterranean)
NASA Astrophysics Data System (ADS)
Banda, E.; Ansorge, J.; Boloix, M.; Córdoba, D.
1980-09-01
Data are presented from deep seismic sounding along the strike of the Balearic Islands carried out in 1976. The interpretation of the data gives the following results: A sedimentary cover of 4 km around Ibiza to 7 km under Mallorca overlies the crystalline basement. This basement with a P-wave velocity of 6.0 km/s at the top reaches a depth of at least 15 km under Ibiza and 17 km under Mallorca with an increase to 6.1 km/s at these depths. The crust-mantle boundary lies at a depth of 20 km and 25 km, respectively. A well documented upper-mantle velocity of 7.7 km/s is found along the entire profile. The Moho rises to a depth of 20 km about 30 km north of Mallorca and probably continues rising towards the center of the North Balearic Sea. The newly deduced crustal structure together with previously determined velocity-depth sections in the North Balearic Sea as well as heat flow and aeromagnetic data can be interpreted as an extended rift structure caused by large-scale tensional processes in the upper mantle. The available data suggest that the entire zone from the eastern Alboran Sea to the area north of the Balearic Islands represents the southeastern flank of this rift system. In this model the provinces of Spain along the east coast would represent the northwestern rift flank.
NASA Astrophysics Data System (ADS)
Marca-Castillo, M.; Perez-Cruz, L. L.; Fucugauchi, J. U.
2017-12-01
The aim of this study is to investigate the paleoclimatic events along the Paleocene/Eocene (P/E) boundary based on stratigraphy, magnetic susceptibility logs and geochemical (major and trace elements) records. Data points were taken first each 10 cm and then each centimeter during the main interval of interest at the Yaxcopoil-1 (Yax-1) borehole in the Chicxulub impact crater, located in the northwestern part of the Yucatan Peninsula, Mexico. The Yax-1 was drilled at 20° 44' 38.45'' N, 89° 43' 6.70'' W, recovering a core of 1511 m depth. The interval between 750 and 700 m depth was selected to study the P/E boundary, with the knowledge from previous works that the K/Pg boundary is around 794 m depth in this core. At the interval between 750 and 700 m, the drop in Ca values, high MS logs and an abrupt increase in clay minerals suggested the location of the P/E boundary may be between 735 m to 722 m depth, therefore high resolution geochemical measurements were taken using an XRF scanner at the interval from 724.59 to 732.92 m to identify the hyperthermal events occurred during the Paleogene. In this study the lower Ca content along the P/E boundary is associated with a warm event called the Paleocene Eocene Thermal Maximum (PETM) also known as ETM1, due to carbonate dissolution as a result of the ocean acidification at the end of the Paleocene. On the other hand, ratios of Ca/Ti, K/Ti and Rb/Sr were used as paleoclimatic proxies to define the P/E boundary. The Ca/Ti ratio indicates the biogenic content in the sediments, mainly CaCO3 content; K/Ti ratios may record changes of the intensity of chemical weathering. Furthermore, based on the geochemical ratios and low Ca content was possible to recognize in the Yax-1 another hyperthermal events, occurred during the Paleogene, called ETM2 and ETM3, showing similar characteristics than the PETM. The results from analysis of power spectrums of the geochemical and magnetic susceptibility data also support the occurrence of these warming events.
Significance testing - are we ready yet to abandon its use?
The, Bertram
2011-11-01
Understanding of the damaging effects of significance testing has steadily grown. Reporting p values without dichotomizing the result to be significant or not, is not the solution. Confidence intervals are better, but are troubled by a non-intuitive interpretation, and are often misused just to see whether the null value lies within the interval. Bayesian statistics provide an alternative which solves most of these problems. Although criticized for relying on subjective models, the interpretation of a Bayesian posterior probability is more intuitive than the interpretation of a p value, and seems to be closest to intuitive patterns of human decision making. Another alternative could be using confidence interval functions (or p value functions) to display a continuum of intervals at different levels of confidence around a point estimate. Thus, better alternatives to significance testing exist. The reluctance to abandon this practice might be both preference of clinging to old habits as well as the unfamiliarity with better methods. Authors might question if using less commonly exercised, though superior, techniques will be well received by the editors, reviewers and the readership. A joint effort will be needed to abandon significance testing in clinical research in the future.
Farrell, Mary Beth
2018-06-01
This article is the second part of a continuing education series reviewing basic statistics that nuclear medicine and molecular imaging technologists should understand. In this article, the statistics for evaluating interpretation accuracy, significance, and variance are discussed. Throughout the article, actual statistics are pulled from the published literature. We begin by explaining 2 methods for quantifying interpretive accuracy: interreader and intrareader reliability. Agreement among readers can be expressed simply as a percentage. However, the Cohen κ-statistic is a more robust measure of agreement that accounts for chance. The higher the κ-statistic is, the higher is the agreement between readers. When 3 or more readers are being compared, the Fleiss κ-statistic is used. Significance testing determines whether the difference between 2 conditions or interventions is meaningful. Statistical significance is usually expressed using a number called a probability ( P ) value. Calculation of P value is beyond the scope of this review. However, knowing how to interpret P values is important for understanding the scientific literature. Generally, a P value of less than 0.05 is considered significant and indicates that the results of the experiment are due to more than just chance. Variance, standard deviation (SD), confidence interval, and standard error (SE) explain the dispersion of data around a mean of a sample drawn from a population. SD is commonly reported in the literature. A small SD indicates that there is not much variation in the sample data. Many biologic measurements fall into what is referred to as a normal distribution taking the shape of a bell curve. In a normal distribution, 68% of the data will fall within 1 SD, 95% will fall within 2 SDs, and 99.7% will fall within 3 SDs. Confidence interval defines the range of possible values within which the population parameter is likely to lie and gives an idea of the precision of the statistic being measured. A wide confidence interval indicates that if the experiment were repeated multiple times on other samples, the measured statistic would lie within a wide range of possibilities. The confidence interval relies on the SE. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Tomographic gamma ray apparatus and method
Anger, Hal O.
1976-09-07
This invention provides a radiation detecting apparatus for imaging the distribution of radioactive substances in a three-dimensional subject such as a medical patient. Radiating substances introduced into the subject are viewed by a radiation image detector that provides an image of the distribution of radiating sources within its field of view. By viewing the area of interest from two or more positions, as by scanning the detector over the area, the radiating sources seen by the detector have relative positions that are a function of their depth in the subject. The images seen by the detector are transformed into first output signals which are combined in a readout device with second output signals that indicate the position of the detector relative to the subject. The readout device adjusts the signals and provides multiple radiation distribution readouts of the subject, each readout comprising a sharply resolved picture that shows the distribution and intensity of radiating sources lying in a selected plane in the subject, while sources lying on other planes are blurred in that particular readout.
Intermediate-depth earthquakes facilitated by eclogitization-related stresses
Nakajima, Junichi; Uchida, Naoki; Shiina, Takahiro; Hasegawa, Akira; Hacker, Bradley R.; Kirby, Stephen H.
2013-01-01
Eclogitization of the basaltic and gabbroic layer in the oceanic crust involves a volume reduction of 10%–15%. One consequence of the negative volume change is the formation of a paired stress field as a result of strain compatibility across the reaction front. Here we use waveform analysis of a tiny seismic cluster in the lower crust of the downgoing Pacific plate and reveal new evidence in favor of this mechanism: tensional earthquakes lying 1 km above compressional earthquakes, and earthquakes with highly similar waveforms lying on well-defined planes with complementary rupture areas. The tensional stress is interpreted to be caused by the dimensional mismatch between crust transformed to eclogite and underlying untransformed crust, and the earthquakes are probably facilitated by reactivation of fossil faults extant in the subducting plate. These observations provide seismic evidence for the role of volume change–related stresses and, possibly, fluid-related embrittlement as viable processes for nucleating earthquakes in downgoing oceanic lithosphere.
Effects of saturation and contrast polarity on the figure-ground organization of color on gray.
Dresp-Langley, Birgitta; Reeves, Adam
2014-01-01
Poorly saturated colors are closer to a pure gray than strongly saturated ones and, therefore, appear less "colorful."Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on gray "test" backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the gray test background contrasted with, assimilated to, or appeared equal (no effect) to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced significantly larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness. The results point toward a hitherto undocumented functional role of color saturation in the genesis of form, and in particular figure-ground percepts in the absence of chromatostereopsis.
Two-dimensional steady bow waves in water of finite depth
NASA Astrophysics Data System (ADS)
Kao, John
1998-12-01
In this study, the two-dimensional steady bow flow in water of arbitrary finite depth has been investigated. The two-dimensional bow is assumed to consist of an inclined flat plate connected downstream to a horizontal semi-infinite draft plate. The bottom of the channel is assumed to be a horizontal plate; the fluid is assumed to be inviscid, incompressible; and the flow irrotational. For the angle of incidence α (held by the bow plate) lying between 0o and 60o, the local flow analysis near the stagnation point shows that the angle lying between the free surface and the inclined plate, β, must always be equal to 120o, otherwise no solution can exist. Moreover, we further find that the local flow solution does not exist if /alpha > 60o, and that on the inclined plate there exists a negative pressure region adjacent to the stagnation point for /alpha < 30o. Singularities at the stagnation point and the upstream infinity are found to have multiple branch-point singularities of irrational orders. A fully nonlinear theoretical model has been developed in this study for evaluating the incompressible irrotational flow satisfying the free-surface conditions and two constraint equations. To solve the bow flow problem, successive conformal mappings are first used to transform the flow domain into the interior of a unit semi-circle in which the unknowns can be represented as the coefficients of an infinite series. A total error function equivalent to satisfying the Bernoulli equation is defined and solved by minimizing the error function and applying the method of Lagrange's multiplier. Smooth solutions with monotonic free surface profiles have been found and presented here for the range of 35o < /alpha < 60o, a draft Froude number Frd less than 0.5, and a water-depth Froude number Frh less than 0.4. The dependence of the solution on these key parameters is examined. Our results may be useful in designing the optimum bow shape.
Effects of saturation and contrast polarity on the figure-ground organization of color on gray
Dresp-Langley, Birgitta; Reeves, Adam
2014-01-01
Poorly saturated colors are closer to a pure gray than strongly saturated ones and, therefore, appear less “colorful.”Color saturation is effectively manipulated in the visual arts for balancing conflicting sensations and moods and for inducing the perception of relative distance in the pictorial plane. While perceptual science has proven quite clearly that the luminance contrast of any hue acts as a self-sufficient cue to relative depth in visual images, the role of color saturation in such figure-ground organization has remained unclear. We presented configurations of colored inducers on gray “test” backgrounds to human observers. Luminance and saturation of the inducers was uniform on each trial, but varied across trials. We ran two separate experimental tasks. In the relative background brightness task, perceptual judgments indicated whether the apparent brightness of the gray test background contrasted with, assimilated to, or appeared equal (no effect) to that of a comparison background with the same luminance contrast. Contrast polarity and its interaction with color saturation affected response proportions for contrast, assimilation and no effect. In the figure-ground task, perceptual judgments indicated whether the inducers appeared to lie in front of, behind, or in the same depth with the background. Strongly saturated inducers produced significantly larger proportions of foreground effects indicating that these inducers stand out as figure against the background. Weakly saturated inducers produced significantly larger proportions of background effects, indicating that these inducers are perceived as lying behind the backgrounds. We infer that color saturation modulates figure-ground organization, both directly by determining relative inducer depth, and indirectly, and in interaction with contrast polarity, by affecting apparent background brightness. The results point toward a hitherto undocumented functional role of color saturation in the genesis of form, and in particular figure-ground percepts in the absence of chromatostereopsis. PMID:25339931
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1979-01-01
A viscoelastic model for deformation and stress associated with earthquakes is reported. The model consists of a rectangular dislocation (strike slip fault) in a viscoelastic layer (lithosphere) lying over a viscoelastic half space (asthenosphere). The time dependent surface stresses are analyzed. The model predicts that near the fault a significant fraction of the stress that was reduced during the earthquake is recovered by viscoelastic softening of the lithosphere. By contrast, the strain shows very little change near the fault. The model also predicts that the stress changes associated with asthenospheric flow extend over a broader region than those associated with lithospheric relaxation even though the peak value is less. The dependence of the displacements, stresses on fault parameters studied. Peak values of strain and stress drop increase with increasing fault height and decrease with fault depth. Under many circumstances postseismic strains and stresses show an increase with decreasing depth to the lithosphere-asthenosphere boundary. Values of the strain and stress at distant points from the fault increase with fault area but are relatively insensitive to fault depth.
NASA Technical Reports Server (NTRS)
Clarke, Garry K. C.; Cross, Guy M.; Benson, Carl S.
1989-01-01
Glaciological measurements and an airborne radar sounding survey of the glacier lying in Mount Wrangell caldera raise many questions concerning the glacier thermal regime and volcanic history of Mount Wrangell. An interpretation model has been developed that allows the depth variation of temperature, heat flux, pressure, density, ice velocity, depositional age, and thermal and dielectric properties to be calculated. Some predictions of the interpretation model are that the basal ice melting rate is 0.64 m/yr and the volcanic heat flux is 7.0 W/sq m. By using the interpretation model to calculate two-way travel time and propagation losses, radar sounding traces can be transformed to give estimates of the variation of power reflection coefficient as a function of depth and depositional age. Prominent internal reflecting zones are located at depths of approximately 59-91m, 150m, 203m, and 230m. These internal reflectors are attributed to buried horizons of acidic ice, possibly intermixed with volcanic ash, that were deposited during past eruptions of Mount Wrangell.
On-line depth measurement for laser-drilled holes based on the intensity of plasma emission
NASA Astrophysics Data System (ADS)
Ho, Chao-Ching; Chiu, Chih-Mu; Chang, Yuan-Jen; Hsu, Jin-Chen; Kuo, Chia-Lung
2014-09-01
The direct time-resolved depth measurement of blind holes is extremely difficult due to the short time interval and the limited space inside the hole. This work presents a method that involves on-line plasma emission acquisition and analysis to obtain correlations between the machining processes and the optical signal output. Given that the depths of laser-machined holes can be estimated on-line using a coaxial photodiode, this was employed in our inspection system. Our experiments were conducted in air under normal atmospheric conditions without gas assist. The intensity of radiation emitted from the vaporized material was found to correlate with the depth of the hole. The results indicate that the estimated depths of the laser-drilled holes were inversely proportional to the maximum plasma light emission measured for a given laser pulse number.
Blodgett, J.C.
1995-01-01
Methods to evaluate changes in the volume of storm runoff from drainage basins that are likely to be urbanized are needed by land-use planning agencies to establish criteria for the design of flood-control systems. To document the changes in runoff volume of basins that may be urbanized, nine small basins that are considered representative of varying hydrologic conditions in Antelope Valley, California, were selected for detailed study. Precipitation and stream-gaging stations were established and data were collected for the period 1990-93. The data collected at these U.S. Geological Survey stations were supplemented by data collected at 35 Long-term precipitation stations operated by the National Oceanic and Atmospheric Administration and the Los Angeles County Department of Public Works. These data will be used to calibrate and verify rainfall-runoff models for the nine basins. Results of the model runs will then be used as a guide for estimating basin runoff characteristics throughout Antelope Valley. Annual precipitation in Antelope Valley ranges from more than 20 inches in the mountains to less than 4 inches on the valley floor. Most precipitation in the valley falls during the months of December through March, but cyclonic storms in the fall and convectional storms in the summer sometimes occur. The duration of most storms ranges from 1 to 8 days, but most of the precipitation usually occurs within the first 2 days. Many parts of the valley have been affected by storms with precipitation depths that equal or exceed 0.60 inch per hour. The storms of January 1943 and March 1983 were the most intense storms of record, with recurrence intervals greater than 100 years in some parts of the valley. Depth-duration ratios were calculated by disaggregating daily total precipitation data for intervals of 1, 2, 3, 4, 6, 12, and 18 hours for storms that occurred during 1990-93. The hourly total precipitation data were then disaggregated at 5-minute intervals. A comparison of the depth-duration data collected during 1990-93 at the Geological Survey stations with the data collected at the other stations indicated that the 1990-93 data are not representative of historical storms. Therefore, depth-duration ratios developed using these data should be considered preliminary for use in disaggregating the historical hourly data for Antelope Valley. Annual maximum 24-hour precipitation records were used to calculate precipitation depth-frequency relations for 23 stations in the valley using the log Pearson type III distribution. These calculations indicate that the storms of January 1943 and March 1983 were the most intense of record in the valley with recurrence intervals greater than 100 years.
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.
A filter-wheel solar radiometer for atmospheric transmission studies
NASA Technical Reports Server (NTRS)
Shaw, G. E.; Peck, R. L.; Allen, G. R.
1973-01-01
A filter-wheel solar radiometer has been developed for monitoring the atmospheric optical depth at multiple narrow-wavelength intervals in the visible and near IR regions of the spectrum. Measurements of the direct solar radiations are converted to a digital format and stored in punched tape for eventual analysis by a computer. During stable clear weather condition, the instrument is capable of providing monochromatic optical depths to an estimated rms accuracy of 0.005.
NASA Astrophysics Data System (ADS)
Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing
2018-03-01
In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.
A dynamic optimization model of the diel vertical distribution of a pelagic planktivorous fish
NASA Astrophysics Data System (ADS)
Rosland, Rune; Giske, Jarl
A stochastic dynamic optimization model for the diel depth distribution of juveniles and adults of the mesopelagic planktivore Maurolicus muelleri (Gmelin) is developed and used for a winter situation. Observations from Masfjorden, western Norway, reveal differences in vertical distribution, growth and mortality between juveniles and adults in January. Juveniles stay within the upper 100m with high feeding rates, while adults stay within the 100-150m zone with very low feeding rates during the diel cycle. The difference in depth profitability is assumed to be caused by age-dependent processes, and are calculated from a mechanistic model for visual feeding. The environment is described as a set of habitats represented by discrete depth intervals along the vertical axis, differing with respect to light intensity, food abundance, predation risk and temperature. The short time interval (24h) allows fitness to be linearly related to growth (feeding), assuming that growth increases the future reproductive output of the fish. Optimal depth position is calculated from balancing feeding opportunity against mortality risk, where the fitness reward gained by feeding is weighted against the danger of being killed by a predator. A basic run is established, and the model is validated by comparing predictions and observations. The sensitivity for different parameter values is also tested. The modelled vertical distributions and feeding patterns of juvenile and adult fish correspond well with the observations, and the assumption of age differences in mortality-feeding trade-offs seems adequate to explain the different depth profitability of the two age groups. The results indicate a preference for crepuscular feeding activity of the juveniles, and the vertical distribution of zooplankton seems to be the most important environmental factor regulating the adult depth position during the winter months in Masfjorden.
Walraven, N; van Os, B J H; Klaver, G Th; Middelburg, J J; Davies, G R
2014-02-15
In this study the origin, behaviour and fate of anthropogenic Pb in sandy roadside soils were assessed by measuring soil characteristics, Pb isotope composition and content. In 1991 and 2003 samples were taken at different depth intervals at approximately 8 and 75 m from two highways in The Netherlands. The Pb isotope composition of the litter layer ((206)Pb/(207)Pb=1.12-1.14) differs from the deeper soil samples ((206)Pb/(207)Pb=1.20-1.21). Based on a mixing model it is concluded that the samples contain two Pb sources: natural Pb and anthropogenic Pb, the latter mainly derived from gasoline. (206)Pb/(207)Pb ratios demonstrate that the roadside soils were polluted to a depth of ~15 cm. Within this depth interval, anthropogenic Pb content is associated with organic matter. Although Pb pollution only reached a depth of ~15 cm, this does not mean that the topsoils retain all anthropogenic Pb. Due to the low pH and negligible binding capacity of soils at depths >15 cm, anthropogenic Pb migrated towards groundwater after reaching depths of >15 cm. The Pb isotope composition of the groundwater ((206)Pb/(207)Pb=1.135-1.185) establishes that groundwater is polluted with anthropogenic Pb. The contribution of anthropogenic Pb to the groundwater varies between ~30 and 100%. Based on the difference in soil Pb content and Pb isotope compositions over a period of 12 years, downward Pb migration is calculated to vary from 72 ± 95 to 324 ± 279 mg m(-2)y(-1). Assuming that the downward Pb flux is constant over time, it is calculated that 35-90% of the atmospherically delivered Pb has migrated to the groundwater. Copyright © 2013 Elsevier B.V. All rights reserved.
Geohydrology of test well USW H-1, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rush, F.E.; Thordarson, W.; Pyles, D.G.
This report contains the results of hydraulic testing, hydrologic monitoring, and geophysical logging of test well USW H-1, one of several wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1829 meters were of volcanic origin and of Tertiary age. Hydraulic head in the zone 688 to 741 meters below land surface was 730 meters above sea level and at a depth of 572 meters below land surface. Deepermore » zones had hydraulic heads of 781 meters above sea level or higher, indicating an upward component of ground-water flow at the site. The most transmissive zone, with an apparent transmissivity of about 150 meters squared per day, is in the Prow Pass Member of the Crater Flat Tuff in the depth range from 572 to 688 meters below land surface. The remainder of the penetrated rocks in the saturated zone, 688 to 1829 meters, has an apparent transmissivity of about 1 meter squared per day. The most transmissive part of the lower depth range is in the Bullfrog Member of the Crater Flat Tuff in the depth interval from 736 to 741 meters. The apparent hydraulic conductivity of the rocks in this lower depth interval from 688 to 1829 meters commonly ranges between 10{sup -4} and 10{sup -7} meter per day. Water chemistry is typical of tuffaceous rocks of southern Nevada. The water is a sodium bicarbonate type and has an apparent age of 12,000 to 13,000 years before present, as determined by carbon-14 dating.« less
Mutation and Evolutionary Rates in Adélie Penguins from the Antarctic
Millar, Craig D.; Dodd, Andrew; Anderson, Jennifer; Gibb, Gillian C.; Ritchie, Peter A.; Baroni, Carlo; Woodhams, Michael D.; Hendy, Michael D.; Lambert, David M.
2008-01-01
Precise estimations of molecular rates are fundamental to our understanding of the processes of evolution. In principle, mutation and evolutionary rates for neutral regions of the same species are expected to be equal. However, a number of recent studies have shown that mutation rates estimated from pedigree material are much faster than evolutionary rates measured over longer time periods. To resolve this apparent contradiction, we have examined the hypervariable region (HVR I) of the mitochondrial genome using families of Adélie penguins (Pygoscelis adeliae) from the Antarctic. We sequenced 344 bps of the HVR I from penguins comprising 508 families with 915 chicks, together with both their parents. All of the 62 germline heteroplasmies that we detected in mothers were also detected in their offspring, consistent with maternal inheritance. These data give an estimated mutation rate (μ) of 0.55 mutations/site/Myrs (HPD 95% confidence interval of 0.29–0.88 mutations/site/Myrs) after accounting for the persistence of these heteroplasmies and the sensitivity of current detection methods. In comparison, the rate of evolution (k) of the same HVR I region, determined using DNA sequences from 162 known age sub-fossil bones spanning a 37,000-year period, was 0.86 substitutions/site/Myrs (HPD 95% confidence interval of 0.53 and 1.17). Importantly, the latter rate is not statistically different from our estimate of the mutation rate. These results are in contrast to the view that molecular rates are time dependent. PMID:18833304
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
On a recent cruise of the Russian research ship Professor Logachev, scientists from the U.S. Naval Research Laboratory (NRL), the Russian research institute VNI-IOkeangeologia (St. Petersburg), and other institutions found what they believe to be thin white sheets of methane hydrates. The white layer (possibly also mats of chemosynthetic bacteria) covers the center of a deep-sea mud volcano in the Norwegian-Greenland Sea. The Haakon Mosby mud volcano—a “cow-pie-shaped” cold seep that is 1 km in diameter—lies at 1250-m depth and south of Spitsbergen, Norway.
The post-stroke rehabilitation outcomes project.
Jette, Alan M
2005-12-01
Jette AM. The Post-Stroke Rehabilitation Outcomes Project. The Post-Stroke Rehabilitation Outcomes Project (PSROP) provides an important example of the value of observational study designs in rehabilitation. The strength of the PSROP lies in the extensive, in-depth data collected on the specific rehabilitation interventions provided to patients and their relationship to short-term outcomes as well as the wide generalizability of the study's findings. Although providing valuable insights, one has to be extremely cautious in drawing direct practice recommendations from the PSROP given several internal validity threats inherent in the PSROP design.
1985-01-01
Mapping Council which will be held in October 1985. IJS. COMPTONAPTAIN RAN HYDROGRAPHER RAN Accesion For NTIS -CRAMI LDrIC TAB U,.annournced 0 J ...itifcation By .-........ . Di.. t ibution Availability Codes Dit Avail ar-.I or A-1 QUALITYSSPECTED - 2 L. 2. GENERAL The RAN Hydrographic Service, the...FLINDERS used Side Scan Sonar and her diving team to find, and determine the least depths over, the wrecks SAFARI and ERICA J lying on the sea-bed in the
Tectono-magmatic relationships along an obliquely convergent plate boundary: Sumatra, Indonesia.
NASA Astrophysics Data System (ADS)
Acocella, Valerio; Bellier, Olivier
2017-04-01
The tectono-magmatic relationships along divergent and orthogonally convergent plate boundaries have been defined in several aspects. However, much less is known along obliquely convergent plate boundaries, where the strain partitioning promotes strike-slip structures along the volcanic arc. Here it is unclear if and, in case, how strike-slip structures may control arc volcanism, in terms of processes, distribution and size. To better define these features, we review the available tectonic, structural and volcanological data on Sumatra (Indonesia), which provides the ideal case study. The Sumatra volcanic arc consists of 48 major active volcanoes. Of these, 46% lie within 10 km from the dextral Great Sumatra Fault (GSF), which carries most of the strike-slip displacement on the overriding plate, whereas 27% of the volcanoes lie at >20 km from the GSF. Considering the volcanoes lying within 10 km from GSF, 76% show some possible structural relation to the GSF, whereas only 28% (7 volcanoes) show a clear structural relation to the GSF, being located in pull-apart or releasing bends between dextral segments. However, these localized areas of extension do not seem to promote the development of magmatic segments, similarly to orthogonally convergent plate boundaries. Many volcanoes lie to the west of the GSF, largely following the shallower portions of the slab, which reaches its average partial melting depth (130±30 km) more westward. There is a preferred volcano alignment and elongation along the N30-N40°E trend, almost parallel to the convergence vector; this trend coincides with the direction of the extensional structures found along the arc. Other volcanoes are elongated parallel to the GSF, possibly resulting from the co- and post-seismic across-arc extension, as observed during the 2004 mega-earthquake. Finally, there is no relationship between the slip rate along GSF and the erupted volumes along the arc: the highest productivity of Toba caldera may be explained by a slab tear. Overall, these data highlight a limited control of the geometry and kinematics of the GSF on the arc volcanism of Sumatra. This control is mostly confined to the: a) suitable depth for partial melting of the slab; b) structural configuration of the GSF, promoting localized extension. Otherwise, magma may rise far from the GSF, where the direction of the feeder dikes may be controlled by the inter-seismic extension (perpendicular to the convergence vector) or by the arc normal co- and post-seismic extension.
Dingman, R.J.; Angino, E.E.
1969-01-01
Chemical analyses of approximately 1,881 samples of water from selected Kansas brines define the variations of water chemistry with depth and aquifer age. The most concentrated brines are found in the Permian rocks which occupy the intermediate section of the geologic column of this area. Salinity decreases below the Permian until the Ordovician (Arbuckle) horizon is reached and then increases until the Precambrian basement rocks are reached. Chemically, the petroleum brines studied in this small area fit the generally accepted pattern of an increase in calcium, sodium and chloride content with increasing salinity. They do not fit the often-predicted trend of increases in the calcium to chloride ratio, calcium content and salinity with depth and geologic age. The calcium to chloride ratio tends to be asymptotic to about 0.2 with increasing chloride content. Sulfate tends to decrease with increasing calcium content. Bicarbonate content is relatively constant with depth. If many of the hypotheses concerning the chemistry of petroleum brines are valid, then the brines studied are anomolous. An alternative lies in accepting the thesis that exceptions to these hypotheses are rapidly becoming the rule and that indeed we still do not have a valid and general hypothesis to explain the origin and chemistry of petroleum brines. ?? 1969.
NASA Astrophysics Data System (ADS)
Aboud, Essam; Alotaibi, Abdulrahman M.; Saud, Ramzi
2016-10-01
The Arabian shield is a Precambrian complex of igneous and metamorphic rocks located approximately one-third of the way across the western Arabian Peninsula, with uncommon exposures along the Red Sea coast. We used aeromagnetic data acquired by others over the past several decades to estimate the depth to the Curie temperature isotherm throughout this region. Our goal was to further understand the lithospheric structure, thermal activity, and seismicity to assist in geothermal exploration. We also compared the Curie temperature isotherm with the crustal thickness to investigate the possibility that mantle rocks are magnetic in some parts of the Arabian shield. Depths to the Curie isotherm were estimated by dividing the regional aeromagnetic grid into 26 overlapping windows. Each window was then used to estimate the shape of the power spectrum. The windows had dimensions of 250 × 250 km to allow investigation of depths as deep as 50 km. The results show the presence of a Curie isotherm at a depth of 10-20 km near the Red Sea, increasing to 35-45 km in the interior of the Arabian shield. The Curie isotherm generally lies above the Moho in this region but deepens into the mantle in some locations, notably beneath the Asir Terrane.
A global reference model of Curie-point depths based on EMAG2
NASA Astrophysics Data System (ADS)
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.
A global reference model of Curie-point depths based on EMAG2.
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-21
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.
Depth-Duration Frequency of Precipitation for Oklahoma
Tortorelli, Robert L.; Rea, Alan; Asquith, William H.
1999-01-01
A regional frequency analysis was conducted to estimate the depth-duration frequency of precipitation for 12 durations in Oklahoma (15, 30, and 60 minutes; 1, 2, 3, 6, 12, and 24 hours; and 1, 3, and 7 days). Seven selected frequencies, expressed as recurrence intervals, were investigated (2, 5, 10, 25, 50, 100, and 500 years). L-moment statistics were used to summarize depth-duration data and to determine the appropriate statistical distributions. Three different rain-gage networks provided the data (15minute, 1-hour, and 1-day). The 60-minute, and 1-hour; and the 24-hour, and 1-day durations were analyzed separately. Data were used from rain-gage stations with at least 10-years of record and within Oklahoma or about 50 kilometers into bordering states. Precipitation annual maxima (depths) were determined from the data for 110 15-minute, 141 hourly, and 413 daily stations. The L-moment statistics for depths for all durations were calculated for each station using unbiased L-mo-ment estimators for the mean, L-scale, L-coefficient of variation, L-skew, and L-kur-tosis. The relation between L-skew and L-kurtosis (L-moment ratio diagram) and goodness-of-fit measures were used to select the frequency distributions. The three-parameter generalized logistic distribution was selected to model the frequencies of 15-, 30-, and 60-minute annual maxima; and the three-parameter generalized extreme-value distribution was selected to model the frequencies of 1-hour to 7-day annual maxima. The mean for each station and duration was corrected for the bias associated with fixed interval recording of precipitation amounts. The L-scale and spatially averaged L-skew statistics were used to compute the location, scale, and shape parameters of the selected distribution for each station and duration. The three parameters were used to calculate the depth-duration-frequency relations for each station. The precipitation depths for selected frequencies were contoured from weighted depth surfaces to produce maps from which the precipitation depth-duration-frequency curve for selected storm durations can be determined for any site in Oklahoma.
NASA Astrophysics Data System (ADS)
Ono, Atsushi; Moteki, Masato
2017-06-01
The salp Salpa thompsoni has the potential to alter the Southern Ocean ecosystem through competition with krill Euphausia superba. Information on the reproductive status of S. thompsoni in the high Southern Ocean is thus essential to understanding salp population growth and predicting changes in the Southern Ocean ecosystem. We carried out stratified and quantitative sampling from the surface to a depth of 2000 m during the austral summer of 2008 to determine the spatial distribution and population structure of S. thompsoni in the Southern Ocean off Adélie Land. We found two salp species, S. thompsoni and Ihlea racovitzai, with the former being dominant. S. thompsoni was distributed north of the continental slope area, while I. racovitzai was observed in the neritic zone. Mature aggregates and solitary specimens of S. thompsoni were found south of the Southern Boundary of the Antarctic Circumpolar Current, suggesting that S. thompsoni is able to complete its life cycle in high Antarctic waters during the austral summer. However, S. thompsoni was sparsely distributed in the continental slope area, and absent south of the Antarctic Slope Front, suggesting that it is less competitive with krill for food in the slope area off Adélie Land, where krill is densely distributed during the austral summer.
Culbertson, William Craven; Hatch, Joseph R.; Affolter, Ronald H.
1978-01-01
In an area of 7,200 acres (29 sq km) In the Hanging Woman Creek study area, the Anderson coal bed contains potentially surface minable resources of 378 million short tons (343 million metric tons) of subbituminous C coal that ranges in thickness from 26 to 33 feet (7.9-10.1 m) at depths of less than 200 feet (60 m). Additional potentially surface minable resources of 55 million short tons (50 million metric tons) are contained in the 9-12 foot (2.7-3.7 m) thick Dietz coal bed which lies 50-100 feet (15-30 m) below the Anderson. Analyses of coal from 5 core holes indicates that the Anderson bed contains 0.4 percent sulfur, 5 percent ash, and has a heating value of 8,540 Btu/lb (4,750 Kcal/kg). The trace element content of the coal is generally similar to other coals in the Powder River Basin. The two coal beds are in the Fort Union Formation of Paleocene age which consists of sandstone, siltstone, shale, coal beds, and locally impure limestone. A northeast-trending normal fault through the middle of the area, downthrown on the southeast side, has displaced the generally flat lying strata as much as 300 feet (91 m). Most of the minable coal lies northwest of this fault.
Microwave radiometer for subsurface temperature measurement
NASA Technical Reports Server (NTRS)
Porter, R. A.; Bechis, K. P.
1976-01-01
A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.
Predict human body indentation lying on a spring mattress using a neural network approach.
Zhong, Shilu; Shen, Liming; Zhou, Lijuan; Guan, Zhongwei
2014-08-01
This article presents a method to predict and assess the interaction between a human body and a spring mattress. A three-layer artificial neural network model was developed to simulate and predict an indentation curve of human spine, characterized with the depth of lumbar lordosis and four inclination angles: cervicothoracic, thoracolumbar, lumbosacral and the back-hip (β). By comparing the spinal indentation curves described by the optimal evaluation parameters (depth of lumbar lordosis, cervicothoracic, thoracolumbar and lumbosacral), a better design of five-zone spring mattresses was obtained for individuals to have an effective support to the main part of the body. Using such approach, an operating process was further introduced, in which appropriate stiffness proportions were proposed to design mattress for the normal body types of Chinese young women. Finally, case studies were undertaken, which show that the method developed is feasible and practical. © IMechE 2014.
Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu
2018-03-02
Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.
Jepsen, Steven M.; Koch, Joshua C.; Rose, Joshua R.; Voss, Clifford I.; Walvoord, Michelle Ann
2012-01-01
A series of ground-based observations were made between September 2010 and August 2011 near Twelvemile Lake, 19 kilometers southwest of Fort Yukon, Alaska, for use in ongoing hydrological analyses of watersheds in this region of discontinuous permafrost. Measurements include depth to ground ice, depth to water table, soil texture, soil moisture, soil temperature, and water pressure above the permafrost table. In the drained basin of subsiding Twelvemile Lake, we generally find an absence of newly formed permafrost and an undetectable slope of the water table; however, a sloping water table was observed in the low-lying channels extending into and away from the lake watershed. Datasets for these observations are summarized in this report and can be accessed by clicking on the links in each section or from the Downloads folder of the report Web page.
Bannister, S.; Bryan, C.J.; Bibby, H.M.
2004-01-01
The Taupo Volcanic Zone (TVZ), New Zealand is a region characterized by very high magma eruption rates and extremely high heat flow, which is manifest in high-temperature geothermal waters. The shear wave velocity structure across the region is inferred using non-linear inversion of receiver functions, which were derived from teleseismic earthquake data. Results from the non-linear inversion, and from forward synthetic modelling, indicate low S velocities at ???6- 16 km depth near the Rotorua and Reporoa calderas. We infer these low-velocity layers to represent the presence of high-level bodies of partial melt associated with the volcanism. Receiver functions at other stations are complicated by reverberations associated with near-surface sedimentary layers. The receiver function data also indicate that the Moho lies between 25 and 30 km, deeper than the 15 ?? 2 km depth previously inferred for the crust-mantle boundary beneath the TVZ. ?? 2004 RAS.
The Partition Between Terminal Speed and Mass Loss: Thin, Thick, and Rotating Line-Driven Winds
NASA Astrophysics Data System (ADS)
Gayley, K. G.; Onifer, A. J.
2003-01-01
Steady-state supersonic line-driven winds are important contributors to wind-blown bubbles in star forming regions. The key input to the bubble in the energy-conserving phase is the wind kinetic-energy flux, which involves both the mass-loss rate and the terminal speed. However, these quantities are themselves self-consistent parameters of the line-driving process, so relate to each other and to the resulting wind optical depth. This complex interrelation between optical depth, mass-loss, and wind speed lies at the heart of line-driven wind theory. Drawing on the successes and insights of ``CAK'' theory, I will convey a simplified view of how to unite these processes using the concept of effective opacity, with attention to the ramifications for nonspherical nebular and wind-blown structures. Recent extensions to nongray optically thick environments such as Wolf-Rayet winds and supernovae are also discussed.
Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu
2018-01-01
Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703
Geophysical investigations in the Bi'r Idimah-Wadi Wassat area, Saudi Arabia, Part One
Allen, R.V.; Davis, W.E.
1969-01-01
The area is near latitude 18°20'N., longitude 44°20'E, about 20 Km south of Bi'r Idirah (Fig. 1). Most of the area lies in a wadi bounded by low hills that reach elevations near 1250 meters and rise as ranch as 50 meters above the wadi floor. The gossan is exposed in the wadi and near the crests of a few hills in the southern part of the surveyed area. It is underlain by andesite porphyry and greenstone intruded by granitic rocks, and appears to have been displaced laterally by faulting in the central part of the area. An inclined test hole north of the offset cut massive pyrite between depths 98 and 141 feet, 250 and 260 feet, and between depths 299 and 351 feet. This test and the character of the gossan suggest that the mineralized zone continues southward for a considerable distance.
NASA Astrophysics Data System (ADS)
Fergougui, Myriam Marie El; Benyamina, Hind; Boutoutaou, Djamel
2018-05-01
In order to remedy the limit of salt intake to the soil surface, it is necessary to study the causes of the soil salinity and find the origin of these salts. The arid areas in the region of Ouargla lie on excessively mineralized groundwater whose level is near the soil surface (0 - 1.5 m). The topography and absence of a reliable drainage system led to the rise of the groundwater beside the arid climatic conditions contributed to the salinization and hydromorphy of the soils. The progress and stabilization of cultures yields in these areas can only occur if the groundwater is maintained (drained) to a depth of 1.6 m. The results of works done to the determination of soil salinity depend mainly on the groundwater's salinity, its depth and the climate.
Late Quaternary carbonate accumulation along eastern South Atlantic Ocean
NASA Astrophysics Data System (ADS)
Crabill, K.; Slowey, N. C.; Foreman, A. D.; Charles, C.
2016-12-01
Water masses originating from both the North Atlantic Ocean and the Southern Ocean intersect the Walvis Ridge and Namibian margin of southwest Africa. Changes in the distribution and properties of these water masses through time are reflected by variations in the nature of the sediments accumulating along this margin. A suite of piston and gravity cores that possess sediment records corresponding to the most recent glacial-interglacial cycles were collected from the water depth range of 550 to 3700 meters. Sediment dry bulk density, XRF analyses and the concentration of CaCO3 were precisely determined at regular depth intervals in these cores. Foraminiferal δ18O along with XRF Fe/Ca data provide an age-depth model for key cores. The age-depth model and dry bulk density will be used with the calcium carbonate contents to calculate the accumulation rates of CaCO3 during each MIS 1-5e. The spatial and temporal variability in both the CaCO3 content and the CaCO3 mass accumulation rates along the Namibian continental slope will be described. Based on comparisons of these two parameters, inferences will be made about how variations of CaCO3 production, dilution of by non-CaCO3 sediment components, and dissolution of CaCO3 due to changes in ocean circulation/climate have occurred during intervals of the last glacial-interglacial cycle.
Effects of integration time on in-water radiometric profiles.
D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito
2018-03-05
This work investigates the effects of integration time on in-water downward irradiance E d , upward irradiance E u and upwelling radiance L u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by Colored Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (Fst); 2) the end of each integration interval (Lst); 3) the averages of Fst and Lst values (Avg); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (Wgt). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the Wgt depth definition and the fair applicability of the Avg one. Instead, both the Fst and Lst depths should not be adopted since they may introduce pronounced biases in E u and L u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekharappa, S.C.; King, S.E.; Lee, Y.H.
1994-05-15
A gene for early-onset breast and ovarian cancer (BRCA1) has been localized to a small region of chromosome 17q21. A combination of genetic linkage studies, radiation-reduced hybrid analysis, and physical mapping by FISH has identified several genes/markers that lie in this interval. Among these are the gene encoding pancreatic polypeptide (PPY) and a polymorphic marker at locus D17S78. Efforts to construct a physical map of this region by isolating a large number of yeast artificial chromosome (YAC) and cosmid clones demonstrate that PPY and D17S78 are present within the same cosmid clone, and therefore no farther than 45 kb apart.more » This observation takes on particular significance since it excludes a recently described BRCA1 candidate gene from the interval defined by meiotic mapping. Although PPY and D17S78 were found to be no farther than 45 kb apart, identification of a smaller fragment that hybridizes to both probes would indicate that these two are much closer. The probe p131 and the gene PPY were previously mapped to 17q21-q23 and to the proximal long arm of chromosome 17, respectively. The demonstration of the close proximity of these markers should allow them to be treated as a single locus in terms of long-range genomic mapping of this region, and the genomic clones isolated should serve as useful resources for the identification of the BRCA1 gene. Analysis of a large number of a familial and spordic breast and ovarian cancers has identified frequent loss of heterozygosity near the BRCA1 locus. A recent report has suggested the responsible interval lies just telomeric to PPY, and a suggested candidate gene (MCD) for BRCA1 was found to be somatically rearranged in two of several hundred sporadic breast tumors.« less
Rock Magnetic Study in the Methanogenesis Zone, Site U1437, IODP Exp 350, Izu Rear Arc
NASA Astrophysics Data System (ADS)
Kars, M. A. C.; Musgrave, R. J.; Kodama, K.; Jonas, A. S.
2015-12-01
In 2014, IODP Expedition 350 drilled a 1806.5 m deep hole at Site U1437 in the Izu Bonin rear arc. The Site presents an unusual deep methanogenesis zone because of a release of sulfate below the sulfate reduction zone (27-83 mbsf) which may buffer methanogenesis by anaerobic methanogens. Methane abundance gradually increases with depth, with significant abundance at ~750-1459 mbsf with a maximum value at 920 mbsf. The rock magnetic study carried out in Hole U1437D from ~775 to ~1000 mbsf shows a drastic change of the magnetic properties at ~850 mbsf coincidently with a stronger release of methane from < 60 ppm at 841 mbsf to ~300 ppm at 854 mbsf. That also corresponds to a depth interval where no core was recovered (~846-854 mbsf). For the sake of clarity, we call hereafter zone A the depth interval above this non-recovered interval (775-846 mbsf) and zone B the interval below (854-1000 mbsf). Both belong to the same lithostratigraphic unit composed of tuffaceous mudstones intercalated with volcanoclastics. In the zone A, NRM, magnetic susceptibility, ARM, SIRM, HIRM display high values. In the zone B, these parameters show much lower values of one order of magnitude less, except for the interval 936-950 mbsf that corresponds to a local maximum (but still lower values than the zone A). Besides, the rock magnetic parameters for grain size and coercivity, such as ARM/χ, S-ratio and Bcr do not show any variations throughout the entire studied interval, although S-ratio displays slightly lower values from ~850 to ~930 mbsf. Grains are low coercivity pseudo-single domain sized. According to the present data, two preliminary hypotheses can be proposed to explain the observations. 1) The non-recovered interval between the zones A and B can be caused by the presence of a sedimentary hiatus and/or a fault, which may be consistent with the observed change in sedimentation rate. 2) No hiatus in the sedimentation. The changes in the magnetic properties can be explained by a decreasing content of the ferrimagnetic minerals. The observation of iron sulfides in the zone B (mainly pyrite) suggests pyritization with the transformation of the detrital ferrimagnetic minerals into pyrite, driven by a deep AOM (anaerobic oxidation of methane) reaction. We will discuss the details of the geochemical interpretation together with the rock magnetic results.
NASA Astrophysics Data System (ADS)
Altuna, Álvaro; Ríos, Pilar
2014-09-01
Twenty-eight species of scleractinian corals were collected between 55 and 2,291 m depth during INDEMARES 2010-2012 expeditions to the Avilés Canyon System and the near continental shelf (Bay of Biscay). Most interesting species are described and all depicted. All species were already known from the northeast Atlantic, although some are seldom reported. Deltocyathus eccentricus and Flabellum chunii are northernmost records in the eastern Atlantic, and species first collected from the Bay of Biscay. From a literature review and new records given herein, 31 species of Scleractinia are known from the Avilés Canyon System. Live specimens of six species were recorded outside their previously known bathymetric ranges in the Bay of Biscay and nearby areas, either at shallower depths ( Caryophyllia sarsiae, Monomyces pygmaea, Stephanocyathus nobilis), or deeper depths ( C. atlantica, C. sarsiae, Enallopsammia rostrata, Solenosmilia variabilis). Desmophyllum cristagalli has the widest bathymetric range (551-2,291 m), and Lophelia pertusa is the most widely distributed species (24 stations). Tabulating the number of live species occurring in each 100-m depth interval of the canyon system, highest species richness occurs in the 700-800-, 800-900-, and 1,400-1,500-m depth intervals (11 species). The habitat-forming species L. pertusa and Madrepora oculata were abundant in some stations building well-developed coral banks. Live colonies of the big-sized species S. variabilis and E. rostrata co-occurred at the deepest station sampled that yielded scleractinia (2,291 m).
Ungar, Eugene D.; Schoenbaum, Iris; Henkin, Zalmen; Dolev, Amit; Yehuda, Yehuda; Brosh, Arieh
2011-01-01
The advent of the Global Positioning System (GPS) has transformed our ability to track livestock on rangelands. However, GPS data use would be greatly enhanced if we could also infer the activity timeline of an animal. We tested how well animal activity could be inferred from data provided by Lotek GPS collars, alone or in conjunction with IceRobotics IceTag pedometers. The collars provide motion and head position data, as well as location. The pedometers count steps, measure activity levels, and differentiate between standing and lying positions. We gathered synchronized data at 5-min resolution, from GPS collars, pedometers, and human observers, for free-grazing cattle (n = 9) at the Hatal Research Station in northern Israel. Equations for inferring activity during 5-min intervals (n = 1,475), classified as Graze, Rest (or Lie and Stand separately), and Travel were derived by discriminant and partition (classification tree) analysis of data from each device separately and from both together. When activity was classified as Graze, Rest and Travel, the lowest overall misclassification rate (10%) was obtained when data from both devices together were subjected to partition analysis; separate misclassification rates were 8, 12, and 3% for Graze, Rest and Travel, respectively. When Rest was subdivided into Lie and Stand, the lowest overall misclassification rate (10%) was again obtained when data from both devices together were subjected to partition analysis; misclassification rates were 6, 1, 26, and 17% for Graze, Lie, Stand, and Travel, respectively. The primary problem was confusion between Rest (or Stand) and Graze. Overall, the combination of Lotek GPS collars with IceRobotics IceTag pedometers was found superior to either device alone in inferring animal activity. PMID:22346582
Human sinus arrhythmia as an index of vagal cardiac outflow
NASA Technical Reports Server (NTRS)
Eckberg, D. L.
1983-01-01
The human central vagal mechanisms were investigated by measuring the intervals between heartbeats during controlled breathing (at breathing intervals of 2.5-10 s and nominal tidal volumes of 1000 and 1500 ml) in six young men and women. It was found that as the breathing interval increased, the longest heart periods became longer, the shortest heart periods became shorter, and the peak-valley P-P intervals increased asymptotically. Peak-valley intervals also increased in proportion to tidal volume, although this influence was small. The phase angles between heart period changes and respiration were found to vary as linear functions of breathing interval. Heart period shortening began in inspiration at short breathing intervals and in expiration at long breathing intervals, while heart period lengthening began in early expiration at all breathing intervals studied. It is concluded that a close relationship exists between variations of respiratory depth and interval and the quantity, periodicity, and timing of vagal cardiac outflow in conscious humans. The results indicate that at usual breathing rates, phasic respiration-related changes of vagal motoneuron activity begin in expiration, progress slowly, and are incompletely expressed at fast breathing ratges.
Multiport well design for sampling of ground water at closely spaced vertical intervals
Delin, G.N.; Landon, M.K.
1996-01-01
Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.
Confidence interval or p-value?: part 4 of a series on evaluation of scientific publications.
du Prel, Jean-Baptist; Hommel, Gerhard; Röhrig, Bernd; Blettner, Maria
2009-05-01
An understanding of p-values and confidence intervals is necessary for the evaluation of scientific articles. This article will inform the reader of the meaning and interpretation of these two statistical concepts. The uses of these two statistical concepts and the differences between them are discussed on the basis of a selective literature search concerning the methods employed in scientific articles. P-values in scientific studies are used to determine whether a null hypothesis formulated before the performance of the study is to be accepted or rejected. In exploratory studies, p-values enable the recognition of any statistically noteworthy findings. Confidence intervals provide information about a range in which the true value lies with a certain degree of probability, as well as about the direction and strength of the demonstrated effect. This enables conclusions to be drawn about the statistical plausibility and clinical relevance of the study findings. It is often useful for both statistical measures to be reported in scientific articles, because they provide complementary types of information.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
NASA Astrophysics Data System (ADS)
Greisukh, G. I.; Danilov, V. A.; Stepanov, S. A.; Antonov, A. I.; Usievich, B. A.
2018-01-01
Results of studying the possibility to decrease the total depth of reliefs of a two-layer microstructure having two internal saw-tooth microreliefs reducing the dependence of the diffraction efficiency of the microstructure on the radiation wavelength and angle of radiation incidence on the microstructure are presented. These results allow one to minimize the complexity of obtaining optimum microrelief depths depending on requirements applicable to the diffraction optical element in the framework of the electromagnetic-diffraction theory. Optimum depths provide in the specified spectral range and interval of angles of radiation incidence the maximum possible (for the chosen width of the narrowest zone of the saw-tooth microrelief) value of the diffraction efficiency at the point of its minimum.
Ponce, David A.; Watt, Janet T.; Bouligand, C.
2011-01-01
We utilize gravity and magnetic methods to investigate the regional geophysical setting of the Wells earthquake. In particular, we delineate major crustal structures that may have played a role in the location of the earthquake and discuss the geometry of a nearby sedimentary basin that may have contributed to observed ground shaking. The February 21, 2008 Mw 6.0 Wells earthquake, centered about 10 km northeast of Wells, Nevada, caused considerable damage to local buildings, especially in the historic old town area. The earthquake occurred on a previously unmapped normal fault and preliminary relocated events indicate a fault plane dipping about 55 degrees to the southeast. The epicenter lies near the intersection of major Basin and Range normal faults along the Ruby Mountains and Snake Mountains, and strike-slip faults in the southern Snake Mountains. Regionally, the Wells earthquake epicenter is aligned with a crustal-scale boundary along the edge of a basement gravity high that correlates to the Ruby Mountains fault zone. The Wells earthquake also occurred near a geophysically defined strike-slip fault that offsets buried plutonic rocks by about 30 km. In addition, a new depth-to-basement map, derived from the inversion of gravity data, indicates that the Wells earthquake and most of its associated aftershock sequence lie below a small oval- to rhomboid-shaped basin, that reaches a depth of about 2 km. Although the basin is of limited areal extent, it could have contributed to increased ground shaking in the vicinity of the city of Wells, Nevada, due to basin amplification of seismic waves.
Time budgets of lactating dairy cattle in commercial freestall herds.
Gomez, A; Cook, N B
2010-12-01
The aim of this study was to examine the time budgets of 205 lactating dairy cows housed in 16 freestall barns in Wisconsin and to determine the relationships between components of the time budget and herd- and cow-level fixed effects using mixed models. Using continuous video surveillance, time lying in the stall, time standing in the stall, time standing in the alleys (including drinking), time feeding, and time milking (time out of the pen for milking and transit) during a 24-h period were measured for each cow. In addition, the number of lying bouts and the mean duration of each lying bout per 24-h period were determined. Time milking varied between cows from 0.5 to 6.0 h/d, with a mean ± standard deviation of 2.7 ± 1.1h/d. Time milking was influenced significantly by pen stocking density, and time milking negatively affected time feeding, time lying, and time in the alley, but not time standing in the stall. Locomotion score, either directly or through an interaction with stall base type (a rubber crumb-filled mattress, MAT, or sand bedding, SAND), influenced pen activity. Lame cows spent less time feeding, less time in the alleys, and more time standing in the stalls in MAT herds, but not in SAND herds. The effect of lameness on lying time is complex and dependent on the time available for rest and differences in resting behavior observed between cows in MAT and SAND herds. In MAT herds, rest was characterized by a larger number of lying bouts of shorter duration than in SAND herds (mean = 14.4; confidence interval, CI: 12.4 to 16.5 vs. mean = 10.2; CI: 8.2 to 12.2 bouts per d, and mean = 1.0; CI: 0.9 to 1.1 vs. mean = 1.3, CI: 1.2 to 1.4h bout duration for MAT and SAND herds, respectively). Lameness was associated with an increase in time standing in the stall and a reduction in the mean (CI) number of lying bouts per day from 13.2 (CI: 12.3 to 14.1) bouts/d for nonlame cows to 10.9 (CI: 9.30 to 12.8) bouts/d for moderately lame cows, and an overall reduction in lying time in MAT herds compared with SAND herds (11.5; CI: 10.0 to 13.0 vs. 12.7; CI: 11.0 to 14.3h/d, respectively). These results show that time out of the pen milking, stall base type, and lameness significantly affect time budgets of cows housed in freestall facilities. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Modeling the formation of methane hydrate-bearing intervals in fine-grained sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinverno, Alberto; Cook, Ann; Daigle, Hugh
Sediment grain size exerts a fundamental control on how methane hydrates are distributed within the pore space. Fine-grained muds are the predominant sediments in continental margins, and hydrates in these sediments have often been observed in semi-vertical veins and fractures. In several instances, these hydrate veins/fractures are found in discrete depth intervals a few tens meters thick within the gas hydrate stability zone (GHSZ) surrounded by hydrate-free sediments above and below. As they are not obviously connected with free gas occurring beneath the base of the GHSZ, these isolated hydrate-bearing intervals have been interpreted as formed by microbial methane generatedmore » in situ. To investigate further the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, solute diffusion, and microbial methane generation. The microbial methane generation term depends on the amount of metabolizable organic carbon deposited at the seafloor, which is degraded at a prescribed rate resulting in methane formation beneath the sulfate reduction zone. In the model, methane hydrate precipitates once the dissolved methane concentration is greater than solubility, or hydrate dissolves if concentration goes below solubility. If the deposition of organic carbon at the seafloor is kept constant in time, we found that the predicted amounts of hydrate formed in discrete intervals within the GHSZ are much less than those estimated from observations. We then investigated the effect of temporal variations in the deposition of organic carbon. If greater amounts of organic carbon are deposited during some time interval, methane generation is enhanced during burial in the corresponding sediment interval. With variations in organic carbon deposition that are consistent with observations in continental margin sediments, we were able to reproduce the methane hydrate contents estimated in discrete depth intervals. Our results support the suggestion that in situ microbial methane generation is the source for hydrates within fine-grained sediments.« less
Quantifying assemblage turnover and species contributions at ecologic boundaries.
Hayek, Lee-Ann C; Wilson, Brent
2013-01-01
Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA.
Quantifying Assemblage Turnover and Species Contributions at Ecologic Boundaries
Hayek, Lee-Ann C.; Wilson, Brent
2013-01-01
Not all boundaries, whether stratigraphical or geographical, are marked by species-level changes in community composition. For example, paleodata for some sites do not show readily discernible glacial-interglacial contrasts. Rather, the proportional abundances of species can vary subtly between glacials and interglacials. This paper presents a simple quantitative measure of assemblage turnover (assemblage turnover index, ATI) that uses changes in species' proportional abundances to identify intervals of community change. A second, functionally-related index (conditioned-on-boundary index, CoBI) identifies species contributions to the total assemblage turnover. With these measures we examine benthonic foraminiferal assemblages to assess glacial/interglacial contrasts at abyssal depths. Our results indicate that these measures, ATI and CoBI, have potential as sequence stratigraphic tools in abyssal depth deposits. Many peaks in the set of values of ATI coincide with terminations at the end of glaciations and delineate peak-bounded ATI intervals (PATIs) separated by boundaries that approximate to glacial terminations and to transgressions at neritic depths. These measures, however, can be used to evaluate the assemblage turnover and composition at any defined ecological or paleoecological boundary. The section used is from Ocean Drilling Program (OPD) Hole 994C, drilled on the Blake Ridge, offshore SE USA. PMID:24130679
Wesson, R.L.
1988-01-01
Preliminary measurements of the stress orientation at a depth of 2 km interpreted to indicate that the regional orientation of the maximum compression is normal to the fault, and taken as evidence for a very weak fault. The orientation expected from plate tectonic arguments is about 66?? NE from the strike of the fault. Geodetic data indicate that the orientation of maximum compressive strain rate is about 43?? NE from the strike of the fault, and show nearly pure right-lateral shear acting parallel to the fault. These apparent conflicts in the inferred orientation of the axis of maximum compression may be explained in part by a model in which the fault zone is locked over a depth interval in the range of 2-5 to 15 km, but is very weak above and below that interval. This solution does require, however, a few mm/yr of creep at the surface on the San Andreas or nearby sub-parallel faults (such as the San Jacinto), which has not yet been observed, or a shallow zone near the faults of distributed deformation. -from Author
Remote sensing of atmospheric optical depth using a smartphone sun photometer.
Cao, Tingting; Thompson, Jonathan E
2014-01-01
In recent years, smart phones have been explored for making a variety of mobile measurements. Smart phones feature many advanced sensors such as cameras, GPS capability, and accelerometers within a handheld device that is portable, inexpensive, and consistently located with an end user. In this work, a smartphone was used as a sun photometer for the remote sensing of atmospheric optical depth. The top-of-the-atmosphere (TOA) irradiance was estimated through the construction of Langley plots on days when the sky was cloudless and clear. Changes in optical depth were monitored on a different day when clouds intermittently blocked the sun. The device demonstrated a measurement precision of 1.2% relative standard deviation for replicate photograph measurements (38 trials, 134 datum). However, when the accuracy of the method was assessed through using optical filters of known transmittance, a more substantial uncertainty was apparent in the data. Roughly 95% of replicate smart phone measured transmittances are expected to lie within ±11.6% of the true transmittance value. This uncertainty in transmission corresponds to an optical depth of approx. ±0.12-0.13 suggesting the smartphone sun photometer would be useful only in polluted areas that experience significant optical depths. The device can be used as a tool in the classroom to present how aerosols and gases effect atmospheric transmission. If improvements in measurement precision can be achieved, future work may allow monitoring networks to be developed in which citizen scientists submit acquired data from a variety of locations.
Out-of-Plane Seismic Reflections Beneath the Pacific and Their Geophysical Implications
NASA Astrophysics Data System (ADS)
Schumacher, Lina; Thomas, Christine; Abreu, Rafael
2018-03-01
We detect seismic P wave arrivals that reach the surface from a different horizontal direction than the theoretical back azimuth of the earthquake. Slowness, back azimuth, and traveltime of observed out-of-plane signals are measured with array methods in relation to the main phases that travel along the great circle path. This directivity information is used to back trace the wave through a 1-D velocity model to its scattering or reflection location. The focus of this study lies on out-of-plane signals reflected once beneath the Pacific at a depth greater than 800 km. Data analysis is carried out for a broad frequency range (band-pass filter with corner periods of 0.5-5 s up to 5-50 s) to enable the detection of different structures and heterogeneities. In addition to mapping seismic heterogeneities in the lower mantle, we also qualitatively analyze waveforms and polarities of these signals to understand the nature of the structure. The observed 21 reflections with a reflection depth between 800 and 2,200 km illuminate heterogeneities in the mid- and lower mantle. Back-traced locations show shallowest depths around Hawaii and increase in depth to the north and southwest. Analysis of the polarities indicates low velocities for the imaged structure, and complexity of waveforms argues for a likely thermochemical origin. Additional 11 deep reflections/scatterers with depth larger than 2,200 km suggest internal heterogeneities or a presence of the D'' reflector.
NASA Astrophysics Data System (ADS)
Luz, Rosana M. N.; Julià, Jordi; do Nascimento, Aderson F.
2015-05-01
We investigate the crustal structure of the Borborema Province of NE Brazil by developing 44 S wave velocity-depth profiles from the joint inversion of receiver functions and fundamental mode, Rayleigh wave group velocities. The Borborema Province is located in the northeasternmost corner of the South American continent and represents a portion of a larger Neoproterozoic mobile belt that formed during the Brasiliano-Pan African orogeny. Extensional processes in the Mesozoic—eventually leading to the separation of Africa and South America—left a number of aborted rift basins in the continental interiors, and episodes of diffuse intraplate volcanism and uplift marked the evolution of the Province after continental breakup. Our velocity-depth profiles reveal the existence of two crustal types in the Province: (i) the thin crustal type, which consists of 30-32.5 km thick crust, with an upper layer of 3.4-3.6 km/s overlying a lower layer of 3.7-3.8 km/s and (ii) the thick crustal type, which consists of a 35-37.5 km thick crust, with velocities between 3.5 and 3.9 km/s down to ˜30 km depth and a gradational increase in velocity (VS≥4.0 km/s) down to upper mantle depths. The crustal types correlate well with topography, with the thick crustal type being mainly found in the high-standing southern Borborema Plateau and the thin crustal type being mostly found in the low-lying Sertaneja depression and coastal cuestas. Interestingly, the thin crustal type is also observed under the elevated topography of the northern Plateau. We argue that the thick crustal type is rheologically strong and not necessarily related to postbreakup mantle processes, as it is commonly believed. We propose that extensional processes in the Mesozoic stretched portions of the Brasiliano crust and formed the thin crustal type that is now observed in the regions of low-lying topography, leaving the rheologically strong thick crust of the southern Plateau at higher elevations. The crust making the northern Plateau would have thinned and subsided during Mesozoic extension as part of a greater Sertaneja depression, to then experience uplift in the Cenozoic and achieve its present elevation.
NASA Astrophysics Data System (ADS)
Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.
2015-09-01
Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a 2D detector system and method to reconstruct the dose in a homogeneous phantom and in real time has been demonstrated. The success of this work is an exciting development toward real time QA during radiotherapy treatment.
Howe, Andrew; O'Hare, Peter; Crawford, Paul; Delafont, Bruno; McAlister, Olibhear; Di Maio, Rebecca; Clutton, Eddie; Adgey, Jennifer; McEneaney, David
2015-11-01
Optimising the depth and rate of applied chest compressions following out of hospital cardiac arrest is crucial in maintaining end organ perfusion and improving survival. The impedance cardiogram (ICG) measured via defibrillator pads produces a characteristic waveform during chest compressions with the potential to provide feedback on cardiopulmonary resuscitation (CPR) and enhance performance. The objective of this pre-clinical study was to investigate the relationship between mechanical and physiological markers of CPR efficacy in a porcine model and examine the strength of correlation between the ICG amplitude, compression depth and end-tidal CO2 (ETCO2). Two experiments were performed using 24 swine (12 per experiment). For experiment 1, ventricular fibrillation (VF) was induced and mechanical CPR commenced at varying thrusts (0-60 kg) for 2 min intervals. Chest compression depth was recorded using a Philips QCPR device with additional recording of invasive physiological parameters: systolic blood pressure, ETCO2, cardiac output and carotid flow. For experiment 2, VF was induced and mechanical CPR commenced at varying depths (0-5 cm) for 2 min intervals. The ICG was recorded via defibrillator pads attached to the animal's sternum and connected to a Heartsine 500 P defibrillator. ICG amplitude, chest compression depth, systolic blood pressure and ETCO2 were recorded during each cycle. In both experiments the within-animal correlation between the measured parameters was assessed using a mixed effect model. In experiment 1 moderate within-animal correlations were observed between physiological parameters and compression depth (r=0.69-0.77) and thrust (r=0.66-0.82). A moderate correlation was observed between compression depth and thrust (r=0.75). In experiment 2 a strong within-animal correlation and moderate overall correlations were observed between ICG amplitude and compression depth (r=0.89, r=0.79) and ETCO2 (r=0.85, r=0.64). In this porcine model of induced cardiac arrest moderate within animal correlations were observed between mechanical and physiological markers of chest compression efficacy demonstrating the challenge in utilising a single mechanical metric to quantify chest compression efficacy. ICG amplitude demonstrated strong within animal correlations with compression depth and ETCO2 suggesting its potential utility to provide CPR feedback in the out of hospital setting to improve performance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomasovych, Adam; Gallmetzer, Ivo; Haselmair, Alexandra; Kaufman, Darrell S.; Zuschin, Martin
2016-04-01
Stratigraphic changes in temporal resolution of fossil assemblages and the degree of their stratigraphic mixing in the Holocene deposits are of high importance in paleoecology, conservation paleobiology and paleoclimatology. However, few studies quantified downcore changes in time averaging and in stratigraphic disorder on the basis of dating of multiple shells occurring in individual stratigraphic layers. Here, we investigate downcore changes in frequency distribution of postmortem ages of the infaunal bivalve Gouldia minima in two, ~150 cm-thick piston cores (separated by more than 1 km) in the northern Adriatic Sea, close to the Slovenian city Piran at a depth of 24 m. We use radiocarbon-calibrated amino acid racemization to obtain postmortem ages of 564 shells, and quantify age-frequency distributions in 4-5 cm-thick stratigraphic intervals (with 20-30 specimens sampled per interval). Inter-quartile range for individual 4-5 cm-thick layers varies between 850 and 1,700 years, and range encompassing 95% of age data varies between 2,000 and 5,000 years in both cores. The uppermost sediments (20 cm) are age-homogenized and show that median age of shells is ~700-800 years. The interval between 20 and 90 cm shows a gradual increase in median age from ~2,000 to ~5,000 years, with maximum age ranging to ~8,000 years. However, the lowermost parts of both cores show a significant disorder, with median age of 3,100-3,300 years. This temporal disorder implies that many shells were displaced vertically by ~1 m. Absolute and proportional abundance of the bivalve Gouldia minima strongly increases towards the top of the both cores. We hypothesize that such increase in abundance, when coupled with depth-declining reworking, can explain stratigraphic disorder because numerically abundant young shells from the top of the core were more likely buried to larger sediment depths than less frequent shells at intermediate sediment depths.
Devries, T J; Deming, J A; Rodenburg, J; Seguin, G; Leslie, K E; Barkema, H W
2011-08-01
The standing and lying behavior patterns of dairy cows, particularly the length of time cows spend standing after milking, have the potential to influence the incidence of intramammary infection (IMI). The objectives were to describe the standing and lying behavior patterns of cows milked with an automatic milking system (AMS) and to determine how these patterns relate to the incidence of IMI. One hundred and eleven lactating Holstein dairy cows were monitored over a 4-mo period. These cows were kept in a sand-bedded freestall barn with 2 pens, each with a free cow traffic AMS. Feed was delivered once daily, and pushed up 2 to 3 times daily. Quarter milk samples were collected for bacteriological culture from each cow once every 4 wk. A new IMI was defined as a positive culture sample following a negative culture. For 7 d before each of the last 3 milk samplings, standing and lying behavior, and times of milking and feed manipulation (feed delivery and push up) were recorded. Daily lying time and lying bout length were negatively related with milk yield (r=-0.23 and -0.20, respectively) and milking frequency (r=-0.32 and -0.20, respectively); milk yield was positively related to milking frequency (r=0.58). Feed manipulation near the time cows were milked (1h before 2h after) resulted in the longest post-milking standing times (mean=86 min; 95% confidence interval=78, 94 min), whereas feed manipulation occurring outside that time frame resulted in shorter post-milking standing times. Over the study period, 171 new IMI were detected. Of these new IMI detected, those caused by coagulase-negative staphylococci were the only ones associated with post-milking standing time; as post-milking standing time increased past 2.5h after milking, the odds of acquiring a new IMI tended to also increase. In summary, standing and lying behavior patterns of cows milked with an AMS were affected by both feed manipulation and their milking activity. Further, the post-milking standing time of cows milked with an AMS can be managed by providing fresh feed, as well as by pushing up feed, frequently throughout the day. Finally, cows that spend long periods of time (>2.5h) standing following milking may be at higher risk of acquiring a new CNS IMI. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.
2008-01-01
The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.
Human cerebral potentials evoked by moving dynamic random dot stereograms.
Herpers, M J; Caberg, H B; Mol, J M
1981-07-01
In 11 normal healthy human subjects an evoked potential was elicited by moving dynamic random dot stereograms. The random dots were generated by a minicomputer. An average of each of 8 EEG channels of the subjects tested was made. The maximum of the cerebral evoked potentials thus found was localized in the central and parietal region. No response earlier than 130--150 msec after the stimulus could be proved. The influence of fixation, the number of dots provided, an interocular interstimulus interval in the presentation of the dots, and lense accommodation movements on the evoked stereoptic potentials was investigated and discussed. An interocular interstimulus interval (left eye leading) in the presentation of the dots caused an increase in latency of the response much longer than the imposed interstimulus interval itself. It was shown that no accommodation was needed to perceive the depth impression, and to evoke the cerebral response with random dot stereograms. There are indications of an asymmetry between the two hemispheres in the handling of depth perception after 250 msec. The potential distribution of the evoked potentials strongly suggests that they are not generated in the occipital region.
Prinos, Scott T.; Valderrama, Robert
2015-01-01
At five of the monitoring-well cluster locations, a long-screened well was also installed for monitoring and comparison purposes. These long-screened wells are 160 to 200 ft deep, and have open intervals ranging from 145 to 185 ft in length. Water samples were collected at depth intervals of about 5 to 10 ft, using 3-ft-long straddle packers to isolate each sampling interval. The results of monitoring conducted using these long-screened interval wells were generally too variable to identify any changes that might be associated with the seepage barrier. Samples from one of these long-screened interval wells failed to detect the saltwater interface evident in samples and TSEMIL datasets from a collocated well cluster. This failure may have been caused by downward flow of freshwater from above the saltwater interface in the well bore.
An approach for sample size determination of average bioequivalence based on interval estimation.
Chiang, Chieh; Hsiao, Chin-Fu
2017-03-30
In 1992, the US Food and Drug Administration declared that two drugs demonstrate average bioequivalence (ABE) if the log-transformed mean difference of pharmacokinetic responses lies in (-0.223, 0.223). The most widely used approach for assessing ABE is the two one-sided tests procedure. More specifically, ABE is concluded when a 100(1 - 2α) % confidence interval for mean difference falls within (-0.223, 0.223). As known, bioequivalent studies are usually conducted by crossover design. However, in the case that the half-life of a drug is long, a parallel design for the bioequivalent study may be preferred. In this study, a two-sided interval estimation - such as Satterthwaite's, Cochran-Cox's, or Howe's approximations - is used for assessing parallel ABE. We show that the asymptotic joint distribution of the lower and upper confidence limits is bivariate normal, and thus the sample size can be calculated based on the asymptotic power so that the confidence interval falls within (-0.223, 0.223). Simulation studies also show that the proposed method achieves sufficient empirical power. A real example is provided to illustrate the proposed method. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo
2012-10-01
We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.
Guan, Phillip
2016-01-01
Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269596
A global reference model of Curie-point depths based on EMAG2
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-01-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332
Water wells on St. Thomas, U.S. Virgin Islands
Steiger, J.I.; Kessler, Richard
1993-01-01
This report is a compilation of well-inventory data collected from December 1989 to December 1990 on St. Thomas, U.S. Virgin Islands from 367 wells. The report includes well locations on 1982, 7.5 minute series, USGS topographic maps, which are published to scale, and tables of selected well data. The report includes the following well information; well name, U.S. Geological Survey Ground Water Site Identification number, use of water, year well constructed, reported depth of well, measured depth of well, casing diameter, type of well finish and finish interval, land surface altitude of well, depth to water below land surface, date water level measured, and well yield. (USGS)
NASA Astrophysics Data System (ADS)
Liu, Z.; Lundgren, P.; Liang, C.; Farr, T. G.; Fielding, E. J.
2017-12-01
The improved spatiotemporal resolution of surface deformation from recent satellite and airborne InSAR measurements provides a great opportunity to improve our understanding of both tectonic and non-tectonic processes. In central California the primary plate boundary fault system (San Andreas fault) lies adjacent to the San Joaquin Valley (SJV), a vast structural trough that accounts for about one-sixth of the United Sates' irrigated land and one-fifth of its extracted groundwater. The central San Andreas fault (CSAF) displays a range of fault slip behavior with creeping in its central segment that decreases towards its northwest and southeast ends, where it transitions to being fully locked. Despite much progress, many questions regarding fault and anthropogenic processes in the region still remain. In this study, we combine satellite InSAR and NASA airborne UAVSAR data to image fault and anthropogenic deformation. The UAVSAR data cover fault perpendicular swaths imaged from opposing look directions and fault parallel swaths since 2009. The much finer spatial resolution and optimized viewing geometry provide important constraints on near fault deformation and fault slip at very shallow depth. We performed a synoptic InSAR time series analysis using Sentinel-1, ALOS, and UAVSAR interferograms. We estimate azimuth mis-registration between single look complex (SLC) images of Sentinel-1 in a stack sense to achieve accurate azimuth co-registration between SLC images for low coherence and/or long interval interferometric pairs. We show that it is important to correct large-scale ionosphere features in ALOS-2 ScanSAR data for accurate deformation measurements. Joint analysis of UAVSAR and ALOS interferometry measurements show clear variability in deformation along the fault strike, suggesting variable fault creep and locking at depth and along strike. In addition to fault creep, the L-band ALOS, and especially ALOS-2 ScanSAR interferometry, show large-scale ground subsidence in the SJV due to over-exploitation of groundwater. InSAR time series are compared to GPS and well-water hydraulic head in-situ time series to understand water storage processes and mass loading changes. We present model results to assess the influence of anthropogenic processes on surface deformation and fault mechanics.
Atlas of interoccurrence intervals for selected thresholds of daily precipitation in Texas
Asquith, William H.; Roussel, Meghan C.
2003-01-01
A Poisson process model is used to define the distribution of interoccurrence intervals of daily precipitation in Texas. A precipitation interoccurrence interval is the time period between two successive rainfall events. Rainfall events are defined as daily precipitation equaling or exceeding a specified depth threshold. Ten precipitation thresholds are considered: 0.05, 0.10, 0.25, 0.50, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0 inches. Site-specific mean interoccurrence interval and ancillary statistics are presented for each threshold and for each of 1,306 National Weather Service daily precipitation gages. Maps depicting the spatial variation across Texas of the mean interoccurrence interval for each threshold are presented. The percent change from the statewide standard deviation of the interoccurrence intervals to the root-mean-square error ranges from a magnitude minimum of (negative) -24 to a magnitude maximum of -60 percent for the 0.05- and 2.0-inch thresholds, respectively. Because of the substantial negative percent change, the maps are considered more reliable estimators of the mean interoccurrence interval for most locations in Texas than the statewide mean values.
NASA Astrophysics Data System (ADS)
Gao, S.; Nicot, J. P.; Dommisse, R. D.; Hennings, P.
2017-12-01
The Ellenburger Group in the Fort Worth Basin, north-central Texas, is the major target for disposal of flowback and produced water originating from the overlying Barnett Shale gas play. Ellenburger formations of Ordovician age consist of karstic platform carbonates, often dolomitized, with locally high injection potential, and commonly directly overly the Precambrian crystalline basement at depths between6000 and 12,000 ft. In some places sandstones of Cambrian age lie in between the Ellenburger Group and basement. A few localities in or close to the core of the play have experienced seismic activity in the past decade. To better understand naturally occurring and potentially induced seismicity and the relationship to oil and gas operations, a larger team have constructed a 3D hydrogeological model of the Basin with all available well log data, stratigraphic data, petrophysical analysis of the injection intervals, faults from all possible sources including outcrops, controls on permeability anisotropy from outcrops and other data. The model is calibrated with the help of injection pressure constraints while honoring injection volume history through 100+ injection wells of the past decades. Major faults, including the east and north model boundaries, are implemented deterministically whereas fractures and minor faults, which considerably enhance the permeability of the carbonate system, are implemented stochastically and history-match the pressure data. This work in progress will ultimately provide basin-wide fluid budget analysis and pore pressure distribution in the Ellenburger formations. It will serve as a fundamental step to assess fault reactivation and basin-wide-seismogenic potential.
Anxiety, depression and autonomic nervous system dysfunction in hypertension.
Bajkó, Zoltán; Szekeres, Csilla-Cecília; Kovács, Katalin Réka; Csapó, Krisztina; Molnár, Sándor; Soltész, Pál; Nyitrai, Erika; Magyar, Mária Tünde; Oláh, László; Bereczki, Dániel; Csiba, László
2012-06-15
This study examined the relationship between autonomic nervous system dysfunction, anxiety and depression in untreated hypertension. 86 newly diagnosed hypertensive patients and 98 healthy volunteers were included in the study. The psychological parameters were assessed with Spielberger State-Trait Anxiety Inventory and Beck Depression Inventory by a skilled psychologist. Autonomic parameters were examined during tilt table examination (10min lying position, 10min passive tilt). Heart rate variability (HRV) was calculated by autoregressive methods. Baroreflex sensitivity (BRS) was calculated by non-invasive sequence method from the recorded beat to beat blood pressure values and RR intervals. Significantly higher state (42.6±9.3 vs. 39.6±10.7 p=0.05) and trait (40.1±8.9 vs. 35.1±8.6, p<0.0001) anxiety scores were found in the hypertension group. There was no statistically significant difference in the depression level. LF-RRI (Low Frequency-RR interval) of HRV in passive tilt (377.3±430.6 vs. 494.1±547, p=0.049) and mean BRS slope (11.4±5.5 vs. 13.2±6.4, p=0.07) in lying position were lower in hypertensives. Trait anxiety score correlates significantly with sympatho/vagal balance (LF/HF-RRI) in passive tilt position (Spearman R=-0.286, p=0.01). Anxiety could play a more important role than depression in the development of hypertension. Altered autonomic control of the heart could be one of the pathophysiological links between hypertension and psychological factors. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rebolledo-Vieyra, Mario; Urrutia-Fucugauchi, Jaime
2004-06-01
We report the magnetostratigraphy of the sedimentary sequence between the impact breccias and the post-impact carbonate sequence conducted on samples recovered by Yaxcopoil-1 (Yax-1). Samples of impact breccias show reverse polarities that span up to ~56 cm into the postimpact carbonate lithologies. We correlate these breccias to those of PEMEX boreholes Yucatán-6 and Chicxulub-1, from which we tied our magnetostratigraphy to the radiometric age from a melt sample from the Yucatán-6 borehole. Thin section analyses of the carbonate samples showed a significant amount of dark minerals and glass shards that we identified as the magnetic carriers; therefore, we propose that the mechanism of magnetic acquisition within the carbonate rocks for the interval studied is detrital remanent magnetism (DRM). With these samples, we constructed the scale of geomagnetic polarities where we find two polarities within the sequence, a reverse polarity event within the impact breccias and the base of the post-impact carbonate sequence (up to 794.07 m), and a normal polarity event in the last ~20 cm of the interval studied. The polarities recorded in the sequence analyzed are interpreted to span from chron 29r to 29n, and we propose that the reverse polarity event lies within the 29r chron. The magnetostratigraphy of the sequence studied shows that the horizon at 794.11 m deep, interpreted as the K/T boundary, lies within the geomagnetic chron 29r, which contains the K/T boundary.
NASA Astrophysics Data System (ADS)
Vaid, N.; Putirka, K.; Kuntz, M.
2005-12-01
The volcanic rocks of the Craters of the Mon Lava field provide an ideal laboratory for testing models of magma transport and evolution. Their compositions, relative ages and volumes are well known, as are the fractionation processes leading to their evolution (Leeman, 1976). The COM is somewhat distinctive in the Snake River Plain (SRP) region, due to its evolved character, and an apparent compositional segregation from associated SRP basalts. Some have suggested that the high Fe liquids of the COM demand an origin separate from that of SRP basalts, possibly involving an Fe-enriched mantle, while others have suggested that the COM lavas may be derived by fractionation at moderate depths (30 km). In either case, there are important implications in regard to mantle composition and the nature and distribution of thermal energy. We use plagioclase-melt pairs and an analysis of whole rock compositions in attempt to test models of COM magmatic evolution. Plagioclase-melt thermobarometers provide rough estimates of crystallization depths, and show that COM and SRP lavas partially crystallized at similar depths of 14 +/- 6 km. However, plagioclase crystallization temperatures for SRP basalts (1400 +/- 25 K; Kings Bowl, Cerro Grande, North and South Robbers) exceed temperatures for COM lavas (1358 +/- 45 K) by 40 K. Our data also show that fractional crystallization (ol + plag) can explain the evolution of surrounding SRP basalt flows, and that the most evolved SRP basalts approach primitive COM lava compositions. The most primitive of COM magmas appear to be characterized by the appearance of apatite + magnetite as fractionating phases. Our results thus confirm the geochemical model of Leeman (1976) and the physical model of Kuntz (1992), with the added insight that SRP basalts are parental to the more evolved COM lavas, through low-pressure fractional crystallization in the upper crust. The principal differences between SRP and COM magmas appear to relate more to the presence or absence of density contrasts in the crust than differences in composition or temperature of mantle source materials. SRP basalts lie near the axis of the SRP where the granitic upper crust may have been obliterated by earlier volcanic episodes. In contrast, COM lavas, whose vents lie off axis, appear to have been trapped within the upper crust for longer periods, sufficient for further differentiation. Finally, SRP rhyolite compositions lie on the same fractionation trend as COM and SRP lavas, at very low values of MgO. We propose that highly evolved lavas throughout the SRP may form by fractional crystallization mechanisms alone, rather than through the partial melting and remobilization of preexisting felsic crustal materials.
NASA Astrophysics Data System (ADS)
Thompson Davis, P.; Machalett, Björn; Gosse, John
2013-04-01
Varved lake sediments, which provide ideal high-resolution climate proxies, are not commonly available in many geographic areas over long time scales. This paper utilizes high-resolution grain-size analyses (n = 1040) from a 520-cm long sediment core from Lower Titcomb Lake (LTL), which lies just outside the type Titcomb Basin (TTB) moraines in the Wind River Range, Wyoming. The TTB moraines lie between Lower Titcomb Lake and Upper Titcomb Lake (UTL), about 3 km beyond, and 200 m lower than the modern glacier margin and Gannett Peak (Little Ice Age) moraines in the basin. Based on cosmogenic exposure dating, the TTB moraines are believed to be Younger Dryas (YD) age (Gosse et al., 1995) and lie in a geomorphic position similar to several other outer cirque moraines throughout the western American Cordillera. Until recently, many of these outer cirque moraines were believed to be Neoglacial age. The sediment core discussed here is one of five obtained from the two Titcomb Lakes, but is by the far the longest with the oldest sediment depositional record. Two AMS radiocarbon ages from the 445- and 455-cm core depths (about 2% loss on ignition, LOI) suggest that the lake basin may have been ice-free as early as 16.1 or even 16.8 cal 14C kyr, consistent with 10Be and 26Al exposure ages from boulders and bedrock surfaces outside the TTB moraines. The 257-cm depth in the core marks an abrupt transition from inorganic, sticky gray silt below (<1% LOI) to more organic, less sticky, light brown silt above (4-10% LOI). Eight AMS radiocarbon ages on bulk sediment and macrofossils date the transition to about 11.6 cal 14C kyr. Thus, sampling resolution above the transition is about 22.57 yr and below the transition is about 12.56 yr, consistent with a decreased sediment accumulation rate in LTL when Younger Dryas ice pulled back from the TTB moraines opening up UTL as a sediment depositional basin. The presented high-resolution grain size record reveals amplitudes and other structural features similar to delta 18O records from deep-lake ostracods in southern Germany, the Greenland ice core record, and speleothems in China. Major increases in the 2 - 8 µm grain size fraction indicative of increased glacier rock flour production between the 257 and 466 cm core depths appear to be roughly correlative with the YD-Alleröd-Bölling-Meiendorf-Heinrich 1 climate events recognized in other terrestrial records and Northern Atlantic Ocean marine cores, but provide much higher resolution than most of those records from a climate-sensitive alpine region in North America.
Shallow and deep fresh impact craters in Hesperia Planum, Mars
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Hayashi, Joan N.
1993-01-01
The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.
NASA Astrophysics Data System (ADS)
Zaidelman, F. R.; Nikiforova, A. S.; Stepantsova, L. V.; Volokhina, V. P.
2012-05-01
Dark gray soils in the Tambov Plain are developed from the light-textured glaciofluvial deposits underlain by the calcareous loam. Their morphology, water regime, and productivity are determined by the depth of the slightly permeable calcareous loamy layer, relief, and the degree of gleyzation. The light texture of the upper layer is responsible for its weak structure, high density, the low content of productive moisture, and the low water-holding capacity. If the calcareous loam is at a depth of 100-130 cm, dark gray soils are formed; if it lies at a depth of 40-70 cm, temporary perched water appears in the profile, and dark gray contact-gleyed soils are formed. Their characteristic pedofeatures are skeletans in the upper layers, calcareous nodules in the loamy clay layer, and iron nodules in the podzolized humus and podzolic horizons. The appearance of Fe-Mn concretions is related to gleyzation. The high yield of winter cereals is shown to be produced on the dark gray soils; the yields of spring crops are less stable. Spring cereals should not be grown on the contact-gleyed dark gray soils.
Geological structure analysis in Central Java using travel time tomography technique of S waves
NASA Astrophysics Data System (ADS)
Palupi, I. R.; Raharjo, W.; Nurdian, S. W.; Giamboro, W. S.; Santoso, A.
2016-11-01
Java is one of the islands in Indonesia that is prone to the earthquakes, in south of Java, there is the Australian Plate move to the Java island and press with perpendicular direction. This plate movement formed subduction zone and cause earthquakes. The earthquake is the release of energy due to the sudden movement of the plates. When an earthquake occurs, the energy is released and record by seismometers in the waveform. The first wave recorded is called the P waves (primary) and the next wave is called S waves (secondary). Both of these waves have different characteristics in terms of propagation and direction of movement. S wave is composed of waves of Rayleigh and Love waves, with each direction of movement of the vertical and horizontal, subsurface imaging by using S wave tomography technique can describe the type of the S wave through the medium. The variation of wave velocity under Central Java (esearch area) is ranging from -10% to 10% at the depth of 20, 30 and 40 km, the velocity decrease with the depth increase. Moho discontinuity is lies in the depth of 32 km under the crust, it is indicates there is strong heterogenity in Moho.
Swezey, Christopher S.; Seefelt, Ellen L.; Parker, Mercer
2018-03-09
Fort Pulaski National Monument is located on Cockspur Island in Chatham County, Georgia, within the Atlantic Coastal Plain province. The island lies near the mouth of the Savannah River, and consists of small mounds (hummocks), salt marshes, and sediment dredged from the river. A 1,017-foot (ft) (310-meter [m])-deep core drilled at Cockspur Island in 2010 by the U.S. Geological Survey revealed several sedimentary units ranging in age from 43 million years old to present. Sand and mud are present at drilling depths from 0 to 182 ft (56 m), limestone is present at depths from 182 ft (56 m) to 965 ft (295 m), and glauconitic sand is present at depths from 965 ft (295 m) to 1,017 ft (310 m). The limestone and the water within the limestone are referred to collectively as the Floridan aquifer system, which is the primary source of drinking water for the City of Savannah and surrounding communities. In addition to details of the subsurface geology, this fact sheet identifies the following geologic materials used in the construction of Fort Pulaski: (1) granite, (2) bricks, (3) sandstone, and (4) lime mud with oyster shells.
Zhiyu Huo; Griffin, Joseph; Babiuch, Ryan; Gray, Aaron; Willis, Bradley; Marjorie, Skubic; Shining Sun
2015-01-01
We describe a feasibility study in which the Microsoft Kinect is used for a game-based exercise to strengthen posterior chain muscles which are often weak in those at high risk of anterior cruciate ligament (ACL) injury. In the game, subjects perform a single posterior chain strengthening exercise. The game uses a side-scrolling video display driven by a hip abduction exercise while a player lies down on the floor. Leg lifts beyond a predetermined angle trigger the jumping action of an animated tiger. We describe the scene and game control, which uses depth images from the Kinect. Although Kinect-based skeletal data are used for many games, the skeletal model does not yield good estimates for positions on the floor. Our proposed system uses multiple leg angle estimators for different angle regions to recognize the player lying down and capture the angle between two legs. We conducted an experiment that validates our system with marker-based Vicon ground truth data. We also present results of an end-to-end test using the game, showing feasibility.
Cinotto, Peter J.
2003-01-01
Stream-restoration projects utilizing natural stream designs frequently are based on the bankfull-channel characteristics of stream reaches that can accommodate streamflow and sediment transport without excessive erosion or deposition and lie within a watershed that has similar runoff characteristics. The bankfull channel at an ungaged impaired site or reference reach is identified by use of field indicators and is confirmed with tools such as regional curves. Channel dimensions were surveyed at 14 streamflow-measurement stations operated by the U.S. Geological Survey (USGS) in the Gettysburg-Newark Lowland Section, Piedmont Lowland Section, and the Piedmont Upland Section of the Piedmont Physiographic Province1 in Pennsylvania and Maryland. From the surveyed channel dimensions, regional curves were developed from regression analyses of the relations between drainage area and the cross-sectional area, mean depth, width, and streamflow of the bankfull channel at these sites. Bankfull cross-sectional area and bankfull discharge have the strongest relation to drainage area as evidenced by R2 values of 0.94 and 0.93, respectively. The relation between bankfull crosssectional area and drainage area has a p-value of less than 0.001; no p-value is presented for the relation between bankfull discharge and drainage area because of a non-normal residual distribution. The relation between bankfull width and drainage area has an R2 value of 0.80 and a p-value of less than 0.001 indicating a moderate linear relation between all stations. The relation between bankfull mean depth and drainage area, with an R2 value of 0.72 and a p-value of less than 0.001, also indicates a moderate linear relation between all stations. The concept of regional curves can be a valuable tool to support efforts in stream restoration. Practitioners of stream restoration need to recognize it as such and realize the limitations. The small number of USGS streamflow-measurement stations available for analysis is a major limiting factor in the strength of the results of this investigation, as is the inherent problem of directly associating streamflow-measurement station data to geomorphic analysis of a stream reach. Subjective selection criteria may have unnecessarily eliminated streamflow-measurement stations that could have been included in the regional curves and (or) added those that may belong within a different region. A bankfull discharge with a recurrence interval within the 1- to 2-year range commonly is used as a criterion for the confirmation of the bankfull stage at each streamflow-measurement station. Many researchers accept this range for recurrence interval of the bankfull discharge; however, literature provides contradictory evidence.
NASA Astrophysics Data System (ADS)
Lee, J. C.; Liu, Z. Y. C.; Shirzaei, M.
2016-12-01
The Chihshang fault lies at the plate suture between the Eurasian and the Philippine Sea plates along the Longitudinal Valley in eastern Taiwan. Here we investigate depth variation of fault frictional parameters derived from the post-seismic slip model of the 2003 Mw 6.5 Chengkung earthquake. Assuming a rate-strengthening friction, we implement an inverse dynamic modeling scheme to estimate the frictional parameter (a-b) and reference friction coefficient (μ*) in depths by taking into account: pre-seismic stress as well as co-seismic and post-seismic coulomb stress changes associated with the 2003 Chengkung earthquake. We investigate two coseismic models by Hsu et al. (2009) and Thomas et al. (2014). Model parameters, including stress gradient, depth dependent a-b and μ*, are determined from fitting the transient post-seismic geodetic signal measured at 12 continuous GPS stations. In our inversion scheme, we apply a non-linear optimization algorithm, Genetic Algorithm (GA), to search for the optimum frictional parameters. Considering the zone with velocity-strengthening frictional properties along Chihshang fault, the optimum a-b is 7-8 × 10-3 along the shallow part of the fault (0-10 km depth) and 1-2 × 10-2 in 22-28 km depth. Optimum solution for μ* is 0.3-0.4 in 0-10 km depth and reaches 0.8 in 22-28 km depth. The optimized stress gradient is 54 MPa/ km. The inferred frictional parameters are consistent with the laboratory measurements on clay-rich fault zone gouges comparable to the Lichi Melange, which is thrust over Holocene alluvial deposits across the Chihshang fault, considering the main rock composition of the Chihshang fault, at least at the upper kilometers level of the fault. Our results can facilitate further studies in particular on seismic cycle and hazard assessment of active faults.
NASA Astrophysics Data System (ADS)
Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.
2014-12-01
The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.
Daniels, J.J.; Olhoeft, G.R.; Scott, J.H.
1984-01-01
Laboratory and well log physical property measurements show variations in the mineralogy with depth in UPH-3. Gamma ray values generally decrease with depth in the drill hole, corresponding to a decrease in the felsic mineral components of the granite. Correspondingly, an increase with depth in mafic minerals in the granite is indicated by the magnetic susceptibility, and gamma ray measurements. These mineralogic changes indicated by the geophysical well logs support the hypothesis of fractionation during continuous crystallization of the intrusive penetrated by UPH-3. Two fracture zones, and an altered zone within the granite penetrated by drill hole UPH-3 are defined by the physical property measurements. An abnormally low magnetic susceptibility response in the upper portion of the drill hole can be attributed to alteration of the rock adjacent to the sediments overlying the granite. Fracture zones can be identified from the sonic velocity, neutron, and resistivity measurements. A fracture zone, characterized by low resistivity values and low neutron values, is present in the depth interval from 1150 to 1320 m. Low magnetic susceptibility and high gamma ray values indicate the presence of felsic-micaceous pegmatites within this fracture zone. An unfractured region present from a depth of 1380 m to the bottom of the hole is characterized by an absence of physical property variations. The magnetic susceptibility and gamma ray measurements indicate a change in the amount of mafic minerals at the base of this otherwise homogenous region of the drilled interval. Abrupt changes and repeated patterns of physical properties within the drill hole may represent interruptions in the crystallization process of the melt or they may be indicative of critical temperatures for specific mineral assemblages within the intrusive.
Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Eshom, E.P.; Thordarson, W.
This report presents the results of hydraulic testing of rocks penetrated by USW H-4, one of several test wells drilled in the southwestern part of the Nevada Test Site, in cooperation with the US Department of Energy, for investigations related to the isolation of high-level radioactive wastes in volcanic tuffs of Tertiary age. All rocks penetrated by the test well to its total depth of 1219 meters were volcanic. Static water level was at a depth of 519 meters below land surface. Hydraulic-head measurements made at successively lower depths during drilling in this test hole indicate no noticeable head change.more » A radioactive-tracer, borehole-flow survey indicated that the two most productive zones in this borehole occurred in the upper part of the Bullfrog Member, depth interval from 721 to 731.5 meters, and in the underlying upper part of the Tram Member, depth interval from 864 to 920 meters, both in the Crater Flat Tuff. Hydraulic coefficients calculated from pumping-test data indicate that transmissivity ranged from 200 to 790 meters squared per day. The hydraulic conductivity ranged from 0.29 to 1.1 meters per day. Chemical analysis of water pumped from the saturated part of the borehole (composite sample) indicates that the water is typical of water produced from tuffaceous rocks in southern Nevada. The water is predominantly a sodium bicarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by a carbon-14 date to be 17,200 years before present. 24 refs., 10 figs., 8 tabs.« less
NASA Astrophysics Data System (ADS)
Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Sippel, Judith; Strecker, Manfred R.
2018-02-01
The aim of this study is to investigate the shallow thermal field differences for two differently aged passive continental margins by analyzing regional variations in geothermal gradient and exploring the controlling factors for these variations. Hence, we analyzed two previously published 3-D conductive and lithospheric-scale thermal models of the Southwest African and the Norwegian passive margins. These 3-D models differentiate various sedimentary, crustal, and mantle units and integrate different geophysical data such as seismic observations and the gravity field. We extracted the temperature-depth distributions in 1 km intervals down to 6 km below the upper thermal boundary condition. The geothermal gradient was then calculated for these intervals between the upper thermal boundary condition and the respective depth levels (1, 2, 3, 4, 5, and 6 km below the upper thermal boundary condition). According to our results, the geothermal gradient decreases with increasing depth and shows varying lateral trends and values for these two different margins. We compare the 3-D geological structural models and the geothermal gradient variations for both thermal models and show how radiogenic heat production, sediment insulating effect, and thermal lithosphere-asthenosphere boundary (LAB) depth influence the shallow thermal field pattern. The results indicate an ongoing process of oceanic mantle cooling at the young Norwegian margin compared with the old SW African passive margin that seems to be thermally equilibrated in the present day.
Reed, M.F.; Bartholomay, R.C.; Hughes, S.S.
1997-01-01
Thirty-nine samples of basaltic core were collected from wells 121 and 123, located approximately 1.8 km apart north and south of the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Samples were collected from depths ranging from 15 to 221 m below land surface for the purpose of establishing stratigraphic correlations between these two wells. Elemental analyses indicate that the basalts consist of three principal chemical types. Two of these types are each represented by a single basalt flow in each well. The third chemical type is represented by many basalt flows and includes a broad range of chemical compositions that is distinguished from the other two types. Basalt flows within the third type were identified by hierarchical K-cluster analysis of 14 representative elements: Fe, Ca, K, Na, Sc, Co, La, Ce, Sm, Eu, Yb, Hf, Ta, and Th. Cluster analyses indicate correlations of basalt flows between wells 121 and 123 at depths of approximately 38-40 m, 125-128 m, 131-137 m, 149-158 m, and 183-198 m. Probable correlations also are indicated for at least seven other depth intervals. Basalt flows in several depth intervals do not correlate on the basis of chemical compositions, thus reflecting possible flow margins in the sequence between the wells. Multi-element chemical data provide a useful method for determining stratigraphic correlations of basalt in the upper 1-2 km of the eastern Snake River Plain.
de Vries, W; Wieggers, H J J; Brus, D J
2010-08-05
Element fluxes through forest ecosystems are generally based on measurements of concentrations in soil solution at regular time intervals at plot locations sampled in a regular grid. Here we present spatially averaged annual element leaching fluxes in three Dutch forest monitoring plots using a new sampling strategy in which both sampling locations and sampling times are selected by probability sampling. Locations were selected by stratified random sampling with compact geographical blocks of equal surface area as strata. In each sampling round, six composite soil solution samples were collected, consisting of five aliquots, one per stratum. The plot-mean concentration was estimated by linear regression, so that the bias due to one or more strata being not represented in the composite samples is eliminated. The sampling times were selected in such a way that the cumulative precipitation surplus of the time interval between two consecutive sampling times was constant, using an estimated precipitation surplus averaged over the past 30 years. The spatially averaged annual leaching flux was estimated by using the modeled daily water flux as an ancillary variable. An important advantage of the new method is that the uncertainty in the estimated annual leaching fluxes due to spatial and temporal variation and resulting sampling errors can be quantified. Results of this new method were compared with the reference approach in which daily leaching fluxes were calculated by multiplying daily interpolated element concentrations with daily water fluxes and then aggregated to a year. Results show that the annual fluxes calculated with the reference method for the period 2003-2005, including all plots, elements and depths, lies only in 53% of the cases within the range of the average +/-2 times the standard error of the new method. Despite the differences in results, both methods indicate comparable N retention and strong Al mobilization in all plots, with Al leaching being nearly equal to the leaching of SO(4) and NO(3) with fluxes expressed in mol(c) ha(-1) yr(-1). This illustrates that Al release, which is the clearest signal of soil acidification, is mainly due to the external input of SO(4) and NO(3).
NASA Astrophysics Data System (ADS)
Bocin, A.; Stephenson, R.; Matenco, L.; Mocanu, V.
2013-11-01
A 2D gravity and magnetic data model has been constructed along a 71 km densely observed profile, called DACIA PLAN GRAV MAN's. The profile crosses part of the nappe pile of the south-eastern Carpathians and includes the seismically active Vrancea Zone and was acquired with the objective to illuminate the basement structure and affinity in this area. The modelling approach was to create an initial model from well constrained geological information, integrate it with previous seismic ray tracing and tomographic models and then alter it outside the a priori constraints in order to reach the best fit between observed and calculated potential field anomalies. The results support a realignment of the position of the TTZ (Tornquist-Teisseyre Zone), the profound tectonic boundary within Europe that separates Precambrian cratonic lithosphere of the East European Craton (EEC) from younger accreted lithosphere of Phanerozoic mobile belts to its west. The TTZ is shown to lie further to the south-west than was previously inferred within Romania, where it is largely obscured by the Carpathian nappes. The crust of the EEC beneath the south-eastern Carpathians is inferred to terminate along a major crustal structure lying just west of the Vrancea seismogenic zone. The intermediate depth seismicity of the Vrancea Zone therefore lies within the EEC lithosphere, generally supporting previously proposed models invoking delamination of cratonic lithosphere as the responsible mechanism.
Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.
2011-01-01
We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins,Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.
Lyver, P.O.B.; MacLeod, C.J.; Ballard, G.; Karl, B.J.; Barton, K.J.; Adams, J.; Ainley, D.G.; Wilson, P.R.
2011-01-01
We investigated intra-seasonal variation in foraging behavior of chick-rearing Adélie penguins, Pygoscelis adeliae, during two consecutive summers at Cape Hallett, northwestern Ross Sea. Although foraging behavior of this species has been extensively studied throughout the broad continental shelf region of the Ross Sea, this is the first study to report foraging behaviors and habitat affiliations among birds occupying continental slope waters. Continental slope habitat supports the greatest abundances of this species throughout its range, but we lack information about how intra-specific competition for prey might affect foraging and at-sea distribution and how these attributes compare with previous Ross Sea studies. Foraging trips increased in both distance and duration as breeding advanced from guard to crèche stage, but foraging dive depth, dive rates, and vertical dive distances travelled per hour decreased. Consistent with previous studies within slope habitats elsewhere in Antarctic waters, Antarctic krill (Euphausia superba) dominated chick meal composition, but fish increased four-fold from guard to crèche stages. Foraging-, focal-, and core areas all doubled during the crèche stage as individuals shifted distribution in a southeasterly direction away from the coast while simultaneously becoming more widely dispersed (i.e., less spatial overlap among individuals). Intra-specific competition for prey among Adélie penguins appears to influence foraging behavior of this species, even in food webs dominated by Antarctic krill.
Extreme drying event in the Dead Sea basin during MIS5 from the ICDP Dead Sea Deep Drill Core
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.; The Icdp-Dsddp Scientific Party
2011-12-01
The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes of ~450 and ~350 meters in length in deep (~300 m below the lake level) and shallow sites (~3 mbll) respectively. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments comprise a geological archive of the evolving environmental conditions (e.g. rains, floods, dust-storms, droughts). Dead Sea sediments include inorganic aragonite, allowing for dating by U-series (e.g. Haase-Schramm et al. GCA 2004). The deep site cores were opened and described in June 2011. The cores are composed mainly of alternating intervals of marl (aragonite, gypsum and detritus) during glacials, and salts and marls during interglacials. From this stratigraphy we estimate that the deep site core spans ~200 kyr (to the boundary of MIS 6 and 7). A dramatic discovery is a ~40 cm thick interval of partly rounded pebbles at ~235 m below the lake floor. This is the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to more precisely estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the possible dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.
NASA Astrophysics Data System (ADS)
Yue, Li-Fan; Suppe, John
2014-12-01
We document regional pore-fluid pressures in the active Taiwan thrust belt using 55 deep boreholes to test the classic Hubbert-Rubey hypothesis that high static fluid pressures (depth normalized as λ = Pf/ρrgz) account for the extreme weakness of thrust faults, since effective friction μf∗ =μf(1 - λ) . Taiwan fluid pressures are dominated by disequilibrium compaction, showing fully compacted sediments with hydrostatic fluid pressures at shallow depths until the fluid-retention depth zFRD ≈ 3 km, below which sediments are increasingly undercompacted and overpressured. The Hubbert-Rubey fault weakening coefficient is a simple function of depth (1 - λ) ≈ 0.6zFRD/z. We map present-day and pre-erosion fluid pressures and weakening (1 - λ) regionally and show that active thrusts are too shallow relative to zFRD for the classic Hubbert-Rubey mechanism to be important, which requires z ≥ ˜4zFRD ≈ 12 km to have the required order-of-magnitude Hubbert-Rubey fault weakening of (1 - λ) ≤ ˜0.15. The best-characterized thrust is the Chelungpu fault that slipped in the 1999 (Mw = 7.6) Chi-Chi earthquake, which has a low effective friction μf∗ ≈ 0.08- 0.12 , yet lies near the base of the hydrostatic zone at depths of 1-5 km with a modest Hubbert-Rubey weakening of (1 - λ) ≈ 0.4-0.6. Overpressured Miocene and Oligocene detachments at 5-7 km depth have (1 - λ) ≈ 0.3. Therefore, other mechanisms of fault weakening are required, such as the dynamical mechanisms documented for the Chi-Chi earthquake.
Real-Time Fluid and Gas Monitoring During Drilling of the SAFOD Main Hole in Parkfield, CA.
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.
2005-12-01
Little is known about the role and origin of fluids and gases associated with the San Andreas Fault zone (SAF). To gain information on fluids and gases at depth, we performed real-time mud gas monitoring during drilling of the SAFOD (San Andreas Fault Observatory at Depth) Pilot Hole (PH) and Main Hole (MH). Gas extracted from returning drill mud was piped into a nearby laboratory trailer and analyzed on-line. Permanent gases were detected using a portable mass spectrometer, hydrocarbons with a gas chromatograph, and the 222Rn-activity with a Lucas-Cell detector. When significant amounts of non-atmospheric gases were detected, off-line gas samples were collected from the gas line for further isotope studies. The SAFOD PH and MH were drilled in only a few meter distance, but in contrast to the straight PH, which penetrates through 768 m of sediments into granites down to 2168 m target depth (TD), the nearby MH is deviated towards the SAF and returns into sedimentary strata below 1930 m. The MH drilled sedimentary rocks down to 3987 m TD, approximately 45 m northeast of the surface trace of the SAF. From surface to 1930 m, the depth distribution of gas is similar for SAFOD PH and MH. Shear zones, identified by geophysical logging, are often characterized by elevated concentrations of CH4, CO2, H2, Rn, and He. The same gases were found in the MH below 1930 m, but their concentrations were, with the exception of He, significantly higher: CH4, CO2, and H2 sometimes reach several volume percent. Generally, the gas composition is partly controlled by the lithology. Variation in the methane concentration in several depth intervals reflects the changes in lithology from low gas abundance in clays and silts to more gas rich shales, which are the source rocks for hydrocarbons. Highly porous and permeable sandstone yield the highest concentrations of hydrocarbons (up to 15 vol% methane), and may be regarded as reservoir rocks. We interpret high radon activities in mud gas as indicator for circulating fluids entering the borehole via fractures. These fluids are also rich in hydrocarbons, carbon dioxide, and hydrogen, but only low concentrated in helium. Such intervals could be identified in several depth intervals (2675-2750 m, 2825-2900 m, and 3550-3650 m depth, and below 3700 m). The hydrocarbons in the surrounding rocks show a similar composition as those associated with fault zones. In addition to the low helium concentration, these results demonstrate fluid migration from the nearby with only little evidence for gas migration from a deeper source. A striking observation is the high amount of hydrogen found in these intervals. We can exclude a significant contribution of artificial hydrogen (drilling artifact) and mantle hydrogen. From soil gas studies, it is known that fault zones sometimes show enhanced concentration of hydrogen. As a possible source of hydrogen, the interaction of water with freshly ground rock, caused by fault zone movement, is discussed. Isotopic studies on hydrogen in combination with laboratory experiments are ongoing to test hydrogen synthesis by rock-water interaction. First isotopic studies on δ13C of methane indicate mixing of microbial methane with only small amounts of methane generated by thermal degradation of organic matter in the shallower depth (down to ~2500 m). Below this depth, the concentration of heavy hydrocarbons increases. CH4/(C2H6+C3H8) significantly drops from >100 to values <30 towards the bottom of the MH, and, methane becomes isotopically heavier, which is more typical for thermogenic hydrocarbons.
Effects of bedding quality on lying behavior of dairy cows.
Fregonesi, J A; Veira, D M; von Keyserlingk, M A G; Weary, D M
2007-12-01
Cows prefer to spend more time lying down in free stalls with more bedding, but no research to date has addressed the effects of bedding quality. Bedding in stalls often becomes wet either from exposure to the elements or from feces and urine. The aim of this study was to test the effect of wet bedding on stall preference and use. Four groups of 6 nonlactating Holstein cows were housed in free stalls bedded daily with approximately 0.1 m of fresh sawdust. Following a 5-d adaptation period, each group of cows was tested sequentially with access to stalls with either dry or wet sawdust bedding (86.4 +/- 2.1 vs. 26.5 +/- 2.1% dry matter), each for 2 d. These no-choice phases were followed by a 2-d free-choice phase during which cows had simultaneous access to stalls containing either wet or dry bedding. Stall usage was assessed by using 24-h video recordings scanned at 10-min intervals, and responses were analyzed by using a mixed model, with group (n = 4) as the observational unit. The minimum and maximum environmental temperatures during the experiment were 3.4 +/- 2.2 and 6.8 +/- 2.5 degrees C, respectively. When cows had access only to stalls with wet bedding, they spent 8.8 +/- 0.8 h/d lying down, which increased to 13.8 +/- 0.8 h/d when stalls with dry bedding were provided. Cows spent more time standing with their front 2 hooves in the stall when provided with wet vs. dry bedding (92 +/- 10 vs. 32 +/- 10 min/d). During the free-choice phase, all cows spent more time lying down in the dry stalls, spending 12.5 +/- 0.3 h/d in the dry stalls vs. 0.9 +/- 0.3 h/ d in stalls with wet bedding. In conclusion, dairy cows show a clear preference for a dry lying surface, and they spend much more time standing outside the stall when only wet bedding is available.
Adults' past-day recall of sedentary time: reliability, validity, and responsiveness.
Clark, Bronwyn K; Winkler, Elisabeth; Healy, Genevieve N; Gardiner, Paul G; Dunstan, David W; Owen, Neville; Reeves, Marina M
2013-06-01
Past-day recall rather than recall of past week or a usual/typical day may improve the validity of self-reported sedentary time measures. This study examined the test-retest reliability, criterion validity, and responsiveness of the seven-item questionnaire, Past-day Adults' Sedentary Time (PAST). Participants (breast cancer survivors, n = 90, age = 33-75 yr, body mass index = 25-40 kg·m) in a 6-month randomized controlled trial of a lifestyle-based weight loss intervention completed the interviewer-administered PAST questionnaire about time spent sitting/lying on the previous day for work, transport, television viewing, nonwork computer use, reading, hobbies, and other purposes (summed for total sedentary time). The instrument was administered at baseline, 7 d later for test-retest reliability (n = 86), and at follow-up. ActivPAL3-assessed sit/lie time in bouts of ≥5 min during waking hours on the recall day was used as the validity criterion measure at both baseline (n = 72) and follow-up (n = 68). Analyses included intraclass correlation coefficients, Pearson's correlations (r), and Bland-Altman plots and responsiveness index. The PAST had fair to good test-retest reliability (intraclass correlation coefficient = 0.50, 95% confidence interval [CI] = 0.32-0.64). At baseline, the correlation between PAST and activPAL sit/lie time was r = 0.57 (95% CI = 0.39-0.71). The mean difference between PAST at baseline and retest was -25 min (5.2%), 95% limits of agreement = -5.9 to 5.0 h, and the activPAL sit/lie time was -9 min (1.8%), 95% limits of agreement = -4.9 to 4.6 h. The PAST showed small but significant responsiveness (-0.44, 95% CI = -0.92 to -0.04); responsiveness of activPAL sit/lie time was not significant. The PAST questionnaire provided an easy-to-administer measure of sedentary time in this sample. Validity and reliability findings compare favorably with other sedentary time questionnaires. Past-day recall of sedentary time shows promise for use in future health behavior, epidemiological, and population surveillance studies.
Evaluating a novel analgesic strategy for ring castration of ram lambs.
Paull, David R; Small, Alison H; Lee, Caroline; Palladin, Pierre; Colditz, Ian G
2012-09-01
To evaluate the analgesic efficacy of the NSAIDs flunixin and meloxicam administered locally to the scrotum before ring castration. Randomised, controlled, prospective study. Forty eight single born male Merino lambs. Lambs, aged approximately 4 weeks, were allocated to four groups for castration. Groups were: sham control; castration + saline; castration + flunixin; castration + meloxicam. Drugs (5 mL) were administered subcutaneously around the circumference of the scrotum immediately before castration. Cortisol, rectal temperature, haematology and plasma haptoglobin were measured before and up to 48 hours after treatment. Behaviour recorded by video for 12 hours after treatment was classified as pain avoidance behaviours in the first hour and postural behaviours in three 4 hour intervals. Ring castration (saline group) induced a bi-phasic increase in cortisol with peaks at 90 minutes and 24 hours but no significant changes in haematology, haptoglobin or rectal temperature. Pain avoidance behaviours were increased and teat seeking decreased. Normal lying and normal standing postures were decreased and abnormal ventral lying, statue standing, abnormal standing and total abnormal postures increased. Flunixin decreased cortisol at 90 minutes (60.3 versus 117.3 nmol L(-1) ) and cortisol AUC (0-6 hours), decreased elevated leg movement (2.5 versus 5.4 events) and sum of pain avoidance behaviours (8.5 versus 16.7 events), improved time spent in normal ventral lying and decreased abnormal ventral lying and total abnormal postures compared to saline treated lambs. In a similar contrast, meloxicam caused non-significant decreases in cortisol at 90 minutes, cortisol AUC (0-6 hours) and pain avoidance behaviours, and significantly improved the postural behaviours normal ventral lying (26.7 versus 15.4%) and normal standing (13.9 versus 7.5%), and reduced abnormal standing and total abnormal postures. Physiological and behavioural responses associated with ring castration for both NSAID treatment groups were generally greater than sham controls. Locally administered NSAIDs provided partial analgesia for ring castration. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.
Predicting Secchi disk depth from average beam attenuation in a deep, ultra-clear lake
Larson, G.L.; Hoffman, R.L.; Hargreaves, B.R.; Collier, R.W.
2007-01-01
We addressed potential sources of error in estimating the water clarity of mountain lakes by investigating the use of beam transmissometer measurements to estimate Secchi disk depth. The optical properties Secchi disk depth (SD) and beam transmissometer attenuation (BA) were measured in Crater Lake (Crater Lake National Park, Oregon, USA) at a designated sampling station near the maximum depth of the lake. A standard 20 cm black and white disk was used to measure SD. The transmissometer light source had a nearly monochromatic wavelength of 660 nm and a path length of 25 cm. We created a SD prediction model by regression of the inverse SD of 13 measurements recorded on days when environmental conditions were acceptable for disk deployment with BA averaged over the same depth range as the measured SD. The relationship between inverse SD and averaged BA was significant and the average 95% confidence interval for predicted SD relative to the measured SD was ??1.6 m (range = -4.6 to 5.5 m) or ??5.0%. Eleven additional sample dates tested the accuracy of the predictive model. The average 95% confidence interval for these sample dates was ??0.7 m (range = -3.5 to 3.8 m) or ??2.2%. The 1996-2000 time-series means for measured and predicted SD varied by 0.1 m, and the medians varied by 0.5 m. The time-series mean annual measured and predicted SD's also varied little, with intra-annual differences between measured and predicted mean annual SD ranging from -2.1 to 0.1 m. The results demonstrated that this prediction model reliably estimated Secchi disk depths and can be used to significantly expand optical observations in an environment where the conditions for standardized SD deployments are limited. ?? 2007 Springer Science+Business Media B.V.
GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.
Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D
2016-12-15
This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Perkone, E.; Delina, A.; Saks, T.; Raga, B.; Jātnieks, J.; Klints, I.; Popovs, K.; Babre, A.; Bikše, J.; Kalvāns, A.; Retike, I.; Ukass, J.
2012-04-01
Carbonate aquifers show a very wide range of hydrogeological characteristics. Carbonate rock hydrogeology display two extremes: on one hand hydrogeological properties of the carbonates are governed by the pathways of the preferential groundwater flow typical in karstic regions, on the other - some carbonate aquifers behave almost like a homogeneous, isotropic, porous medium. Most lie between these extremes, but these case variations complicates the study of carbonate aquifer properties. In this study the results of the hydraulic conductivity in carbonate aquifers measurements, hydraulic conductivity correlation between sediments lithology and the aquifer surface depth and fractures research is presented. Upper Devonian Frasnian stage Pļaviņu and Daugava carbonate aquifers in the Latvian part of the Baltic basin is considered. The aim of this research is to elaborate characteristic hydraulic conductivity values for each aquifer based on existing data of the pumping test results and other aquifer properties. Pļaviņu and Daugava carbonate aquifers mainly consist of jointed dolomite with intermediate layers of dolomitic marlstone, limestone, clays and gypsum. These aquifers are prevalent in most of the study area, except Northern and South - Eastern parts of the territory. In geological structure Daugava aquifer lies above Pļaviņu aquifer. Daugava aquifer depth changes from 10 - 20 and even less meters in Eastern part to 250 - 300 m in South - West part of study area, but thickness varies from few meters to 30 m. Pļaviņu aquifer surface depth varies from 20 - 30 m, but in uplands surface depth reaches more than 120 m, in Eastern part to more than 300 m in South - West part of study area. Aquifer average thickness varies from 20 - 40 m, but in areas with buried valleys thickness can be less than 10 meters. Outcrops of these sediments are occurring in banks of largest rivers and in some areas aquifers are karstified. In studies of the carbonate aquifers it is very important to take into account the fact that groundwater flow in carbonate aquifers is often almost entirely dependent on jointing and concomitant joint enlargement by dissolution. In this study pumping test results provide a wide range of hydraulic conductivity values, for example in Pļaviņu aquifer hydraulic conductivity varies from 0,03 - 266 m/day but in Daugava aquifer values range from 0,06 - 735 m/day. Pumping test results is provided by Latvian Environment, Geology and Meteorology Centre. Studying average values of hydraulic conductivity there exists a correlation between K and aquifer flat depth - Daugava aquifer, which in geological structure, is located above the Pļaviņu aquifer has higher average K value - 32 m/day, in Pļaviņu aquifer - 27 m/day. Correlative study of the depth and hydraulic conductivity allowed to characterize the mean values as function of the aquifer depth for the regional groundwater flow modelling. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060
SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE
Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...
Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.
2018-03-01
Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2D seismic reflection data processing flow focused on pre - stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching (BHM), to estimate the uncertainties of the depths of key horizons near the borehole DSDP-258 located in the Mentelle Basin, south west of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ± 2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program (IODP), leg 369.
Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics
NASA Astrophysics Data System (ADS)
Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.
2018-06-01
Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-258) located in the Mentelle Basin, southwest of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent to the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program, leg 369.
Nonextensive kinetic theory and H-theorem in general relativity
NASA Astrophysics Data System (ADS)
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.
2017-11-01
The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.
Automated mapping of the ocean floor using the theory of intrinsic random functions of order k
David, M.; Crozel, D.; Robb, James M.
1986-01-01
High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.
Soil, Water, and Vegetation Conditions in South Texas
NASA Technical Reports Server (NTRS)
Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)
1976-01-01
The author has identified the following significant results. Reflectance differences between the dead leaves of six crops (corn, cotton, sorghum, sugar cane, citrus, and avocado) and the respective bare soils where the dead leaves were lying on the ground were determined from laboratory spectrophotometric measurements over the 0.5- to 2.5 micron wavelength interval. The largest differences were in the near infrared waveband 0.75- to 1.35 microns. Leaf area index was predicted from plant height, percent ground cover, and plant population for irrigated and nonirrigated grain sorghum fields for the 1975 growing season.
Moho Depth and Bulk Crustal Properties in Northern Quebec and Labrador
NASA Astrophysics Data System (ADS)
Vervaet, F.; Darbyshire, F. A.
2016-12-01
Northern Quebec and Labrador lie at the heart of the Laurentian landmass and preserve over 3 billion years of continental evolution. In this region the Archean Superior and Nain cratons are surrounded by Paleoproterozoic orogens such as New-Quebec, Trans-Hudson and Torngat, as well as the younger Grenville orogen to the SE. Study of crustal structure in this region provides valuable information on the assembly of the North American continent. We use data from 8 seismic stations installed in summer 2011 as part of the QUiLLE (Quebec-Labrador Lithospheric Experiment) project to investigate crustal structure, using receiver function analysis. The data set covers 5 years (2011-2016) for most of the stations, comprising several hundred events of magnitude ≥5 and epicentral distance 30-90°. After initial data processing and quality control, several tens of events per station were used in an H-κ stacking analysis to estimate Moho depth and bulk crustal properties. Some stations show significant complexity in their receiver functions, leading to inconclusive H-κ results, but the majority show a consistent Moho signal from which crustal parameters are successfully extracted. Crustal thickness varies from 33 to 49 km, with the thickest crust associated with the Trans-Hudson orogen in the Ungava region of northernmost Quebec and the thinnest beneath the central Labrador coast. Vp/Vs ratios (κ) lie in the range 1.71-1.86, with the majority of values consistent with granite-gneiss-tonalite bulk crustal compositions. The receiver functions are combined with surface-wave group velocity data to model the crustal structures in more detail beneath each station, allowing us to investigate crustal layering, Moho complexity and lateral heterogeneity.
NASA Astrophysics Data System (ADS)
Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.
2017-12-01
We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (<1.5 km below the seafloor), and at depths between 4 and 5 km below the seafloor. Comparing these deeper flat-lying reflectors with the wide-angle velocity model obtained from ocean-bottom seismometers data next to the 3-D box shows that they correspond to parts of the model with P wave velocity of 6.5-8 km/s, suggesting that they occur in the transition between lower crust and upper mantle. The 4-5 km layer with crustal P wave velocities is interpreted as primarily due to serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.
Monitoring indices of cow comfort in free-stall-housed dairy herds.
Cook, N B; Bennett, T B; Nordlund, K V
2005-11-01
Indices of cow comfort are used widely by consultants in the dairy industry, with a general understanding that they are representative of lying behavior. This study examines the influence of stall base type (sand or a geotextile mattress filled with rubber crumbs) and time of measurement on 4 indices of comfort collected at hourly intervals in 12 herds, aligned by morning and afternoon milking. Stall base type significantly influenced all indices of comfort. For example, the least squares mean (SE) cow comfort index (proportion of cows touching a stall that are lying down) was 0.76 (0.015) in herds with mattresses compared with 0.86 (0.015) in herds with sand stalls. Significant hourly variation was also identified suggesting that timing of measurement is important. None of the indices of cow comfort derived from the high-yielding group pen was associated with the mean 24-h lying time of 10 sentinel cows whose time budgets were known in each herd. However, the cow comfort index was associated with the herd mean 24-h stall standing time, with the strongest relationships occurring 2 h before the morning and afternoon milking, when stall base type did not significantly influence the association. When measured at these times, we recommend use of the stall standing index (proportion of cows touching a stall that are standing), with values greater than 0.20 being associated with abnormally long herd mean stall standing times greater than 2 h/d.
Measurements within the Pacific-Indian oceans throughflow region
NASA Astrophysics Data System (ADS)
Fieux, M.; Andrié, C.; Delecluse, P.; Ilahude, A. G.; Kartavtseff, A.; Mantisi, F.; Molcard, R.; Swallow, J. C.
1994-07-01
Two hydrographic (θ, S, O 2) and trichlorofluoromethane (F-11) sections were carried out between the Australian continental shelf and Indonesia, in August 1989, on board the R.V. Marion Dufresne. The sections lie in the easternmost part of the Indian Ocean where the throughflow between the Pacific Ocean and the Indian Ocean emerges. They allow us to describe the features of the water-property and circulation fields of the throughflow at its entrance in the Indian Ocean. Between the Australian continental shelf and Bali, the Subtropical and Central waters are separated from the waters of the Indonesian seas by a sharp hydrological front, located around 13°30 S, below the thermocline down to 700 m. Near the coast of Bali, upwelling occurs in the near-surface layer under the effect of the southeast monsoon; at depth, between 300 m to more than 800 m, a water mass of northern Indian Ocean origin was present. From the characteristics of the bottom water found in the Lombok basin, the maximum depth of the Java ridge which separates the Lombok basin from the Northwest Australian basin lies around 3650 m. Off Sumba, Savu, Roti and Timor channels a core of low salinity and high oxygen content near-surface water was found in the axis of each channel, which suggests strong currents from the interior Indonesian seas towards the Indian Ocean. The entrance of the deep water flowing in the opposite direction, from the Indian Ocean to the Timor basin, was marked below 1400 m to the sill depth, through an increase of salinity and oxygen content. The flow reversal, observed briefly by a Pegasus direct current profiler in the Timor strait, was located at 1200 m depth. During the southeast monsoon, the net (geostrophic + Ekman) transport calculated on the section Australia-Bali give an estimate of the throughflow between 0 and 500 m of 22 ± 4 × 10 6 m 3 s -1 towards the Indian Ocean, with a concentration of the transport in the upper layers (19 × 10 6 m 3 s -1 in 0-200 m) and near the Indonesian coast, north of 13°30 S. In this region of intense mixing, attempts to make a salinity budget were inconclusive but did not imply any reduction in estimated throughflow transport. Below 500 m the net transport is of the order of the uncertainty. The total estimated transport (0-1900 dbar, deepest sill depth) is 18.6 × 10 6 m 3 s -1 (±7) with a mean temperature of 23°C and a mean salinity of 34.0 psu (but may be as large as 23 × 10 6 m 3 s -1, with mean temperature of 20°C and mean salinity of 34.1 psu).
The Record of Geomagnetic Excursions from a ~150 m Sediment Core: Clear Lake, Northern California
NASA Astrophysics Data System (ADS)
Levin, E.; Byrne, R.; Looy, C. V.; Wahl, D.; Noren, A. J.; Verosub, K. L.
2015-12-01
We are studying the paleomagnetic properties of a new ~150 meter drill core from Clear Lake, CA. Step-wise demagnetization of the natural remanent magnetism (NRM) yields stable directions after 20 mT, implying that the sediments are reliable recorders of geomagnetic field behavior. Several intervals of low relative paleointensity (RPI) from the core appear to be correlated with known geomagnetic excursions. At about 46 m depth, and ~33 ka according to an age model based on radiocarbon dates obtained from pollen and the Olema ash bed, a low RPI zone seems to agree with the age and duration of the Mono Lake Excursion, previously identified between 32 and 35 ka. Slightly lower in the core, at about 50 m depth and ~40 ka, noticeably low RPI values seem to be coeval with the Laschamp excursion, which has been dated at ~41 ka. A volcanic ash near the bottom of the core (141 mblf) is near the same depth as an ash identified in 1988 by Andrei Sarna-Wojcicki and others as the Loleta ash bed in a previous Clear Lake core. If the basal ash in the new core is indeed the, Loleta ash bed, then the core may date back to about 270-300 ka. Depending on the age of the lowest ash, a sequence of low RPI intervals could correlate with the Blake (120 ka), Iceland Basin (188 ka), Jamaica/Pringle Falls (211 ka), and CR0 (260 ka) excursions. Correlation of the low RPI intervals to these geomagnetic excursions will help in the development of a higher resolution chronostratigraphy for the core, resolve a long-standing controversy about a possible hiatus in the Clear Lake record, and provide information about climatically-driven changes in sedimentation.
Atlas of depth-duration frequency of precipitation annual maxima for Texas
Asquith, William H.; Roussel, Meghan C.
2004-01-01
Ninety-six maps depicting the spatial variation of the depth-duration frequency of precipitation annual maxima for Texas are presented. The recurrence intervals represented are 2, 5, 10, 25, 50, 100, 250, and 500 years. The storm durations represented are 15 and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5, and 7 days. The maps were derived using geographically referenced parameter maps of probability distributions used in previously published research by the U.S. Geological Survey to model the magnitude and frequency of precipitation annual maxima for Texas. The maps in this report apply that research and update depth-duration frequency of precipitation maps available in earlier studies done by the National Weather Service.
Semiparametric regression analysis of interval-censored competing risks data.
Mao, Lu; Lin, Dan-Yu; Zeng, Donglin
2017-09-01
Interval-censored competing risks data arise when each study subject may experience an event or failure from one of several causes and the failure time is not observed directly but rather is known to lie in an interval between two examinations. We formulate the effects of possibly time-varying (external) covariates on the cumulative incidence or sub-distribution function of competing risks (i.e., the marginal probability of failure from a specific cause) through a broad class of semiparametric regression models that captures both proportional and non-proportional hazards structures for the sub-distribution. We allow each subject to have an arbitrary number of examinations and accommodate missing information on the cause of failure. We consider nonparametric maximum likelihood estimation and devise a fast and stable EM-type algorithm for its computation. We then establish the consistency, asymptotic normality, and semiparametric efficiency of the resulting estimators for the regression parameters by appealing to modern empirical process theory. In addition, we show through extensive simulation studies that the proposed methods perform well in realistic situations. Finally, we provide an application to a study on HIV-1 infection with different viral subtypes. © 2017, The International Biometric Society.
Pico, T; Creveling, J. R.; Mitrovica, J. X.
2017-01-01
The U.S. mid-Atlantic sea-level record is sensitive to the history of the Laurentide Ice Sheet as the coastline lies along the ice sheet's peripheral bulge. However, paleo sea-level markers on the present-day shoreline of Virginia and North Carolina dated to Marine Isotope Stage (MIS) 3, from 50 to 35 ka, are surprisingly high for this glacial interval, and remain unexplained by previous models of ice age adjustment or other local (for example, tectonic) effects. Here, we reconcile this sea-level record using a revised model of glacial isostatic adjustment characterized by a peak global mean sea level during MIS 3 of approximately −40 m, and far less ice volume within the eastern sector of the Laurentide Ice Sheet than traditional reconstructions for this interval. We conclude that the Laurentide Ice Sheet experienced a phase of very rapid growth in the 15 kyr leading into the Last Glacial Maximum, thus highlighting the potential of mid-field sea-level records to constrain areal extent of ice cover during glacial intervals with sparse geological observables. PMID:28555637
Characterizing the graded structure of false killer whale (Pseudorca crassidens) vocalizations.
Murray, S O; Mercado, E; Roitblat, H L
1998-09-01
The vocalizations from two, captive false killer whales (Pseudorca crassidens) were analyzed. The structure of the vocalizations was best modeled as lying along a continuum with trains of discrete, exponentially damped sinusoidal pulses at one end and continuous sinusoidal signals at the other end. Pulse trains were graded as a function of the interval between pulses where the minimum interval between pulses could be zero milliseconds. The transition from a pulse train with no inter-pulse interval to a whistle could be modeled by gradations in the degree of damping. There were many examples of vocalizations that were gradually modulated from pulse trains to whistles. There were also vocalizations that showed rapid shifts in signal type--for example, switching immediately from a whistle to a pulse train. These data have implications when considering both the possible function(s) of the vocalizations and the potential sound production mechanism(s). A short-time duty cycle measure was developed to characterize the graded structure of the vocalizations. A random sample of 500 vocalizations was characterized by combining the duty cycle measure with peak frequency measurements. The analysis method proved to be an effective metric for describing the graded structure of false killer whale vocalizations.
NASA Astrophysics Data System (ADS)
Coogan, J. C.; Decelles, P. G.
2007-12-01
Palinspastic reconstruction of Mesozoic thrust sheets provides the main constraint for an estimated 47 km of Cenozoic extensional displacement along the Sevier Desert detachment (SDD) in the central Sevier Desert Basin. Hanging wall and footwall piercing points indicate that the SDD accommodated a minimum of 35 km of extensional displacement in the narrower southern part of the basin. The piercing points for the SDD are defined by the intersection of the SDD, the Canyon Range thrust (CRT), and a regional early Cenozoic erosion surface (ES). The hanging wall piercing point lies immediately northeast of the Cricket Mountains, where the SDD-CRT- ES intersection is narrowly defined by intersecting structure maps derived from published seismic reflection data. The footwall piercing point lies in the southern foothills of the Canyon Range, where the SDD breakaway plane is well constrained by an industry seismic line that lies within 2 km of the exposed intersection of the CRT with the base of the Oligocene Oak City Formation. Timing of extension in the southern Sevier Desert basin is constrained by a kinematic reconstruction of detachment and imbricate fault displacement, footwall uplift, and supradetachment sedimentation for Oligocene, Miocene, and Plio-Pleistocene seismic sequences. The reconstruction is centered on a seismic reflection and gravity interpretation along the published Pan Canadian profiles 2 and 3 that is tied to dated intervals in six industry wells. Fault restoration indicates that Oligocene and Miocene phases of slip each accounted for about 40 percent of the total displacement. Simultaneous backstripping of the Oligocene, Miocene, and Plio-Pleistocene supradetachment sequences records hanging wall subsidence simultaneous with footwall uplift, with a footwall burial history that is consistent with published Miocene apatite and zircon fission-track ages of footwall samples. The geometric evolution of the southern SDD extensional system is consistent with its development above a broad westward-migrating "rolling hinge" zone associated with isostatic uplift of the detachment footwall. Hanging wall normal faults east of the footwall crest exhibit small post-Miocene displacement, with demonstrable Quaternary slip restricted to the crest and western limb of the uplift, most notably along the Black Rock and Clear Lake fault zones. Early abandonment of the eastern part of the detachment may explain the indistinct geomorphic and structural expression of the break-away zone at the surface. The deepest level of the southern SDD also presents a complex geometry and kinematic history. The 1996 Chevron 1-29 Black Rock Federal well through the western basin margin penetrated a normal fault that places Jurassic over lower Cambrian strata at 4650 m measured depth, well above the principal SDD seismic reflection. The fault is not correlated to any large- displacement high-angle fault at shallow levels, and may form the abandoned roof to an extensional duplex.
A method for depth-dose distribution measurements in tissue irradiated by a proton beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambarini, G.; Birattari, C.; Bartolo, D. de
1994-12-31
The use of protons and heavy ions for the treatment of malignant and non-malignant disease has aroused a growing interest in the last decade. The notable advantage of heavy charged particles over photons in external beam radiotherapy lies in the possibility of irradiating a small localized region within the body, keeping a low value for the entrance dose. Owing to this high disuniformity of energy deposition, an essential requirement for treatment planning is a precise evaluation of the spatial distribution of absorbed dose. The proposed method for depth-dose distribution measurements utilizes a chemical dosimeter (ferrous sulphate solution plus sulfuric acidmore » and eventually xylenol orange) incorporated in a gelatine, whose role is the maintenance of spatial information. Ionizing radiation causes a variation in some parameters of the system such as the proton relaxation rates in the solution (measurable by NMR analysis) or the optical absorption of the gel in the visible spectrum (measurable by spectrophotometry).« less
Detection of underground voids in Tahura Japan Cave Bandung using ground penetrating radar
NASA Astrophysics Data System (ADS)
Azimmah, Azizatun; Widodo
2017-07-01
The detection of underground voids is important due to their effects on subsidence higher risk. Ground Penetrating Radar is one of geophysical electromagnetic methods that has been proven to be able to detect and locate any void beneath the surface effectively at a shallow depth. This method uses the contrasts of dielectric properties, resistivity and magnetic permeability to investigate and map what lies beneath the surface. Hence, this research focused on how GPR could be applied for detecting underground voids at the site of investigation, The Japan Cave in Taman Hutan Raya located in Dago, Bandung, Indonesia. A 100 MHz GPR shielded antenna frequency were used to measure three >80 meters long measurement lines. These three GPR profiles were positioned on the surface above the Japan Cave. The radargram results showed existences of different amplitude regions proven to be the air-filled cavities, at a depth of <10 meters, and interfaces between the underneath layers.
NASA Astrophysics Data System (ADS)
Williams, G. D.; Hindell, M.; Houssais, M.-N.; Tamura, T.; Field, I. C.
2010-11-01
Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140-148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine-rejection in the local coastal polynyas. In 2005 two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for nearly two weeks at the onset of sea ice growth. One of the seals migrated north thereafter and the other headed west, possibly utilising the Antarctic Slope Front current near the continental shelf break. In 2010, after that years calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and occupied the Commonwealth Bay polynya from March through April. Here we present unique observations of the regional oceanography during the summer-fall transition, in particular (a) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (b) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (c) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth (7.5-12.5 cm s-1). Heat and freshwater budgets to 200-300 m are used to estimate the ocean heat content, heat flux and sea ice growth rates. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer-fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.
High-precision measurements of wetland sediment elevation. II The rod surface elevation table
Cahoon, D.R.; Lynch, J.C.; Perez, B.C.; Segura, B.; Holland, R.D.; Stelly, C.; Stephenson, G.; Hensel, P.
2002-01-01
A new high-precision device for measuring sediment elevation in emergent and shallow water wetland systems is described. The rod surface-elevation table (RSET) is a balanced, lightweight mechanical leveling device that attaches to both shallow ( 1 m in order to be stable. The pipe is driven to refusal but typically to a depth shallower than the rod bench mark because of greater surface resistance of the pipe. Thus, the RSET makes it possible to partition change in sediment elevation over shallower (e.g., the root zone) and deeper depths of the sediment profile than is possible with the SET. The confidence intervals for the height of an individual pin measured by two different operators with the RSET under laboratory conditions were A? 1.0 and A? 1.5 mm. Under field conditions, confidence intervals for the measured height of an individual pin ranged from A? 1.3 mm in a mangrove forest up to A? 4.3 mm in a salt marsh.
Simon, N.S.; Kennedy, M.M.; Massoni, C.S.
1985-01-01
Field and laboratory evaluations were made of a simple, inexpensive diffusion-controlled sampler with ports on two sides at each interval which incorporates 0.2-??m polycarbonate membrane to filter samples in situ. Monovalent and divalent ions reached 90% of equilibrium between sampler contents and the external solution within 3 and 6 hours, respectively. Sediment interstitial water chemical gradients to depths of tens of centimeters were obtained within several days after placement. Gradients were consistent with those determined from interstitial water obtained by centrifugation of adjacent sediment. Ten milliliter sample volumes were collected at 1-cm intervals to determine chemical gradients and dissolved oxygen profiles at depth and at the interface between the sediment and water column. The flux of dissolved species, including oxygen, across the sediment-water interface can be assessed more accurately using this sampler than by using data collected from benthic cores. ?? 1985 Dr W. Junk Publishers.
Foraging depths of sea otters and implications to coastal marine communities
Bodkin, James L.; Esslinger, George G.; Monson, Daniel H.
2004-01-01
We visually observed 1,251 dives, of 14 sea otters instrumented with TDRs in southeast Alaska, and used attribute values from observed dives to classify 180,848 recorded dives as foraging (0.64), or traveling (0.36). Foraging dives were significantly deeper, with longer durations, bottom times, and postdive surface intervals, and greater descent and ascent rates, compared to traveling dives. Most foraging occurred in depths between 2 and 30 m (0.84), although 0.16 of all foraging was between 30 and 100 m. Nine animals, including all five males, demonstrated bimodal patterns in foraging depths, with peaks between 5 and 15 m and 30 and 60 m, whereas five of nine females foraged at an average depth of 10 m. Mean shallow foraging depth was 8 m, and mean deep foraging depth was 44 m. Maximum foraging depths averaged 61 m (54 and 82 for females and males, respectively) and ranged from 35 to 100 m. Female sea otters dove to depths ≤20 m on 0.85 of their foraging dives while male sea otters dove to depths ≥45 m on 0.50 of their foraging dives. Less than 0.02 of all foraging dives were >55 m, suggesting that effects of sea otter foraging on nearshore marine communities should diminish at greater depths. However, recolonization of vacant habitat by high densities of adult male sea otters may result in initial reductions of some prey species at depths >55 m.
A Hydraulic Tomography Experiment in Fractured Sedimentary Rocks, Newark Basin, New Jersey, USA
NASA Astrophysics Data System (ADS)
Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Johnson, C. D.
2015-12-01
Hydraulic tomography was performed in July 2015 in contaminated fractured mudstone beds at the former Naval Air Warfare Center (NAWC) in the Newark Basin near Trenton, NJ using seven existing wells. The spatial arrangement of wells (in a circle of 9 m radius with one central well), the use of packers to divide the wells into multiple monitoring intervals, and the deployment of fiber optic pressure transducers enabled collection of a hydraulic tomography dataset comprising high-resolution drawdown observations at an unprecedented level of spatial detail for fractured rocks. The experiment involved 45-minute cross-hole aquifer tests, conducted by pumping from a given packer-isolated well interval and continuously monitoring drawdowns in all other well intervals. The collective set of drawdown data from all tests and intervals displays a wide range of behavior suggestive of highly heterogeneous hydraulic conductivity (K) within the tested volume, such as: drawdown curves for different well intervals crossing one another on drawdown-time plots; variable drawdown curve shapes, including linear segments on log-log plots; variable order and magnitude of time-lag and/or drawdown for intervals of a given well in response to pumping from similar fractures or stratigraphic units in different wells; and variable groupings of wells and intervals showing similar responses for different pumping tests. The observed behavior is consistent with previous testing at the NAWC indicating that K within and across individual mudstone beds can vary by orders of magnitude over scales of meters. Preliminary assessment of the drawdown data together with a rich set of geophysical logs suggests an initial conceptual model that includes densely distributed fractures of moderate K at the shallowest depths of the tested volume, connected high-K bedding-plane-parting fractures at intermediate depths, and sparse low-K fractures in the deeper rocks. Future work will involve tomographic inversion of the data to estimate the K distribution at a scale of ~1 m3 in the upper two-thirds of the investigated volume where observation density is greatest.
Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment
NASA Technical Reports Server (NTRS)
Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu
2012-01-01
The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This poster presents PHITS data suggesting an increase in dose, up to roughly 10 cm depth, followed by a continual decrease as neutrons come to a stop in the target.
NASA Astrophysics Data System (ADS)
Lamarque, Gaëlle; Barruol, Guilhem; Fontaine, Fabrice R.; Bascou, Jérôme; Ménot, René-Pierre
2015-02-01
The Terre Adélie and George V Land (East Antarctica) represent key areas for understanding tectonic relationships between terranes forming the Neoarchean-Palaeoproterozoic Terre Adélie Craton (TAC) and the neighbouring lithospheric blocks, together with the nature of its boundary. This region that represents the eastern border of the TAC is limited on its eastern side by the Mertz shear zone (MSZ) separating more recent Palaeozoic units from the craton. The MSZ, that recorded dextral strike-slip movement at 1.7 and 1.5 Ga, is likely correlated with the Kalinjala or Coorong shear zone in South Australia, east of the Gawler Craton and may therefore represent a frozen lithospheric-scale structure. In order to investigate the lithospheric structure of the TAC and the MSZ, we deployed from 2009 October to 2011 October four temporary seismic stations, which sampled the various lithospheric units of the TAC and of the neighbouring Palaeozoic block, together with the MSZ. We used receiver function method to deduce Moho depths and seismic anisotropy technique to infer the upper mantle deformation. Results from receiver functions analysis reveal Moho at 40-44 km depth beneath the TAC, at 36 km under the MSZ and at 28 km beneath the eastern Palaeozoic domain. The MSZ therefore delimits two crustal blocks of different thicknesses with a vertical offset of the Moho of 12 km. Seismic anisotropy deduced from SKS splitting at stations on the TAC shows fast polarisation directions (Φ) trending E-W, that is, parallel to the continental margin, and delay times (δt) ranging from 0.8 to 1.6 s. These results are similar to the splitting parameters observed at the permanent GEOSCOPE Dumont D'Urville station (DRV: Φ 95°N, δt 1.1 s) located in the Palaeoproterozoic domain of TAC. On the MSZ, the small number of good quality measurements limits the investigation of the deep signature of the shear zone. However, the station in the Palaeozoic domain shows Φ trending N60°E, which is significantly different to the Φ trending measurements from stations on the TAC, suggesting that the MSZ may also represent a major frontier between the Neoarchean-Palaeoproterozoic and Palaeozoic terranes.
Biosonar, diving and movements of two tagged white-beaked dolphin in Icelandic waters
NASA Astrophysics Data System (ADS)
Rasmussen, M. H.; Akamatsu, T.; Teilmann, J.; Vikingsson, G.; Miller, L. A.
2013-04-01
For the first time bio-logging tags were attached to free-ranging white-beaked dolphins, Lagenorhynchus albirostris. A satellite tag was attached to one animal while an acoustic A-tag, a time-depth recorder and a VHF transmitter complex was attached to a second dolphin with a suction cup. The satellite tag transmitted for 201 day, during which time the dolphin stayed in the coastal waters of western Iceland. The acoustic tag complex was on the second animal for 13 h and 40 min and provided the first insight into the echolocation behaviour of a free-ranging white-beaked dolphin. The tag registered 162 dives. The dolphin dove to a maximum depth of 45 m, which is about the depth of the bay in which the dolphin was swimming. Two basic types of dives were identified; U-shaped and V-shaped dives. The dolphin used more time in U-shaped dives, more clicks and sonar signals with shorter click intervals compared to those it used in V-shaped dives. The dolphin was in acoustic contact with other dolphins about five hours after it was released and stayed with these for the rest of the tagging time. Possible foraging attempts were found based on the reduction of click intervals from about 100 ms to 2-3 ms, which suggests a prey capture attempt. We found 19 punitive prey capture attempts and of these 53% occurred at the maximum dive depth. This suggests that more than half of the possible prey capture events occurred at or near the sea bed.
Magirl, Christopher S.; Olsen, Theresa D.
2009-01-01
Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.
Seismic evidence for a tilted mantle plume and north-south mantle flow beneath Iceland
Shen, Y.; Solomon, S.C.; Bjarnason, I. Th; Nolet, G.; Morgan, W.J.; Allen, R.M.; Vogfjord, K.; Jakobsdottir, S.; Stefansson, R.; Julian, B.R.; Foulger, G.R.
2002-01-01
Shear waves converted from compressional waves at mantle discontinuities near 410- and 660-km depth recorded by two broadband seismic experiments in Iceland reveal that the center of an area of anomalously thin mantle transition zone lies at least 100 km south of the upper-mantle low-velocity anomaly imaged tomographically beneath the hotspot. This offset is evidence for a tilted plume conduit in the upper mantle, the result of either northward flow of the Icelandic asthenosphere or southward flow of the upper part of the lower mantle in a no-net-rotation reference frame. ?? 2002 Elsevier Science B.V. All rights reserved.
Martian tension fractures and the formation of grabens and collapse features at Valles Marineris
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Golombek, M. P.
1989-01-01
Simple models of the Martian crust are summarized that predict extensional deformation style on the basis of depth, material friction and strength, and hydraulic conditions appropriate to the planet. These models indicate that tension fractures may be common features on Mars, given adequate differential stress conditions. Examples of tension fractures on Mars inferred from morphological criteria are examined based on the probable geologic conditions in which they formed and on model constraints. It is proposed that the grabens and collapse features of Valles Marineris are controlled by tension fractures in intact basement rocks that lie below impact ejecta.
Design and field tests of an access-tube soil water sensor
USDA-ARS?s Scientific Manuscript database
Accurate soil profile water content monitoring at multiple depths until now, has been possible only using the neutron probe (NP), but with great effort and at infrequent time intervals. Despite the existence of several electromagnetic sensor systems for profile water content measurements, accuracy ...
Assessment Of Bioaccumulation Potential Following Dredging In Mainistique, Michigan
After the Superfund remedy of the Mainistique River and Harbor that occurred in 1996 to 2001, PCB concentrations in sediment have gone down substantially. Prior to dredging, the average PCB concentration was 28 ppm (all depth intervals) and the current average in sediments is 0....
Field tests of a down-hole TDR profiling water content measurement system
USDA-ARS?s Scientific Manuscript database
Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...
IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, Frédéric; Bazin, Lucie; Capron, Emilie; Landais, Amaëlle; Lemieux-Dudon, Bénédicte; Masson-Delmotte, Valérie
2016-04-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age scale uncertainty are essential to interpret the climate and environmental records that they contain. It is however a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the Lock-In Depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are: models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice and air dated horizons, ice and air depth intervals with known durations, Δdepth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 chronology for 4 Antarctic ice cores and 1 Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono is demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as gas intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the GPL v3 open source license.
IceChrono1: a probabilistic model to compute a common and optimal chronology for several ice cores
NASA Astrophysics Data System (ADS)
Parrenin, F.; Bazin, L.; Capron, E.; Landais, A.; Lemieux-Dudon, B.; Masson-Delmotte, V.
2015-05-01
Polar ice cores provide exceptional archives of past environmental conditions. The dating of ice cores and the estimation of the age-scale uncertainty are essential to interpret the climate and environmental records that they contain. It is, however, a complex problem which involves different methods. Here, we present IceChrono1, a new probabilistic model integrating various sources of chronological information to produce a common and optimized chronology for several ice cores, as well as its uncertainty. IceChrono1 is based on the inversion of three quantities: the surface accumulation rate, the lock-in depth (LID) of air bubbles and the thinning function. The chronological information integrated into the model are models of the sedimentation process (accumulation of snow, densification of snow into ice and air trapping, ice flow), ice- and air-dated horizons, ice and air depth intervals with known durations, depth observations (depth shift between synchronous events recorded in the ice and in the air) and finally air and ice stratigraphic links in between ice cores. The optimization is formulated as a least squares problem, implying that all densities of probabilities are assumed to be Gaussian. It is numerically solved using the Levenberg-Marquardt algorithm and a numerical evaluation of the model's Jacobian. IceChrono follows an approach similar to that of the Datice model which was recently used to produce the AICC2012 (Antarctic ice core chronology) for four Antarctic ice cores and one Greenland ice core. IceChrono1 provides improvements and simplifications with respect to Datice from the mathematical, numerical and programming point of views. The capabilities of IceChrono1 are demonstrated on a case study similar to the AICC2012 dating experiment. We find results similar to those of Datice, within a few centuries, which is a confirmation of both IceChrono1 and Datice codes. We also test new functionalities with respect to the original version of Datice: observations as ice intervals with known durations, correlated observations, observations as air intervals with known durations and observations as mixed ice-air stratigraphic links. IceChrono1 is freely available under the General Public License v3 open source license.
Wang, Xiujuan; Lee, Myung W.; Collett, Timothy S.; Yang, Shengxiong; Guo, Yiqun; Wu, Shiguo
2014-01-01
Downhole wireline log (DWL) data was acquired from eight drill sites during China's first gas hydrate drilling expedition (GMGS-1) in 2007. Initial analyses of the acquired well log data suggested that there were no significant gas hydrate occurrences at Site SH4. However, the re-examination of the DWL data from Site SH4 indicated that there are two intervals of high resistivity, which could be indicative of gas hydrate. One interval of high resistivity at depth of 171–175 m below seafloor (mbsf) is associated with a high compressional- wave (P-wave) velocities and low gamma ray log values, which suggests the presence of gas hydrate in a potentially sand-rich (low clay content) sedimentary section. The second high resistivity interval at depth of 175–180 mbsf is associated with low P-wave velocities and low gamma values, which suggests the presence of free gas in a potentially sand-rich (low clay content) sedimentary section. Because the occurrence of free gas is much shallower than the expected from the regional depth of the bottom simulating reflector (BSR), the free gas could be from the dissociation of gas hydrate during drilling or there may be a local anomaly in the depth to the base of the gas hydrate stability zone. In order to determine whether the low P-wave velocity with high resistivity is caused by in-situ free gas or dissociated free gas from the gas hydrate, the surface seismic data were also used in this analysis. The log analysis incorporating the surface seismic data through the construction of synthetic seismograms using various models indicated the presence of free gas directly in contact with an overlying gas hydrate-bearing section. The occurrence of the anomalous base of gas hydrate stability at Site SH4 could be caused by a local heat flow conditions. This paper documents the first observation of gas hydrate in what is believed to be a sand-rich sediment in Shenhu area of the South China Sea.
Kositchaiwat, Savit; Suwanthanmma, Weerapat; Suvikapakornkul, Ronnarat; Tiewthanom, Vaewvadee; Rerkpatanakit, Prisna; Tinkornrusmee, Chaowalitr
2006-09-14
To compare the efficacy and acceptance of senna tablet and sodium phosphate solution for bowel preparation before colonoscopy. One hundred and thirty four patients, who needed elective colonoscopy, were randomly allocated to take 180 mg senna tablet or 95 mL sodium phosphate solution on the day before colonoscopy. The efficacies of both laxatives were compared using the mean difference of colon-cleanliness score of the rectum, sigmoid segments, descending colon, transverse colon and cecum. The scores were rated by two observers who were blinded to the laxatives administered. The higher score means that the colon is cleaner. The efficacy of both laxatives were equivalent if the 95% confidence interval of the mean difference of the score of colon lie within -1 to +1. On intention-to-treat analysis, the mean cleanliness scores in the four segments of colon except the cecum were higher in the sodium phosphate group than those in senna group (7.9 +/- 1.7 vs 8.3 +/- 1.5, 8.0 +/- 1.8 vs 8.5 +/- 1.4, 7.9 +/- 2.0 vs 8.5 +/- 1.3, 7.9 +/- 2.0 vs 8.2 +/- 1.4 and 7.2 +/- 1.7 vs 6.9 +/- 1.4, respectively). The 95% confidence intervals (95% CI) of mean difference in each segment of colon were not found to lie within 1 point which indicated that their efficacies were not equivalent. The taste of senna was better than sodium phosphate solution. Also, senna had fewer side effects. The efficacy of senna is not equivalent to sodium phosphate solution in bowel preparation for colonoscopy, but senna may be considered an alternative laxative.
Kositchaiwat, Savit; Suwanthanmma, Weerapat; Suvikapakornkul, Ronnarat; Tiewthanom, Vaewvadee; Rerkpatanakit, Prisna; Tinkornrusmee, Chaowalitr
2006-01-01
AIM: To compare the efficacy and acceptance of senna tablet and sodium phosphate solution for bowel preparation before colonoscopy. METHODS: One hundred and thirty four patients, who needed elective colonoscopy, were randomly allocated to take 180 mg senna tablet or 95 mL sodium phosphate solution on the day before colonoscopy. The efficacies of both laxatives were compared using the mean difference of colon-cleanliness score of the rectum, sigmoid segments, descending colon, transverse colon and cecum. The scores were rated by two observers who were blinded to the laxatives administered. The higher score means that the colon is cleaner. The efficacy of both laxatives were equivalent if the 95% confidence interval of the mean difference of the score of colon lie within -1 to +1. RESULTS: On intention-to-treat analysis, the mean cleanliness scores in the four segments of colon except the cecum were higher in the sodium phosphate group than those in senna group (7.9 ± 1.7 vs 8.3 ± 1.5, 8.0 ± 1.8 vs 8.5 ± 1.4, 7.9 ± 2.0 vs 8.5 ± 1.3, 7.9 ± 2.0 vs 8.2 ± 1.4 and 7.2 ± 1.7 vs 6.9 ± 1.4, respectively). The 95% confidence intervals (95% CI) of mean difference in each segment of colon were not found to lie within 1 point which indicated that their efficacies were not equivalent. The taste of senna was better than sodium phosphate solution. Also, senna had fewer side effects. CONCLUSION: The efficacy of senna is not equivalent to sodium phosphate solution in bowel preparation for colonoscopy, but senna may be considered an alternative laxative. PMID:17006995
Roberts, S.B.; Stanton, R.W.; Flores, R.M.
1994-01-01
Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.
Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juyal, R.C.; Figuera, L.E.; Hauge, X.
1996-05-01
Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (1) FISH analysis, (2) PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosomemore » 17 from selected patients, and (3) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. 49 refs.« less
Grain Size Biasing of 230Th-derived Focusing Factors in the Panama Basin
NASA Astrophysics Data System (ADS)
Loveley, M. R.; Marcantonio, F.; Lyle, M. W.; Ibrahim, R.; Wang, J. K.; Hertzberg, J. E.
2014-12-01
In this study, we attempt to understand how differing grain size classes in Panama Basin sediments may create biasing of 230Th as a constant-flux proxy. Greater amounts of 230Th are contained in fine grained particles, which, if fractionated from coarser grained counterparts may lead to biasing of 230Th-derived mass accumulation rates (MARs) and sediment focusing factors. We examined sediments that span the past 25 kyr from four new sediment cores retrieved from two different localities close to the ridges that bound the Panama Basin. Each locality contained paired sites that were seismically interpreted to have undergone sediment redistribution, i.e., thick focused sites versus thin winnowed sites. Two sediment cores were retrieved from the northern part of the Panama basin, Cocos Ridge, (MV1014-01-"4JC", 5° 44.7'N 85° 45.5' W, 1730 m depth; MV1014-01-"8JC", 6° 14.0'N 86° 2.6' W, 1993 m depth), and two were retrieved from the southern part of the basin, Carnegie Ridge, (MV1014-02-"11JC", 0° 41.6'S 85° 20.0' W, 2452 m depth; MV1014-02-"17JC" 0° 10.8'S 85° 52.0' W, 2846 m depth). Cores 4JC and 11JC lie closer to the ridge tops of the Cocos and Carnegie Ridges, respectively, and have thin sediment drapes, while deeper cores, 8JC (Cocos) and 17JC (Carnegie), have thicker sediment drapes and lie downslope from the ridge top cores. Age-model-derived sand MARs, which likely represent the vertical rain of particles that cannot be transported by bottom currents, are similar at each of the paired sites in Holocene and glacial time slices. However, 230Th-normalized MARs are about 50% lower, on average at each of the paired sites during the same time slices. Both Holocene and glacial samples from "thin" cores (4,11JC) contain, surprisingly, significant amounts (up to 50%) of the 230Th within the coarse grained (>63 μm) fraction which makes up 40-70% of the bulk samples analyzed. On the contrary, Holocene and glacial samples from "thick" cores, (8,17JC), contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4μm), which makes up 26-40% of the bulk samples analyzed. Although, redistribution of sediment has taken place, our analysis indicates that 230Th-derived focusing factors are being overestimated at thick sites and underestimated at thin sites.
NASA Astrophysics Data System (ADS)
Rutherford, B. S.; Speece, M. A.; Stickney, M. C.; Mosolf, J. G.
2013-12-01
Reprocessing of one 24-fold (96 channel) and four 30-fold (120 channel) 2D seismic reflection profiles have revealed crustal scale reflections in the Swan Range and adjacent Swan River Valley of northwestern Montana. The five reprocessed profiles constitute 142.6 of the 303.3 linear km acquired in 1983-84 by Techo of Denver, Colorado. The four 30-fold profiles used helicopter-assisted dynamite shooting (Poulter method) and the 24-fold profile used the Vibroseis method. Acquisition parameters were state of the art for the time. The Swan Range lies east of the Rocky Mountain Trench and is part of the Cordilleran foreland thrust belt where the Lewis thrust system emplaced a thick slab of Proterozoic Belt Supergroup strata eastward and over Paleozoic and Mesozoic rocks during the Late Cretaceous to early Paleocene Laramide orogeny. Deeply drilled borehole data are absent within the study area; however, we generated a synthetic seismogram from the Arco-Marathon 1 Paul Gibbs well (total depth=5418 m), located approximately 70 km west of the reprocessed profiles, and correlated the well data to surface seismic profiles. Large impedance contrasts in the log data are interpreted to be tholeiitic Moyie sills within the Prichard Formation argillite (Lower Belt), which produce strong reflection events in regional seismic sections and result in highly reflective, east-dipping events in the reprocessed profiles. We estimate a depth of 10 km (3 to 3.5 seconds) to the basal detachment of the Lewis thrust sheet. The décollement lies within Belt Supergroup strata to the west of the Swan River Valley before contacting unreflective, west-dipping crystalline basement beneath the Swan Range--a geometry that results in a wedge of eastward-thinning, autochthonous Belt rocks. Distinct fault-plane signatures from the west-dipping, range-bounding Swan fault--produced by extensional collapse of the over-thickened Cordillera--are not successfully imaged. However, reflections from Cenozoic half-graben fill suggest up to 1.5 km of Cenozoic basin filling sediments are present. Refraction tomography velocity modeling of distinct refracted arrivals, prevalent in the gathers, constrain a half-graben geometry for the Swan Valley. Signal attenuation within the low-velocity valley fill make correlation of reflectors at the depth of the décollement impossible underneath the Swan Valley. Prestack depth migration of the sections is anticipated to improve geometric constraints on major structural features of the Swan Range and Swan Valley.
NASA Astrophysics Data System (ADS)
Kozur, H. W.
2007-01-01
The conodont succession and stratigraphic events around the Permian-Triassic boundary (PTB) have been investigated in detail in the open sea deposits of Iran (Abadeh and Shahreza in central Iran, and Jolfa and Zal in northwestern Iran). This investigation produced a very detailed conodont zonation from the Clarkina nodosa Zone up to the Isarcicella isarcica Zone. All significant events have been accurately located and dated within this zonation, and the duration of most of these conodont zones has been calculated by cross-correlation with continental lake deposits that display obvious Milankovitch cyclicity. The unusually short duration of all conodont zones in the interval from the C. nodosa up to the Hindeodus parvus Zone indicates that there was persistent high ecological stress during this time interval. Most of the conodont zones can be accurately correlated with South China. In the interval from the C. hauschkei Zone to the H. parvus Zone, even correlation with the Arctic is possible. Within three thin stratigraphic intervals, the Changhsingian (Dorashamian) warm water conodont fauna of the C. subcarinata lineage is replaced by a cool water fauna with small H. typicalis, rare Merrillina sp., and cool water Clarkina that have very widely spaced denticles. The uppermost cool water fauna horizon comprises the lower C. zhangi Zone and can be accurately correlated with continental beds by recognition of a short reversed magnetozone below the long uppermost Permian-lowermost Triassic normal magnetozone. In Iran and Transcaucasia, this short reversed zone comprises the upper C. changxingensis- C. deflecta Zone and most of the C. zhangi Zone. Its top lies 50 cm below the top of the Paratirolites Limestone (s.s.) in the Dorasham 2 section, which is at the beginning of the upper quarter of the C. zhangi Zone. In the Germanic Basin, this short palaeomagnetic interval comprises the lower and the basal part of the upper Fulda Formation. On the Russian Platform, the Nedubrovo Formation belongs to this short reversed magnetic interval. In its upper part (corresponding to the top of the lower C. zhangi Zone, see above) there is a fallout of mafic tuffs from the Siberian Trap event that originated about 3000 km away in eruption centres in the Siberian Tungusska Basin. In the Germanic Basin and in Iran, this horizon contains volcanic microsphaerules. Thus, a direct correlation can be made between the immigration of a cool water fauna into the tropical realm and an exceptionally strong interval of explosive activity during the Siberian Trap volcanic episode. These faunal changes are the same as those found at the base of the Boundary Clay, suggesting that a short cooling event at this horizon also was due to intense volcanism. Additional influence by a bolide impact cannot be excluded. Most of the events in the interval from the C. nodosa up to the I. isarcica Zone (upper Changhsingian to middle Gangetian) in the Iranian sections can be also observed in other marine sections (e.g., in Meishan) and even in continental sections of the Germanic Basin. Of particular significance is the fact that, in the investigated Iranian sections, the PTB lies either in red sediments or in light grey sediments (as in Abadeh) that contain an ostracod fauna indicative of highly oxygenated bottom waters. Therefore, anoxia cannot be the reason for the PTB extinction event in this region, even though anoxia does cause locally or regionally elsewhere an overprint on the extinction event.
Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.
Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G
2010-04-01
The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sex-Based Differences in Adélie Penguin (Pygoscelis adeliae) Chick Growth Rates and Diet.
Jennings, Scott; Varsani, Arvind; Dugger, Katie M; Ballard, Grant; Ainley, David G
2016-01-01
Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d(-1) faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species--one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact the two sexes differently.
Sex-Based Differences in Adélie Penguin (Pygoscelis adeliae) Chick Growth Rates and Diet
Jennings, Scott; Varsani, Arvind; Dugger, Katie M.; Ballard, Grant; Ainley, David G.
2016-01-01
Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species—one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact the two sexes differently. PMID:26934698
Nystrom, Elizabeth A.; Burns, Douglas A.
2011-01-01
TOPMODEL uses a topographic wetness index computed from surface-elevation data to simulate streamflow and subsurface-saturation state, represented by the saturation deficit. Depth to water table was computed from simulated saturation-deficit values using computed soil properties. In the Fishing Brook Watershed, TOPMODEL was calibrated to the natural logarithm of streamflow at the study area outlet and depth to water table at Sixmile Wetland using a combined multiple-objective function. Runoff and depth to water table responded differently to some of the model parameters, and the combined multiple-objective function balanced the goodness-of-fit of the model realizations with respect to these parameters. Results show that TOPMODEL reasonably simulated runoff and depth to water table during the study period. The simulated runoff had a Nash-Sutcliffe efficiency of 0.738, but the model underpredicted total runoff by 14 percent. Depth to water table computed from simulated saturation-deficit values matched observed water-table depth moderately well; the root mean squared error of absolute depth to water table was 91 millimeters (mm), compared to the mean observed depth to water table of 205 mm. The correlation coefficient for temporal depth-to-water-table fluctuations was 0.624. The variability of the TOPMODEL simulations was assessed using prediction intervals grouped using the combined multiple-objective function. The calibrated TOPMODEL results for the entire study area were applied to several subwatersheds within the study area using computed hydrogeomorphic properties of the subwatersheds.
Zhang, Hairong; Salo, Daniel; Kim, David M; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y
2016-12-01
Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent.
Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.
1989-01-01
Because gas hydrates from within a limited temperature range, subsurface equilibrium temperature data are necessary to calculate the depth and thickness of the gas-hydrate stability field. Acquiring these data is difficult because drilling activity often disrupts equilibrium temperatures in the subsurface, and a well mush lie undisturbed until thermal equilibrium is reestablished (Lachenbruch and Brewer, 1959). On the North Slope if Akaska, a series of 46 oil and gas exploratory wells, which were considered to be near thermal equilibrium (Lachenbruch and others, 1982; 1987), were surveyed with high-resolution temperature devices (see table 1). However, several thousand other exploratory and production wells have been drilled on the North Slope, and although they do not include temperature profiles, their geophysical logs often allow descrimination between ice-bearing and non-ice-bearing strata. At the outset of this study, the coincidence of the base of ice-bearing strata being near the same depth as the 0°C isotherm at Prudhoe Bay (Lachenbruch and others, 1982) appeared to offer an opportunity to quickly and inexpensively expand the size of our subsurface temperature data base merely by using well logs to identify the base of the ice-bearing strata.
Single grating x-ray imaging for dynamic biological systems
NASA Astrophysics Data System (ADS)
Morgan, Kaye S.; Paganin, David M.; Parsons, David W.; Donnelley, Martin; Yagi, Naoto; Uesugi, Kentaro; Suzuki, Yoshio; Takeuchi, Akihisa; Siu, Karen K. W.
2012-07-01
Biomedical studies are already benefiting from the excellent contrast offered by phase contrast x-ray imaging, but live imaging work presents several challenges. Living samples make it particularly difficult to achieve high resolution, sensitive phase contrast images, as exposures must be short and cannot be repeated. We therefore present a single-exposure, high-flux method of differential phase contrast imaging [1, 2, 3] in the context of imaging live airways for Cystic Fibrosis (CF) treatment assessment [4]. The CF study seeks to non-invasively observe the liquid lining the airways, which should increase in depth in response to effective treatments. Both high spatial resolution and sensitivity are required in order to track micron size changes in a liquid that is not easily differentiated from the tissue on which it lies. Our imaging method achieves these goals by using a single attenuation grating or grid as a reference pattern, and analyzing how the sample deforms the pattern to quantitatively retrieve the phase depth of the sample. The deformations are mapped at each pixel in the image using local cross-correlations comparing each 'sample and pattern' image with a reference 'pattern only' image taken before the sample is introduced. This produces a differential phase image, which may be integrated to give the sample phase depth.
Atlas of depth-duration frequency of precipitation annual maxima for Texas
Asquith, William H.; Roussel, Meghan C.
2004-01-01
The objective of this Texas Department of Transportation (TxDOT) and U.S. Geological Survey (USGS) cooperatively funded project was to develop a simple-to-use atlas of precipitation depths in Texas for selected storm durations and frequencies on the basis of the research results and unpublished digital archives of Asquith (1998). The selected storm durations are 15 and 30 minutes; 1, 2, 3, 6, and 12 hours; and 1, 2, 3, 5, and 7 days. The selected storm frequencies or annual recurrence intervals are 2, 5, 10, 25, 50, 100, 250, and 500 years. Depth-duration frequency (DDF) of annual precipitation maxima is important for cost-effective, risk-mitigated hydrologic design. DDF values are in common and wide-spread use by public and private entities throughout Texas.
A locus for isolated cataract on human Xp
Francis, P; Berry, V; Hardcastle, A; Maher, E; Moore, A; Bhattacharya, S
2002-01-01
Purpose: To genetically map the gene causing isolated X linked cataract in a large European pedigree. Methods: Using the patient registers at Birmingham Women's Hospital, UK, we identified and examined 23 members of a four generation family with nuclear cataract. Four of six affected males also had complex congenital heart disease. Pedigree data were collated and leucocyte DNA extracted from venous blood. Linkage analysis by PCR based microsatellite marker genotyping was used to identify the disease locus and mutations within candidate genes screened by direct sequencing. Results: The disease locus was genetically refined to chromosome Xp22, within a 3 cM linkage interval flanked by markers DXS9902 and DXS999 (Zmax=3.64 at θ=0 for marker DXS8036). Conclusions: This is the first report of a locus for isolated inherited cataract on the X chromosome. The disease interval lies within the Nance-Horan locus suggesting allelic heterogeneity. The apparent association with congenital cardiac anomalies suggests a possible new oculocardiac syndrome. PMID:11836358
A locus for isolated cataract on human Xp.
Francis, P J; Berry, V; Hardcastle, A J; Maher, E R; Moore, A T; Bhattacharya, S S
2002-02-01
To genetically map the gene causing isolated X linked cataract in a large European pedigree. Using the patient registers at Birmingham Women's Hospital, UK, we identified and examined 23 members of a four generation family with nuclear cataract. Four of six affected males also had complex congenital heart disease. Pedigree data were collated and leucocyte DNA extracted from venous blood. Linkage analysis by PCR based microsatellite marker genotyping was used to identify the disease locus and mutations within candidate genes screened by direct sequencing. The disease locus was genetically refined to chromosome Xp22, within a 3 cM linkage interval flanked by markers DXS9902 and DXS999 (Zmax=3.64 at theta=0 for marker DXS8036). This is the first report of a locus for isolated inherited cataract on the X chromosome. The disease interval lies within the Nance-Horan locus suggesting allelic heterogeneity. The apparent association with congenital cardiac anomalies suggests a possible new oculocardiac syndrome.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
Allen, B.D.; Connell, S.D.; Hawley, J.W.; Stone, B.D.
1998-01-01
Core samples from the upper ???1500 ft of the Santa Fe Group in the Albuquerque West Mesa area provide a first-hand look at the sediments and at subsurface stratigraphic relationships in this important part of the basin-fill aquifer system. Two major hydrostratigraphic subunits consisting of a lower coarse-grained, sandy interval and an overlying fine-grained, interbedded silty sand and clay interval lie beneath the water table at the 98th St core hole. Borehole electrical conductivity measurements reproduce major textural changes observed in the recovered cores and support subsurface correlations of hydrostratigraphic units in the Santa Fe Group aquifer system based on geophysical logs. Comparison of electrical logs from the core hole and from nearby city wells reveals laterally consistent lithostratigraphic patterns over much of the metropolitan area west of the Rio Grande that may be used to delineate structural and related stratigraphic features that have a direct bearing on the availability of ground water.
Wang, Xinchen; Tucker, Nathan R; Rizki, Gizem; Mills, Robert; Krijger, Peter HL; de Wit, Elzo; Subramanian, Vidya; Bartell, Eric; Nguyen, Xinh-Xinh; Ye, Jiangchuan; Leyton-Mange, Jordan; Dolmatova, Elena V; van der Harst, Pim; de Laat, Wouter; Ellinor, Patrick T; Newton-Cheh, Christopher; Milan, David J; Kellis, Manolis; Boyer, Laurie A
2016-01-01
Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits. DOI: http://dx.doi.org/10.7554/eLife.10557.001 PMID:27162171
Irrigation scheduling using soil moisture sensors
USDA-ARS?s Scientific Manuscript database
Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...
surface temperature profile of a sandbox containing buried objects using a long-wave infrared camera. Images were recorded for several days under ambient...time of day . Best detection of buried objects corresponded to shallow depths for observed intervals where maxima/minima ambient temperatures coincided
Sampling interval analysis and CDF generation for grain-scale gravel bed topography
USDA-ARS?s Scientific Manuscript database
In river hydraulics, there is a continuing need for characterizing bed elevations to arrive at quantitative roughness measures that can be used in predicting flow depth and for improved prediction of fine-sediment transport over and through coarse beds. Recently published prediction methods require...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodkin, J.L.; Udevitz, M.S.
1996-05-01
We developed an aerial survey method for sea otters, using a strip transect design where otters observed in a strip along one side of the aircraft are counted. Two strata are sampled, one lies close to shore and/or in shallow. The other strata lies offshore and over deeper water. We estimate the proportion of otters not seen by the observer by conducting intensive searches of units (ISU`s) within strips when otters are observed. The first study found no significant differences in sea otter detection probabilities between ISU`s initiated by the sighting of an otter group compared to systematically located ISU`s.more » The second study consisted of a trial survey of all of Prince William Sound, excluding Orca Inlet. The survey area consisted of 5,017 sq km of water between the shore line and an offshore boundary based on shoreline physiography, the 100 m depth contour or a distance of 2 km from the shore. From 5-13 August 1993, two observers surveyed 1,023 linear km of high density sea otter habitat and 355 linear km of low density habitat.« less
Heterogeneous Structure and Seismicity beneath the Tokyo Metropolitan Area
NASA Astrophysics Data System (ADS)
Nakagawa, S.; Kato, A.; Sakai, S.; Nanjo, K.; Panayotopoulos, Y.; Kurashimo, E.; Obara, K.; Kasahara, K.; Aketagawa, T.; Kimura, H.; Hirata, N.
2010-12-01
Beneath the Tokyo metropolitan area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. Sato et al. (2005) revealed the geometry of upper surface of PSP, and Hagiwara et al. (2006) estimated the velocity structure beneath Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the Tokyo metropolitan area including those due to an intra-slab M7+ earthquake. So, we launched the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan area (Hirata et al., 2009). Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) and stress field within PSP is very important to attain this issue. The core item of this project is a dense seismic array called Metropolitan Seismic Observation network (MeSO-net) for making observations in the metropolitan area (Sakai and Hirata, 2009; Kasahara et al., 2009). We deployed the 249 seismic stations with a spacing of 5 km. Some parts of stations construct 5 linear arrays at interval of 2 km such as Tsukuba-Fujisawa (TF) array, etc. The TF array runs from northeast to southwest through the center of Tokyo. In this study, we applied the tomography method to image the heterogeneous structure under the Tokyo metropolitan area. We selected events from the Japan Meteorological Agency (JMA) unified earthquake list. All data of MeSO-net were edited into event data by the selected JMA unified earthquake list. We picked the P and S wave arrival times. The total number of stations and events are 421 and 1,256, respectively. Then, we applied the double-difference tomography method (Zhang and Thurber, 2003) to this dataset and estimated the fine-scale velocity structure. The grid nodes locate 10 km interval in parallel with the array, 20 km interval in perpendicular to the array; and on depth direction, 5 km interval to a depth of less than 50 km and 10 km interval at a depth of more. We used 158,930 (P wave) and 149,308 (S wave) absolute arrival times, and 374,072 (P wave) and 354,912 (S wave) differential travel times. The initial velocity structure is the JMA2001 (Ueno et al., 2001), and the Vp/Vs ratio is set to 1.73 for all grid nodes. We imaged the subducting PSP and Pacific Plate clearly. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The obtained tomograms combined with seismicity and focal mechanisms indicate that the interior of the subducting PSP is characterized by heterogeneous structures, which could exert a profound influence on the genesis of intra-slab earthquakes. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.
Eberle, Melissa M.; Hsu, Mike S.; Rodriguez, Carissa L.; Szu, Jenny I.; Oliveira, Michael C.; Binder, Devin K.; Park, B. Hyle
2015-01-01
Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth-resolved cross-sectional images. In this study, OCT was used to detect changes in the optical properties of cortical tissue in vivo in mice during the induction of global (pentylenetetrazol) and focal (4-aminopyridine) seizures. Through the use of a confidence interval statistical method on depth-resolved volumes of attenuation coefficient, we demonstrated localization of regions exhibiting both significant positive and negative changes in attenuation coefficient, as well as differentiating between global and focal seizure propagation. PMID:26137382
Lithologic boundaries from gravity and magnetic anomalies over Proterozoic Dalma volcanics
NASA Astrophysics Data System (ADS)
Yadav, Pramod Kumar; Adhikari, P. K.; Srivastava, Shalivahan; Maurya, Ved P.; Tripathi, Anurag; Singh, Shailendra; Singh, Roshan K.; Bage, Ashish K.
2018-03-01
Dalma volcanics (DVs) has intruded the older Singhbhum Group of Metapelites. Despite DVs being rich in mineralisation, its boundaries are not clearly demarcated. Gravity and magnetic surveys have been attempted for mapping the boundaries in DVs. These surveys were made in the northern fringe of the DVs over an area of ˜ 0.70 km2 along 13 parallel lines at 50 m spacing. The data was acquired at ˜ 25 m spacing. The surveys were taken for determination of lithological boundaries, depths and nature of causative source using Euler depth solutions and radially averaged power spectrum (RAPS). Residual anomaly maps of gravity and magnetic intensity show the same trend as that of Bouguer gravity anomaly and total magnetic intensity anomaly map indicating towards shallow sources. The magnetic map in general follows the same pattern as that of gravity anomaly maps. The map shows coincident high gravity and magnetic anomalies. These anomalies together with resistivity signatures confirm that the northern fringe of DVs hosts volcanogenic massive sulphide settings. The Euler depth solution delineated the lateral boundaries and nature of the source. It seems that the source is of spherical nature lying within a depth range of 25-40 m. The obtained lithological (vertical) units from RAPS are between Lower DVs, Upper DVs and Singhbhum Group Metapelites at depths of ˜ 15, ˜ 25 and ˜ 40 m, respectively. The metallogeny is associated with the Upper DVs and the corresponding delineated lithological (vertical) unit is indicative of the top of the ore body. Good agreement is observed with the geological succession from the drilling data and resistivity data. The findings suggest that the northern fringe of DVs could be a preferred target for drilling.
Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.
2004-01-01
Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.
NASA Astrophysics Data System (ADS)
Porsani, Jorge Luís; Almeida, Emerson Rodrigo; Bortolozo, Cassiano Antonio; Santos, Fernando Acácio Monteiro dos
2012-07-01
This article presents TDEM results from an area with recent induced shallow seismicity. The purpose was to do a geoelectrical mapping of sedimentary and fractured basaltic aquifers for better understanding of the hydrogeologic setting. The study area is in the Paraná basin where flood basalts are overlain by sedimentary units near the city of Bebedouro, northern São Paulo State, Brazil. 86 TDEM soundings were acquired in an area of 90 km2 in the Andes and Botafogo study areas. The soundings were chosen next to wells for calibration, and also along profiles crossing the seismically active areas. 1-D interpretation results showed the general geoelectrical stratigraphy of this part of the Paraná basin. The upper geoelectrical layer is the shallow sedimentary aquifer (Adamantina formation) with less than 80 m thickness. The second geoelectrical layer contains the upper basalts of the Serra Geral formation at about 60-80 m depths. A saturated fractured basalt zone between 100 and 300 m depths was identifiable on various TDEM soundings. This depth range corresponds to the range of hypocentral depths for more than 3000 micro-earthquakes in this area. The lower basalt layer was estimated to lie between 400 and 650 m depth. The deepest geoelectrical layer detected by various TDEM soundings corresponds to the Botucatu sandstone (Guarani aquifer). Results suggest that the high-discharge wells are located in the fractured zone in the middle basalt of the Serra Geral formation. There is a good correlation between seismically active areas, high discharge wells (> 190 m3/h), and fracture zones in the middle basalt. The results reinforce the hypothesis that the shallow seismic activity in the Bebedouro region is being triggered by high rates of groundwater withdrawal.
Geology of an Ordovician stratiform base-metal deposit in the Long Canyon Area, Blaine County, Idaho
Otto, B.R.; Zieg, G.A.
2003-01-01
In the Long Canyon area, Blaine County, Idaho, a strati-form base-metal-bearing gossan is exposed within a complexly folded and faulted sequence of Ordovician strata. The gossan horizon in graptolitic mudrock suggests preservation of bedded sulfides that were deposited by an Ordovician subaqueous hydrothermal system. Abrupt thickness changes and geochemi-cal zoning in the metal-bearing strata suggest that the gossan is near the source of the hydrothermal system. Ordovician sedimentary rocks at Long Canyon represent a coarsening-upward section that was deposited below wave base in a submarine depositional environment. The lowest exposed rocks represent deposition in a starved, euxinic basin and over-lying strata represent a prograding clastic wedge of terrigenous and calcareous detritus. The metalliferous strata are between these two types of strata. Strata at Long Canyon have been deformed by two periods of thrust faulting, at least three periods of normal faulting, and two periods of folding. Tertiary extensional faulting formed five subhorizontal structural plates. These low-angle fault-bounded plates truncate Sevier-age and possibly Antler-age thrust faults. The presence of gossan-bearing strata in the four upper plates suggests that there was only minor, although locally complex, stratigraphic displacement and rotation. The lack of correlative strata in the lowest plate suggests the displacement was greater than 2000 ft. The metalliferous strata were exposed to surface weathering, oxidation, and erosion prior to and during deposition of the Eocene Challis Volcanic Group. The orientations of erosional canyons formed during this early period of exposure were related to the orientations of Sevier-age thrust faults, and stream-channel gravel was deposited in the canyons. During this and subsequent intervals of exposure, sulfidic strata were oxi-dized to a minimum depth of 700 ft.
NASA Astrophysics Data System (ADS)
D'el-Rey Silva, Luiz José Homem; Wolf Klein, Percy Boris; Walde, Detlef Hans-Gert
2004-10-01
The Caldas Novas dome (Goiaás state, central Brazil) lies in the southern segment of the Neoproterozoic Brasília belt (center of the Tocantins Province) between the Goiás magmatic arc and the margin of the ancient São Francisco plate. The core of the dome comprises rocks of the Meso-Neoproterozoic Paranoá group (passive margin psamitic-pelitic sediments and subgreenschist facies) covered by a nappe of the Neoproterozoic Araxá group (backarc basin pelitic-psamitic sediments and volcanics of greenschist facies, bitotite zone). Hot underground waters that emerge along fractures in the Paranoá quartzite and wells in the Araxá schist have made the Caldas Novas dome an international tourist attraction. A recent detailed structural analysis demonstrates that the dome area was affected by a D 1-D 3 Brasiliano cycle progressive deformation in the ˜750-600 Ma interval (published U-Pb and Sm-Nd data). During event D 1, a pervasive layer-parallel foliation developed coeval the regional metamorphism. Event D 2 (intense F 2 isoclinal folding) was responsible for the emplacement of the nappe. D 1 and D 2 record a regime of simple shear (top-to-SE relative regional movement) due to a WNW-ESE subhorizontal compression ( σ1). Event D 3 records a WSW-ENE compression, during which the dome rose as a large-scale F 3 fold, possibly associated with a duplex structure at depth. During the dome's uplift, the layers slid back and down in all directions, giving way to gravity-slide folds and an extensional crenulation cleavage. A set of brittle fractures and quartz veins constitutes the record of a late-stage D 4 event important for understanding the thermal water reservoir.
Refining Southern California Geotherms Using Seismologic, Geologic, and Petrologic Constraints
NASA Astrophysics Data System (ADS)
Thatcher, W. R.; Chapman, D. S.; Allam, A. A.; Williams, C. F.
2017-12-01
Lithospheric deformation in tectonically active regions depends on the 3D distribution of rheology, which is in turn critically controlled by temperature. Under the auspices of the Southern California Earthquake Center (SCEC) we are developing a 3D Community Thermal Model (CTM) to constrain rheology and so better understand deformation processes within this complex but densely monitored and relatively well-understood region. The San Andreas transform system has sliced southern California into distinct blocks, each with characteristic lithologies, seismic velocities and thermal structures. Guided by the geometry of these blocks we use more than 250 surface heat-flow measurements to define 13 geographically distinct heat flow regions (HFRs). Model geotherms within each HFR are constrained by averages and variances of surface heat flow q0 and the 1D depth distribution of thermal conductivity (k) and radiogenic heat production (A), which are strongly dependent on rock type. Crustal lithologies are not always well known and we turn to seismic imaging for help. We interrogate the SCEC Community Velocity Model (CVM) to determine averages and variances of Vp, Vs and Vp/Vs versus depth within each HFR. We bound (A, k) versus depth by relying on empirical relations between seismic wave speed and rock type and laboratory and modeling methods relating (A, k) to rock type. Many 1D conductive geotherms for each HFR are allowed by the variances in surface heat flow and subsurface (A, k). An additional constraint on the lithosphere temperature field is provided by comparing lithosphere-asthenosphere boundary (LAB) depths identified seismologically with those defined thermally as the depth of onset of partial melting. Receiver function studies in Southern California indicate LAB depths that range from 40 km to 90 km. Shallow LAB depths are correlated with high surface heat flow and deep LAB with low heat flow. The much-restricted families of geotherms that intersect peridotite solidi at the seismological LAB depth in each region require that LAB temperatures lie between 1050 to 1250˚ C, a range that is consistent with a hydrous rather than anhydrous mantle below Southern California.
Ridgway, S H; Carder, D A; Kamolnick, T; Smith, R R; Schlundt, C E; Elsberry, W R
2001-11-01
Hearing is attenuated in the aerial ear of humans and other land mammals tested in pressure chambers as a result of middle ear impedance changes that result from increased air density. We tested the hypothesis, based on recent middle ear models, that increasing the density of middle ear air at depth might attenuate whale hearing. Two white whales Delphinapterus leucas made dives to a platform at a depth of 5, 100, 200 or 300 m in the Pacific Ocean. During dives to station on the platform for up to 12 min, the whales whistled in response to 500 ms tones projected at random intervals to assess their hearing threshold at each depth. Analysis of response whistle spectra, whistle latency in response to tones and hearing thresholds showed that the increased hydrostatic pressure at depth changed each whale's whistle response at depth, but did not attenuate hearing overall. The finding that whale hearing is not attenuated at depth suggests that sound is conducted through the head tissues of the whale to the ear without requiring the usual ear drum/ossicular chain amplification of the aerial middle ear. These first ever hearing tests in the open ocean demonstrate that zones of audibility for human-made sounds are just as great throughout the depths to which these whales dive, or at least down to 300 m.
Flores, Romeo M.; Stricker, Gary D.; Decker, Paul L.; Myers, Mark D.
2007-01-01
The Sentinel Hill Core Test 1 well penetrated an intertonguing sequence of (1) the marine Schrader Bluff Formation in the depth intervals 950?1,180 ft and 690?751 ft, which consists of shoreface and offshore deposits that accumulated along a storm-dominated, barred shoreline; and (2) the nonmarine Prince Creek Formation in the depth intervals 751?950 ft and surface to 690 ft, which consists of fluvial channel, crevasse splay, backswamp, and ash fall deposits. The strata range in age from early Campanian to early Maastrichtian. An erosional contact at a depth of 690 ft at the base of the upper unit of the Prince Creek Formation is interpreted as a major regional sequence boundary, and the overlying conglomeratic fluvial channel deposits are interpreted to have accumulated in a paleovalley. In its more proximal reaches along the Colville River, channels of this paleovalley cut down 75 ft into the lowermost Prince Creek Formation and the uppermost Schrader Bluff Formation. Farther offshore, the equivalent surface to the aforementioned paleovalley appears to be a subtle discontinuity between middle and lower Schrader Bluff Formation shelfal marine strata. Still farther offshore, the equivalent paleovalley surface is interpreted as a marine mass-wasting surface that locally cuts through the lowermost Schrader Bluff Formation and into the underlying Seabee Formation.
Volatile selenium flux from the great Salt Lake, Utah
Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.
2009-01-01
The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.
Rosen, Michael R.; Alvarez, David A.; Goodbred, Steven L.; Leiker, Thomas J.; Patino, Reynaldo
2009-01-01
compounds (SOCs) at pg L-1 concentrations. Semi-permeable membrane devices and POCIS were deployed in Lake Mead, at two sites in Las Vegas Wash, at four sites across Lake Mead, and in the Colorado River downstream from Hoover Dam. Concentrations of hydrophobic SOCs were highest in Las Vegas Wash downstream from waste water and urban inputs and at 8 m depth in Las Vegas Bay (LVB) where Las Vegas Wash enters Lake Mead. Th e distribution of hydrophobic SOCs showed a lateral distribution across 10 km of Lake Mead from LVB to Boulder Basin. To assess possible vertical gradients of SOCs, SPMDs were deployed at 4-m intervals in 18 m of water in LVB. Fragrances and legacy SOCs were found at the greatest concentrations at the deepest depth. Th e vertical gradient of SOCs indicated that contaminants were generally confi ned to within 6 m of the lake bottom during the deployment interval. The high SOC concentrations, warmer water temperatures, and higher total dissolved solids concentrations at depth are indicative of a plume of Las Vegas Wash water moving along the lake bottom. Th e lateral and vertical distribution of SOCs is discussed in the context of other studies that have shown impaired health of fi sh exposed to SOCs.
ANOMALOUSLY PRESSURED GAS DISTRIBUTION IN THE WIND RIVER BASIN, WYOMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ronald C. Surdam
2003-03-31
Anomalously pressured gas (APG) assets, typically called ''basin-center'' gas accumulations, represent either an underdeveloped or undeveloped energy resource in the Rocky Mountain Laramide Basins (RMLB). Historically, the exploitation of these gas resources has proven to be very difficult and costly. In this topical report, an improved exploration strategy is outlined in conjunction with a more detailed description of new diagnostic techniques that more efficiently detect anomalously pressured, gas-charged domains. The ability to delineate gas-charged domains occurring below a regional velocity inversion surface allows operators to significantly reduce risk in the search for APG resources. The Wind River Basin was chosenmore » for this demonstration because of the convergence of public data availability (i.e., thousands of mud logs and DSTs and 2400 mi of 2-D seismic lines); the evolution of new diagnostic techniques; a 175 digital sonic log suite; a regional stratigraphic framework; and corporate interest. In the exploration scheme discussed in this topical report, the basinwide gas distribution is determined in the following steps: (1) A detailed velocity model is established from sonic logs, 2-D seismic lines, and, if available, 3-D seismic data. In constructing the seismic interval velocity field, automatic picking technology using continuous, statistically-derived interval velocity selection, as well as conventional graphical interactive methodologies are utilized. (2) Next, the ideal regional velocity/depth function is removed from the observed sonic or seismic velocity/depth profile. The constructed ideal regional velocity/depth function is the velocity/depth trend resulting from the progressive burial of a rock/fluid system of constant rock/fluid composition, with all other factors remaining constant. (3) The removal of the ideal regional velocity/depth function isolates the anomalously slow velocities and allows the evaluation of (a) the regional velocity inversion surface (i.e., pressure surface boundary); (b) detection and delineation of gas-charged domains beneath the velocity inversion surface (i.e., volumes characterized by anomalously slow velocities); and (c) variations within the internal fabric of the velocity anomaly (i.e., variations in gas charge). Using these procedures, it is possible to construct an anomalous velocity profile for an area, or in the case of the Wind River Basin, an anomalous velocity volume for the whole basin. Such an anomalous velocity volume has been constructed for the Wind River Basin based on 1600 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. The technology was tested by constructing six cross sections through the anomalous velocity volume coincident with known gas fields. In each of the cross sections, a strong and intense anomalously slow velocity domain coincided with the gas productive rock/fluid interval; there were no exceptions. To illustrate the applicability of the technology, six target areas were chosen from a series of cross sections through the anomalous velocity volume. The criteria for selection of these undrilled target areas were (1) they were characterized by anomalous velocity domains comparable to known gas fields; (2) they had structural, stratigraphic, and temporal elements analogous to one of the known fields; and (3) they were located at least six sonic miles from the nearest known gas field. The next step in the exploration evolution would be to determine if the detected gas-charged domains are intersected by reservoir intervals characterized by enhanced porosity and permeability. If, in any of these targeted areas, the gas-charged domains are penetrated by reservoir intervals with enhanced storage and deliverability, the gas-charged domains could be elevated to drillable prospects. Hopefully, the work described in this report (the detection and delineation of gas-charged domains) will enable operators in the Wind River Basin and elsewhere to reduce risk significantly and increase the rate and magnitude of converting APG resources to energy reserves.« less
Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Feingold, H.
1977-01-01
A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.
Spectral interpolation - Zero fill or convolution. [image processing
NASA Technical Reports Server (NTRS)
Forman, M. L.
1977-01-01
Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.
Six-vertex model and Schramm-Loewner evolution.
Kenyon, Richard; Miller, Jason; Sheffield, Scott; Wilson, David B
2017-05-01
Square ice is a statistical mechanics model for two-dimensional ice, widely believed to have a conformally invariant scaling limit. We associate a Peano (space-filling) curve to a square ice configuration, and more generally to a so-called six-vertex model configuration, and argue that its scaling limit is a space-filling version of the random fractal curve SLE_{κ}, Schramm-Loewner evolution with parameter κ, where 4<κ≤12+8sqrt[2]. For square ice, κ=12. At the "free-fermion point" of the six-vertex model, κ=8+4sqrt[3]. These unusual values lie outside the classical interval 2≤κ≤8.
Kinematics and age of 15 stars-photometric solar analogs
NASA Astrophysics Data System (ADS)
Galeev, A. I.; Shimansky, V. V.
2008-03-01
The radial and space velocities are inferred for 15 stars that are photometric analogs of the Sun. The space velocity components (U, V, W) of most of these stars lie within the 10-60 km/s interval. The star HD 225239, which in our previous papers we classified as a subgiant, has a space velocity exceeding 100 km/s, and belongs to the thick disk. The inferred fundamental parameters of the atmospheres of solar analogs are combined with published evolutionary tracks to estimate the masses and ages of the stars studied. The kinematics of photometric analogs is compared to the data for a large group of solar-type stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenin, V. V.; Terekhin, P. N.
2010-08-15
The Kruskal-Oberman kinetic model is used to determine the conditions for the convective stability of a plasma in a system of coupled axisymmetric adiabatic open cells in which the magnetic field curvature has opposite signs. For a combination of a nonparaxial simple mirror cell and a semicusp, the boundaries of the interval of values of the flux coordinate where the plasma can be stable are determined, as well as the range in which the ratio of the pressures in the component cells should lie. Numerical simulations were carried out for different particle distributions over the pitch angle.
Velocities of Subducted Sediments and Continents
NASA Astrophysics Data System (ADS)
Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.
2009-12-01
The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at shallow depths through trench-parallel at moderate depths to down-dip approaching sub-arc depths. Vertically incident waves have VP/ VS of 1.7-1.3 over the same range of depths, waves propagating up dip have VP/ VS of 1.7-1.3, and waves propagating along the slab at constant depth have VP/ VS of 1.7-1.45. These remarkably low VP/ VS ratios are due to the anomalous elastic behavior of quartz. More aluminous lithologies have elevated VP/ VS ratios: 1.85 for slab-normal waves, 1.75 for trench-parallel waves, and 1.65 for down-dip waves. Subducted continental crust that is too dry to transform to high-pressure minerals has relatively ordinary VP/ VS ratio of 1.71-1.75 for vertically incident waves, 1.6-1.7 for waves propagating up dip, and 1.65-1.75 for waves propagating along the slab. Thus, subducted mica-rich sediments can have high VP/ VS ratios, whereas quartzose lithologies generate low VP/ VS ratios.
Surgical and clinical aspects of cerebellar pilomyxoid-spectrum astrocytomas in children.
El Beltagy, Mohamed A; Atteya, Mostafa M E; El-Haddad, Alaa; Awad, Madiha; Taha, Hala; Kamal, Mohamed; El Naga, Sherif Abou
2014-06-01
Cerebellar pilomyxoid astrocytomas (PMAs) and intermediate pilomyxoid astrocytomas (IPAs) are collectively called "pilomyxoid-spectrum astrocytomas (PMSAs)." Cerebellar PMSAs are thought to behave more aggressively than pilocytic astrocytomas (PAs). Our objective is to compare PMSAs to PAs in terms of surgical and clinical profiles. This retrospective study included 66 cases (35 males and 31 females) with cerebellar astrocytomas treated between July 2007 and December 2012 at Children's Cancer Hospital Egypt (CCHE 57357) with a mean age of 7 (±1.5) years. Cases were divided into three subgroups as follows: 44 PAs, 10 IPAs, and 12 PMAs. Comparison between all groups was focusing on brain stem invasion, intrinsic necrotic cavitation, extent of resection, recurrence, leptomeningeal dissemination (LD), metastases, need for CSF diversion, and cerebellar mutism (CM). Cerebellar PMAs and IPAs separately and collectively had higher incidence of brain stem invasion, intrinsic necrotic cavitation, tumor recurrence, and LD when compared to PAs (P < 0.001). Gross total resection was 13.6 % in PMSAs versus 90.9 % in PAs (P < 0.001). PMAs had a higher incidence of tumor recurrence than IPAs (66.7 versus 20 %, P < 0.001). Incidence of recurrence in PAs was 9.1 % in partially resected cases. Mean interval to recurrence was 9 (±1.5) months in PMSAs and 42 (±2) months in PAs. Cerebellar PMSAs express an aggressive clinical behavior and impose more operative challenges than PAs. These tumors may represent a clinical spectrum-at its benign end lies PA, while PMA lies at the aggressive end, with IPA lying just behind. Such concepts could be used to guide management in the future.
Pressure load on specific body areas of gestating sows lying on rubber mats with different softness.
Schubbert, A; Hartung, E; Schrader, L
2014-08-01
Rubber mats offer a possibility to increase lying comfort for sows with positive effects on sow lying behavior and health. However, until now, no information has been reported about the relationship between the softness of rubber mats and the pressure load on certain body areas of sows. We used a total of 68 (40 multiparous, 28 primiparous) German Landrace × German Landrace sows with a BW within the range of 90 to 330 kg (divided in 3 weight classes) to measure peak force and distribution of pressure during lying in the sternal and half recumbent position. Measures were done in an experimental pen that was equipped with a pressure sensor map system (5400 NTL; Tekscan Inc., Boston, MA). Three rubber mats differing in softness (penetration depth: hard mat, 4.0 mm [HM]; soft mat, 14.6 mm [SM]; very soft mat, 43.0 mm [VSM]) were tested and compared to concrete floor (CF) as a reference. Pressure load was analyzed in the sternal position for the sternum, belly, and ham body regions and also in the half recumbent position for the shoulder. For each lying position we determined the body region with the highest pressure load and analyzed the peak force (PF) and the contact area (CA) using a mixed model ANOVA (MIXED procedure of SAS Enterprise, version 4.3., SAS Inst. Inc., Cary, NC) with floor type, weight class of sows, and their interaction as fixed factors. Overall, the highest values for PF in the sternal position were found on the sternum (median: 1.62 N/cm(2)) and in the half recumbent position on the shoulder (median: 2.72 N/cm(2)). In the sternal position PF on the sternum was lower on VSM compared to CF (P = 0.001). In the half-recumbent position PF on the shoulder was lower on VSM compared to CF (P = 0.013) and compared to HM (P = 0.011). The weight of the sows affected PF on the sternum in the sternal position, with lower values in weight class 1 compared to weight class 2 (P = 0.001) and weight class 3 (P = 0.002). Contact area under the sternum was larger on SM (P = 0.016) and VSM (P = 0.008) compared to CF in the sternal position, and this was affected by weight class (P = 0.0002). In the half-recumbent position floor type did not affect CA under the shoulder, but CA was larger in weight classes 2 and 3 compared to weight class 1 (all P < 0.05). Assuming that a reduced PF in combination with pressure distributed over a larger area will increase lying comfort, hard rubber mats do not seem to offer a high lying comfort with regard to pressure load on debited body regions such as the sternum or shoulder.
Special Relativity Kinematics with Anisotropic Propagation of Light and Correspondence Principle
NASA Astrophysics Data System (ADS)
Burde, Georgy I.
2016-12-01
The purpose of the present paper is to develop kinematics of the special relativity with an anisotropy of the one-way speed of light. As distinct from a common approach, when the issue of anisotropy of the light propagation is placed into the context of conventionality of distant simultaneity, it is supposed that an anisotropy of the one-way speed of light is due to a real space anisotropy. In that situation, some assumptions used in developing the standard special relativity kinematics are not valid so that the "anisotropic special relativity" kinematics should be developed based on the first principles, without refereeing to the relations of the standard relativity theory. In particular, using condition of invariance of the interval between two events becomes unfounded in the presence of anisotropy of space since the standard proofs drawing the interval invariance from the invariance of equation of light propagation are not valid in that situation. Instead, the invariance of the equation of light propagation (with an anisotropy of the one-way speed of light incorporated), which is a physical law, should be taken as a first principle. A number of other physical requirements, associativity, reciprocity and so on are satisfied by the requirement that the transformations between the frames form a group. Finally, the correspondence principle is to be satisfied which implies that the coordinate transformations should turn into the Galilean transformations in the limit of small velocities. The above formulation based on the invariance and group property suggests applying the Lie group theory apparatus which includes the following steps: constructing determining equations for the infinitesimal group generators using the invariance condition; solving the determining equations; specifying the solutions using the correspondence principle; defining the finite transformations by solving the Lie equations; relating the group parameter to physical parameters. The transformations derived in such a way, as distinct from the transformations derived in the context of conventionality of distant simultaneity, cannot be converted into the standard Lorentz transformations by a coordinate (synchrony) change. The anisotropic nature of the presented transformations manifests itself in that they do not leave the interval invariant but only provide the conformal invariance of the interval. The relations that represent measurable effects include the conformal factor which depends on the relative velocity of the frames and the anisotropy degree. It is important to note the use of the correspondence principle as a heuristic principle which allows to relate the conformal factor to the anisotropy degree and thus completely specify the transformations and observable quantities.
Dodzi, Madodana S; Muchenje, Voster
2012-10-01
The time budgets and daily milk yield of Jersey and Friesland cows and their crosses were compared in a pasture-based system by recording the time spent grazing, drinking, lying, standing and walking in four seasons of the year (cool-dry, hot-dry, hot-wet and post-rainy). Observations were made from 0800 to 1400 hours on seven cows per breed. Seven observers monitored the cows at 10-min intervals for 6 h using stop watches. Time spent standing was higher (P < 0.05) for Friesland compared to Jersey cows and the crossbred cows during the hot-wet season. Time spent walking differed among the three genotypes with the Jersey spending more time (P < 0.05) in both hot-wet and cool-dry seasons. No differences were noted on time spent lying down (P > 0.05) across the genotypes in the hot-wet season. In the cool-dry season, differences in time spent grazing (P < 0.05) were noted with the Jersey cows spending more time. The Friesland and the crossbred spent more time lying down (P < 0.05) than the Jersey cows in the cool-dry season. No time differences were noted for time spent standing (P > 0.05) in the same season. The Jersey cows spent the longest time walking (P < 0.05) during the cool-dry period. There were seasonal differences in time spent in all activities (P < 0.05). Time spent on grazing was longest in post-rainy season and lowest in hot-wet season. Differences were observed in the time spent lying down (P < 0.05). The longest period was observed in the hot-dry season and lowest in the hot-wet season. Daily milk yield varied (P < 0.05) with breed with the Friesland and Jersey producing higher yields than the crosses. The highest amount was produced in hot-dry and the least in hot-wet season. Milk yield and lying down were positively correlated (P < 0.05) in Jersey and Friesland cows. Standing was negatively correlated with milk yield (P < 0.05) in both Friesland and Jersey cows. No significant relationship was observed for the crossbred cows. It was concluded that the genotypes show different levels of sensitivity to seasons and that a relationship exists between milk yield and time budgets.
Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California
NASA Astrophysics Data System (ADS)
Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.
2017-12-01
In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the SLB to the west, outboard of the HF. We acquired a 2-D shear-wave velocity results using the multichannel analysis of surface waves (MASW) method on Rayleigh waves generated along the seismic profile. Our MASW result shows 600m depth of investigation, and Vs100 results range from 228m/s to 335m/s at fault zones, which correspond to NEHRP site classification D.
NASA Astrophysics Data System (ADS)
Bouzidi, Y.; Takam Takougang, E. M.
2016-12-01
Two dimensional frequency domain acoustic waveform tomography was applied to walkaway VSP data from an oil field in a shallow water environment, offshore the United Arab Emirates, to form a high resolution velocity model of the subsurface around and away from the borehole. Five close parallel walkaway VSP lines were merged to form a 9 km line, with 1344 shots at 25 m shot interval and 4 m shot depth. Each line was recorded using a typical recording tool with 20 receivers at 15.1 m receiver intervals. The recording tool was deployed in a deviated borehole at different depths for each line (521-2742 m depth). Waveform tomography was performed following a specific inversion strategy to mitigate non-linearity. Three parameters were critical for the success of the inversion: the starting model obtained from traveltime tomography, the preconditioning of the input data used for amplitudes correction to remove of shear waves and noise, and a judicious selection of the time damping constant τ to suppress late arrivals in the Laplace-Fourier domain. Several values of the time damping constant were tested, and 2 values, 0.5 s and 0.8 s that suppress waveforms arriving after 1.2 s and 2 s respectively, were retained. The inversion was performed in 2 stages, with frequencies ranging from 5 Hz to 40 Hz. The values of the time damping term τ = 0.5 s and τ = 0.8 s were used in sequence for the frequencies 5-25 Hz, and τ = 0.8 s was used for the frequencies 25-40 Hz. A group of 5 frequencies at 0.5 Hz intervals were used and 6 iterations were performed. A velocity model that generally correlates well with the sonic log and estimated velocities from normal incidence VSP was obtained. The results confirmed the success of the inversion strategy. The velocity model shows zones with anomalous low velocities below 2000 m depth that correlate with known locations of hydrocarbons reservoirs. with known locations of hydrocarbon reservoirs. However, between 500 m and 1200 m depth, the velocity model appears to be slightly underestimated, which can be explained by possible elastic effects and out-of-plane structures not considered during the inversion. This result shows that acoustic waveform tomography can be successfully applied to walkaway VSP data when a good preconditioning of the input data and inversion strategy are used.
Warner, Kelly L.; Arnold, Terri L.
2010-01-01
Nitrate in private wells in the glacial aquifer system is a concern for an estimated 17 million people using private wells because of the proximity of many private wells to nitrogen sources. Yet, less than 5 percent of private wells sampled in this study contained nitrate in concentrations that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 10 mg/L (milligrams per liter) as N (nitrogen). However, this small group with nitrate concentrations above the USEPA MCL includes some of the highest nitrate concentrations detected in groundwater from private wells (77 mg/L). Median nitrate concentration measured in groundwater from private wells in the glacial aquifer system (0.11 mg/L as N) is lower than that in water from other unconsolidated aquifers and is not strongly related to surface sources of nitrate. Background concentration of nitrate is less than 1 mg/L as N. Although overall nitrate concentration in private wells was low relative to the MCL, concentrations were highly variable over short distances and at various depths below land surface. Groundwater from wells in the glacial aquifer system at all depths was a mixture of old and young water. Oxidation and reduction potential changes with depth and groundwater age were important influences on nitrate concentrations in private wells. A series of 10 logistic regression models was developed to estimate the probability of nitrate concentration above various thresholds. The threshold concentration (1 to 10 mg/L) affected the number of variables in the model. Fewer explanatory variables are needed to predict nitrate at higher threshold concentrations. The variables that were identified as significant predictors for nitrate concentration above 4 mg/L as N included well characteristics such as open-interval diameter, open-interval length, and depth to top of open interval. Environmental variables in the models were mean percent silt in soil, soil type, and mean depth to saturated soil. The 10-year mean (1992-2001) application rate of nitrogen fertilizer applied to farms was included as the potential source variable. A linear regression model also was developed to predict mean nitrate concentrations in well networks. The model is based on network averages because nitrate concentrations are highly variable over short distances. Using values for each of the predictor variables averaged by network (network mean value) from the logistic regression models, the linear regression model developed in this study predicted the mean nitrate concentration in well networks with a 95 percent confidence in predictions.
The volume and mean depth of Earth's lakes
NASA Astrophysics Data System (ADS)
Cael, B. B.; Heathcote, A. J.; Seekell, D. A.
2017-01-01
Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume-area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3). This volume is in the range of historical estimates (166,000-280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62-151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles.
High-sensitivity aeromagnetic survey of the US Atlantic continental margin.
Behrendt, John C.; Klitgord, Kim D.
1980-01-01
The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors
Oracle estimation of parametric models under boundary constraints.
Wong, Kin Yau; Goldberg, Yair; Fine, Jason P
2016-12-01
In many classical estimation problems, the parameter space has a boundary. In most cases, the standard asymptotic properties of the estimator do not hold when some of the underlying true parameters lie on the boundary. However, without knowledge of the true parameter values, confidence intervals constructed assuming that the parameters lie in the interior are generally over-conservative. A penalized estimation method is proposed in this article to address this issue. An adaptive lasso procedure is employed to shrink the parameters to the boundary, yielding oracle inference which adapt to whether or not the true parameters are on the boundary. When the true parameters are on the boundary, the inference is equivalent to that which would be achieved with a priori knowledge of the boundary, while if the converse is true, the inference is equivalent to that which is obtained in the interior of the parameter space. The method is demonstrated under two practical scenarios, namely the frailty survival model and linear regression with order-restricted parameters. Simulation studies and real data analyses show that the method performs well with realistic sample sizes and exhibits certain advantages over standard methods. © 2016, The International Biometric Society.
Surface vibrational modes in disk-shaped resonators.
Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P
2014-03-01
The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Castellarin, A.; Montanari, A.; Brath, A.
2002-12-01
The study derives Regional Depth-Duration-Frequency (RDDF) equations for a wide region of northern-central Italy (37,200 km 2) by following an adaptation of the approach originally proposed by Alila [WRR, 36(7), 2000]. The proposed RDDF equations have a rather simple structure and allow an estimation of the design storm, defined as the rainfall depth expected for a given storm duration and recurrence interval, in any location of the study area for storm durations from 1 to 24 hours and for recurrence intervals up to 100 years. The reliability of the proposed RDDF equations represents the main concern of the study and it is assessed at two different levels. The first level considers the gauged sites and compares estimates of the design storm obtained with the RDDF equations with at-site estimates based upon the observed annual maximum series of rainfall depth and with design storm estimates resulting from a regional estimator recently developed for the study area through a Hierarchical Regional Approach (HRA) [Gabriele and Arnell, WRR, 27(6), 1991]. The second level performs a reliability assessment of the RDDF equations for ungauged sites by means of a jack-knife procedure. Using the HRA estimator as a reference term, the jack-knife procedure assesses the reliability of design storm estimates provided by the RDDF equations for a given location when dealing with the complete absence of pluviometric information. The results of the analysis show that the proposed RDDF equations represent practical and effective computational means for producing a first guess of the design storm at the available raingauges and reliable design storm estimates for ungauged locations. The first author gratefully acknowledges D.H. Burn for sponsoring the submission of the present abstract.
Stable Isotope Evidence for North Pacific Deep Water Formation during the mid-Pliocene Warm Period
NASA Astrophysics Data System (ADS)
Ford, H. L.; Burls, N.; Hodell, D. A.
2017-12-01
Only intermediate water forms in the North Pacific today because of a strong halocline. A recent climate modeling study suggests that conditions during the mid-Pliocene warm period ( 3 Ma), a time interval used as pseudo-analogue for future climate change, could have supported a Pacific Meridional Overturning Circulation (PMOC) in the North Pacific. This modeled PMOC is of comparable strength to the modern Atlantic Meridional Overturning Circulation. To investigate the possibility of a mid-Pliocene PMOC, we studied a depth transect of sites between 2400 to 3400 m water depth on Shatsky Rise by measuring δ18O and δ13C of Cibicidoides wuellerstorfi and comparing these new results with previously published records. Today, the vertical δ13C gradient has lower values at mid-depths because of the presence of aged water at the "end of the ocean conveyor belt." We find that the vertical δ13C gradient was reduced, and slightly reversed during the Pliocene interval on Shatsky Rise relative to modern. This δ13C data supports the modeling results that there was deep water formation in the North Pacific. On the Shatsky Rise, the mid-depth δ18O values are high relative to the deep site and other high-resolution records in the Equatorial Pacific. This suggests the PMOC water mass was colder and/or had a more enriched seawater δ18O than the surrounding waters. Planned future work includes minor and trace element analyses to determine the temperature and ΔCO32- characteristics of the PMOC water mass. Our results suggest a ventilated North Pacific during the globally warm mid-Pliocene.
NASA Astrophysics Data System (ADS)
Schaller, M.; Ehlers, T. A.; Lang, K. A. H.; Schmid, M.; Fuentes-Espoz, J. P.
2018-05-01
The Earth surface is modulated by interactions among tectonics, climate, and biota. The influence of each of these factors on hillslope denudation rates is difficult to disentangle. The Chilean Coastal Cordillera offers a strong climate and vegetation gradient from arid and unvegetated in the North to humid and vegetated in the South. A similar (convergent) plate tectonic boundary lies to the West of the Coastal Cordillera. We present eight depth profiles analyzed for in situ-produced cosmogenic 10Be in four study areas. These profiles reveal denudation rates of soil-mantled hillslopes and the depth of mobile layers. Depth profiles were investigated from both S- and N-facing mid-slope positions. Results indicate the depth of the mobile layers in the four study areas increase from N to S in latitude. When mixing is present in the mobile layers they are completely mixed. In the S- and N-facing hillslopes of each study area, mid-slope positions do not show a systematic change in depth of the mobile layers nor in denudation rates based on cosmogenic depth profiles. From N to S in latitude, modelled denudation rates of hillslopes increase from ∼0.46 to ∼5.65 cm/kyr and then decrease to ∼3.22 cm/kyr in the southernmost, highest vegetation cover, study area. Calculated turnover times of soils decrease from ∼30 to ∼11 kyr and then increase to ∼22 kyr. In this work, the increasing denudation rates are attributed to increasing mean annual precipitation from N to S. However, despite the ongoing increase in precipitation from N to S, the denudation rate in the southernmost location does not continue to increase due to the protective nature of increasing vegetation cover. This indicates a vegetation induced non-linear relationship with denudation rates.
Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt
Ravat, D.; Salem, A.; Abdelaziz, A.M.S.; Elawadi, E.; Morgan, P.
2011-01-01
Over 50 magnetic bottom depths derived from spectra of magnetic anomalies in Eastern Egypt along the Red Sea margin show variable magnetic bottoms ranging from 10 to 34. km. The deep magnetic bottoms correspond more closely to the Moho depth in the region, and not the depth of 580??C, which lies significantly deeper on the steady state geotherms. These results support the idea of Wasilewski and coworkers that the Moho is a magnetic boundary in continental regions. Reduced-to-pole magnetic highs correspond to areas of Younger Granites that were emplaced toward the end of the Precambrian. Other crystalline Precambrian units formed earlier during the closure of ocean basins are not strongly magnetic. In the north, magnetic bottoms are shallow (10-15. km) in regions with a high proportion of these Younger Granites. In the south, the shoaling of the magnetic bottom associated with the Younger Granites appears to be restricted to the Aswan and Ras Banas regions. Complexity in the variation of magnetic bottom depths may arise due to a combination of factors: i) regions of Younger (Precambrian) Granites with high magnetite content in the upper crust, leaving behind low Curie temperature titanomagnetite components in the middle and lower crust, ii) rise in the depth of 580??C isotherm where the crust may have been heated due to initiation of intense magmatism at the time of the Red Sea rifting (~. 20. Ma), and iii) the contrast of the above two factors with respect to the neighboring regions where the Moho and/or Curie temperature truncates lithospheric ferromagnetism. Estimates of fractal and centroid magnetic bottoms in the oceanic regions of the Red Sea are significantly below the Moho in places suggesting that oceanic uppermost mantle may be serpentinized to the depth of 15-30 km in those regions. ?? 2011 Elsevier B.V.
The probability of lava inundation at the proposed and existing Kulani prison sites
Kauahikaua, J.P.; Trusdell, F.A.; Heliker, C.C.
1998-01-01
The State of Hawai`i has proposed building a 2,300-bed medium-security prison about 10 km downslope from the existing Kulani medium-security correctional facility. The proposed and existing facilities lie on the northeast rift zone of Mauna Loa, which last erupted in 1984 in this same general area. We use the best available geologic mapping and dating with GIS software to estimate the average recurrence interval between lava flows that inundate these sites. Three different methods are used to adjust the number of flows exposed at the surface for those flows that are buried to allow a better representation of the recurrence interval. Probabilities are then computed, based on these recurrence intervals, assuming that the data match a Poisson distribution. The probability of lava inundation for the existing prison site is estimated to be 11- 12% in the next 50 years. The probability of lava inundation for the proposed sites B and C are 2- 3% and 1-2%, respectively, in the same period. The probabilities are based on estimated recurrence intervals for lava flows, which are approximately proportional to the area considered. The probability of having to evacuate the prison is certainly higher than the probability of lava entering the site. Maximum warning times between eruption and lava inundation of a site are estimated to be 24 hours for the existing prison site and 72 hours for proposed sites B and C. Evacuation plans should take these times into consideration.
Senior, Lisa A.; Conger, Randall W.; Bird, Philip H.
2008-01-01
Ground water in the vicinity of several industrial facilities in Upper Gwynedd Township and Lansdale Borough, Montgomery County, Pa., is contaminated with several volatile organic compounds (VOCs). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund Site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, water-level monitoring, and streamflow measurements in the vicinity of North Penn Area 7 from October 2002 through December 2006. This followed work that began in 2000 to assist the USEPA in developing an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. The study area is underlain by Triassic- and Jurassic-age sandstones, siltstones, and shales of the Lockatong Formation and the Brunswick Group. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form fractured-rock aquifers that act as a set of confined to semi-confined layered aquifers of differing permeabilities. The aquifers are recharged by precipitation and discharge to streams and wells. The Wissahickon Creek headwaters are less than 1 mile northeast of the study area. This stream flows southwest approximately parallel to strike and bisects North Penn Area 7. Ground water is pumped in the vicinity of North Penn Area 7 for industrial use and public supply. The USGS collected geophysical logs for 42 wells that ranged in depth from 40 to 477 ft. Aquifer-interval-isolation testing was done in 17 of the 42 wells, for a total of 122 zones tested. A multiple-well aquifer test was conducted by monitoring the response of 14 wells to pumping and shutdown of a 600-ft deep production well in November-December 2004. In addition, water levels were monitored continuously in four wells in the area from October 2002 through September 2006, and streamflow was measured quarterly at two sites on Wissahickon Creek from December 2002 through September 2005. Geophysical logging identified water-bearing zones associated with high-angle fractures and bedding-plane openings throughout the depth of the boreholes. Heatpulse-flowmeter measurements under non-pumping, ambient conditions in 16 wells greater than 200 ft in depth indicated that borehole flow, where detected, was only upward in 2 wells and only downward in 5 wells. In nine wells, both upward and downward flow were measured. Geologic structure and pumping in the area affect the spatial distribution of vertical gradients. Heatpulse-flowmeter measurements under pumping conditions were used to identify the most productive intervals in wells. Correlation of natural-gamma-ray logs indicated bedding in the area probably strikes about 45 to 65 degrees northeast and dips about 9 degrees northwest. Aquifer intervals isolated by inflatable packers in 17 wells were pumped to test productivity of water-bearing zones and to collect samples to determine chemical quality of water produced from the interval. Interval-isolation testing confirmed the vertical hydraulic gradients indicated by heatpulse-flowmeter measurements. The specific capacities of the 122 isolated intervals ranged over about three orders of magnitude, from 0.01 to 10.6 gallons per minute per foot, corresponding to calculated transmissivities of 1.2 to 2,290 feet squared per day. Intervals adjacent to isolated pumped intervals commonly showed little response to pumping of the isolated zone. The presence of vertical hydraulic gradients and lack of adjacent-interval response to pumping in isolated intervals indicate a limited degree of vertical hydraulic connection between the aquifer sections tested. Differences were apparent in inorganic water quality of water from isolated intervals, including pH, specific conductance, and dissolved oxygen. Concentrations of most VOC contaminants in most wells with predominantly upward vertical gradients were g
Senior, Lisa A.; Grazul, Kevin E.; Wood, Charles R.
1998-01-01
The North Penn Area 12 Superfund Site is underlain by the Lockatong Formation, which consists of interbedded gray to black siltstone and shale. The beds of the Lockatong Formation strike northeast and dip about 10d to 20d to the northwest in the vicinity of the site. Ground water moves through fractures that are nearly vertical and horizontal in the shale and siltstone. Permeability and storage are very low. Borehole-geophysical logs were obtained from eight wells to determine the location of fractures, water-producing and water-receiving intervals, and intervals of borehole flow. The logs also were used to quantify fluid movement in the borehole, to characterize the lithology, and to obtain data on well construction. The logs indicate fractures at depths less than 100 feet are more frequent and generally are more productive than fractures at depths greater than 100 feet. The fluid resistivity of water in shallow intervals usually was greater than that in deeper intervals. The rate and direction of fluid movement under nonpumping conditions differs in the boreholes logged. In the northwest part of the site, no vertical flow was detected in three wells and very small amounts of flow were measured in two wells. In the southwest part of the site, downward flow was measured in two wells. Aquifer-isolation tests in three wells provided information on hydraulic heads and specific capacities in discrete vertical intervals and allowed collection of water samples form discrete water-bearing intervals. Natural annual fluctuations of water levels in 11 wells ranged form 11.4 to 28.3 feet. Seven of the 11 wells gave very similar water-level hydrographs. The four southernmost wells on the site show rises in water levels after precipitation much sooner than the other seven wells. Two other wells show daily fluctuations caused by pumping. A potentiometric-surface map of the site and vicinity was prepared from water-level measurements made in late July 1995. The map can be used to determine the approximate direction of ground-water flow.
Utilization of the St. Peter Sandstone in the Illinois Basin for CO2 Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Will, Robert; Smith, Valerie; Leetaru, Hannes
2014-09-30
This project is part of a larger project co-funded by the United States Department of Energy (US DOE) under cooperative agreement DE-FE0002068 from 12/08/2009 through 9/31/2014. The study is to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon Sandstone as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. This report evaluates the potential injectivity of the Ordovician St. Peter Sandstone. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data acquired through funding in this project as well as existing data from twomore » additional, separately funded projects: the US DOE funded Illinois Basin – Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium (MGSC) in Macon County, Illinois, and the Illinois Industrial Carbon Capture and Sequestration (ICCS) Project funded through the American Recovery and Reinvestment Act (ARRA), which received a phase two award from DOE. This study addresses the question of whether or not the St. Peter Sandstone may serve as a suitable target for CO2 sequestration at locations within the Illinois Basin where it lies at greater depths (below the underground source of drinking water (USDW)) than at the IBDP site. The work performed included numerous improvements to the existing St. Peter reservoir model created in 2010. Model size and spatial resolution were increased resulting in a 3 fold increase in the number of model cells. Seismic data was utilized to inform spatial porosity distribution and an extensive core database was used to develop porosity-permeability relationships. The analysis involved a Base Model representative of the St. Peter at “in-situ” conditions, followed by the creation of two hypothetical models at in-situ + 1,000 feet (ft.) (300 m) and in-situ + 2,000 ft. (600 m) depths through systematic depthdependent adjustment of the Base Model parameters. Properties for the depth shifted models were based on porosity versus depth relationship extracted from the core database followed by application of the porosity-permeability relationship. Each of the three resulting models were used as input to dynamic simulations with the single well injection target of 3.2 million tons per annum (MTPA) for 30 years using an appropriate fracture gradient based bottom hole pressure limit for each injection level. Modeling results are presented in terms of well bottomhole pressure (BHP), injection rate profiles, and three-dimensional (3D) saturation and differential pressure volumes at selected simulation times. Results suggest that the target CO2 injection rate of 3.2 MTPA may be achieved in the St. Peter Sandstone at in-situ conditions and at the in-situ +1,000 ft. (300 m) depth using a single injector well. In the latter case the target injection rate is achieved after a ramp up period which is caused by multi-phase flow effects and thus subject to increased modeling uncertainty. Results confirm that the target rate may not be achieved at the in-situ +2,000 ft. (600 m) level even with multiple wells. These new modeling results for the in-situ case are more optimistic than previous modeling results. This difference is attributed to the difference in methods and data used to develop model permeability distributions. Recommendations for further work include restriction of modeling activity to the in-situ +1,000 ft. (300 m) and shallower depth interval, sensitivity and uncertainty analysis, and refinement of porosity and permeability estimates through depth and area selective querying of the available core database. It is also suggested that further modeling efforts include scope for evaluating project performance in terms of metrics directly related to the Environmental Protection Agency (EPA) Class VI permit requirements for the area of review (AoR) definition and post injection site closure monitoring.« less
Three-Dimensional Ultrasonic Imaging Of The Cornea
NASA Technical Reports Server (NTRS)
Heyser, Rrichar C.; Rooney, James A.
1988-01-01
Proposed technique generates pictures of curved surfaces. Object ultrasonically scanned in raster pattern generated by scanning transmitter/receiver. Receiver turned on at frequent intervals to measure depth variations of scanned object. Used for medical diagnoses by giving images of small curved objects as cornea. Adaptable to other types of reflection measurementsystems such as sonar and radar.
Earth tides, global heat flow, and tectonics
Shaw, H.R.
1970-01-01
The power of a heat engine ignited by tidal energy can account for geologically reasonable rates of average magma production and sea floor spreading. These rates control similarity of heat flux over continents and oceans because of an inverse relationship between respective depth intervals for mass transfer and consequent distributions of radiogenic heat production.
Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...
Intermittent carbonate sedimentation in the equatoral Indian Ocean: fluctuations of the Eocene CCD?
NASA Astrophysics Data System (ADS)
Mitchison, F.; Kachovich, S.; Backman, J.; Pike, J.
2017-12-01
IODP Expedition 362 recently drilled from the sea floor to oceanic basement in the eastern equatorial Indian Ocean at Site U1480G (3°N, 91°E, water depth 4148 m). Beneath the thick ( 1250 m) predominantly siliciclastic Nicobar Fan succession, a condensed ( 10 m) middle Eocene pelagic interval displayed striking decimetre-scale banding, alternating between calcareous oozes and darker clays. We investigate whether deposition of the calcareous sediments was associated with periodic global carbonate accumulation events previously documented in the Equatorial Pacific and Atlantic Oceans, linked to oscillations of the carbonate compensation depth (CCD). We present high-resolution geochemical records (carbonate, organic carbon, bulk carbonate stable isotopes) and scanning electron microscope micro-element maps through several of the calcareous to clay transitions, as well as microfossil assemblages and new biostratigraphic constraints for the interval. Our data will reveal whether the banded sediments represent fluctuations of the CCD, and whether the CCD was likely responding to global (e.g. changes in pCO2) or local (e.g. local changes in calcareous plankton productivity) processes.
Hydrocarbon reservoirs of Gulf of Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, P.K.
1988-01-01
The statistical distribution of over 12,000 producible hydrocarbon reservoirs from various biostratigraphic intervals of the Gulf of Mexico is presented. The average number, thickness, volume, subsurface depth, and ecozone of depositional environments of the reservoirs are grouped according to biostratigraphic intervals, trends, and geographic areas. The upper Pliocene and Pleistocene reservoirs account for more than 77% of the total number. Within the Miocene trend, Bigenerina H in the western Gulf of Bigenerina A and Bigenerina 2 in the central Gulf show significant concentration of reservoirs. The average depth of production for all trends gets deeper, both from west and east,more » toward Ship Shoal-South Timbalier areas. The average thickness varies slightly between trends; however, variation between areas is more significant. A significant majority of the reservoirs of all trends in the entire Gulf is reported from the outer shelf-upper slope ecozones (E3 and E4). According to volume, the E3-E5 reservoirs can be classified into three groups; larger than 10,000 acre-ft/reservoir, 5,000 to 10,000 acre-ft/reservoir, and smaller than 5,000 acre-ft/reservoir.« less
Temperature profiles in the earth of importance to deep electrical conductivity models
NASA Astrophysics Data System (ADS)
Čermák, Vladimír; Laštovičková, Marcela
1987-03-01
Deep in the Earth, the electrical conductivity of geological material is extremely dependent on temperature. The knowledge of temperature is thus essential for any interpretation of magnetotelluric data in projecting lithospheric structural models. The measured values of the terrestrial heat flow, radiogenic heat production and thermal conductivity of rocks allow the extrapolation of surface observations to a greater depth and the calculation of the temperature field within the lithosphere. Various methods of deep temperature calculations are presented and discussed. Characteristic geotherms are proposed for major tectonic provinces of Europe and it is shown that the existing temperatures on the crust-upper mantle boundary may vary in a broad interval of 350 1,000°C. The present work is completed with a survey of the temperature dependence of electrical conductivity for selected crustal and upper mantle rocks within the interval 200 1,000°C. It is shown how the knowledge of the temperature field can be used in the evaluation of the deep electrical conductivity pattern by converting the conductivity-versustemperature data into the conductivity-versus-depth data.
Panchal, Ashish R; Meziab, Omar; Stolz, Uwe; Anderson, Wes; Bartlett, Mitchell; Spaite, Daniel W; Bobrow, Bentley J; Kern, Karl B
2014-09-01
Recent studies have demonstrated higher-quality chest compressions (CCs) following a 60 s ultra-brief video (UBV) on compression-only CPR (CO-CPR). However, the effectiveness of UBVs as a CPR-teaching tool for lay bystanders in public venues remains unknown. Determine whether an UBV is effective in teaching laypersons CO-CPR in a public setting and if viewing leads to superior responsiveness and CPR skills. Adult lay bystanders were enrolled in a public shopping mall and randomized to: (1) Control (CTR): sat idle for 60 s; (2) UBV: watched a 60 s UBV on CO-CPR. Subjects were read a scenario detailing a sudden collapse in the mall and asked to do what they "thought was best" on a mannequin. Performance measures were recorded for 2 min: responsiveness (time to call 911 and first CCs) and CPR quality [CC depth, rate, hands-off interval (time without CC after first CC)]. One hundred subjects were enrolled. Demographics were similar between groups. UBV subjects called 911 more frequently (percent difference: 31%) and initiated CCs sooner in the arrest scenario (median difference (MD): 5 s). UBV cohort had increased CC rate (MD: 19 cpm) and decreased hands-off interval (MD: 27 s). There was no difference in CC depth. Bystanders with UBV training in a shopping mall had significantly improved responsiveness, CC rate, and decreased hands-off interval. Given the short length of training, UBV may have potential as a ubiquitous intervention for public venues to help improve bystander reaction to arrest and CO-CPR performance. Published by Elsevier Ireland Ltd.
Methane production from bicarbonate and acetate in an anoxic marine sediment
NASA Technical Reports Server (NTRS)
Crill, P. M.; Martens, C. S.
1986-01-01
Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.
A quantitative analysis of global intermediate and deep seismicity
NASA Astrophysics Data System (ADS)
Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas
2017-04-01
The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.
Kalemos, Apostolos
2013-06-14
The X̃(2)Σu (+) BNB state considered to be of symmetry broken (SB) character has been studied by high level multireference variational and full configuration interaction methods. We discuss in great detail the roots of the so-called SB problem and we offer an in depth analysis of the unsuspected reasons behind the double minimum topology found in practically all previous theoretical investigations. We argue that the true reason of failure to recover a D∞h equilibrium geometry lies in the lack of the correct permutational symmetry of the wavefunctions employed and is by no means a real effect.
Diatomaceous Earth Project put on standby by Texaco
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-01
Texaco has placed its Diatomite Project, located at McKittrick in California's Kern County, in a standby condition. The Project will be reactivated when conditions in the industry dictate. Texaco stressed that the Project is not being abandoned, but is being put on hold due to the current worldwide energy supply picture. The Lurgi pilot unit is being maintained in condition for future operations. Texaco estimates that the Project could yield in excess of 300 million barrels of 21 to 23 API oil from the oil-bearing diatomite deposits which lie at depths up to 1200 feet. The deposits will be recoveredmore » by open pit mining and back filling techniques.« less
Properties of nucleon resonances by means of a genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Ramirez, C.; Moya de Guerra, E.; Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid
2008-06-15
We present an optimization scheme that employs a genetic algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances {delta}(1230) and {delta}(1700). The former can be easily isolated and thus has been studied in depth, while the latter ismore » not as well known experimentally.« less
NASA Technical Reports Server (NTRS)
Bringemeier, D.
1992-01-01
Research undertaken in the last decades in Noerdlinger Ries, Germany, has repeatedly emphasized the sharp contact between Bunte breccia and suevite. However, extensive investigations into this layer boundary have not yet been possible due to insufficient outcrop ratios. New outcrops enabled an in-depth investigation into the superposition of suevite on the Bunte breccia, which is assigned a key role in interpreting the transport mechanisms of ejecta of large impact. In two quarries lying several kilometers east and south-southwest of the crater, the contact between the suevite and Bunte breccia was recorded in detailed sections on outcrops of over 50 m in length.
NASA Astrophysics Data System (ADS)
Hickey-Vargas, R.; Samajpati, E.
2015-12-01
Volcaniclastic sediments and sedimentary rocks from DSDP Site 296, located within a basin at the crest of the northern Kyushu Palau ridge (KPR), record the latter part of the first stage of Izu Bonin Mariana (IBM) arc evolution, up to the cessation of volcanism caused by arc rifting and opening of the Shikoku basin. The lower section consists of early to late Oligocene coarse volcaniclastic sedimentary rocks, and is overlain by late Oligocene to Pleistocene nannofossil chalks and oozes with volcanic sand and ash-rich layers. We have studied the chemical composition of pyroxene, feldspar and glass grains separated from the coarse volcaniclastic rocks at depths from 435 to 1082 meters below sea floor, and of glass shards in layers in the overlying sediments of late Oligocene to early Miocene age. Overall, pyroxene and feldspar compositions show little systematic variation with depth in the core, although for pyroxene, highest En and highest Al2O3 contents are found in the interval from 600-900 meters bsf. An contents in feldspars show a bimodal distribution throughout the core, with most values > 90 or in the range 60-70, with more abundant intermediate compositions in the 600-900 meter interval. Compositions of glass shards vary widely, from basalt to rhyolite, and from low K, light rare earth (LREE)-depleted to high K, strongly LREE-enriched character, without systematic variation with depth in the core. However, all cores sampled from early Oligocene to early Miocene contain relatively low K basalt and basaltic andesite glass. Like the pyroxenes, a wider range of compositions is found in glass from the 600 to 900 mbsf interval. The Site 296 sequence overlaps in age with the uppermost sedimentary section of recently drilled IODP Site 1438, located 230 km to the southwest in the Amami Sankaku basin, thus the two sites may contain volcanic debris shed from contemporaneous sections of the KPR.
NASA Astrophysics Data System (ADS)
Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.
2017-12-01
The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.
NASA Astrophysics Data System (ADS)
Kozlowska, M.; Orlecka-Sikora, B.; Kwiatek, G.; Boettcher, M. S.; Dresen, G. H.
2014-12-01
Static stress changes following large earthquakes are known to affect the rate and spatio-temporal distribution of the aftershocks. Here we utilize a unique dataset of M ≥ -3.4 earthquakes following a MW 2.2 earthquake in Mponeng gold mine, South Africa, to investigate this process for nano- and pico- scale seismicity at centimeter length scales in shallow, mining conditions. The aftershock sequence was recorded during a quiet interval in the mine and thus enabled us to perform the analysis using Dietrich's (1994) rate and state dependent friction law. The formulation for earthquake productivity requires estimation of Coulomb stress changes due to the mainshock, the reference seismicity rate, frictional resistance parameter, and the duration of aftershock relaxation time. We divided the area into six depth intervals and for each we estimated the parameters and modeled the spatio-temporal patterns of seismicity rates after the stress perturbation. Comparing the modeled patterns of seismicity with the observed distribution we found that while the spatial patterns match well, the rate of modeled aftershocks is lower than the observed rate. To test our model, we used four metrics of the goodness-of-fit evaluation. Testing procedure allowed rejecting the null hypothesis of no significant difference between seismicity rates only for one depth interval containing the mainshock, for the other, no significant differences have been found. Results show that mining-induced earthquakes may be followed by a stress relaxation expressed through aftershocks located on the rupture plane and in regions of positive Coulomb stress change. Furthermore, we demonstrate that the main features of the temporal and spatial distribution of very small, mining-induced earthquakes at shallow depths can be successfully determined using rate- and state-based stress modeling.
Collett, T.S.; Kvenvolden, K.A.; Magoon, L.B.
1990-01-01
In the Kuparuk River Unit 2D-15 well, on the North Slope of Alaska, a 60 m-thick stratigraphic interval that lies within the theoretical pressure-temperature field of gas-hydrate stability is inferred to contain methane hydrates. This inference is based on interpretations from well logs: (1) release of methane during drilling, as indicated by the mud log, (2) an increase in acoustic velocity on the sonic log, and (3) an increase of electrical resistivity on the electric logs. Our objective was to determine the composition and source of the gas within the shallow gas-hydrate-bearing interval based on analyses of cutting gas. Headspace gas from canned drill cuttings collected from within the gas-hydrate-bearing interval of this well has an average methane to ethane plus propane [C1/(C2 + C3)] ratio of about 7000 and an average methane ??13C value of -46% (relative to the PDB standard). These compositions are compared with those obtained at one well located to the north of 2D-15 along depositional strike and one down-dip well to the northeast. In the well located on depositional strike (Kuparuk River Unit 3K-9), gas compositions are similar to those found at 2D-15. At the down-dip well (Prudhoe Bay Unit R-1), the C1/(C2 + C3) ratios are lower (700) and the methane ??13C is heavier (-33%). We conclude that the methane within the stratigraphic interval of gas hydrate stability comes from two sources-in situ microbial gas and migrated thermogenic gas. The thermal component is greatest at Prudhoe Bay. Up-dip to the west, the thermogenic component decreases, and microbial gas assumes more importance. ?? 1990.
DNS of unsteady, turbulent convection in a rotating stratified fluid
NASA Astrophysics Data System (ADS)
Pal, Anikesh; Chalmalla, Vamsi
2017-11-01
Turbulent convection under the influence of intense surface cooling and earth's rotation is a common phenomenon observed in the ocean. In the present study, direct numerical simulations are performed to understand this dynamics. The effect of rotation is represented by Rossby number Ro* which is defined in terms of ocean depth H, Coriolis parameter f and surface buoyancy flux B0, as Ro* =B01// 2 Hf 3 / 2 . Cooling at the surface results in the formation of unstable density configuration where denser fluid lies on top of the lighter fluid. These unstable density configuration leads to a turbulent front. When the turbulent front reaches a transition depth zc, it experiences the effect of rotation leading to the formation of quasi- 2D vortices beneath the 3D turbulent layer. If the surface cooling is strong enough, these vortices penetrate further downwards producing vortex columns. Qualitatively, DNS results agree well with the findings of experimental study by Maxworthy & Narimousa (1993). The motivation of this study is to understand the nonlinear dynamics and turbulence scaling as the surface cooling and Coriolis parameter are varied.
NASA Astrophysics Data System (ADS)
Post, Vincent E. A.; Houben, Georg J.
2017-04-01
Due to the growing vulnerability of low-lying coastal zones to flooding by seawater, there is a need for more studies of the impact of inundations on fresh groundwater resources. We present previously unpublished data collected on the island of Baltrum following a devastating storm in 1962, which uniquely show the impact of seawater inundation on a freshwater lens in a siliciclastic aquifer. The field data show that elevated salinities persisted for at least 4 years at the measurement depths of 4 and 6 m, and at least for 6 years at greater depths. Numerical models confirm the importance of density-driven salt fingering. Models that did not consider density effects failed to simulate the observed breakthrough curves. Transient recharge, model dimension and lateral flow modify the details of the simulation results, but in all models density-driven flow dominates the overall system behaviour. The sequestration of intruded seawater into the deeper parts of the flow system, prolongs recovery and enhances the risk of upconing when pumping is resumed too early.
NASA Astrophysics Data System (ADS)
Yuan, J.
2014-12-01
In order to research the lithospheric magnetic field and the magnetization structure, the geomagnetic field was surveyed along the Nishan-Guyang profile with 900 km long in the Neimenggu and Shanxi provinces in China. The distance between the adjacent geomagnetic sites is about 7 km along the profile. The geomagnetic data were analyzed, and the lithospheric magnetic field was obtained. Using the upward continuation method, the geomagnetic anomalies in different depths were obtained: the basement anomaly, the upper crust anomaly and the superficial anomaly. Basing on these geomagnetic anomalies, the magnetization structure was obtained by using the software of the ModelVision 11.0. The preliminary results show: (1) The geomagnetic anomalies have good relationship with the local geological structure. (2) The magnetization structure is related to the depth variation of the Curie interface, the values of the magnetic susceptibility, the seismic activity and the tectonic block.
NASA Astrophysics Data System (ADS)
Crosbie, K.; Abers, G. A.; Mann, M. E.; Janiszewski, H. A.; Creager, K. C.; Kiser, E.; Ulberg, C. W.; Denlinger, R. P.; Moran, S. C.
2017-12-01
Mount St. Helens (MSH) lies 50 km trenchward of the main arc front in Cascadia. The imaging Magma Under St. Helens (iMUSH) experiment probes its magmatic plumbing system in the mid to lower crust to understand how magmas could be generated in this setting. A 70-element broadband array was deployed for 2 years with a 10 km station spacing and 100 km aperture. Ambient noise and earthquake surface waves provide fundamental-mode Rayleigh wave phase velocity maps of the region from 0.01 to 0.18 Hz. From these, shear velocity (Vs) is estimated from 0 to 80 km depth. Initial attempts at integrating ambient-noise and earthquake datasets have been complicated by the lower resolution of earthquake-derived phase velocities compared to ambient noise, and care is being taken to minimize this incompatibility. Joint inversions with receiver functions help resolve these ambiguities and velocity contrasts across interfaces. For depths of 0-5 km, fast Vs zones (3.3 km/s) are imaged that correspond well with mapped plutons (Spud Mountain and Spirit Lake). Crust at 10-30 km depth has higher Vs (>3.9 km/s) west of MSH than east and north of it (Vs < 3.7 km/s). Crustal temperature variations from a cold forearc to a hot volcanic crust could partly explain this crustal velocity pattern. However, the exceedingly high Vs west of MSH requires a strong change in crustal composition, most likely revealing the east edge of the mafic Siletzia terrane with a predicted Vs similar to that observed. Just below the Moho, Vs variations are much smaller. The resulting Vs contrast across the Moho from surface waves and receiver functions is weak in the forearc and strong beneath the arc volcanoes. This pattern was previously interpreted as due to a serpentinized cold nose of the mantle. However, the anomalously high crustal velocities we observe west of MSH contribute to this forearc Moho absence more than mantle velocity variations, indicating that crustal geology enhances or dominates an effect attributed to mantle hydration. These results confirm that MSH lies on the edge of a notably cold forearc, exactly where crustal composition varies markedly. This sharp crustal terrane boundary immediately west of MSH may help localize volcanism.
Upward migration of Vesuvius magma chamber over the past 20,000 years.
Scaillet, B; Pichavant, M; Cioni, R
2008-09-11
Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.
Regional Wave Propagation in Southeastern United States
NASA Astrophysics Data System (ADS)
Jemberie, A. L.; Langston, C. A.
2003-12-01
Broad band seismograms from the April 29, 2003, M4.6 Fort Payne, Alabama earthquake are analyzed to infer mechanisms of crustal wave propagation, crust and upper mantle velocity structure in southeastern United States, and source parameters of the event. In particular, we are interested in producing deterministic models of the distance attenuation of earthquake ground motions through computation of synthetic seismograms. The method first requires constraining the source parameters of an earthquake and then modeling the amplitude and times of broadband arrivals within the waveforms to infer appropriate layered earth models. A first look at seismograms recorded by stations outside the Mississippi Embayment (ME) show clear body phases such P, sP, Pnl, Sn and Lg. The ME signals are qualitatively different from others because they have longer durations and large surface waves. A straightforward interpretation of P wave arrival times shows a typical upper mantle velocity of 8.18 km/s. However, there is evidence of significantly higher P phase velocities at epicentral distances between 400 and 600km, that may be caused by a high velocity upper mantle anomaly; triplication of P-waves is seen in these seismograms. The arrival time differences between regional P and the depth phase sP at different stations are used to constrain the depth of the earthquake. The source depth lies between 9.5 km and 13km which is somewhat more shallow than the network location that was constrained to 15km depth. The Fort Payne earthquake is the largest earthquake to have occurred within the Eastern Tennessee Seismic Zone.
What is 3D good for? A review of human performance on stereoscopic 3D displays
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.
Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska
Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa
2014-01-01
We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.
Regionalization of precipitation characteristics in Montana using L-moments
Parrett, C.
1998-01-01
Dimensionless precipitation-frequency curves for estimating precipitation depths having small exceedance probabilities were developed for 2-, 6-, and 24-hour storm durations for three homogeneous regions in Montana. L-moment statistics were used to help define the homogeneous regions. The generalized extreme value distribution was used to construct the frequency curves for each duration within each region. The effective record length for each duration in each region was estimated using a graphical method and was found to range from 500 years for 6-hour duration data in Region 2 to 5,100 years for 24-hour duration data in Region 3. The temporal characteristics of storms were analyzed, and methods for estimating synthetic storm hyetographs were developed. Dimensionless depth-duration data were grouped by independent duration (2,6, and 24 hours) and by region, and the beta distribution was fit to dimensionless depth data for various incremental time intervals. Ordinary least-squares regression was used to develop relations between dimensionless depths for a key, short duration - termed the kernel duration - and dimensionless depths for other durations. The regression relations were used, together with the probabilistic dimensionless depth data for the kernel duration, to calculate dimensionless depth-duration curves for exceedance probabilities from .1 to .9. Dimensionless storm hyetographs for each independent duration in each region were constructed for median value conditions based on an exceedance probability of .5.
Soil Water Measurement Using Actively Heated Fiber Optics at Field Scale.
Vidana Gamage, Duminda N; Biswas, Asim; Strachan, Ian B; Adamchuk, Viacheslav I
2018-04-06
Several studies have demonstrated the potential of actively heated fiber optics (AHFO) to measure soil water content (SWC) at high spatial and temporal resolutions. This study tested the feasibility of the AHFO technique to measure soil water in the surface soil of a crop grown field over a growing season using an in-situ calibration approach. Heat pulses of five minutes duration were applied at a rate of 7.28 W m -1 along eighteen fiber optic cable transects installed at three depths (0.05, 0.10 and 0.20 m) at six-hour intervals. Cumulative temperature increase (T cum ) during heat pulses was calculated at locations along the cable. While predicting commercial sensor measurements, the AHFO showed root mean square errors (RMSE) of 2.8, 3.7 and 3.7% for 0.05, 0.10 and 0.20 m depths, respectively. Further, the coefficients of determination (R²) for depth specific relationships were 0.87 (0.05 m depth), 0.46 (0.10 m depth), 0.86 (0.20 m depth) and 0.66 (all depths combined). This study showed a great potential of the AHFO technique to measure soil water at high spatial resolutions (<1 m) and to monitor soil water dynamics of surface soil in a crop grown field over a cropping season with a reasonable compromise between accuracy and practicality.
Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search.
Liu, Meiqin; Zhang, Duo; Zhang, Senlin; Zhang, Qunfei
2017-12-04
Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme.
Node Depth Adjustment Based Target Tracking in UWSNs Using Improved Harmony Search
Zhang, Senlin; Zhang, Qunfei
2017-01-01
Underwater wireless sensor networks (UWSNs) can provide a promising solution to underwater target tracking. Due to the limited computation and bandwidth resources, only a small part of nodes are selected to track the target at each interval. How to improve tracking accuracy with a small number of nodes is a key problem. In recent years, a node depth adjustment system has been developed and applied to issues of network deployment and routing protocol. As far as we know, all existing tracking schemes keep underwater nodes static or moving with water flow, and node depth adjustment has not been utilized for underwater target tracking yet. This paper studies node depth adjustment method for target tracking in UWSNs. Firstly, since a Fisher Information Matrix (FIM) can quantify the estimation accuracy, its relation to node depth is derived as a metric. Secondly, we formulate the node depth adjustment as an optimization problem to determine moving depth of activated node, under the constraint of moving range, the value of FIM is used as objective function, which is aimed to be minimized over moving distance of nodes. Thirdly, to efficiently solve the optimization problem, an improved Harmony Search (HS) algorithm is proposed, in which the generating probability is modified to improve searching speed and accuracy. Finally, simulation results are presented to verify performance of our scheme. PMID:29207541
Depth distribution of microbial production and oxidation of methane in northern boreal peatlands.
Sundh, I; Nilsson, M; Granberg, G; Svensson, B H
1994-05-01
The depth distributions of anaerobic microbial methane production and potential aerobic microbial methane oxidation were assessed at several sites in both Sphagnum- and sedge-dominated boreal peatlands in Sweden, and compared with net methane emissions from the same sites. Production and oxidation of methane were measured in peat slurries, and emissions were measured with the closed-chamber technique. Over all eleven sites sampled, production was, on average, highest 12 cm below the depth of the average water table. On the other hand, highest potential oxidation of methane coincided with the depth of the average water table. The integrated production rate in the 0-60 cm interval ranged between 0.05 and 1.7 g CH4 m (-2) day(-) and was negatively correlated with the depth of the average water table (linear regression: r (2) = 0.50, P = 0.015). The depth-integrated potential CH4-oxidation rate ranged between 3.0 and 22.1 g CH4 m(-2) day(-1) and was unrelated to the depth of the average water table. A larger fraction of the methane was oxidized at sites with low average water tables; hence, our results show that low net emission rates in these environments are caused not only by lower methane production rates, but also by conditions more favorable for the development of CH4-oxidizing bacteria in these environments.
Reversed stereo depth and motion direction with anti-correlated stimuli.
Read, J C; Eagle, R A
2000-01-01
We used anti-correlated stimuli to compare the correspondence problem in stereo and motion. Subjects performed a two-interval forced-choice disparity/motion direction discrimination task for different displacements. For anti-correlated 1d band-pass noise, we found weak reversed depth and motion. With 2d anti-correlated stimuli, stereo performance was impaired, but the perception of reversed motion was enhanced. We can explain the main features of our data in terms of channels tuned to different spatial frequencies and orientation. We suggest that a key difference between the solution of the correspondence problem by the motion and stereo systems concerns the integration of information at different orientations.
Solar flare and galactic cosmic ray studies of Apollo 14 and 15 samples.
NASA Technical Reports Server (NTRS)
Crozaz, G.; Drozd, R.; Hohenberg, C. M.; Hoyt, H. P., Jr.; Ragan, D.; Walker, R. M.; Yuhas, D.
1972-01-01
Thermoluminescence (TL) measurements in rock 14310 show a strong depth dependence consistent with that expected from solar flares. This effect should prove useful in studying solar flare fluctuations in the time interval of 100 to 100,000 years. Rare gas spallation ages for rock 14301, 14306, and 14311 are respectively 102 plus or minus 30, 25 plus or minus 2, and 661 plus or minus 72 m.y. The 14306 value supports the idea that Cone Crater was formed 25 million years ago. Groupings of exposure ages suggest the dates of other major cratering events. Galactic track data in 14310 show little depth dependence.
Influence of seasonal climatic variability on shallow infiltration at Yucca Mountain
Hevesi, Joseph A.; Flint, Alan L.
1993-01-01
To analyze infiltration and the redistribution of moisture in alluvial deposits at Yucca Mountain, water content profiles at a 13.5 m deep borehole were measured at monthly intervals using a neutron moisture probe. Increases in water content to a maximum depth of 1.8 m in response to winter season precipitation were noted. Below a depth of 1.8 m, a gradual drying trend was indicated. A simulation study showed that, although small amounts of water may be percolating through the deep nonwetted ones of the profile, the influence of climatic variability on infiltration through thick alluvial deposits at Yucca Mountain is greatly mitigated by evapotranspiration.
Mapping water table depth using geophysical and environmental variables.
Buchanan, S; Triantafilis, J
2009-01-01
Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.
NASA Astrophysics Data System (ADS)
Weber, R. C.; Banerdt, W. B.; Lognonne, P. H.; Hempel, S.; Panning, M. P.; Schmerr, N. C.; Garcia, R.; Shiro, B.; Gudkova, T.
2016-12-01
We present a methodology to constrain the seismic structure of the Martian core in preparation for the return of data from the InSight mission. Expected amplitudes for marsquakes assuming a medium seismicity model support the likely observation of core reflections of P and S energy for events with magnitude greater than MW 4.5. For the mission duration, we would expect to record on the order of 10 events of at least this magnitude. Our method predicts the ray density of core reflected (PcP, ScS) and transmitted (PKP, SKS) phases for various core sizes with core-mantle boundary depths between 1650 and 2100 km. Ray density is defined as the fraction of rays in a small source-receiver interval normalized by the total number of rays over a great circle slice through the planet. The ray density of a given phase is scaled by predicted amplitudes calculated considering attenuation, geometric spreading and reflection/transmission coefficients at discontinuities along the ray path. Maximum PcP/ScS amplitudes are expected at epicentral distances of 40-100 degrees. Thus, if present, strong seismicity in the Hellas and Tharsis region may facilitate core detection. For events with MW above 4.5, ScS and SKS signals are expected to lie above the lander noise, but PcP and PKP signals may barely be visible. The resolution of these phases can be improved by applying stacking techniques to account for expected background noise, scattering, and interfering seismic phases. These techniques were successfully applied to Apollo seismograms to infer the radial structure of the lunar core. Even if source depth and location have large uncertainties during a single-station mission to Mars, different phases can be distinguished by their slownesses. Prior to the summation of the traces of individual events, signals are aligned to a reference phase, e.g. the PcP onset assuming various core radii. A maximum in signal coherency corresponds to the best fitting core radius. In the case of lunar seismograms, the coherency of the stacked signals was further improved by applying polarization filters. Such filtering may also be useful on Mars depending on the scattering environment of the shallow regolith. In the case of ScS, gravimetric factors and Love number will additionally be able to separate models with similar ScS arrival times.
Hydrogeologic Assessment of the 4-S Land and Cattle CompanyRanch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Nigel W.T.
2006-04-10
Hydrogeological assessment of the 4-S Land and Cattle Company (4-S Ranch) was conducted using a combination of field investigations and a survey of available literature from nearby agricultural water districts and other entities. The 4-S Ranch has been able to meet most of its own water needs providing irrigated pasture for beef cattle by an active program of shallow groundwater pumping in these miconfined aquifer above the Corcoran Clay. Comparison of groundwater pumping on the 4-S Ranch property with groundwater pumping in the adjacent Merquin and Stevinson Water Districts shows great similarity in the well screened depths and the qualitymore » of the groundwater produced by the well fields. The pump yield for the eight active production wells on the 4-S property are comparable to the production and drainage wells in the adjacent water districts. Like these Districts the 4-S Ranch lies close to the Valley trough in a historic discharge area. The 4-S Ranch is unique in that it is bounded and bisected by several major water conveyance facilities including Bear Creek. Although the large number of potential recharge structures would suggest significant groundwater conjunctive use potential the major well field development has occurred along the length of the Eastside Canal. The Eastside Canal is known to be leaky above the ''A'' Clay the Canal passes through sandy areas and experiences significant groundwater seepage. This seepage can be intercepted by adjacent groundwater wells. Pumping adjacent to, and along the alignment of the Canal, may induce higher rates of seepage from the Eastside Canal. Groundwater quality below and adjacent to the Eastside Canal is very good, reflecting the origin of this diverted water from the Merced River. Most of the pumpage occurs in a depth interval between 30 ft and 130 ft. Safe yield estimates made using the available data show that the 4-S Ranch has sufficient resources to meet its own needs. Further exploitation of the groundwater will be limited if the leakage from the Eastside Bypass, Mariposa Bypass and Bear Creek are insufficient to replace the pumped water on an average annual basis. Should any future lining of the Eastside Canal occur, it would have a significant impact on the groundwater resource potential of the 4-S Ranch and impair the overall quality of the available water supply.« less
NASA Astrophysics Data System (ADS)
Dejardin, Rowan; Kender, Sev; Allen, Claire S.; Leng, Melanie J.; Swann, George E. A.; Peck, Victoria L.
2018-01-01
It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth-habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth-habitat-stable-isotope relationship on the shelf, we analysed depth distribution and stable isotopes of living
(Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250 to 300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find live
specimens of a number of calcareous species from a range of depths in the sediment column. Stable isotope ratios (δ13C and δ18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus, and Buccella sp. 1, at 1 cm depth intervals within the downcore sediment sequences. In agreement with studies in deep-water settings, we find no significant intra-species variability in either δ13Cforam or δ18Oforam with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths at which we find living
, infaunal
species, we speculate that they may actually calcify predominantly at the sediment-seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum.
Fate and Transport of Nitrogen and Phosphorus in Onsite Wastewater Treatment Systems
NASA Astrophysics Data System (ADS)
Toor, G.; De, M.; Danmowa, N.
2012-12-01
The contribution of nitrogen (N) and phosphorus (P) from onsite wastewater treatment systems (OWTS) to groundwater pollution is largely not quantified in most aquifers and watersheds in the world. Thus, the knowledge about the fate and transport of N and P from OWTS is needed to protect groundwater contamination. In Florida, porous sandy soils intensify the transport of N from drianfield of OWTS to shallow groundwater. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to investigate the dynamics of N and P transport in the vadose zone and groundwater in full scale OWTS. We constructed three mounds: (1) drip dispersal mound: 45 cm depth of sand below the emitters, followed by natural soil; (2) gravel trench mound: 45 cm depth of sand below the emitters, followed by 30 cm depth of gravels, and natural soil; and (3) advanced system mound: which contained aerobic (lingo-cellulosic) and anaerobic (sulfur) media for enhanced nitrification and denitrification before dispersing wastewater in the vadose zone. Each mound received 120 L of septic tank effluent (STE) per day (equivalent to maximum allowable rate of 3 L/ft2/day) from our facility (office and homes); STE was dosed 6 times at 4-hour intervals in a day. Soil water samples were collected from the mounds (vadose zone) by using suction cup lysimeters installed at 0.30, 0.60, and 1.05 m depth and groundwater samples were collected by using piezometers installed at 3-3.30 m depth below mounds. We collected samples during May-Aug 2012 before STE delivery (3 events at 3-day intervals) and after STE delivery (10 events at 3-day intervals; 13 events at 7-day intervals). Collected samples (STE, soil water, groundwater) were analysed for pH, EC, chloride (Cl), and organic and inorganic N and P fractions. The ranges of pH, EC, and Cl of STE (26 events) were 6.9-7.7, 1.01-1.33 dS/m, and 56-121 mg/l, respectively. Mean (n = 26) ammonium-N (NH4-N) and nitrate-N (NO3-N) concentrations in the STE were 53.4 and 0.06 mg/L, respectively, while concentrations of P in the STE were 5.2-13.8 mg/L. The pH (6.31-6.94) and EC (0.46-0.75 dS/m) in lysimeter samples were lower than STE. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both STE and soil water. Concentrations of NH4-N in all samples collected from lysimeters (0.02-0.45 mg/L) and piezometers (0.01-0.14 mg/L) were <0.50 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05 m soil profile depth). Higher residence time and presence of gravels apparently in gravel trench resulted in greater nitrification (82.3%) than drip dispersal mound (upto 66.4%). Concentrations of NO3-N were lower (0.02-6.14 mg/L) in the soil water at 0.30-1.05 m depth before STE delivery, but slowly increased after STE delivery. Concentrations of P in the lysimeters and piezometers were 0.041-1.68 mg/L and 0-0.113 mg/L, respectively; suggesting greater P attenuation in the vadose zone of all OWTS. Concentrations of Cl showed a distinct pattern of NO3-N breakthrough in vadose zone and groundwater. The groundwater NO3-N was elevated upto 19.2 mg/L after STE delivery.
What We Do Not Yet Know About Global Ocean Depths, and How Satellite Altimetry Can Help
NASA Astrophysics Data System (ADS)
Smith, W. H. F.; Sandwell, D. T.; Marks, K. M.
2017-12-01
Half Earth's ocean floor area lies several km or more away from the nearest depth measurement. Areas more than 50 km from any sounding sum to a total area larger than the entire United States land area; areas more than 100 km from any sounding comprise a total area larger than Alaska. In remote basins the majority of available data were collected before the mid-1960s, and so often are mis-located by many km, as well as mis-digitized. Satellite altimetry has mapped the marine gravity field with better than 10 km horizontal resolution, revealing nearly all seamounts taller than 2 km; new data can detect some seamounts less than 1 km tall. Seafloor topography can be estimated from satellite altimetry if sediment is thin and relief is due to seafloor spreading and mid-plate volcanism. The accuracy of the estimate depends on the geological nature of the relief and on the accuracy of the soundings available to calibrate the estimation. At best, the estimate is a band-pass-filtered version of the true depth variations, but does not resolve the small-scale seafloor roughness needed to model mixing and dissipation in the ocean. In areas of thick or variable sediment cover there can be little correlation between depth and altimetry. Yet altimeter-estimated depth is the best guess available in most of the ocean. The MH370 search area provides an illustration. Prior to the search it was very sparsely (1% to 5%) covered by soundings, many of these were old, low-tech data, and plateaus with thick sediments complicate the estimation of depth from altimetry. Even so, the estimate was generally correct about the tectonic nature of the terrain and the extent of depth variations to be expected. If ships will fill gaps strategically, visiting areas where altimetry shows that interesting features will be found, and passing near the centroids of the larger gaps, the data will be exciting in their own right and will also improve future altimetry estimates.
Does pressure matter in creating burns in a porcine model?
Singer, Adam J; Taira, Breena R; Anderson, Ryon; McClain, Steve A; Rosenberg, Lior
2010-01-01
Multiple animal models of burn injury have been reported, and only some of these have been fully validated. One of the most popular approaches is burn infliction by direct contact with the heat source. Previous investigators have reported that the pressure of application of the contact burn infliction device does not affect the depth of injury. We hypothesized that the depth of injury would increase with increasing pressure of application in a porcine burn model. Forty mid-dermal contact burns measuring 25 x 25 mm were created on the back and flanks of an anesthetized domestic pig (50 kg) using a brass bar preheated in 80 degrees C water for a period of 30 or 20 seconds. The bars were applied using a spring-loaded device designed to control the amount of pressure applied to the skin. The pressures applied by the brass bar were gravity (0.2 kg), 2.0, 2.7, 3.8, and 4.5 kg in replicates of eight. One hour later, 8-mm full-thickness biopsies were obtained for histologic analysis using Elastic Van Gieson staining by a board-certified dermatopathologist masked to burn conditions. The depth of complete and partial collagen injury was measured from the level of the basement membrane using a microscopic micrometer measuring lens. Groups were compared with analysis of variance (ANOVA). The association between depth of injury and pressure was determined with Pearson correlations. The mean (95% confidence interval) depths of complete collagen injury with 30-second exposures were as follows: gravity only, 0.51 (0.39-0.66) mm; 2.0 kg, 0.72 (0.55-0.88) mm; 2.7 kg, 0.68 (0.55-1.00) mm; 3.8 kg, 0.92 (0.80-1.00) mm; and 4.5 kg, 1.65 (1.55-1.75) mm. The differences in depth of injury between the various pressure groups were significant (ANOVA, P < .001). The mean (95% confidence interval) depths of partial collagen injury were as follows: gravity only, 1.10 (0.92-1.30) mm; 2.0 kg, 1.46 (1.28-1.63) mm; 2.7 kg, 1.51 (1.34-1.64) mm; 3.8 kg, 1.82 (1.71-1.94) mm; and 4.5 kg, 2.50 (2.39-2.62) mm; and ANOVA, P = .001. The associations between pressure of application and depth of complete and partial collagen injury were 0.73 (P < .001) and 0.65 (P < .001), respectively. There is a direct association between the pressure of burn device application and depth of injury. Future studies should standardize and specify the amount of pressure applied using the burn infliction device.
NASA Astrophysics Data System (ADS)
Wang, Y.; Hendy, I. L.; Thunell, R.
2017-12-01
The short duration of instrumental records limits our understanding of nitrogen loss to denitrification on interannual to centennial time scales. Bulk sediment δ15N is widely applied as a proxy for water column denitrification in oxygen minimum zones (OMZ). Lying within the California OMZ, Santa Barbara Basin (SBB) provides an ideal location for producing a high-resolution δ15N record for denitrification reconstruction. Here we present a high-resolution ( 1-2 y) 2000-year record of δ15N from SPR0901-03KC (34°16.99'N, 120°2.408'W; 586 m depth). Grey flood layer sediments are associated with abrupt decreases of 0.9 to 2.5 ‰ in the δ15N record. After removal of flood-affected samples from the record, δ15N varies from 6.8 to 8.7 ‰ with an average of 7.7 ‰. After 1800 AD δ15N experienced a sustained decrease to its minimum at the core top. Comparison with the principal components (PCs) of scanning X-ray fluorescence (XRF) elemental counts allow for further investigation of factors driving δ15N variations. The first PC (PC1) of scanning XRF elemental records contains high loadings for lithogenic sediment components while the second PC (PC2) has high loadings for biogenic components. The δ15N record is positively correlated with PC2 (r=0.2521, p<0.01) throughout the core while negatively correlated with PC1 relationship (r=-0.2596, p<0.01) between AD 1000-1800. Peaks of δ15N and PC2 (high primary productivity) coincide with intensified upwelling intervals supported by high anchovy scale counts, and bloom-forming diatoms (Rhizosolenia spp.) and silicoflagellates (D. speculum) from a nearby core. These upwelling intervals coincide with low PC1 (low river runoff). The coherent variability appears to indicate an atmospheric influence on the marine environment through the relative intensity of North Pacific High (NPH). Enhanced NPH induces stronger coastal upwelling with associated upward advection of δ15N-enriched subsurface water and higher primary productivity in the surface ocean. Subsurface waters are fed by California Undercurrent originated from the north Eastern Tropical Pacific, where active water column denitrification occurs generating high δ15N values.
Deep crustal structure of the northeastern margin of the Arabian plate from seismic and gravity data
NASA Astrophysics Data System (ADS)
Pilia, Simone; Ali, Mohammed; Watts, Anthony; Keats, Brook; Searle, Mike
2017-04-01
The United Arab Emirates-Oman mountains constitute a 700 km long, 50 km wide compressional orogenic belt that developed during the Cainozoic on an underlying extensional Tethyan rifted margin. It contains the world's largest and best-exposed thrust sheet of oceanic crust and upper mantle (Semail Ophiolite), which was obducted onto the Arabian rifted continental margin during the Late Cretaceous. Although the shallow structure of the UAE-Oman mountain belt is reasonably well known through the exploitation of a diverse range of techniques, information on deeper structure remains little. Moreover, the mechanisms by which dense oceanic crustal and mantle rocks are emplaced onto less dense and more buoyant continental crust are still controversial and remain poorly understood. The focus here is on an active-source seismic and gravity E-W transect extending from the UAE-mountain belt to the offshore. Seismic refraction data were acquired using the survey ship M/V Hawk Explorer, which was equipped with a large-volume airgun array (7060 cubic inches, 116 liters). About 400 air gun shots at 50-second time interval were recorded on land by eight broadband seismometers. In addition, reflection data were acquired at 20 seconds interval and recorded by a 5-km-long multichannel streamer. Results presented here include an approximately 85 km long (stretching about 35 km onshore and 50 km offshore) P-wave velocity crustal profile derived by a combination of forward modelling and inversion of both diving and reflected wave traveltimes using RAYINVR software. We employ a new robust algorithm based on a Monte Carlo approach (VMONTECARLO) to address the velocity model uncertainties. We find ophiolite seismic velocities of about 5.5 km/s and a thick sedimentary package in the offshore. Furthermore, the velocity model reveals a highly stretched crust with the Moho discontinuity lying at about 20 km. A prestack depth-migrated profile (about 50 km long) coincident with the offshore part of the refraction profile shows a thick sequence (up to about 10 km) of seaward dipping sediments that are offset by a number of listric (normal) faults, some of which intersect the seabed and so reflect recent tectonic activity. The trend of the Bouguer anomaly provides further constraints on the deeper structure of the margin and appears to confirm the presence of a stretched crust.
Leon, L.A.; Christofferson, S.A.; Dolan, J.F.; Shaw, J.H.; Pratt, T.L.
2007-01-01
Boreholes and high-resolution seismic reflection data collected across the forelimb growth triangle above the central segment of the Puente Hills thrust fault (PHT) beneath Los Angeles, California, provide a detailed record of incremental fold growth during large earthquakes on this major blind thrust fault. These data document fold growth within a discrete kink band that narrows upward from ???460 m at the base of the Quaternary section (200-250 m depth) to 82% at 250 m depth) folding and uplift occur within discrete kink bands, thereby enabling us to develop a paleoseismic history of the underlying blind thrust fault. The borehole data reveal that the youngest part of the growth triangle in the uppermost 20 m comprises three stratigraphically discrete growth intervals marked by southward thickening sedimentary strata that are separated by intervals in which sediments do not change thickness across the site. We interpret the intervals of growth as occurring after the formation of now-buried paleofold scarps during three large PHT earthquakes in the past 8 kyr. The intervening intervals of no growth record periods of structural quiescence and deposition at the regional, near-horizontal stream gradient at the study site. Minimum uplift in each of the scarp-forming events, which occurred at 0.2-2.2 ka (event Y), 3.0-6.3 ka (event X), and 6.6-8.1 ka (event W), ranged from ???1.1 to ???1.6 m, indicating minimum thrust displacements of ???2.5 to 4.5 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw > 7). Cumulative, minimum uplift in the past three events was 3.3 to 4.7 m, suggesting cumulative thrust displacement of ???7 to 10.5 m. These values yield a minimum Holocene slip rate for the PHT of ???0.9 to 1.6 mm/yr. The borehole and seismic reflection data demonstrate that dip within the kink band is acquired incrementally, such that older strata that have been deformed by more earthquakes dip more steeply than younger strata. Specifically, strata dip 0.4?? at 4 m depth, 0.7?? at 20 m depth, 8?? at 90 m, 16?? at 110 m, and 17?? at 200 m. Moreover, structural restorations of the borehole data show that the locus of active folding (the anticlinal active axial surface) does not extend to the surface in exactly the same location from earthquake to earthquake. Rather, that the axial surfaces migrate from earthquake to earthquake, reflecting a component of fold growth by kink band migration. The incremental acquisition of bed dip in the growth triangle may reflect some combination of fold growth by limb rotation in addition to kink band migration, possibly through a component of trishear or shear fault bend folding. Alternatively, the component of limb rotation may result from curved hinge fault bend folding, and/or the mechanical response of loosely consolidated granular sediments in the shallow subsurface to folding at depth. Copyright 2007 by the American Geophysical Union.
Gonthier, Gerard
2012-01-01
Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d), respectively. Horizontal hydraulic conductivity of 4 ft/d for the Lower Floridan confining unit, derived from aquifer-test analyses, is near the midrange for values derived from packer-isolated slug tests. The transmissivity of the entire Floridan aquifer system derived from aquifer-test analyses totals about 51,000 ft2/d, similar to the value of 58,000 ft2/d derived from open slug tests on the entire Floridan aquifer system. Water-level data for each aquifer test were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small (less than 1 foot) water-level responses to aquifer-test pumping. During the 72-hour aquifer test of pumping the Lower Floridan aquifer, a drawdown response of 51.7 ft was observed in the Lower Floridan pumped well and a drawdown response of 0.9 foot was observed in the Upper Floridan observation well located 85 ft from the pumped well.
NASA Astrophysics Data System (ADS)
Williams, G. D.; Hindell, M.; Houssais, M.-N.; Tamura, T.; Field, I. C.
2011-03-01
Southern elephant seals (Mirounga leonina), fitted with Conductivity-Temperature-Depth sensors at Macquarie Island in January 2005 and 2010, collected unique oceanographic observations of the Adélie and George V Land continental shelf (140-148° E) during the summer-fall transition (late February through April). This is a key region of dense shelf water formation from enhanced sea ice growth/brine rejection in the local coastal polynyas. In 2005, two seals occupied the continental shelf break near the grounded icebergs at the northern end of the Mertz Glacier Tongue for several weeks from the end of February. One of the seals migrated west to the Dibble Ice Tongue, apparently utilising the Antarctic Slope Front current near the continental shelf break. In 2010, immediately after that year's calving of the Mertz Glacier Tongue, two seals migrated to the same region but penetrated much further southwest across the Adélie Depression and sampled the Commonwealth Bay polynya from March through April. Here we present observations of the regional oceanography during the summer-fall transition, in particular (i) the zonal distribution of modified Circumpolar Deep Water exchange across the shelf break, (ii) the upper ocean stratification across the Adélie Depression, including alongside iceberg C-28 that calved from the Mertz Glacier and (iii) the convective overturning of the deep remnant seasonal mixed layer in Commonwealth Bay from sea ice growth. Heat and freshwater budgets to 200-300 m are used to estimate the ocean heat content (400→50 MJ m-2), flux (50-200 W m-2 loss) and sea ice growth rates (maximum of 7.5-12.5 cm day-1). Mean seal-derived sea ice growth rates were within the range of satellite-derived estimates from 1992-2007 using ERA-Interim data. We speculate that the continuous foraging by the seals within Commonwealth Bay during the summer/fall transition was due to favorable feeding conditions resulting from the convective overturning of the deep seasonal mixed layer and chlorophyll maximum that is a reported feature of this location.
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Pierce, H. A.
2009-12-01
A sequence of Audiomagnetotelluric (AMT) and Magnetotelluric (MT) surveys was recently completed on the Island of Hawaii along a transect spanning the 2000 m high Humu'ula Saddle region bounded by Mauna Kea, Mauna Loa and Hualalai volcanoes. The surveys extended down to an elevation of ~600 m on the eastern flank of the island and to 1,100 m on the drier, western slope of Mauna Kea and were intended to define the depth to the local groundwater table across the interior of the island. The results of the surveys present a much more complicated picture of the interior structure, and associated hydrology, of the island than has generally been assumed. At the eastern end of the transect, where existing wells unequivocally define the depth to the water table, young Mauna Kea basalts saturated with freshwater yielded a resistivity of ~600 ohm-meters. At increasing elevations toward the west, where rainfall rates decline markedly, the resistivity/depth profiles are consistent with progressively drier, resistive rocks to depths approaching 1000 m below the surface. These are underlain by well-defined, moderately resistive zones consistent with freshwater saturated basalts. As the transect approaches an inferred southeasterly-trending rift zone near the crest of the Saddle, the moderately resistive intervals are underlain by less resistive rocks near sea level that fall into the range expected for either (cold) saltwater or heated freshwater. Near the center of the transect, freshwater resistivity values extend to elevations of ~1000 m above sea level and are, again, underlain by significantly less resistive intervals near sea level. We believe that the moderately resistive intervals reflect substantial quantities of freshwater that are bounded by rift systems of Mauna Kea and Hualalai and the northern flank of Mauna Loa. The unexpectedly low resistivity values near sea level are considered to more probably reflect leakage of thermal fluids from the interior of Mauna Kea rather than saltwater intrusion from below the freshwater system. Alternatively, the less resistive formations may be the result of hydrothermal alteration from now-extinct geothermal leakage from Mauna Kea. The presence of freshwater to 1000 m above sea level within the Mauna Kea flanks, if confirmed by planned drilling, will increase estimates of groundwater storage within the island by as much as a factor of ten above those projected by traditional ocean island groundwater models.
Bottom-water observations in the Vema fracture zone
NASA Astrophysics Data System (ADS)
Eittreim, Stephen L.; Biscaye, Pierre E.; Jacobs, Stanley S.
1983-03-01
The Vema fracture zone trough, at 11°N between 41° and 45°E, is open to the west at the 5000-m level but is silled at the 4650-m level on the east where it intersects the axis of the Mid-Atlantic Ridge. The trough is filled with Antarctic Bottom Water (AABW) with a potential temperature of 1.32°C and salinity of 34.82 ppt. The bottom water is thermally well mixed in a nearly homogeneous layer about 700 m thick. The great thickness of this bottom layer, as compared with the bottom-water structure of the western Atlantic basin, may result from enhanced mixing induced by topographic constriction at the west end of the fracture zone trough. A benthic thermocline, with potential temperature gradients of about 1.2 mdeg m-1, is associated with an abrupt increase in turbidity with depth at about 1200 m above bottom. A transitional layer of more moderate temperature gradients, about 0.4 mdeg m-1, lies between the benthic thermocline above and the AABW below. The AABW layer whose depth-averaged suspended paniculate concentrations range from 8 to 19 μg L-1, is consistently higher in turbidity than the overlying waters. At the eastern end of the trough, 140 m below sill depth, very low northeastward current velocities, with maximums of 3 cm s-1, were recorded for an 11-day period.
NASA Astrophysics Data System (ADS)
Rusu, M. I.; Pardanaud, C.; Ferro, Y.; Giacometti, G.; Martin, C.; Addab, Y.; Roubin, P.; Minissale, M.; Ferri, L.; Virot, F.; Barrachin, M.; Lungu, C. P.; Porosnicu, C.; Dinca, P.; Lungu, M.; Köppen, M.; Hansen, P.; Linsmeier, Ch.
2017-07-01
This study demonstrates that Raman microscopy is a suitable technique for future post mortem analyses of JET and ITER plasma facing components. We focus here on laboratory deposited and bombarded samples of beryllium and beryllium carbides and start to build a reference spectral databases for fusion relevant beryllium-based materials. We identified the beryllium phonon density of states, its second harmonic and E 2G and B 2G second harmonic and combination modes for defective beryllium in the spectral range 300-700 and 700-1300 cm-1, lying close to Be-D modes of beryllium hydrides. We also identified beryllium carbide signature, Be2C, combining Raman microscopy and DFT calculation. We have shown that, depending on the optical constants of the material probed, in depth sensitivity at the nanometer scale can be performed using different wavelengths. This way, we demonstrate that multi-wavelength Raman microscopy is sensitive to in-depth stress caused by ion implantation (down to ≈30 nm under the surface for Be) and Be/C concentration (down to 400 nm or more under the surface for Be+C), which is a main contribution of this work. The depth resolution reached can then be adapted for studying the supersaturated surface layer found on tokamak deposits.
Electromagnetic Radiation Efficiency of Body-Implanted Devices
NASA Astrophysics Data System (ADS)
Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan
2018-02-01
Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.
Consideration of Muscle Depth for Botulinum Toxin Injections: A Three-Dimensional Approach.
Kaplan, Julie Bass
Knowledge of variable anatomy is key for excellent outcomes from the administration of botulinum toxin for aesthetic purposes. One must understand the location and function of each facial muscle to predict the patient's desired outcome. One concept often overlooked by injectors is the understanding of the target muscle's depth. In addition, a firm understanding of where each facial muscle originates and attaches can be essential to correctly identifying and injecting the correct muscle with botulinum toxin. Facial muscles often overlap each other and cross various planes. For example, an injector may be unaware that the corrugator supercilii muscle lies in different depths medially and laterally. Novice injectors may miss the variability of this muscle and inject the lower frontalis muscle by mistake. This may lead to a heavy brow look, or it could drop the area between the brows, creating an appearance of anger. This article explores a three-dimensional anatomical approach to achieve excellent outcomes, rather than the two-dimensional approach traditionally discussed. Many of the injection techniques defined in this article are considered off-label by the Food and Drug Administration at the time of this publication but are commonly discussed in peer-reviewed literature and consensus opinion reports. Twelve facial muscles often injected for positive aesthetic outcomes will be outlined as well as seven facial muscles to generally avoid.
Zhang, Hairong; Salo, Daniel; Kim, David M.; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y.
2016-01-01
Abstract. Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent. PMID:27930773
Neodymium and carbon isotopic fingerprints of warm Pliocene circulation throughout the deep Atlantic
NASA Astrophysics Data System (ADS)
Riesselman, C. R.; Scher, H. D.; Dowsett, H. J.; Robinson, M. M.
2013-12-01
The mid-Piacenzian age of the Pliocene is the most recent interval in Earth's history to sustain global warmth within the range predicted for the 21st century. To understand this interval, the USGS PRISM Project has developed a reconstruction of global conditions at 3.264-3.025 Ma, which includes a significant North Atlantic warm SST anomaly coupled with increased evaporation. Warm anomalies are also detected in the deep ocean as far as 46°S, suggesting that enhanced meridional overturning circulation may have been responsible for more southerly penetration of North Atlantic Deep Water (NADW). However, deep temperature proxies are not diagnostic of water mass, and some coupled model simulations predict transient decreases in NADW production in the 21st century, presenting a contrasting picture of future climate. We present a new multi-proxy synthesis of Atlantic deep ocean circulation during the PRISM interval, using the neodymium isotopic composition (ɛNd) of fossil fish teeth as a proxy for water mass source and the δ13C of benthic foraminifera as a proxy for water mass age. This reconstruction utilizes both new and previously published data from 11 DSDP and ODP sites in the North Atlantic (Site 610) and along depth transects from equatorial Ceara Rise, southern mid-latitude Walvis Ridge, and south Atlantic Meteor Rise/Agulhas Ridge. Published data from ferromanganese crusts constrain Pliocene Antarctic deep waters at ~ ɛNd = -8, distinct from the less radiogenic ɛNd = -11.5 that characterizes Pliocene northern component water (NCW). These values fingerprint northern and southern sources throughout the Atlantic basin. Pliocene fish teeth from Site 610 (2400 m water depth) and from four Ceara Rise sites (3000-4300 m) preserve distinctly North Atlantic ɛNd. When averaged across the PRISM interval, mean values for these five sites range from ɛNd = -10.97 to -10.25, and the Pliocene depth transect closely mirrors the structure of the modern column, indicating that Ceara Rise was dominantly influenced by NCW at all depths. In contrast, Walvis Ridge water column structure was significantly different in the Pliocene. Today, a core of NADW between 1800 and 3500 m overlies abyssal southern component water (SCW). During the Pliocene, however, sites at 4000 and 4700 m were influenced exclusively by NCW, with PRISM mean ɛNd of -11.14 and -11.45. In contrast, mean ɛNd = -9.86 indicates that the shallowest site (2500 m), which sits in the core of NADW today, was instead influenced by SCW throughout the PRISM interval. The Meteor Rise/Agulhas Ridge transect provides further evidence for south Atlantic restructuring in the warm Pliocene. At the deepest Agulhas Ridge site (3700 m), PRISM mean ɛNd = -8.47, an unequivocally SCW signature. Today, the shallower Meteor Rise sites (2000 and 2500 m) are within NADW, yet mean PRISM ɛNd = -7.68 and -7.82 - more radiogenic than the SCW end member - raising the possibility that south Atlantic intermediate waters incorporated both Pacific and Antarctic components in the Pliocene.
Carbon dioxide and methane fluxes from the transitional zone of a Virginia ephemeral wetland
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Epstein, H. E.; Welsch, D. L.
2014-12-01
The spatial and temporal controls mediating the switch between anaerobic and aerobic respiration within soils located in transitional zones adjacent to ephemeral wetlands remains unclear. As ephemeral wetlands dry down, a soil moisture gradient develops in adjacent transitional zones resulting in changes to the soil environment—moving from anoxic to oxic conditions. Under oxic conditions, aerobic decomposition and CO2 fluxes should dominate, while under anoxic conditions, anaerobic decomposition and CH4 emissions should be more prominent. To investigate the spatial controls and temporal dynamics of anaerobic and aerobic respiration we ran three 20 m transects starting from the late spring peak wetland edge (June 1, 2014 max. lake extent) of Lake Arnold, an ephemeral wetland located at Blandy Experimental Farm in Boyce, Virginia. At 10 m intervals along each transect, high-resolution soil moisture and temperature sensors were installed at three depth levels in the soil (5 cm, 20 cm, and 50 cm). Soil surface CO2 efflux was measured weekly at 5 m intervals using a portable, infra-red gas analyzer and surface chamber (EGM-4 and SRC-1; PP Systems; Amherst, MA). CH4 emissions were sampled weekly using a non-steady state chamber at 10 m intervals along each transect and analyzed in the lab using gas chromatography. Redox potential was measured weekly at two soil depths (5 cm and 20 cm) at 5 m intervals using platinum electrodes and a Ag/Cl reference electrode. Lake Arnold water levels decreased at a rate of 18.16 mm day-1 during the month of July. Preliminary results show a distinct drop in soil moisture at 5 and 20 cm depths at the 0 and 10 m distances along each transect. At 50 cm, soil moisture shows no distinct trend. Late July measurements of redox potential ranged from -196 mV to 865 mV and was correlated with soil moisture (R2 = 0.52). Rates of soil CO2 efflux were diminished at volumetric water contents (VWC) above 45% (ranging from 2.45 - 7.3 µmol CO2 m-2 sec-1). Below 45% VWC, soil CO2 efflux rates ranged from 4.5 - 9.6 µmol CO2 m-2 sec-1.
[Mechanical properties of weld area soldered by lasers and structural changes in hot reaction zone].
Wu, H; Cui, Y; Mu, W
2001-05-01
To analyse and measure the welding depths and strengths of three kinds of welding materials under different laser welding conditions as well as the structural changes of the heat affected zone. Under different voltages and pulse duration three kinds of measuring sticks, including Co-Cr alloy, Ni-Cr alloy and pure titanium were welded and their strengths were compared with that of control group. At the same time, the structure of the heat-affected zone was analysed by means of the gold-phase method. The welding depth and strength of Co-Cr alloy were in direct proportion to the setting voltage, with averages of 335MPa (250V) to 573MPa(330V). At the heat-affected zone, the crystal particle was small and the end point of welding by laser bean presented the shape of the mountain peak and the interval of finger shape. The center of measuring sticks had a black zone with the circle shape. The setting voltage was in direct proportion to the welding depth of pure titanium and in inverse proportion to the welding strength with averages of 221MPa(250V) to 154MPa (330V). The crystal particle in the heat affected zone grew large and the solid phase expanded, the interval of the crystal oxidised, and the structure showed honeycomb changes. The laser welding is favourable to the welding properties of Co-Cr and Ni-Cr alloys, but its effect on the welding properties of pure titanium needs further discussion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REICH, F.R.
The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from two double-shell feed tanks, 241-AP-102 and 241-AP-104. Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a nested, fixed-depth sampling system. This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. A plan has been developed for the cold testing of this nested, fixed-depth sampling system with simulant materials. The sampling system willmore » fill the 500-ml bottles and provide inner packaging to interface with the Hanford Sites cask shipping systems (PAS-1 and/or ''safe-send''). The sampling system will provide a waste stream that will be used for on-line, real-time measurements with an at-tank analysis system. The cold tests evaluate the performance and ability to provide samples that are representative of the tanks' content within a 95 percent confidence interval, to sample while mixing pumps are operating, to provide large sample volumes (1-15 liters) within a short time interval, to sample supernatant wastes with over 25 wt% solids content, to recover from precipitation- and settling-based plugging, and the potential to operate over the 20-year expected time span of the privatization contract.« less
Chen, Y-W; Lee, C-T; Hum, L; Chuang, S-K
2017-03-01
The extraction of an impacted third molar violates the surrounding soft and bony tissues. The surgeon's access to the tooth, for which there are various surgical approaches, has an important impact on the periodontium of the adjacent second molar. The aim of this review was to analyze the relationships between the different flap techniques and postoperative periodontal outcomes for the mandibular second molars (LM2) adjacent to the impacted mandibular third molars (LM3). An electronic search of MEDLINE and other databases was conducted to identify randomized controlled trials fulfilling the eligibility criteria. To assess the impact of flap design on the periodontal condition, the weighted mean difference of the probing depth reduction (WDPDR) and the weighted mean difference of the clinical attachment level gain (WDCAG) at the distal surface of LM2 were used as the primary outcomes. The results showed that, overall, the different flap techniques had no significant impact on the probing depth reduction (WDPDR -0.14mm, 95% confidence interval -0.44 to 0.17), or on the clinical attachment level gain (WDCAG 0.05mm, 95% confidence interval -0.84 to 0.94). However, a subgroup analysis revealed that the Szmyd and paramarginal flap designs may be the most effective in reducing the probing depth in impacted LM3 extraction, and the envelope flap may be the least effective. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
VERTICAL DIFFUSION IN SMALL STRATIFIED LAKES: DATA AND ERROR ANALYSIS
Water temperature profiles were measured at 2-min intervals in a stratified temperate lake with a surface area of 0.06 km2 and a aximum depth of 10 m from May 7 to August 9, 1989. he data were used to calculate the vertical eddy diffusion coefficient K2 in the hypolimnion. he dep...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
30 CFR 75.1403-9 - Criteria-Shelter holes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Criteria-Shelter holes. 75.1403-9 Section 75... Criteria—Shelter holes. (a) Shelter holes should be provided on track haulage roads at intervals of not... holes should be readily accessible and should be at least 5 feet in depth, not more than 4 feet in width...
Analyzing Impulse Using iPhone and Tracker
ERIC Educational Resources Information Center
Ayop, Shahrul Kadri
2017-01-01
The iPhone 6 introduced a new feature of recording video in Slo-Mo mode at 240 fps (4.17 ms interval). This great capability when integrated with video analysis freeware such as Tracker offers in-depth exploration for physical phenomena such as collisions that occur in a very short duration of time. This article discusses one such usage in…
The selection of the optimal baseline in the front-view monocular vision system
NASA Astrophysics Data System (ADS)
Xiong, Bincheng; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen
2018-03-01
In the front-view monocular vision system, the accuracy of solving the depth field is related to the length of the inter-frame baseline and the accuracy of image matching result. In general, a longer length of the baseline can lead to a higher precision of solving the depth field. However, at the same time, the difference between the inter-frame images increases, which increases the difficulty in image matching and the decreases matching accuracy and at last may leads to the failure of solving the depth field. One of the usual practices is to use the tracking and matching method to improve the matching accuracy between images, but this algorithm is easy to cause matching drift between images with large interval, resulting in cumulative error in image matching, and finally the accuracy of solving the depth field is still very low. In this paper, we propose a depth field fusion algorithm based on the optimal length of the baseline. Firstly, we analyze the quantitative relationship between the accuracy of the depth field calculation and the length of the baseline between frames, and find the optimal length of the baseline by doing lots of experiments; secondly, we introduce the inverse depth filtering technique for sparse SLAM, and solve the depth field under the constraint of the optimal length of the baseline. By doing a large number of experiments, the results show that our algorithm can effectively eliminate the mismatch caused by image changes, and can still solve the depth field correctly in the large baseline scene. Our algorithm is superior to the traditional SFM algorithm in time and space complexity. The optimal baseline obtained by a large number of experiments plays a guiding role in the calculation of the depth field in front-view monocular.
Principal component analysis of MSBAS DInSAR time series from Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Tiampo, Kristy F.; González, Pablo J.; Samsonov, Sergey; Fernández, Jose; Camacho, Antonio
2017-09-01
Because of its proximity to the city of Naples and with a population of nearly 1 million people within its caldera, Campi Flegrei is one of the highest risk volcanic areas in the world. Since the last major eruption in 1538, the caldera has undergone frequent episodes of ground subsidence and uplift accompanied by seismic activity that has been interpreted as the result of a stationary, deeper source below the caldera that feeds shallower eruptions. However, the location and depth of the deeper source is not well-characterized and its relationship to current activity is poorly understood. Recently, a significant increase in the uplift rate has occurred, resulting in almost 13 cm of uplift by 2013 (De Martino et al., 2014; Samsonov et al., 2014b; Di Vito et al., 2016). Here we apply a principal component decomposition to high resolution time series from the region produced by the advanced Multidimensional SBAS DInSAR technique in order to better delineate both the deeper source and the recent shallow activity. We analyzed both a period of substantial subsidence (1993-1999) and a second of significant uplift (2007-2013) and inverted the associated vertical surface displacement for the most likely source models. Results suggest that the underlying dynamics of the caldera changed in the late 1990s, from one in which the primary signal arises from a shallow deflating source above a deeper, expanding source to one dominated by a shallow inflating source. In general, the shallow source lies between 2700 and 3400 m below the caldera while the deeper source lies at 7600 m or more in depth. The combination of principal component analysis with high resolution MSBAS time series data allows for these new insights and confirms the applicability of both to areas at risk from dynamic natural hazards.
NASA Astrophysics Data System (ADS)
White, N. J.; Schoonman, C. M.
2016-12-01
The Icelandic mantle plume has had a significant influence on the geologic and oceanographic evolution of the North Atlantic Ocean during Cenozoic times. Full-waveform tomographic imaging of this region show that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plates between 100 and 200 km depth. The planform of these anomalies suggests that five or more horizontal fingers extend radially beneath the fringing continental margins. The best-imaged fingers lie beneath the British Isles and beneath western Norway where significant crustal isostatic departures have been measured. Here, we propose that these radial fingers are generated by a phenomenon known as the Saffman-Taylor instability. Experimental and theoretical analyses show that radial, miscible viscous fingering occurs when a less viscous fluid is injected into a more viscous fluid. The wavelength and number of fingers are controlled by the mobility (i.e. the ratio of viscosities), by the Peclet number (i.e. the ratio of advective and diffusive processes), and by the thickness of the horizontal layer into which fluid is injected. We have combined shear wave velocity estimates with residual depth measurements around the Atlantic margins to calculate the planform distribution of temperature and viscosity within an asthenospheric layer beneath the lithospheric plates. Our calculations suggest that the mobility is 20-50, that the Peclet number is O(104, and that the asthenospheric channel is 150 ± 50 km thick. The existence and form of viscous fingering is consistent with experimental observations and with linear stability analysis. A useful rule of thumb is that the wavelength of viscous fingering is 5 ± 1 times the thickness of the horizontal layer. Our proposal support the notion that dynamic topography of the Earth's surface can be influenced by rapid horizontal flow within spatially evolving asthenospheric fingers.
NASA Astrophysics Data System (ADS)
White, Nicky; Schoonman, Charlotte
2017-04-01
The Icelandic plume has had a significant influence upon the geologic and oceanographic evolution of the North Atlantic Ocean throughout Cenozoic times. Published full-waveform earthquake tomographic imaging of this region shows that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plate at depths of between 100 and 200 km. The planform of these anomalies suggests that five or more horizontal fingers extend radially beneath the fringing continental margins. The best-resolved of these fingers lie beneath the British Isles and beneath western Norway where significant crustal isostatic departures have been measured. Here, we propose that these radial fingers are generated by a well-known fluid dynamical phenomenon known as the Saffman-Taylor instability. Experimental and theoretical analyses show that radial, miscible viscous fingering occurs when a less viscous fluid is injected into a more viscous fluid. The wavelength and number of fingers are controlled by the mobility (i.e. the ratio of viscosities), by the Peclet number (i.e. the ratio of advective and diffusive processes), and by the thickness of the horizontal layer into which fluid is injected. We have combined shear wave velocity estimates with residual depth measurements around the Atlantic margins to calculate the planform distribution of temperature and viscosity within an asthenospheric layer beneath the lithospheric plates. Our calculations suggest that the mobility is 20-50, that the Peclet number is O(10000), and that the asthenospheric channel is 150 +/- 50 km thick. The existence and form of viscous fingering is consistent with experimental observations and with linear stability analysis. A useful rule of thumb is that the wavelength of viscous fingering is 5 +/- 1 times the thickness of the horizontal layer. Our proposal support the notion that dynamic topography of the Earth's surface can be generated and maintained by rapid horizontal flow within spatially evolving asthenospheric fingers.
Asymmetric nanoparticle may go "active" at room temperature
NASA Astrophysics Data System (ADS)
Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing
2017-04-01
Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.
NASA Technical Reports Server (NTRS)
Payne, M. H.
1973-01-01
The bounds for the normalized associated Legendre functions P sub nm were studied to provide a rational basis for the truncation of the geopotential series in spherical harmonics in various orbital analyses. The conjecture is made that the largest maximum of the normalized associated Legendre function lies in the interval which indicates the greatest integer function. A procedure is developed for verifying this conjecture. An on-line algebraic manipulator, IAM, is used to implement the procedure and the verification is carried out for all n equal to or less than 2m, for m = 1 through 6. A rigorous proof of the conjecture is not available.
Evaluation of line transect sampling based on remotely sensed data from underwater video
Bergstedt, R.A.; Anderson, D.R.
1990-01-01
We used underwater video in conjunction with the line transect method and a Fourier series estimator to make 13 independent estimates of the density of known populations of bricks lying on the bottom in shallows of Lake Huron. The pooled estimate of density (95.5 bricks per hectare) was close to the true density (89.8 per hectare), and there was no evidence of bias. Confidence intervals for the individual estimates included the true density 85% of the time instead of the nominal 95%. Our results suggest that reliable estimates of the density of objects on a lake bed can be obtained by the use of remote sensing and line transect sampling theory.
Fraunhofer filters to reduce solar background for optical communications
NASA Technical Reports Server (NTRS)
Kerr, E. L.
1986-01-01
A wavelength that lies within a spectral interval of reduced solar emission (a Fraunhofer line) can carry optical communications with reduced interference from direct or reflected background sunlight. Suitable Fraunhofer lines are located within the tuning range of good candidate lasers. The laser should be tunable dynamically to track Doppler shifts in the sunlight incident on any solar system body that may appear in the background as viewed by the receiver. A Fraunhofer filter used with a direct-detection receiver should be tuned to match the Doppler shifts of the source and background. The required tuning calculated here for various situations is also required if, instead, one uses a heterodyne receiver with limited post-detection bandwidth.
McLean, Andrew; Lawlor, Jenine; Mitchell, Rob; Kault, David; O'Kane, Carl; Lees, Michelle
2015-02-01
To evaluate the impact of More Learning for Interns in Emergency (MoLIE) on clinical documentation in the ED of a large regional hospital. MoLIE was implemented at The Townsville Hospital (TTH) in 2010, and has since provided ED interns with structured off-floor teaching and a dedicated clinical supervisor. A pre- and post-intervention study was conducted using retrospective medical record review methodology. Charts were selected by identifying all TTH ED patients seen by interns in the period 2008-2011. Two hundred pre-intervention records (2008-2009) and 200 post-intervention records (2010-2011) were reviewed. These were randomly selected following an initial screen by an ED staff specialist. The quality of clinical documentation for five common ED presentations (asthma, chest pain, lacerations, abdominal pain and upper limb fractures) was assessed. For each presentation, documentation quality was scored out of 10 using predefined criteria. An improvement of two or more was thought to be clinically significant. Mean scores for each group were compared using a Student's t-test for independent samples. Mean documentation scores (and 95% confidence intervals) were 5.55 (5.17-5.93) in 2008, 5.42 (4.98-5.86) in 2009, 6.37 (5.99-6.75) in 2010 and 6.08 (5.71-6.45) in 2011. There was a statistically but not clinically significant improvement in scores pre- and post-intervention (P ≤ 0.001). The introduction of MoLIE was associated with a small but statistically significant improvement in documentation, despite an 80% increase in intern placements. These results suggest that structured training programmes have potential to improve intern performance while simultaneously enhancing training capacity. The impact on quality of care requires further evaluation. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Wilson, Deborah J.; Lyver, Phil O'B.; Greene, Terry C.; Whitehead, Amy L.; Dugger, Catherine; Karl, Brian J.; Barringer, James R. F.; McGarry, Roger; Pollard, Annie M.; Ainley, David G.
2017-01-01
In the Ross Sea region, most South Polar Skuas (Stercorarius maccormicki) nest near Adélie Penguin (Pygoscelis adeliae) colonies, preying and scavenging on fish, penguins, and other carrion. To derive a relationship to predict skua numbers from better-quantified penguin numbers, we used distance sampling to estimate breeding skua numbers within 1000 m of 5 penguin nesting locations (Cape Crozier, Cape Royds, and 3 Cape Bird locations) on Ross Island in 3 consecutive years. Estimated numbers of skua breeding pairs were highest at Cape Crozier (270,000 penguin pairs; 1099 and 1347 skua pairs in 2 respective years) and lowest at Cape Royds (3000 penguin pairs; 45 skua pairs). The log–log linear relationship (R2 = 0.98) between pairs of skuas and penguins was highly significant, and most historical estimates of skua and penguin numbers in the Ross Sea were within 95 % prediction intervals of the regression. Applying our regression model to current Adélie Penguin colony sizes at 23 western Ross Sea locations predicted that 4635 pairs of skuas now breed within 1000 m of penguin colonies in the Ross Island metapopulation (including Beaufort Island) and northern Victoria Land. We estimate, using published skua estimates for elsewhere in Antarctica, that the Ross Sea South Polar Skua population comprises ~50 % of the world total, although this may be an overestimate because of incomplete data elsewhere. To improve predictions and enable measurement of future skua population change, we recommend additional South Polar Skua surveys using consistent distance-sampling methods at penguin colonies of a range of sizes.
Automated Interval velocity picking for Atlantic Multi-Channel Seismic Data
NASA Astrophysics Data System (ADS)
Singh, Vishwajit
2016-04-01
This paper described the challenge in developing and testing a fully automated routine for measuring interval velocities from multi-channel seismic data. Various approaches are employed for generating an interactive algorithm picking interval velocity for continuous 1000-5000 normal moveout (NMO) corrected gather and replacing the interpreter's effort for manual picking the coherent reflections. The detailed steps and pitfalls for picking the interval velocities from seismic reflection time measurements are describe in these approaches. Key ingredients these approaches utilized for velocity analysis stage are semblance grid and starting model of interval velocity. Basin-Hopping optimization is employed for convergence of the misfit function toward local minima. SLiding-Overlapping Window (SLOW) algorithm are designed to mitigate the non-linearity and ill- possessedness of root-mean-square velocity. Synthetic data case studies addresses the performance of the velocity picker generating models perfectly fitting the semblance peaks. A similar linear relationship between average depth and reflection time for synthetic model and estimated models proposed picked interval velocities as the starting model for the full waveform inversion to project more accurate velocity structure of the subsurface. The challenges can be categorized as (1) building accurate starting model for projecting more accurate velocity structure of the subsurface, (2) improving the computational cost of algorithm by pre-calculating semblance grid to make auto picking more feasible.
Evaluating the risk of decompression sickness for a yo-yo dive using a rat model.
Ofir, Dror; Yanir, Yoav; Abramovich, Amir; Bar, Ronen; Arieli, Yehuda
2016-01-01
The frequent ascents made during yo-yo diving may contribute to gas bubble clearance but paradoxically may also increase the risk of central nervous system decompression illness (DCI). We evaluated the risk of DCI due to yo-yo dives with very short surface intervals, using a controlled animal model. Dives were conducted on air to a depth of 90 meters (10 atmospheres absolute) for 32 minutes of bottom time, at a descent/ascent rate of 10 meters/ minute. Sprague-Dawley rats weighing ~ 300 grams were divided randomly into three groups. Group A performed a square dive protocol without any surface intervals, Group B conducted a protocol that included two surface intervals during the dive, and Group C performed a protocol with three surface intervals. Ascent/descent rate for surface intervals, each lasting one minute, was also 10 meters/minute. Manifestations of DCI were observed in 13 of 16 animals in Group A (81.3%), six of 12 in Group B (58.3%), and two of 12 in Group C (16.7%). Mortality rates were similar in all groups. Surface intervals during dives breathing air significantly reduced DCI risk in the rat. Further studies are required using a larger animal model to reinforce the results of the present investigation.
Image Restoration for Fluorescence Planar Imaging with Diffusion Model
Gong, Yuzhu; Li, Yang
2017-01-01
Fluorescence planar imaging (FPI) is failure to capture high resolution images of deep fluorochromes due to photon diffusion. This paper presents an image restoration method to deal with this kind of blurring. The scheme of this method is conceived based on a reconstruction method in fluorescence molecular tomography (FMT) with diffusion model. A new unknown parameter is defined through introducing the first mean value theorem for definite integrals. System matrix converting this unknown parameter to the blurry image is constructed with the elements of depth conversion matrices related to a chosen plane named focal plane. Results of phantom and mouse experiments show that the proposed method is capable of reducing the blurring of FPI image caused by photon diffusion when the depth of focal plane is chosen within a proper interval around the true depth of fluorochrome. This method will be helpful to the estimation of the size of deep fluorochrome. PMID:29279843
Paleophysical oceanography with an emphasis on transport rates.
Huybers, Peter; Wunsch, Carl
2010-01-01
Paleophysical oceanography is the study of the behavior of the fluid ocean of the past, with a specific emphasis on its climate implications, leading to a focus on the general circulation. Even if the circulation is not of primary concern, heavy reliance on deep-sea cores for past climate information means that knowledge of the oceanic state when the sediments were laid down is a necessity. Like the modern problem, paleoceanography depends heavily on observations, and central difficulties lie with the very limited data types and coverage that are, and perhaps ever will be, available. An approximate separation can be made into static descriptors of the circulation (e.g., its water-mass properties and volumes) and the more difficult problem of determining transport rates of mass and other properties. Determination of the circulation of the Last Glacial Maximum is used to outline some of the main challenges to progress. Apart from sampling issues, major difficulties lie with physical interpretation of the proxies, transferring core depths to an accurate timescale (the "age-model problem"), and understanding the accuracy of time-stepping oceanic or coupled-climate models when run unconstrained by observations. Despite the existence of many plausible explanatory scenarios, few features of the paleocirculation in any period are yet known with certainty.
NASA Astrophysics Data System (ADS)
Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.
2016-11-01
A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.
NASA Astrophysics Data System (ADS)
Christen, Alejandra; Escarate, Pedro; Curé, Michel; Rial, Diego F.; Cassetti, Julia
2016-10-01
Aims: Knowing the distribution of stellar rotational velocities is essential for understanding stellar evolution. Because we measure the projected rotational speed v sin I, we need to solve an ill-posed problem given by a Fredholm integral of the first kind to recover the "true" rotational velocity distribution. Methods: After discretization of the Fredholm integral we apply the Tikhonov regularization method to obtain directly the probability distribution function for stellar rotational velocities. We propose a simple and straightforward procedure to determine the Tikhonov parameter. We applied Monte Carlo simulations to prove that the Tikhonov method is a consistent estimator and asymptotically unbiased. Results: This method is applied to a sample of cluster stars. We obtain confidence intervals using a bootstrap method. Our results are in close agreement with those obtained using the Lucy method for recovering the probability density distribution of rotational velocities. Furthermore, Lucy estimation lies inside our confidence interval. Conclusions: Tikhonov regularization is a highly robust method that deconvolves the rotational velocity probability density function from a sample of v sin I data directly without the need for any convergence criteria.
Kuntz, Mel A.; Dalrymple, G. Brent
1979-01-01
The evaluation of volcanic hazards for the proposed Safety Test Reactor Facility (STF) at the Argonne National Laboratory-West (ANLW) site, Idaho National Engineering Laboratory (INEL), Idaho, involves an analysis of the geology of the Lava Ridge-Hells Half Acre area and of K-At age determinations on lava flows in cored drill holes. The ANLW site at INEL lies in a shallow topographic depression bounded on the east and south by volcanic rift zones that are the locus of past shield-type basalt volcanism and by rhyolite domes erupted along the ring fracture of an inferred rhyolite caldera. The K-At age data indicate that the ANLW site has been flooded by basalt lava flows at irregular intervals from perhaps a few thousand years to as much as 300,000-400,000 years, with an average recurrence interval between flows of approximately 80,000-100,000 years. At least five major lava flows have covered the ANLW site within the past 500,000 years.
Learning to Lie: Effects of Practice on the Cognitive Cost of Lying
Van Bockstaele, B.; Verschuere, B.; Moens, T.; Suchotzki, Kristina; Debey, Evelyne; Spruyt, Adriaan
2012-01-01
Cognitive theories on deception posit that lying requires more cognitive resources than telling the truth. In line with this idea, it has been demonstrated that deceptive responses are typically associated with increased response times and higher error rates compared to truthful responses. Although the cognitive cost of lying has been assumed to be resistant to practice, it has recently been shown that people who are trained to lie can reduce this cost. In the present study (n = 42), we further explored the effects of practice on one’s ability to lie by manipulating the proportions of lie and truth-trials in a Sheffield lie test across three phases: Baseline (50% lie, 50% truth), Training (frequent-lie group: 75% lie, 25% truth; control group: 50% lie, 50% truth; and frequent-truth group: 25% lie, 75% truth), and Test (50% lie, 50% truth). The results showed that lying became easier while participants were trained to lie more often and that lying became more difficult while participants were trained to tell the truth more often. Furthermore, these effects did carry over to the test phase, but only for the specific items that were used for the training manipulation. Hence, our study confirms that relatively little practice is enough to alter the cognitive cost of lying, although this effect does not persist over time for non-practiced items. PMID:23226137
Corrigendum: Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii
Segall, Paul; Desmarais, Emily K.; Shelly, David; Miklius, Asta; Cervelli, Peter
2006-01-01
There was a plotting error in Fig. 1 that inadvertently displays earthquakes for the incorrect time interval. The location of earthquakes during the two-day-long slow-slip event of January 2005 are shown here in the corrected Fig. 1. Because the incorrect locations were also used in the Coulomb stress-change (CSC) calculation, the error could potentially have biased our interpretation of the depth of the slow-slip event, although in fact it did not. Because nearly all of the earthquakes, both background and triggered, are landward of the slow-slip event and at similar depths (6.5–8.5 km), the impact on the CSC calculations is negligible (Fig. 2; compare with Fig. 4 in original paper). The error does not alter our conclusion that the triggered events during the January 2005 slow-slip event were located on a subhorizontal plane at a depth of 7.5 1 km. This is therefore the most likely depth of the slow-slip events. We thank Cecily J. Wolfe for pointing out the error in the original Fig. 1.
The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster.
Hunter, Chad M; Huang, Wen; Mackay, Trudy F C; Singh, Nadia D
2016-04-01
Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait.
The Genetic Architecture of Natural Variation in Recombination Rate in Drosophila melanogaster
Hunter, Chad M.; Huang, Wen; Mackay, Trudy F. C.; Singh, Nadia D.
2016-01-01
Meiotic recombination ensures proper chromosome segregation in many sexually reproducing organisms. Despite this crucial function, rates of recombination are highly variable within and between taxa, and the genetic basis of this variation remains poorly understood. Here, we exploit natural variation in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) to map genetic variants affecting recombination rate. We used a two-step crossing scheme and visible markers to measure rates of recombination in a 33 cM interval on the X chromosome and in a 20.4 cM interval on chromosome 3R for 205 DGRP lines. Though we cannot exclude that some biases exist due to viability effects associated with the visible markers used in this study, we find ~2-fold variation in recombination rate among lines. Interestingly, we further find that recombination rates are uncorrelated between the two chromosomal intervals. We performed a genome-wide association study to identify genetic variants associated with recombination rate in each of the two intervals surveyed. We refined our list of candidate variants and genes associated with recombination rate variation and selected twenty genes for functional assessment. We present strong evidence that five genes are likely to contribute to natural variation in recombination rate in D. melanogaster; these genes lie outside the canonical meiotic recombination pathway. We also find a weak effect of Wolbachia infection on recombination rate and we confirm the interchromosomal effect. Our results highlight the magnitude of population variation in recombination rate present in D. melanogaster and implicate new genetic factors mediating natural variation in this quantitative trait. PMID:27035832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.
2007-06-06
In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at amore » fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993, Sections 4 to 6: Unfiltered S-wave records of lower horizontal receiver, reaction mass, and reference receiver, respectively, Sections 7 to 9: Filtered S-wave signals of lower horizontal receiver, reaction mass and reference receiver, respectively, Section 10: Expanded and filtered S-wave signals of lower horizontal receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower horizontal receiver signals, respectively.« less
The Effect of Telling Lies on Belief in the Truth
Polage, Danielle
2017-01-01
The current study looks at the effect of telling lies, in contrast to simply planning lies, on participants’ belief in the truth. Participants planned and told a lie, planned to tell a lie but didn’t tell it, told an unplanned lie, or neither planned nor told a lie (control) about events that did not actually happen to them. Participants attempted to convince researchers that all of the stories told were true. Results show that telling a lie plays a more important role in inflating belief scores than simply preparing the script of a lie. Cognitive dissonance may lead to motivated forgetting of information that does not align with the lie. This research suggests that telling lies may lead to confusion as to the veracity of the lie leading to inflated belief scores. PMID:29358979
Terao, Hisako; Nakamura, Shintaro; Hagiwara, Hitomi; Furukawa, Toshihito; Matsumura, Kiyoshi; Sakakura, Kenichi
2018-01-01
Background— Ablation lesion depth caused by radiofrequency-based renal denervation (RDN) was limited to <4 mm in previous animal studies, suggesting that radiofrequency-RDN cannot ablate a substantial percentage of renal sympathetic nerves. We aimed to define the true lesion depth achieved with radiofrequency-RDN using a fine sectioning method and to investigate biophysical parameters that could predict lesion depth. Methods and Results— Radiofrequency was delivered to 87 sites in 14 renal arteries from 9 farm pigs at various ablation settings: 2, 4, 6, and 9 W for 60 seconds and 6 W for 120 seconds. Electric impedance and electrode temperature were recorded during ablation. At 7 days, 2470 histological sections were obtained from the treated arteries. Maximum lesion depth increased at 2 to 6 W, peaking at 6.53 (95% confidence interval, 4.27–8.78) mm under the 6 W/60 s condition. It was not augmented by greater power (9 W) or longer duration (120 seconds). There were statistically significant tendencies at 6 and 9 W, with higher injury scores in the media, nerves, arterioles, and fat. Maximum lesion depth was positively correlated with impedance reduction and peak electrode temperature (Pearson correlation coefficients were 0.59 and 0.53, respectively). Conclusions— Lesion depth was 6.5 mm for radiofrequency-RDN at 6 W/60 s. The impedance reduction and peak electrode temperature during ablation were closely associated with lesion depth. Hence, these biophysical parameters could provide prompt feedback during radiofrequency-RDN procedures in the clinical setting. PMID:29440276
Sakaoka, Atsushi; Terao, Hisako; Nakamura, Shintaro; Hagiwara, Hitomi; Furukawa, Toshihito; Matsumura, Kiyoshi; Sakakura, Kenichi
2018-02-01
Ablation lesion depth caused by radiofrequency-based renal denervation (RDN) was limited to <4 mm in previous animal studies, suggesting that radiofrequency-RDN cannot ablate a substantial percentage of renal sympathetic nerves. We aimed to define the true lesion depth achieved with radiofrequency-RDN using a fine sectioning method and to investigate biophysical parameters that could predict lesion depth. Radiofrequency was delivered to 87 sites in 14 renal arteries from 9 farm pigs at various ablation settings: 2, 4, 6, and 9 W for 60 seconds and 6 W for 120 seconds. Electric impedance and electrode temperature were recorded during ablation. At 7 days, 2470 histological sections were obtained from the treated arteries. Maximum lesion depth increased at 2 to 6 W, peaking at 6.53 (95% confidence interval, 4.27-8.78) mm under the 6 W/60 s condition. It was not augmented by greater power (9 W) or longer duration (120 seconds). There were statistically significant tendencies at 6 and 9 W, with higher injury scores in the media, nerves, arterioles, and fat. Maximum lesion depth was positively correlated with impedance reduction and peak electrode temperature (Pearson correlation coefficients were 0.59 and 0.53, respectively). Lesion depth was 6.5 mm for radiofrequency-RDN at 6 W/60 s. The impedance reduction and peak electrode temperature during ablation were closely associated with lesion depth. Hence, these biophysical parameters could provide prompt feedback during radiofrequency-RDN procedures in the clinical setting. © 2018 The Authors.
Brantner, Justin S.; Haake, Zachary J.; Burwick, John E.; Menge, Christopher M.; Hotchkiss, Shane T.; Senko, John M.
2014-01-01
We evaluated the depth-dependent geochemistry and microbiology of sediments that have developed via the microbially-mediated oxidation of Fe(II) dissolved in acid mine drainage (AMD), giving rise to a 8–10 cm deep “iron mound” that is composed primarily of Fe(III) (hydr)oxide phases. Chemical analyses of iron mound sediments indicated a zone of maximal Fe(III) reducing bacterial activity at a depth of approximately 2.5 cm despite the availability of dissolved O2 at this depth. Subsequently, Fe(II) was depleted at depths within the iron mound sediments that did not contain abundant O2. Evaluations of microbial communities at 1 cm depth intervals within the iron mound sediments using “next generation” nucleic acid sequencing approaches revealed an abundance of phylotypes attributable to acidophilic Fe(II) oxidizing Betaproteobacteria and the chloroplasts of photosynthetic microeukaryotic organisms in the upper 4 cm of the iron mound sediments. While we observed a depth-dependent transition in microbial community structure within the iron mound sediments, phylotypes attributable to Gammaproteobacterial lineages capable of both Fe(II) oxidation and Fe(III) reduction were abundant in sequence libraries (comprising ≥20% of sequences) from all depths. Similarly, abundances of total cells and culturable Fe(II) oxidizing bacteria were uniform throughout the iron mound sediments. Our results indicate that O2 and Fe(III) reduction co-occur in AMD-induced iron mound sediments, but that Fe(II)-oxidizing activity may be sustained in regions of the sediments that are depleted in O2. PMID:24860562
Effect of lie labelling on children's evaluation of selfish, polite, and altruistic lies.
Cheung, Him; Chan, Yawen; Tsui, Wan Chi Gigi
2016-09-01
This study investigates how 5- and 6-year-olds' evaluations of selfish, polite, and altruistic lies change as a result of whether these false statements are explicitly labelled as lies. We are also interested in how interpretive theory of mind may correlate with such evaluations with and without a lie label. Our results showed that labelling lowered children's evaluations for the polite and altruistic lies, but not for the selfish lies. Interpretive theory of mind correlated positively with the evaluation difference between the polite and altruistic lies and that between the selfish and altruistic lies in the label, but not in the non-label condition. Correlation between the selfish and altruistic lies and that between the polite and altruistic lies were stronger with than without labelling, after controlling for age, and verbal and non-verbal intelligence. We conclude that lie labelling biases children towards more negative evaluations for non-selfish lies and makes them see lies of different motives as more similar. If a lie label is applied, whether lies of different motives are still evaluated differently depends on interpretive theory of mind, which reflects the child's ability to represent and allow different interpretations of an ambiguous reality. © 2016 The British Psychological Society.
Site 765: Sediment Lithostratigraphy
,
1990-01-01
A 935-m-thick succession of Quaternary through Lower Cretaceous sediments was recovered at Site 765 (Fig. 10). A single core of Quaternary sediment was obtained from Hole 765A; drilling terminated and a new hole was drilled in an attempt to establish the mud line. Quaternary through middle Miocene sediments were cored in Hole 765B down to a depth of 395.6 mbsf. Middle Miocene through Lower Cretaceous sediments were cored in Hole 765C, after washing the interval between 0 and 350.2 mbsf. Exact lithologic correlation of the basal cores from Hole 765B with the upper cores from Hole 765C is not possible because of poor recovery; hence, correlation is based solely on matching sub-bottom depths.
NASA Astrophysics Data System (ADS)
Glas, Frank
2003-06-01
We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Retrieval of phase information in neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Haan, V.; van Well, A.A.; Adenwalla, S.
Neutron reflectometry can determine unambiguously the chemical depth profile of a thin film if both phase and amplitude of the reflectance are known. The recovery of the phase information is achieved by adding to the unknown layered structure a known ferromagnetic layer. The ferromagnetic layer is magnetized by an external magnetic field in a direction lying in the plane of the layer and subsequently perpendicular to it. The neutrons are polarized either parallel or opposite to the magnetic field. In this way three measurements can be made, with different (and known) scattering-length densities of the ferromagnetic layer. The reflectivity obtainedmore » from each measurement can be represented by a circle in the (complex) reflectance plane. The intersections of these circles provide the reflectance.« less
Sulci segmentation using geometric active contours
NASA Astrophysics Data System (ADS)
Torkaman, Mahsa; Zhu, Liangjia; Karasev, Peter; Tannenbaum, Allen
2017-02-01
Sulci are groove-like regions lying in the depth of the cerebral cortex between gyri, which together, form a folded appearance in human and mammalian brains. Sulci play an important role in the structural analysis of the brain, morphometry (i.e., the measurement of brain structures), anatomical labeling and landmark-based registration.1 Moreover, sulcal morphological changes are related to cortical thickness, whose measurement may provide useful information for studying variety of psychiatric disorders. Manually extracting sulci requires complying with complex protocols, which make the procedure both tedious and error prone.2 In this paper, we describe an automatic procedure, employing geometric active contours, which extract the sulci. Sulcal boundaries are obtained by minimizing a certain energy functional whose minimum is attained at the boundary of the given sulci.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
The relative risk of decompression sickness during and after air travel following diving.
Freiberger, J J; Denoble, P J; Pieper, C F; Uguccioni, D M; Pollock, N W; Vann, R D
2002-10-01
Decompression sickness (DCS) can be provoked by post-dive flying but few data exist to quantify the risk of different post-dive, preflight surface intervals (PFSI). We conducted a case-control study using field data from the Divers Alert Network to evaluate the relative risk of DCS from flying after diving. The PFSI and the maximum depths on the last day of diving (MDLD) were analyzed from 627 recreational dive profiles. The data were divided into quartiles based on surface interval and depth. Injured divers (cases) and uninjured divers (controls) were compared using logistic regression to determine the association of DCS with time and depth while controlling for diver and dive profiles characteristics. These included PFSI, MDLD, gender, height, weight, age, and days of diving. The means (+/-SD) for cases and controls were as follows: PFSI, 20.7 +/- 9.6 h vs. 27.1 +/- 6.7 h; MDLD, 22.5 +/- 14 meters sea water (msw) vs. 19 +/- 11.3 msw; male gender, 60% vs. 70%; weight, 75.8 +/- 18 kg vs. 77.6 +/- 16 kg; height, 173 +/- 16 cm vs. 177 +/- 9 cm; age, 36.8 +/- 10 yr vs. 42.9 +/- 11 yr; diving > or = 3 d, 58% vs. 97%. Relative to flying > 28 h after diving, the odds of DCS (95% CI) were: 1.02 (0.61, 1.7) 24-28 h; 1.84 (1.0, 3.3) 20-24 h; and 8.5 (3.85, 18.9) < 20 h. Relative to a depth of < 14.7 msw, the odds of DCS (95% CI) were: 1.2 (0.6, 1.7) 14.7-18.5 msw; 2.9 (1.65, 5.3) 18.5-26 msw; and 5.5 (2.96, 1 0.0) > 26 msw. Odds ratios approximate relative risk in rare diseases such as DCS. This study demonstrated an increase in relative risk from flying after diving following shorter PFSIs and/or greater dive depths on the last day. The relative risk increases geometrically as the PFSI becomes smaller.
NASA Astrophysics Data System (ADS)
Hamada, Y.; Kitamura, M.; Yamada, Y.; Sanada, Y.; Moe, K.; Hirose, T.
2016-12-01
In-situ rock properties in/around seismogenic zone in an accretionary prism are key parameters to understand the development mechanisms of an accretionary prism, spatio-temporal variation of stress state, and so on. For the purpose of acquiring continuous-depth-profile of in-situ formation strength in an accretionary prism, here we propose the new method to evaluate the in-situ rock strength using drilling performance property. Drilling parameters are inevitably obtained by any drilling operation even in the non-coring intervals or at challenging environment where core recovery may be poor. The relationship between the rock properties and drilling parameters has been proposed by previous researches [e.g. Teale 1964]. We introduced the relationship theory of Teale [1964], and developed a converting method to estimate in-situ rock strength without depending on uncertain parameters such as weight on bit (WOB). Specifically, we first calculated equivalent specific toughness (EST) which represents gradient of the relationship between Torque energy and volume of penetration at arbitrary interval (in this study, five meters). Then the EST values were converted into strength using the drilling parameters-rock strengths correlation obtained by Karasawa et al. [2002]. This method was applied to eight drilling holes in the Site C0002 of IODP NanTroSEIZE in order to evaluate in-situ rock strength in shallow to deep accretionary prism. In the shallower part (0 - 300 mbsf), the calculated strength shows sharp increase up to 20 MPa. Then the strength has approximate constant value to 1500 mbsf without significant change even at unconformity around 1000 mbsf (boundary between forearc basin and accretionary prism). Below that depth, value of the strength gradually increases with depth up to 60 MPa at 3000 mbsf with variation between 10 and 80 MPa. Because the calculated strength is across approximately the same lithology, the increase trend can responds to the rock strength. This strength-depth curve correspond reasonably well with the strength data of core and cutting samples collected from hole C0002N and C0002P [Kitamura et al., 2016 AGU]. These results show the validity of the method evaluating in-situ strength from the drilling parameters.