Sample records for depth profile analyses

  1. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.

    2017-10-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.

  2. Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: Comparison with resonant NRA and SIMS

    NASA Astrophysics Data System (ADS)

    Reiche, Ina; Castaing, Jacques; Calligaro, Thomas; Salomon, Joseph; Aucouturier, Marc; Reinholz, Uwe; Weise, Hans-Peter

    2006-08-01

    Hydrogen is present in anhydrous materials as a result of their synthesis and of their environment during conservation. IBA provides techniques to measure H concentration depth profiles allowing to identify various aspects of the materials including the history of objects such as gemstones used in cultural heritage. A newly established ERDA set-up, using an external microbeam of alpha particles, has been developed to study hydrated near-surface layers in quartz and sapphire by non-destructive H depth profiling in different atmospheres. The samples were also analysed using resonant NRA and SIMS.

  3. Spectral analysis of aeromagnetic profiles for depth estimation principles, software, and practical application

    USGS Publications Warehouse

    Sadek, H.S.; Rashad, S.M.; Blank, H.R.

    1984-01-01

    If proper account is taken of the constraints of the method, it is capable of providing depth estimates to within an accuracy of about 10 percent under suitable circumstances. The estimates are unaffected by source magnetization and are relatively insensitive to assumptions as to source shape or distribution. The validity of the method is demonstrated by analyses of synthetic profiles and profiles recorded over Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source depths have been proved by drilling.

  4. A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shiladitya; Singh, Bhupinder; Diwan, Anubhav; Lee, Zheng Rong; Engelhard, Mark H.; Terry, Jeff; Tolley, H. Dennis; Gallagher, Neal B.; Linford, Matthew R.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are much used analytical techniques that provide information about the outermost atomic and molecular layers of materials. In this work, we discuss the application of multivariate spectral techniques, including principal component analysis (PCA) and multivariate curve resolution (MCR), to the analysis of XPS and ToF-SIMS depth profiles. Multivariate analyses often provide insight into data sets that is not easily obtained in a univariate fashion. Pattern recognition entropy (PRE), which has its roots in Shannon's information theory, is also introduced. This approach is not the same as the mutual information/entropy approaches sometimes used in data processing. A discussion of the theory of each technique is presented. PCA, MCR, and PRE are applied to four different data sets obtained from: a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized C3F6 on Si, a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized PNIPAM (poly (N-isopropylacrylamide)) on Si, an XPS depth profile through a film of SiO2 on Si, and an XPS depth profile through a film of Ta2O5 on Ta. PCA, MCR, and PRE reveal the presence of interfaces in the films, and often indicate that the first few scans in the depth profiles are different from those that follow. PRE and backward difference PRE provide this information in a straightforward fashion. Rises in the PRE signals at interfaces suggest greater complexity to the corresponding spectra. Results from PCA, especially for the higher principal components, were sometimes difficult to understand. MCR analyses were generally more interpretable.

  5. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  6. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  7. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  8. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.

    2008-12-01

    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  9. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  10. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed Central

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  11. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.

  12. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H

    2017-08-01

    Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS 2 )-like, S n 2- /S 0 , and As 2 S 3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.

  13. In-depth analyses of paleolithic pigments in cave climatic conditions

    NASA Astrophysics Data System (ADS)

    Touron, Stéphanie; Trichereau, Barbara; Syvilay, Delphine

    2017-07-01

    Painted caves are a specific environment which preservation needs multidisciplinary studies carried out within the different actors. The actions set-up must follow national and European ethics and treaties and be as less invasive as possible to preserve the integrity of the site. Studying colorants in caves should meet these expectations and take into account on-field conditions: high humidity rate, reduced access to electricity, etc. Therefore, non-invasive analyses should be preferred. However, their limits restrict the field of application and sometimes sampling and laboratory analyses must be used to answer the problematic. It is especially true when the pigment is covered by calcite. For this purpose, the Laser-Induced Breakdown Spectroscopy (LIBS) has been assessed to identify the composition with stratigraphic analyses. This study carries out in-depth profile on laboratory samples in conditions close to the ones meet in caves. Samples were prepared on a calcareous substrate using three pigments: red ochre, manganese black and carbon black and two binding media: water and saliva. All samples have been covered by calcite. Four sets of measurements have then been done using the LIBS instrument. The in-depth profiles were obtained using the Standard Normal Variate (SNV) normalization. For all the samples, the pigment layer was identified in the second or third shot, the calcite layer being quite thin. However, the results remain promising with the carbon black pigment but not really conclusive, the carbon being generally quite difficult to quantify.

  14. Depth profiling of galvanoaluminium-nickel coatings on steel by UV- and VIS-LIBS

    NASA Astrophysics Data System (ADS)

    Nagy, T. O.; Pacher, U.; Giesriegl, A.; Weimerskirch, M. J. J.; Kautek, W.

    2017-10-01

    Laser-induced depth profiling was applied to the investigation of galvanised steel sheets as a typical modern multi-layer coating system for environmental corrosion protection. The samples were ablated stepwise by the use of two different wavelengths of a frequency-converted Nd:YAG-laser, 266 nm and 532 nm, with a pulse duration of τ = 4 ns at fluences ranging from F = 50 to 250 J cm-2. The emission light of the resulting plasma was analysed as a function of both penetration depth and elemental spectrum in terms of linear correlation analysis. Elemental depth profiles were calculated and compared to EDX-cross sections of the cut sample. A proven mathematical algorithm designed for the reconstruction of layer structures from distorted emission traces caused by the Gaussian ablation profile can even resolve thin intermediate layers in terms of depth and thickness. The obtained results were compared to a purely thermally controlled ablation model. Thereby light-plasma coupling is suggested to be a possible cause of deviations in the ablation behaviour of Al. The average ablation rate h as a function of fluence F for Ni ranges from 1 to 3.5 μm/pulse for λ = 266 nm as well as for λ = 532 nm. In contrast, the range of h for Al differs from 2 to 4 μm/pulse for λ = 532 nm and 4 to 8 μm/pulse for λ = 266 nm in the exact same fluence range on the exact same sample.

  15. Analyses of Diamond Wire Sawn Wafers: Effect of Various Cutting Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Basnyat, Prakash; Devayajanam, Srinivas

    We have evaluated surface characteristics of diamond wire cut (DWC) wafers sawn under a variety of cutting parameters. These characteristics include surface roughness, spatial frequencies of surface profiles, phase changes, damage depth, and lateral non-uniformities in the surface damage. Various cutting parameters investigated are: wire size, diamond grit size, reciprocating frequency, feed rate, and wire usage. Spatial frequency components of surface topography/roughness are influenced by individual cutting parameters as manifested by distinct peaks in the Fourier transforms of the Dektak profiles. The depth of damage is strongly controlled by diamond grit size and wire usage and to a smaller degreemore » by the wire size.« less

  16. A new database sub-system for grain-size analysis

    NASA Astrophysics Data System (ADS)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay content, sand content, etc., which always only displays part of the available information at each depth. Alternatively, full spectra were displayed at one depth. The new software now allows to display the whole grain-size spectrum at each depth in a three dimensional display. LabData and the grain-size subsystem are based on MS Access as front-end and MS SQL Server as back-end database systems. The SQL code for the data model, SQL server procedures and triggers and the MS Access basic code for the front end are public domain code, published under the GNU GPL license agreement and are available free of charge. References: Novothny, Á., Frechen, M., Horváth, E., Wacha, L., Rolf, C., 2011. Investigating the penultimate and last glacial cycles of the Sütt dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International 234, 75-85. Suckow, A., Dumke, I., 2001. A database system for geochemical, isotope hydrological and geochronological laboratories. Radiocarbon 43, 325-337.

  17. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  18. Plans for a sensitivity analysis of bridge-scour computations

    USGS Publications Warehouse

    Dunn, David D.; Smith, Peter N.

    1993-01-01

    Plans for an analysis of the sensitivity of Level 2 bridge-scour computations are described. Cross-section data from 15 bridge sites in Texas are modified to reflect four levels of field effort ranging from no field surveys to complete surveys. Data from United States Geological Survey (USGS) topographic maps will be used to supplement incomplete field surveys. The cross sections are used to compute the water-surface profile through each bridge for several T-year recurrence-interval design discharges. The effect of determining the downstream energy grade-line slope from topographic maps is investigated by systematically varying the starting slope of each profile. The water-surface profile analyses are then used to compute potential scour resulting from each of the design discharges. The planned results will be presented in the form of exceedance-probability versus scour-depth plots with the maximum and minimum scour depths at each T-year discharge presented as error bars.

  19. Microbiological Impact on Carbon Capture and Sequestration: Biotic Processes in Natural CO2 Analogue

    EPA Science Inventory

    Multiple ground-water based microbial community analyses including membrane lipids assays for phospholipid fatty acid and DNA analysis were performed from hydraulically isolated zones. DGGE results from DNA extracts from vertical profiling of the entire depth of aquifer sampled a...

  20. Interfacial mixing in as-deposited Si/Ni/Si layers analyzed by x-ray and polarized neutron reflectometry

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Basu, Saibal; Singh, Surendra; Roy, Sumalay; Dev, Bhupendra Nath

    2012-12-01

    Interdiffusion occurring across the interfaces in a Si/Ni/Si layered system during deposition at room temperature was probed using x-ray reflectivity (XRR) and polarized neutron reflectivity (PNR). Exploiting the complementarity of these techniques, both structural and magnetic characterization with nanometer depth resolution could be achieved. Suitable model fitting of the reflectivity profiles identified the formation of Ni-Si mixed alloy layers at the Si/Ni and Ni/Si interfaces. The physical parameters of the layered structure, including quantitative assessment of the stoichiometry of interfacial alloys, were obtained from the analyses of XRR and PNR patterns. In addition, PNR provided magnetic moment density profile as a function of depth in the stratified medium.

  1. Spatial Distribution of Trehalose Dihydrate Crystallization in Tablets by X-ray Diffractometry.

    PubMed

    Thakral, Naveen K; Yamada, Hiroyuki; Stephenson, Gregory A; Suryanarayanan, Raj

    2015-10-05

    Crystallization of trehalose dihydrate (C12H22O11·2H2O) was induced by storing tablets of amorphous anhydrous trehalose (C12H22O11) at 65% RH (RT). Our goal was to evaluate the advantages and limitations of two approaches of profiling spatial distribution of drug crystallization in tablets. The extent of crystallization, as a function of depth, was determined in tablets stored for different time-periods. The first approach was glancing angle X-ray diffractometry, where the penetration depth of X-rays was modulated by the incident angle. Based on the mass attenuation coefficient of the matrix, the depth of X-ray penetration was calculated as a function of incident angle, which in turn enabled us to "calculate" the extent of crystallization to different depths. In the second approach, the tablets were split into halves and the split surfaces were analyzed directly. Starting from the tablet surface and moving toward the midplane, XRD patterns were collected in 36 "regions", in increments of 0.05 mm. The results obtained by the two approaches were, in general, in good agreement. Additionally, the results obtained were validated by determining the "average" crystallization in the entire tablet by using synchrotron radiation in the transmission mode. The glancing angle method could detect crystallization up to ∼650 μm and had a "surface bias". Being a nondestructive technique, this method will permit repeated analyses of the same tablet at different time points, for example, during a stability study. However, split tablet analyses, while a "destructive" technique, provided comprehensive and unbiased depth profiling information.

  2. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.

    PubMed

    Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio

    2017-10-06

    Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.

  3. Uplifting of palsa peatlands by permafrost identified by stable isotope depth profiles

    NASA Astrophysics Data System (ADS)

    Krüger, Jan Paul; Conen, Franz; Leifeld, Jens; Alewell, Christine

    2015-04-01

    Natural abundances of stable isotopes are a widespread tool to investigate biogeochemical processes in soils. Palsas are peatlands with an ice core and are common in the discontinuous permafrost region. Elevated parts of palsa peatlands, called hummocks, were uplifted by permafrost out of the influence of groundwater. Here we used the combination of δ15N values and C/N ratio along depth profiles to identify perturbation of these soils. In the years 2009 and 2012 we took in total 14 peat cores from hummocks in two palsa peatlands near Abisko, northern Sweden. Peat samples were analysed in 2 to 4 cm layers for stable isotope ratios and concentrations of C and N. The uplifting of the hummocks by permafrost could be detected by stable isotope depth patterns with the highest δ15N value at permafrost onset, a so-called turning point. Regression analyses indicated in 11 of 14 peat cores increasing δ15N values above and decreasing values below the turning point. This is in accordance with the depth patterns of δ13C values and C/N ratios in these palsa peatlands. Onset of permafrost aggradation identified by the highest δ15N value in the profile and calculated from peat accumulation rates show ages ranging from 80 to 545 years and indicate a mean (±SD) peat age at the turning points of 242 (±66) years for Stordalen and 365 (±53) years for Storflaket peatland. The mean peat ages at turning points are within the period of the Little Ice Age. Furthermore, we tested if the disturbance, in this case the uplifting of the peat material, can be displayed in the relation of δ15N and C/N ratio following the concept of Conen et al. (2013). In unperturbed sites soil δ15N values cover a relatively narrow range at any particular C/N ratio. Changes in N cycling, i.e. N loss or gain, results in the loss or gain of 15N depleted forms. This leads to larger or smaller δ15N values than usual at the observed C/N ratio. All, except one, turning point show a perturbation in the depth profile, with most of the adjacent sampling points also indicating perturbation. This perturbation shows the changes in N cycling, in this case N loss, from these depths due to permafrost aggradation. Deeper parts of some profiles at Stordalen peatland indicate with the same approach an N gain, maybe due to lateral N input to these nutrient poor ecosystems. Most of the uppermost samples in the δ15N depth profiles show no perturbation, potentially due to the adaptation of these soils to the new conditions. Both stable isotope (δ15N and δ13C) depth profiles are suitable to detect palsa uplifting by permafrost. The perturbation of the peat by uplifting as well as the potential nutrient input can be detected by δ15N when related to the C/N ratio. Conen, F., Yakutin, M. V., Carle, N., and Alewell, C. (2013): δ15N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Commun. Mass Spectrom. 27: 1101-1104.

  4. Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile Trench

    USGS Publications Warehouse

    Blakely, Richard J.

    1981-01-01

    Estimations of the depth to magnetic sources using the power spectrum of magnetic anomalies generally require long magnetic profiles. The method developed here uses the maximum entropy power spectrum (MEPS) to calculate depth to source on short windows of magnetic data; resolution is thereby improved. The method operates by dividing a profile into overlapping windows, calculating a maximum entropy power spectrum for each window, linearizing the spectra, and calculating with least squares the various depth estimates. The assumptions of the method are that the source is two dimensional and that the intensity of magnetization includes random noise; knowledge of the direction of magnetization is not required. The method is applied to synthetic data and to observed marine anomalies over the Peru-Chile Trench. The analyses indicate a continuous magnetic basement extending from the eastern margin of the Nazca plate and into the subduction zone. The computed basement depths agree with acoustic basement seaward of the trench axis, but deepen as the plate approaches the inner trench wall. This apparent increase in the computed depths may result from the deterioration of magnetization in the upper part of the ocean crust, possibly caused by compressional disruption of the basaltic layer. Landward of the trench axis, the depth estimates indicate possible thrusting of the oceanic material into the lower slope of the continental margin.

  5. Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.

    PubMed

    Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J

    2009-01-01

    This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.

  6. Simulation of RBS spectra with known 3D sample surface roughness

    NASA Astrophysics Data System (ADS)

    Malinský, Petr; Siegel, Jakub; Hnatowicz, Vladimir; Macková, Anna; Švorčík, Václav

    2017-09-01

    The Rutherford Backscattering Spectrometry (RBS) is a technique for elemental depth profiling with a nanometer depth resolution. Possible surface roughness of analysed samples can deteriorate the RBS spectra and makes their interpretation more difficult and ambiguous. This work describes the simulation of RBS spectra which takes into account real 3D morphology of the sample surface obtained by AFM method. The RBS spectrum is calculated as a sum of the many particular spectra obtained for randomly chosen particle trajectories over sample 3D landscape. The spectra, simulated for different ion beam incidence angles, are compared to the experimental ones measured with 2.0 MeV 4He+ ions. The main aim of this work is to obtain more definite information on how a particular surface morphology and measuring geometry affects the RBS spectra and derived elemental depth profiles. A reasonable agreement between the measured and simulated spectra was found and the results indicate that the AFM data on the sample surface can be used for the simulation of RBS spectra.

  7. Profiles: Detailed Analyses of the Foreign Student Population, 1985/86.

    ERIC Educational Resources Information Center

    Zikopoulos, Marianthi, Ed.

    The results of the most recent survey on foreign students in regionally accredited institutions of higher education in the United States are provided. In-depth information is included on such topics as: what proportion of students from a specific country are graduates or undergraduates; what proportion of students in different fields are graduates…

  8. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  9. Accessory Mineral Depth-Profiling Applied to the Corsican Lower Crust: A Continuous Thermal History of Mesozoic Continental Rifting

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2015-12-01

    Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.

  10. X-ray Photoelectron Spectroscopy of High-κ Dielectrics

    NASA Astrophysics Data System (ADS)

    Mathew, A.; Demirkan, K.; Wang, C.-G.; Wilk, G. D.; Watson, D. G.; Opila, R. L.

    2005-09-01

    Photoelectron spectroscopy is a powerful technique for the analysis of gate dielectrics because it can determine the elemental composition, the chemical states, and the compositional depth profiles non-destructively. The sampling depth, determined by the escape depth of the photoelectrons, is comparable to the thickness of current gate oxides. A maximum entropy algorithm was used to convert photoelectron collection angle dependence of the spectra to compositional depth profiles. A nitrided hafnium silicate film is used to demonstrate the utility of the technique. The algorithm balances deviations from a simple assumed depth profile against a calculated depth profile that best fits the angular dependence of the photoelectron spectra. A flow chart of the program is included in this paper. The development of the profile is also shown as the program is iterated. Limitations of the technique include the electron escape depths and elemental sensitivity factors used to calculate the profile. The technique is also limited to profiles that extend to the depth of approximately twice the escape depth. These limitations restrict conclusions to comparison among a family of similar samples. Absolute conclusions about depths and concentrations must be used cautiously. Current work to improve the algorithm is also described.

  11. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  12. Minimum depth of soil cover above long-span soil-steel railway bridges

    NASA Astrophysics Data System (ADS)

    Esmaeili, Morteza; Zakeri, Jabbar Ali; Abdulrazagh, Parisa Haji

    2013-12-01

    Recently, soil-steel bridges have become more commonly used as railway-highway crossings because of their economical advantages and short construction period compared with traditional bridges. The currently developed formula for determining the minimum depth of covers by existing codes is typically based on vehicle loads and non-stiffened panels and takes into consideration the geometrical shape of the metal structure to avoid the failure of soil cover above a soil-steel bridge. The effects of spans larger than 8 m or more stiffened panels due to railway loads that maintain a safe railway track have not been accounted for in the minimum cover formulas and are the subject of this paper. For this study, two-dimensional finite element (FE) analyses of four low-profile arches and four box culverts with spans larger than 8 m were performed to develop new patterns for the minimum depth of soil cover by considering the serviceability criterion of the railway track. Using the least-squares method, new formulas were then developed for low-profile arches and box culverts and were compared with Canadian Highway Bridge Design Code formulas. Finally, a series of three-dimensional (3D) finite element FE analyses were carried out to control the out-of-plane buckling in the steel plates due to the 3D pattern of train loads. The results show that the out-of-plane bending does not control the buckling behavior of the steel plates, so the proposed equations for minimum depth of cover can be appropriately used for practical purposes.

  13. Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †

    PubMed Central

    King, Gary M.; Roslev, Peter; Skovgaard, Henrik

    1990-01-01

    Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299

  14. The use of various X-ray fluorescence analysis modalities for the investigation of historical paintings: The case study on the Late Gothic panel painting

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.

    2017-10-01

    The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.

  15. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.

  16. Seismic Images of the Non-Volcanic Tremor Region around Cholame, California, USA

    NASA Astrophysics Data System (ADS)

    Gutjahr, S.; Buske, S.

    2012-04-01

    We reprocessed the industry seismic reflection profile "WSJ-6" which is so far the only seismic profile crossing the San Andreas fault at the non-volcanic tremor region around Cholame. The profile "WSJ-6" runs from Morro Bay eastward to the foothills of the Sierra Nevada and crosses several prominent fault systems, e.g.the Rinconada fault as well as the San Juan fault and the San Andreas fault respectively. By applying the so-called Fresnel Volume migration to the data we produced seismic images of the lower crust and the upper mantle down to depths of approximately 40 km. A 3D tomographic velocity model derived from local earthquake data analysis (Thurber et al., 2006, Lin et al., 2010) was used for slowness analyses and traveltime calculations. The imaging technique was implemented in 3D taking into account the true shot and receiver locations on the crooked profile line. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the San Andreas fault. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the Rinconada fault and the San Andreas fault. Southwest of the San Andreas fault surface trace a broad zone of high reflectivity is located at depths between 20 km to 35 km. In this region non-volcanic tremor has been located below the seismogenic zone down to 30 km depth. Tremor locations correlate with zones of high reflectivity. This correlation may be an indicator for high pore pressures and fluid content in that region as it is assumed by several authors. The images of the eastern part of the profile show slightly west dipping sedimentary layers in the area of the San Joaquin Valley that are folded and faulted below the Kettleman Hills. Our imaging results will be compared to existing interpretations of the same data.

  17. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, G.; Knapmeyer-Endrun, B.

    2018-02-01

    We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are present, and when only limited amounts of data are available.

  18. A Non-Steady-State Condition in Sediments at the Gashydrate Stability Boundary off West Spitsbergen: Evidence for Gashydrate Dissociation or Just Dynamic Methane Transport?

    NASA Astrophysics Data System (ADS)

    Treude, T.; Krause, S.; Bertics, V. J.; Steinle, L.; Niemann, H.; Liebetrau, V.; Feseker, T.; Burwicz, E.; Krastel, S.; Berndt, C.

    2014-12-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009, GRL 36, doi:10.1029/2009GL039191). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014, Science 343: 284-287). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. δ18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation.

  19. Core microbial functional activities in ocean environments revealed by global metagenomic profiling analyses.

    PubMed

    Ferreira, Ari J S; Siam, Rania; Setubal, João C; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S; Dawe, Adam S; Ghazy, Mohamed A; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A C; Jankovic, Boris R; Sogin, Mitchell; Bajic, Vladimir B; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light.

  20. Core Microbial Functional Activities in Ocean Environments Revealed by Global Metagenomic Profiling Analyses

    PubMed Central

    Ferreira, Ari J. S.; Siam, Rania; Setubal, João C.; Moustafa, Ahmed; Sayed, Ahmed; Chambergo, Felipe S.; Dawe, Adam S.; Ghazy, Mohamed A.; Sharaf, Hazem; Ouf, Amged; Alam, Intikhab; Abdel-Haleem, Alyaa M.; Lehvaslaiho, Heikki; Ramadan, Eman; Antunes, André; Stingl, Ulrich; Archer, John A. C.; Jankovic, Boris R.; Sogin, Mitchell; Bajic, Vladimir B.; El-Dorry, Hamza

    2014-01-01

    Metagenomics-based functional profiling analysis is an effective means of gaining deeper insight into the composition of marine microbial populations and developing a better understanding of the interplay between the functional genome content of microbial communities and abiotic factors. Here we present a comprehensive analysis of 24 datasets covering surface and depth-related environments at 11 sites around the world's oceans. The complete datasets comprises approximately 12 million sequences, totaling 5,358 Mb. Based on profiling patterns of Clusters of Orthologous Groups (COGs) of proteins, a core set of reference photic and aphotic depth-related COGs, and a collection of COGs that are associated with extreme oxygen limitation were defined. Their inferred functions were utilized as indicators to characterize the distribution of light- and oxygen-related biological activities in marine environments. The results reveal that, while light level in the water column is a major determinant of phenotypic adaptation in marine microorganisms, oxygen concentration in the aphotic zone has a significant impact only in extremely hypoxic waters. Phylogenetic profiling of the reference photic/aphotic gene sets revealed a greater variety of source organisms in the aphotic zone, although the majority of individual photic and aphotic depth-related COGs are assigned to the same taxa across the different sites. This increase in phylogenetic and functional diversity of the core aphotic related COGs most probably reflects selection for the utilization of a broad range of alternate energy sources in the absence of light. PMID:24921648

  1. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

    PubMed

    Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying

    2017-01-10

    Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.

  2. Depth profile measurement with lenslet images of the plenoptic camera

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei

    2018-03-01

    An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.

  3. Quantitative depth profiling of Ce(3+) in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere.

    PubMed

    Kato, Shunsuke; Ammann, Markus; Huthwelker, Thomas; Paun, Cristina; Lampimäki, Markus; Lee, Ming-Tao; Rothensteiner, Matthäus; van Bokhoven, Jeroen A

    2015-02-21

    The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.

  4. The extent of lunar regolith mixing

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Imamura, M.; Kohl, C. P.; Murrell, M. T.; Arnold, J. R.; Russ, G. P., III

    1979-01-01

    The activity of solar cosmic-ray-produced Mn-53 measured as a function of depth in the upper 100 g/sq cm of lunar cores 60009-60010 and 12025-12028 is discussed. Analyses of samples from the Apollo 15 and 16 drill stems together with authors' previously published results (1974, 1976), and the Battelle Na-22 and Al-26 data, indicate that in three of the four cases studied the regolith was measurably disturbed within the last 10 m.y. Activities measured in the uppermost 2 g/sq cm indicate frequent mixing within this depth range. The Monte Carlo gardening model of Arnold (1975) was used to derive profiles for the gardened moon-wide average of Mn-53 and Al-26 as a function of depth. The Mn-53 and Al-26 experimental results agreed with theoretical predictions, but the calculated depths of disturbance appeared too low.

  5. [Profiles of resilience and quality of life in people with acquired disability due to traffic accidents].

    PubMed

    Suriá Martínez, Raquel

    2015-09-01

    To identify distinct profiles of resilience in people with spinal cord injuries due to traffic accidents and to determine whether the profiles identified are related to differences in subjective well-being. The Resilience Scale (Wagnild and Young, 1993) and an adapted quality of life scale (GENCAT) were administered to 98 people with physical disabilities due to traffic accidents. Cluster analyses identified three different resilience profiles: a high-resilience group, a low-resilience group, and a group showing a predominance of high scores in self and life acceptance and social competence. The results also revealed statistically significant differences among profiles in most domains of subjective well-being. The results suggest the need to study resilience in greater depth and to design programs to enhance quality of life among people with disabilities due to traffic accidents. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  6. Soil moisture profile variability in land-vegetation- atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Wu, Wanru

    Soil moisture is of critical importance to the physical processes governing energy and water exchanges at the land-air boundary. With respect to the exchange of water mass, soil moisture controls the response of the land surface to atmospheric forcing and determines the partitioning of precipitation into infiltration and runoff. Meanwhile, the soil acts as a reservoir for the storage of liquid water and slow release of water vapor into the atmosphere. The major motivation of the study is that the soil moisture profile is thought to make a substantial contribution to the climate variability through two-way interactions between the land-surface and the atmosphere in the coupled ocean-atmosphere-land climate system. The characteristics of soil moisture variability with soil depth may be important in affecting the atmosphere. The natural variability of soil moisture profile is demonstrated using observations. The 16-year field observational data of soil moisture with 11-layer (top 2.0 meters) measured soil depths over Illinois are analyzed and used to identify and quantify the soil moisture profile variability, where the atmospheric forcing (precipitation) anomaly propagates down through the land-branch of the hydrological cycle with amplitude damping, phase shift, and increasing persistence. Detailed statistical data analyses, which include application of the periodogram method, the wavelet method and the band-pass filter, are made of the variations of soil moisture profile and concurrently measured precipitation for comparison. Cross-spectral analysis is performed to obtain the coherence pattern and phase correlation of two time series for phase shift and amplitude damping calculation. A composite of the drought events during this time period is analyzed and compared with the normal (non-drought) case. A multi-layer land surface model is applied for modeling the soil moisture profile variability characteristics and investigating the underlying mechanisms. Numerical experiments are conducted to examine the impacts of some potential controlling factors, which include atmospheric forcing (periodic and pulse) at the upper boundary, the initial soil moisture profile, the relative root abundance and the soil texture, on the variability of soil moisture profile and the corresponding evapotranspiration. Similar statistical data analyses are performed for the experimental data. Observations from the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment (FIFE) are analyzed and used for the testing of model. The integration of the observational and modeling approaches makes it possible to better understand the mechanisms by which the soil moisture profile variability is generated with phase shift, fluctuation amplitude damping and low-pass frequency filtering with soil depth, to improve the strategies of parameterizations in land surface schemes, and furthermore, to assess its contribution to climate variability.

  7. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  8. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  9. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  10. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-04-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted in phytoplankton biomass (i.e. chlorophyll a concentration) and size-based community composition (i.e. microphytoplankton, nanophytoplankton and picophytoplankton), using a~method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over five decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available in open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485.

  11. Passive seismic experiment and receiver functions analysis to determine crustal structure at the contact of the northern Dinarides and southwestern Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Šumanovac, Franjo; Hegedűs, Endre; Orešković, Jasna; Kolar, Saša; Kovács, Attila C.; Dudjak, Darko; Kovács, István J.

    2016-06-01

    Passive seismic experiment was carried out at the SW contact of the Dinarides and Pannonian basin to determine the crustal structure and velocity discontinuities. The aim of the experiment was to define the relationship between the Adriatic microplate and the Pannonian segment as a part of the European plate. Most of the temporary seismic stations were deployed in Croatia along the Alp07 profile-a part of the active-source ALP 2002 project. About 300-km-long profile stretches from Istra peninsula to the Drava river, in a WSW-ESE direction. Teleseismic events recorded on 13 temporary seismic stations along the profile were analysed by P-receiver function method. Two types of characteristic receiver functions (RF) have been identified, belonging to Dinaridic and Pannonian crusts as defined on the Alp07 profile, while in transitional zone there are both types. Three major crustal discontinuities can be identified for the Dinaridic type: sedimentary basement, intracrustal discontinuity and Mohorovičić discontinuity, whereas the Pannonian type revealed only two discontinuities. The intracrustal discontinuity was not observed in the Pannonian type, thus pointing to a single-layered crust in the Pannonian basin. Two interpretation methods were applied: forward modelling of the receiver functions and H-κ stacking method, and the results were compared with the active-source seismic data at deep refraction profile Alp07. The receiver function modelling has given reliable results of the Moho depths that are in accordance with the seismic refraction results at the end of the Alp07 profile, that is in the area of Pannonian crust characterized by simple crustal structure and low seismic velocities (Vp between 5.9 and 6.2 km s-1). In the Dinarides and its peripheral parts, receiver function modelling regularly gives greater Moho depths, up to +15 per cent, due to more complex crustal structure. The depths of the Moho calculated by the H-κ stacking method vary within wide limits (±13 km), due to band limited data of short-period stations. The results at five stations have to be rejected because of huge deviations in comparison with all previous results, while at the other seven stations the Moho depths vary within ±15 per cent around the Moho discontinuity of the Alp07 profile.

  12. Computationally-efficient optical coherence elastography to assess degenerative osteoarthritis based on ultrasound-induced fringe washout (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tong, Minh Q.; Hasan, M. Monirul; Gregory, Patrick D.; Shah, Jasmine; Park, B. Hyle; Hirota, Koji; Liu, Junze; Choi, Andy; Low, Karen; Nam, Jin

    2017-02-01

    We demonstrate a computationally-efficient optical coherence elastography (OCE) method based on fringe washout. By introducing ultrasound in alternating depth profile, we can obtain information on the mechanical properties of a sample within acquisition of a single image. This can be achieved by simply comparing the intensity in adjacent depth profiles in order to quantify the degree of fringe washout. Phantom agar samples with various densities were measured and quantified by our OCE technique, the correlation to Young's modulus measurement by atomic force micrscopy (AFM) were observed. Knee cartilage samples of monoiodo acetate-induced arthiritis (MIA) rat models were utilized to replicate cartilage damages where our proposed OCE technique along with intensity and birefringence analyses and AFM measurements were applied. The results indicate that our OCE technique shows a correlation to the techniques as polarization-sensitive OCT, AFM Young's modulus measurements and histology were promising. Our OCE is applicable to any of existing OCT systems and demonstrated to be computationally-efficient.

  13. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter

    DOE PAGES

    Huang, Di; Hua, Xin; Xiu, Guang-Li; ...

    2017-07-24

    Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization, single particle analysis and depth profiling of PM is important for a better understanding of its formation processes and predicting its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, high spatial resolution chemical imaging and unique depth profiling capabilities. Recent research shows that SIMS has great potential in analyzing both surface and bulk chemical information of PM. In this review, we give amore » brief introduction of SIMS working principle and survey recent applications of SIMS in PM characterization. In particular, analyses from different types of PM sources by various SIMS techniques were discussed concerning their advantages and limitations. Finally, we propose, the future development and needs of SIMS in atmospheric aerosol measurement with a perspective in broader environmental sciences.« less

  14. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Di; Hua, Xin; Xiu, Guang-Li

    Currently, considerable attention has been paid to atmospheric particulate matter (PM) investigation due to its importance in human health and global climate change. Surface characterization, single particle analysis and depth profiling of PM is important for a better understanding of its formation processes and predicting its impact on the environment and human being. Secondary ion mass spectrometry (SIMS) is a surface technique with high surface sensitivity, high spatial resolution chemical imaging and unique depth profiling capabilities. Recent research shows that SIMS has great potential in analyzing both surface and bulk chemical information of PM. In this review, we give amore » brief introduction of SIMS working principle and survey recent applications of SIMS in PM characterization. In particular, analyses from different types of PM sources by various SIMS techniques were discussed concerning their advantages and limitations. Finally, we propose, the future development and needs of SIMS in atmospheric aerosol measurement with a perspective in broader environmental sciences.« less

  15. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  16. Neck and shoulder disorders in medical secretaries. Part II. Ergonomical work environment and symptom profile.

    PubMed

    Kamwendo, K; Linton, S J; Moritz, U

    1991-01-01

    Seventy-nine medical secretaries with neck and shoulder pain were included in a study aimed at an in-depth description of the ergonomical work environment and the participant's symptom profile, as well as analysing relationships between ergonomical factors and symptoms. Data were collected by daily ratings, questionnaires, and direct observation. The symptom profile showed low mean daily ratings of perceived fatigue and pain, a low medicine consumption, and few stress symptoms. A mean number of 2.1 undesirable work postures was observed. The correlations between perceived fatigue, pain, and well-being with number of shifts from sitting to standing and time spent typing, were generally small. This study suggests that risk factors for neck and shoulder pain are individual and multifactorial.

  17. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  18. Nitric oxide assisted C60 secondary ion mass spectrometry for molecular depth profiling of polyelectrolyte multilayers.

    PubMed

    Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A

    2015-12-15

    Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.

  19. XANES analyses of silicon crystalline irradiated by nitrogen/oxygen ions.

    PubMed

    Yoshida, T; Hara, T; Li, T; Yoshida, H; Tanabe, T

    2001-03-01

    X-ray absorption techniques have been applied to the characterization of 5 keV nitrogen / oxygen ions implanted silicon samples. The depth selective measurement of XANES by recording in PEY mode and the quantitative analysis by superposition of XANES spectra were carried out to elucidate the depth profile of implanted ions. It has been revealed that the silicon nitride phase were formed in silicon after prolonged N+ irradiation and it extended over the deep part of the damaged region from the surface. On the other hand, for the O+ irradiation, silicon dioxide phase were produced only in the shallow part of the damaged region, i.e., the silicon dioxide phase likely broke off during the irradiation.

  20. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu

    USGS Publications Warehouse

    Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.

    1999-01-01

    Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess  penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess  activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both  and  penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess  profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of  and  profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum  and  activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess  activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess  profile.

  1. Laser microprobe and resonant laser ablation for depth profile measurements of hydrogen isotope atoms contained in graphite.

    PubMed

    Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A

    2001-04-20

    We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.

  2. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  3. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE PAGES

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    2016-10-14

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  4. Endolithic diversity of microorganisms on sandstone and implications for biogenic weathering

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Friedenberger, H.; Hoppert, M.

    2012-04-01

    Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. All sandstones were taken from quarries where they were exposed to the environment for several years. Approximately 0.1 g of material from the stone surface, from 5 mm and from 30 mm depths was taken under sterile conditions and subjected to analysis of microbial DNA and culturing experiments. In particular, DNA was extracted from the material, the phylogenetic marker gene of eukaryotic organisms (18S rDNA) was amplified and used for generation of clone libraries, which were then analysed by sequencing. "Roter Wesersandstein" was just colonized at the material surface, predominantly with algal and fungal microorganisms. No environmental DNA could be isolated from depth profiles. From "Nebraer Sandstein" with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Though the uppermost layer is dominated by microalgae (as concluded from the retrieved clones), the percentage of algal clones from 5 mm and 30 mm depths drop to 10 % of all clones. There, apart from filamentous fungi, moss clones clearly dominate the microbial community. At a depth of 30 mm, 70-80 % of the retrieved clones match to various mosses (Bryophyta). Though mosses do not form layers on the stone surfaces, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses is not obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.

  5. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    PubMed

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained from the same depth.

  6. Neutron Depth Profiling: Overview and Description of NIST Facilities

    PubMed Central

    Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 × 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of 17O profiles. This paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications. PMID:28053461

  7. The future of coastal upwelling in the Humboldt current from model projections

    NASA Astrophysics Data System (ADS)

    Oyarzún, Damián; Brierley, Chris M.

    2018-03-01

    The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21st Century. This relates to an intensification of ocean stratification under global warming as shown by the sea water temperature profiles. Additionally, a divergence between the Ekman layer and thermocline depths is also evidenced. Given the interaction of upwelled nutrients and microscopic organisms essential for fish growth, a potential decline of coastal upwelling at depth could lead to unknown ecological and socio-economical effects.

  8. Boundary Layer Depth In Coastal Regions

    NASA Astrophysics Data System (ADS)

    Porson, A.; Schayes, G.

    The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.

  9. The composition and character of DOM from an upland peat catchment - sources, roles and fate

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.

    2017-12-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] < 1.44. The DOM was dominantly the product of lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.

  10. How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Gutiérrez del Arroyo, O.; Silver, W. L.

    2016-12-01

    Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.

  11. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  12. The effect of high energy ion beam analysis on D trapping in W

    NASA Astrophysics Data System (ADS)

    Finlay, T. J.; Davis, J. W.; Schwarz-Selinger, T.; Haasz, A. A.

    2017-12-01

    High energy ion beam analyses (IBA) are invaluable for measuring concentration depth profiles of light elements in solid materials, and important in the study of fusion fuel retention in tokamaks. Polycrystalline W specimens were implanted at 300 and 500 K, 5-10 × 1023 D m-2 fluence, with deuterium-only and simultaneous D-3%He ion beams. Selected specimens were analysed by elastic recoil detection analysis (ERDA) and/or nuclear reaction analysis (NRA). All specimens were measured by thermal desorption spectroscopy (TDS). The D TDS spectra show an extra peak at 900-1000 K following ERDA and/or NRA measurements. The peak height appears to correlate with the amount of D initially trapped beyond the calculated IBA probe beam peak damage depth. Similar to pre-implantation damage scenarios, the IBA probe beam creates empty high energy traps which later retrap D atoms during TDS heating, which is supported by modelling experimental results using the Tritium Migration Analysis Program.

  13. Profilometric characterization of DOEs with continuous microrelief

    NASA Astrophysics Data System (ADS)

    Korolkov, V. P.; Ostapenko, S. V.; Shimansky, R. V.

    2008-09-01

    Methodology of local characterization of continuous-relief diffractive optical elements has been discussed. The local profile depth can be evaluated using "approximated depth" defined without taking a profile near diffractive zone boundaries into account. Several methods to estimate the approximated depth have been offered.

  14. Elucidating effects of atmospheric deposition and peat decomposition processes on mercury accumulation rates in a northern Minnesota peatland over last 10,000 cal years

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.

    2014-12-01

    Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.

  15. Comparison of Air Fluorescence and Ionization Measurements of E.M. Shower Depth Profiles: Test of a UHECR Detector Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belz, J.; Cao, Z.; Huentemeyer, P.

    Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.

  16. Species classifier choice is a key consideration when analysing low-complexity food microbiome data.

    PubMed

    Walsh, Aaron M; Crispie, Fiona; O'Sullivan, Orla; Finnegan, Laura; Claesson, Marcus J; Cotter, Paul D

    2018-03-20

    The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads. Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R 2  = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R 2  = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth. Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did.

  17. Profiling defect depth in composite materials using thermal imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2018-04-01

    Sonic Infrared (IR) NDE, is a relatively new NDE technology; it has been demonstrated as a reliable and sensitive method to detect defects. SIR uses ultrasonic excitation with IR imaging to detect defects and flaws in the structures being inspected. An IR camera captures infrared radiation from the target for a period of time covering the ultrasound pulse. This period of time may be much longer than the pulse depending on the defect depth and the thermal properties of the materials. With the increasing deployment of composites in modern aerospace and automobile structures, fast, wide-area and reliable NDE methods are necessary. Impact damage is one of the major concerns in modern composites. Damage can occur at a certain depth without any visual indication on the surface. Defect depth information can influence maintenance decisions. Depth profiling relies on the time delays in the captured image sequence. We'll present our work on the defect depth profiling by using the temporal information of IR images. An analytical model is introduced to describe heat diffusion from subsurface defects in composite materials. Depth profiling using peak time is introduced as well.

  18. Nondestructive examination of decarburised layer of steels using eddy current and magnetic Barkhausen noise testing techniques

    NASA Astrophysics Data System (ADS)

    Falahat, S.; Ghanei, S.; Kashefi, M.

    2018-04-01

    Eddy current and Barkhausen noise nondestructive testing techniques were considered to evaluate the magnetic properties of the decarburised steels as a function of microstructure. To make changes in decarburising depth, carbon steel samples were austenitised at 890 °C for 120-270 min. Considering different decarburised depths, height, position and width of the noise profiles were extracted in order to analyse the magnetic Barkhausen noise measurements. Next, the eddy current test was performed to detect the changes in the microstructure through decarburising of the steel taking into account the impedance variations. According to the results, both techniques allow us to detect changes in the magnetic properties of the decarburised steels and link them with their microstructural changes, nondestructively.

  19. Magnetic Nonuniformity and Thermal Hysteresis of Magnetism in a Manganite Thin Film [Depth profiling of magnetization and coupling of strain with magnetization in (La 0.4Pr 0.6) 0.67Ca 0.33MnO 3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surendra; Fitzsimmons, M. R.; Lookman, T.

    We measured the chemical and magnetic depth profiles of a single crystalline film grown on a NdGaO 3 substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first order ferromagnetic transition at low temperatures

  20. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  1. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  2. Fate of 137Cs, 90Sr and 239+240Pu in soil profiles at a water recharge site in Basel, Switzerland.

    PubMed

    Abraham, Johannes; Meusburger, Katrin; Waldis, Judith Kobler; Ketterer, Michael E; Zehringer, Markus

    2018-02-01

    An important process in the production of drinking water is the recharge of the withdrawn ground water with river water at protected recharge fields. While it is well known that undisturbed soils are efficiently filtering and adsorbing radionuclides, the goal of this study was to investigate their behaviour in an artificial recharge site that may receive rapid and additional input of radionuclides by river water (particularly when draining a catchment including nuclear power plants (NPP)). Soil profiles of recharge sites were drilled and analysed for radionuclides, specifically radiocesium ( 137 Cs), radiostrontium ( 90 Sr) and plutonium ( 239+240 Pu). The distribution of the analysed radionuclides were compared with an uncultivated reference soil outside the recharge site. The main activity of 137 Cs was located in the top soil (4.5-7.5 cm) and reached down to a depth of 84 cm and 48 cm for the recharge and the reference site, respectively. The found activities of 239+240 Pu originate from the global fallout after 1950. 239+240 Pu appeared to be strongly adsorbed onto soil particles. The shape of the depth profile was similar to 137 Cs, but also similar between the recharge and the reference site. In contrast, 90 Sr showed a uniform distribution over the entire depth of the recharge and reference profiles indicating that 90 Sr already entered the gravel zone and the ground water. Elevated inventories of the radionuclides were observed for the recharge site. The soil of the recharge field exhibited a threefold higher activity of 137 Cs compared to the reference soil. Also for 239+240 Pu higher inventories where observed for the recharge sites (40%). 90 Sr behaved differently, showing similar inventories between reference and recharge site. We estimate that 75-89% of the total inventory of 137 Cs in the soil at the recharge site (7.000 Bq/m 2 ) originated from the fallout of the Chernobyl accident and from emissions of Swiss NPPs. This estimate is based on the actual activity ratio of 137 Cs/ 239+240 Pu of 22 for global fallout. The investigations identified radiostrontium as potential threat to the ground water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Upper mantle electrical conductivity for seven subcontinental regions of the Earth

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors

  4. Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of the Małopolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experiments

    NASA Astrophysics Data System (ADS)

    Środa, Piotr

    2017-04-01

    The area of SE Poland represents a complex contact of tectonic units of different consolidation age—from the Precambrian East European Craton, through Palaeozoic West European Platform (including Małopolska Block) to Cenozoic Carpathians and Carpathian Foredeep. In order to investigate the anisotropic properties of the upper crust of the Małopolska Block and their relation to tectonic evolution of the area, two seismic datasets were used: seismic wide-angle off-line recordings from POLCRUST-01 deep seismic reflection profile and recordings from active deep seismic experiment CELEBRATION 2000. During acquisition of deep reflection seismic profile POLCRUST-01 in 2010, a 35-km-long line of 14 recorders (PA-14), oriented perpendicularly to the profile, was deployed to record the refractions from the upper crust (Pg) at wide range of azimuths. These data were used for an analysis of the azimuthal anisotropy of the MB with the modified delay-time inversion method. The results of modelling of the off-line refractions from the MB suggest 6% HTI anisotropy of the Cambrian/Ediacaran basement, with 130º azimuth of the fast velocity axis and mean Vp of 4.9 km/s. To compare this result with previous, independent information about anisotropy at larger depth, a subset of previously modelled data from CELEBRATION 2000 experiment, recorded in the MB area, was also analysed by inversion. The recordings of Pg phase at up to 120 km offsets were analysed using anisotropic delay-time inversion, providing information down to 12 km depth. The CELEBRATION 2000 model shows 9% HTI anisotropy with 126º orientation of the fast axis. Thus, local-scale anisotropy of this part of MB confirms the large-scale anisotropy suggested by previous studies based on data from a broader area and larger depth interval. The azimuthal anisotropy (i.e. HTI symmetry of the medium) is interpreted as a result of strong compressional deformation during the accretion of terranes to the EEC margin, leading to tight (sub-vertical) folding and fracturing of intrinsically anisotropic metasediments forming the MB basement. Obtained anisotropy models are compared with data about stratal dips of the MB sequences and implications of assuming more realistic TTI model are discussed. Wide-angle recordings from off-line measurements along a reflection profile provided new information about seismic velocity and anisotropy, not available from standard near-vertical profiling, and contributed to more complete image of the upper crustal structure of Małopolska Block.

  5. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  6. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    PubMed

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  7. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However, at depth soil forming processes have been identified as a major factor influencing C sequestration potential in soils. This has a major impact in further quantifying and sustaining C sequestration into the future. Soils with a high sequestration potential at depth need to be managed to enhance the residence time to contribute to future off-setting of greenhouse gas emissions.

  8. Hardness depth profile of lattice strained cemented carbide modified by high-energy boron ion implantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.

    1991-07-01

    The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.

  9. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases aremore » presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.« less

  10. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    PubMed

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  11. Physical, Chemical and Biological Data, CLIMAX I Expedition, 19 September-28 September 1968.

    DTIC Science & Technology

    1974-09-01

    Continous salinity, temperature, depth profiles (S/T/D) were taken in the late morning, near noon and early evening hours. Bottle casts for nutrients...chlorophyll-a and phaeo-pigment analyses were made in the late morning and early evening. Submarine photometer and secchi disc lowerings were made near ...September, was done at first in the center of the triangle, then for a short distance near one drogue only, and finally, between a pair of drogues

  12. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  13. Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES)

    NASA Astrophysics Data System (ADS)

    Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik

    2018-06-01

    In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.

  14. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake.

    PubMed

    Tian, Liming; Zhao, Lin; Wu, Xiaodong; Fang, Hongbing; Zhao, Yonghua; Yue, Guangyang; Liu, Guimin; Chen, Hao

    2017-12-31

    Vertical patterns and determinants of soil nutrients are critical to understand nutrient cycling in high-altitude ecosystems; however, they remain poorly understood in the alpine grassland due to lack of systematic field observations. In this study, we examined vertical distributions of soil nutrients and their influencing factors within the upper 1m of soil, using data of 68 soil profiles surveyed in the alpine grassland of the eastern Qinghai-Tibet Plateau. Soil organic carbon (SOC) and total nitrogen (TN) stocks decreased with depth in both alpine meadow (AM) and alpine steppe (AS), but remain constant along the soil profile in alpine swamp meadow (ASM). Total phosphorus, Ca 2+ , and Mg 2+ stocks slightly increased with depth in ASM. K + stock decreased with depth, while Na + stock increased slightly with depth among different vegetation types; however, SO 4 2- and Cl - stocks remained relatively uniform throughout different depth intervals in the alpine grassland. Except for SOC and TN, soil nutrient stocks in the top 20cm soils were significantly lower in ASM compared to those in AM and AS. Correlation analyses showed that SOC and TN stocks in the alpine grassland positively correlated with vegetation coverage, soil moisture, clay content, and silt content, while they negatively related to sand content and soil pH. However, base cation stocks revealed contrary relationships with those environmental variables compared to SOC and TN stocks. These correlations varied between vegetation types. In addition, no significant relationship was detected between topographic factors and soil nutrients. Our findings suggest that plant cycling and soil moisture primarily control vertical distributions of soil nutrients (e.g. K) in the alpine grassland and highlight that vegetation types in high-altitude permafrost regions significantly affect soil nutrients. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  16. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry

    PubMed Central

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  17. Depth profilometry via multiplexed optical high-coherence interferometry.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.

  18. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  19. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  20. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  1. Seismic risk assessment of architectural heritages in Gyeongju considering local site effects

    NASA Astrophysics Data System (ADS)

    Park, H.-J.; Kim, D.-S.; Kim, D.-M.

    2013-02-01

    A seismic risk assessment is conducted for cultural heritage sites in Gyeongju, the capital of Korea's ancient Silla Kingdom. Gyeongju, home to UNESCO World Heritage sites, contains remarkable artifacts of Korean Buddhist art. An extensive geotechnical survey including a series of in situ tests is presented, providing pertinent soil profiles for site response analyses on thirty cultural heritage sites. After the shear wave velocity profiles and dynamic material properties were obtained, site response analyses were carried out at each historical site and the amplification characteristics, site period, and response spectrum of the site were determined for the earthquake levels of 2400 yr and 1000 yr return periods based on the Korean seismic hazard map. Response spectrum and corresponding site coefficients obtained from site response analyses considering geologic conditions differ significantly from the current Korean seismic code. This study confirms the importance of site-specific ground response analyses considering local geological conditions. Results are given in the form of the spatial distribution of bedrock depth, site period, and site amplification coefficients, which are particularly valuable in the context of a seismic vulnerability study. This study presents the potential amplification of hazard maps and provides primary data on the seismic risk assessment of each cultural heritage.

  2. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    PubMed

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantifying the variability of snowpack properties and processes in a small-forested catchment representative of the boreal zone

    NASA Astrophysics Data System (ADS)

    Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.

    2017-12-01

    In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.

  4. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    DOE PAGES

    Taylor, Chase N.; Shimada, M.

    2017-05-08

    Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. Furthermore, a ~46 µm depth profile revealed that the deuterium content decreased precipitously in the first 7 µm, and detectable amounts were observed to depths in excess of 20 µm. The large probing depth of GD-OES (up to 100s of µm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention.more » Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high diffusion is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.« less

  5. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.

    2017-05-01

    Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. A ˜46 μm depth profile revealed that the deuterium content decreased precipitously in the first 7 μm, and detectable amounts were observed to depths in excess of 20 μm. The large probing depth of GD-OES (up to 100s of μm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention. Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high deuterium concentration in the bulk material is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.

  6. Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Dey, S.; Gayathri, N.; Mukherjee, P.

    2018-04-01

    The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.

  7. Evaluating lake stratification and temporal trends by using near-continuous water-quality data from automated profiling systems for water years 2005-09, Lake Mead, Arizona and Nevada

    USGS Publications Warehouse

    Veley, Ronald J.; Moran, Michael J.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Southern Nevada Water Authority, collected near-continuous depth-dependent water-quality data at Lake Mead, Arizona and Nevada, as part of a multi-agency monitoring network maintained to provide resource managers with basic data and to gain a better understanding of the hydrodynamics of the lake. Water-quality data-collection stations on Lake Mead were located in shallow water (less than 20 meters) at Las Vegas Bay (Site 3) and Overton Arm, and in deep water (greater than 20 meters) near Sentinel Island and at Virgin and Temple Basins. At each station, near-continual depth-dependent water-quality data were collected from October 2004 through September 2009. The data were collected by using automatic profiling systems equipped with multiparameter water-quality sondes. The sondes had sensors for temperature, specific conductance, dissolved oxygen, pH, turbidity, and depth. Data were collected every 6 hours at 2-meter depth intervals (for shallow-water stations) or 5-meter depth intervals (for deep-water stations) beginning at 1 meter below water surface. Data were analyzed to determine water-quality conditions related to stratification of the lake and temporal trends in water-quality parameters. Three water-quality parameters were the main focus of these analyses: temperature, specific conductance, and dissolved oxygen. Statistical temporal-trend analyses were performed for a single depth at shallow-water stations [Las Vegas Bay (Site 3) and Overton Arm] and for thermally-stratified lake layers at deep-water stations (Sentinel Island and Virgin Basin). The limited period of data collection at the Temple Basin station prevented the application of statistical trend analysis. During the summer months, thermal stratification was not observed at shallow-water stations, nor were major maxima or minima observed for specific-conductance or dissolved-oxygen profiles. A clearly-defined thermocline and well-defined maxima and minima in specific-conductance and dissolved-oxygen profiles were observed at deep-water stations during the summer months. Specific-conductance maxima were likely the result of inflow of water from either the Las Vegas Wash or Muddy/Virgin Rivers or both, while the minima were likely the result of inflow of water from the Colorado River. Maxima and minima for dissolved oxygen were likely the result of primary productivity blooms and their subsequent decay. Temporal-trend analyses indicated that specific conductance decreased at all stations over the period of record, except for Las Vegas Bay (Site 3), where specific conductance increased. Temperature also decreased over the period of record at deep-water stations for certain lake layers. Decreasing temperature and specific conductance at deep-water stations is the result of decreasing values in these parameters in water coming from the Colorado River. Quagga mussels (Dreissena rostriformis bugensis), however, could play a role in trends of decreasing specific conductance through incorporation of calcite in their shells. Trends of decreasing turbidity and pH at deep-water stations support the hypothesis that quagga mussels could be having an effect on the physical properties and water chemistry of Lake Mead. Unlike other stations, Las Vegas Bay (Site 3) had increasing specific conductance and is interpreted as the result of lowering lake levels decreasing the volume of lake water available for mixing and dilution of the high-conductance water coming from Las Vegas Wash. Dissolved oxygen increased over the period of record in some lake layers at the deep-water stations. Increasing dissolved oxygen at deep-water stations is believed to result, in part, from a reduction of phosphorus entering Lake Mead and the concomitant reduction of biological oxygen demand.

  8. PanFP: Pangenome-based functional profiles for microbial communities

    DOE PAGES

    Jun, Se -Ran; Hauser, Loren John; Schadt, Christopher Warren; ...

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost effective way to screen samples of interestmore » for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. As a result, we present a computational method called pangenome based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU s taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome s functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8 0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed reference OTU picking strategies against specific reference sequence databases. In conclusion, we developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub.« less

  9. PanFP: pangenome-based functional profiles for microbial communities.

    PubMed

    Jun, Se-Ran; Robeson, Michael S; Hauser, Loren J; Schadt, Christopher W; Gorin, Andrey A

    2015-09-26

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. We present a computational method called pangenome-based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU's taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome's functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8-0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed-reference OTU picking strategies against specific reference sequence databases. We developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub ( https://github.com/srjun/PanFP ).

  10. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  11. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  12. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  13. Gene Expression Analysis of Early Stage Endometrial Cancers Reveals Unique Transcripts Associated with Grade and Histology but Not Depth of Invasion

    PubMed Central

    Risinger, John I.; Allard, Jay; Chandran, Uma; Day, Roger; Chandramouli, Gadisetti V. R.; Miller, Caela; Zahn, Christopher; Oliver, Julie; Litzi, Tracy; Marcus, Charlotte; Dubil, Elizabeth; Byrd, Kevin; Cassablanca, Yovanni; Becich, Michael; Berchuck, Andrew; Darcy, Kathleen M.; Hamilton, Chad A.; Conrads, Thomas P.; Maxwell, G. Larry

    2013-01-01

    Endometrial cancer is the most common gynecologic malignancy in the United States but it remains poorly understood at the molecular level. This investigation was conducted to specifically assess whether gene expression changes underlie the clinical and pathologic factors traditionally used for determining treatment regimens in women with stage I endometrial cancer. These include the effect of tumor grade, depth of myometrial invasion and histotype. We utilized oligonucleotide microarrays to assess the transcript expression profile in epithelial glandular cells laser microdissected from 79 endometrioid and 12 serous stage I endometrial cancers with a heterogeneous distribution of grade and depth of myometrial invasion, along with 12 normal post-menopausal endometrial samples. Unsupervised multidimensional scaling analyses revealed that serous and endometrioid stage I cancers have similar transcript expression patterns when compared to normal controls where 900 transcripts were identified to be differentially expressed by at least fourfold (univariate t-test, p < 0.001) between the cancers and normal endometrium. This analysis also identified transcript expression differences between serous and endometrioid cancers and tumor grade, but no apparent differences were identified as a function of depth of myometrial invasion. Four genes were validated by quantitative PCR on an independent set of cancer and normal endometrium samples. These findings indicate that unique gene expression profiles are associated with histologic type and grade, but not myometrial invasion among early stage endometrial cancers. These data provide a comprehensive perspective on the molecular alterations associated with stage I endometrial cancer, particularly those subtypes that have the worst prognosis. PMID:23785665

  14. Mechanical behaviour of the lithosphere beneath the Adamawa uplift (Cameroon, West Africa) based on gravity data

    NASA Astrophysics Data System (ADS)

    Poudjom Djomani, Y. H.; Diament, M.; Albouy, Y.

    1992-07-01

    The Adamawa massif in Central Cameroon is one of the African domal uplifts of volcanic origin. It is an elongated feature, 200 km wide. The gravity anomalies over the Adamawa uplift were studied to determine the mechanical behaviour of the lithosphere. Two approaches were used to analyse six gravity profiles that are 600 km long and that run perpendicular to the Adamawa trend. Firstly, the coherence function between topography and gravity was interpreted; secondly, source depth estimations by spectral analysis of the gravity data was performed. To get significant information for the interpretation of the experimental coherence function, the length of the profiles was varied from 320 km to 600 km. This treatment allows one to obtain numerical estimates of the coherence function. The coherence function analysis points out that the lithosphere is deflected and thin beneath the Adamawa uplift, and the Effective Elastic Thickness is of about 20 km. To fit the coherence, a load from below needs to be taken into account. This result on the Adamawa massif is of the same order of magnitude as those obtained on other African uplifts such as Hoggar, Darfur and Kenya domes. For the depth estimation, three major density contrasts were found: the shallowest depth (4-15 km) can be correlated to shear zone structures and the associated sedimentary basins beneath the uplift; the second density contrast (18-38 km) corresponds to the Moho; and finally, the last depth (70-90 km) would be the top of the upper mantle and demotes the low density zone beneath the Adamawa uplift.

  15. Thermodynamic constrains on the flux of organic matter through a peatland ecosystem

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth; Kettridge, Nick; Burt, Tim

    2017-04-01

    The transformations and transitions of organic matter into, through and out of a peatland ecosystem must obey the 2nd law of thermodynamics. Beer and Blodau (Geochimica Cosmochimica Acta, 2007, 71, 12, 2989-3002) showed that the evolution of CH4 in peatlands was constrained by equilibrium occurring at depth in the peat as the pore water became a closed system. However, that study did not consider the transition in the solid components of the organic matter flux through the entire ecosystem. For this study, organic matter samples were taken from each organic matter reservoir and fluvial transfer pathway and analysed the samples by elemental analysis and bomb calorimetry. The samples analysed were: above- and below-ground biomass, heather, mosses, sedges, plant litter layer, peat soil, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, and plant protein. It was possible to calculate ∆H_f^OM ∆S_f^OM and ∆G_f^OM for each of the samples and standards. By assuming that each thermodynamic property can be expressed per g C and that any increase in ∆G_f^OM can be balanced by the production of CO2, DOM or CH4 then it is possible to predict the consequences of the fixation of 1 g of carbon in a peatland soil. The value of ∆G_f^OMincreases from glucose to components of the biomass: 1g of C fixed as glucose by photosynthesis would result in 0.68 g C as biomass and 0.32 g C as CO2. The transition from biomass to litter could occur spontaneously but the transition from surface to 1m depth in the peat profile would release 0.18 g C as CO2 per 1 g of carbon entering the peat profile. Therefore, for every 1 g of carbon fixed from photosynthesis then 0.44g of C would be released as CO2 and 0.54 g C would be present at 1 m depth. Alternatively, if DOM only were released in transition down the peat profile then for every 1 g of carbon fixed by photosynthesis 0.32 g C would be released as CO2 and 0.22 g C would be lost as DOM and leaving 0.46 g C as residual peat at 1m depth. If the variation in ∆G_f^OM of the DOM were considered then for every 1 g of C produced as DOM then between 0 and 0.57g C would be lost as CO2. At median value of DOM loss then for every 1g of carbon fixed as photosynthesis 0.39 g C would be lost as CO2 and 0.15 g lost as DOM with 0.46 g C as residual peat. Alternatively, if CH4 only were released down the soil profile then no organic matter would be left in the peat profile, i.e. CH4 is not an efficient method of transferring Gibbs free energy. The measured carbon budget for this catchment is that 1 g C fixed as photosynthesis resulted in 0.42 g C as CO2; 0.29 g C as DOM; 0.04 g C as CH4 and 0.24 g C as residual peat at 1m depth.

  16. Interpretation of TOF SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation

    NASA Astrophysics Data System (ADS)

    Ignatova, V. A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.

    2005-06-01

    The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O.

  17. IN SITU AND LABORATORY GEOTECHNICAL TESTS OF THE PIERRE SHALE NEAR HAYES, SOUTH DAKOTA - A CHARACTERIZATION OF ENGINEERING BEHAVIOR.

    USGS Publications Warehouse

    Nichols, Thomas C.; Collins, Donley S.; Davidson, Richard R.

    1986-01-01

    A geotechnical investigation of the Pierre Shale near Hayes, South Dakota, was conducted by the U. S. Geological Survey as a basis for evaluating problems in deep excavations into that formation. The physical and mechanical properties of the shale were determined through use of core holes drilled to a maximum depth of 184 m. In situ borehole determinations included a gravimeter survey, pressuremeter testing, thermal profile measurements, and borehole velocity measurements. Onsite and offsite laboratory measurements included rebound measurements, sonic velocity measurements of shear and primary waves, X-ray mineralogy and major element determinations, size analyses, fracture analyses, fabric analyses, and determination of thermal properties. The properties of the clay shale indicate problems that may be encountered in excavation and use of deep underground facilities.

  18. Meteoric 10Be in soil profiles - A global meta-analysis

    USGS Publications Warehouse

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  19. Breadth and Depth of Vocabulary Knowledge and Their Effects on L2 Vocabulary Profiles

    ERIC Educational Resources Information Center

    Bardakçi, Mehmet

    2016-01-01

    Breadth and depth of vocabulary knowledge have been studied from many different perspectives, but the related literature lacks serious studies dealing with their effects on vocabulary profiles of EFL learners. In this paper, with an aim to fill this gap, the relative effects of breadth and depth of vocabulary knowledge on L2 vocabulary profiles…

  20. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  1. XPS investigation of depth profiling induced chemistry

    NASA Astrophysics Data System (ADS)

    Pratt, Quinn; Skinner, Charles; Koel, Bruce; Chen, Zhu

    2017-10-01

    Surface analysis is an important tool for understanding plasma-material interactions. Depth profiles are typically generated by etching with a monatomic argon ion beam, however this can induce unintended chemical changes in the sample. Tantalum pentoxide, a sputtering standard, and PEDOT:PSS, a polymer that was used to mimic the response of amorphous carbon-hydrogen co-deposits, were studied. We compare depth profiles generated with monatomic and gas cluster argon ion beams (GCIB) using X-ray photoelectron spectroscopy (XPS) to quantify chemical changes. In both samples, monatomic ion bombardment led to beam-induced chemical changes. Tantalum pentoxide exhibited preferential sputtering of oxygen and the polymer experienced significant bond modification. Depth profiling with clusters is shown to mitigate these effects. We present sputtering rates for Ta2O5 and PEDOT:PSS as a function of incident energy and flux. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  2. Influence of surface topography on depth profiles obtained with secondary-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walker, A. J.; Borchert, M. T.; Vriezema, C. J.; Zalm, P. C.

    1990-11-01

    Lithographically generated well-defined surface topography of submicron dimensions has been etched into silicon (100) previously implanted with 25 keV 11B to a fluence of 2×1014 atoms/cm2. The thus-obtained samples were depth profiled via secondary-ion mass spectrometry (SIMS). The boron concentration distributions measured were contrasted against those found on undisturbed flat parts of the target. From this intercomparison the otherwise trivial observation that surface topography causes profile distortion becomes suddenly alarming as an apparent improvement of depth resolution occurs. Scanning electron microscope images enable identification of the origin of this remarkable phenomenon. The present results imply that (i) the hitherto commonly accepted assumption in the interpretation of SIMS depth profiles that perceived gradients are never steeper than actual ones is subject to revision; (ii) it may prove very difficult, if not impossible, to construct SIMS equipment for reliable on-chip analysis of submicron details.

  3. Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing

    PubMed Central

    Rui, Yi; Kechavarzi, Cedric; O’Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi

    2017-01-01

    The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry. PMID:29257094

  4. Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing.

    PubMed

    Rui, Yi; Kechavarzi, Cedric; O'Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi

    2017-12-19

    The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry.

  5. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  6. Depth-Related Changes in Community Structure of Culturable Mineral Weathering Bacteria and in Weathering Patterns Caused by Them along Two Contrasting Soil Profiles

    PubMed Central

    Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong

    2014-01-01

    Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700

  7. Upper Ocean Profiles Measurements with ASIP

    NASA Astrophysics Data System (ADS)

    Ward, B.; Callaghan, A. H.; Fristedt, T.; Vialard, J.; Cuypers, Y.; Weller, R. A.; Grosch, C. E.

    2009-04-01

    This presentation describes results from the Air-Sea Interaction Profiler (ASIP), an autonomous profiling instrument for upper ocean measurements. The measurements from ASIP are well suited to enhancing research on air-sea interfacial and near surface processes. Autonomous profiling is accomplished with a thruster, which submerges ASIP to a programmed depth. Once this depth is reached the positively buoyant instrument will ascend to the surface acquiring data. ASIP can profile from a maximum depth of 100 m to the surface, allowing both mixed layer and near-surface measurements to be conducted. The sensor payload on ASIP include microstructure sensors (two shear probes and a thermistor); a slow response accurate thermometer; a pair of conductivity sensors; pressure for a record of depth; PAR for measurements of light absorption in the water column. Other non-environmental sensors are acceleration, rate, and heading for determination of vehicle motion. Power is provided with rechargable lithium-ion batteries, supplying 1000 Whr, allowing approximately 300 profiles. ASIP also contains an iridium/GPS system, which allows realtime reporting of its position. ASIP was deployed extensively during the Cirene Indian Ocean campaign and our results focus on the data from the temperature, salinity, light, and shear sensors.

  8. Measurement techniques for trace metals in coal-plant effluents: A brief review

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  9. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  10. The effects of wavelength on photodegradation depth profiles in Japanese cedar (Cryptomeria japonica D. Don) earlywood

    Treesearch

    Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans

    2006-01-01

    FT-IR microscopy was used to depth profile the photodegradation of Japanese cedar earlywood exposed to monochromatic light in the UV and visible ranges (band pass: 20nm). Parallel experiments assessed the transmission of the light through thin sections of Japanese cedar. The depth of photodegradation increased with wavelength up to and including the violet region of...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Se -Ran; Hauser, Loren John; Schadt, Christopher Warren

    For decades there has been increasing interest in understanding the relationships between microbial communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statistically capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence of function, they do provide a reasonable estimation of microbial diversity, while being a very cost effective way to screen samples of interestmore » for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene survey data currently available from diverse environments, and thus a need for tools to infer functional composition of environmental samples based on 16S rRNA gene survey data. As a result, we present a computational method called pangenome based functional profiles (PanFP), which infers functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and genomes pooled from the OTU s taxonomic lineage. From this lineage, we derive an OTU functional profile by weighting a pangenome s functional profile with the OTUs abundance observed in a given sample. We validated our method by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequencing depth, within the range of 0.8 0.9 for the most deeply sequenced Human Microbiome Project mock community samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited to closed reference OTU picking strategies against specific reference sequence databases. In conclusion, we developed an automated computational method, which derives an inferred functional profile based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effective way to study complex ecosystems through predicted comparative functional metagenomes and metadata analysis. All PanFP source code and additional documentation are freely available online at GitHub.« less

  12. A measurement system for vertical seawater profiles close to the air-sea interface

    NASA Astrophysics Data System (ADS)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  13. Lithium diffusion in polyether ether ketone and polyimide stimulated by in situ electron irradiation and studied by the neutron depth profiling method

    NASA Astrophysics Data System (ADS)

    Vacik, J.; Hnatowicz, V.; Attar, F. M. D.; Mathakari, N. L.; Dahiwale, S. S.; Dhole, S. D.; Bhoraskar, V. N.

    2014-10-01

    Diffusion of lithium from a LiCl aqueous solution into polyether ether ketone (PEEK) and polyimide (PI) assisted by in situ irradiation with 6.5 MeV electrons was studied by the neutron depth profiling method. The number of the Li atoms was found to be roughly proportional to the diffusion time. Regardless of the diffusion time, the measured depth profiles in PEEK exhibit a nearly exponential form, indicating achievement of a steady-state phase of a diffusion-reaction process specified in the text. The form of the profiles in PI is more complex and it depends strongly on the diffusion time. For the longer diffusion time, the profile consists of near-surface bell-shaped part due to Fickian-like diffusion and deeper exponential part.

  14. A mathematical approach to beam matching

    PubMed Central

    Manikandan, A; Nandy, M; Gossman, M S; Sureka, C S; Ray, A; Sujatha, N

    2013-01-01

    Objective: This report provides the mathematical commissioning instructions for the evaluation of beam matching between two different linear accelerators. Methods: Test packages were first obtained including an open beam profile, a wedge beam profile and a depth–dose curve, each from a 10×10 cm2 beam. From these plots, a spatial error (SE) and a percentage dose error were introduced to form new plots. These three test package curves and the associated error curves were then differentiated in space with respect to dose for a first and second derivative to determine the slope and curvature of each data set. The derivatives, also known as bandwidths, were analysed to determine the level of acceptability for the beam matching test described in this study. Results: The open and wedged beam profiles and depth–dose curve in the build-up region were determined to match within 1% dose error and 1-mm SE at 71.4% and 70.8% for of all points, respectively. For the depth–dose analysis specifically, beam matching was achieved for 96.8% of all points at 1%/1 mm beyond the depth of maximum dose. Conclusion: To quantify the beam matching procedure in any clinic, the user needs to merely generate test packages from their reference linear accelerator. It then follows that if the bandwidths are smooth and continuous across the profile and depth, there is greater likelihood of beam matching. Differentiated spatial and percentage variation analysis is appropriate, ideal and accurate for this commissioning process. Advances in knowledge: We report a mathematically rigorous formulation for the qualitative evaluation of beam matching between linear accelerators. PMID:23995874

  15. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  16. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.

    PubMed

    Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S

    2018-03-05

    A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

  17. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  18. Boron depth profiles and residual damage following rapid thermal annealing of low-temperature BSi molecular ion implantation in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Wang, S. C.

    2007-08-01

    The influence of substrate temperature on both the implantation and post-annealing characteristics of molecular-ion-implanted 5 × 1014 cm-2 77 keV BSi in silicon was investigated in terms of boron depth profiles and damage microstructures. The substrate temperatures under investigation consisted of room temperature (RT) and liquid nitrogen temperature (LT). Post-annealing treatments were performed using rapid thermal annealing (RTA) at 1050 °C for 25 s. Boron depth profiles and damage microstructures in both the as-implanted and as-annealed specimens were determined using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), respectively. The as-implanted results revealed that, compared to the RT specimen, the LT specimen yields a shallower boron depth profile with a reduced tail into the bulk. An amorphous layer containing a smooth amorphous-to-crystalline (a/c) interface is evident in the LT specimen while just the opposite is true in the as-implanted RT one. The as-annealed results illustrated that the extension of the boron depth profile into the bulk via transient-enhanced diffusion (TED) in the LT specimen is less than it is in the RT one. Only residual defects are visible in the LT specimen while two clear bands of dislocation loops appear in the RT one.

  19. Geophysical Data Sets in GeoMapApp

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.

    2017-12-01

    GeoMapApp (http://www.geomapapp.org), a free map-based data tool developed at Lamont-Doherty Earth Observatory, provides access to hundreds of integrated geoscience data sets that are useful for geophysical studies. Examples include earthquake and volcano catalogues, gravity and magnetics data, seismic velocity tomographic models, geological maps, geochemical analytical data, lithospheric plate boundary information, geodetic velocities, and high-resolution bathymetry and land elevations. Users can also import and analyse their own data files. Data analytical functions provide contouring, shading, profiling, layering and transparency, allowing multiple data sets to be seamlessly compared. A new digitization and field planning portal allow stations and waypoints to be generated. Sessions can be saved and shared with colleagues and students. In this eLightning presentation we will demonstrate some of GeoMapApp's capabilities with a focus upon subduction zones and tectonics. In the attached screen shot of the Cascadia margin, the contoured depth to the top of the subducting Juan de Fuca slab is overlain on a shear wave velocity depth slice. Geochemical data coloured on Al2O3 and scaled on MgO content is shown as circles. The stack of data profiles was generated along the white line.

  20. Extension of 239+240Pu sediment geochronology to coarse-grained marine sediments

    USGS Publications Warehouse

    Kuehl, Steven A.; Ketterer, Michael E.; Miselis, Jennifer L.

    2012-01-01

    Sediment geochronology of coastal sedimentary environments dominated by sand has been extremely limited because concentrations of natural and bomb-fallout radionuclides are often below the limit of measurement using standard techniques. ICP-MS analyses of 239+240Pu from two sites representative of traditionally challenging (i.e., low concentration) environments provide a "proof of concept" and demonstrate a new application for bomb-fallout radiotracers in the study of sandy shelf-seabed dynamics. A kasten core from the New Zealand shelf in the Southern Hemisphere (low fallout), and a vibracore from the sandy nearshore of North Carolina (low particle surface area) both reveal measurable 239+240Pu activities at depth. In the case of the New Zealand site, independently verified steady-state sedimentation results in a 239+240Pu profile that mimics the expected atmospheric fallout. The depth profile of 239+240Pu in the North Carolina core is more uniform, indicating significant sediment resuspension, which would be expected in this energetic nearshore environment. This study, for the first time, demonstrates the utility of 239+240Pu in the study of sandy environments, significantly extending the application of bomb-fallout isotopes to coarse-grained sediments, which compose the majority of nearshore regions.

  1. SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012

    DOE Data Explorer

    Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2012-01-01

    This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped

  2. Stream profile analysis using a step backwater model for selected reaches in the Chippewa Creek basin in Medina, Wayne, and Summit Counties, Ohio

    USGS Publications Warehouse

    Straub, David E.; Ebner, Andrew D.

    2011-01-01

    The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.

  3. Numerical and Observational Investigations of Long-Lived Mcs-Induced Severe Surface Wind Events: the Derecho

    NASA Astrophysics Data System (ADS)

    Schmidt, Jerome Michael

    This study addresses the production of sustained, straight-line, severe surface winds associated with mesoscale convective systems (MCSs) of extratropical origin otherwise known as derechos. The physical processes which govern the observed derecho characteristics are identified and their possible forcing mechanisms are determined. Detailed observations of two derechos are presented along with simulations using the Colorado State University Regional Atmospheric Modeling System (CSU-RAMS). The observations revealed a derecho environment characterized by strong vertical wind shear through the depth of the troposphere and large values of convective available potential energy (CAPE). The thermodynamic environment of the troposphere in each case had a distinct three-layer structure consisting of: (i) a surface-based stable layer of 1-to-2 km in depth, (ii) an elevated well -mixed layer of 2-4 km in depth, and (iii) an upper tropospheric layer of intermediate stability that extended to the tropopause. Two primary sets of simulations were performed to assess the impact of the observed environmental profiles on the derecho structure, propagation, and longevity. The first set consisted of nested-grid regional-scale simulations initialized from the standard NMC analyses on a domain having relatively coarse horizontal resolution (75 km). The second set of simulations consisted of two and three-dimensional experiments initialized in a horizontally homogeneous environment having a relatively fine horizontal resolution (2 km) and explicit microphysics. The results from these experiments indicate the importance of convectively -induced gravity waves on the MCS structure, propagation, longevity, and severe surface wind development. The sensitivity of the simulated convection and gravity waves to variations in the vertical wind shear and moisture profiles are described. Detailed Doppler radar analyses and 3-D simulations of a severe, bow echo squall line are presented which reveal the unique 3-D circulation features which accompany these mesoscale convective systems. We illustrate how the mesoscale and convective-scale flow fields within the bow echo establish the severe surface wind maximum. (Abstract shortened with permission of author.).

  4. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis.

    PubMed

    Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N

    2018-01-01

    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A proposed model membrane and test method for microneedle insertion studies.

    PubMed

    Larrañeta, Eneko; Moore, Jessica; Vicente-Pérez, Eva M; González-Vázquez, Patricia; Lutton, Rebecca; Woolfson, A David; Donnelly, Ryan F

    2014-09-10

    A commercial polymeric film (Parafilm M(®), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M(®) (PF) and also into excised neonatal porcine skin. Parafilm M(®) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M(®), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Dynamic vertical profiles of peat porewater chemistry in a northern peatland

    Treesearch

    Natalie A. Griffiths; Stephen D. Sebestyen

    2016-01-01

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large...

  7. Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nativ, R.; Dahan, O.; Adar, E.

    In the present study the inferred mechanism of groundwater recharge and contamination was studied using tracer concentrations in the fractured vadose zone of the Avdat chalk. The results of this study are important for an evaluation of groundwater contamination from existing and planned facilities in the northern Negev desert in Israel. This study focused on the vicinity of the Ramat Hovav industrial chemical complex in the northern Negev, which also includes the national site for hazardous waste. Water recharge and solute migration rates were examined in five core holes and one borehole which penetrate the entire vadose zone and enabledmore » the collection of rock samples for chemical and isotopic analyses, and an observation of fracture distribution with depth. Tritium profiles were used to estimate water percolation rates through the vadose zone, chloride profiles were used to assess the migration rate of nonreactive solutes, and bromide profiles were also used to evaluate the migration rate of nonreactive contaminants. Deuterium and oxygen 18 profiles were used to assess the evaporation of the infiltrating water at and near land surface.« less

  8. Patient safety climate profiles across time: Strength and level of safety climate associated with a quality improvement program in Switzerland-A cross-sectional survey study.

    PubMed

    Mascherek, Anna C; Schwappach, David L B

    2017-01-01

    Safety Climate has been acknowledged as an unspecific factor influencing patient safety. However, studies rarely provide in-depth analysis of climate data. As a helpful approach, the concept of "climate strength" has been proposed. In the present study we tested the hypotheses that even if safety climate remains stable on mean-level across time, differences might be evident in strength or shape. The data of two hospitals participating in a large national quality improvement program were analysed for differences in climate profiles at two measurement occasions. We analysed differences on mean-level, differences in percent problematic response, agreement within groups, and frequency histograms in two large hospitals in Switzerland at two measurement occasions (2013 and 2015) applying the Safety Climate Survey. In total, survey responses of 1193 individuals were included in the analyses. Overall, small but significant differences on mean-level of safety climate emerged for some subgroups. Also, although agreement was strong at both time-points within groups, tendencies of divergence or consensus were present in both hospitals. Depending on subgroup and analyses chosen, differences were more or less pronounced. The present study illustrated that taking several measures into account and describing safety climate from different perspectives is necessary in order to fully understand differences and trends within groups and to develop interventions addressing the needs of different groups more precisely.

  9. Pre-stack depth Migration imaging of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Hussni, S. G.; Becel, A.; Schenini, L.; Laigle, M.; Dessa, J. X.; Galve, A.; Vitard, C.

    2017-12-01

    In 365 AD, a major M>8-tsunamignic earthquake occurred along the southwestern segment of the Hellenic subduction zone. Although this is the largest seismic event ever reported in Europe, some fundamental questions remain regarding the deep geometry of the interplate megathrust, as well as other faults within the overriding plate potentially connected to it. The main objective here is to image those deep structures, whose depths range between 15 and 45 km, using leading edge seismic reflection equipment. To this end, a 210-km-long multichannel seismic profile was acquired with the 8 km-long streamer and the 6600 cu.in source of R/V Marcus Langseth. This was realized at the end of 2015, during the SISMED cruise. This survey was made possible through a collective effort gathering labs (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Dpt. Geosciences of Pau Univ). A preliminary processing sequence has first been applied using Geovation software of CGG, which yielded a post-stack time migration of collected data, as well as pre-stack time migration obtained with a model derived from velocity analyses. Using Paradigm software, a pre-stack depth migration was subsequently carried out. This step required some tuning in the pre-processing sequence in order to improve multiple removal, noise suppression and to better reveal the true geometry of reflectors in depth. This iteration of pre-processing included, the use of parabolic Radon transform, FK filtering and time variant band pass filtering. An initial velocity model was built using depth-converted RMS velocities obtained from SISMED data for the sedimentary layer, complemented at depth with a smooth version of the tomographic velocities derived from coincident wide-angle data acquired during the 2012-ULYSSE survey. Then, we performed a Kirchhoff Pre-stack depth migration with traveltimes calculated using the Eikonal equation. Velocity model were then tuned through residual velocity analyses to flatten reflections in common reflection point gathers. These new results improve the imaging of deep reflectors and even reveal some new features. We will present this work, a comparison with our previously obtained post-stack time migration, as well as some insights into the new geological structures revealed by the depth imaging.

  10. Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft inlets and instruments? (3) How consistent are suborbital in situ and remote measurements of aerosols, among themselves and with satellite retrievals? What are the main reasons for observed inconsistencies?

  11. Depth profiles of oxygen precipitates in nitride-coated silicon wafers subjected to rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.

    2013-07-01

    Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.

  12. A non-steady-state condition in sediments at the gas hydrate stability boundary off West Spitsbergen: Evidence for gas hydrate dissociation or just dynamic methane transport

    NASA Astrophysics Data System (ADS)

    Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian

    2015-04-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation. References Berndt, C., T. Feseker, T. Treude, S. Krastel, V. Liebetrau, H. Niemann, V. J. Bertics, I. Dumke, K. Dunnbier, B. Ferre, C. Graves, F. Gross, K. Hissmann, V. Huhnerbach, S. Krause, K. Lieser, J. Schauer and L. Steinle (2014). "Temporal constraints on hydrate-controlled methane seepage off svalbard." Science 343: 284-287. Westbrook, G. K., K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoiselle, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt and A. Aquilina (2009). "Escape of methane gas from the seabed along the West Spitsbergen continental margin." Geophys. Res. Let. 36: doi:10.1029/2009GL039191.

  13. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  14. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  15. Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2014-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.

  16. Depth profiling of high energy nitrogen ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals

    NASA Astrophysics Data System (ADS)

    Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.

    2012-03-01

    This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.

  17. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originatesmore » from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.« less

  18. Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling.

    PubMed

    Łabaj, Paweł P; Leparc, Germán G; Linggi, Bryan E; Markillie, Lye Meng; Wiley, H Steven; Kreil, David P

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error<20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision. rnaseq10@boku.ac.at

  19. Dynamic secondary ion mass spectroscopy of Au nanoparticles on Si wafer using Bi3+ as primary ion coupled with surface etching by Ar cluster ion beam: The effect of etching conditions on surface structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Ji; Choi, Chang Min; Kim, Il Hee; Kim, Jung-Hwan; Lee, Gaehang; Jin, Jong Sung; Ganteför, Gerd; Kim, Young Dok; Choi, Myoung Choul

    2018-01-01

    Wet-chemically synthesized Au nanoparticles were deposited on Si wafer surfaces, and the secondary ions mass spectra (SIMS) from these samples were collected using Bi3+ with an energy of 30 keV as the primary ions. In the SIMS, Au cluster cations with a well-known, even-odd alteration pattern in the signal intensity were observed. We also performed depth profile SIMS analyses, i.e., etching the surface using an Ar gas cluster ion beam (GCIB), and a subsequent Bi3+ SIMS analysis was repetitively performed. Here, two different etching conditions (Ar1600 clusters of 10 keV energy or Ar1000 of 2.5 keV denoted as "harsh" or "soft" etching conditions, respectively) were used. Etching under harsh conditions induced emission of the Au-Si binary cluster cations in the SIMS spectra of the Bi3+ primary ions. The formation of binary cluster cations can be induced by either fragmentation of Au nanoparticles or alloying of Au and Si, increasing Au-Si coordination on the sample surface during harsh GCIB etching. Alternatively, use of the soft GCIB etching conditions resulted in exclusive emission of pure Au cluster cations with nearly no Au-Si cluster cation formation. Depth profile analyses of the Bi3+ SIMS combined with soft GCIB etching can be useful for studying the chemical environments of atoms at the surface without altering the original interface structure during etching.

  20. Neogene Uplift and Magmatism of Anatolia: Insights From Drainage Analysis and Basaltic Geochemistry

    NASA Astrophysics Data System (ADS)

    McNab, F.; Ball, P. W.; Hoggard, M. J.; White, N. J.

    2018-01-01

    It is agreed that mantle dynamics have played a role in generating and maintaining the elevated topography of Anatolia during Neogene times. However, there is debate about the relative importance of subduction zone and asthenospheric processes. Key issues concern onset and cause of regional uplift, thickness of the lithospheric plate, and the presence/absence of temperature and/or compositional anomalies within the convecting mantle. Here, we tackle these interlinked issues by analyzing and modeling two disparate suites of observations. First, a drainage inventory of 1,844 longitudinal river profiles is assembled. This database is inverted to calculate the variation of Neogene regional uplift through time and space by minimizing the misfit between observed and calculated river profiles subject to independent calibration. Our results suggest that regional uplift commenced at 20 Ma in the east and propagated westward. Second, we have assembled a database of geochemical analyses of basaltic rocks. Two different approaches have been used to quantitatively model this database with a view to determining the depth and degree of asthenospheric melting across Anatolia. Our results suggest that melting occurs at depths as shallow as 60 km in the presence of mantle potential temperatures as high as 1400°C. There is evidence that temperatures are higher in the east, consistent with the pattern of subplate shear wave velocity anomalies. Our combined results are consistent with isostatic and admittance analyses and suggest that elevated asthenospheric temperatures beneath thinned Anatolian lithosphere have played a first-order role in generating and maintaining regional dynamic topography and basaltic magmatism.

  1. Multiple autoclave cycles affect the surface of rotary nickel-titanium files: an atomic force microscopy study.

    PubMed

    Valois, Caroline R A; Silva, Luciano P; Azevedo, Ricardo B

    2008-07-01

    The purpose of this study was to evaluate the surface of rotary nickel-titanium (Ni-Ti) files after multiple autoclave cycles. Two different types of rotary Ni-Ti (Greater Taper and ProFile) were attached to a glass base. After 1, 5, and 10 autoclave cycles the files were positioned in the atomic force microscope. The analyses were performed on 15 different points. The same files were used as control before any autoclave cycle. The following vertical topographic parameters were measured: arithmetic mean roughness, maximum height, and root mean square. The differences were tested by analysis of variance with Tukey test. All topographic parameters were higher for both Greater Taper and ProFile after 10 cycles compared with the control (P < .05). ProFile also showed higher topographic parameters after 5 cycles compared with the control (P < .05). The results indicated that multiple autoclave cycles increase the depth of surface irregularities located on rotary Ni-Ti files.

  2. Local recharge processes in glacial and alluvial deposits of a temperate catchment

    NASA Astrophysics Data System (ADS)

    Fragalà, Federico A.; Parkin, Geoff

    2010-07-01

    SummaryThis study demonstrates that the composition and structure of Quaternary deposits and topography significantly influence rates of recharge and distribution of diffuse agricultural pollution at the hillslope scale. Analyses were made of vertical profiles of naturally-occurring chloride and nitrate, and artificially introduced bromide, in unsaturated and saturated sections of borehole cores of glacial till and alluvium under different land uses in the Upper Eden valley (UK). Estimates of local potential recharge were made based on chloride mass balance and nitrate peak methods. Persistent chloride bulges below the root zone were observed, and are interpreted to result from filtration processes at lithological boundaries. Changes in the shape of chloride profiles downslope, corroborated by nitrate profiles, indicate the roles of surface or near-surface runoff and runon, and the existence of lateral subsurface flows at depth. These findings have implications for estimation of recharge rates through unsaturated zones in Quaternary deposits, and the interpretation of potential 'hot-spots' of diffuse agrochemicals, particularly nitrates, moving through Quaternary deposits into groundwater.

  3. Soufrière Hills Plagioclase: Postcards From the Edge.

    NASA Astrophysics Data System (ADS)

    Genareau, K.; Clarke, A.; Hervig, R.

    2005-12-01

    Secondary Ion Mass Spectrometry (SIMS) can provide sub-micron depth resolution for analyzing products of volcanic eruptions. SIMS was used to examine the outer rims of plagioclase phenocrysts derived from both explosive and effusive eruptions of the Soufrière Hills Volcano (SHV), Montserrat. Phenocrysts were separated from the host igneous rock by crushing with a mortar and pestle and then cleaned with a Branson Sonifier. A 12.5 kV O2+ primary ion beam was used to examine the variation in ten elements (Ca, Na, Si, Al, Ti, Zr, K, Fe, Sr, Li) through a crystal depth of 5-9 microns. Plagioclase crystals separated from explosively produced pumice clasts show increasing anorthite (An) content with depth into the crystal surface, starting at ~10% An at the surface and reaching a constant composition of ~45% An at 2-4 microns depth. According to experimentally determined estimates of plagioclase growth rates for the SHV magma (Couch et al. 2003; J. Petrology 44, 1477-1502), the 2-4 microns depth over which An changes corresponds to 1-7 hours of growth. Sr also shows a general increase with depth into the crystal. K shows a rapid decrease in abundance with depth. Fe shows more complex patterns that may indicate late-stage crystallization of magnetite. Plagioclase derived from exogenous dome samples also have surface compositions of ~10% An increasing with depth to ~30% An, but rather than plateau, the values begin to decrease again at 2-5 microns depth. This fluctuating abundance of An may reveal the presence of micron-scale decompression-induced growth zones that have not been previously documented due to limitations in the spatial resolution of conventional analytical techniques. Explosive and effusive samples exhibit conflicting Li trends. The explosively derived plagioclase have elevated surface Li concentrations while the dome derived plagioclase have low surface Li concentrations. These differing trends may provide evidence of closed system vs. open system degassing as a function of eruptive style. Geochemical analyses of igneous phenocrysts using the SIMS depth-profiling technique can be used to constrain the style of magma decompression and eruption. Additional analyses are currently being performed on an expanded suite of samples in order to confirm these results and to relate crystal-edge chemistry to other parameters such as quench pressure and degree of magma degassing.

  4. Trapping of Momentum due to Low Salinity Water in the north Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Chaudhuri, D.; Tandon, A.; Farrar, T.; Weller, R. A.; Venkatesan, R.; S, S.; MacKinnon, J. A.; D'Asaro, E. A.; Sengupta, D.

    2016-02-01

    We study the relation between near-surface ocean stratification and upper ocean currents (momentum) during the diurnal cycle and subseasonal "active-break cycle" of the summer monsoon in the north Bay of Bengal. We use time series of hourly observations from NIOT moorings BD08, BD09 and an INCOIS mooring near 18 N, 89 E in 2013, and data collected during two research cruises of ORV Sagar Nidhi in August-September 2014 and 2015. Our analyses are based on upper ocean profiles of temperature, salinity and density (from moorings and a shipborne underway conductivity-temperature-depth profiler), velocity (Acoustic Doppler Current Profiler), and surface forcing (meterology sensors on moored buoy and ship). Monsoon breaks are characterized by low rainfall, low wind speed (0-5 m/s) and high incident shortwave radiation, whereas active phases are marked by intense rainfall, high wind speed (8-16 m/s) and low incident sunlight. Our main findings are: (i) Net surface heat flux is positive (ocean gains heat) during break spells, and sea surface temperature (SST) rises by upto 1.5 C in 1-2 weeks. (ii) During breaks, day-night SST difference can reach 1.5C; mixed layer depth (MLD) shoals to 5m during day time, and deepens to 15-20 m by late night/early morning. (iii) During active spells, SST cools on subseasonal scales; MLD is deep (exceeding 20 m), and diurnal re-stratification is weak or absent. (iv) Once very low-salinity water (<30 psu) from rivers arrives at the moorings in late August, MLD remains shallow, and is insensitive to subseasonal changes in surface forcing. (v) Moored data and high-resolution observations from the summer 2014 and 2015 cruises reveal trapping of momentum from winds in a relatively thin surface layer when surface salinity is low and the shallow stratification is strong. Results of ingoing analyses will be presented at the meeting.

  5. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    NASA Astrophysics Data System (ADS)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  6. Characterization of near-stoichiometric Ti:LiNbO(3) strip waveguides with varied substrate refractive index in the guiding layer.

    PubMed

    Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun

    2008-10-01

    We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.

  7. Decomposition of ultrathin LiF cathode underlayer in organic-based devices evidenced by ToF-SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Pakhomov, Georgy L.; Drozdov, Mikhail N.; Travkin, Vlad V.; Bochkarev, Mikhail N.

    2017-11-01

    In this work we investigate the chemical composition of an archetypal thin-film organic device with the Ag/LiF cathode using the time-of-flight secondary ion mass spectrometry (ToF-SIMS) with depth profiling. The LiF cathode underlayer is partly decomposed because a significant amount of lithium is released into the bulk of the multilayer device. The released lithium diffuses all the way to the substrate, accumulating, as revealed by ToF-SIMS depth profiles, at the interfaces rather than uniformly doping the underlying layers. Particularly, the bottom anode becomes chemically modified.

  8. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses.

    PubMed

    Khayal, Layal Abo; Grünhagen, Johannes; Provazník, Ivo; Mundlos, Stefan; Kornak, Uwe; Robinson, Peter N; Ott, Claus-Eric

    2018-04-11

    Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. GIS Well Temperature Data from the Roosevelt Hot Springs, Utah FORGE Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynn, Mark; Hill, Jay; Allis, Rick

    This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching onemore » or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.« less

  10. Compositional and Microtextural Analysis of Basaltic Feedstock Materials Used for the 2010 ISRU Field Tests, Mauna Kea, Hawaii

    NASA Astrophysics Data System (ADS)

    Marin, N.; Farmer, J. D.; Zacny, K.; Sellar, R. G.; Nunez, J.

    2011-12-01

    This study seeks to understand variations in composition and texture of basaltic pyroclastic materials used in the 2010 International Lunar Surface Operation-In-Situ Resource Utilization Analogue Test (ILSO-ISRU) held on the slopes of Mauna Kea Volcano, Hawaii (1). The quantity and quality of resources delivered by ISRU depends upon the nature of the materials processed (2). We obtained a one-meter deep auger cuttings sample of a basaltic regolith at the primary site for feed stock materials being mined for the ISRU field test. The auger sample was subdivided into six, ~16 cm depth increments and each interval was sampled and characterized in the field using the Multispectral Microscopic Imager (MMI; 3) and a portable X-ray Diffractometer (Terra, InXitu Instruments, Inc.). Splits from each sampled interval were returned to the lab and analyzed using more definitive methods, including high resolution Powder X-ray Diffraction and Thermal Infrared (TIR) spectroscopy. The mineralogy and microtexture (grain size, sorting, roundness and sphericity) of the auger samples were determined using petrographic point count measurements obtained from grain-mount thin sections. NIH Image J (http://rsb.info.nih.gov/ij/) was applied to digital images of thin sections to document changes in particle size with depth. Results from TIR showed a general predominance of volcanic glass, along with plagioclase, olivine, and clinopyroxene. In addition, thin section and XRPD analyses showed a down core increase in the abundance of hydrated iron oxides (as in situ weathering products). Quantitative point count analyses confirmed the abundance of volcanic glass in samples, but also revealed olivine and pyroxene to be minor components, that decreased in abundance with depth. Furthermore, point count and XRD analyses showed a decrease in magnetite and ilmenite with depth, accompanied by an increase in Fe3+phases, including hematite and ferrihydrite. Image J particle analysis showed that the average grain size decreased down the depth profile. This decrease in average grain size and increase in hydrated iron oxides down hole suggests that the most favorable ISRU feedstock materials were sampled in the lower half-meter of the mine section sampled.

  11. Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain)

    NASA Astrophysics Data System (ADS)

    Martínez, J.; Rey, J.; Gutiérrez, L. M.; Novo, A.; Ortiz, A. J.; Alejo, M.; Galdón, J. M.

    2015-12-01

    The Giribaile archaeological site is one of the most important Iberian enclaves of the Alto Guadalquivir (Southern Spain). However, to date, only minimal excavation work has been performed at the site. Evaluation requires a preliminary, non-destructive general analysis to determine high-interest areas. This stage required a geophysical survey. Specifically, a 100 m2 grid was selected, where an initial campaign of nine electrical resistivity imaging (ERI) profiles was performed, where each profile was 111 m in length; these profiles were previously located using a detailed topographical survey. A total of 112 electrodes were used for each profile, spaced at 1 m apart with a Wenner-Schlumberger configuration. Secondly, 201 GPR profiles were created using a 500 MHz antenna. The 100 m long profiles were spaced 0.5 m apart and parallel to one another. The present research analyses the efficiency of each of these geophysical tools in supporting archaeological research. Using these methodologies, the position, morphology, and depth of different buried structures can be determined. 3D interpretation of the geophysical survey in 100 × 100 m grid allowed to differentiate structures square and rectangular, interesting buildings in a semicircle (interpreted as ovens) plus delineate different streets. From the geophysical survey follows the Carthaginian presence inside this ancient Iberian enclave.

  12. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    PubMed Central

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  13. The biological pump: Profiles of plankton production and consumption in the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  14. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  15. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part I: activity-depth profiles of (134)Cs and (137)Cs.

    PubMed

    Schimmack, W; Schultz, W

    2006-09-15

    The temporal changes of the vertical distribution of (134)Cs (deposited by the Chernobyl fallout in 1986) and (137)Cs (deposited by the Chernobyl and the global fallout) in the soil were investigated at an undisturbed Bavarian grassland site in Germany. At ten sampling dates between 1986 and 2001, the activity density of (134)Cs and (137)Cs was determined in various soil layers down to 80 cm depth. In 2001, the small-scale spatial variability of the radiocaesium activity was determined by sampling five plots within 10 m(2) (coefficient of variation about 20% for the upper soil layers). Between 1987 and 1990, substantial changes of the activity-depth profiles were observed. The percentage depth distributions of (134)Cs and (137)Cs were rather similar. The 50%-depth of the accumulated activity increased from 2.4 cm in 1988 to 5.3 cm in 2001 for (134)Cs and from 2.7 to 5.8 cm for (137)Cs. This indicates that at the study site the migration data of Chernobyl-derived (137)Cs can be estimated by those of total (137)Cs. In the second part of this study, the activity-depth profiles will be evaluated by the convection-dispersion model [Schimmack, W, Feria Márquez, F. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: Evaluation of the activity-depth profiles by transport models. Sci Total Environ 2006-this issue].

  16. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    PubMed Central

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747

  17. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    PubMed

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.

  18. Technical note: GODESS - a profiling mooring in the Gotland Basin

    NASA Astrophysics Data System (ADS)

    Prien, Ralf D.; Schulz-Bull, Detlef E.

    2016-07-01

    This note describes a profiling mooring with an interdisciplinary suite of sensors taking profiles between 180 and 30 m depth. It consists of an underwater winch, moored below 180 m depth, and a profiling instrumentation platform. In its described setup it can take about 200 profiles at pre-programmed times or intervals with one set of batteries. This allows for studies over an extended period of time (e.g. two daily profiles over a time of 3 months). The Gotland Deep Environmental Sampling Station (GODESS) in the Eastern Gotland Basin of the Baltic Sea is aimed at investigations of redoxcline dynamics. The described system can be readily adapted to other research foci by changing the profiling instrumentation platform and its payload.

  19. A method to improve the range resolution in stepped frequency continuous wave radar

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Paweł

    2018-04-01

    In the paper one of high range resolution methods - Aperture Sampling - was analysed. Unlike MUSIC based techniques it proved to be very efficient in terms of achieving unambiguous synthetic range profile for ultra-wideband stepped frequency continuous wave radar. Assuming that minimal distance required to separate two targets in depth (distance) corresponds to -3 dB width of received echo, AS provided a 30,8 % improvement in range resolution in analysed scenario, when compared to results of applying IFFT. Output data is far superior in terms of both improved range resolution and reduced side lobe level than used typically in this area Inverse Fourier Transform. Furthermore it does not require prior knowledge or an estimate of number of targets to be detected in a given scan.

  20. Selectivity of silica species in ocean observed from seasonal and local changes

    NASA Astrophysics Data System (ADS)

    Tanaka, Miho; Takahashi, Kazuya; Nemoto, Masao; Horimoto, Naho

    2013-03-01

    Silicic acids, derived from SiO2 (silica), have several chemical forms in solution. Silica is a nutrient for diatoms, which are phytoplankton in oceans. Silica species can be used as a tracer to examine the behavior of silica in nature. The speciation for silica by FAB-MS (fast atom bombardment mass spectrometry) has been carried out for seawater samples from Tokyo Bay and Sagami Bay to investigate the seasonal and locational changes of the depth profiles of silica species. The species, [Si(OH)2O2Na+]-, [Si2(OH)5O2]- ([dimer]-), [Si2(OH)4O3Na+]-, [Si(OH)7O5-] ([cyclic tetramer]-), [Si4(OH)6O6Na+]-, [Si(OH)9O]- ([linear tetramer]-) and [Si4(OH)8O5Na+]- were mainly identified by FAB-MS. The seasonal and locational changes and the reproducibility of depth profiles of silica species were determined from October 2001 to July 2002. The depth profile of the ratio of linear tetramer to cyclic tetramer reflects the activity of diatoms, implying that the linear tetramer is the preferred "food" for diatoms. In particular, the depth profile for the ratio of linear tetramer to cyclic tetramer exhibits a critical changes that depend on the season. Furthermore, the depth profiles for the samples from Sagami Bay (open ocean) indicate that seawater is easily exchanged by ocean currents (the Japan Current). Thus, silica speciation by FAB-MS can give us a new tracer indicating the characteristics of the seawater budget, which change with depth, season and ocean locality.

  1. IET. Control and equipment building (TAN620) sections. Depth and profile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Control and equipment building (TAN-620) sections. Depth and profile of earthen shield tunnels. Ralph M. Parsons 902-4-ANP-620-A-321. Date: February 1954. INEEL index code no. 035-0620-00-693-106906 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  2. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  3. Distribution and depth profiles of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls in sediment collected from offshore waters of Central Vietnam.

    PubMed

    Tri, Tran Manh; Anh, Hoang Quoc; Tham, Trinh Thi; Van Quy, Tran; Long, Nguyen Quang; Nhung, Dao Thi; Nakamura, Masafumi; Nishida, Masayo; Maeda, Yasuaki; Van Boi, Luu; Minh, Tu Binh

    2016-05-15

    Concentrations of PCBs and OCPs were measured in 35 surface sediment samples collected from offshore waters of Central Vietnam. The mean concentrations of PCBs, HCHs, and DDTs in surface sediments were 86.5, 37.0, and 44.5pgg(-1), respectively. Additionally, nine PCDDs, eleven PCDFs, and twelve dl-PCBs were also examined in 19 sediment core samples collected from five locations. Concentration of PCDDs, PCDFs, and dl-PCBs ranged from 200 to 460, 0.39 to 2.9, and 1.6 to 22pgg(-1), respectively. OCDD was detected at the highest concentration, ranged from 100 to 300pgg(-1). Generally, the concentrations of PCDD/Fs at shallower depths were higher, meanwhile the depth profiles of dl-PCBs in sediment cores were different than the depth profiles of PCDD/Fs. The results suggest that the pollution of PCBs might be from many different sources leading to the variation between depths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Intercomparison and validation of the mixed layer depth fields of global ocean syntheses

    NASA Astrophysics Data System (ADS)

    Toyoda, Takahiro; Fujii, Yosuke; Kuragano, Tsurane; Kamachi, Masafumi; Ishikawa, Yoichi; Masuda, Shuhei; Sato, Kanako; Awaji, Toshiyuki; Hernandez, Fabrice; Ferry, Nicolas; Guinehut, Stéphanie; Martin, Matthew J.; Peterson, K. Andrew; Good, Simon A.; Valdivieso, Maria; Haines, Keith; Storto, Andrea; Masina, Simona; Köhl, Armin; Zuo, Hao; Balmaseda, Magdalena; Yin, Yonghong; Shi, Li; Alves, Oscar; Smith, Gregory; Chang, You-Soon; Vernieres, Guillaume; Wang, Xiaochun; Forget, Gael; Heimbach, Patrick; Wang, Ou; Fukumori, Ichiro; Lee, Tong

    2017-08-01

    Intercomparison and evaluation of the global ocean surface mixed layer depth (MLD) fields estimated from a suite of major ocean syntheses are conducted. Compared with the reference MLDs calculated from individual profiles, MLDs calculated from monthly mean and gridded profiles show negative biases of 10-20 m in early spring related to the re-stratification process of relatively deep mixed layers. Vertical resolution of profiles also influences the MLD estimation. MLDs are underestimated by approximately 5-7 (14-16) m with the vertical resolution of 25 (50) m when the criterion of potential density exceeding the 10-m value by 0.03 kg m-3 is used for the MLD estimation. Using the larger criterion (0.125 kg m-3) generally reduces the underestimations. In addition, positive biases greater than 100 m are found in wintertime subpolar regions when MLD criteria based on temperature are used. Biases of the reanalyses are due to both model errors and errors related to differences between the assimilation methods. The result shows that these errors are partially cancelled out through the ensemble averaging. Moreover, the bias in the ensemble mean field of the reanalyses is smaller than in the observation-only analyses. This is largely attributed to comparably higher resolutions of the reanalyses. The robust reproduction of both the seasonal cycle and interannual variability by the ensemble mean of the reanalyses indicates a great potential of the ensemble mean MLD field for investigating and monitoring upper ocean processes.

  5. Participation in the 1996 Arlindo Cruise to the Indonesian Seas

    NASA Technical Reports Server (NTRS)

    Marra, John

    1997-01-01

    The objective of Arlindo-Productivity is to understand the factors responsible for regional differences in the response of phytoplankton and zooplankton to the SE and NW Monsoons in Indonesia. The hypothesis is that an interplay between circulation and shoaling of the nutricline, as a response to the monsoons, regulates productivity in the Indonesian Seas. My o@jective for the cruise in 1996 was to continue our collaboration with Indonesian scientists by conducting a set of hydrographic, primary production and spectral irradiance observations in the Indonesian Seas. This grant paid for shipping, travel and incidental costs associated with participation in the cruise in December, 1996. Ship costs were borne by the Indonesian Institute of Sciences as part of the collaborative effort. A plan for Arlindo in 1996 was agreed upon in March, 1996, by Indonesian scientists together with Arnold Gordon. The plan called for a 20-day physical oceanography and mooring cruise in November, 1996, followed by a 5-day bio-optical cruise. The bio-optical cruise departed from, and returned to, Ambon, and sampled in the Banda Sea. We completed a series of chlorophyll analyses, both a sampling of surface variability and depth profiles in the Banda Sea. We also completed three MER profiles for depth profiles of spectral irradiance. These data have a useful by-product in that they can be used for vicarious calibration of the OCTS sensor aboard the ADEOS satellite. As such, the data has been transmitted to NASDA in Japan for their use.

  6. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  8. Spatio-temporal impacts of dairy lagoon water reuse on soil: heavy metals and salinity.

    PubMed

    Corwin, Dennis L; Ahmad, Hamaad Raza

    2015-10-01

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. The spatial impact and sustainability of dairy lagoon water reuse from concentrated animal feeding operations (CAFOs) has not been evaluated at field scale. The objective of this study is to monitor the impact of dairy lagoon water blended with recycled water on a 32 ha field near San Jacinto, CA from 2007 to 2011. Spatial monitoring was based on soil samples collected at locations identified from apparent soil electrical conductivity (ECa) directed sampling. Soil samples were taken at depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-0.9, 0.9-1.2, 1.2-1.5, and 1.5-1.8 m at 28 sample sites on 7-11 May 2007 and again on 31 May - 2 June 2011 after 4 years of irrigation with the blended waters. Chemical analyses included salinity (electrical conductivity of the saturation extract, ECe), pHe (pH of the saturation extract), SAR (sodium adsorption ratio), trace elements (As, B, Mo, Se), and heavy metals (Cd, Cu, Mn, Ni, Zn). Results indicate a decrease in mean values of pHe at all depth increments; a decrease in ECe and SAR above a depth of 0.15 m, but an increase below 0.15 m; a decrease in all trace elements except B, which increased throughout the 1.8 m profile; and the accumulation of Cd, Mn, and Ni at all depth increments, while Cu was readily leached from the 1.8 m profile. Zinc showed little change. The results focused concern on the potential long-term agronomic effect of salinity, SAR, and B, and the long-term environmental threat of salinity and Cu to detrimentally impact groundwater. The accumulation of Cd, Mn, and Ni in the soil profile raised concern since it provided a potential future source of metals for leaching. The long-term sustainability of dairy lagoon water reuse hinges on regular monitoring to provide spatial feedback for site-specific management.

  9. The Evaluation of Basal Respiration for Various Soil Textures in Ecologically Sensitive Area

    NASA Astrophysics Data System (ADS)

    Huličová, P.; Kotorová, D.; Fazekašová, D.; Hynšt, J.

    2017-10-01

    The present contribution was focused on monitoring changes in the soil basal respiration in different textures of soil in the dry polder Beša. The research was conducted between 2012 and 2014 on soil type Fluvisol locations on three soil textures: clay - loam soil, clayey soil and clay soil in three soil depths. The basal respiration (BR) has been determine by soil CO2 production measuring from incubated soil samples in serum bottles in laboratory condition. Release Co2 has been analysed by gas chromatography. Content of clay particles were in the range 52.18 % to 81.31%, indicating the high difference between the minimum and maximum content. By using of multiple LSD-test we recorded statistically significant impact of clay on basal respiration. Results confirm the values of basal respiration with the depth of the soil profile decreased.

  10. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  11. Ultra-Shallow Depth Profiling of Arsenic Implants in Silicon by Hydride Generation-Inductively Coupled Plasma Atomic Emission Spectrometry

    NASA Astrophysics Data System (ADS)

    Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi

    1995-08-01

    High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.

  12. Mid-Atlantic multichannel seismic-reflection profiles 14, 15, 16, and 17

    USGS Publications Warehouse

    Schlee, John Stevens

    1980-01-01

    The U. S. Geological Survey (USGS) is making available four multi­channel profiles collected by Teledyne Exploration in 1977 by means of a 48-channel streamer (3600 m long) and four airguns (2160 in). Profiles 15 and 16 were processed by.Teledyne Exploration and profiles 14 and 17 were processed on the Phoenix "I"* computer·by the USGS. The processing included standard demultiplexing, deconvolution before and aftfer stack, Common Depth Point (CDP) gathers, velocity analyses every 3 km, move-out correction, stacking, time-variant, filtering, and time-variant scaling.The released lines are over the outer edge of the Continental Shelf in the northern part of the Baltimore Canyon trough (Line 14: 140 km long and Line 15: 157 km long), over the Long Island platform. (Line 16: 313 km long), and over the Carolina platform (Line 17: 186 km long). These profiles were collected as a part of a regional grid over offshore Atlantic sedimentary basins in a continuing program to assess the resource potential by means of nonproprietary data.These profiles, plus the velocity scans and shotpoint maps, may be viewed at U. S. Geological Survey, Quissett Campus, Woods Hole, MA. 02543, and U. S. Geological Survey, Bldg. 25, Denver Federal Center, Denver, CO. Copies of maps, scans, and profiles can be purchased only from the National Geophysical Solar-Terrestrial Data Center, Environmental Data Service (NOM), Code D 621, Boulder, CO 80302.

  13. A porewater - based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2011-10-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  14. Elemental depth profiling in transparent conducting oxide thin film by X-ray reflectivity and grazing incidence X-ray fluorescence combined analysis

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.

    2017-09-01

    The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.

  15. Experimental and modeling study of chloride ingress into concrete and reinforcement corrosion initiation

    NASA Astrophysics Data System (ADS)

    Yu, Hui

    Effects of reinforcement and coarse aggregate on chloride ingression into concrete and reinforcement corrosion initiation have been studied with experimental and modeling (finite element method) analyses. Once specimens were fabricated and exposed to a chloride solution, various experimental techniques were employed to determine the effect of reinforcement and coarse aggregate on time-to-corrosion and chloride ingress and concentration at corrosion locations. Model analyses were performed to verify and explain the experimental results. Based upon the results, it was determined that unexpectedly higher chloride concentrations were present on the top of the rebar trace than that to the side at the same depth and an inverse concentration gradient (increasing [ Cl-] with increasing depth) occurred near the top of rebars. Also, coarse aggregate volume profile in close proximity to the rebar and spatial distribution of these aggregates, in conjunction with the physical obstruction afforded by reinforcement to chloride flow, complicates concrete sampling for Cl- intended to define the critical concentration of this species to initiate corrosion. Modeling analyses that considered cover thickness, chloride threshold concentration, reinforcement size and shape, and coarse aggregate type and percolation confirmed the experimental findings. The results, at least in part, account for the relatively wide spread in chloride corrosion threshold values reported in the literature and illustrate that more consistent chloride threshold concentrations can be acquired from mortar or paste specimens than from concrete ones.

  16. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  17. Saprolite Formation Rates using U-series Isotopes in a Granodiorite Weathering Profile from Boulder Creek CZO (Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Pelt, Eric; Chabaux, Francois; Mills, T. Joseph; Anderson, Suzanne P.; Foster, Melissa A.

    2015-04-01

    Timescales of weathering profile formation and evolution are important kinetic parameters linked to erosion, climatic, and biological processes within the critical zone. In order to understand the complex kinetics of landscape evolution, water and soil resources, along with climate change, these parameters have to be estimated for many different contexts. The Betasso catchment, within the Boulder Creek Critical Zone Observatory (BC-CZO) in Colorado, is a mountain catchment in Proterozoic granodiorite uplifted in the Laramide Orogeny ca. 50 Ma. In an exposure near the catchment divide, an approximately 1.5 m deep profile through soil and saprolite was sampled and analysed for bulk U-series disequilibria (238U-234U-230Th-226Ra) to estimate the profile weathering rate. The (234U/238U), (230Th/234U) and (226Ra/230Th) disequilibria through the entire profile are small but vary systematically with depth. In the deepest samples, values are close to equilibrium. Above this, values are progressively further from equilibrium with height in the profile, suggesting a continuous leaching of U and Ra compared to Th. The (234U/238U) disequilibria remain < 1 along the profile, suggesting no significant U addition from pore waters. Only the shallowest sample (~20 cm depth) highlights a 226Ra excess, likely resulting from vegetation cycling. In contrast, variations of Th content and (230Th/232Th) - (238U/232Th) activity ratios in the isochron diagram are huge, dividing the profile into distinct zones above and below 80 cm depth. Below 80 cm, the Th content gradually increases upward from 1.5 to 3.5 ppm suggesting a relative accumulation linked to chemical weathering. Above 80 cm, the Th content jumps to ~15 ppm with a similar increase of Th/Ti or Th/Zr ratios that clearly excludes the same process of relative accumulation. This strong shift is also observed in LREE concentrations, such as La, Ce and Nd, and in Sr isotopic composition, which suggests an external input of radiogenic material such as dust from the western Colorado deserts or eroding landscapes. For the deeper part of the profile, the strong upward decrease of the (230Th/232Th) and (238U/232Th) activity ratio without generation of strong disequilibria could suggest a long history (~0.5-1 Ma) of U leaching with a very slow saprolite development (~1 m/Ma). Such a result is in agreement with slow weathering rates deduced from modern solute chemistry of rivers, but would be much lower than 10Be denudation rates on the same profile of ~10-20 m/Ma. As the 10Be rates integrate denudation over a timescale of 40-80 ka, the apparent inconsistency between rates deduced by U-series data and Be data might suggest that erosion rates have increased during the 10Be integrating time.

  18. Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar

    2017-01-01

    Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.

  19. Crack depth profiling using guided wave angle dependent reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less

  20. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    PubMed

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  1. Characteristics of early winter high Arctic atmospheric boundary layer profiles

    NASA Astrophysics Data System (ADS)

    Wickström, Siiri; Vihma, Timo; Nygård, Tiina; Kramer, Daniel; Palo, Timo; Jonassen, Marius

    2017-04-01

    For a large part of the year, the Arctic climate system is characterised by a stably stratified atmospheric boundary layer, with strong temperature inversions isolating the surface from the air aloft. These nversions are typically driven by longwave radiative cooling, warm-air advection aloft, or subsidence. All these mechanisms are affected by the synoptic sate of the atmosphere in the high Arctic. In this study we present data from an intensive measurement campaign in Svalbard in October 2014, when atmospheric profiles were measured with a tethered balloon in Adventdalen and Hornsund. In addition radiosonde soundings from Ny-Ålesund were analysed. A total of 115 individual profiles were analysed, almost all of them showing a surface-based temperature inversion. Our preliminary results show that the strongest and deepest inversions are observed at the beginning of a warm-air advection event, but as the temperature, wind and cloudiness increase the inversion strength and depth decrease rapidly. The inversion curvature parameter seems to be strongly dependent on the longwave radiative balance with the highest curvatures (strongest vertical temperature gradient close to the surface) associated with strong longwave radiative heat loss from the surface. The different processes affecting the stable atmospheric boundary layer during a low-pressure passage are determined, and the effects of the synoptic scale changes are isolated from those caused by local topographic forcing.

  2. SU-E-T-614: Derivation of Equations to Define Inflection Points and Its Analysis in Flattening Filter Free Photon Beams Based On the Principle of Polynomial function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Komanduri, K

    2014-06-01

    Purpose: The objective of this work is to present a mechanism for calculating inflection points on profiles at various depths and field sizes and also a significant study on the percentage of doses at the inflection points for various field sizes and depths for 6XFFF and 10XFFF energy profiles. Methods: Graphical representation was done on Percentage of dose versus Inflection points. Also using the polynomial function, the authors formulated equations for calculating spot-on inflection point on the profiles for 6X FFF and 10X FFF energies for all field sizes and at various depths. Results: In a flattening filter free radiationmore » beam which is not like in Flattened beams, the dose at inflection point of the profile decreases as field size increases for 10XFFF. Whereas in 6XFFF, the dose at the inflection point initially increases up to 10x10cm2 and then decreases. The polynomial function was fitted for both FFF beams for all field sizes and depths. For small fields less than 5x5 cm2 the inflection point and FWHM are almost same and hence analysis can be done just like in FF beams. A change in 10% of dose can change the field width by 1mm. Conclusion: The present study, Derivative of equations based on the polynomial equation to define inflection point concept is precise and accurate way to derive the inflection point dose on any FFF beam profile at any depth with less than 1% accuracy. Corrections can be done in future studies based on the multiple number of machine data. Also a brief study was done to evaluate the inflection point positions with respect to dose in FFF energies for various field sizes and depths for 6XFFF and 10XFFF energy profiles.« less

  3. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets.

    PubMed

    Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj

    2004-01-01

    The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate. Glancing angle XRD enabled us to quantify and thereby profile phase transformations as a function of compact depth. The technique has potential utility in monitoring surface reactions, both chemical decomposition and physical transformations, in pharmaceutical systems.

  4. LOGISTIC FUNCTION PROFILE FIT: A least-squares program for fitting interface profiles to an extended logistic function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchhoff, William H.

    2012-09-15

    The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less

  5. Patient safety climate profiles across time: Strength and level of safety climate associated with a quality improvement program in Switzerland—A cross-sectional survey study

    PubMed Central

    Mascherek, Anna C.

    2017-01-01

    Safety Climate has been acknowledged as an unspecific factor influencing patient safety. However, studies rarely provide in-depth analysis of climate data. As a helpful approach, the concept of “climate strength” has been proposed. In the present study we tested the hypotheses that even if safety climate remains stable on mean-level across time, differences might be evident in strength or shape. The data of two hospitals participating in a large national quality improvement program were analysed for differences in climate profiles at two measurement occasions. We analysed differences on mean-level, differences in percent problematic response, agreement within groups, and frequency histograms in two large hospitals in Switzerland at two measurement occasions (2013 and 2015) applying the Safety Climate Survey. In total, survey responses of 1193 individuals were included in the analyses. Overall, small but significant differences on mean-level of safety climate emerged for some subgroups. Also, although agreement was strong at both time-points within groups, tendencies of divergence or consensus were present in both hospitals. Depending on subgroup and analyses chosen, differences were more or less pronounced. The present study illustrated that taking several measures into account and describing safety climate from different perspectives is necessary in order to fully understand differences and trends within groups and to develop interventions addressing the needs of different groups more precisely. PMID:28753633

  6. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed to evaluate the potential effects of crystallographic orientation on alpha ejection. The results from both crystals were very reproducible irrespective of crystal surface used and confirm the findings of Monteleone et al. (2008) that the measured alpha ejection profiles deviate significantly from and are shorter than the calculated theoretical average value. Efforts are currently underway to better constrain the measured alpha ejection distance and measure alpha ejection profiles in apatite crystals other than Durango apatite. References: Boyce, J. et al. (2006) GCA 70, pp. 3031-3039. Farley, K. et al. (1996) GCA 60, pp. 4223-4229. Farley, K. (2006) JGR SE 105, p. 2903-2914. Lippolt, H. et al. (1994) Chem Geol 112, pp. 179-191. Monteleone, B. et al. (2008) Eos Trans AGU, 89 Fall Meeting V53B-2162. Wolf, R. et al. (1996) GCA 60, pp. 4231-4240. Zeitler, P. et al. (1987) GCA 51, pp. 2865-2868.

  7. Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.

    PubMed

    Liu, Jodi; Saw, Robert E; Kiang, Y-H

    2010-09-01

    The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.

  8. Association between blood cholesterol level with periodontal status of coronary heart disease patients

    NASA Astrophysics Data System (ADS)

    Valensia, Rosy; Masulili, Sri Lelyati C.; Lessang, Robert; Radi, Basuni

    2017-02-01

    Coronary heart disease (CHD) is an abnormal narrowing of heart arteries associated with local accumulation of lipids, in the form of cholesterol and triglycerides. Periodontal disease is a chronic inflammatory that suggests link to the development of CHD. In periodontitis have been reported changes in lipid profile, include increased of cholesterol levels of blood. Objective: to analyse correlation between blood cholesterol level with periodontal status of CHD and non CHD subjects. Methods: Periodontal status and blood cholesterol level of 60 CHD and 40 non CHD subjects was measured. Result: Blood cholesterol level in CHD subjects differs from non CHD subjects (p=0.032). Blood cholesterol level correlates with pocket depth (p=0.003) and clinical attachment loss (CAL) (p=0.000) in CHD subjects. Blood cholesterol level correlates with pocket depth (p=0.010) in non CHD subjects. There is no significant correlation between blood cholesterol level and bleeding on probing (BOP) in CHD subjects. There is no significant correlation between blood cholesterol level with BOP and CAL in non CHD subjects. Conclusion: Blood cholesterol level in control group is higher than CHD patients. Blood cholesterol level positively associated with pocket depth (r=0.375) and CAL (r=0.450) in CHD patients. Blood cholesterol level is positively associated with pocket depth (r=0.404) in control group.

  9. NanoSIMS Imaging Alternation Layers of a Leached SON68 Glass Via A FIB-made Wedged Crater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi-Chung; Schreiber, Daniel K.; Neeway, James J.

    2014-11-01

    Currently, nuclear wastes are commonly immobilized into glasses because of their long-term durability. Exposure to water for long periods of time, however, will eventually corrode the waste form and is the leading potential avenue for radionuclide release into the environment. Because such slow processes cannot be experimentally tested, the prediction of release requires a thorough understanding the mechanisms governing glass corrosion. In addition, due to the exceptional durability of glass, much of the testing must be performed on high-surface-area powders. A technique that can provide accurate compositional profiles with very precise depth resolution for non-flat samples would be a majormore » benefit to the field. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling is an excellent tool that has long been used to examine corrosion layers of glass. The roughness of the buried corrosion layers, however, causes the corresponding SIMS depth profiles to exhibit erroneously wide interfaces. In this study, NanoSIMS was used to image the cross-section of the corrosion layers of a leached SON68 glass sample. A wedged crater was prepared by a focused ion beam (FIB) instrument to obtain a 5× improvement in depth resolution for NanoSIMS measurements. This increase in resolution allowed us to confirm that the breakdown of the silica glass network is further from the pristine glass than a second dissolution front for boron, another glass former. The existence of these two distinct interfaces, separated by only ~20 nm distance in depth, was not apparent by traditional ToF-SIMS depth profiling but has been confirmed also by atom probe tomography. This novel sample geometry will be a major benefit to efficient NanoSIMS sampling of irregular interfaces at the nanometer scale that would otherwise be obscured within ToF-SIMS depth profiles.« less

  10. Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Choong, G.; Vallat-Sauvain, E.; Multone, X.; Fesquet, L.; Kroll, U.; Meier, J.

    2013-06-01

    Wedge-polished thin film microcrystalline silicon solar cells are prepared and used for micro-Raman measurements. Thereby, the variations of the Raman crystallinity with depth are accessed easily. Depth resolution limits of the measurement set-up are established and calculations evidencing the role of optical limits are presented. Due to this new technique, Raman crystallinity profiles of two microcrystalline silicon cells give first hints for the optimization of the profile leading to improved electrical performance of such devices.

  11. Crustal structure of an intraplate thrust belt: The Iberian Chain revealed by wide-angle seismic, magnetotelluric soundings and gravity data

    NASA Astrophysics Data System (ADS)

    Seillé, Hoël; Salas, Ramon; Pous, Jaume; Guimerà, Joan; Gallart, Josep; Torne, Montserrat; Romero-Ruiz, Ivan; Diaz, Jordi; Ruiz, Mario; Carbonell, Ramon; Mas, Ramón

    2015-11-01

    The Iberian Chain is a Cenozoic intraplate thrust belt located within the Iberian plate. Unlike other belts in the Iberia Peninsula, the scarcity of geophysical studies in this area results in a number of unknowns about its crustal structure. The Iberian Chain crust was investigated by means of a NE-SW refraction/wide-angle reflection seismic transect and two magnetotelluric profiles across the chain, oriented along the same direction. The seismic profile was designed to sample the crust by means of three shots designed to obtain a reversed profile. The resulting velocity-depth model shows a moderate thickening of the crust toward the central part of the profile, where crustal thickness reaches values above 40 km, thinning toward de SW Tajo and NE Ebro foreland basins. The crustal thickening is concentrated in the upper crust. The seismic results are in overall agreement with regional trends of Bouguer gravity anomaly and the main features of the seismic model were reproduced by gravity modeling. The magnetotelluric data consist of 39 sites grouped into two profiles, with periods ranging from 0.01 s to 1000 s. Dimensionality analyses show significant 3D effects in the resistivity structure and therefore we carried out a joint 3D inversion of the full impedance tensor and magnetic transfer functions. The Mesozoic and Cenozoic basins along the Chain are well characterized by shallow high conductive zones and low velocities. Elongated conductors reaching mid-crustal depths evidence the presence of major faults dominating the crustal structure. The results from the interpretation of these complementary geophysical data sets provided the first images of the crustal structure of the Iberian Chain. They are consistent with a Cenozoic shortening responsible of the upper crust thickening as well as of the uplift of the Iberian Chain and the generation of its present day topography.

  12. Infiltration pattern in a regolith-fractured bedrock profile: field observation of a dye stain pattern

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon; Lee, Gyoo Ho; Lee, Jin-Soo; Chon, Chul-Min; Kim, Tack Hyun; Ha, Kyoochul

    2006-02-01

    We examined the infiltration pattern of water in a regolith-bedrock profile consisting of two overburdens (OB1 and OB2), a buried rice paddy soil (PS), two texturally distinctive weathered materials (WM1 and WM2) and a fractured sedimentary rock (BR), using a Brilliant Blue FCF dye tracer. A black-coloured coating in conducting fractures in WM1, WM2 and BR was analysed by X-ray diffraction and scanning electron microscopy. The dye tracer penetrated to greater than 2 m depth in the profile. The macropore flow and saturated interflow were the major infiltration patterns in the profile. Macropore flow and saturated interflow were observed along fractures in WM1, WM2 and BR and at the dipping interfaces of PS-WM1, PS-WM2 and PS-BR respectively. Heterogeneous matrix flow occurred in upper overburden (OB1) and PS. Compared with OB1, the coarser textured OB2 acted as a physical barrier for vertical flow of water. The PS with low bulk density and many fine roots was another major conducting route of water in the profile. Manganese oxide and iron oxide were positively identified in the black coating material and had low crystallinity and high surface area, indicating their high reactivity with conducting contaminants.

  13. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef

    PubMed Central

    2013-01-01

    Background Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef. Results The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes. Conclusions Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. PMID:24059868

  14. Shipboard Acoustic Current Profiling during the Coastal Ocean Dynamics Experiment,

    DTIC Science & Technology

    1985-05-01

    average profile based on the bottori depth estimated from the ship’s posit ion. in the CODEU region. an efficient computer routine was developed for... forex ~and and( port ward comnport ent s of V. at conistant z ., the depth Iill ships coordi- nlatv (’S(Chap 2). The data cort- from I -mintIe

  15. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals

    PubMed Central

    Willingham, D.; Brenes, D. A.; Winograd, N.; Wucher, A.

    2010-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C60+ cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C60+ primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data. PMID:26269660

  16. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  17. IBA analysis of some precolumbian gilded-copper samples

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Murillo, G.; Policroniades, R.; Acosta, L.; Zavala, E. P.; Rocha, M. F.; Centeno, S. A.

    2005-10-01

    The elemental composition and depth profiles obtained by IBA techniques on some gilded-copper fragments from the Moche site of Loma Negra, in the Piura Valley, on the Northern Coast of Perú are presented in this article. A previous radiocarbon dating of a wooden fragment indicated that Loma Negra was occupied around 295 AD. A PIXE analysis using a 2.6 MeV external proton beam, was used to obtain the concentration of trace elements in the samples. RBS analyses using 2.72 MeV 4He+ and 12.0 MeV 12C3+ were used to obtain the Au, Ag, Cu atomic profiles. NRA with a 1.02 MeV deuteron beam was used to measure the oxygen and carbon concentrations through the 16O(d,p) 17O, 16O(d,α) 14N and 12C(d,p0) 13C reactions.

  18. An iterative algorithm for determining depth profiles of collection probability by electron-beam-induced current

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor; Breitenstein, Otwin

    2001-01-01

    An iterative algorithm for the derivation of depth profiles of the minority carrier collection probability in a semiconductor with or without a coating on the top is presented using energy-resolved electron-beam-induced current measurements in planar geometry. The calculation is based on the depth-dose function of Everhart and Hoff (Everhart T E and Hoff P H 1971 J. Appl. Phys. 42 5837) and on the penetration-range function of Kanaya and Okayama (Kanaya K and Okayama S 1972 J. Phys. D: Appl. Phys. 5 43) or on that of Fitting (Fitting H-J 1974 Phys. Status Solidi/ a 26 525). It can also be performed with any other depth-dose functions. Using this algorithm does not require us to make any assumptions on the shape of the collection profile within the depth of interest. The influence of an absorbing top contact and/or a limited thickness of the semiconductor layer appear in the result, but can also be taken explicitly into account. Examples using silicon and CIS solar cells as well as a GaAs LED are presented.

  19. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  20. A porewater-based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2012-02-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  1. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  2. Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils.

    PubMed

    Herranz, M; Romero, L M; Idoeta, R; Olondo, C; Valiño, F; Legarda, F

    2011-11-01

    In this paper the inventory of (90)Sr in 34 points distributed along the Spanish peninsular territory is presented. Obtained values range between 173 Bq/m(2) and 2047 Bq/m(2). From these data set and those (137)Cs data obtained in a previous work the (137)Cs/(90)Sr activity ratio has been established, laying this value between 0.9 and 3.6. Also the migration depth of both radionuclides has been analysed obtaining for (137)Cs an average value 57% lower than that obtained for (90)Sr. Additionally, this paper presents the results obtained in 11 sampling points in which the activity vertical profile has been measured. These profiles have been analysed to state the behaviour of strontium in soils and after, by using a convective-diffusive model, the parameters of the model which governs the vertical migration of (90)Sr in the soil, v (apparent convection velocity) and D (apparent diffusion coefficient) have been evaluated. Mean values obtained are 0.20 cm/year and 3.67 cm(2)/year, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A new method for depth profiling reconstruction in confocal microscopy

    NASA Astrophysics Data System (ADS)

    Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe

    2018-05-01

    Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.

  4. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  5. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  6. Data on xylem sap proteins from Mn- and Fe-deficient tomato plants obtained using shotgun proteomics.

    PubMed

    Ceballos-Laita, Laura; Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2018-04-01

    This article contains consolidated proteomic data obtained from xylem sap collected from tomato plants grown in Fe- and Mn-sufficient control, as well as Fe-deficient and Mn-deficient conditions. Data presented here cover proteins identified and quantified by shotgun proteomics and Progenesis LC-MS analyses: proteins identified with at least two peptides and showing changes statistically significant (ANOVA; p ≤ 0.05) and above a biologically relevant selected threshold (fold ≥ 2) between treatments are listed. The comparison between Fe-deficient, Mn-deficient and control xylem sap samples using a multivariate statistical data analysis (Principal Component Analysis, PCA) is also included. Data included in this article are discussed in depth in the research article entitled "Effects of Fe and Mn deficiencies on the protein profiles of tomato ( Solanum lycopersicum) xylem sap as revealed by shotgun analyses" [1]. This dataset is made available to support the cited study as well to extend analyses at a later stage.

  7. Depth profiling of mechanical degradation of PV backsheets after UV exposure

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohong; Krommenhoek, Peter J.; Lin, Chiao-Chi; Yu, Li-Chieh; Nguyen, Tinh; Watson, Stephanie S.

    2015-09-01

    Polymeric multilayer backsheets protect the photovoltaic modules from damage of moisture and ultraviolet (UV) while providing electrical insulation. Due to the multilayer structures, the properties of the inner layers of the backsheets, including their interfaces, during weathering are not well known. In this study, a commercial type of PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films was selected as a model system for a depth profiling study of mechanical properties of a backsheet film during UV exposure. The NIST SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) was used for the accelerated laboratory exposure of the materials with UV at 85°C and two relative humidities (RH) of 5 % (dry) and 60 % (humid). Cryomicrotomy was used to obtain cross-sectional PPE samples. Mechanical depth profiling of the cross-sections of aged and unaged samples was conducted by nanoindentation, and a peak-force based quantitative nanomechanical atomic force microscopy (QNM-AFM) mapping techniquewas used to investigate the microstructure and adhesion properties of the adhesive tie layers. The nanoindentation results show the stiffening of the elastic modulus in the PET outer and pigmented EVA layers. From QNM-AFM, the microstructures and adhesion properties of the adhesive layers between PET outer and core layers and between PET core and EVA inner layers are revealed and found to degrade significantly after aging under humidity environment. The results from mechanical depth profiling of the PPE backsheet are further related to the previous chemical depth profiling of the same material, providing new insights into the effects of accelerated UV and humidity on the degradation of multilayer backsheet.

  8. Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles

    NASA Astrophysics Data System (ADS)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2014-09-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.

  9. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.

    PubMed

    Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A

    2009-05-21

    The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.

  10. Magnetic nonuniformity and thermal hysteresis of magnetism in a manganite thin film.

    PubMed

    Singh, Surendra; Fitzsimmons, M R; Lookman, T; Thompson, J D; Jeen, H; Biswas, A; Roldan, M A; Varela, M

    2012-02-17

    We measured the chemical and magnetic depth profiles of a single crystalline (La(1-x)Pr(x))(1-y)Ca(y)MnO(3-δ) (x=0.52±0.05, y=0.23±0.04, δ=0.14±0.10) film grown on a NdGaO(3) substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy, and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first-order ferromagnetic transition at low temperatures.

  11. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  12. Multi-technique characterization of gold electroplating on silver substrates for cultural heritage applications

    NASA Astrophysics Data System (ADS)

    Ortega-Feliu, I.; Ager, F. J.; Roldán, C.; Ferretti, M.; Juanes, D.; Scrivano, S.; Respaldiza, M. A.; Ferrazza, L.; Traver, I.; Grilli, M. L.

    2017-09-01

    This work presents a detailed study of a series of silver plates gilded via electroplating techniques in which the characteristics of the coating gold layers are investigated as a function of the electroplating variables (voltage, time, anode surface and temperature). Some reference samples were coated by radio frequency sputtering in order to compare gold layer homogeneity and effective density. Surface analysis was performed by means of atomic and nuclear techniques (SEM-EDX, EDXRF, PIXE and RBS) to obtain information about thickness, homogeneity, effective density, profile concentration of the gold layers and Au-Ag diffusion profiles. The gold layer thickness obtained by PIXE and EDXRF is consistent with the thickness obtained by means of RBS depth profiling. Electroplated gold mass thickness increases with electroplating time, anode area and voltage. However, electrodeposited samples present rough interfaces and gold layer effective densities lower than the nominal density of Au (19.3 g/cm3), whereas sputtering produces uniform layers with nominal density. These analyses provide valuable information to historians and curators and can help the restoration process of gold-plated silver objects.

  13. An inventory of Arctic Ocean data in the World Ocean Database

    NASA Astrophysics Data System (ADS)

    Zweng, Melissa M.; Boyer, Tim P.; Baranova, Olga K.; Reagan, James R.; Seidov, Dan; Smolyar, Igor V.

    2018-03-01

    The World Ocean Database (WOD) contains over 1.3 million oceanographic casts (where cast refers to an oceanographic profile or set of profiles collected concurrently at more than one depth between the ocean surface and ocean bottom) collected in the Arctic Ocean basin and its surrounding marginal seas. The data, collected from 1849 to the present, come from many submitters and countries, and were collected using a variety of instruments and platforms. These data, along with the derived products World Ocean Atlas (WOA) and the Arctic Regional Climatologies, are exceptionally useful - the data are presented in a standardized, easy to use format and include metadata and quality control information. Collecting data in the Arctic Ocean is challenging, and coverage in space and time ranges from excellent to nearly non-existent. WOD continues to compile a comprehensive collection of Arctic Ocean profile data, ideal for oceanographic, environmental and climatic analyses (https://doi.org/10.7289/V54Q7S16).

  14. Reducing the Matrix Effect in Organic Cluster SIMS Using Dynamic Reactive Ionization

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-12-01

    Dynamic reactive ionization (DRI) utilizes a reactive molecule, HCl, which is doped into an Ar cluster projectile and activated to produce protons at the bombardment site on the cold sample surface with the presence of water. The methodology has been shown to enhance the ionization of protonated molecular ions and to reduce salt suppression in complex biomatrices. In this study, we further examine the possibility of obtaining improved quantitation with DRI during depth profiling of thin films. Using a trehalose film as a model system, we are able to define optimal DRI conditions for depth profiling. Next, the strategy is applied to a multilayer system consisting of the polymer antioxidants Irganox 1098 and 1010. These binary mixtures have demonstrated large matrix effects, making quantitative SIMS measurement not feasible. Systematic comparisons of depth profiling of this multilayer film between directly using GCIB, and under DRI conditions, show that the latter enhances protonated ions for both components by 4- to 15-fold, resulting in uniform depth profiling in positive ion mode and almost no matrix effect in negative ion mode. The methodology offers a new strategy to tackle the matrix effect and should lead to improved quantitative measurement using SIMS.

  15. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  16. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume

    USGS Publications Warehouse

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M.; Bailey, Zach; Pruden, Amy

    2014-01-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.

  17. Principal component analysis of TOF-SIMS spectra, images and depth profiles: an industrial perspective

    NASA Astrophysics Data System (ADS)

    Pacholski, Michaeleen L.

    2004-06-01

    Principal component analysis (PCA) has been successfully applied to time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra, images and depth profiles. Although SIMS spectral data sets can be small (in comparison to datasets typically discussed in literature from other analytical techniques such as gas or liquid chromatography), each spectrum has thousands of ions resulting in what can be a difficult comparison of samples. Analysis of industrially-derived samples means the identity of most surface species are unknown a priori and samples must be analyzed rapidly to satisfy customer demands. PCA enables rapid assessment of spectral differences (or lack there of) between samples and identification of chemically different areas on sample surfaces for images. Depth profile analysis helps define interfaces and identify low-level components in the system.

  18. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  19. Silver/oxygen depth profile in coins by using laser ablation, mass quadrupole spectrometer and X-rays fluorescence

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Caridi, F.; Sayed, R.; Gentile, C.; Mondio, G.; Serafino, T.; Castrizio, E. D.

    2013-05-01

    Silver coins belonging to different historical periods were investigated to determine the Ag/O atomic ratio depth profiles. Laser ablation has been employed to remove, in high vacuum, the first superficial layers of the coins. Mass quadrupole spectrometry has been used to detect the Ag and the O atomic elements vaporized from the coin surface. The depth profile allowed to determine the thickness of the oxidation layer indicating that, in general, it is high in old coins. A complementary technique, using scanning electron microscope and the associated XRF microprobe, have been devoted to confirm the measurements of Ag/O atomic ratio measured with the laser-coupled mass spectrometry. The oxidation layer thicknesses range between about 25 and 250 microns.

  20. Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).

    PubMed

    van Groen, T; Ruardy, L; da Silva, F H

    1986-07-01

    Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.

  1. Characterization of drug-eluting stent (DES) materials with cluster secondary ion mass spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Mahoney, Christine M.; Patwardhan, Dinesh V.; Ken McDermott, M.

    2006-07-01

    Secondary ion mass spectrometry (SIMS) employing an SF 5+ polyatomic primary ion source was utilized to analyze several materials commonly used in drug-eluting stents (DES). Poly(ethylene- co-vinyl acetate) (PEVA), poly(lactic- co-glycolic acid) (PLGA) and various poly(urethanes) were successfully depth profiled using SF 5+ bombardment. The resultant molecular depth profiles obtained from these polymeric films showed very little degradation in molecular signal as a function of increasing SF 5+ primary ion dose when experiments were performed at low temperatures (signal was maintained for doses up to ˜5 × 10 15 ions/cm 2). Temperature was determined to be an important parameter in both the success of the depth profiles and the mass spectral analysis of the polymers. In addition to the pristine polymer films, paclitaxel (drug released in Taxus™ stent) containing PLGA films were also characterized, where it was confirmed that both drug and polymer signals could be monitored as a function of depth at lower paclitaxel concentrations (10 wt%).

  2. Tracking the Subsurface Signal of Decadal Climate Warming to Quantify Vertical Groundwater Flow Rates

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Kurylyk, B. L.

    2017-12-01

    Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.

  3. Unifying dose specification between clinical BNCT centers in the Americas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, K. J.; Binns, P. J.; Harling, O. K.

    2008-04-15

    A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comision Nacional de Energia Atomica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.

  4. Inorganic material profiling using Arn+ cluster: Can we achieve high quality profiles?

    NASA Astrophysics Data System (ADS)

    Conard, T.; Fleischmann, C.; Havelund, R.; Franquet, A.; Poleunis, C.; Delcorte, A.; Vandervorst, W.

    2018-06-01

    Retrieving molecular information by sputtering of organic systems has been concretized in the last years due to the introduction of sputtering by large gas clusters which drastically eliminated the compound degradation during the analysis and has led to strong improvements in depth resolution. Rapidly however, a limitation was observed for heterogeneous systems where inorganic layers or structures needed to be profiled concurrently. As opposed to organic material, erosion of the inorganic layer appears very difficult and prone to many artefacts. To shed some light on these problems we investigated a simple system consisting of aluminum delta layer(s) buried in a silicon matrix in order to define the most favorable beam conditions for practical analysis. We show that counterintuitive to the small energy/atom used and unlike monoatomic ion sputtering, the information depth obtained with large cluster ions is typically very large (∼10 nm) and that this can be caused both by a large roughness development at early stages of the sputtering process and by a large mixing zone. As a consequence, a large deformation of the Al intensity profile is observed. Using sample rotation during profiling significantly improves the depth resolution while sample temperature has no significant effect. The determining parameter for high depth resolution still remains the total energy of the cluster instead of the energy per atom in the cluster.

  5. How well Can We Classify SWOT-derived Water Surface Profiles?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  6. Luminescence profiling of loess-dominated archaeological layers of a Chalcolithic site, Northern Negev Desert fringe, Israel

    NASA Astrophysics Data System (ADS)

    López, Gloria I.; Roskin, Joel; Bee'ri, Ron

    2017-04-01

    This study applies a pulsed-photon Portable OSL Reader (PPSL) in investigating the palaeoenviroment and stages of development of a Chalcolithic site revealed during a salvage excavation. The (Shoqet Junction) site, within late Pleistocene loess-dominated sediment, is adjacent to the meandering and ephemeral Hebron Wadi in the Beer-Sheva Valley, at the fringe of the Northern Negev Desert (Israel). The site intermittently covers approximately 8 hectares and was exposed at 0.3 - 0.5 m depths beneath a plowed field. Five areas were excavated down to 4 meters. The site was dominated by an array of underground facilities: tunnels, (capped) shafts, walls, floors and infilled cavities were found within four main layers. The site includes a mixture of sediments: large amounts of organic material, weathered bricks, a powdery loess-like unit and thin Bk horizons. The artifact assemblage is associated with the Ghassulian culture. The objectives of this multi-parameter study, which combines PPSL luminescence profiling with sedimentological and geomorphic analyses, are to (1) analyze the Chalcolithic palaeoenvironments, aeolian and fluvial processes and location and morphology of streambeds, (2) identify possible deterministic physical influences upon the occupations (3) decipher the natural stratigraphic archive and discriminate between human and natural (aeolian/fluvial) induced sedimentation (4) create relative age profiles based on portable OSL measurements and OSL ages, in order to minimize OSL dating. Three main sections were profiled: a natural section - in order to identify the natural sedimentological regime and two walls of two excavation squares down to the sites' alluvial base. A small section above a prominent Bk horizon was also profiled. Altogether 58 samples were obtained for sediment and PPSL analyses. Luminescence profiles in general fit the stratigraphic breaks and enable discrimination between layers. Plowed and surface loess give low reads. Inverse reads along the profile are partly understood to be due to anthropogenic intervention with the sediment. The study highlights the potential and some of the complexities involved with portable OSL profiling of multi-layer prehistoric sites.

  7. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.

  8. Using Vertical electrical sounding survey and refraction seismic survey for determining the geological layers depths, the structural features and assessment groundwater in Aqaba area in South Jordan.

    NASA Astrophysics Data System (ADS)

    Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina

    2010-05-01

    The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth profile was N-S direction and the length of this profile was 950 m. Two different layers were recognized along this profile. The fifth profile was located N-S with length about 340 m. Two layers were recognized from this profile. The sixth profile was located N-S direction and the length about 575 m. Three layers were recognized from this profile. The direction of the seventh profile was N-S with a length of about 235 m. two different layers were recognized the top layer was unconsolidated alluvium. The profile number 8 was located N-S with length about 232 m. two layers were conducted from this profile. The direction of ninth profile was NW-SE with length about 565 m. two layers were conducted along this profile. The length of the tenth profile was 235 m and the direction was N-S. Two layers with a different velocities were detected along this profile. Profile number eleven was located SW-NE with length about 475 m. two layers were recognized from this profile. The length of the last profile was 375 m with direction SE-NW. Two layers were conducted from this profile. It was found that the shallow aquifers exist at a depths ranging from 4 to 19 m and the relatively deep aquifers from 24 to 60 m below the ground surface. Keywords: Vertical electrical sounding, Aqaba, Resistivity, Groundwater, Layer depth, Geoelectrical.

  9. Cenozoic variations in the South Atlantic carbonate saturation profile: Insights from the Walvis depth-transect (ODP Leg 208)

    NASA Astrophysics Data System (ADS)

    Schellenberg, S. A.; Nielsen, J. L.

    2004-12-01

    Ocean Drilling Program Leg 208 Science Party (D. Kroon, J. C. Zachos, P. Blum, J. Bowles, P. Gaillot, T. Hasegawa, E. C. Hawthorne, D. A. Hodell, D. C. Kelly, J. Jung, S. M. Keller, Y. Lee, D. C. Leuschner, Z. Liu, K. C. Lohmann, L. Lourens, S. Monechi, M. Nicolo, I. Raffi, C. Riesselman, U. Röhl, D. Schmidt, A. Sluijs, D. Thomas, E. Thomas, H. Vallius) Carbonate saturation profiles are complex and dynamic products of processes operating on temporospatial scales from the "short-term local" (e.g. carbonate export production) to the "long-term global" (e.g. carbonate-silicate weathering, shelf:basin carbonate partitioning). Established, if admittedly crude, proxies for reconstructing carbonate saturation from sediments include wt% carbonate, where values of 0-20% are typically attributed to deposition below the carbonate compensation depth (CCD), and planktonic foraminifer fragmentation, where enhanced fragmentation is typically attributed to deposition below the lysocline. Ocean Drilling Program Leg 208 successfully drilled a six-site Walvis Ridge depth-transect spanning modern water depths from 2,717 to 4,755 m. Exceptional core recovery, well-constrained biomagnetostratigraphy, and standard crustal subsidence corrections provide a working age-depth framework for contouring ship-board wt% carbonate determinations and identifying the following first-order features of the regional CCD: (1) >3.5 km position from 60-48 Ma punctuated by a major transient shoaling to <2 km during the Paleocene-Eocene Thermal Maximum at ˜55 Ma; (2) shoaling to ˜2.75 km from 48 to 44 Ma; (3) subsequent deepening to >4.25 km from 37 to 28 Ma; (4) marked high amplitude fluctuations from 28 to 20 Ma followed by deepening to >4.75 km; (5) transient shoaling to ˜4 km around 15 Ma followed by deepening to >4.75 km by ˜12 Ma. These first-order features are broadly congruent with classic Atlantic CCD reconstructions by van Andel (1975) and Berger and Roth (1975). A wealth of higher frequency variation in carbonate saturation is clearly preserved within the Leg 208 depth-transect. Ongoing shore-based analyses aim to transform cm-scale variations in core physical properties (i.e. magnetic susceptibility, color reflectance) into synthetic records of wt% carbonate. These data, combined with other proxies (e.g., planktonic foraminifer fragmentation, stable isotopes) and placed within the evolving post-cruise biomagnetostratigraphic and cyclostratigraphic age-model, will provide valuable constraints on cyclic and secular fluctuations in the South Atlantic carbonate saturation profile and their relation to other major components of the earth system (e.g. pCO2, eustacy).

  10. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.

    Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ 15N and δ 13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ~10 000 years. In multiple regression analyses, δ 15N and δ 13C correlated strongly with depth, plot location, C/N, %N, and each other. Correlations with %N, %C, C/N, and the other isotope accounted for 80 % of variance for δ 15N and 38 % of variance for δ 13C, reflecting N and C losses.more » In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ 15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ 13CO 2 since the Industrial Revolution) lowered δ 13C in recent surficial samples. High δ 15N from –35 to –5 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to –35 cm depth. High δ 13C at ~4000 years BP (–65 to –105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ 13C and high δ 15N at –213 and –225 cm (~8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. As a result, the above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ 13C patterns.« less

  11. Delineation of the North Anatolian Fault Within the Sapanca Lake and Correlation of Seismo-Turbidites With Major Earthquakes

    NASA Astrophysics Data System (ADS)

    Gulen, L.; Demirbağ, E.; Cagatay, M. N.; Yıldırım, E.; Yalamaz, B.

    2015-12-01

    Seismic reflection studies have been carried out in the Sapanca Lake to delineate the geometry of the North Anatolian Fault. A total of 28 N-S and 2 E-W trending seismic profiles were obtained. The interpretation of seismic reflection profiles have revealed that the North Anatolian Fault Zone exhibits a pull-apart fault geometry within the Sapanca Lake and the active fault segments have been mapped. A bathymetry map of the Sapanca Lake is also generated and the maximum depth is determined to be 54 m. A systematic study of the sedimentological, physical and geochemical properties of three up to 75.7 cm long water-sediment interface cores located along depth transects ranging from 43 to 5.1.5 m water depth. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Organic (TOC) and Total Inorganic carbon (TIC) analysis and Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The Sapanca Lake earthquake records are characterized by seismo-turbidites consisting of grey or dark grey coarse to fine sand and silty mud with a sharp basal and transitional upper boundaries. The units commonly show normal size grading with their basal parts showing high density and magnetic susceptibility and enrichment in one or more of elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the seismo-turbidites are correlated with the 1999 İzmit and Düzce (Mw=7.4 and 7.2), 1967 Mudurnu (Mw= 6.8), and 1957 Abant (Mw= 7.1) Earthquakes. Additionally a prominent Cs137 peak was found in the Sapanca Lake sediment cores at a depth of 12 cm. indicating that a radioactive fallout occurred in the region as a result of the 1986 Chernobyl Nuclear Power Plant accident in Ukraine.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coussy, Samuel; Grangeon, Sylvain; Bataillard, Philippe

    The prediction of the long term trace element mobility in anthropogenic soils would be a way to anticipate land management and should help in reusing slightly contaminated materials. In the present study, iron (Fe) and zinc (Zn) status evolution was investigated in a 100-year old Technosol. The site of investigation is an old brownfield located in the Nord-Pas-de-Calais region (France) which has not been reshaped since the beginning of the last century. The whole soil profile was sampled as a function of depth, and trace elements mobility at each depth was determined by batch leaching test. A specific focus onmore » Fe and Zn status was carried out by bulk analyses, such as selective dissolution, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Fe and Zn status in the profile samples was also studied using laterally resolved techniques such as μ-particle induced X-ray emission (μ-PIXE) and μ-Rutherford backscattering spectroscopy (μ-RBS). The results indicate that (i) Fe is mainly under Fe(III) form, except a minor contribution of Fe(II) in the deeper samples, (ii) some Fe species inherited from the past have been weathered and secondary minerals are constituted of metal-bearing sulphates and Fe (hydr)oxides, (iii) ferrihydrite is formed during pedogenesis (iv) 20 to 30% more Fe (hydr)oxides are present in the surface than in depth and (v) Zn has tetrahedral coordination and is sorbed to phases of increasing crystallinity when depth increases. Zn-bearing phases identified in the present study are: complex Fe, Mn, Zn sulphides, sulphates, organic matter, and ferrihydrite. Soil formation on such material does not induce a dramatic increase of Zn solubility since efficient scavengers are concomitantly formed in the system. However, Technosols are highly heterogeneous and widely differ from one place to another. The behavior examined in this study is not generic and will depend on the type of Technosol and on the secondary minerals formed as well as on the nature and amount of organic matter.« less

  13. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles

    NASA Astrophysics Data System (ADS)

    Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.; Iversen, Colleen M.; McFarlane, Karis J.; Thorp, Nathan R.; Hofmockel, Kirsten S.

    2017-05-01

    Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ15N and δ13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ˜ 10 000 years. In multiple regression analyses, δ15N and δ13C correlated strongly with depth, plot location, C / N, %N, and each other. Correlations with %N, %C, C / N, and the other isotope accounted for 80 % of variance for δ15N and 38 % of variance for δ13C, reflecting N and C losses. In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ13CO2 since the Industrial Revolution) lowered δ13C in recent surficial samples. High δ15N from -35 to -55 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to -35 cm depth. High δ13C at ˜ 4000 years BP (-65 to -105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ13C and high δ15N at -213 and -225 cm ( ˜ 8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. The above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ13C patterns.

  14. Long-term carbon and nitrogen dynamics at SPRUCE revealed through stable isotopes in peat profiles

    DOE PAGES

    Hobbie, Erik A.; Chen, Janet; Hanson, Paul J.; ...

    2017-05-17

    Peatlands encode information about past vegetation dynamics, climate, and microbial processes. Here, we used δ 15N and δ 13C patterns from 16 peat profiles to deduce how the biogeochemistry of the Marcell S1 forested bog in northern Minnesota responded to environmental and vegetation change over the past ~10 000 years. In multiple regression analyses, δ 15N and δ 13C correlated strongly with depth, plot location, C/N, %N, and each other. Correlations with %N, %C, C/N, and the other isotope accounted for 80 % of variance for δ 15N and 38 % of variance for δ 13C, reflecting N and C losses.more » In contrast, correlations with depth and topography (hummock or hollow) reflected peatland successional history and climate. Higher δ 15N in plots closer to uplands may reflect upland-derived DON inputs and accompanying shifts in N dynamics in the lagg drainage area surrounding the bog. The Suess effect (declining δ 13CO 2 since the Industrial Revolution) lowered δ 13C in recent surficial samples. High δ 15N from –35 to –5 cm probably indicated the depth of ectomycorrhizal activity after tree colonization of the peatland over the last 400 years, as confirmed by the occasional presence of wood down to –35 cm depth. High δ 13C at ~4000 years BP (–65 to –105 cm) could reflect a transition at that time to slower rates of peat accumulation, when 13C discrimination during peat decomposition may increase in importance. Low δ 13C and high δ 15N at –213 and –225 cm (~8500 years BP) corresponded to a warm period during a sedge-dominated rich fen stage. As a result, the above processes appear to be the primary drivers of the observed isotopic patterns, whereas there was no clear evidence for methane dynamics influencing δ 13C patterns.« less

  15. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi

    2016-06-01

    In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.

  16. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  17. Prevalence and Reliability of Phonological, Surface, and Mixed Profiles in Dyslexia: A Review of Studies Conducted in Languages Varying in Orthographic Depth

    ERIC Educational Resources Information Center

    Sprenger-Charolles, Liliane; Siegel, Linda S.; Jimenez, Juan E.; Ziegler, Johannes C.

    2011-01-01

    The influence of orthographic transparency on the prevalence of dyslexia subtypes was examined in a review of multiple-case studies conducted in languages differing in orthographic depth (English, French, and Spanish). Cross-language differences are found in the proportion of dissociated profiles as a function of the dependent variables (speed or…

  18. Automated X-ray quality control of catalytic converters

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2017-02-01

    Catalytic converters are devices attached to the exhaust system of automobile or other engines to eliminate or substantially reduce polluting emissions. They consist of coated substrates enclosed in a stainless steel housing. The substrate is typically made of ceramic honeycombs; however stainless steel foil honeycombs are also used. The coating is usually a slurry of alumina, silica, rare earth oxides and platinum group metals. The slurry also known as the wash coat is applied to the substrate in two doses, one on each end of the substrate; in some cases multiple layers of coating are applied. X-ray imaging is used to inspect the applied coating depth on a substrate to confirm compliance with quality requirements. Automated image analysis techniques are employed to measure the coating depth from the X-ray image. Coating depth is assessed by analysis of attenuation line profiles in the image. Edge detection algorithms with noise reduction and outlier rejection are used to calculate the coating depth at a specified point along an attenuation line profile. Quality control of the product is accomplished using several attenuation line profile regions for coating depth measurements, with individual pass or fail criteria specified for each region.

  19. Alkyl nitrate (C1-C3) depth profiles in the tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.

    2007-01-01

    This paper reports the first depth profile measurements of methyl, ethyl, isopropyl and n-propyl nitrates in the tropical Pacific Ocean. Depth profile measurements were made at 22 stations during the Project Halocarbon Air Sea Exchange cruise, in warm pool, equatorial, subequatorial, and gyre waters. The highest concentrations, up to several hundred pM of methyl nitrate, were observed in the central Pacific within 8 degrees of the equator. In general, alkyl nitrate levels were highest in the surface mixed layer, and decreased with depth below the mixed layer. The spatial distribution of the alkyl nitrates suggests that there is a strong source associated with biologically productive ocean regions, that is characterized by high ratios of methyl:ethyl nitrate. However, the data do not allow discrimination between direct biological emissions and photochemistry as production mechanisms. Alkyl nitrates were consistently detectable at several hundred meters depth. On the basis of the estimated chemical loss rate of these compounds, we conclude that deep water alkyl nitrates must be produced in situ. Possible sources include free radical processes initiated by radioactive decay or cosmic rays, enzymatically mediated reactions involving bacteria, or unidentified chemical mechanisms involving dissolved organic matter.

  20. Changes in prescribed doses for the Seattle neutron therapy system

    NASA Astrophysics Data System (ADS)

    Popescu, A.

    2008-06-01

    From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.

  1. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  2. Regional correlations of VS30 averaged over depths less than and greater than 30 meters

    USGS Publications Warehouse

    Boore, David M.; Thompson, Eric M.; Cadet, Héloïse

    2011-01-01

    Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (VS30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (VSz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that VSz is systematically larger for a given VSz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating VS30 to VSz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate VS30 from VSz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in logVS30 of ±1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to VS30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that VS30 is correlated with VSz for z as great as 400 m for sites of the KiK-net network, providing some justification for using VS30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.

  3. Use of Nitrogen-15 Isotope Method in Soils and Ground Water to Determine Potential Nitrogen Sources Affecting a Municipal Water Supply in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Townsend, M. A.; Macko, S. A.

    2004-12-01

    Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.

  4. Improved depth profiling with slow positrons of ion implantation-induced damage in silicon

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Akahane, T.

    2003-10-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been extensively applied to study defects in near-surface regions and buried interfaces, but there is an inherent limit for depth resolution due to broadening of the positron implantation profile. In order to overcome this limit and obtain optimum depth resolution, iterative chemical etching of the sample surface and VEPAS measurement are employed. This etch-and-measure technique is described in detail and the capabilities are illustrated by investigating the depth profile of defects in Si after B and P implantations with 2×1014/cm2 at 100 keV followed by annealing. Defect tails can be accurately examined and the extracted defect profile is proven to extend beyond the implanted ion range predicted by the Monte Carlo code TRIM. This behavior is more remarkable for P ion implantation than B, and the mass difference of the implanted ions is strongly related to it. No significant difference is recognized in the annealing behavior between B and P implantations. After annealing at 300 °C, the defect profile is hardly changed, but the ratio of the characteristic Doppler broadening, S, a parameter for defects, to that for the bulk Si rises by 0.01, indicating that divacancies, V2, are transformed into V4. Annealing at more than 500 °C causes diffusion of the defects toward the surface and positron traps are annealed out at 800 °C. It is proved that this resolution-enhanced VEPAS can eliminate some discrepancies in defect profiles extracted by conventional means.

  5. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  6. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  7. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  8. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    NASA Technical Reports Server (NTRS)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  9. GPR studies over the tsunami affected Karaikal beach, Tamil Nadu, south India

    NASA Astrophysics Data System (ADS)

    Loveson, V. J.; Gujar, A. R.; Barnwal, R.; Khare, Richa; Rajamanickam, G. V.

    2014-08-01

    In this study, results of GPR profiling related to mapping of subsurface sedimentary layers at tsunami affected Karaikal beach are presented . A 400 MHz antenna was used for profiling along 262 m stretch of transect from beach to backshore areas with penetration of about 2.0 m depth (50 ns two-way travel time). The velocity analysis was carried out to estimate the depth information along the GPR profile. Based on the significant changes in the reflection amplitude, three different zones are marked and the upper zone is noticed with less moisture compared to other two (saturated) zones. The water table is noticed to vary from 0.5 to 0.75 m depth (12-15 ns) as moving away from the coastline. Buried erosional surface is observed at 1.5 m depth (40-42 ns), which represents the limit up to which the extreme event acted upon. In other words, it is the depth to which the tsunami sediments have been piled up to about 1.5 m thickness. Three field test pits were made along the transect and sedimentary sequences were recorded. The sand layers, especially, heavy mineral layers, recorded in the test pits indicate a positive correlation with the amplitude and velocity changes in the GPR profile. Such interpretation seems to be difficult in the middle zone due to its water saturation condition. But it is fairly clear in the lower zone located just below the erosional surface where the strata is comparatively more compact. The inferences from the GPR profile thus provide a lucid insight to the subsurface sediment sequences of the tsunami sediments in the Karaikal beach.

  10. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam

    PubMed Central

    Terada, K.; Ninomiya, K.; Osawa, T.; Tachibana, S.; Miyake, Y.; Kubo, M. K.; Kawamura, N.; Higemoto, W.; Tsuchiyama, A.; Ebihara, M.; Uesugi, M.

    2014-01-01

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (106 s−1 for a momentum of 60 MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ− capture. Controlling muon momentum from 32.5 to 57.5 MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples. PMID:24861282

  11. A new X-ray fluorescence spectroscopy for extraterrestrial materials using a muon beam.

    PubMed

    Terada, K; Ninomiya, K; Osawa, T; Tachibana, S; Miyake, Y; Kubo, M K; Kawamura, N; Higemoto, W; Tsuchiyama, A; Ebihara, M; Uesugi, M

    2014-05-27

    The recent development of the intense pulsed muon source at J-PARC MUSE, Japan Proton Accelerator Research Complex/MUon Science Establishment (10(6) s(-1) for a momentum of 60 MeV/c), enabled us to pioneer a new frontier in analytical sciences. Here, we report a non-destructive elemental analysis using µ(-) capture. Controlling muon momentum from 32.5 to 57.5 MeV/c, we successfully demonstrate a depth-profile analysis of light elements (B, C, N, and O) from several mm-thick layered materials and non-destructive bulk analyses of meteorites containing organic materials. Muon beam analysis, enabling a bulk analysis of light to heavy elements without severe radioactivation, is a unique analytical method complementary to other non-destructive analyses. Furthermore, this technology can be used as a powerful tool to identify the content and distribution of organic components in future asteroidal return samples.

  12. Modelling of an Orthovoltage X-ray Therapy Unit with the EGSnrc Monte Carlo Package

    NASA Astrophysics Data System (ADS)

    Knöös, Tommy; Rosenschöld, Per Munck Af; Wieslander, Elinore

    2007-06-01

    Simulations with the EGSnrc code package of an orthovoltage x-ray machine have been performed. The BEAMnrc code was used to transport electrons, produce x-ray photons in the target and transport of these through the treatment machine down to the exit level of the applicator. Further transport in water or CT based phantoms was facilitated by the DOSXYZnrc code. Phase space files were scored with BEAMnrc and analysed regarding the energy spectra at the end of the applicator. Tuning of simulation parameters was based on the half-value layer quantity for the beams in either Al or Cu. Calculated depth dose and profile curves have been compared against measurements and show good agreement except at shallow depths. The MC model tested in this study can be used for various dosimetric studies as well as generating a library of typical treatment cases that can serve as both educational material and guidance in the clinical practice

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmedzhanov, I M; Kibalov, D S; Smirnov, V K

    We report a detailed numerical simulation of the reflection of visible light from a sub-wavelength grating with a rectangular profile on the silicon surface. Simulation is carried out by the effective refractive index method and rigorous coupled-wave analysis. The dependences of the reflectance on the grating depth, fill factor and angle of incidence for TE and TM polarisations are obtained and analysed. Good agreement between the results obtained by the two methods for grating periods of ∼100 nm is found. The possibility of reducing the polarised light reflectance to about 1% by adjusting the depth and the grating fill factormore » is demonstrated. The characteristics of the Brewster effect manifestation (pseudo-Brewster angle) in the system under study are considered. The possibility of the pseudo-Brewster angle existence and its absence for both polarisations of the incident light is shown as a function of the parameters of a rectangular nanostructure on the surface. (laser applications and other topics in quantum electronics)« less

  14. Land management effects on soil carbon in olive groves of Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Fernández-Romero, Maria Luisa; Parras-Alcántara, Luis; Lozano-García, Beatriz; Clark, Joanna; Collins, Chris

    2015-04-01

    The study analysed soil organic carbon (SOC) and hot-water extractable carbon (HWC) in an agricultural Mediterranean area of Southern Spain under different land management: Conventional tillage (CT); Conventional tillage with the addition of oil mill waste, also known as alperujo (A); Conventional tillage with the addition of oil mill waste olive leaves (L); No tillage with chipped pruned branches (NT1); and No tillage with chipped pruned branches and weeds (NT2). SOC values in CT, A, NT1 and NT2 decreased with depth. In L, SOC also decreased with depth, although there was an increase of 89% from the first (0-10 cm) to the second horizon (10-16 cm). Total SOC stock (considering the entire soil profile) was very similar under A (101.9 Mg ha-1), CT (101.7 Mg ha-1), NT1 (105.8 Mg ha-1) and NT2 (111.3 Mg ha-1). However, SOC under L was significantly higher (p

  15. Root architecture and wind-firmness of mature Pinus pinaster.

    PubMed

    Danjon, Frédéric; Fourcaud, Thierry; Bert, Didier

    2005-11-01

    This study aims to link three-dimensional coarse root architecture to tree stability in mature timber trees with an average of 1-m rooting depth. Undamaged and uprooted trees were sampled in a stand damaged by a storm. Root architecture was measured by three-dimensional (3-D) digitizing. The distribution of root volume by root type and in wind-oriented sectors was analysed. Mature Pinus pinaster root systems were organized in a rigid 'cage' composed of a taproot, the zone of rapid taper of horizontal surface roots and numerous sinkers and deep roots, imprisoning a large mass of soil and guyed by long horizontal surface roots. Key compartments for stability exhibited strong selective leeward or windward reinforcement. Uprooted trees showed a lower cage volume, a larger proportion of oblique and intermediate depth horizontal roots and less wind-oriented root reinforcement. Pinus pinaster stability on moderately deep soils is optimized through a typical rooting pattern and a considerable structural adaptation to the prevailing wind and soil profile.

  16. Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.

    1977-01-01

    Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.

  17. Soil characteristics and fallout and environmental radionuclides on different geomorphological features in Elephant Island for assessing environmental changes in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Serrano, Enrique; López-Martínez, Jerónimo; Gaspar, Leticia; Mink, Sandra

    2013-04-01

    Soils in ice-free areas of Elephant Island (South Shetland Islands, Antarctic Peninsula region) have been forming since the last deglaciation in an Antarctic maritime climate that is warmer and more humid than in interior Antarctica. The studied ice-free areas correspond mostly to coastal promontories and the underlain materials are composed of metamorphic rocks. A soil survey was carried out in the largest ice-free areas at the western coast of the island at Stinker Point and Lindsey Cape, as a part of a broader study on soils and geomorphology in maritime Antarctica. A soil sampling campaign was undertaken with the aim of characterizing soils developed on different geomorphic features and to investigate the processes involved in their development following the glacial retreat, that started in the area probably later than 4000 yr BP. Study sites have glacial deposits and raised marine surfaces and they include areas with different mosses and lichens coverage. Profiles were located at altitudes ranging from 30 to 90 m a.s.l. at Stinker Point and at 140 m a.s.l. at Lindsey Cape. A total of 8 soil profiles of variable depths were sampled at depth increment intervals of 5 cm until rock outcrop (15-30 cm). Distinctive geomorphic features have been described at the study sites to assess the extent of the relationship between soil characteristics and geomorphology. The main soil properties analysed were: pH, electrical conductivity, carbonate content, bulk density, soil texture and soil fertility indicators (organic matter and soil organic carbon content, nitrogen, available phosphorous and potassium). Analyses of stable elements and activities of fallout (FRN's) and environmental radionuclides (ERN's) were also performed in the interval samples. The studied Cryosols are stony with no clear horizon differentiation and the soil texture is mostly silty loam. The soils have in general low contents of organic matter (0.3-2.7 %), carbon (0.16 - 1.6 %) and nitrogen (< 0.33 %). Available K and P contents and N vary largely among the profiles in relation to ornithogenic activity. Carbonate contents are very low (< 1.0 %) and average electrical conductivity is 0.14 dS m-1. The pH ranges between 3.9 and 8.6 and variation from acid to alkaline profiles is related to the profile position. The major elements Al, Fe, Ca and Na, were the most abundant in that order, followed by Mg, K, Mn and then Pb, Ba and Sr whereas Cr, Zn, Li, Co, Ni and Cd are present as trace elements. In two profiles on intermediate marine platforms, the FRN's concentrate at the topsoil, where 137Cs and 210Pbex activities are 11 and 20 Bq/kg, respectively. The depth distribution of ERN's is quite homogeneous, especially for 226Ra and 232Th activities, whereas larger variations are observed for 40K and to less extent for 238U. The absence of 137Cs and depleted levels of 210Pbexin soils on till materials of moraines is likely related to the age of ice retreat but soil disturbance can not be disregarded. Cryogenic processes triggering the mechanical disintegration of bedrock by freezing-thaw cycles within the soil active layer and wetting-drying are main processes involved in soil development in Elephant Island. This research provides information on past environmental changes of interest to understand the soil response to actual changes.

  18. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

  19. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  20. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  1. Intensity-corrected Herschel Observations of Nearby Isolated Low-mass Clouds

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Keto, Eric; Bourke, Tyler L.; Dunham, Michael M.; Myers, Philip C.; Stephens, Ian W.; Di Francesco, James; Webb, Kristi; Stutz, Amelia M.; Launhardt, Ralf; Tobin, John J.

    2018-01-01

    We present intensity-corrected Herschel maps at 100, 160, 250, 350, and 500 μm for 56 isolated low-mass clouds. We determine the zero-point corrections for Herschel Photodetector Array Camera and Spectrometer (PACS) and Spectral Photometric Imaging Receiver (SPIRE) maps from the Herschel Science Archive (HSA) using Planck data. Since these HSA maps are small, we cannot correct them using typical methods. Here we introduce a technique to measure the zero-point corrections for small Herschel maps. We use radial profiles to identify offsets between the observed HSA intensities and the expected intensities from Planck. Most clouds have reliable offset measurements with this technique. In addition, we find that roughly half of the clouds have underestimated HSA-SPIRE intensities in their outer envelopes relative to Planck, even though the HSA-SPIRE maps were previously zero-point corrected. Using our technique, we produce corrected Herschel intensity maps for all 56 clouds and determine their line-of-sight average dust temperatures and optical depths from modified blackbody fits. The clouds have typical temperatures of ∼14–20 K and optical depths of ∼10‑5–10‑3. Across the whole sample, we find an anticorrelation between temperature and optical depth. We also find lower temperatures than what was measured in previous Herschel studies, which subtracted out a background level from their intensity maps to circumvent the zero-point correction. Accurate Herschel observations of clouds are key to obtaining accurate density and temperature profiles. To make such future analyses possible, intensity-corrected maps for all 56 clouds are publicly available in the electronic version. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. TOF-SIMS Analysis of Red Color Inks of Writing and Printing Tools on Questioned Documents.

    PubMed

    Lee, Jihye; Nam, Yun Sik; Min, Jisook; Lee, Kang-Bong; Lee, Yeonhee

    2016-05-01

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established surface technique that provides both elemental and molecular information from several monolayers of a sample surface while also allowing depth profiling or image mapping to be performed. Static TOF-SIMS with improved performances has expanded the application of TOF-SIMS to the study of a variety of organic, polymeric, biological, archaeological, and forensic materials. In forensic investigation, the use of a minimal sample for the analysis is preferable. Although the TOF-SIMS technique is destructive, the probing beams have microsized diameters so that only small portion of the questioned sample is necessary for the analysis, leaving the rest available for other analyses. In this study, TOF-SIMS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were applied to the analysis of several different pen inks, red sealing inks, and printed patterns on paper. The overlapping areas of ballpoint pen writing, red seal stamping, and laser printing in a document were investigated to identify the sequence of recording. The sequence relations for various cases were determined from the TOF-SIMS mapping image and the depth profile. TOF-SIMS images were also used to investigate numbers or characters altered with two different red pens. TOF-SIMS was successfully used to determine the sequence of intersecting lines and the forged numbers on the paper. © 2016 American Academy of Forensic Sciences.

  3. Anomalies of the upper water column in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rivetti, Irene; Boero, Ferdinando; Fraschetti, Simonetta; Zambianchi, Enrico; Lionello, Piero

    2017-04-01

    The evolution of the upper water column in the Mediterranean Sea during more than 60 years is reconstructed in terms of few parameters describing the mixed layer and the seasonal thermocline. The analysis covers the period 1945-2011 using data from three public sources: MEDAR-MEDATLAS, World Ocean Database, MFS-VOS program. Five procedures for estimating the mixed layer depth are described, discussed and compared using the 20-year long time series of temperature profiles of the DYFAMED station in the Ligurian Sea. On this basis the so-called three segments profile model (which approximates the upper water column with three segments representing mixed layer, thermocline and deep layer) has been selected for a systematic analysis at Mediterranean scale. A widespread increase of the thickness and temperature of the mixed layer, increase of the depth and decrease of the temperature of the thermocline base have been observed in summer and autumn during the recent decades. It is shown that positive temperature extremes of the mixed layer and of its thickness are potential drivers of the mass mortalities of benthic invertebrates documented since 1983. Hotspots of mixed layer anomalies have been also identified. These results refine previous analyses showing that ongoing and future warming of upper Mediterranean is likely to increase mass mortalities by producing environmental conditions beyond the limit of tolerance of some benthic species.

  4. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Högström, Jonas; Fredriksson, Wendy; Edstrom, Kristina; Björefors, Fredrik; Nyholm, Leif; Olsson, Claes-Olof A.

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H2SO4 and acetic acid diluted with 0.02 M Na2B4O7 · 10H2O and 1 M H2O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  5. Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method

    NASA Astrophysics Data System (ADS)

    Salem, Ahmed; Green, Chris; Ravat, Dhananjay; Singh, Kumar Hemant; East, Paul; Fairhead, J. Derek; Mogren, Saad; Biegert, Ed

    2014-06-01

    The central Red Sea rift is considered to be an embryonic ocean. It is characterised by high heat flow, with more than 90% of the heat flow measurements exceeding the world mean and high values extending to the coasts - providing good prospects for geothermal energy resources. In this study, we aim to map the depth to the Curie isotherm (580 °C) in the central Red Sea based on magnetic data. A modified spectral analysis technique, the “de-fractal spectral depth method” is developed and used to estimate the top and bottom boundaries of the magnetised layer. We use a mathematical relationship between the observed power spectrum due to fractal magnetisation and an equivalent random magnetisation power spectrum. The de-fractal approach removes the effect of fractal magnetisation from the observed power spectrum and estimates the parameters of depth to top and depth to bottom of the magnetised layer using iterative forward modelling of the power spectrum. We applied the de-fractal approach to 12 windows of magnetic data along a profile across the central Red Sea from onshore Sudan to onshore Saudi Arabia. The results indicate variable magnetic bottom depths ranging from 8.4 km in the rift axis to about 18.9 km in the marginal areas. Comparison of these depths with published Moho depths, based on seismic refraction constrained 3D inversion of gravity data, showed that the magnetic bottom in the rift area corresponds closely to the Moho, whereas in the margins it is considerably shallower than the Moho. Forward modelling of heat flow data suggests that depth to the Curie isotherm in the centre of the rift is also close to the Moho depth. Thus Curie isotherm depths estimated from magnetic data may well be imaging the depth to the Curie temperature along the whole profile. Geotherms constrained by the interpreted Curie isotherm depths have subsequently been calculated at three points across the rift - indicating the variation in the likely temperature profile with depth.

  6. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    PubMed

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  7. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As films as probed by polarized neutron and x-ray reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  8. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As as probed with neutron & x-ray reflectivfity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  9. On the temperature dependence of Na migration in thin SiO 2 films during ToF-SIMS O 2+ depth profiling

    NASA Astrophysics Data System (ADS)

    Krivec, Stefan; Detzel, Thomas; Buchmayr, Michael; Hutter, Herbert

    2010-10-01

    The detection of Na in insulating samples by means of time of flight-secondary ion mass spectrometry (ToF-SIMS) depth profiling has always been a challenge. In particular the use of O 2+ as sputter species causes a severe artifact in the Na depth distribution due to Na migration under the influence of an internal electrical filed. In this paper we address the influence of the sample temperature on this artifact. It is shown that the transport of Na is a dynamic process in concordance with the proceeding sputter front. Low temperatures mitigated the migration process by reducing the Na mobility in the target. In the course of this work two sample types have been investigated: (i) A Na doped PMMA layer, deposited on a thin SiO 2 film. Here, the incorporation behavior of Na into SiO 2 during depth profiling is demonstrated. (ii) Na implanted into a thin SiO 2 film. By this sample type the migration behavior could be examined when defects, originating from the implantation process, are present in the SiO 2 target. In addition, we propose an approach for the evaluation of an implanted Na profile, which is unaffected by the migration process.

  10. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    PubMed

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  11. pCO2 Observations from a Vertical Profiler on the upper continental slope off Vancouver Island: Physical controls on biogeochemical processes.

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.

    2016-02-01

    We analyse two six month sets of data collected from a vertical profiler on Ocean Networks Canada's NEPTUNE observatory over the summer and early fall of 2012 and 2014. The profiler is in 400 m of water on the upper slope of the continental shelf. The site is away from direct influence of canyons, but is in a region of strong internal tide generation. Both seasonally varying semidiurnal internal tidal currents and diurnal shelf waves are observed. The near surface mean flow is weak and seasonally alternates between the California and Alaskan Currents. Mid-depth waters are influenced by the poleward flowing Californian undercurrent and the deep waters by seasonally varying wind-driven Ekman transport. The profiling package consists of a CTD, an oxygen optode, a pCO2 sensor, Chlorophyll fluorometer/turbidity, CDOM and is co-located with an upward-looking bottom-mounted 75kHz ADCP that measures currents to 30 m below sea surface. With these first deep-sea profiled time series measurements of pCO2, we endeavor to model how the local physical dynamics exert control over the variability of water properties over the slope and shelf and what the variability of the non-conservative tracers of pCO2 and O2 can tell us about the biogeochemistry of the region.

  12. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-01-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  13. Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site

    NASA Astrophysics Data System (ADS)

    Boisson, A.; Guihéneuf, N.; Perrin, J.; Bour, O.; Dewandel, B.; Dausse, A.; Viossanges, M.; Ahmed, S.; Maréchal, J. C.

    2015-02-01

    Due to extensive irrigation, most crystalline aquifers of south India are overexploited. Aquifer structure consists of an upper weathered saprolite followed by a fractured zone whose fracture density decreases with depth. To achieve sustainable management, the evolution of hydrodynamic parameters (transmissivity and storage coefficient) by depth in the south Indian context should be quantified. Falling-head borehole permeameter tests, injection tests, flowmeter profiles, single-packer tests and pumping tests were carried out in the unsaturated saprolite and saturated fractured granite. Results show that the saprolite is poorly transmissive (T fs = 3 × 10-7 to 8.5 × 10-8 m2 s-1) and that the most conductive part of the aquifer corresponds to the bottom of the saprolite and the upper part of the fractured rock (T = 1.0 × 10-3 to 7.0 × 10-4 m2 s-1). The transmissivity along the profile is mostly controlled by two distinct conductive zones without apparent vertical hydraulic connection. The transmissivity and storage coefficient both decrease with depth depending on the saturation of the main fracture zones, and boreholes are not exploitable after a certain depth (27.5 m on the investigated section). The numerous investigations performed allow a complete quantification with depth of the hydrodynamic parameters along the weathering profile, and a conceptual model is presented. Hydrograph observations (4 years) are shown to be relevant as a first-order characterization of the media and diffusivity evolution with depth. The evolution of these hydrodynamic parameters along the profile has a great impact on groundwater prospecting, exploitation and transport properties in such crystalline rock aquifers.

  14. Mars Sample Return: The Value of Depth Profiles

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.; hide

    2008-01-01

    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.

  15. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    NASA Astrophysics Data System (ADS)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. < 1 m) regolith stratigraphy. The geophysics included: ground penetrating radar collected at a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo-registration, depth correction, etc.) each geophysical profile was evaluated by matching the core data. Applying traditional geophysical techniques, the best profiles were inverted using the core data creating two-dimensional (2-D) stratigraphic regolith models for each transect, and evaluated using independent validation. Next, in a test of an alternative method borrowed from digital soil mapping, the best preprocessed geophysical profiles were co-registered and stratigraphic models for each property created using multivariate environmental correlation. After independent validation, the qualities of the latest models were compared to the traditionally derived 2-D inverted models. Finally, the best overall stratigraphic models were used in conjunction with local environmental data (e.g. geology, geochemistry, terrain, soils) to create conceptual regolith hillslope models for each transect highlighting important features and processes, e.g. morphology, hydropedology and weathering characteristics. Results are presented with recommendations regarding the use of geophysics in modelling regolith stratigraphy at fine scales.

  16. The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: An extension of the Plankton Ecology Group (PEG) model

    USGS Publications Warehouse

    Brentrup, Jennifer A.; Williamson, Craig E.; Colom-Montero, William; Eckert, Werner; de Eyto, Elvira; Grossart, Hans-Peter; Huot, Yannick; Isles, Peter D. F.; Knoll, Lesley B.; Leach, Taylor H.; McBride, Christopher G.; Pierson, Don; Pomati, Francesco; Read, Jordan S.; Rose, Kevin C.; Samal, Nihar R.; Staehr, Peter A.; Winslow, Luke A.

    2016-01-01

    The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model’s proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.

  17. Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    2007-11-01

    Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.

  18. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    NASA Astrophysics Data System (ADS)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  19. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi

    2018-02-01

    Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.

  20. A comparison of upper mantle subcontinental electrical conductivity for North America, Europe, and Asia.

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1986-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq), separated for the N American, European, Central Asian and E Asian regions, were used to determine conductivity profiles to depths of about 600km by the Schmucker equivalent-substitute conductor method. All 3 regions showed a roughly exponential increase of conductivity with depth. Distinct discontinuities seemed to be evident near 255-300km and near 450-600km. Regional differences in the conductivity profiles were shown by the functional fittings to the data. For depths less than about 275km, the N American conductivities seemed to be significantly higher than the other regions. For depths greater than about 300km, the E Asian conductivities were largest. -Authors

  1. Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean.

    PubMed

    Gamo, Toshitaka; Shitashima, Kiminori

    2018-01-01

    Vertical profiles of potential temperature, salinity, and some chemical components were obtained at a trench station (29°05'N, 142°51'E; depth = 9768 m) in the Izu-Ogasawara (Bonin) Trench in 1984 and 1994 to characterize the hadal waters below ∼6000 m depth. We compared portions of both the 1984 and 1994 profiles with nearby data obtained between 1976 and 2013. Results demonstrated that the hadal waters had slightly higher potential temperature and nitrate and lower dissolved oxygen than waters at sill depths (∼6000 m) outside the trench, probably due to the effective accumulation of geothermal heat and active biological processes inside the trench. The silicate, iron, and manganese profiles in 1984 showed slight but significant increases below ∼6000 m depth, suggesting that these components may have been intermittently supplied from the trench bottom. Significant amounts of 222 Rn in excess over 226 Ra were detected in the hadal waters up to 2675 m from the bottom, reflecting laterally supplied 222 Rn from the trench walls.

  2. Observational needs for estimating Alaskan soil carbon stocks under current and future climate

    DOE PAGES

    Vitharana, U. W. A.; Mishra, U.; Jastrow, J. D.; ...

    2017-01-24

    Representing land surface spatial heterogeneity when designing observation networks is a critical scientific challenge. Here we present a geospatial approach that utilizes the multivariate spatial heterogeneity of soil-forming factors—namely, climate, topography, land cover types, and surficial geology—to identify observation sites to improve soil organic carbon (SOC) stock estimates across the State of Alaska, USA. Standard deviations in existing SOC samples indicated that 657, 870, and 906 randomly distributed pedons would be required to quantify the average SOC stocks for 0–1 m, 0–2 m, and whole-profile depths, respectively, at a confidence interval of 5 kg C m -2. Using the spatialmore » correlation range of existing SOC samples, we identified that 309, 446, and 484 new observation sites are needed to estimate current SOC stocks to 1 m, 2 m, and whole-profile depths, respectively. We also investigated whether the identified sites might change under future climate by using eight decadal (2020–2099) projections of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change. These analyses determined that 12 to 41 additional sites (906 + 12 to 41; depending upon the emission scenarios) would be needed to capture the impact of future climate on Alaskan whole-profile SOC stocks by 2100. The identified observation sites represent spatially distributed locations across Alaska that captures the multivariate heterogeneity of soil-forming factors under current and future climatic conditions. This information is needed for designing monitoring networks and benchmarking of Earth system model results.« less

  3. Observational needs for estimating Alaskan soil carbon stocks under current and future climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitharana, U. W. A.; Mishra, U.; Jastrow, J. D.

    Representing land surface spatial heterogeneity when designing observation networks is a critical scientific challenge. Here we present a geospatial approach that utilizes the multivariate spatial heterogeneity of soil-forming factors—namely, climate, topography, land cover types, and surficial geology—to identify observation sites to improve soil organic carbon (SOC) stock estimates across the State of Alaska, USA. Standard deviations in existing SOC samples indicated that 657, 870, and 906 randomly distributed pedons would be required to quantify the average SOC stocks for 0–1 m, 0–2 m, and whole-profile depths, respectively, at a confidence interval of 5 kg C m -2. Using the spatialmore » correlation range of existing SOC samples, we identified that 309, 446, and 484 new observation sites are needed to estimate current SOC stocks to 1 m, 2 m, and whole-profile depths, respectively. We also investigated whether the identified sites might change under future climate by using eight decadal (2020–2099) projections of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change. These analyses determined that 12 to 41 additional sites (906 + 12 to 41; depending upon the emission scenarios) would be needed to capture the impact of future climate on Alaskan whole-profile SOC stocks by 2100. The identified observation sites represent spatially distributed locations across Alaska that captures the multivariate heterogeneity of soil-forming factors under current and future climatic conditions. This information is needed for designing monitoring networks and benchmarking of Earth system model results.« less

  4. ACE-Asia Aerosol Optical Depth and Water Vapor Measured by Airborne Sunphotometers and Related to Other Measurements and Calculations

    NASA Technical Reports Server (NTRS)

    Livingston, John M.; Russell, P. B.; Schmid, B.; Redemann, J.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hegg, D.; Pilewskie, P.; Anderson, T.; hide

    2001-01-01

    In the Spring 2001 phase of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated on 15 of the 19 research flights of the NCAR C-130, while its 14-channel counterpart (AATS- 14) flew successfully on all 18 research flights of the CIRPAS Twin Otter. ACE-Asia studied aerosol outflow from the Asian continent to the Pacific basin. It was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. AATS-6 and AATS-14 measured solar beam transmission at 6 and 14 wavelengths (380-1021 and 354-1558 nm, respectively), yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction spectra and water vapor concentration. The wavelength dependence of these AOD and extinction spectra indicates that supermicron dust was often a major component of the ACE-Asia aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in AATS- 14 profiles analyzed to date, 36% of full-column AOD at 525 nm was above 3 km. In contrast, only 10% of CWV was above 3 km. Analyses and applications of AATS-6 and AATS-14 data to date include comparisons to (i) extinction products derived using in situ measurements, (ii) extinction profiles derived from lidar measurements, and (iii) AOD retrievals from the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite. Other planned collaborative studies include comparisons to results from size spectrometers, chemical measurements, other satellite sensors, flux radiometers, and chemical transport models. Early results of these studies will be presented.

  5. The stable isotope composition of halite and sulfate of hyperarid soils and its relation to aqueous transport

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo

    2012-12-01

    Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.

  6. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    The basic mechanism associated with the photovoltaic phenomena observed in the R.F. sputtered BaTiO3/silicon system is presented. Series of measurements of short circuit photocurrents and open circuit photovoltage were made. The composition depth profiles and the interface characteristics of the BaTiO3/silicon system were investigated for a better understanding of the electronic properties. A Scanning Auger Microprobe combined with ion in depth profiling were used.

  7. Auger compositional depth profiling of the metal contact-TlBr interface

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.

    2015-08-01

    Degradation of room temperature operation of TlBr radiation detectors with time is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. Scanning Auger electron spectroscopy (AES) in combination with sputter depth profiling was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage and create a TlBr1-xClx surface layer prior to metal contact deposition. Auger compositional depth profiling results reveal non-equilibrium interfacial diffusion after device operation in both air and N2 at ambient temperature. These results improve our understanding of contact/device degradation versus operating environment for further enhancing radiation detector performance.

  8. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel; Edström, Kristina

    2015-10-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase. Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.

  9. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  10. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-01

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  11. Surface influence upon vertical profiles in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  12. Nondestructive depth profile of the chemical state of ultrathin Al2O3/Si interface

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Oh, S.-J.

    2004-05-01

    We investigated a depth profile of the chemical states of an Al2O3/Si interface using nondestructive photon energy-dependent high-resolution x-ray photoelectron spectroscopy (HRXPS). The Si 2p binding energy, attributed to the oxide interfacial layer (OIL), was found to shift from 102.1 eV to 102.9 eV as the OIL region closer to Al2O3 layer was sampled, while the Al 2p binding energy remains the same. This fact strongly suggests that the chemical state of the interfacial layer is not Al silicate as previously believed. We instead propose from the HRXPS of Al 2p and Si 2p depth-profile studies that the chemical states of the Al2O3/Si interface mainly consist of SiO2 and Si2O3.

  13. Studying Degradation in Lithium-Ion Batteries by Depth Profiling with Lithium-Nuclear Reaction Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, Adam

    Lithium ion batteries (LIBs) are secondary (rechargeable) energy storage devices that lose the ability to store charge, or degrade, with time. This charge capacity loss stems from unwanted reactions such as the continual growth of the solid electrolyte interphase (SEI) layer on the negative carbonaceous electrode. Parasitic reactions consume mobile lithium, the byproducts of which deposit as SEI layer. Introducing various electrolyte additives and coatings on the positive electrode reduce the rate of SEI growth and lead to improved calendar lifetimes of LIBs respectively. There has been substantial work both electrochemically monitoring and computationally modeling the development of the SEI layer. Additionally, a plethora of spectroscopic techniques have been employed in an attempt to characterize the components of the SEI layer. Despite lithium being the charge carrier in LIBs, depth profiles of lithium in the SEI are few. Moreover, accurate depth profiles relating capacity loss to lithium in the SEI are virtually non-existent. Better quantification of immobilized lithium would lead to improved understanding of the mechanisms of capacity loss and allow for computational and electrochemical models dependent on true materials states. A method by which to prepare low variability, high energy density electrochemical cells for depth profiling with the non-destructive technique, lithium nuclear reaction analysis (Li-NRA), is presented here. Due to the unique and largely non-destructive nature of Li-NRA we are able to perform repeated measurement on the same sample and evaluate the variability of the technique. By using low variability electrochemical cells along with this precise spectroscopic technique, we are able to confidently report trends of lithium concentration while controlling variables such as charge state, age and electrolyte composition. Conversion of gamma intensity versus beam energy, rendered by NRA, to Li concentration as a function of depth requires calibration and modeling of the nuclear stopping power of the substrate (electrode material). A methodology to accurately convert characteristic gamma intensity versus beam energy raw data to Li % as a function of depth is presented. Depth profiles are performed on the electrodes of commercial LIBs charged to different states of charge and aged to different states of health. In-lab created Li-ion cells are prepared with different electrolytes and then depth profiled by Li-NRA. It was found lithium accumulates within the solid electrolyte interphase (SEI) layer with the square root of time, consistent with previous reports. When vinylene carbonate (VC) is introduced to electrolyte lithium accumulates at a rapidly reduced rate as compared to cells containing ethylene carbonte (EC). Additionally, lithium concentration within the positive electrode surface was observed to decrease linearly with time independent of electrolyte tested. Future experiments to be conducted to finish the work and the underpinnings of a materials based capacity loss model are proposed.

  14. Unifying dose specification between clinical BNCT centers in the Americas.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Kiger, W S; González, S J; Casal, M R; Longhino, J; Larrieu, O A Calzetta; Blaumann, H R

    2008-04-01

    A dosimetry intercomparison between the boron neutron capture therapy groups of the Massachusetts Institute of Technology (MIT) and the Comisión Nacional de Energía Atómica (CNEA), Argentina was performed to enable combined analyses of NCT patient data between the different centers. In-air and dose versus depth measurements in a rectangular water phantom were performed at the hyperthermal neutron beam facility of the RA-6 reactor, Bariloche. Calculated dose profiles from the CNEA treatment planning system NCTPlan that were calibrated against in-house measurements required normalizations of 1.0 (thermal neutrons), 1.13 (photons), and 0.74 (fast neutrons) to match the dosimetry of MIT.

  15. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  16. Depth Profile of Induced Magnetic Polarization in Cu Layers of Co/Cu(111) Metallic Superlattices by Resonant X-ray Magnetic Scattering at the Cu K Absorption Edge

    NASA Astrophysics Data System (ADS)

    Uegaki, Shin; Yoshida, Akihiro; Hosoito, Nobuyoshi

    2015-03-01

    We investigated induced spin polarization of 4p conduction electrons in Cu layers of antiferromagnetically (AFM) and ferromagnetically (FM) coupled Co/Cu(111) metallic superlattices by resonant X-ray magnetic scattering at the Cu K absorption edge. Magnetic reflectivity profiles of the two superlattices were measured in the magnetic saturation state with circularly polarized synchrotron radiation X-rays at 8985 eV. Depth profiles of the resonant magnetic scattering length of Cu, which corresponds to the induced spin polarization of Cu, were evaluated in the two Co/Cu superlattices by analyzing the observed magnetic reflectivity profiles. We demonstrated that the spin polarization induced in the Cu layer was distributed around the Co/Cu interfaces with an attenuation length of several Å in both AFM and FM coupled superlattices. The uniform component, which exists in Au layers of Fe/Au(001) superlattices, was not found in the depth distribution of induced magnetic polarization in the Cu layers of Co/Cu(111) superlattices.

  17. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  18. Microbial community changes as a possible factor controlling carbon sequestration in subsoil

    NASA Astrophysics Data System (ADS)

    Strücker, Juliane; Jörgensen, Rainer Georg

    2015-04-01

    In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.

  19. {sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jull, A.J.T.; Cloudt, S.; Donahue, D.J.

    1998-09-01

    Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C weremore » observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.« less

  20. Using Uranium-series isotopes to understand processes of rapid soil formation in tropical volcanic settings: an example from Basse-Terre, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2015-04-01

    Lin Ma1, Yvette Pereyra1, Peter B Sak2, Jerome Gaillardet3, Heather L Buss4 and Susan L Brantley5, (1) University of Texas at El Paso, El Paso, TX, United States, (2) Dickinson College, Carlisle, PA, United States, (3) Institute de Physique d Globe Paris, Paris, France, (4) University of Bristol, Bristol, United Kingdom, (5) Pennsylvania State University Main Campus, University Park, PA, United States Uranium-series isotopes fractionate during chemical weathering and their activity ratios can be used to determine timescales and rates of soil formation. Such soil formation rates provide important information to understand processes related to rapid soil formation in tropical volcanic settings, especially with respect to their fertility and erosion. Recent studies also highlighted the use of U-series isotopes to trace and quantify atmospheric inputs to surface soils. Such a process is particularly important in providing mineral nutrients to ecosystems in highly depleted soil systems such as the tropical soils. Here, we report U-series isotope compositions in thick soil profiles (>10 m) developed on andesitic pyroclastic flows in Basse-Terre Island of French Guadeloupe. Field observations have shown heterogeneity in color and texture in these thick profiles. However, major element chemistry and mineralogy show some general depth trends. The main minerals present throughout the soil profile are halloysite and gibbsite. Chemically immobile elements such as Al, Fe, and Ti show a depletion profile relative to Th while elements such as K, Mn, and Si show a partial depletion profile at depth. Mobile elements such as Ca, Mg, and Sr have undergone intensive weathering at depths, and an addition profile near the surface, most likely related to atmospheric inputs. (238U/232Th) activity ratios in one soil profile from the Brad David watershed in this study ranged from 0.374 to 1.696, while the (230Th/232Th) ratios ranged from 0.367 to 1.701. A decrease of (238U/232Th) in the deep soil profile depth is observed, and then an increase to the surface. The (230Th /232Th) ratios showed a similar trend as (238U/232Th). Marine aerosols and atmospheric dust from the Sahara region are most likely responsible for the addition of U in shallow soils. Intensive chemical weathering is responsible for the loss of U at depth, consistent with these observations of major element chemistry and mineralogy. Furthermore, U-series chemical weathering model suggests that the weathering duration from 12m to 4m depth in this profile is about 250kyr, with a weathering advancing rate of ~30 m/Ma. The rate is also about one order of magnitude lower than the weathering rate (~300 m/Ma) determined by river chemistry for this watershed. In this profile, the augered core didn't reach the unweathered bedrock. Hence, the derived slow weathering rate most likely represents the intensive weathering of clay minerals, while the transformation of fresh bedrock to regolith occurs at much great depth beneath the thick regolith. The marine aerosols and atmospheric dust are important sources of mineral nutrients for highly depleted surface soils.

  1. North Pond: a natural observatory for sub-seafloor oxidant supply and metabolic reactions

    NASA Astrophysics Data System (ADS)

    Ziebis, Wiebke; Ferdelman, Timothy; McManus, James; Muratli, Jesse; Picard, Aude; Schmidt-Schierhorn, Friederike; Stephan, Sebastian; Villinger, Heinrich; Edwards, Katrina J.

    2010-05-01

    Evidence of upward transport of oxidants from basaltic aquifers to deeply buried sediments has raised questions on microbial respiration and energy cycling within the deep biosphere. Sediment ponds that occur over a vast area of sea floor on the flank of the Mid-Atlantic Ridge maybe ideal observatories to study the role of unsuspected sources of oxidants for sub-seafloor microbial life. The western flank of the Mid-Atlantic Ridge, at 22°45'N is characterized by depressions filled with sediment and surrounded by high relief topography of 7 Ma old basement. The largest depressions are 5 km to 20 km wide and sediment thickness varies but can reach 400 m (Langseth et al. 1992). They are believed to overly recharge zones for the venting of fluids that takes place locally through unsedimented young ocean crust. If we consider the sediments as boundaries overlying the hydrologically active crustal environment, then using profiles of bioactive compounds measured through the sediment layer with the goal to extract information on transport and reactions is an obvious approach to understanding the implications of subsurface transport of oxidants on metabolic activity. Recently obtained deep oxygen profiles obtained during a site survey expedition in February/March of 2009 onboard RV Maria S. Merian to North Pond, one of the larger (70 square km) and best studied sediment ponds, provided proof of this principal. North Pond is the site of the proposed IODP Expedition "677 Mid-Atlantic Microbiology". Investigations included heat-flow, single-channel seismic and bathymetry surveys, as well as gravity coring. Oxygen measurements and pore water sampling (25 cm depth intervals) were performed directly on intact sediment cores, which were subsequently sampled for microbiological analyses, as well as for incubation experiments to test for autotrophic and heterotrophic microbial activity. The entire sediment column down to > 8 m sediment depth contained oxygen. In the central part of the sediment pond oxygen decreased continuously with depth, indicating an active aerobic microbial community, while nitrate concentrations increased. In contrast, along the northern and western rims of North Pond, oxygen concentrations remained surprisingly constant with depth at values around 170 µM. In addition, at 3 locations along the north shore oxygen profiles indicated an upward supply of oxygen from the underlying basaltic basement. Pore water nutrient profiles and incubation experiments confirmed active microbial communities throughout the sediment layer, as well as the influence of upward transport of oxidants on microbial processes in deeply buried sediments. Langseth, M.G., K. Becker, R.P. Von Herzen, and P. Schultheiss. 1992. Heat and fluid flow through sediments on the western flank of the Mid-Atlantic Ridge: A hydrogeological study of North Pond. Geophys. Res. Lett. 19: 517-520.

  2. CRUSTAL REFRACTION PROFILE OF THE LONG VALLEY CALDERA, CALIFORNIA, FROM THE JANUARY 1983 MAMMOTH LAKES EARTHQUAKE SWARM.

    USGS Publications Warehouse

    Luetgert, James H.; Mooney, Walter D.

    1985-01-01

    Seismic-refraction profiles recorded north of Mammoth Lakes, California, using earthquake sources from the January 1983 swarm complement earlier explosion refraction profiles and provide velocity information from deeper in the crust in the area of the Long Valley caldera. Eight earthquakes from a depth range of 4. 9 to 8. 0 km confirm the observation of basement rocks with seismic velocities ranging from 5. 8 to 6. 4 km/sec extending at least to depths of 20 km. The data provide further evidence for the existence of a partial melt zone beneath Long Valley caldera and constrain its geometry. Refs.

  3. Speciation of organic phosphorus in a sediment profile of Lake Taihu. I: Chemical forms and their transformation.

    PubMed

    Xu, Di; Ding, Shiming; Li, Bin; Bai, Xiuling; Fan, Chengxin; Zhang, Chaosheng

    2013-04-01

    Organic phosphorus (nonreactive P, NRP) is a major component of P in sediments, but information about its chemical forms and dynamic transformation is limited. The chemical forms and dynamic behaviors of NRP in a sediment profile from Lake Taihu, a freshwater and eutrophic lake in China, were investigated. Five forms of NRP in the sediments were extracted based on a chemical fractionation technique, including easily labile NRP (NaHCO3-NRP), reactive metal oxide-bound NRP (HCl-NRP), humic acid-associated NRP (NaOH-NRP(HA)), fulvic acid-associated NRP (NaOH-NRP(FA)) and residual NRP (Res-TP). There were notable transformations with increasing sediment depth from the labile NaHCO3-NRP and NaOH-NRP pools to the recalcitrant HCl-NRP and Res-TP pools, which caused the NRP to become increasingly recalcitrant as the early diagenetic processes proceeded. Further analyses showed that the relative changes in contents of organic matter and reactive Fe oxides in the sediment profile triggered a competition for binding NRP fractions and led to the transformation of NRP. The results highlighted the importance of abiotic processes in regulating the diagenesis of organic P and its stability in sediments.

  4. LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Johnstone, Samuel; Hourigan, Jeremy; Gallagher, Christopher

    2013-05-01

    Heterogeneous concentrations of α-producing nuclides in apatite have been recognized through a variety of methods. The presence of zonation in apatite complicates both traditional α-ejection corrections and diffusive models, both of which operate under the assumption of homogeneous concentrations. In this work we develop a method for measuring radial concentration profiles of 238U and 232Th in apatite by laser ablation ICP-MS depth profiling. We then focus on one application of this method, removing bias introduced by applying inappropriate α-ejection corrections. Formal treatment of laser ablation ICP-MS depth profile calibration for apatite includes construction and calibration of matrix-matched standards and quantification of rates of elemental fractionation. From this we conclude that matrix-matched standards provide more robust monitors of fractionation rate and concentrations than doped silicate glass standards. We apply laser ablation ICP-MS depth profiling to apatites from three unknown populations and small, intact crystals of Durango fluorapatite. Accurate and reproducible Durango apatite dates suggest that prolonged exposure to laser drilling does not impact cooling ages. Intracrystalline concentrations vary by at least a factor of 2 in the majority of the samples analyzed, but concentration variation only exceeds 5x in 5 grains and 10x in 1 out of the 63 grains analyzed. Modeling of synthetic concentration profiles suggests that for concentration variations of 2x and 10x individual homogeneous versus zonation dependent α-ejection corrections could lead to age bias of >5% and >20%, respectively. However, models based on measured concentration profiles only generated biases exceeding 5% in 13 of the 63 cases modeled. Application of zonation dependent α-ejection corrections did not significantly reduce the age dispersion present in any of the populations studied. This suggests that factors beyond homogeneous α-ejection corrections are the dominant source of overdispersion in apatite (U-Th)/He cooling ages.

  5. SU-F-T-487: On-Site Beam Matching of An Elekta Infinity with Agility MLC with An Elekta Versa HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C; Garcia, M; Mason, B

    2016-06-15

    Purpose: Historically, beam matching of similar Linear Accelerators has been accomplished by sending beam data to the manufacturer to match at their factory. The purpose of this work is to demonstrate that fine beam matching can be carried out on-site as part of the acceptance test, with similar or better results. Methods: Initial scans of a 10 × 10 Percent depth dose (PDD) and a 40 × 40 beam profile at the depth of Dmax, for 6MV and 10 MV were taken to compare with the standard beam data from the Versa. The energy was then adjusted and the beammore » steered to achieve agreement between the depth dose and the horns of the beam profile. This process was repeated until the best agreement between PDD and profiles was achieved. Upon completion, all other clinical data were measured to verify match. This included PDD, beam profiles, output factors and Wedge factors. For electron beams PDD’s were matched and the beam profiles verified for the final beam energy. Confirmatory PDD and beam profiles for clinical field sizes, as well as Output Factors were measured. Results: The average difference in PDD’s for 6MV and 10MV were within 0.4% for both wedged and open fields. Beam profile comparisons over the central 80% of the field, at multiple depths, show agreement of 0.8% or less for both wedged and open fields. Average output factor agreement over all field sizes was 0.4% for 6MV and 0.2 % for 10MV. Wedge factors agreement was less than 0.6% for both photon energies over all field sizes. Electron PDD agreed to 0.5mm. Cone ratios agreed to 1% or less. Conclusion: This work indicates that beam matching can be carried out on-site simply and quickly. The results of this beam matching can achieve similar or better results than factory matching.« less

  6. The GEORIFT 2013 wide-angle seismic profile, along Pripyat-Dnieper-Donets Basin

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaliy; Janik, Tomasz; Yegorova, Tamara; Czuba, Wojciech; Sroda, Piotr; Lysynchuk, Dmytro; Aizberg, Roman; Garetsky, Radim; Karataev, German; Gribik, Yaroslav; Farfuliak, Lliudmyla; Kolomiyets, Katerina; Omelchenko, Victor; Gryn, Dmytro; Guterch, Aleksander; Komminaho, Kari; Legostaeva, Olga; Thybo, Hans; Tiira, Timo; Tolkunov, Anatoly

    2017-04-01

    The GEORIFT 2013 deep seismic sounding (DSS) experiment was carried in August 2013 on territory of Belarus and Ukraine in wide international co-operation. The aim of the work is to study basin architecture and the deep structure of the Pripyat-Dnieper-Donets Basin (PDDB), which is the deepest and best studied Palaeozoic rift basin in Europe. The PDDB locates in the southern part of the East European Craton (EEC) and crosses in NW direction the Sarmatia, the southernmost of three major segments forming the EEC. The long PDDB was formed by Late Devonian rifting in the arch of the ancient Sarmatian shield. During the Late Devonian, rifting, associated with domal basement uplift and magmatism, was widespread in the EEC from the PDDB rift basin in the south to Eastern Barents Sea in the north. The GEORIFT 2013 runs in NW-SE direction along the PDDB and crosses the Pripyat Trough and Dnieper Graben separated by Bragin uplift of the basement. The total profile length was 675 km: 315 km on the Belarusian territory and 360 km in Ukraine. The field acquisition included 14 shot points (charge 600-1000 kg of TNT), and 309 recording stations every 2.2 km. The data quality of the data was good, with visible first arrivals even up to 670 km. We present final model of the structure to the depth of 80 km. Ray-tracing forward modelling (SEIS83 package) was used for the modelling of the seismic data. The thickness of the sedimentary layer (Vp < 6.0 km/s) changes along the profile from 1-4 km in the NW, through 5 km in the central part, to 10-13 km in the SE part of the profile. In 330-530 km distance range, an updoming of the lower crust (with Vp of 7.1 km/s) to 25 km depth is observed. Large variations in the internal structure of the crust and the Moho topography were detected. The depth of the Moho varies from 47 km in the northwestern part of the model, to 40 km in central part, and to 38 km in the southeastern part of the profile. The sub-Moho velocities are 8.25 km/s. Second, near-horizontal mantle discontinuity was found in the northwestern part of the profile at the depth of 50-47 km. It dips to the depth of 60 km at distances of 360-405 km, similarly as on crossing EUROBRIDGE'97 profile (Thybo et al., 2003). In the central part of the profile (distances 180-330 km and 300-480 km) two reflectors were found in the lower lithosphere at depths of about 62 km and 75 km, respectively.

  7. Assessing XCTD Fall Rate Errors using Concurrent XCTD and CTD Profiles in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Millar, J.; Gille, S. T.; Sprintall, J.; Frants, M.

    2010-12-01

    Refinements in the fall rate equation for XCTDs are not as well understood as those for XBTs, due in part to the paucity of concurrent and collocated XCTD and CTD profiles. During February and March 2010, the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) conducted 31 collocated 1000-meter XCTD and CTD casts in the Drake Passage. These XCTD/CTD profile pairs are closely matched in space and time, with a mean distance between casts of 1.19 km and a mean lag time of 39 minutes. The profile pairs are well suited to address the XCTD fall rate problem specifically in higher latitude waters, where existing fall rate corrections have rarely been assessed. Many of these XCTD/CTD profile pairs reveal an observable depth offset in measurements of both temperature and conductivity. Here, the nature and extent of this depth offset is evaluated.

  8. Impact energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Fu, Ricky K. Y.; Chu, Paul K.

    2009-08-10

    The implantation energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation (EGD-PIII) is investigated numerically and experimentally. Depth profiles obtained from different samples processed by EGD-PIII and traditional PIII are compared. The retained doses under different pulse widths are calculated by integrating the area under the depth profiles. Our results indicate that the improvement in the impact energy and retained dose uniformity by this technique is remarkable.

  9. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy.

    PubMed

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.

  10. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    NASA Astrophysics Data System (ADS)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  11. Variable-Depth Liner Evaluation Using Two NASA Flow Ducts

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Nark, D. M.; Watson, W. R.; Howerton, B. M.

    2017-01-01

    Four liners are investigated experimentally via tests in the NASA Langley Grazing Flow Impedance Tube. These include an axially-segmented liner and three liners that use reordering of the chambers. Chamber reordering is shown to have a strong effect on the axial sound pressure level profiles, but a limited effect on the overall attenuation. It is also shown that bent chambers can be used to reduce the liner depth with minimal effects on the attenuation. A numerical study is also conducted to explore the effects of a planar and three higher-order mode sources based on the NASA Langley Curved Duct Test Rig geometry. A four-segment liner is designed using the NASA Langley CDL code with a Python-based optimizer. Five additional liner designs, four with rearrangements of the first liner segments and one with a redistribution of the individual chambers, are evaluated for each of the four sources. The liner configuration affects the sound pressure level profile much more than the attenuation spectra for the planar and first two higher-order mode sources, but has a much larger effect on the SPL profiles and attenuation spectra for the last higher-order mode source. Overall, axially variable-depth liners offer the potential to provide improved fan noise reduction, regardless of whether the axially variable depths are achieved via a distributed array of chambers (depths vary from chamber to chamber) or a group of zones (groups of chambers for which the depth is constant).

  12. The effects of the depth of web on the bending behaviour of triangular web profile steel beam section

    NASA Astrophysics Data System (ADS)

    De'nan, Fatimah; Keong, Choong Kok; Hashim, Nor Salwani

    2017-10-01

    Due to extensive usage of corrugated web in construction, this paper performs finite element analysis to investigate the web thickness effects on the bending behaviour of Triangular Web Profile (TRIWP) steel section. A TRIWP steel section which are consists two flanges attached to a triangular profile web plate. This paper analyzes two categories of TRIWP steel sections which are D×100×6×3 mm and D×75×5×2 mm. It was observed that for steel section D×100×6×3 mm (TRIWP1), the deflection about minor and major axis increased as the span length increased. Meanwhile, the deflection about major axis decreased when depth of the web increased. About minor axis, the deflection increased for 3m and 4m span, while the deflection at 4.8m decreased with increment the depth of web. However, when the depth of the web exceeds 250mm, deflection at 3m and 4m were increased. For steel section D×75×5×2 mm (TRIWP2), the result was different with TRIWP1 steel section, where the deflection in both major and minor directions increased with the increment of span length and decreased with increment the depth of web. It shows that the deflection increased proportionally with the depth of web. Therefore, deeper web should be more considered because it resulted in smaller deflection.

  13. Vertical Distribution of Soil Denitrifying Communities in a Wet Sclerophyll Forest under Long-Term Repeated Burning.

    PubMed

    Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei

    2015-11-01

    Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.

  14. Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moser, M.; Reichart, P.; Bergmaier, A.; Greubel, C.; Schiettekatte, F.; Dollinger, G.

    2016-03-01

    Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton-proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.

  15. Regional correlations of V s30 and velocities averaged over depths less than and greater than 30 meters

    USGS Publications Warehouse

    Boore, D.M.; Thompson, E.M.; Cadet, H.

    2011-01-01

    Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (V S30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (V Sz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that V S30 is systematically larger for a given V Sz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating V S30 to V Sz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate V S30 from V Sz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in log V S30 of 1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to V S30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that V S30 is correlated with V Sz for z as great as 400 m for sites of the KiK-net network, providing some justification for using V S30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.

  16. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.

  17. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  18. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  19. Influence of Annealing on the Depth Microstructure of the Shot Peened Duplex Stainless Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; She, Jia; Xiang, Yong; Wu, Xianyun; Wang, Chengxi; Jiang, Chuanhai

    The depth profiles of residual stresses and lattice parameters in the surface layers of shot peened duplex stainless steel at elevated temperature were investigated utilizing X-ray diffraction analysis. At each deformation depth, residual stress distributions in both ferrite and austenite were studied by X-ray diffraction stress analysis which is performed on the basis of the sin2ψ method and the lattice parameters were explored by Rietveld method. The results reveal that difference changes of depth residual compressive stress profiles between ferrite and austenite under the same annealing condition are resulted from the diverse coefficient of thermal expansion, dislocation density, etc. for different phases in duplex stainless steel. The relaxations of depth residual stresses in austenite are more obvious than those in ferrite. The lattice parameters decrease in the surface layer with the extending of annealing time, however, they increase along the depth after annealing for 16min. The change of the depth lattice parameters can be ascribed to both thermal expansion and the relaxation of residual stress. The different changes of microstructure at elevated temperature between ferrite and austenite are discussed.

  20. Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Vogt, C.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration

    2010-06-01

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ˜5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  1. Drug Targeting and Biomarkers in Head and Neck Cancers: Insights from Systems Biology Analyses.

    PubMed

    Islam, Tania; Rahman, Rezanur; Gov, Esra; Turanli, Beste; Gulfidan, Gizem; Haque, Anwarul; Arga, Kazım Yalçın; Haque Mollah, Nurul

    2018-06-01

    The head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world, but robust biomarkers and diagnostics are still not available. This study provides in-depth insights from systems biology analyses to identify molecular biomarker signatures to inform systematic drug targeting in HNSCC. Gene expression profiles from tumors and normal tissues of 22 patients with histological confirmation of nonmetastatic HNSCC were subjected to integrative analyses with genome-scale biomolecular networks (i.e., protein-protein interaction and transcriptional and post-transcriptional regulatory networks). We aimed to discover molecular signatures at RNA and protein levels, which could serve as potential drug targets for therapeutic innovation in the future. Eleven proteins, 5 transcription factors, and 20 microRNAs (miRNAs) came into prominence as potential drug targets. The differential expression profiles of these reporter biomolecules were cross-validated by independent RNA-Seq and miRNA-Seq datasets, and risk discrimination performance of the reporter biomolecules, BLNK, CCL2, E4F1, FOSL1, ISG15, MMP9, MYCN, MYH11, miR-1252, miR-29b, miR-29c, miR-3610, miR-431, and miR-523, was also evaluated. Using the transcriptome guided drug repositioning tool, geneXpharma, several candidate drugs were repurposed, including antineoplastic agents (e.g., gemcitabine and irinotecan), antidiabetics (e.g., rosiglitazone), dermatological agents (e.g., clocortolone and acitretin), and antipsychotics (e.g., risperidone), and binding affinities of the drugs to their potential targets were assessed using molecular docking analyses. The molecular signatures and repurposed drugs presented in this study warrant further attention for experimental studies since they offer significant potential as biomarkers and candidate therapeutics for precision medicine approaches to clinical management of HNSCC.

  2. Influence of the tidal front on the three-dimensional distribution of spring phytoplankton community in the eastern Yellow Sea.

    PubMed

    Choi, Byoung-Ju; Lee, Jung A; Choi, Jae-Sung; Park, Jong-Gyu; Lee, Sang-Ho; Yih, Wonho

    2017-04-01

    Hydrographic observation and biological samplings were conducted to assess the distribution of phytoplankton community over the sloping shelf of the eastern Yellow Sea in May 2012. The concentration of chlorophyll a was determined and phytoplankton was microscopically examined to conduct quantitative and cluster analyses. A cluster analysis of the phytoplankton species and abundance along four observation lines revealed the three-dimensional structure of the phytoplankton community distribution: the coastal group in the mixed region, the offshore upper layer group preferring stable water column, and the offshore lower layer group. The subsurface maximum of phytoplankton abundance and chlorophyll a concentration appeared as far as 64 km away from the tidal front through the middle layer intrusion. The phytoplankton abundance was high in the shore side of tidal front during the spring tide. The phytoplankton abundance was relatively high at 10-m depth in the mixed region while the concentration of chlorophyll a was high below the depth. The disparity between the profiles of the phytoplankton abundance and the chlorophyll a concentration in the mixed region was related to the depth-dependent species change accompanied by size-fraction of the phytoplankton community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Parametric fate and transport profiling for selective groundwater monitoring at closed landfills: a case study.

    PubMed

    Sizirici, Banu; Tansel, Berrin

    2015-04-01

    Monitoring contaminant concentrations in groundwater near closed municipal solid waste landfills requires long term monitoring program which can require significant investment for monitoring efforts. The groundwater monitoring data from a closed landfill in Florida was analyzed to reduce the monitoring efforts. The available groundwater monitoring data (collected over 20 years) were analyzed (i.e., type, concentration and detection level) to identify the trends in concentrations of contaminants and spatial mobility characteristics of groundwater (i.e., groundwater direction, retardation characteristics of contaminants, groundwater well depth, subsoil characteristics), to identify critical monitoring locations. Among the 7 groundwater monitoring well clusters (totaling 22 wells) in landfill, the data from two monitoring well clusters (totaling 7 wells) located along direction of groundwater flow showed similarities (the highest concentrations and same contaminants). These wells were used to assess the transport characteristics of the contaminants. Some parameters (e.g., iron, sodium, ammonia as N, chlorobenzene, 1,4-dichlorobenzene) showed decreasing trends in the groundwater due to soil absorption and retardation. Metals were retarded by ion exchange and their concentration increased by depth indicating soil reached breakthrough over time. Soil depth did not have a significant effect on the concentrations of volatile organic contaminants. Based on the analyses, selective groundwater monitoring modifications were developed for effective monitoring to acquire data from the most critical locations which may be impacted by leachate mobility. The adjustments in the sampling strategy reduced the amount of data collected by as much as 97.7% (i.e., total number of parameters monitored). Effective groundwater sampling strategies can save time, effort and monitoring costs while improving the quality of sample handling and data analyses for better utilization of post closure monitoring funds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Analyses of the Behavior of Spokes in Saturn's B Ring as Observed in Cassini ISS Images

    NASA Astrophysics Data System (ADS)

    Mitchell, Colin; Porco, C.; Dones, L.; Spitale, J.

    2008-09-01

    We report on analyses of the spokes in Saturn's B ring as observed by the Cassini spacecraft, from the first sighting in September 2005 to the present. Following Porco and Danielson (1982), we calculate as a function of time the spoke activity level, defined as the area-integrated optical depth of the spokes. We convert the spoke I/F into optical depth, using a radiative transfer "doubling code" and assuming that the presence of microscopic particles in the spokes is the only change in the optical properties of the ring region within a spoke. We search for periodicities in the variation of spoke activity and also correlations with magnetic longitude using a magnetic longitude system derived from the emission of the Saturn Kilometric Radiation (SKR), the rotation of which varies slightly from a constant rate (Kurth et al. 2008). Additionally, we track the activity over a period of years in order to characterize the seasonal nature of this phenomenon. We also report on the photometric profiles of spokes during different phases of their evolution. We present an analysis of spoke kinematics, measuring the motion on timescales of tens of minutes of the leading and trailing edges of spokes that appear in multiple consecutive images. Assuming that the small ice particles which comprise the spokes are in circular orbits, the azimuthal motion is a measure of their charge-to-mass ratio. While most spoke edges have exhibited normal Keplerian orbital motion and shear, some spokes were observed during their active phase in which the spoke's optical depth increases and its edges move at different rates, broadening the spoke. We acknowledge the financial support of the Cassini Project.

  5. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.

  6. The Wire Flyer Towed Profiling System

    NASA Astrophysics Data System (ADS)

    Roman, C.; Ullman, D. S.; Hebert, D.

    2016-02-01

    The Wire Flyer is an autonomous profiling vehicle that slides up and down a standard towed cable in a controlled manner using the lift created by wing foils. The vehicle is able to create high resolution water-column sections within a specified depth band in an automated manner. The Wire Flyer is different than standard undulating tow bodies in that it decouples the vehicle's motion from the tow cable dynamics. Due to this separation the vehicle is able to profile with nearly 1:1 horizontal to vertical motion. A heavy depressor weight is fixed to the end of the cable and the cable shape remains relatively static during operation. The vehicle uses a closed loop wing angle controller to achieve desired vertical velocities between 0 and 2.5 m/s for ship speeds between 1.5 and 2.5 m/s. During typical operations, updated commands and condensed data samples can be sent to and from the vehicle via an acoustic modem to adjust the profiling pattern to ensure the desired coverage. The current 1000 meter rated vehicle is equipped with a SBE 49 FastCAT CTD, and can carry additional sensors for oxygen, Chlorophyll fluorescence and acoustic echosounding. Results showing the vehicle performance as well as the quality of the processed CTD data will be presented from three test cruises to the New England Shelf Break Front. Many shallow and deep sections were obtained with horizontal resolution that is not otherwise achievable with undulating tow bodies, underway CTDs, standard CTD tow-yos, gliders or free swimming AUVs. A typical survey at ship speeds of 3-4 knots can profile over a depth band between 200 and 600 meters depth with a repeat cycle length of less than 1 km. The vehicle concept is depth independent and could work with a full ocean depth design. Application areas for the system include sub-meso scale observations of fronts, vent and seep plumes, oxygen minimum layers, mixing and mid-water bioacoustics.

  7. The potential of on-line continuous leach ICP-MS analysis for linking trace elements to mineralogy

    NASA Astrophysics Data System (ADS)

    Roskam, Gerlinde; Verheul, Marc; Moraetis, Daniel; Giannakis, George; van Gaans, Pauline

    2014-05-01

    A set of five soil samples was subjected to an on-line continuous leach inductively coupled plasma mass spectrometry experiment, with progressively reactive solvents (0.01M CaCl2, 0.1 M HNO3, 1M HNO3, 4M HNO3) Each sample was packed in a quartz tube (Ø= 1 cm, length 2 cm) and diluted 1:1 with acid washed quartz to prevent clogging. The gas that was produced during the extraction was removed by leading the effluent into a small container, from where the sample was directly pumped into the ICP-MS. 115In was used as an internal standard. Continuous leach experiments have the advantage of real time (every 2 seconds) full elemental analysis. Mineral breakdown reactions can be monitored via the major elements. The trace elements associated with the minerals are monitored simultaneously, thus eliminating the uncertainties of host mineral-trace element combinations in traditional off-line sequential extractions. The continuous leach experimental data are correlated to XRD-results for mineralogy and total elemental concentrations. The soil samples used were collected from different sites in the Koiliaris River watershed, Crete, Greece 1). The selection of the sites was based on variability in bedrock (limestone, metamorphic and alluvial sediments) and current land use (grape farming, olive trees). Soils were sampled at two depths: at the surface and just above the bedrock. No large differences in the major elements between the two depths were measured. To provide background to the on-line sequential data, also total concentrations of the major elements were analysed by XRF and the mineralogy was analysed by XRD. The fraction <2mm was sieved and digested with HF, HClO4 and HNO3 for additional trace element analysis. 1) See related abstract Roskam et al., 2014: REE profiles in continuous leach ICP-MS (CL-ICP-MS) experiments in soil, linked to REE profiles in surface water in the Koiliaris River Critical Zone Observatory (CZO), Crete, Greece.

  8. SALI chemical analysis of provided samples

    NASA Technical Reports Server (NTRS)

    Becker, Christopher H.

    1993-01-01

    SRI has completed the chemical analysis of all the samples supplied by NASA. The final batch of four samples consisted of: one inch diameter MgF2 mirror, control 1200-ID-FL3; one inch diameter neat resin, PMR-15, AO171-IV-55, half exposed and half unexposed; one inch diameter chromic acid anodized, EOIM-3 120-47 aluminum disc; and AO-exposed and unexposed samples of fullerene extract material in powdered form, pressed into In foil for analysis. Chemical analyses of the surfaces were performed by the surface analysis by laser ionization (SALI) method. The analyses emphasize surface contamination or general organic composition. SALI uses nonselective photoionization of sputtered or desorbed atoms and molecules above but close (approximately one mm) to the surface, followed by time-of-flight (TOF) mass spectrometry. In these studies, we used laser-induced desorption by 5-ns pulse-width 355-nm light (10-100 mJ/sq cm) and single-photon ionization (SPI) by coherent 118-nm radiation (at approximately 5 x 10(exp 5) W/sq cm). SPI was chosen primarily for its ability to obtain molecular information, whereas multiphoton ionization (not used in the present studies) is intended primarily for elemental and small molecule information. In addition to these four samples, the Au mirror (EOIM-3 200-11, sample four) was depth profiled again. Argon ion sputtering was used together with photoionization with intense 355-nm radiation (35-ps pulsewidths). Depth profiles are similar to those reported earlier, showing reproducibility. No chromium was found in the sample above noise level; its presence could at most be at the trace level. Somewhat more Ni appears to be present in the Au layer in the unexposed side, indicating thermal diffusion without chemical enhancement. The result of the presence of oxygen is apparently to tie-up/draw out the Ni as an oxide at the surface. The exposed region has a brownish tint appearance to the naked eye.

  9. Soil profiles' development and differentiation as revealed by their magnetic signal

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana

    2017-04-01

    Soil profiles' development is a major theme in soil science research, as far as it gives basic information on soil genesis and classification. The use of soil magnetic properties as indicators for physical and geochemical conditions during pedogenesis received great attention during the last decade mainly in relation to paleoclimate reconstructions. However, tracking the observed general relationships with respect to degree of soil differentiation would lead to capitalization of this knowledge and its further utilization as pedogenic indicator. Here we present an overview of the observed relationships and depth variations of magnetic characteristics along ten soil profiles of Chernozems, Luvisols and Planosols from Bulgaria. Depending on the general soil group considered, different relationships between depth distribution of the relative amount of superparamagnetic (SP), single domain (SD) and larger pseudo single domain (PSD) to multi domain (MD) ferrimagnetic fractions are revealed. The profiles of the soil group with pronounced accumulation of organic matter in the mineral topsoil (Chernozems and Phaeozems) a systematic shift in the relative maxima of SP- and SD- like concentration proxies is observed with the increase of profile differentiation. In contrast, the group of soils with clay-enriched subsoil horizon (e.g. Luvisols) shows different evolution of the depth distribution of the grain-size proxy parameters. The increase of profile's degradation leads to a decrease in the amount of the SP fraction and a split in its maxima into two depth intervals related to the eluvial and illuvial horizons respectively. Along with this tendency, the maximum of the SD fraction moves to progressively deeper levels of the illuvial horizon. The third soil group of the Planosols is characterized by specific re-distribution of the iron oxides, caused by the oscillating oxidation - reduction fluctuations within the profile. The diagnostic eluvial and illuvial soil horizons are enriched with stable SD magnetite-like fraction, likely originating from ferrihydrite transformations under repeating oxidative - reductive conditions. The major magnetic phase in illuvial horizons is hematite, while in eluvial and C-horizons magnetite dominates. These different trends in the evolution of mineralogy and magnetic grain size fractions along the depth of the various soil groups are useful indicators of the soil chemistry, as well as the dynamics of the main soil forming processes.

  10. Field tests of a down-hole TDR profiling water content measurement system

    USDA-ARS?s Scientific Manuscript database

    Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...

  11. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  12. A study of using femtosecond LIBS in analyzing metallic thin film-semiconductor interface

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; Kassem, A. K.; von Bergmann, H.; Harith, M. A.

    2011-01-01

    Metals and metal alloys are usually employed as interconnections to guide electrical signals between components into the very large scale integrated (VLSI) devices. These devices demand higher complexity, better performance and lower cost. Thin film is a common geometry for these metallic applications, requiring a substrate for rigidity. Accurate depth profile analysis of coatings is becoming increasingly important with expanding industrial use in technological fields. A number of articles devoted to LIBS applications for depth-resolved analysis have been published in recent years. In the present work, we are studying the ability of femtosecond LIBS to make depth profiling for a Ti thin film of thickness 213 nm deposited onto a silicon (100) substrate before and after thermal annealing. The measurements revealed that an average ablation rates of 15 nm per pulse have been achieved. The thin film was examined using X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM), while the formation of the interface was examined using Rutherford Back Scattering (RBS) before and after annealing. To verify the depth profiling results, a theoretical simulation model is presented that gave a very good agreement with the experimental results.

  13. Effects of Radiation on Oxide Materials.

    DTIC Science & Technology

    1981-11-01

    argon sputtering. The results show that this technique is quite successful and makes it possible to profile implanted Na that fits the theoretical ...the finite escape depth of the photoionized electrons. Thicker (100 R) oxides were used for depth-profiling XPS measurements. 6.3.2 Results--30-R Films... Scofield , J. Electron Spectrosc. 8, 129 (1976). 63 SOFT SILICON DIOXIOE ON SILICON (WET GROWN) 12 . 0 1 10 o - AUGER z 0 ,- C- IS" SI - 2S Z N-I i sI-P 2 0

  14. Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data.

    PubMed

    Menon, Vilas

    2017-12-11

    Advances in single-cell RNA-sequencing technology have resulted in a wealth of studies aiming to identify transcriptomic cell types in various biological systems. There are multiple experimental approaches to isolate and profile single cells, which provide different levels of cellular and tissue coverage. In addition, multiple computational strategies have been proposed to identify putative cell types from single-cell data. From a data generation perspective, recent single-cell studies can be classified into two groups: those that distribute reads shallowly over large numbers of cells and those that distribute reads more deeply over a smaller cell population. Although there are advantages to both approaches in terms of cellular and tissue coverage, it is unclear whether different computational cell type identification methods are better suited to one or the other experimental paradigm. This study reviews three cell type clustering algorithms, each representing one of three broad approaches, and finds that PCA-based algorithms appear most suited to low read depth data sets, whereas gene clustering-based and biclustering algorithms perform better on high read depth data sets. In addition, highly related cell classes are better distinguished by higher-depth data, given the same total number of reads; however, simultaneous discovery of distinct and similar types is better served by lower-depth, higher cell number data. Overall, this study suggests that the depth of profiling should be determined by initial assumptions about the diversity of cells in the population, and that the selection of clustering algorithm(s) is subsequently based on the depth of profiling will allow for better identification of putative transcriptomic cell types. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fluid overpressures and strength of the sedimentary upper crust

    NASA Astrophysics Data System (ADS)

    Suppe, John

    2014-12-01

    The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.

  17. Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.

    PubMed

    Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M

    2017-11-01

    Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.

  18. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Addressing the contribution of climate and vegetation cover on hillslope denudation, Chilean Coastal Cordillera (26°-38°S)

    NASA Astrophysics Data System (ADS)

    Schaller, M.; Ehlers, T. A.; Lang, K. A. H.; Schmid, M.; Fuentes-Espoz, J. P.

    2018-05-01

    The Earth surface is modulated by interactions among tectonics, climate, and biota. The influence of each of these factors on hillslope denudation rates is difficult to disentangle. The Chilean Coastal Cordillera offers a strong climate and vegetation gradient from arid and unvegetated in the North to humid and vegetated in the South. A similar (convergent) plate tectonic boundary lies to the West of the Coastal Cordillera. We present eight depth profiles analyzed for in situ-produced cosmogenic 10Be in four study areas. These profiles reveal denudation rates of soil-mantled hillslopes and the depth of mobile layers. Depth profiles were investigated from both S- and N-facing mid-slope positions. Results indicate the depth of the mobile layers in the four study areas increase from N to S in latitude. When mixing is present in the mobile layers they are completely mixed. In the S- and N-facing hillslopes of each study area, mid-slope positions do not show a systematic change in depth of the mobile layers nor in denudation rates based on cosmogenic depth profiles. From N to S in latitude, modelled denudation rates of hillslopes increase from ∼0.46 to ∼5.65 cm/kyr and then decrease to ∼3.22 cm/kyr in the southernmost, highest vegetation cover, study area. Calculated turnover times of soils decrease from ∼30 to ∼11 kyr and then increase to ∼22 kyr. In this work, the increasing denudation rates are attributed to increasing mean annual precipitation from N to S. However, despite the ongoing increase in precipitation from N to S, the denudation rate in the southernmost location does not continue to increase due to the protective nature of increasing vegetation cover. This indicates a vegetation induced non-linear relationship with denudation rates.

  20. The role of S(II) and Pb(II) in xanthate flotation of smithsonite: Surface properties and mechanism

    NASA Astrophysics Data System (ADS)

    Jia, Kai; Feng, Qiming; Zhang, Guofan; Ji, Wanying; Zhang, Wukai; Yang, Bingqian

    2018-06-01

    Smithsonite is a readily dissolvable carbonate mineral that is naturally hydrophilic, making recovery of this ore by flotation difficult. The flotation results showed that conditioning with only sodium sulfide (Na2S) did not successfully allow the smithsonite samples to float, whereas treatment with a combination of S(II), Pb(II) and xanthate (with Na2S as the sulfurizing reagent, lead ions (Pb(II)) as the activator, and xanthate as the collector) improved the flotation of smithsonite, achieving a mass recovery of 95.8%. A combination of analytical techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), in conjunction with depth profiling, was used to investigate the chemical nature of the sulfur and lead species on the smithsonite surface. For S(II)-conditioned smithsonite, a layer of ZnS formed on the smithsonite (ZnCO3) substrates; this newly formed ZnS coating was amorphous or poorly crystallized. For smithsonite samples conditioned with S(II) and Pb(II), the microstructures and the phase constituents, obtained by AFM and XRD analyses, confirmed the formation of the PbS species with a cubic galena structure on the surface. XPS depth profiling showed that the PbS layer was 18-nm thick, which corresponds to 30 PbS molecular layers. This study presents direct evidence that the coating of the activation product, PbS, on the smithsonite surface was similar to a relatively thick galena layer, which led to successful flotation.

  1. Storm-induced redistribution of deepwater sediments in Lake Ontario

    USGS Publications Warehouse

    Halfman, J.D.; Dittman, D.E.; Owens, R.W.; Etherington, M.D.

    2006-01-01

    High-resolution seismic reflection profiles, side-scan sonar profiles, and surface sediment analyses for grain size (% sand, silt & clay), total organic carbon content, and carbonate content along shore-perpendicular transects offshore of Olcott and Rochester in Lake Ontario were utilized to investigate cm-thick sands or absence of deep-water postglacial sediments in water depths of 130 to 165 m. These deepwater sands were observed as each transect approached and occupied the "sills," identified by earlier researchers, between the three deepest basins of the lake. The results reveal thin (0 to 5-cm) postglacial sediments, lake floor lineations, and sand-rich, organic, and carbonate poor sediments at the deepwater sites (> 130 m) along both transects at depths significantly below wave base, epilimnetic currents, and internal wave activity. These sediments are anomalous compared to shallower sediments observed in this study and deeper sediments reported by earlier research, and are interpreted to indicate winnowing and resuspension of the postglacial muds. We hypothesize that the mid-lake confluence of the two-gyre surface current system set up by strong storm events extends down to the lake floor when the lake is isothermal, and resuspends and winnows lake floor sediment at these locations. Furthermore, we believe that sedimentation is more likely to be influenced by bottom currents at these at these sites than in the deeper basins because these sites are located on bathymetric highs between deeper depositional basins of the lake, and the bathymetric constriction may intensify any bottom current activity at these sites.

  2. Uptake of Light Elements in Thin Metallic Films

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Waldschmidt, Mathias

    Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.

  3. Enhancement of two dimensional electron gas concentrations due to Si{sub 3}N{sub 4} passivation on Al{sub 0.3}Ga{sub 0.7}N/GaN heterostructure: strain and interface capacitance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinara, Syed Mukulika, E-mail: smdinara.iit@gmail.com; Jana, Sanjay Kr.; Ghosh, Saptarsi

    2015-04-15

    Enhancement of two dimensional electron gas (2DEG) concentrations at Al{sub 0.3}Ga{sub 0.7}N/GaN hetero interface after a-Si{sub 3}N{sub 4} (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of Al{sub 0.3}Ga{sub 0.7}N and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the Al{sub 0.3}Ga{sub 0.7}N layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’smore » equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the Al{sub 0.3}Ga{sub 0.7}N layer and also due to the decreased surface states at the interface of SiN/Al{sub 0.3}Ga{sub 0.7}N layer, effectively improving the carrier confinement at the interface.« less

  4. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.

    PubMed

    James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo

    2002-03-01

    Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.

  5. Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer

    NASA Astrophysics Data System (ADS)

    Gierens, Rosa T.; Henriksson, Svante; Josipovic, Micky; Vakkari, Ville; van Zyl, Pieter G.; Beukes, Johan P.; Wood, Curtis R.; O'Connor, Ewan J.

    2018-05-01

    The atmospheric boundary layer (BL) is the atmospheric layer coupled to the Earth's surface at relatively short timescales. A key quantity is the BL depth, which is important in many applied areas of weather and climate such as air-quality forecasting. Studying BLs in climates and biomes across the globe is important, particularly in the under-sampled southern hemisphere. The present study is based on a grazed grassland-savannah area in northwestern South Africa during October 2012-August 2014. Ceilometers are probably the cheapest method for measuring continuous aerosol profiles up to several kilometers above ground and are thus an ideal tool for long-term studies of BLs. A ceilometer-estimated BL depth is based on profiles of attenuated backscattering coefficients from atmospheric aerosols; the sharpest drop often occurs at BL top. Based on this, we developed a new method for layer detection that we call the signal-limited layer method. The new algorithm was applied to ceilometer profiles which thus classified BL into classic regime types: daytime convective mixing, and a double layer at night of surface-based stable with a residual layer above it. We employed wavelet fitting to increase successful BL estimation for noisy profiles. The layer-detection algorithm was supported by an eddy-flux station, rain gauges, and manual inspection. Diurnal cycles were often clear, with BL depth detected for 50% of the daytime typically being 1-3 km, and for 80% of the night-time typically being a few hundred meters. Variability was also analyzed with respect to seasons and years. Finally, BL depths were compared with ERA-Interim estimates of BL depth to show reassuring agreement.

  6. Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Weber, M.

    2009-07-01

    As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo-mechanical modelling of the DSB supports such a scenario. As the DESIRE seismic profile crosses the DST about 100 km north of where the DESERT seismic profile crosses the DST, it has been possible to construct a crustal cross-section of the region before the 107 km left-lateral shear on the DST occurred.

  7. Stability of Zircon and its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months) Isotope Exchange Experiment at 850 °C and 50 MPa

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya N.; Schmitt, Axel K.; Lundstrom, Craig C.; Hervig, Richard L.

    2018-05-01

    Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb) diffuse when zircon is exposed to hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone) treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B) labeled water with a nominal δ18O value of +450‰ over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards) δ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a 130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards) depth profiling on a 2-3 µm thick wafer cut and thinned from treated zircon by focused ion beam (FIB) milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS) frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of 20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with 1 µm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak (1997). Instead, intracrystalline exchange of oxygen between fluid and zircon in wet experimental conditions with excess silica occurred over length-scales equivalent to those predicted for dry diffusion. Oxygen diffusion coefficients even under wet conditions and elevated temperatures (850 °C) are <1-3×10-23 m2/sec, underscoring a virtual lack of oxygen diffusion and an outstanding survivability of zircons

  8. The velocity structure of the lunar crust.

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.

    1973-01-01

    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (1) velocity increases from 100 to 300 m/sec in the upper 100 m to about 4 km/sec at 5 km depth, (2) a more gradual increase from about 4 km/sec to about 6 km/sec at 25 km depth,(3) a discontinuity at a depth of 25 km, and (4) a constant value of about 7 km/sec at depths from 25 km to about 60 km.

  9. Dissolved Ti in the US GEOTRACES Atlantic Transect

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Moran, S.; Kelly, R. P.; Kelley, K. A.; Graham, D.

    2012-12-01

    The concentration of Ti in sediment and settling particles is often used as a lithogenic tracer, based on the assumption that its inventory is dominated by the mineralogically-bound component. Given Ti's overall refractory geochemical nature and that it is the 9th most abundant element in the crust, Ti offers several advantages for such use. However, there are suggestions in various literatures (deep-sea carbonates, coastal/estuarine waters and porewaters, and the few extant open ocean data) that Ti may have a quantitatively significant labile behavior that challenges the assumption of its lithogenic exclusivity. We report on a new technique developed to measure dissolved Ti in open ocean seawater. We will present data from SAFe and GEOTRACES intercalibration standards, as well as from complete depth profiles along the US Atlantic GEOTRACES sections sampled in 2010 and 2011. Following work of Biller et al. (2012, Mar. Chem., 130, 12-), preconcentration in our method is achieved via the NOBIAS-chelate PA1 resin of Sohrin et al. (2008, Anal. Chem., 80, 6267-). We achieve a 12-fold concentration from 60 ml of seawater, and samples are analyzed in triplicate. Samples are UV-oxidized prior to column treatment. We have quantified dissolved Ti both by Isotope Dilution quadrupole ICP-MS (ID-ICP-MS) and also by linear calibrations to Ti-free seawaters spiked with variable Ultra High Purity Ti to mimic natural range of abundances. We achieve a total procedural blank of 10 pM, with a detection limit of 6 pM. Ongoing improvements are oriented towards a smaller initial volume of seawater sample. Our results of intercalibration standards S1, D2, GS, and GD agree well with those generated by Croot (2011, Anal. Chem., 83, 6395-) using cathodic stripping voltammetry. We also have analyzed GSP, D1, and NASS-6. Of particular interest is intercalibration standard GD, taken from 2000 m at the BATS location for which Orians et al. (1990, Nature, 348, 322-) have published the only extant data for dissolved Ti in the open Atlantic. Croot's values and our values both agree well with Orians' original analyses, which not only confirms our respective analytical approaches but also suggests that the GEOTRACES rosette system, small parts of which contain Ti, does not contaminate seawater samples for Ti. We also present data from the 2011 GEOTRACES station taken at BATS in the western Atlantic and at Station 11 from the 2010 GEOTRACES transect in the eastern Atlantic. Our profile to 2000 m (= 213 pM) is similar to that of Orians et al. (1990) to the same depth, but extends deeper to 3597 m. Unlike the deep Pacific profile of Orians et al. (1990) from Station PAPA, which extends to 3860 m and reaches a maximum of 263 pM at that depth, our BATS profile is essentially invariant with depth below 2000 m. We observe a similar deepwater distribution at Station 11, which shows an increase from 60 pM near the surface to a maximum of 180 pM at 700 m, followed perhaps by a slight decrease to 130 pM at 3300 m depth.

  10. Geochemical data for mercury, methylmercury, and other constituents in sediments from Englebright Lake, California, 2002

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.; Marvin-DePasquale, Mark C.; Antweiler, Ronald C.; Lasorsa, Brenda K.; De Wild, John F.; Snyder, Noah P.

    2006-01-01

    Deep coring penetrated the full thickness of material deposited after 1940 at six locations in the reservoir; the cores reached a maximum depth of 32.8 meters below the reservoir floor. At the three deep coring sites closest to Englebright Dam, concentrations of HgT (dry basis) were consistently in the range of 100 to 500 ng/g (nanogram per gram), in sediment dominantly of silt size (median grain size of 0.004 to 0.063 mm [millimeter]). At the deep coring sites located farther upstream, the upper parts of the profile had lower concentrations of HgT, generally ranging from 2 to 100 ng/g, in sediment dominantly of sand size (median grain size from 0.063 to 2 mm). The lower part of the vertical profiles at three upstream coring sites had higher concentrations of HgT than the upper and middle parts of these profiles, and had finer median grain size. The highest median concentration of MeHg (1.1 ng/g) was in the top 2 cm (centimeter) of the shallow box cores. This vertical interval also had the highest value of the ratio of MeHg to HgT, 0.41 percent. Median concentrations of MeHg and median values of MeHg/HgT decreased systematically with depth from 0-4 to 4-8 to 8-12 cm in the shallow cores. However, similar systematic decreases were not observed at the meter scale in the deep cores of the MEM (MEthylMercury) series. The overall median of the ratio MeHg/HgT in the deep cores was 0.25 percent, not much less than the overall median value for the shallow cores (0.33 percent). Mercury-203 radiotracer divalent inorganic mercury (203Hg(II)) was used to determine microbial mercury-methylation potential rates for 11 samples collected from three reservoir locations and various depths in the sediment profile. For the five shallow mercury-methylation subsamples, ancillary geochemical parameters were assayed, including microbial sulfate reduction rates, sulfur speciation (sediment acid volatile sulfide, total reduced sulfur, and pore-water sulfate), iron speciation (sediment acid extractable iron(II), amorphous iron(III), crystalline iron(III) and pore-water iron(II)), pore-water chloride and dissolved organic carbon, and pH, oxidation-reduction potential (Eh) and whole-sediment organic content. The highest potential rates of microbial mercury methylation were measured in shallow (0 to 8 cm depth) sediments (5 to 30 nanograms of mercury per gram dry sediment per day), whereas potential rates for subsamples collected from depths greater than 500 cm were consistently below the detection limit of the radiotracer method (< 0.02 nanogram of mercury per gram dry sediment per day). Chemical analyses of trace and major elements in bed sediment are presented for 202 samples from deep cores from five locations in Englebright Lake. The mean values and standard deviations for selected trace elements were as follows (in micrograms per gram): antimony, 2.4 ? 1.6; arsenic, 69 ? 48; chromium, 134 ? 23; lead, 33 ? 25; and nickel, 87 ? 24. Concentrated samples of heavy-mineral grains, prepared using nine large-volume composite samples from

  11. Complex N-S variations in Moho depth and Vp/Vs ratio beneath the western Tibetan Plateau as revealed by receiver function analysis

    NASA Astrophysics Data System (ADS)

    Murodov, Davlatkhudzha; Zhao, Junmeng; Xu, Qiang; Liu, Hongbing; Pei, Shunping

    2018-04-01

    We present herein detailed images of the Moho depth and Vp/Vs ratio along ANTILOPE-1 profile beneath the western Tibetan Plateau derived from receiver function analysis. Along the ANTILOPE -1 profile, a rapidly northward dipping Moho extends from ˜50 km below the Himalaya to ˜80 km across the Indus-Yarlung suture (IYS), shallowing to ˜66 km under the central Lhasa terrane. The Moho depth shows a dramatic increase from ˜66 km north of the Bangong-Nujiang suture (BNS) to ˜93 km beneath central Qiangtang terrane where it reaches the maximum depth observed along this profile before steeply rising to ˜73 km. We interpret both the 15 km and 20 km offsets of Moho depth occurring beneath the central Lhasa and central Qiangtang terranes as being related to the northern frontiers of the decoupled underthrusting Indian lower crust and lithospheric mantle, respectively. The Moho remains at a depth of ˜70 km with a slight undulation beneath the northern Qiangtang and Songpan-Ganzi terranes, and then abruptly shallows to ˜45 km near the Altyn Tagh Fault. The ˜25 km Moho offset observed at the conjunction of the Tarim Basin and the Altyn Tagh mountain range suggests that the crustal shortening is achieved by pure shear thickening without much underthrusting. The average crustal Vp/Vs ratio changes from 1.66 to 1.80 beneath the Himalaya, the Lhasa terrane and the Tarim Basin indicating a felsic-to-intermediate composition. However, higher Vp/Vs ratios between 1.76 and 1.83 (except for a few outlying low values) are found beneath the Qiangtang and Songpan-Ganzi terranes, which could be attributed to the joint effects of the more mafic composition and partial melt within the crust. The Moho depth and Vp/Vs ratio exhibit complex N-S variations along this profile, which can be attributed to the joint effects of Indian lower crust underthrusting, the low velocity zone of the mid-upper crust, crustal shortening and thickening and other involved dynamic mechanisms.

  12. Clay mineralogy of weathering profiles from the Carolina Piedmont.

    USGS Publications Warehouse

    Loferski, P.J.

    1981-01-01

    Saprolite profiles (12) that formed over various crystalline rocks from the Charlotte 1o X 2o quadrangle showed overall similarity in their clay mineralogy to depths of 6 to 45 m indicating control by weathering processes rather than by rock type. Most saprolite contained 10-25% clay, and ranged 3 to 70%. Kaolinite and halloysite composed = or >75% of the clay fraction of most samples. The ratio kaolinite:halloysite ranged widely, from 95% kaolinite to 90% halloysite, independent of depth. Clay-size mica was present in all profiles, and ranged 5-75% over a sericite schist. Mixed-layer mica-smectite and mica-vermiculite were subordinate; discrete smectite and vermiculite were rare. The abundance of halloysite indicates a continuously humid environment since the time of profile formation, because of the rapidity with which halloysite dehydrates irreversibly. -R.S.M.

  13. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  14. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  15. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Pilot study of facial soft tissue thickness differences among three skeletal classes in Japanese females.

    PubMed

    Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Yoshino, Mineo; Oohigashi, Shina; Miyazawa, Hiroo; Inoue, Katsuhiro

    2010-02-25

    Facial reconstruction is a technique used in forensic anthropology to estimate the appearance of the antemortem face from unknown human skeletal remains. This requires accurate skull assessment (for variables such as age, sex, and race) and soft tissue thickness data. However, the skull can provide only limited information, and further data are needed to reconstruct the face. The authors herein obtained further information from the skull in order to reconstruct the face more accurately. Skulls can be classified into three facial types on the basis of orthodontic skeletal classes (namely, straight facial profile, type I, convex facial profile, type II, and concave facial profile, type III). This concept was applied to facial tissue measurement and soft tissue depth was compared in each skeletal class in a Japanese female population. Differences of soft tissue depth between skeletal classes were observed, and this information may enable more accurate reconstruction than sex-specific depth alone. 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy.

    PubMed

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-15

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30cms -1 . The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. On th meridional surface profile of the Gulf Stream at 55 deg W

    NASA Technical Reports Server (NTRS)

    Hallock, Zachariah R.; Teague, William J.

    1995-01-01

    Nine-month records from nine inverted echo sounders (IESs) are analyzed to describe the mean baroclinic Gulf Stream at 55 deg W. IES acoustic travel times are converted to thermocline depth which is optimally interpolated. Kinematic and dynamic parameters (Gulf Stream meridional position, velocity, and vorticity) are calculated. Primary Gulf Stream variabiltiy is attributed to meandering and and changes in direction. A mean, stream-coordinate (relative to Gulf Stream instantaneous position and direction) meridional profile is derived and compared with results presented by other investigators. The mean velocity is estimated at 0.84 m/s directed 14 deg to the right eastward, and the thermocline (12 c) drops 657 m (north to south), corresponding to a baroclinic rise of the surface of 0.87 m. The effect of Gulf Stream curvature on temporal mean profiles is found to be unimportant and of minimal importance overall. The derived, downstream current profile is well represented by a Gaussian function and is about 190 km wide where it crosses zero. Surface baroclinic transport is estimated to be 8.5 x 10(exp 4) sq m/s, and maximum shear (flanking the maximum) is 1.2 x 10(exp -5). Results compare well with other in situ observational results from the same time period. On the other hand, analyses (by others) of concurrent satellite altimetry (Geosat) suggest a considerable narrower, more intense mean Gulf Stream.

  19. Characterization of a suspected terrestrial deep groundwater discharge area on the Canadian Precambrian Shield

    NASA Astrophysics Data System (ADS)

    Sheppard, Marsha I.; Thibault, D. H.; Milton, G. M.; Reid, J. A. K.; Smith, P. A.; Stevens, K.

    1995-03-01

    Underground storage and disposal of hazardous wastes require an understanding of groundwater flow and the ability to locate recharge and discharge. Usually, recharge and discharge occur at a transition zone where dispersion/advection, molecular diffusion and biogeochemical processes control the fate of a contaminants leaving an underground facility. Appropriate landscape modelling for risk assessment cannot proceed until this interface is well defined and groundwater discharge can be mapped. Although discharge locations have traditionally been thought of as aquatic, the presence of animal licks suggests the possibility of terrestrial discharge. We have characterized a suspected terrestrial discharge, a well-used deer lick, (1) physically, through surficial mapping, and vegetation and soil profile analyses; (2) geophysically, through magnetic and very low-frequency electromagnetic tilt-angle surveys; (3) hydrogeologically, through water-table elevation measurements; (4) geochemically, through overburden analyses for 238U, 226Ra, 210Pb, Na, tritium, Cl and 36{Cl}/{Cl} atom ratios, as well as pore-water and groundwater analyses for pH, electrical conductivity (EC) and major anions and cations; and (5) thermally, through overburden-rock interface temperatures. Halophytic plants and sedges contained more Na, Cl and 238U than averages reported in the literature. Lineament alignment, coincident with elevated groundwater EC, supported the presence and position of a subsurface fracture. Groundwater chemistry suggested that interfering runoff from a nearby ridge masked the chemical signatures expected of deep groundwater but attest to the weak and possibly ephemeral nature of this discharge. Interpretation of the geochemical data was supported by solute transport modelling. Good agreement between the predictions using an unsaturated soil model, a simple wetland compartment model and the observed profile implied that evapotranspiration, seasonal water-table fluctuations and flooding, and sorption of 238U due to anoxia deep in the overburden are major processes shaping the overburden solute profile. This evidence strongly supported the hypothesis that the site is a location where deep groundwater (groundwater from depths of 500-1000 m) discharges.

  20. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region.

    PubMed

    Baskan, Oguz; Kosker, Yakup; Erpul, Gunay

    2013-12-01

    Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.

  1. Subsurface Evolution: Weathering and Mechanical Strength Reduction in Bedrock of Lower Gordon Gulch, Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Anderson, R. S.; Blum, A.; Foster, M. A.; Langston, A. L.

    2011-12-01

    Weathering processes drive mobile regolith production at the surface of the earth. Chemical and physical weathering weakens rock by creating porosity, opening fractures, and transforming minerals. Increased porosity provides habitat for living organisms, which aid in further breakdown of the rock, leaving it more susceptible to displacement and transport. In this study, we test mechanical and chemical characteristics of weathered profiles to better understand weathering processes. We collect shallow bedrock cores from tors and isovolumetrically weathered bedrock in lower Gordon Gulch to characterize the mechanical strength, mineralogy, and bulk chemistry of samples to track changes in the subsurface as bedrock weathers to mobile regolith. Gordon Gulch is a small (2.7 km2), E-W trending catchment within the Boulder Creek Critical Zone Observatory underlain by Pre-Cambrian gneiss and granitic bedrock. The basin is typical of the "Rocky Mountain Surface" of the Front Range, characterized by low relief, a lack of glacial or fluvial incision, and deep weathering. Although the low-curvature, low-relief Rocky Mountain Surface would appear to indicate a landscape roughly in steady-state, shallow seismic surveys (Befus et al., 2011, Vadose Zone Journal) indicate depth to bedrock is highly variable. Block style release of saprolite into mobile regolith could explain this high variability and should be observable in geotechnical testing. Gordon Gulch also displays a systematic slope-aspect dependent control on weathering, with N-facing hillslopes exhibiting deeper weathering profiles than the S-facing hillslope. We believe comparisons of paired geotechnical-testing, XRD, and XRF analyses may explain this hillslope anisotropy. Rock quality designation (RQD) values, a commonly used indicator of rock mass quality (ASTM D6032), from both N- and S- facing aspects in Gordon Gulch indicate that granitic bedrock in both outcrop and saprolitic rock masses is poor to very poor. Brazilian tensile testing of outcrop core samples show relatively low tensile failure forces, and exhibit a roughly logarithmic increase in failure force, and hence tensile strength, with depth. For many of the granitic strength profiles, the point of greatest curvature is around 0.5 m depth. Tests reveal small-scale variation in the tensile strength, suggesting that the tight fracture-spacing bounding blocks of saprolite plays an important role in regolith production. The origin of the micro- and macro-fractures is unclear. Preliminary results do not correlate clear depth-trends in mineralogy or bulk chemistry with mechanical strength. The lack of a strong signature from chemical or mineralogical weathering suggests that mechanical processes, such as frost cracking or biotite hydration, may dominate.

  2. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    PubMed

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  3. Methodology and Estimates of Scour at Selected Bridge Sites in Alaska

    USGS Publications Warehouse

    Heinrichs, Thomas A.; Kennedy, Ben W.; Langley, Dustin E.; Burrows, Robert L.

    2001-01-01

    The U.S. Geological Survey estimated scour depths at 325 bridges in Alaska as part of a cooperative agreement with the Alaska Department of Transportation and Public Facilities. The department selected these sites from approximately 806 State-owned bridges as potentially susceptible to scour during extreme floods. Pier scour and contraction scour were computed for the selected bridges by using methods recommended by the Federal Highway Administration. The U.S. Geological Survey used a four-step procedure to estimate scour: (1) Compute magnitudes of the 100- and 500-year floods. (2) Determine cross-section geometry and hydraulic properties for each bridge site. (3) Compute the water-surface profile for the 100- and 500-year floods. (4) Compute contraction and pier scour. This procedure is unique because the cross sections were developed from existing data on file to make a quantitative estimate of scour. This screening method has the advantage of providing scour depths and bed elevations for comparison with bridge-foundation elevations without the time and expense of a field survey. Four examples of bridge-scour analyses are summarized in the appendix.

  4. Study of process parameter on mist lubrication of Titanium (Grade 5) alloy

    NASA Astrophysics Data System (ADS)

    Maity, Kalipada; Pradhan, Swastik

    2017-02-01

    This paper deals with the machinability of Ti-6Al-4V alloy with mist cooling lubrication using carbide inserts. The influence of process parameter on the cutting forces, evolution of tool wear, surface finish of the workpiece, material removal rate and chip reduction coefficient have been investigated. Weighted principal component analysis coupled with grey relational analysis optimization is applied to identify the optimum setting of the process parameter. Optimal condition of the process parameter was cutting speed at 160 m/min, feed at 0.16 mm/rev and depth of cut at 1.6 mm. Effects of cutting speed and depth of cut on the type of chips formation were observed. Most of the chips forms were long tubular and long helical type. Image analyses of the segmented chip were examined to study the shape and size of the saw tooth profile of serrated chips. It was found that by increasing cutting speed from 95 m/min to 160 m/min, the free surface lamella of the chips increased and the visibility of the saw tooth segment became clearer.

  5. Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, Western Iberian Margin

    NASA Astrophysics Data System (ADS)

    Ingels, Jeroen; Billett, David S. M.; Kiriakoulakis, Konstadinos; Wolff, George A.; Vanreusel, Ann

    2011-12-01

    Samples collected at two different depths (ca. 3200 and ca. 4200 m) in the Setúbal and Cascais canyons off the Portuguese coast, during the HERMES RRS Charles Darwin cruise CD179, were analysed for (1) sediment biogeochemistry (TOC, TN) and (2) composition, and structural and trophic diversity of nematode communities. Multivariate PERMANOVA analysis on the nematode community data revealed differences between sediment layers that were greater than differences between canyons, water depths, and stations. This suggests that biogeochemical gradients along the vertical sediment profile are crucial in determining nematode community structure. The interaction between canyon conditions and the nematode community is illustrated by biogeochemical patterns in the sediment and the prevalence of nematode genera that are able to persist in disturbed sediments. Trophic analysis of the nematode community indicated that non-selective deposit feeders are dominant, presumably because of their non-selective feeding behaviour compared to other feeding types, which gives them a competitive advantage in exploiting lower-quality food resources. This study presents a preliminary conceptual scheme for interactions between canyon conditions and the resident fauna.

  6. Exposure histories of lunar rocks 71135 and 71569

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.

    1977-01-01

    Rare-gas isotopic analyses have been performed on lunar rocks 71135 and 71569. The conventional (Kr-81)-Kr cosmic-ray exposure ages are 103 + or - 3 m.y. for 71135 and 134 + or - 7 m.y. for 71569. An approach is outlined to deducing complex exposure histories from rare-gas data using depth profiles of the production rates of the cosmogenic rare-gas isotopes. Examination of the Xe isotopes by means of a 'concordia' plot suggests that 71569 may have a simple one-stage exposure history whereas 71135 has a more complex history. An attempt is made to construct exposure models for these two rocks which account for the abundances of all the cosmogenic rare gases, the Xe isotopic compositions, and the apparent (Kr-81)-Kr exposure ages. This study demonstrates the depreciation of (Kr-81)-Kr ages for rocks exposed at shallow depths, caused by the relatively rapid variation of the Kr-81 production as the rock is eroded. Possible implications of the tentative results for the formation age of the Central Cluster unit are discussed.

  7. Thermal Variability in Gravel Bars and its Potential Consequences for CO2 Evasion from Alpine Coldwater Streams

    NASA Astrophysics Data System (ADS)

    Boodoo, K. S.; Schelker, J.; Battin, T. J.

    2016-12-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. During warm summer months, diurnal vertical temperature patterns were most pronounced and were detected throughout all one-meter-depth profiles. Furthermore, permanently wetted GB sediment (-56 cm depth) temperatures above that of stream and groundwater occurred 17% of the year, particularly during summer. This is further evidence for downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB temperatures were associated with increased CO2 evasion fluxes; the strength of the relationship increased with depth (max. r2 = 0.61 at -100cm depth). This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn and winter, while downward heat transfer in summer may enhance GB metabolism and therefore CO2 evasion. The importance of these processes is likely to increase, particularly in cold-water streams, due to the occurrence of more frequent and intense warm temperature events, as well as altered flow regimes, likely consequences of climatic change.

  8. Water-quality data for the Ohio River from New Cumberland Dam to Pike Island Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.; Messinger, Terence; Waldron, M.C.; Faulkenburg, C.W.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was determined by a combination of repeated synoptic field measurements, continuous-record monitoring, and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. At each longitudinal-transect and back-channel sampling site, measurements were made of specific conductance, pH, water temperature, and dissolved oxygen conentration. Longitudinal-transect and back-channel stations were sampled at four depths (at the surface, about 3.3 feet below the surface, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi-disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated 10 times from May through October 1993. Continuous-record monitoring of water quality consisted of hourly measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration, made at a depth of 6.6 feet upstream and downstream of New Cumberland Dam. Continuous monitors were operated from May through October 1993.

  9. Water-quality data for the Ohio River from Willow Island Dam to Belleville Dam, West Virginia and Ohio, May-October 1993

    USGS Publications Warehouse

    Miller, K.F.

    1996-01-01

    This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and dissolved oxygen concentration that were made at a depth of 6.6 feet at the ends of the upstream and downstream wingwalls at Willow Island Dam. Continuous-record monitors were operated from May through October 1993.

  10. Evaluation of different strategies for quantitative depth profile analysis of Cu/NiCu layers and multilayers via pulsed glow discharge - Time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Muñiz, Rocío; Lobo, Lara; Németh, Katalin; Péter, László; Pereiro, Rosario

    2017-09-01

    There is still a lack of approaches for quantitative depth-profiling when dealing with glow discharges (GD) coupled to mass spectrometric detection. The purpose of this work is to develop quantification procedures using pulsed GD (PGD) - time of flight mass spectrometry. In particular, research was focused towards the depth profile analysis of Cu/NiCu nanolayers and multilayers electrodeposited on Si wafers. PGDs are characterized by three different regions due to the temporal application of power: prepeak, plateau and afterglow. This last region is the most sensitive and so it is convenient for quantitative analysis of minor components; however, major elements are often saturated, even at 30 W of applied radiofrequency power for these particular samples. For such cases, we have investigated two strategies based on a multimatrix calibration procedure: (i) using the afterglow region for all the sample components except for the major element (Cu) that was analyzed in the plateau, and (ii) using the afterglow region for all the elements measuring the ArCu signal instead of Cu. Seven homogeneous certified reference materials containing Si, Cr, Fe, Co, Ni and Cu have been used for quantification. Quantitative depth profiles obtained with these two strategies for samples containing 3 or 6 multilayers (of a few tens of nanometers each layer) were in agreement with the expected values, both in terms of thickness and composition of the layers.

  11. In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination.

    PubMed

    Allan, Pamela; Bellamy, Luke J; Nordon, Alison; Littlejohn, David; Andrews, John; Dallin, Paul

    2013-03-25

    A 785nm diode laser and probe with a 6mm spot size were used to obtain spectra of stationary powders and powders mixing at 50rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO(2) in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant. The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7mm for the "information" depth and 3.5mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin-aspartame-Avicel mixture. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Characterization of TiCN coatings deposited by magnetron sputter-ion plating process: RBS and GDOS complementary analyses

    NASA Astrophysics Data System (ADS)

    Freire, F. L., Jr.; Senna, L. F.; Achete, C. A.; Hirsch, T.

    1998-03-01

    Hard TiCN films were deposited by dc-magnetron sputter-ion plating technique onto high-speed carbon steel S-6-5-2 (M 2). For selected deposition conditions, TiCN films were also deposited onto Si substrates. A Ti target was sputtered in ArCH 4N 2 atmosphere. The argon flux (12 sccm) was fixed and corresponds to 90% of the total flux, whereas the N 2 flux ranged from 3% to 9% of the total flux. The total pressure in the chamber during film deposition was 8-9 × 10 -2Pa. The substrate bias, Vb, was between 0 and -140V and the substrate temperature, Ts, was 350°C. Film composition and depth profile of the elements were obtained by Rutherford backscattering spectrometry (RBS) and glow discharge optical spectroscopy (GDOS). Some limitations of both techniques in analysing TiCN films were presented. The effect of methane poisoing of the Ti target and how it influences the film composition was discussed.

  13. ADOLESCENT IDENTITIES AND SEXUAL BEHAVIOR: AN EXAMINATION OF ANDERSON’S ‘PLAYER’ HYPOTHESIS

    PubMed Central

    Giordano, Peggy C.; Longmore, Monica A.; Manning, Wendy D.; Northcutt, Miriam J.

    2009-01-01

    We investigate the social and behavioral characteristics of male adolescents who self-identify as players, focusing particularly on Anderson’s claim that this social role is inextricably linked with poverty and minority status. Results indicate that African American respondents, those affiliated with liberal peers and young men who initially report a relatively high number of sexual partners are more likely to resonate with this identity label. Nevertheless, analyses reveal that a number of players within the sample are not disadvantaged African American youth, and there is considerable variability in their attitude and behavior profiles. Findings based on longitudinal analyses indicate that the player identity is a significant predictor of later variations in self-reported sexual behavior, net of traditional predictors, including prior behavior. Yet results of in-depth interviews conducted with a subset of the respondents complicate these quantitative findings, highlighting that young men’s perceptions of this identity are not as uniformly positive as Anderson’s depiction might lead us to expect. PMID:20161097

  14. Optimization of process parameters in CNC turning of aluminium alloy using hybrid RSM cum TLBO approach

    NASA Astrophysics Data System (ADS)

    Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.

    2016-09-01

    The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.

  15. Soil depth mapping using seismic surface waves: Evaluation on eroded loess covered hillslopes

    NASA Astrophysics Data System (ADS)

    Bernardie, Severine; Samyn, Kevin; Cerdan, Olivier; Grandjean, Gilles

    2010-05-01

    The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear wave velocity Vs. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. SASW measurements adapted to soil characterisation is proposed in the DIGISOIL project, as it produces in an easy and quick way a 2D map of the soil. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. The validation of this methodology has been performed with the realisation of several acquisitions along the seismic profiles: - Several boreholes were drilled until the bedrock, permitting to get the geological features of the soil and the depth of the bedrock; - Several laboratory measurements of various parameters were done on samples taken from the boreholes at various depths, such as dry density, solid density, and water content; - Dynamic penetration tests were also conducted along the seismic profile, until the bedrock is attained. Some empirical correlations between the parameters measured with laboratory tests, the qc obtained from the dynamic penetration tests and the Vs acquired from the SASW measurements permit to assess the accuracy of the procedure and to evaluate its limitations. The depth to bedrock determined by this procedure can then be combined with the soil erosion susceptibility to produce a risk map. This methodology will help to target measures within areas that show a reduced soil depth associated with a high soil erosion susceptibility.

  16. Morphology of Submarine Canyons in the Palomares Margin (East of Alboran Sea, western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Perez-Hernandez, S.; Comas, M. C.; Escutia, C.

    2009-04-01

    Morphological analysis on the Palomares Margin has been done using high-resolution swath bathymetry data collected during the MARSIBAL-06 (2006) cruise on board of the R/V BIO Hespérides. Complemented with data from GEBCO 2000 and Ifremer (Medimap Group, 2007) the data-set provides the first complete bathymetric mosaic of the Palomares Margin. The bathymetric mosaic allows to study the physiographic provinces of the Palomares Margin and to conduct, for the first time, a detailed morphological analysis of the two main sediment-transfer conduits: the Gata and the Alias-Almanzora Canyons. The Gata Canyon extends for 64km from the outer shelf to the base of the slope with a general W-E direction. A tributary system of canyons originates at the shelf break and continues on the slope until they merge at 1230m water depth. The walls of the canyons are characterized by repeated slides. Perpendicular profiles to the Canyon pathway reveal gentle transversal "V" asymmetrical shapes with a marked axial incision on the canyon floor (highs between 65 to 103m in the southern flank, and between 30-90m in the northern flank ). The transition from an erosional canyon to a deposition channel is located at 2100m water depth, and is characterized by trapezoidal shapes on transversal profiles accompanied of lower relieves (40-65m). At the mouth of the canyon-channel system no sedimentary lobes are observed. The Alias-Almanzora canyon (73km long and preferential direction W-E) is located North of the Gata Canyon and extends from the continental shelf to the base of the slope. A tributary system to the Alias- Almanzora canyon-head locates less than 150m from the coast, facing a fluvial drainage system onland. Proximal tributary canyons and gullies feed the main canyon until it merges in the continental slope at 1516m water depth. The tributary system exhibits a marked "V" shape in transverse profiles and marked axial incisions. Down slope, transversal profiles have trapezoidal shapes. Longitudinal profiles show convex-up sections along the tributary system and concave-up sections from the merge in the main canyon down slope. The transition from an erosional canyon to a depositional channel is located at 2100m water depth. The mouth of the Alias-Almanzora Canyon-channel system is characterized by distributaries channels and lobated features. Morphological analyses from these Canyons indicate they have different origin and evolution. The connection of the Alias-Almanzora Canyon to a fluvial drainage system offshore suggests the canyon formed by erosion of the continental shelf edge during sea-level low stand periods, when entrapment of sediment on deltas and reduced sediment transport through submarine canyons occurred. The Gata Canyon has instead developed by head wards erosion and gravitational instabilities. Both canyon systems are highly influenced by recent tectonics, and structural trends influence their location and changes in pathways. Contribution from Projects SAGAS CTM2005-08071-03-01 and TOPO-IBERIA CSD2006-00041 (R & D National Plan of the Ministry of Science and Technology and FEDER funding, Spain).

  17. Marine Geophysical Investigation of Selected Sites in Bridgeport Harbor, Connecticut, 2006

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.

    2007-01-01

    A marine geophysical investigation was conducted in 2006 to help characterize the bottom and subbottom materials and extent of bedrock in selected areas of Bridgeport Harbor, Connecticut. The data will be used by the U.S. Army Corps of Engineers in the design of confined aquatic disposal (CAD) cells within the harbor to facilitate dredging of the harbor. Three water-based geophysical methods were used to evaluate the geometry and composition of subsurface materials: (1) continuous seismic profiling (CSP) methods provide the depth to water bottom, and when sufficient signal penetration can be achieved, delineate the depth to bedrock and subbottom materials; (2) continuous resistivity profiling (CRP) methods were used to define the electrical properties of the shallow subbottom, and to possibly determine the distribution of conductive materials, such as clay, and resistive materials, such as sand and bedrock; (3) and magnetometer data were used to identify conductive anomalies of anthropogenic sources, such as cables and metallic debris. All data points were located using global positioning systems (GPS), and the GPS data were used for real-time navigation. The results of the CRP, CSP, and magnetometer data are consistent with the conceptual site model of a bedrock channel incised beneath the present day harbor. The channel appears to follow a north-northwest to south-southeast trend and is parallel to the Pequannock River. The seismic record and boring data indicate that under the channel, the depth to bedrock is as much as 42.7 meters (m) below mean low-low water (MLLW) in the dredged part of the harbor. The bedrock channel becomes shallower towards the shore, where bedrock outcrops have been mapped at land surface. CSP and CRP data were able to provide a discontinuous, but reasonable, trace from the channel toward the west under the proposed southwestern CAD cell. The data indicate a high amount of relief on the bedrock surface, as well as along the water bottom. Under the southwestern CAD cell, the sediments are only marginally thick enough for a CAD cell, at about 8 to 15 m in depth. Some of the profiles show small diffractions in the unconsolidated sediments, but no large-scale boulders or boulder fields were identified. No bedrock reflectors were imaged under the southeastern CAD cell, where core logs indicate the rock is as much as 30 m below MLLW. The chirp frequency, tuned transducer, and boomer-plate CSP surveys were adversely affected by a highly reflective water bottom causing strong multiples in the seismic record and very limited depths of penetration. These multiples are attributed to entrapped gas (methane) in the sediments or to very hard bottom conditions. In a limited number of places, the bedrock surface was observed in the CSP record, creating a discontinuous and sporadic image of the bedrock surface. These interpretations generally matched core data at FP-03-10 and FB-06-1. Use of two analog CSP systems, the boomer plate and tuned transducer, did not overcome the reflections off the water bottom and did not improve the depth of penetration. In general, the CRP profiles were used to corroborate the results of the CSP profiles. Relatively resistive zones associated with the locations of seismic reflections were interpreted as bedrock. The shape of the bedrock surface generally was similar in the CRP and CSP profiles. Evaluation of the CRP profiles indicated that the inversions were adversely affected where the depth and (or) ionic concentration of the water column varied. Consequently, the CRP profiles were broken into short intervals that extended just over the area of interest, where the depth to water bottom was fairly constant. Over these short profiles, efforts were made to evaluate the resistivity of the very shallow sediments to determine if there were any large contrasts in the resistivity of the sediments that might indicate differences in the shallow subbottom materials. No conclusions abo

  18. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    PubMed

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated that deep water sources did not maintain E which sharply declined in September, but played an important role in the recovery of tree Psi. Differences in sources of water uptake among these species and their ecological implications on tree-grass dynamics and soil water in semiarid environments are discussed.

  19. Impact of Land Model Depth on Long Term Climate Variability and Change.

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rouco, J. F.; García-Bustamante, E.; Hagemann, S.; Lorentz, S.; Jungclaus, J.; de Vrese, P.; Melo, C.; Navarro, J.; Steinert, N.

    2017-12-01

    The available evidence indicates that the simulation of subsurface thermodynamics in current General Circulation Models (GCMs) is not accurate enough due to the land-surface model imposing a zero heat flux boundary condition that is too close to the surface. Shallow land model components distort the amplitude and phase of the heat propagation in the subsurface with implications for energy storage and land-air interactions. Off line land surface model experiments forced with GCM climate change simulations and comparison with borehole temperature profiles indicate there is a large reduction of the energy storage of the soil using the typical shallow land models included in most GCMs. However, the impact of increasing the depth of the soil model in `on-line' GCM simulations of climate variability or climate change has not yet been systematically explored. The JSBACH land surface model has been used in stand alone mode, driven by outputs of the MPIESM to assess the impacts of progressively increasing the depth of the soil model. In a first stage, preindustrial control simulations are developed increasing the lower depth of the zero flux bottom boundary condition placed for temperature at the base of the fifth model layer (9.83 m) down to 294.6 m (layer 9), thus allowing for the bottom layers to reach equilibrium. Starting from piControl conditions, historical and scenario simulations have been performed since 1850 yr. The impact of increasing depths on the subsurface layer temperatures is analysed as well as the amounts of energy involved. This is done also considering permafrost processes (freezing and thawing). An evaluation on the influence of deepening the bottom boundary on the simulation of low frequency variability and temperature trends is provided.

  20. Three-dimensional assessment of crestal bone levels at titanium implants with different abutment microstructures and insertion depths using micro-computed tomography.

    PubMed

    Becker, Kathrin; Klitzsch, Inka; Stauber, Martin; Schwarz, Frank

    2017-06-01

    To (i) assess the impact of insertion depth and abutment microstructure on the three-dimensional crestal bone-level changes at endosseous titanium implant using μCT and computerized image processing and (ii) to correlate the findings with previously reported histology. Titanium implants (conical abutment connection) were inserted in each hemimandible of n = 6 foxhounds with the implant shoulder (IS) located either in epicrestal (0 mm), supracrestal (+1 mm) or subcrestal (-1 mm) positions and randomly (split-mouth design) connected with machined or partially micro-grooved healing abutments. At 20 weeks, the tissue biopsies were processed for μCT and histological (HI) analyses. The volumetric dehiscence profile around the implants was computed as distance between the implant shoulder (IS) and the most coronal bone-to-implant contact (CBI) using MATLAB. The respective buccal and oral values were averaged, and agreement with the respective IS-CBI scores from HI was assessed using Bland-Altman plots. A median net bone gain was observed for supracrestal insertion depths at both abutment types, but lower bounds of the 75% quartile experienced net bone losses. Epicrestal and subcrestal insertion depths were linked to slight bone losses, and the buccal and oral dehiscences were smaller compared to supracrestal positioning. Bland-Altman plots yielded a moderate agreement of IS-CBI values measured with μCT and HI. The novel image processing method allowed reliable evaluations and pointed to a direct impact of insertion depths on crestal bone-level changes. Additionally, it demonstrated that HI morphometry crucially depends on the chosen cutting position. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

    PubMed

    Hu, Anyi; Jiao, Nianzhi; Zhang, Chuanlun L

    2011-10-01

    Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.

  2. Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.

  3. An in situ method for real-time monitoring of soil gas diffusivity

    NASA Astrophysics Data System (ADS)

    Laemmel, Thomas; Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2016-04-01

    Soil aeration is an important factor for the biogeochemistry of soils. Generally, gas exchange between soil and atmosphere is assumed to be governed by molecular diffusion and by this way fluxes can be calculated using by Fick's Law. The soil gas diffusion coefficient DS represents the proportional factor between the gas flux and the gas concentration gradient in the soil and reflects the ability of the soil to "transport passively" gas through the soil. One common way to determine DS is taking core samples in the field and measuring DS in the lab. Unfortunately this method is destructive and laborious and it can only reflect a small fraction of the whole soil. As a consequence, uncertainty about the resulting effective diffusivity on the profile scale, i.e. the real aeration status remains. We developed a method to measure and monitor DS in situ. The set-up consists of a custom made gas sampling device, the continuous injection of an inert tracer gas and inverse gas transport modelling in the soil. The gas sampling device has seven sampling depths (from 0 to -43 cm of depth) and can be easily installed into vertical holes drilled by an auger, which allows for fast installation of the system. Helium (He) as inert tracer gas was injected continuously at the lower end of the device. The resulting steady state distribution of He was used to deduce the DS depth distribution of the soil. For Finite Element Modeling of the gas-sampling-device/soil system the program COMSOL was used. We tested our new method both in the lab and in a field study and compared the results with a reference lab method using soil cores. DS profiles obtained by our in-situ method were consistent with DS profiles determined based on soil core analyses. Soil gas profiles could be measured with a temporal resolution of 30 minutes. During the field study, there was an important rain event and we could monitor the decrease in soil gas diffusivity in the top soil due to water infiltration. The effect of soil water infiltration deeper into the soil on soil gas diffusivity could be observed during the following hours. Our new DS determination device can be quickly and easily installed and allows for monitoring continuously soil gas transport over a long time. It allows following modifications of soil gas diffusivity due to rain events. In addition it enables the analysis of non-diffusive soil gas transport processes.

  4. Local and profile soil water content monitoring: A comparison of methods in terms of apparent and actual spatial variation

    USDA-ARS?s Scientific Manuscript database

    Although many soil water sensors are now available, questions about their accuracy, precision, and representativeness still abound. This study examined down-hole (access tube profiling type) and insertion or burial (local) type sensors for their ability to assess soil profile water content (depth of...

  5. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    USGS Publications Warehouse

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah R.

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity–depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.

  6. Seismic velocities within the sedimentary succession of the Canada Basin and southern Alpha-Mendeleev Ridge, Arctic Ocean: evidence for accelerated porosity reduction?

    NASA Astrophysics Data System (ADS)

    Shimeld, John; Li, Qingmou; Chian, Deping; Lebedeva-Ivanova, Nina; Jackson, Ruth; Mosher, David; Hutchinson, Deborah

    2016-01-01

    The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity-depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity-depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity-depth profiles for each seismic trace. A thickness of 12-13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity-depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity-depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.

  7. Stream bed temperature profiles as indicators of percolation characteristics beneath arroyos in the middle Rio Grande Basin, USA

    USGS Publications Warehouse

    Constantz, J.; Thomas, C.L.

    1997-01-01

    Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.

  8. Optoacoustic imaging of tissue blanching during photodynamic therapy of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Viator, John A.; Paltauf, Guenther

    2000-05-01

    Esophageal cancer patients often present a highly inflamed esophagus at the time of treatment by photodynamic therapy. Immediately after treatment, the inflamed vessels have been shut down and the esophagus presents a white surface. Optoacoustic imaging via an optical fiber device can provide a depth profile of the blanching of inflammation. Such a profile may be an indicator of the depth of treatment achieved by the PDT. Our progress toward developing this diagnostic for use in our clinical PDT treatments of esophageal cancer patients is presented.

  9. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less

  10. What are the associated parameters and temporal coverage?

    Atmospheric Science Data Center

    2014-12-08

    ... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...

  11. Depth-resolved photo- and ionoluminescence of LiF and Al2O3

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Kirilkin, N. S.; Kovalev, Yu. S.; Strukova, T. S.; Havanscak, K.

    2012-09-01

    Microluminescence and laser confocal scanning microscopy techniques have been used to study spatial distribution of F-type color centers in LiF and mechanical stress profiles in Al2O3:Cr single crystals irradiated with 1.2 MeV/amu Ar, Kr, Xe and 3 MeV/amu Kr and Bi ions. It was found that F2 and F3+-center profiles at low ion fluences correlate with ionizing energy loss profiles. With increasing ion fluence, after ion track halo overlapping, the luminescence yield is defined by radiation defects formed in elastic collisions in the end-of-range area. Stress profiles and stress tensor components in ruby crystals across swift heavy ion irradiated layers have been deduced from depth-resolved photo-stimulated spectra using piezospectroscopic effect. Experimental data show that that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  12. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulff, J; Huggins, A

    Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less

  14. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    PubMed Central

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-01-01

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output. PMID:28009845

  15. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.

    PubMed

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-12-21

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output.

  16. Changes in dive profiles as an indicator of feeding success in king and Adélie penguins

    NASA Astrophysics Data System (ADS)

    Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.

    2007-02-01

    Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.

  17. Estimation of the optical errors on the luminescence imaging of water for proton beam

    NASA Astrophysics Data System (ADS)

    Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-04-01

    Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.

  18. Geoelectrical investigation of oil contaminated soils in former underground fuel base: Borne Sulinowo, NW Poland

    NASA Astrophysics Data System (ADS)

    Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.

    2009-07-01

    The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.

  19. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  20. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts

    USGS Publications Warehouse

    Ling, H.F.; Burton, K.W.; O'Nions, R. K.; Kamber, B.S.; Von Blanckenburg, F.; Gibb, A.J.; Hein, J.R.

    1997-01-01

    Hydrogenetic ferromanganese crusts incorporate elements from ambient seawater during their growth on seamounts. By analysing Nd, Pb and Be isotope profiles within crusts it is possible to reconstruct seawater tracer histories. Depth profiles of 10Be/9Be ratios in three Pacific ferromanganese crusts have been used to obtain growth rates which are between 1.4 and 3.8 mm/Ma. Nd and Pb isotopes provide intact records of isotopic variations in Pacific seawater over the last 20 Ma or more. There were only small changes in Pb isotope composition in the last 20 Ma. This indicates a constant Pb composition for the erosional sources and suggests further that erosional Nd inputs may have been uniform too. ??ND values vary considerably with time and most probably reflect changes in ocean circulation. The ??ND values of the crusts not only vary as a function of age but also as a function of water depth. From 25 to 0 Ma, crust VA13/2 from 4.8 km water depth has a similar pattern of ??ND variation to the two shallower crusts from 1.8 and 2.3 km, but about 1.0 to 1.5 units more negative. This suggests that ??ND stratification in Pacific seawater, as demonstrated for the present day, has been maintained for at least 20 Ma. Each crust shows a decrease in ??ND from 3-5 Ma to the present, which is interpreted in terms of an increase in the NADW component present in the Pacific. From 10 to 3-5 Ma ago the crusts show an increase in ??ND. This suggests a decreasing role for a deep water source with ??ND less than circum-Pacific sources. In this regard the Panamanian gateway restriction from ???10 Ma with final closure at 3-5 Ma may have played an important role in reducing access of Atlantic-derived Nd to the Pacific.

  1. Gas buildup in Lake Nyos, Cameroon: The recharge process and its consequences

    USGS Publications Warehouse

    Evans, William C.; Kling, G.W.; Tuttle, M.L.; Tanyileke, G.; White, L.D.

    1993-01-01

    The gases dissolved in Lake Nyos, Cameroon, were quantified recently (December 1989 and September 1990) by two independent techniques: in-situ measurements using a newly designed probe and laboratory analyses of samples collected in pre-evacuated stainless steel cylinders. The highest concentrations of CO2 and CH4 were 0.30 mol/kg and 1.7 mmol/kg, respectively, measured in cylinders collected 1 m above lake bottom. Probe measurements of in-situ gas pressure at three different stations showed that horizontal variations in total dissolved gas were negligible. Total dissolved-gas pressure near the lake bottom is 1.06 MPa (10.5 atm), 50% as high as the hydrostatic pressure of 2.1 MPa (21 atm). Comparing the CO2 profile constructed from the 1990 data to one obtained in May 1987 shows that CO2 concentrations have increased at depths to below 150 m. Based on these profiles, the average rate of CO2 input to bottom waters was 2.6 ?? 108 mol/a. Increased deep-water temperatures require an average heat flow of 0.32 MW into the hypolimnion over the same time period. The transport rates of CO2, heat, and major ions into the hypolimnion suggest that a low-temperature reservoir of free CO2 exists a short distance below lake bottom and that convective cycling of lake water through the sediments is involved in transporting the CO2 into the lake from the underlying diatreme. Increased CH4 concentrations at all depths below the oxycline and a high 14C content (41% modern) in the CH4 4 m above lake bottom show that much of the CH4 is biologically produced within the lake. The CH4 production rate may vary with time, but if the CO2 recharge rate remains constant, CO2 saturation of the entire hypolimnion below 50 m depth would require ???140 a, given present-day concentrations. ?? 1993.

  2. Activity and magnetic field structure of the Sun-like planet-hosting star HD 1237

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Grunhut, J.; Fares, R.; Donati, J.-F.; Alecian, E.; Kochukhov, O.; Oksala, M.; Morin, J.; Redfield, S.; Cohen, O.; Drake, J. J.; Jardine, M.; Matt, S.; Petit, P.; Walter, F. M.

    2015-10-01

    We analyse the magnetic activity characteristics of the planet-hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements that is consistent with our ZDI analysis with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on the shape of the extracted Stokes V profile but does result in a small increase in the S/N (~7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also affects the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI map solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes (~45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution affeccts the coronal magnetic field and extended environment around this planet-hosting star.

  3. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  4. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles.

    PubMed

    Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J

    2012-08-21

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.

  5. Radial widths, optical depths, and eccentricities of the Uranian rings

    NASA Technical Reports Server (NTRS)

    Nicholson, P. D.; Matthews, K.; Goldreich, P.

    1982-01-01

    Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.

  6. Seismic reflection profiling in the Boulder batholith, Montana

    NASA Astrophysics Data System (ADS)

    Vejmelek, Libor; Smithson, Scott B.

    1995-09-01

    Seismic reflection profiling combined with gravity data allows more exact determination of the geometry of the controversial Boulder batholith of Montana, reveals laminated structure of the lower crust beneath the batholith, and identifies the Moho at a depth of 38 km. The batholith has inward-dipping contacts, the dip being about 50° on the west side, on the basis of seismic data; and the depth to the batholith floor is constrained between 12 and 18 km, indicating a great volume for the batholith. The Boulder batholith was emplaced between 80 and 70 Ma during an eastward thrusting in the fold-and-thrust belt. A presumed basal decollement of the thrust system might coincide with the batholith floor and may correspond to the top of the lower-crustal layering at a depth of 18 km.

  7. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials?

    PubMed

    Flury, Simon; Hayoz, Stefanie; Peutzfeldt, Anne; Hüsler, Jürg; Lussi, Adrian

    2012-05-01

    To evaluate if depth of cure D(ISO) determined by the ISO 4049 method is accurately reflected with bulk fill materials when compared to depth of cure D(new) determined by Vickers microhardness profiles. D(ISO) was determined according to "ISO 4049; Depth of cure" and resin composite specimens (n=6 per group) were prepared of two control materials (Filtek Supreme Plus, Filtek Silorane) and four bulk fill materials (Surefil SDR, Venus Bulk Fill, Quixfil, Tetric EvoCeram Bulk Fill) and light-cured for either 10s or 20s. For D(new), a mold was filled with one of the six resin composites and light-cured for either 10 s or 20 s (n=22 per group). The mold was placed under a microhardness indentation device and hardness measurements (Vickers hardness, VHN) were made at defined distances, beginning at the resin composite that had been closest to the light-curing unit (i.e. at the "top") and proceeding toward the uncured resin composite (i.e. toward the "bottom"). On the basis of the VHN measurements, Vickers hardness profiles were generated for each group. D(ISO) varied between 1.76 and 6.49 mm with the bulk fill materials showing the highest D(ISO). D(new) varied between 0.2 and 4.0 mm. D(new) was smaller than D(ISO) for all resin composites except Filtek Silorane. For bulk fill materials the ISO 4049 method overestimated depth of cure compared to depth of cure determined by Vickers hardness profiles. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  9. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles.

    PubMed

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E; Mazzuca, Silvia; Serra, Ilia A; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  10. Analysis of Solar Wind Samples Returned by Genesis Using Laser Post Ionization Secondary Neutral Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veryovkin, I. V.; Calaway, W. F.; Tripa, C. E.; Pellin, M. J.; Burnett, D. S.

    2005-12-01

    A new secondary neutral mass spectrometry (SNMS) instrument implementing laser post ionization (LPI) of ion sputtered and laser desorbed neutral species has been developed and constructed for the specific purpose of quantitative analysis of metallic elements at ultra trace levels in solar wind collector samples returned to Earth by the Genesis Discovery mission. The first LPI SNMS measurements are focusing on determining Al, Ca, Cr, and Mg in these samples. These measurements provide the first concentration and isotopic abundances determinations for several key metallic elements and also elucidate possible fractionation effects between the photosphere and the solar wind compositions. It is now documented that Genesis samples suffered surface contamination both during flight and during the breach of the Sample Return Capsule when it crashed. Since accurate quantitative analysis is compromised by sample contamination, several features have been built into the new LPI SNMS instrument to mitigate this difficulty. A normally-incident, low-energy (<500 eV) ion beam combined with a keV energy ion beam and a desorbing laser beam (both microfocused) enables dual beam analyses. The low-energy ion beam can be used to remove surface contaminant by sputtering with minimum ion beam mixing. This low-energy beam also will be used to perform ion beam milling, while either the microfocused ion or laser beam probes the solar wind elemental compositions as a function of sample depth. Because of the high depth resolution of dual beam analyses, such depth profiles clearly distinguish between surface contaminants and solar wind implanted atoms. In addition, in-situ optical and electron beam imaging for observing and avoiding particulates and scratches on solar wind sample surfaces is incorporated in the new LPI SNMS instrument to further reduce quantification problems. The current status of instrument tests and analyses will be presented. This work is supported by the U. S. Department of Energy, BES-Materials Sciences, under Contract W-31-109-ENG-38, and by NASA under Work Orders W-19,895 and W-10,091.

  11. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to <0.5% at 140cm depth. High-throughput sequencing highlighted distinct microbial communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these tropical subsoils contain small but metabolically active microbial communities that are highly OM limited and may persist via degradation of recent inputs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebron, S; Kahler, D; Liu, C

    Purpose: To predict photon percentage depth dose (PDD) from profile due to a change in flattened (FF) and flattening-filter-free (FFF) beam quality. Methods: 6MV photon beam PDDs and profiles in a 3D water tank (3DW) and profiles in an ionization chamber array (ICP) were collected for different field sizes and depths with FF and FFF beams in a Versa HD (Elekta Ltd.). The energy was adjusted by changing the bending magnet current (BMC) ±15% from the clinical beam (6MV) in 5% increments. For baseline establishment, PDDs(depth≥3cm) were parameterized with bi-exponential functions and the PDD 20 to 10cm ratios (PDD{sub 20,10})more » were calculated. Then, the FF profile at 10cm from the central axis (Pr{sub 10}) and the slope of the FFF central linear region (SFFF) were calculated. Calibration curves were established: (1) change in Pr{sub 10} and SFFF as functions of the change in PDD{sub 20,10} and (2) change in PDD(depth=3, 15 and 30cm) as function of the change in PDD{sub 20,10}. The differences between Pr{sub 10} and SFFF from baseline were calculated and, from calibration curves, changes in PDD{sub 20,10} and PDD(depth=3, 15 and 30cm) were obtained. Then, absolute PDD(depth=3, 15 and 30cm) values were input into a least-square-optimization algorithm to calculate the bi-exponential function’s optimal coefficients and generate the PDD(depths≥3cm). Results: The change in PDD{sub 20,10} relative to baseline increased (<±4%) with BMC. Pr{sub 10} increased (±6%) and SFFF decreased (±11%) with BMC. Relative differences between measured and calculated (i.e. PDD calculation from Pr{sub 10} and SFFF) PDDs were less than 1%. Results apply to FF and FFF beams measured in 3DW and ICP. Conclusion: Pr{sub 10} and SFFF are more sensitive than PDD to changes in beam energy and PDD information can be accurately generated from them. With known 3DW and ICP profile relationship, ICP can be used to obtain PDD for current photon beam.« less

  13. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia

    2013-04-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.

  14. Parameterization of photon beam dosimetry for a linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebron, Sharon; Barraclough, Brendan; Lu, Bo

    2016-02-15

    Purpose: In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modeled data, (3) the quality assurance process of a linear accelerator’s (Linac) beam characteristics, (4) the establishment of a standard data set for comparison with other data, etcetera. Parameterization of the photon beam dosimetry creates a data set that is portable and easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon beam dosimetric quantities, includingmore » percentage depth doses (PDDs), profiles, and total scatter output factors (S{sub cp}). Methods: S{sub cp}, PDDs, and profiles for different field sizes, depths, and energies were measured for a Linac using a cylindrical 3D water scanning system. All data were smoothed for the analysis and profile data were also centered, symmetrized, and geometrically scaled. The S{sub cp} data were analyzed using an exponential function. The inverse square factor was removed from the PDD data before modeling and the data were subsequently analyzed using exponential functions. For profile modeling, one halfside of the profile was divided into three regions described by exponential, sigmoid, and Gaussian equations. All of the analytical functions are field size, energy, depth, and, in the case of profiles, scan direction specific. The model’s parameters were determined using the minimal amount of measured data necessary. The model’s accuracy was evaluated via the calculation of absolute differences between the measured (processed) and calculated data in low gradient regions and distance-to-agreement analysis in high gradient regions. Finally, the results of dosimetric quantities obtained by the fitted models for a different machine were also assessed. Results: All of the differences in the PDDs’ buildup and the profiles’ penumbra regions were less than 2 and 0.5 mm, respectively. The differences in the low gradient regions were 0.20% ± 0.20% (<1% for all) and 0.50% ± 0.35% (<1% for all) for PDDs and profiles, respectively. For S{sub cp} data, all of the absolute differences were less than 0.5%. Conclusions: This novel analytical model with minimum measurement requirements was proved to accurately calculate PDDs, profiles, and S{sub cp} for different field sizes, depths, and energies.« less

  15. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    USGS Publications Warehouse

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  16. Characterizing contaminant concentrations with depth by using the USGS well profiler in Oklahoma, 2003-9

    USGS Publications Warehouse

    Smith, S. Jerrod; Becker, Carol J.

    2011-01-01

    In 2007, the USGS well profiler was used to investigate saline water intrusion in a deep public-supply well completed in the Ozark (Roubidoux) aquifer. In northeast Oklahoma, where the Ozark aquifer is known to be susceptible to contamination from mining activities, the well profiler also could be used to investigate sources (depths) of metals contamination and to identify routes of entry of metals to production wells.Water suppliers can consider well rehabilitation as a potential remediation strategy because of the ability to identify changes in contaminant concentrations with depth in individual wells with the USGS well profiler. Well rehabilitation methods, which are relatively inexpensive compared to drilling and completing new wells, involve modifying the construction or operation of a well to enhance the production of water from zones with lesser concentrations of a contaminant or to limit the production of water from zones with greater concentrations of a contaminant. One of the most effective well rehabilitation methods is zonal isolation, in which water from contaminated zones is excluded from production through installation of cement plugs or packers. By using relatively simple and inexpensive well rehabilitation methods, water suppliers may be able to decrease exposure of customers to contaminants and avoid costly installation of additional wells, conveyance infrastructure, and treatment technologies.

  17. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    NASA Astrophysics Data System (ADS)

    Pallix, J. B.; Becker, C. H.; Missert, N.; Char, K.; Hammond, R. H.

    1988-02-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-Tc superconducting thin film of nominal composition YBa2Cu3O7 deposited on SrTiO3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 Å thick film having critical current densities of 1 to 2×106 A/cm2. SALI depth profiles show this film to be more uniform than thicker films (˜1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y2O2+, Y2O3+, Y3O4+, Ba2O+, Ba2O2+, BaCu+, BaCuO+, YBaO2+, YSrO2+, etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and COx are evident particularly in the sample's near surface region (the top ˜100 Å).

  18. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium

    PubMed Central

    2014-01-01

    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838

  19. Array analyses of SmKS waves and the stratification of Earth's outermost core

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi

    2018-03-01

    We perform array analyses of SmKS waves in order to investigate the Vp structure of the Earth's outermost core. For earthquakes recorded by broadband seismometer networks in the world, we measure differential travel times between S3KS and S2KS, between S4KS and S3KS, and between S5KS and S3KS by array techniques. The differential times are well fit by a Vp model of the Earth's outermost core, KHOMC (Kaneshima and Helffrich, 2013). Differential slownesses of S4KS and S2KS relative to S2KS are also measured for the highest quality data. The measured slownesses, with unique sensitivity to the outer core 200-400 km below the CMB, are matched by KHOMC. These observations consolidate the evidence for the presence at the top of the outer core of a layer that has a distinctively steeper Vp gradient than the bulk of the outer core. We invert new SmKS differential time data set by a tau-p method and attempt to refine the Vp profile of KHOMC. The essential features of KHOMC are preserved after the model refinement. However, the newly estimated layer thickness is nearly 450 km, which is thicker than that of KHOMC. The Vp anomalies relative to PREM for the depths 400-800 km below the CMB are less than 0.03 km/s, consistent with the degree of agreement between different Vp models for the depth range.

  20. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  1. Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.

    PubMed

    Sipos, Péter; Németh, Tibor; Mohai, Ilona

    2005-02-01

    Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger.

  2. Trading shallow safety for deep sleep: Juvenile green turtles select deeper resting sites as they grow

    USGS Publications Warehouse

    Hart, Kristen M.; White, Connor F.; Iverson, Autumn R.; Whitney, Nick

    2016-01-01

    To better protect endangered green sea turtles Chelonia mydas, a more thorough understanding of the behaviors of each life stage is needed. Although dive profile analyses obtained using time-depth loggers have provided some insights into habitat use, recent work has shown that more fine-scale monitoring of body movements is needed to elucidate physical activity patterns. We monitored 11 juvenile green sea turtles with tri-axial acceleration data loggers in their foraging grounds in Dry Tortugas National Park, Florida, USA, for periods ranging from 43 to 118 h (mean ± SD: 72.8 ± 27.3 h). Approximately half of the individuals (n = 5) remained in shallow (overall mean depth less than 2 m) water throughout the experiment, whereas the remaining individuals (n = 6) made excursions to deeper (4 to 27 m) waters, often at night. Despite these differences in depth use, acceleration data revealed a consistent pattern of diurnal activity and nocturnal resting in most individuals. Nocturnal depth differences thus do not appear to represent differences in behavior, but rather different strategies to achieve the same behavior: rest. We calculated overall dynamic body acceleration (ODBA) to assess the relative energetic cost of each behavioral strategy in an attempt to explain the differences between them. Animals in deeper water experienced longer resting dives, more time resting per hour, and lower mean hourly ODBA. These results suggest that resting in deeper water provides energetic benefits that outweigh the costs of transiting to deep water and a potential increased risk of predation.

  3. SLEEP AND MENTAL DISORDERS: A META-ANALYSIS OF POLYSOMNOGRAPHIC RESEARCH

    PubMed Central

    Baglioni, Chiara; Nanovska, Svetoslava; Regen, Wolfram; Spiegelhalder, Kai; Feige, Bernd; Nissen, Christoph; Reynolds, Charles F.; Riemann, Dieter

    2016-01-01

    Investigating sleep in mental disorders has the potential to reveal both disorder-specific and transdiagnostic psychophysiological mechanisms. This meta-analysis aimed at determining the polysomnographic (PSG) characteristics of several mental disorders. Relevant studies were searched through standard strategies. Controlled PSG studies evaluating sleep in affective, anxiety, eating, pervasive developmental, borderline and antisocial personality disorders, ADHD, and schizophrenia were included. PSG variables of sleep continuity, depth, and architecture, as well as rapid-eye movement (REM) sleep were considered. Calculations were performed with the “Comprehensive Meta-Analysis” and “R” softwares. Using random effects modeling, for each disorder and each variable, a separate meta-analysis was conducted if at least 3 studies were available for calculation of effect sizes as standardized means (Hedges’g). Sources of variability, i.e., sex, age, and mental disorders comorbidity, were evaluated in subgroup analyses. Sleep alterations were evidenced in all disorders, with the exception of ADHD and seasonal affective disorders. Sleep continuity problems were observed in most mental disorders. Sleep depth and REM pressure alterations were associated with affective, anxiety, autism and schizophrenia disorders. Comorbidity was associated with enhanced REM sleep pressure and more inhibition of sleep depth. No sleep parameter was exclusively altered in one condition; however, no two conditions shared the same PSG profile. Sleep continuity disturbances imply a transdiagnostic imbalance in the arousal system likely representing a basic dimension of mental health. Sleep depth and REM variables might play a key role in psychiatric comorbidity processes. Constellations of sleep alterations may define distinct disorders better than alterations in one single variable. PMID:27416139

  4. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    NASA Astrophysics Data System (ADS)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  5. Nutrigenomics and metabolomics will change clinical nutrition and public health practice: insights from studies on dietary requirements for choline2

    PubMed Central

    Zeisel, Steven H

    2008-01-01

    Science is beginning to understand how genetic variation and epigenetic events alter requirements for, and responses to, nutrients (nutrigenomics). At the same time, methods for profiling almost all of the products of metabolism in a single sample of blood or urine are being developed (metabolomics). Relations between diet and nutrigenomic and metabolomic profiles and between those profiles and health have become important components of research that could change clinical practice in nutrition. Most nutrition studies assume that all persons have average dietary requirements, and the studies often do not plan for a large subset of subjects who differ in requirements for a nutrient. Large variances in responses that occur when such a population exists can result in statistical analyses that argue for a null effect. If nutrition studies could better identify responders and differentiate them from nonresponders on the basis of nutrigenomic or metabolomic profiles, the sensitivity to detect differences between groups could be greatly increased, and the resulting dietary recommendations could be appropriately targeted. It is not certain that nutrition will be the clinical specialty primarily responsible for nutrigenomics or metabolomics, because other disciplines currently dominate the development of portions of these fields. However, nutrition scientists' depth of understanding of human metabolism can be used to establish a role in the research and clinical programs that will arise from nutrigenomic and metabolomic profiling. Investments made today in training programs and in research methods could ensure a new foundation for clinical nutrition in the future. PMID:17823415

  6. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-11-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sightline to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesized that this is due to high-velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳ 80 per cent accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  7. Dual beam organic depth profiling using large argon cluster ion beams

    PubMed Central

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  8. Estimating crustal thickness in Belgium and surrounding regions from Moho-reflected waves

    NASA Astrophysics Data System (ADS)

    Sichien, E.; Henriet, J.-P.; Camelbeeck, T.; De Baets, B.

    2012-08-01

    The Moho depth underneath parts of Belgium and neighbouring regions was evaluated, by analysing more than 750 PmP and SmS arrival times recorded by 37 seismic stations for 209 earthquakes or explosions. First the reflection points for all the recorded seismic source-station couples were located in a grid covering the studied region. Then the Moho depth was evaluated using data corresponding to reflection points located in the same cell of 400 km2. The results show that the crustal thickness varies between 28 and 37 km, with a maximum uncertainty of 2.5 km. Underneath the Brabant Massif, the Moho has been determined for the first time, and is situated at a depth of around 31 km. Underneath the Roer Valley Graben, the Moho depth is also 31-32 km, showing no evidence of an uplift. A small Moho uplift (29 km) is evidenced underneath the Campine Basin and the Eifel Volcanic Province. The first should be confirmed by complementary measurements. The second is in agreement with previous investigations. An abrupt change in the Moho depth is determined in the southeast of the studied region. It is not clear whether this change represents a double Moho as observed on the ECORS profile or just a very steep Moho. Furthermore, two reflections are determined here: one at a depth of 17 to 24 km and the other one at 29 to 37 km. The deepest reflections correspond to the Moho, whereas the shallow reflections could correspond to reflections on a granitic magma chamber or on an old crust-mantle boundary that has been thrust into the middle crust during the Variscan orogeny. This study also demonstrates that the Moho reflected PmP wave is best visible in the low frequency domain (< 8 Hz). This can help to improve the determination of PmP-arrival times in comparable studies.

  9. Topography of the lithosphere-asthenosphere boundary below the Upper Rhine Graben Rift and the volcanic Eifel region, Central Europe

    NASA Astrophysics Data System (ADS)

    Seiberlich, C. K. A.; Ritter, J. R. R.; Wawerzinek, B.

    2013-09-01

    We study the crust-mantle and lithosphere-asthenosphere boundaries (Moho and LAB) in Central Europe, specifically below the Upper Rhine Graben (URG) rift, the Eifel volcanic region and their surrounding areas. Teleseismic recordings at permanent and mobile stations are analysed to search for shear (S) wave to compressional (P) wave converted phases. After a special processing these phases are identified in shear wave receiver functions (S-RFs). Conversions from the Moho at 2.9-3.3 s arrival time are the clearest signals in the S-RFs and indicate a relatively flat Moho at 27-30 km depth. A negative polarity conversion signal at 7-9 s arrival time can be explained with a low shear wave velocity zone (LVsZ) in the upper mantle. We use forward S-RF waveform modelling and Monte-Carlo techniques to determine shear wave velocity (vs)-depth (z) profiles which explain the observed S-RF and which outline variations of the lithospheric thickness in the study region. Across the URG rift and its surrounding mountain ranges (Black Forest, Odenwald etc.) the LAB is at a depth of about 60 ± 5 km. This depth is found for the rift itself as well as for the rift shoulders. Southeast and southwest of the URG, in the regions of the Swabian Alb and Vosges Mountains, the LAB dips to about 78 ± 5 km depth. In the volcanic Eifel region the LAB is at a much shallower depth of just 41 ± 5 km. There an upwelling mantle plume thermally eroded the lower lithosphere. The reduction of vs is about 2%-4% in the upper asthenosphere compared to the lower lithosphere. This vs contrast may be explained with a low portion of partial melt or hydrous minerals in the asthenosphere.

  10. Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)

    NASA Astrophysics Data System (ADS)

    De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.

    1993-01-01

    The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.

  11. [Profile distribution and pollution assessment of heavy metals in soils under livestock feces composts].

    PubMed

    Chao, Lei; Zhou, Qi-xing; Cui, Shuang; Chen, Su; Ren, Li-ping

    2007-06-01

    This paper studied the profile distribution of heavy metals in soils under different kind livestock feces composts. The results showed that in the process of livestock feces composting, the pH value and organic matter content of soil under feces compost increased significantly, and had a decreased distribution with soil depth. The contents of soil Zn and Cd also had an obvious increase, and decreased with increasing soil depth. Under the composts of chicken and pig feces, soil Cu content decreased with soil depth, while under cattle feces compost, it had little change. Soil Cd and Zn had a stronger mobility than soil Cu, and the Zn, Cd and Cu contents in some soil layers exceeded the first level of the environmental quality standard for soils in China. The geo-accumulation indices showed that only the 0-10 cm soil layer under chicken feces compost and the 0-40 cm soil layer under egg chicken feces compost were lightly polluted by Zn, while the soil profiles under other kinds of livestock feces compost were not polluted by Pb, Cu, Zn and Cd.

  12. Depth profiling and morphological characterization of AlN thin films deposited on Si substrates using a reactive sputter magnetron

    NASA Astrophysics Data System (ADS)

    Macchi, Carlos; Bürgi, Juan; García Molleja, Javier; Mariazzi, Sebastiano; Piccoli, Mattia; Bemporad, Edoardo; Feugeas, Jorge; Sennen Brusa, Roberto; Somoza, Alberto

    2014-08-01

    It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates.

  13. Verifying the new luminescence surface-exposure dating technique--rock falls in Canyonlands National Park, Utah

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Sohbati, R.; Murray, A. S.; Jain, M.

    2015-12-01

    Recent studies have helped develop the optically stimulated luminescence (OSL) dating of rock surfaces, as applied to the age of the famous Great Gallery rock art panel in Canyonlands National Park. Chapot et al. (2012) dated a key rock fall to ~900 yrs ago by applying OSL to the outer 1-mm buried surface of a sandstone talus boulder, an age confirmed by independent radiocarbon dating. Later, in a novel approach and with the use of a local known-age calibration sample, Sohbati et al. (2012) modelled the millimeter-scale OSL-depth profile to determine a pre-burial exposure duration of ~700 years for the same rock fall. This combination of rock-fall dating and exposure dating--an approach with broad potential to date Holocene mass movements--constrains the creation of the Great Gallery rock art to a time window of 900 to ~1600 years ago (Pederson et al., 2014), a result met with some controversy. Here we report on a new phase of research to verify these results and further refine OSL-profile exposure dating for mass movements. New analyses from within and near the Great Gallery alcove include: i) exposure dating of the same alcove surface upon which the rock art is painted with a predicted exposure age of ~1600 years; ii) exposure dating of the top (light-exposed) side of the same rock-fall boulder whose buried side was previously dated to test for reproduction of the known age; and iii) an improved calibration sample from a nearby trail/road-cut for verification. The residual OSL signal is measured with depth in millimeter-thick increments of all samples. We first determine the site-specific luminescence reduction rate at the rock surface by fitting the OSL surface-exposure dating model to the calibration profile from the trail/road-cut. This parameterized model then provides exposure ages for the bleaching profiles observed in the other samples. Results have implications for the application of OSL rock-surface and exposure-profile dating in other settings where quartz-rich rock is available. We discuss how the light-exposed top and buried underside of clasts can be used in tandem for calibration. The technique has particular relevance to younger timescales over which cosmogenic nuclides are of limited application.

  14. Long-Term (4 mo) Oxygen Isotope Exchange Experiment between Zircon and Hydrothermal Fluid

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Schmitt, A. K.; Lundstrom, C.; Golledge, S.

    2013-12-01

    Knowing oxygen diffusivity in zircon has several critical applications: 1) establishing zircon stability and solubility in hot silica-saturated hydrothermal solutions; 2) deriving metamorphic and magmatic heating timescales from intra-crystal oxygen isotopic gradients; 3) assessing the survivability of oxygen isotopic signatures in Hadean zircons. We report results of a microanalytical investigation of an isotope exchange experiment using a cold-seal pressure apparatus at 850°C and 500 MPa over 4 months duration. Natural zircon, quartz and rutile were sealed with a silica-rich solution doped with 18-O, D, 7-Li and 10-B in a gold capsule. The diffusion length-scales were examined by depth profiling using time-of-flight (TOF) and high-sensitivity dynamic secondary ionization mass spectrometry (SIMS). Starting materials had distinct and homogeneous δ18O: zircon from Mesa Falls tuff of Yellowstone (+3.6‰), rutile from Karelia (-29‰), Bishop Tuff Quartz (+8.4‰), and δ18O doped water (+400‰). Starting material zircon showed invariant 18O/16O during depth profiling. After the 4 month experiment, rutile crystal surfaces displayed etching (100's of nm), while zircon exteriors lacked visible change. Quartz was completely dissolved and reprecipitated in a minor residue. Rutile developed ~2 μm long Fickian diffusion profiles largely consistent with the wet diffusion coefficients for rutile previously reported [1]. Surface U-Pb dating of zircon detected no significant Pb loss from the outermost ~300 nm of the crystal face and returned identical core-face ages. We performed δ18O depth profiling of zircon in two directions. First, forward profiles (crystal rim inwards) by dynamic SIMS (no surface treatment besides Au-coating; Cs+ beam of 20 kV impact energy) showed initially high and decreasing 18O/16O over ~130 nm; TOF-SIMS forward profiles using a 2 kV Cs+ sputter beam and 25 kV Bi3+ primary ions on uncoated zircon surfaces (cleaned for 2 min with HF) yielded decreasing 18O/16O over a similar length scale. These profile lengths are largely consistent with wet diffusion coefficient for zircon reported by [2]. In contrast, back-side depth profiling was conducted by dynamic SIMS on a 1 μm thick wafer cut from the zircon by FIB. No significant elevation in 18O/16O was detected when the surface layer was penetrated, consistent with dry diffusion coefficients of [2]. The results suggest that nm-scale SIMS surface analysis of isotope ratios is challenging. We are investigating if they can be critically affected by knock-on effects and/or continuous mixing of a very thin enriched surface layer during depth profiling in our and previous experiments. [1] Moore et al., 1998, Am. Min. 83, 700-711 [2] Watson and Cherniak, 1997, EPSL 148, 537-544

  15. Petrologically-based Electrical Profiles vs. Geophysical Observations through the Upper Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.

    2013-12-01

    Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.

  16. Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material

    NASA Technical Reports Server (NTRS)

    Rosas, R. E.; Calfin, B. G.

    1976-01-01

    The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer.

  17. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    PubMed

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  18. Barium isotopes reveal role of ocean circulation on barium cycling in the Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, Stephanie L.; Hendry, Katharine R.; Pryer, Helena V.; Kinsley, Christopher W.; Pyle, Kimberley M.; Woodward, E. Malcolm S.; Horner, Tristan J.

    2017-05-01

    We diagnose the relative influences of local-scale biogeochemical cycling and regional-scale ocean circulation on Atlantic barium cycling by analysing four new depth profiles of dissolved Ba concentrations and isotope compositions from the South and tropical North Atlantic. These new profiles exhibit systematic vertical, zonal and meridional variations that reflect the influence of both local-scale barite cycling and large-scale ocean circulation. Epipelagic decoupling of dissolved Ba and Si reported previously in the tropics is also found to be associated with significant Ba isotope heterogeneity. As such, we contend that this decoupling originates from the depth segregation of opal and barite formation but is exacerbated by weak vertical mixing. Zonal influence from isotopically-'heavy' water masses in the western North Atlantic evidence the advective inflow of Ba-depleted Upper Labrador Sea Water, which is not seen in the eastern basin or the South Atlantic. Meridional variations in Atlantic Ba isotope systematics below 2000 m appear entirely controlled by conservative mixing. Using an inverse isotopic mixing model, we calculate the Ba isotope composition of the Ba-poor northern end-member as +0.45 ‰ and the Ba-rich southern end-member +0.26 ‰, relative to NIST SRM 3104a. The near-conservative behaviour of Ba below 2000 m indicates that Ba isotopes can serve as an independent tracer of the provenance of northern- versus southern-sourced water masses in the deep Atlantic Ocean. This finding may prove useful in palaeoceanographic studies, should appropriate sedimentary archives be identified, and offers new insights into the processes that cycle Ba in seawater.

  19. Deep crustal electromagnetic structure of central India tectonic zone and its implications

    NASA Astrophysics Data System (ADS)

    Naganjaneyulu, K.; Naidu, G. Dhanunjaya; Rao, M. Someswara; Shankar, K. Ravi; Kishore, S. R. K.; Murthy, D. N.; Veeraswamy, K.; Harinarayana, T.

    2010-07-01

    Magnetotelluric data at 45 locations along the Mahan-Khajuria Kalan profile in the central India tectonic zone are analysed. This 290 km long profile yields data in the period range 0.001-1000 s across the tectonic elements of the study region bounded by Purna fault, Gavligarh fault, Tapti fault, Narmada South fault and Narmada North fault. Multi-site, multi-frequency analysis suggests N70°E as the geo-electric strike direction. Data rotated into the N70°E strike direction are modelled using a non-linear conjugate gradient scheme with error floors of 10% for both apparent resistivity and phase components. Two-dimensional magnetotelluric model yields conductors that correlate with known faults in the study region and regional seismicity. Presence of a -30 mgal gravity high together with the observed conductive bodies (less than 20 ohm m) in the deep crust beneath the Purna graben and Tapti valley is explained by the process of magmatic underplating. The conductive bodies beneath the Mahakoshal rift belt and Vindhyans accompanied by regional gravity lows of the order -70 mgal are attributed to the presence of deep crustal fluids. Following the re-activation model proposed for the entire region, the conductors (20 ohm m) at various depth levels correspond to mafic magmatic and/or fluid intrusions controlled by deep-seated faults that seem to tap reservoirs beyond the crust-mantle boundary. The shallow depth localized faults also seem to have facilitated further upward movement of these underplated material and fluids release during this process.

  20. Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland).

    PubMed

    Schaub, Monika; Alewell, Christine

    2009-05-01

    Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (delta(13)C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of delta(13)C and carbon content (r > 0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of delta(13)C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of delta(13)C and SOC (r

  1. Putative archaeal viruses from the mesopelagic ocean.

    PubMed

    Vik, Dean R; Roux, Simon; Brum, Jennifer R; Bolduc, Ben; Emerson, Joanne B; Padilla, Cory C; Stewart, Frank J; Sullivan, Matthew B

    2017-01-01

    Oceanic viruses that infect bacteria, or phages, are known to modulate host diversity, metabolisms, and biogeochemical cycling, while the viruses that infect marine Archaea remain understudied despite the critical ecosystem roles played by their hosts. Here we introduce "MArVD", for Metagenomic Archaeal Virus Detector, an annotation tool designed to identify putative archaeal virus contigs in metagenomic datasets. MArVD is made publicly available through the online iVirus analytical platform. Benchmarking analysis of MArVD showed it to be >99% accurate and 100% sensitive in identifying the 127 known archaeal viruses among the 12,499 viruses in the VirSorter curated dataset. Application of MArVD to 10 viral metagenomes from two depth profiles in the Eastern Tropical North Pacific (ETNP) oxygen minimum zone revealed 43 new putative archaeal virus genomes and large genome fragments ranging in size from 10 to 31 kb. Network-based classifications, which were consistent with marker gene phylogenies where available, suggested that these putative archaeal virus contigs represented six novel candidate genera. Ecological analyses, via fragment recruitment and ordination, revealed that the diversity and relative abundances of these putative archaeal viruses were correlated with oxygen concentration and temperature along two OMZ-spanning depth profiles, presumably due to structuring of the host Archaea community. Peak viral diversity and abundances were found in surface waters, where Thermoplasmata 16S rRNA genes are prevalent, suggesting these archaea as hosts in the surface habitats. Together these findings provide a baseline for identifying archaeal viruses in sequence datasets, and an initial picture of the ecology of such viruses in non-extreme environments.

  2. Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.

    PubMed

    Gebauer, Tobias; Horna, Viviana; Leuschner, Christoph

    2008-12-01

    Forest transpiration estimates are frequently based on xylem sap flux measurements in the outer sections of the hydro-active stem sapwood. We used Granier's constant-heating technique with heating probes at various xylem depths to analyze radial patterns of sap flux density in the sapwood of seven broad-leaved tree species differing in wood density and xylem structure. Study aims were to (1) compare radial sap flux density profiles between diffuse- and ring-porous trees and (2) analyze the relationship between hydro-active sapwood area and stem diameter. In all investigated species except the diffuse-porous beech (Fagus sylvatica L.) and ring-porous ash (Fraxinus excelsior L.), sap flux density peaked at a depth of 1 to 4 cm beneath the cambium, revealing a hump-shaped curve with species-specific slopes. Beech and ash reached maximum sap flux densities immediately beneath the cambium in the youngest annual growth rings. Experiments with dyes showed that the hydro-active sapwood occupied 70 to 90% of the stem cross-sectional area in mature trees of diffuse-porous species, whereas it occupied only about 21% in ring-porous ash. Dendrochronological analyses indicated that vessels in the older sapwood may remain functional for 100 years or more in diffuse-porous species and for up to 27 years in ring-porous ash. We conclude that radial sap flux density patterns are largely dependent on tree species, which may introduce serious bias in sap-flux-derived forest transpiration estimates, if non-specific sap flux profiles are assumed.

  3. Direct Measurements of the Penetration Depth in a Superconducting Film using Magnetic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E Nazaretski; J Thibodaux; I Vekhter

    2011-12-31

    We report the local measurements of the magnetic penetration depth in a superconducting Nb film using magnetic force microscopy (MFM). We developed a method for quantitative extraction of the penetration depth from single-parameter simultaneous fits to the lateral and height profiles of the MFM signal, and demonstrate that the obtained value is in excellent agreement with that obtained from the bulk magnetization measurements.

  4. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NASA Astrophysics Data System (ADS)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  5. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    PubMed Central

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460

  6. The effect of particle properties on the depth profile of buoyant plastics in the ocean.

    PubMed

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A

    2016-10-10

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  7. Capacitive radio frequency discharges with a single ring-shaped narrow trench of various depths to enhance the plasma density and lateral uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsu, Y., E-mail: ohtsuy@cc.saga-u.ac.jp; Matsumoto, N.; Schulze, J.

    2016-03-15

    Spatial structures of the electron density and temperature in ring-shaped hollow cathode capacitive rf plasma with a single narrow trench of 2 mm width have been investigated at various trench depths of D = 5, 8, 10, 12, and 15 mm. It is found that the plasma density is increased in the presence of the trench and that the radial profile of the plasma density has a peak around the narrow hollow trench near the cathode. The density becomes uniform further away from the cathode at all trench depths, whereas the electron temperature distribution remains almost uniform. The measured radial profiles of the plasmamore » density are in good agreement with a theoretical diffusion model for all the trench depths, which explains the local density increase by a local enhancement of the electron heating. Under the conditions investigated, the trench of 10 mm depth is found to result in the highest plasma density at various axial and radial positions. The results show that the radial uniformity of the plasma density at various axial positions can be improved by using structured electrodes of distinct depths rather than planar electrodes.« less

  8. SU-C-204-01: A Fast Analytical Approach for Prompt Gamma and PET Predictions in a TPS for Proton Range Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroniger, K; Herzog, M; Landry, G

    2015-06-15

    Purpose: We describe and demonstrate a fast analytical tool for prompt-gamma emission prediction based on filter functions applied on the depth dose profile. We present the implementation in a treatment planning system (TPS) of the same algorithm for positron emitter distributions. Methods: The prediction of the desired observable is based on the convolution of filter functions with the depth dose profile. For both prompt-gammas and positron emitters, the results of Monte Carlo simulations (MC) are compared with those of the analytical tool. For prompt-gamma emission from inelastic proton-induced reactions, homogeneous and inhomogeneous phantoms alongside with patient data are used asmore » irradiation targets of mono-energetic proton pencil beams. The accuracy of the tool is assessed in terms of the shape of the analytically calculated depth profiles and their absolute yields, compared to MC. For the positron emitters, the method is implemented in a research RayStation TPS and compared to MC predictions. Digital phantoms and patient data are used and positron emitter spatial density distributions are analyzed. Results: Calculated prompt-gamma profiles agree with MC within 3 % in terms of absolute yield and reproduce the correct shape. Based on an arbitrary reference material and by means of 6 filter functions (one per chemical element), profiles in any other material composed of those elements can be predicted. The TPS implemented algorithm is accurate enough to enable, via the analytically calculated positron emitters profiles, detection of range differences between the TPS and MC with errors of the order of 1–2 mm. Conclusion: The proposed analytical method predicts prompt-gamma and positron emitter profiles which generally agree with the distributions obtained by a full MC. The implementation of the tool in a TPS shows that reliable profiles can be obtained directly from the dose calculated by the TPS, without the need of full MC simulation.« less

  9. Can Crops with Greater Rooting Systems Improve Nitrogen Retention and Mitigate Emissions of Nitrous Oxide?

    NASA Astrophysics Data System (ADS)

    Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan

    2016-04-01

    It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas were determined, to obtain in situ process-level information on N-cycling. Preliminary results show lower soil moisture content and higher subsurface N2O and CO2 concentrations for the old varieties compared to the new varieties. Currently, we are performing isotope analyses, surface flux analyses, and we are harvesting the plants for determination of root- and aboveground biomass, and C and N contents therein. Results from these analyses are expected before April 2016, and will allow us to reconstruct the N budget and further explore to what extent our hypotheses are corroborated.

  10. Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas.

    PubMed

    Holdo, Ricardo M

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.

  11. Revisiting the Two-Layer Hypothesis: Coexistence of Alternative Functional Rooting Strategies in Savannas

    PubMed Central

    Holdo, Ricardo M.

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models. PMID:23950900

  12. Where is the 1-million-year-old ice at Dome A?

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Moore, John C.; Sun, Bo; Tang, Xueyuan; Guo, Xiaoran

    2018-05-01

    Ice fabric influences the rheology of ice, and hence the age-depth profile at ice core drilling sites. To investigate the age-depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, we use the depth-varying anisotropic fabric suggested by the recent polarimetric measurements around Dome A along with prescribed fabrics ranging from isotropic through girdle to single maximum in a three-dimensional, thermo-mechanically coupled full-Stokes model of a 70 × 70 km2 domain around Kunlun station. This model allows for the simulation of the near basal ice temperature and age, and ice flow around the location of the Chinese deep ice coring site. Ice fabrics and geothermal heat flux strongly affect the vertical advection and basal temperature which consequently control the age profile. Constraining modeled age-depth profiles with dated radar isochrones to 2/3 ice depth, the surface vertical velocity, and also the spatial variability of a radar isochrones dated to 153.3 ka BP, limits the age of the deep ice at Kunlun to between 649 and 831 ka, a much smaller range than previously inferred. The simple interpretation of the polarimetric radar fabric data that we use produces best fits with a geothermal heat flux of 55 mW m-2. A heat flux of 50 mW m-2 is too low to fit the deeper radar layers, and 60 mW m-2 leads to unrealistic surface velocities. The modeled basal temperature at Kunlun reaches the pressure melting point with a basal melting rate of 2.2-2.7 mm a-1. Using the spatial distribution of basal temperatures and the best fit fabric suggests that within 400 m of Kunlun station, 1-million-year-old ice may be found 200 m above the bed, and that there are large regions where even older ice is well above the bedrock within 5-6 km of the Kunlun station.

  13. Seismic reflection images of the central California coast ranges and the tremor region of the San-Andreas-Fault system near Cholame

    NASA Astrophysics Data System (ADS)

    Gutjahr, Stine; Buske, Stefan

    2010-05-01

    The SJ-6 seismic reflection profile was acquired in 1981 over a distance of about 180 km from Morro Bay to the Sierra Nevada foothills in South Central California. The profile runs across several prominent fault systems, e.g. the Riconada Fault (RF) in the western part as well as the San Andreas Fault (SAF) in its central part. The latter includes the region of increased tremor activity near Cholame, as reported recently by several authors. We have recorrelated the original field data to 26 seconds two-way traveltime which allows us to image the crust and uppermost mantle down to approximately 40 km depth. A 3D tomographic velocity model derived from local earthquake data (Thurber et al., 2006) was used and Kirchhoff prestack depth migration as well as Fresnel-Volume-Migration were applied to the data set. Both imaging techniques were implemented in 3D by taking into account the true shot and receiver locations. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the SAF. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the RF and the SAF. In the southwestern part strong reflectors can be identified that are dipping slightly to the northeast at depths of around 15-25 km. The eastern part consists of west dipping sediments at depths of 2-10 km that form a syncline structure in the west of the eastern part. The resulting images are compared to existing interpretations (Trehu and Wheeler, 1987; Wentworth and Zoback, 1989; Bloch et al., 1993) and discussed in the frame of the suggested tremor locations in that area.

  14. Heat-flow studies in the northwest geysers geothermal field, California

    USGS Publications Warehouse

    Williams, Colin F.; Galanis, S. Peter; Moses, Thomas H.; Grubb, Frederick V.; ,

    1993-01-01

    Temperature and thermal conductivity data were acquired from 3 idle production wells in the Northwest Geysers. Heat-flow profiles derived from data recorded in the caprock which overlies the steam reservoir reveal a decrease of heat flow with depth in 2 of the 3 wells. These observations contradict the generally accepted theory that conductive heat flow is constant with depth within The Geysers caprock. There are several possible explanations for this, but the available data suggest that these profiles reflect a local recession or cooling of the reservoir top within the past 5000 to 10000 years.

  15. Influence of ion-implanted profiles on the performance of GaAs MESFET's and MMIC amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlidis, D.; Cazaux, J.L.; Graffeuil, J.

    1988-04-01

    The RF small-signal performance of GaAs MESFET's and MMIC amplifiers as a function of various ion-implanted profiles is theoretically and experimentally investigated. Implantation energy, dose, and recess depth influence are theoretically analyzed with the help of a specially developed device simulator. The performance of MMIC amplifiers processed with various energies, doses, recess depths, and bias conditions is discussed and compared to experimental characteristics. Some criteria are finally proposed for the choice of implantation conditions and process in order to optimize the characteristics of ion-implanted FET's and to realize process-tolerant MMIC amplifiers.

  16. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  17. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  18. Design and Operation of Automated Ice-Tethered Profilers for Real-Time Seawater Observations in the Polar Oceans

    DTIC Science & Technology

    2006-06-01

    of the system (up to 3 years depending on the profiling schedule ). Shortly after deployment, each ITP begins profiling the water column at its...was programmed with accelerated sampling schedules of multiple one-way traverses per day between 10 and 750-760 m depth in order to quickly evaluate endurance and component fatigue.

  19. Quaternary tectonics from seismic interpretation and its potential relation with deep geothermal fluids in the Marche (Central Italy).

    NASA Astrophysics Data System (ADS)

    Chicco, Jessica; Invernizzi, Chiara; Pierantoni, Pietro Paolo; Costa, Mario

    2017-04-01

    Knowledge of the structural features is fundamental in evaluating geothermal exchange potential and in modelling geothermal systems. In particular, faults and fractures play an important role for the circulation of fluids in the crust, and structural setting can influence groundwater flow, its regime, chemistry and electrical conductivity. In this context, data coming from accurate studies of groundwater physical properties in the Marche region (Central Italy), concerning electrical conductivity above all, revealed some anomalies in several localities that could be ascribed to a strong structural control. Data acquisition and interpretation of some SW-NE seismic reflection profiles crossing the Apennine chain to the Adriatic sea and kindly provided by ENI S.p.A, highlight important deep Plio-Quaternary structures connected with minor surface ones and to hydrogeological conditions. Seismic profiles interpretation allowed to reconstruct the structural setting and to identify the recent evolution of the Apennine Marche sector in more detail with respect to what is already known. In fact, some high angle structures affecting the whole sedimentary sequence and routing at high depth were labelled. These are NW-SE sub-parallel transpressive structures bounded by SW and NE-dipping high-angle reverse faults reaching > 10 km depth (positive flower structures), and probably involving the upper crust basement. Three main alignments were identified from W to the coast line. In some cases, flower nucleation gives rise to the lifting and counter-clockwise rotation of the Pre-Pliocene substratum blocks, with the upwelling and outcropping of Upper Miocene (Messinian) evaporite deposits along the axial zone of the transpressive structural highs. Noting the analyses of groundwater properties coming from wells placed in proximity of these structures or located along the analysed seismic profiles, anomalies in electrical conductivity are relevant. The activity of the deep rooting structures observed in the seismic profiles and the high degree of fracturing that accompanies these complex and recent fault systems can facilitate the exchange between deep and superficial fluids. In other cases, like in coastal structural high, it can have a role in preventing the sea water ingression. This significant consideration can be supported also by the direct relation of electrical conductivity with the amount of rainfall revealed from studied piezometers along the carbonate Marche ridge. It should be explained through a specific behaviour (typical of carbonate aquifers, known as the "piston-flow phase") which implies an increase of groundwater mineralization as a result of transmission of the hydraulic pressure from the saturated zone, through fractures as important way for fluids circulation. Ultimately, we suggest that the structural control could be an important factor in influencing both the surface and the groundwater flow behaviours, and then convective component of the heat transport in the studied area.

  20. Vertical Soil Profiling Using a Galvanic Contact Resistivity Scanning Approach

    PubMed Central

    Pan, Luan; Adamchuk, Viacheslav I.; Prasher, Shiv; Gebbers, Robin; Taylor, Richard S.; Dabas, Michel

    2014-01-01

    Proximal sensing of soil electromagnetic properties is widely used to map spatial land heterogeneity. The mapping instruments use galvanic contact, capacitive coupling or electromagnetic induction. Regardless of the type of instrument, the geometrical configuration between signal transmitting and receiving elements typically defines the shape of the depth response function. To assess vertical soil profiles, many modern instruments use multiple transmitter-receiver pairs. Alternatively, vertical electrical sounding can be used to measure changes in apparent soil electrical conductivity with depth at a specific location. This paper examines the possibility for the assessment of soil profiles using a dynamic surface galvanic contact resistivity scanning approach, with transmitting and receiving electrodes configured in an equatorial dipole-dipole array. An automated scanner system was developed and tested in agricultural fields with different soil profiles. While operating in the field, the distance between current injecting and measuring pairs of rolling electrodes was varied continuously from 40 to 190 cm. The preliminary evaluation included a comparison of scan results from 20 locations to shallow (less than 1.2 m deep) soil profiles and to a two-layer soil profile model defined using an electromagnetic induction instrument. PMID:25057135

  1. Distinct iris gene expression profiles of primary angle closure glaucoma and primary open angle glaucoma and their interaction with ocular biometric parameters.

    PubMed

    Seet, Li-Fong; Narayanaswamy, Arun; Finger, Sharon N; Htoon, Hla M; Nongpiur, Monisha E; Toh, Li Zhen; Ho, Henrietta; Perera, Shamira A; Wong, Tina T

    2016-11-01

    This study aimed to evaluate differences in iris gene expression profiles between primary angle closure glaucoma (PACG) and primary open angle glaucoma (POAG) and their interaction with biometric characteristics. Prospective study. Thirty-five subjects with PACG and thirty-three subjects with POAG who required trabeculectomy were enrolled at the Singapore National Eye Centre, Singapore. Iris specimens, obtained by iridectomy, were analysed by real-time polymerase chain reaction for expression of type I collagen, vascular endothelial growth factor (VEGF)-A, -B and -C, as well as VEGF receptors (VEGFRs) 1 and 2. Anterior segment optical coherence tomography (ASOCT) imaging for biometric parameters, including anterior chamber depth (ACD), anterior chamber volume (ACV) and lens vault (LV), was also performed pre-operatively. Relative mRNA levels between PACG and POAG irises, biometric measurements, discriminant analyses using genes and biometric parameters. COL1A1, VEGFB, VEGFC and VEGFR2 mRNA expression was higher in PACG compared to POAG irises. LV, ACD and ACV were significantly different between the two subgroups. Discriminant analyses based on gene expression, biometric parameters or a combination of both gene expression and biometrics (LV and ACV), correctly classified 94.1%, 85.3% and 94.1% of the original PACG and POAG cases, respectively. The discriminant function combining genes and biometrics demonstrated the highest accuracy in cross-validated classification of the two glaucoma subtypes. Distinct iris gene expression supports the pathophysiological differences that exist between PACG and POAG. Biometric parameters can combine with iris gene expression to more accurately define PACG from POAG. © 2016 The Authors. Clinical & Experimental Ophthalmology published by John Wiley & Sons Australia, Ltd on behalf of Royal Australian and New Zealand College of Ophthalmologists.

  2. Analysis of the Tikhonov regularization to retrieve thermal conductivity depth-profiles from infrared thermography data

    NASA Astrophysics Data System (ADS)

    Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín; Celorrio, Ricardo

    2010-09-01

    We analyze the ability of the Tikhonov regularization to retrieve different shapes of in-depth thermal conductivity profiles, usually encountered in hardened materials, from surface temperature data. Exponential, oscillating, and sigmoidal profiles are studied. By performing theoretical experiments with added white noises, the influence of the order of the Tikhonov functional and of the parameters that need to be tuned to carry out the inversion are investigated. The analysis shows that the Tikhonov regularization is very well suited to reconstruct smooth profiles but fails when the conductivity exhibits steep slopes. We check a natural alternative regularization, the total variation functional, which gives much better results for sigmoidal profiles. Accordingly, a strategy to deal with real data is proposed in which we introduce this total variation regularization. This regularization is applied to the inversion of real data corresponding to a case hardened AISI1018 steel plate, giving much better anticorrelation of the retrieved conductivity with microindentation test data than the Tikhonov regularization. The results suggest that this is a promising way to improve the reliability of local inversion methods.

  3. Spatiotemporal Variability in Particulate Organic Carbon Export Observed Using Bio-Optical Profiling Floats

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.

    2016-02-01

    Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.

  4. SIMULATION OF DISSOLVED OXYGEN PROFILES IN A TRANSPARENT, DIMICTIC LAKE

    EPA Science Inventory

    Thrush Lake is a small, highly transparent lake in northeastern Minnesota. rom 1986 to 1991, vertical profiles of water temperature, dissolved oxygen, chlorophyll a concentration, underwater light irradiance, and Secchi depths were measured at monthly intervals during the ice-fre...

  5. Electrical conductivity of the Earth's mantle after one year of SWARM magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, François; Thebault, Erwan; Verhoeven, Olivier; Langlais, Benoit; Saturnino, Diana

    2015-04-01

    We present a global EM induction study using L1b Swarm satellite magnetic field measurements data down to a depth of 2000 km. Starting from raw measurements, we first derive a model for the main magnetic field, correct the data for a lithospheric field model, and further select the data to reduce the contributions of the ionospheric field. These computations allowed us to keep a full control on the data processes. We correct residual field from outliers and estimate the spherical harmonic coefficients of the transient field for periods between 2 and 256 days. We used full latitude range and all local times to keep a maximum amount of data. We perform a Bayesian inversion and construct a Markov chain during which model parameters are randomly updated at each iteration. We first consider regular layers of equal thickness and extra layers are added where conductivity contrast between successive layers exceed a threshold value. The mean and maximum likelihood of the electrical conductivity profile is then estimated from the probability density function. The obtained profile particularly shows a conductivity jump in the 600-700 km depth range, consistent with the olivine phase transition at 660 km depth. Our study is the first one to show such a conductivity increase in this depth range without any a priori informations on the internal strucutres. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations in the depth range where the probability density function is the narrowest. We finally obtained a temperature gradient in the lower mantle close to adiabatic.

  6. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  7. HIGH EXPLOSIVE CRATER STUDIES: DESERT ALLUVIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, B.F.

    1961-05-01

    Crater dimensions were determined for 23 explosions of 256-pound spherical TNT charges buried in desert alluvium. As opposed to previous work covering depths of burst as great as 6 feet, the work presented in this report extends knowledge of apparent crater radius and depth to depths of burst as great as 30 feet. Optimum depth of burst for apparent crater radius was near 10 feet and for apparent crater depth near 8 feet. Surface motion photography illustrated a very great slowing down of the surface motion between depths of burst of 9.5 and 15.9 feet. Crater contours, profiles, snd overheadmore » photographs are presented as illustrations. (auth)« less

  8. Comparison of the secondary electrons produced by proton and electron beams in water

    NASA Astrophysics Data System (ADS)

    Kia, Mohammad Reza; Noshad, Houshyar

    2016-05-01

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, and secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.

  9. Comparison of the secondary electrons produced by proton and electron beams in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Mohammad Reza, E-mail: m-r-kia@aut.ac.ir; Noshad, Houshyar

    The secondary electrons produced in water by electron and proton beams are compared with each other. The total ionization cross section (TICS) for an electron impact in water is obtained by using the binary-encounter-Bethe model. Hence, an empirical equation based on two adjustable fitting parameters is presented to determine the TICS for proton impact in media. In order to calculate the projectile trajectory, a set of stochastic differential equations based on the inelastic collision, elastic scattering, and bremsstrahlung emission are used. In accordance with the projectile trajectory, the depth dose deposition, electron energy loss distribution in a certain depth, andmore » secondary electrons produced in water are calculated. The obtained results for the depth dose deposition and energy loss distribution in certain depth for electron and proton beams with various incident energies in media are in excellent agreement with the reported experimental data. The difference between the profiles for the depth dose deposition and production of secondary electrons for a proton beam can be ignored approximately. But, these profiles for an electron beam are completely different due to the effect of elastic scattering on electron trajectory.« less

  10. Integrated use of surface geophysical methods for site characterization — A case study in North Kingstown, Rhode Island

    USGS Publications Warehouse

    Johnson, Carole D.; Lane, John W.; Brandon, William C.; Williams, Christine A.P.; White, Eric A.

    2010-01-01

    A suite of complementary, non‐invasive surface geophysical methods was used to assess their utility for site characterization in a pilot investigation at a former defense site in North Kingstown, Rhode Island. The methods included frequency‐domain electromagnetics (FDEM), ground‐penetrating radar (GPR), electrical resistivity tomography (ERT), and multi‐channel analysis of surface‐wave (MASW) seismic. The results of each method were compared to each other and to drive‐point data from the site. FDEM was used as a reconnaissance method to assess buried utilities and anthropogenic structures; to identify near‐surface changes in water chemistry related to conductive leachate from road‐salt storage; and to investigate a resistive signature possibly caused by groundwater discharge. Shallow anomalies observed in the GPR and ERT data were caused by near‐surface infrastructure and were consistent with anomalies observed in the FDEM data. Several parabolic reflectors were observed in the upper part of the GPR profiles, and a fairly continuous reflector that was interpreted as bedrock could be traced across the lower part of the profiles. MASW seismic data showed a sharp break in shear wave velocity at depth, which was interpreted as the overburden/bedrock interface. The MASW profile indicates the presence of a trough in the bedrock surface in the same location where the ERT data indicate lateral variations in resistivity. Depths to bedrock interpreted from the ERT, MASW, and GPR profiles were similar and consistent with the depths of refusal identified in the direct‐push wells. The interpretations of data collected using the individual methods yielded non‐unique solutions with considerable uncertainty. Integrated interpretation of the electrical, electromagnetic, and seismic geophysical profiles produced a more consistent and unique estimation of depth to bedrock that is consistent with ground‐truth data at the site. This test case shows that using complementary techniques that measure different properties can be more effective for site characterization than a single‐method investigation.

  11. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  12. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles

    PubMed Central

    Abbott, Sunshine S.; Harrison, T. Mark; Schmitt, Axel K.; Mojzsis, Stephen J.

    2012-01-01

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85–3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85–3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840–875 °C) than do older or younger zircons or zircon domains (approximately 630–750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB. PMID:22869711

  13. SU-E-T-598: The Effects of Arm Speed for Quality Assurance and Commissioning Measurements in Rectangular and Cylindrical Scanners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiari, M; Schmitt, J

    2014-06-01

    Purpose: Cylindrical and rectangular scanning water tanks are examined with different scanning speeds to investigate the TG-106 criteria and the errors induced in the measurements. Methods: Beam profiles were measured in a depth of R50 for a low-energy electron beam (6 MeV) using rectangular and cylindrical tanks. The speeds of the measurements (arm movement) were varied in different profile measurements. Each profile was measured with a certain speed to obtain the average and standard deviation as a parameter for investigating the reproducibility and errors. Results: At arm speeds of ∼0.8 mm/s the errors were as large as 2% and 1%more » with rectangular and cylindrical tanks, respectively. The errors for electron beams and for photon beams in other depths were within the TG-106 criteria of 1% for both tank shapes. Conclusion: The measurements of low-energy electron beams in a depth of R50, as an extreme case scenario, are sensitive to the speed of the measurement arms for both rectangular and cylindrical tanks. The measurements in other depths, for electron beams and photon beams, with arm speeds of less than 1 cm/s are within the TG-106 criteria. An arm speed of 5 mm/s appeared to be optimal for fast and accurate measurements for both cylindrical and rectangular tanks.« less

  14. Effects of integration time on in-water radiometric profiles.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito

    2018-03-05

    This work investigates the effects of integration time on in-water downward irradiance E d , upward irradiance E u and upwelling radiance L u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by Colored Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (Fst); 2) the end of each integration interval (Lst); 3) the averages of Fst and Lst values (Avg); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (Wgt). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the Wgt depth definition and the fair applicability of the Avg one. Instead, both the Fst and Lst depths should not be adopted since they may introduce pronounced biases in E u and L u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products.

  15. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    NASA Astrophysics Data System (ADS)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  16. Application of ground-penetrating radar methods in determining hydrogeologic conditions in a karst area, west-central Florida

    USGS Publications Warehouse

    Barr, G.L.

    1993-01-01

    Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.

  17. One-shot profile inspection for surfaces with depth, color and reflectivity discontinuities.

    PubMed

    Su, Wei-Hung; Chen, Sih-Yue

    2017-05-01

    A one-shot technique for surfaces with depth, color, and reflectivity discontinuities is presented. It uses windowed Fourier transform to extract the fringe phases and a binary-encoded scheme to unwrap the phases. Experiments show that absolute phases could be obtained with high reliability.

  18. Saudi Arabian seismic deep-refraction profiles; final project report

    USGS Publications Warehouse

    Healy, J.H.; Mooney, W.D.; Blank, H.R.; Gettings, M.E.; Kohler, W.M.; Lamson, R.J.; Leone, L.E.

    1983-01-01

    In February 1978 a seismic deep-refraction profile was recorded by the U.S. Geological Survey along a 1000-km line across the Arabian Shield in western Saudi Arabia. The line begins in Mesozoic cover rocks near Riyadh on the Arabian Platform, leads southwesterly across three major Precambrian tectonic provinces, traverses Cenozoic rocks of the coastal plain near Jizan (Tihamat-Asir), and terminates at the outer edge of the Farasan Bank in the southern Red Sea. More than 500 surveyed recording sites were occupied, including 19 in the Farasan Islands. Six shot points were used: five on land, with most charges placed below the water table in drill holes, and one at sea, with charges placed on the sea floor and detonated from a ship. Slightly more than 61 metric tons of explosives were used in 19 discrete firings. Seismic energy was recorded by 100 newly-developed portable seismic stations deployed in approximately 200 km-long arrays for each firing. Each station consisted of a standard 2-Hz vertical component geophone coupled to a self-contained analog recording instrument equipped with a magnetic-tape cassette. In this final report, we fully document the field and data-processing procedures and present the final seismogram data set as both a digital magnetic tape and as record sections for each shot point. Record sections include a normalized set of seismograms, reduced at 6 km/s, and a true-amplitude set, reduced at 8 km/s, which have been adjusted for amplifier gain, individual shot size, and distance from the shot point. Appendices give recorder station and shot information, digital data set descriptions, computer program listings, arrival times used in the interpretation, and a bibliography of reports published as a result of this project. We used two-dimensional ray-tracing techniques in the data analysis, and our interpretation is based primarily on horizontally layered models. The Arabian Shield is composed, to first-order, of two layers, each about 20 km thick, with average velocities of 6.3 km/s and 7.0 km/s, respectively. At the western shield margin the crust thins to less than 20 km total thickness, beyond which the Red Sea shelf and coastal plain are interpreted to be underlain by oceanic crust. A major crustal lateral velocity inhomogeneity northeast of Sabhah in the Shammar Tectonic Province is interpreted as the suture zone of two crustal blocks of different composition. Several high-velocity anomalies in the upper crust correlate with mapped gneissic dome structures. Two intra-crustal reflectors at13 km depth are interpreted as the tops of mafic intrusives. The Mohorovicic discontinuity beneath the shield varies from 43 km depth in the northeast with 8.2 km/s mantle velocity to 38 km depth in the southwest with 8.0 km/s mantle velocity. Two velocity discontinuities are identified in the upper mantle, at 59 and 70 km depth. We suggest further work, including refined analyses of the data employing filtering and synthetic seismogram techniques, as well as consideration of attenuation properties. Extension of the seismic refraction profile to the Arabian Gulf and some short profiles perpendicular to the existing profile would be fruitful areas for future field work.

  19. Materials characterization on efforts for ablative materials

    NASA Technical Reports Server (NTRS)

    Tytula, Thomas P.; Schad, Kristin C.; Swann, Myles H.

    1992-01-01

    Experimental efforts to develop a new procedure to measure char depth in carbon phenolic nozzle material are described. Using a Shor Type D Durometer, hardness profiles were mapped across post fired sample blocks and specimens from a fired rocket nozzle. Linear regression was used to estimate the char depth. Results are compared to those obtained from computed tomography in a comparative experiment. There was no significant difference in the depth estimates obtained by the two methods.

  20. Autonomous Sensing of Layered Structures in Hawaiian Waters

    DTIC Science & Technology

    2007-09-30

    APPROACH In March of 2007 we were awarded $112,842 for the fabrication of an autonomous profiler (the SeaHorse ) for the detection of thin layers of...phytoplankton in the coastal ocean. The SeaHorse (Figures 1, 2) makes use of wave energy to power extended, high-resolution profiling of water...the sample rate of the SeaHorse profiler itself. For example, if we observe a layer at 10 m depth, we can instruct the profiler to maintain this

Top