Sample records for depth profiling study

  1. Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.

    2017-10-01

    Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.

  2. Breadth and Depth of Vocabulary Knowledge and Their Effects on L2 Vocabulary Profiles

    ERIC Educational Resources Information Center

    Bardakçi, Mehmet

    2016-01-01

    Breadth and depth of vocabulary knowledge have been studied from many different perspectives, but the related literature lacks serious studies dealing with their effects on vocabulary profiles of EFL learners. In this paper, with an aim to fill this gap, the relative effects of breadth and depth of vocabulary knowledge on L2 vocabulary profiles…

  3. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  4. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    PubMed

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nitric oxide assisted C60 secondary ion mass spectrometry for molecular depth profiling of polyelectrolyte multilayers.

    PubMed

    Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A

    2015-12-15

    Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Lithium diffusion in polyether ether ketone and polyimide stimulated by in situ electron irradiation and studied by the neutron depth profiling method

    NASA Astrophysics Data System (ADS)

    Vacik, J.; Hnatowicz, V.; Attar, F. M. D.; Mathakari, N. L.; Dahiwale, S. S.; Dhole, S. D.; Bhoraskar, V. N.

    2014-10-01

    Diffusion of lithium from a LiCl aqueous solution into polyether ether ketone (PEEK) and polyimide (PI) assisted by in situ irradiation with 6.5 MeV electrons was studied by the neutron depth profiling method. The number of the Li atoms was found to be roughly proportional to the diffusion time. Regardless of the diffusion time, the measured depth profiles in PEEK exhibit a nearly exponential form, indicating achievement of a steady-state phase of a diffusion-reaction process specified in the text. The form of the profiles in PI is more complex and it depends strongly on the diffusion time. For the longer diffusion time, the profile consists of near-surface bell-shaped part due to Fickian-like diffusion and deeper exponential part.

  7. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  8. Depth elemental characterization of 1D self-aligned TiO2 nanotubes using calibrated radio frequency glow discharge optical emission spectroscopy (GDOES)

    NASA Astrophysics Data System (ADS)

    Mohajernia, Shiva; Mazare, Anca; Hwang, Imgon; Gaiaschi, Sofia; Chapon, Patrick; Hildebrand, Helga; Schmuki, Patrik

    2018-06-01

    In this work we study the depth composition of anodic TiO2 nanotube layers. We use elemental depth profiling with Glow Discharge Optical Emission Spectroscopy and calibrate the results of this technique with X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS). We establish optimized sputtering conditions for nanotubular structures using the pulsed RF mode, which causes minimized structural damage during the depth profiling of the nanotubular structures. This allows to obtain calibrated sputter rates that account for the nanotubular "porous" morphology. Most importantly, sputter-artifact free compositional profiles of these high aspect ratio 3D structures are obtained, as well as, in combination with SEM, elegant depth sectional imaging.

  9. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  10. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis.

    PubMed

    Sadiq Aliyu, Abubakar; Musa, Yahaya; Liman, M S; Abba, Habu T; Chaanda, Mohammed S; Ngene, Nnamani C; Garba, N N

    2018-01-01

    The Keffi area hosts abundant pegmatite bodies as a result of the surrounding granitic intrusions. Keffi is part of areas that are geologically classified as North Central Basement Complex. Data on the mineralogy and mineralogical zonation of the Keffi pegmatite are scanty. Hence the need to understand the geology and mineralogical zonation of Keffi pegmatites especially at different depth profiles is relevant as a study of the elemental composition of the pegmatite is essential for the estimation of its economic viability. Here, the relative standardization method of instrumental neutron activation analysis (INAA) has been used to investigate the vertical deviations of the elemental concentrations of rare earth elements (REEs) at different depth profile of Keffi pegmatite. This study adopted the following metrics in investigating the vertical variations of REEs concentrations. Namely, the total contents of rare earth elements (∑REE); ratio of light to heavy rare earth elements (LREE/HREE), which defines the enrichment or depletion of REEs; europium anomaly (Eu/Sm); La/Lu ratio relative to chondritic meteorites. The study showed no significant variations in the total content of rare elements between the vertical depth profiles (100-250m). However, higher total concentrations of REEs (~ 92.65ppm) were recorded at the upper depth of the pegmatite and the europium anomaly was consistently negative at all the depth profiles suggesting that the Keffi pegmatite is enriched with light REEs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hardness depth profile of lattice strained cemented carbide modified by high-energy boron ion implantation

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Matsumura, A.; Higeta, K.; Inoue, T.; Shimizu, S.; Motonami, Y.; Sato, M.; Sadahiro, T.; Fujii, K.

    1991-07-01

    The hardness depth profiles of cemented carbides which were implanted with high-energy B + ions have been estimated using a dynamic microhardness tester. The B + implantations into (16% Co)-cemented WC alloys were carried out under conditions where the implantation energies were 1-3 MeV and the fluences 1 × 10 17-1 × 10 18ions/cm 2. The profiles show that the implanted layer becomes harder as fluences are chosen at higher values and there is a peak at a certain depth which depends on the implantation energy. In X-ray diffraction (XRD) studies of the implanted surface the broadened refraction peaks of only WC and Co are detected and the increments of lattice strain and of residual stress in the near-surface region are observed. It is supposed that the hardening effect should be induced by an increase in residual stress produced by lattice strain. The hardness depth profile in successive implantation of ions with different energies agrees with the compounded profile of each one of the implantations. It is concluded that the hardness depth profile can be controlled under adequate conditions of implantation.

  12. X-ray Photoelectron Spectroscopy of High-κ Dielectrics

    NASA Astrophysics Data System (ADS)

    Mathew, A.; Demirkan, K.; Wang, C.-G.; Wilk, G. D.; Watson, D. G.; Opila, R. L.

    2005-09-01

    Photoelectron spectroscopy is a powerful technique for the analysis of gate dielectrics because it can determine the elemental composition, the chemical states, and the compositional depth profiles non-destructively. The sampling depth, determined by the escape depth of the photoelectrons, is comparable to the thickness of current gate oxides. A maximum entropy algorithm was used to convert photoelectron collection angle dependence of the spectra to compositional depth profiles. A nitrided hafnium silicate film is used to demonstrate the utility of the technique. The algorithm balances deviations from a simple assumed depth profile against a calculated depth profile that best fits the angular dependence of the photoelectron spectra. A flow chart of the program is included in this paper. The development of the profile is also shown as the program is iterated. Limitations of the technique include the electron escape depths and elemental sensitivity factors used to calculate the profile. The technique is also limited to profiles that extend to the depth of approximately twice the escape depth. These limitations restrict conclusions to comparison among a family of similar samples. Absolute conclusions about depths and concentrations must be used cautiously. Current work to improve the algorithm is also described.

  13. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  14. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    DOE PAGES

    Taylor, Chase N.; Shimada, M.

    2017-05-08

    Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. Furthermore, a ~46 µm depth profile revealed that the deuterium content decreased precipitously in the first 7 µm, and detectable amounts were observed to depths in excess of 20 µm. The large probing depth of GD-OES (up to 100s of µm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention.more » Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high diffusion is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.« less

  15. Direct depth distribution measurement of deuterium in bulk tungsten exposed to high-flux plasma

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.

    2017-05-01

    Understanding tritium retention and permeation in plasma-facing components is critical for fusion safety and fuel cycle control. Glow discharge optical emission spectroscopy (GD-OES) is shown to be an effective tool to reveal the depth profile of deuterium in tungsten. Results confirm the detection of deuterium. A ˜46 μm depth profile revealed that the deuterium content decreased precipitously in the first 7 μm, and detectable amounts were observed to depths in excess of 20 μm. The large probing depth of GD-OES (up to 100s of μm) enables studies not previously accessible to the more conventional techniques for investigating deuterium retention. Of particular applicability is the use of GD-OES to measure the depth profile for experiments where high deuterium concentration in the bulk material is expected: deuterium retention in neutron irradiated materials, and ultra-high deuterium fluences in burning plasma environment.

  16. Depth Profilometry via Multiplexed Optical High-Coherence Interferometry

    PubMed Central

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B.; Hajian, Arsen R.

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry. PMID:25803289

  17. Depth profilometry via multiplexed optical high-coherence interferometry.

    PubMed

    Kazemzadeh, Farnoud; Wong, Alexander; Behr, Bradford B; Hajian, Arsen R

    2015-01-01

    Depth Profilometry involves the measurement of the depth profile of objects, and has significant potential for various industrial applications that benefit from non-destructive sub-surface profiling such as defect detection, corrosion assessment, and dental assessment to name a few. In this study, we investigate the feasibility of depth profilometry using an Multiplexed Optical High-coherence Interferometry MOHI instrument. The MOHI instrument utilizes the spatial coherence of a laser and the interferometric properties of light to probe the reflectivity as a function of depth of a sample. The axial and lateral resolutions, as well as imaging depth, are decoupled in the MOHI instrument. The MOHI instrument is capable of multiplexing interferometric measurements into 480 one-dimensional interferograms at a location on the sample and is built with axial and lateral resolutions of 40 μm at a maximum imaging depth of 700 μm. Preliminary results, where a piece of sand-blasted aluminum, an NBK7 glass piece, and an optical phantom were successfully probed using the MOHI instrument to produce depth profiles, demonstrate the feasibility of such an instrument for performing depth profilometry.

  18. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  19. SU-E-T-614: Derivation of Equations to Define Inflection Points and Its Analysis in Flattening Filter Free Photon Beams Based On the Principle of Polynomial function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muralidhar, K Raja; Komanduri, K

    2014-06-01

    Purpose: The objective of this work is to present a mechanism for calculating inflection points on profiles at various depths and field sizes and also a significant study on the percentage of doses at the inflection points for various field sizes and depths for 6XFFF and 10XFFF energy profiles. Methods: Graphical representation was done on Percentage of dose versus Inflection points. Also using the polynomial function, the authors formulated equations for calculating spot-on inflection point on the profiles for 6X FFF and 10X FFF energies for all field sizes and at various depths. Results: In a flattening filter free radiationmore » beam which is not like in Flattened beams, the dose at inflection point of the profile decreases as field size increases for 10XFFF. Whereas in 6XFFF, the dose at the inflection point initially increases up to 10x10cm2 and then decreases. The polynomial function was fitted for both FFF beams for all field sizes and depths. For small fields less than 5x5 cm2 the inflection point and FWHM are almost same and hence analysis can be done just like in FF beams. A change in 10% of dose can change the field width by 1mm. Conclusion: The present study, Derivative of equations based on the polynomial equation to define inflection point concept is precise and accurate way to derive the inflection point dose on any FFF beam profile at any depth with less than 1% accuracy. Corrections can be done in future studies based on the multiple number of machine data. Also a brief study was done to evaluate the inflection point positions with respect to dose in FFF energies for various field sizes and depths for 6XFFF and 10XFFF energy profiles.« less

  20. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    USGS Publications Warehouse

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  1. XPS investigation of depth profiling induced chemistry

    NASA Astrophysics Data System (ADS)

    Pratt, Quinn; Skinner, Charles; Koel, Bruce; Chen, Zhu

    2017-10-01

    Surface analysis is an important tool for understanding plasma-material interactions. Depth profiles are typically generated by etching with a monatomic argon ion beam, however this can induce unintended chemical changes in the sample. Tantalum pentoxide, a sputtering standard, and PEDOT:PSS, a polymer that was used to mimic the response of amorphous carbon-hydrogen co-deposits, were studied. We compare depth profiles generated with monatomic and gas cluster argon ion beams (GCIB) using X-ray photoelectron spectroscopy (XPS) to quantify chemical changes. In both samples, monatomic ion bombardment led to beam-induced chemical changes. Tantalum pentoxide exhibited preferential sputtering of oxygen and the polymer experienced significant bond modification. Depth profiling with clusters is shown to mitigate these effects. We present sputtering rates for Ta2O5 and PEDOT:PSS as a function of incident energy and flux. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  2. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases aremore » presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.« less

  3. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part I: activity-depth profiles of (134)Cs and (137)Cs.

    PubMed

    Schimmack, W; Schultz, W

    2006-09-15

    The temporal changes of the vertical distribution of (134)Cs (deposited by the Chernobyl fallout in 1986) and (137)Cs (deposited by the Chernobyl and the global fallout) in the soil were investigated at an undisturbed Bavarian grassland site in Germany. At ten sampling dates between 1986 and 2001, the activity density of (134)Cs and (137)Cs was determined in various soil layers down to 80 cm depth. In 2001, the small-scale spatial variability of the radiocaesium activity was determined by sampling five plots within 10 m(2) (coefficient of variation about 20% for the upper soil layers). Between 1987 and 1990, substantial changes of the activity-depth profiles were observed. The percentage depth distributions of (134)Cs and (137)Cs were rather similar. The 50%-depth of the accumulated activity increased from 2.4 cm in 1988 to 5.3 cm in 2001 for (134)Cs and from 2.7 to 5.8 cm for (137)Cs. This indicates that at the study site the migration data of Chernobyl-derived (137)Cs can be estimated by those of total (137)Cs. In the second part of this study, the activity-depth profiles will be evaluated by the convection-dispersion model [Schimmack, W, Feria Márquez, F. Migration of fallout radiocaesium in a grassland soil from 1986 to 2001. Part II: Evaluation of the activity-depth profiles by transport models. Sci Total Environ 2006-this issue].

  4. Prevalence and Reliability of Phonological, Surface, and Mixed Profiles in Dyslexia: A Review of Studies Conducted in Languages Varying in Orthographic Depth

    ERIC Educational Resources Information Center

    Sprenger-Charolles, Liliane; Siegel, Linda S.; Jimenez, Juan E.; Ziegler, Johannes C.

    2011-01-01

    The influence of orthographic transparency on the prevalence of dyslexia subtypes was examined in a review of multiple-case studies conducted in languages differing in orthographic depth (English, French, and Spanish). Cross-language differences are found in the proportion of dissociated profiles as a function of the dependent variables (speed or…

  5. Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: Comparison with resonant NRA and SIMS

    NASA Astrophysics Data System (ADS)

    Reiche, Ina; Castaing, Jacques; Calligaro, Thomas; Salomon, Joseph; Aucouturier, Marc; Reinholz, Uwe; Weise, Hans-Peter

    2006-08-01

    Hydrogen is present in anhydrous materials as a result of their synthesis and of their environment during conservation. IBA provides techniques to measure H concentration depth profiles allowing to identify various aspects of the materials including the history of objects such as gemstones used in cultural heritage. A newly established ERDA set-up, using an external microbeam of alpha particles, has been developed to study hydrated near-surface layers in quartz and sapphire by non-destructive H depth profiling in different atmospheres. The samples were also analysed using resonant NRA and SIMS.

  6. Depth profile measurement with lenslet images of the plenoptic camera

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Wang, Zhaomin; Zhang, Wei; Zhao, Hongying; Qu, Weijuan; Zhao, Haimeng; Asundi, Anand; Yan, Lei

    2018-03-01

    An approach for carrying out depth profile measurement of an object with the plenoptic camera is proposed. A single plenoptic image consists of multiple lenslet images. To begin with, these images are processed directly with a refocusing technique to obtain the depth map, which does not need to align and decode the plenoptic image. Then, a linear depth calibration is applied based on the optical structure of the plenoptic camera for depth profile reconstruction. One significant improvement of the proposed method concerns the resolution of the depth map. Unlike the traditional method, our resolution is not limited by the number of microlenses inside the camera, and the depth map can be globally optimized. We validated the method with experiments on depth map reconstruction, depth calibration, and depth profile measurement, with the results indicating that the proposed approach is both efficient and accurate.

  7. Technical note: GODESS - a profiling mooring in the Gotland Basin

    NASA Astrophysics Data System (ADS)

    Prien, Ralf D.; Schulz-Bull, Detlef E.

    2016-07-01

    This note describes a profiling mooring with an interdisciplinary suite of sensors taking profiles between 180 and 30 m depth. It consists of an underwater winch, moored below 180 m depth, and a profiling instrumentation platform. In its described setup it can take about 200 profiles at pre-programmed times or intervals with one set of batteries. This allows for studies over an extended period of time (e.g. two daily profiles over a time of 3 months). The Gotland Deep Environmental Sampling Station (GODESS) in the Eastern Gotland Basin of the Baltic Sea is aimed at investigations of redoxcline dynamics. The described system can be readily adapted to other research foci by changing the profiling instrumentation platform and its payload.

  8. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  9. Perfect Composition Depth Profiling of Ionic Liquid Surfaces Using High-resolution RBS/ERDA.

    PubMed

    Nakajima, Kaoru; Zolboo, Enkhbayar; Ohashi, Tomohiro; Lísal, Martin; Kimura, Kenji

    2016-01-01

    In order to reveal the surface structures of large molecular ionic liquids (ILs), the near-surface elemental depth distributions of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C n C 1 Im][Tf 2 N], n = 2, 6, 10) were studied using high-resolution Rutherford backscattering spectroscopy (HRBS) in combination with high-resolution elastic recoil detection analysis (HR-ERDA). The elemental depth profiles of all constituent elements, including hydrogen, were derived from HR-ERDA/HRBS measurements, so that the profiles would reproduce both HR-ERDA and HRBS spectra simultaneously. The derived elemental depth profiles agree with state-of-the-art molecular dynamics simulations, indicating the feasibility of this method. A controversy concerning the preferential orientation of [C 2 C 1 Im] at the surface has been resolved by this new combination analysis; namely, the [C 2 C 1 Im] cation has a preferential orientation with the ethyl chain pointing towards the vacuum in the topmost molecular layer.

  10. Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2014-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.

  11. Depth profiling of high energy nitrogen ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals

    NASA Astrophysics Data System (ADS)

    Erić, M.; Petrović, S.; Kokkoris, M.; Lagoyannis, A.; Paneta, V.; Harissopulos, S.; Telečki, I.

    2012-03-01

    This work reports on the experimentally obtained depth profiles of 4 MeV 14N2+ ions implanted in the <1 0 0>, <1 1 0> and randomly oriented silicon crystals. The ion fluence was 1017 particles/cm2. The nitrogen depth profiling has been performed using the Nuclear Reaction Analysis (NRA) method, via the study of 14N(d,α0)12C and 14N(d,α1)12C nuclear reactions, and with the implementation of SRIM 2010 and SIMNRA computer simulation codes. For the randomly oriented silicon crystal, change of the density of silicon matrix and the nitrogen "bubble" formation have been proposed as the explanation for the difference between the experimental and simulated nitrogen depth profiles. During the implantation, the RBS/C spectra were measured on the nitrogen implanted and on the virgin crystal spots. These spectra provide information on the amorphization of the silicon crystals induced by the ion implantation.

  12. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  13. Elemental depth profiling in transparent conducting oxide thin film by X-ray reflectivity and grazing incidence X-ray fluorescence combined analysis

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.

    2017-09-01

    The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.

  14. Meteoric 10Be in soil profiles - A global meta-analysis

    USGS Publications Warehouse

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  15. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  16. Using Vertical electrical sounding survey and refraction seismic survey for determining the geological layers depths, the structural features and assessment groundwater in Aqaba area in South Jordan.

    NASA Astrophysics Data System (ADS)

    Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina

    2010-05-01

    The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth profile was N-S direction and the length of this profile was 950 m. Two different layers were recognized along this profile. The fifth profile was located N-S with length about 340 m. Two layers were recognized from this profile. The sixth profile was located N-S direction and the length about 575 m. Three layers were recognized from this profile. The direction of the seventh profile was N-S with a length of about 235 m. two different layers were recognized the top layer was unconsolidated alluvium. The profile number 8 was located N-S with length about 232 m. two layers were conducted from this profile. The direction of ninth profile was NW-SE with length about 565 m. two layers were conducted along this profile. The length of the tenth profile was 235 m and the direction was N-S. Two layers with a different velocities were detected along this profile. Profile number eleven was located SW-NE with length about 475 m. two layers were recognized from this profile. The length of the last profile was 375 m with direction SE-NW. Two layers were conducted from this profile. It was found that the shallow aquifers exist at a depths ranging from 4 to 19 m and the relatively deep aquifers from 24 to 60 m below the ground surface. Keywords: Vertical electrical sounding, Aqaba, Resistivity, Groundwater, Layer depth, Geoelectrical.

  17. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets.

    PubMed

    Debnath, Smita; Predecki, Paul; Suryanarayanan, Raj

    2004-01-01

    The purpose of this study was (i) to develop glancing angle x-ray powder diffractometry (XRD) as a method for profiling phase transformations as a function of tablet depth; and (ii) to apply this technique to (a) study indomethacin crystallization during dissolution of partially amorphous indomethacin tablets and to (b) profile anhydrate --> hydrate transformations during dissolution of theophylline tablets. The intrinsic dissolution rates of indomethacin and theophylline were determined after different pharmaceutical processing steps. Phase transformations during dissolution were evaluated by various techniques. Transformation in the bulk and on the tablet surface was characterized by conventional XRD and scanning electron microscopy, respectively. Glancing angle XRD enabled us to profile these transformations as a function of depth from the tablet surface. Pharmaceutical processing resulted in a decrease in crystallinity of both indomethacin and theophylline. When placed in contact with the dissolution medium, while indomethacin recrystallized, theophylline anhydrate rapidly converted to theophylline monohydrate. Due to intimate contact with the dissolution medium, drug transformation occurred to a greater extent at or near the tablet surface. Glancing angle XRD enabled us to depth profile the extent of phase transformations as a function of the distance from the tablet surface. The processed sample (both indomethacin and theophylline) transformed more rapidly than did the corresponding unprocessed drug. Several challenges associated with the glancing angle technique, that is, the effects of sorbed water, phase transformations during the experimental timescale, and the influence of phase transformation on penetration depth, were addressed. Increased solubility, and consequently dissolution rate, is one of the potential advantages of metastable phases. This advantage is negated if, during dissolution, the metastable to stable transformation rate > dissolution rate. Glancing angle XRD enabled us to quantify and thereby profile phase transformations as a function of compact depth. The technique has potential utility in monitoring surface reactions, both chemical decomposition and physical transformations, in pharmaceutical systems.

  18. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    NASA Astrophysics Data System (ADS)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  19. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume

    USGS Publications Warehouse

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M.; Bailey, Zach; Pruden, Amy

    2014-01-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.

  20. Defining the ecologically relevant mixed-layer depth for Antarctica's coastal seas

    NASA Astrophysics Data System (ADS)

    Carvalho, Filipa; Kohut, Josh; Oliver, Matthew J.; Schofield, Oscar

    2017-01-01

    Mixed-layer depth (MLD) has been widely linked to phytoplankton dynamics in Antarctica's coastal regions; however, inconsistent definitions have made intercomparisons among region-specific studies difficult. Using a data set with over 20,000 water column profiles corresponding to 32 Slocum glider deployments in three coastal Antarctic regions (Ross Sea, Amundsen Sea, and West Antarctic Peninsula), we evaluated the relationship between MLD and phytoplankton vertical distribution. Comparisons of these MLD estimates to an applied definition of phytoplankton bloom depth, as defined by the deepest inflection point in the chlorophyll profile, show that the maximum of buoyancy frequency is a good proxy for an ecologically relevant MLD. A quality index is used to filter profiles where MLD is not determined. Despite the different regional physical settings, we found that the MLD definition based on the maximum of buoyancy frequency best describes the depth to which phytoplankton can be mixed in Antarctica's coastal seas.

  1. Depth profiling of mechanical degradation of PV backsheets after UV exposure

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohong; Krommenhoek, Peter J.; Lin, Chiao-Chi; Yu, Li-Chieh; Nguyen, Tinh; Watson, Stephanie S.

    2015-09-01

    Polymeric multilayer backsheets protect the photovoltaic modules from damage of moisture and ultraviolet (UV) while providing electrical insulation. Due to the multilayer structures, the properties of the inner layers of the backsheets, including their interfaces, during weathering are not well known. In this study, a commercial type of PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films was selected as a model system for a depth profiling study of mechanical properties of a backsheet film during UV exposure. The NIST SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) was used for the accelerated laboratory exposure of the materials with UV at 85°C and two relative humidities (RH) of 5 % (dry) and 60 % (humid). Cryomicrotomy was used to obtain cross-sectional PPE samples. Mechanical depth profiling of the cross-sections of aged and unaged samples was conducted by nanoindentation, and a peak-force based quantitative nanomechanical atomic force microscopy (QNM-AFM) mapping techniquewas used to investigate the microstructure and adhesion properties of the adhesive tie layers. The nanoindentation results show the stiffening of the elastic modulus in the PET outer and pigmented EVA layers. From QNM-AFM, the microstructures and adhesion properties of the adhesive layers between PET outer and core layers and between PET core and EVA inner layers are revealed and found to degrade significantly after aging under humidity environment. The results from mechanical depth profiling of the PPE backsheet are further related to the previous chemical depth profiling of the same material, providing new insights into the effects of accelerated UV and humidity on the degradation of multilayer backsheet.

  2. Fire debris analysis for forensic fire investigation using laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Choi, Soojin; Yoh, Jack J.

    2017-08-01

    The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.

  3. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors.

  4. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.

    PubMed

    Liu, Jodi; Saw, Robert E; Kiang, Y-H

    2010-09-01

    The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.

  6. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Sung; College of Information and Communication Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746; Lee, Hyung-Ik

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respectmore » to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.« less

  7. Compositional depth profiles of the type 316 stainless steel undergone the corrosion in liquid lithium using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Ying; Ke, Chuan; Liu, Xiang; Gou, Fujun; Duan, Xuru; Zhao, Yong

    2017-12-01

    Liquid metal lithium cause severe corrosion on the surface of metal structure material that used in the blanket and first wall of fusion device. Fast and accurate compositional depth profile measurement for the boundary layer of the corroded specimen will reveal the clues for the understanding and evaluation of the liquid lithium corrosion process as well as the involved corrosion mechanism. In this work, the feasibility of laser-induced breakdown spectroscopy for the compositional depth profile analysis of type 316 stainless steel which was corroded by liquid lithium in certain conditions was demonstrated. High sensitivity of LIBS was revealed especially for the corrosion medium Li in addition to the matrix elements of Fe, Cr, Ni and Mn by the spectral analysis of the plasma emission. Compositional depth profile analysis for the concerned elements which related to corrosion was carried out on the surface of the corroded specimen. Based on the verified local thermodynamic equilibrium shot-by-shot along the depth profile, the matrix effect was evaluated as negligible by the extracted physical parameter of the plasmas generated by each laser pulse in the longitudinal depth profile. In addition, the emission line intensity ratios were introduced to further reduce the impact on the emission line intensity variations arise from the strong inhomogeneities on the corroded surface. Compositional depth profiles for the matrix elements of Fe, Cr, Ni, Mn and the corrosion medium Li were constructed with their measured relative emission line intensities. The distribution and correlations of the concerned elements in depth profile may indicate the clues to the complicated process of composition diffusion and mass transfer. The results obtained demonstrate the potentiality of LIBS as an effective technique to perform spectrochemical measurement in the research fields of liquid metal lithium corrosion.

  8. Laser microprobe and resonant laser ablation for depth profile measurements of hydrogen isotope atoms contained in graphite.

    PubMed

    Yorozu, M; Yanagida, T; Nakajyo, T; Okada, Y; Endo, A

    2001-04-20

    We measured the depth profile of hydrogen atoms in graphite by laser microprobing combined with resonant laser ablation. Deuterium-implanted graphite was employed for the measurements. The sample was ablated by a tunable laser with a wavelength corresponding to the resonant wavelength of 1S-2S of deuterium with two-photon excitation. The ablated deuterium was ionized by a 2 + 1 resonant ionization process. The ions were analyzed by a time-of-flight mass spectrometer. The deuterium ions were detected clearly with the resonant ablation. The detection limit was estimated to be less than 10(16) atoms/cm(3) in our experiments. We determined the depth profile by considering the etching profile and the etching rate. The depth profile agreed well with Monte Carlo simulations to within a precision of 23 mum for the center position and 4-mum precision for distributions for three different implantation depths.

  9. Hyperspectral imaging to investigate the distribution of organic matter and iron down the soil profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Kriegs, Stefanie; Steffens, Markus

    2017-04-01

    Obtaining reliable and accurate data regarding the spatial distribution of different soil components is difficult due to issues related with sampling scale and resolution on the one hand and laboratory analysis on the other. When investigating the chemical composition of soil, studies frequently limit themselves to two dimensional characterisations, e.g. spatial variability near the surface or depth distribution down the profile, but rarely combine both approaches due to limitations to sampling and analytical capacities. Furthermore, when assessing depth distributions, samples are taken according to horizon or depth increments, resulting in a mixed sample across the sampling depth. Whilst this facilitates mean content estimation per depth increment and therefore reduces analytical costs, the sample information content with regards to heterogeneity within the profile is lost. Hyperspectral imaging can overcome these sampling limitations, yielding high resolution spectral data of down the soil profile, greatly enhancing the information content of the samples. This can then be used to augment horizontal spatial characterisation of a site, yielding three dimensional information into the distribution of spectral characteristics across a site and down the profile. Soil spectral characteristics are associated with specific chemical components of soil, such as soil organic matter or iron contents. By correlating the content of these soil components with their spectral behaviour, high resolution multi-dimensional analysis of soil chemical composition can be obtained. Here we present a hyperspectral approach to the characterisation of soil organic matter and iron down different soil profiles, outlining advantages and issues associated with the methodology.

  10. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  11. Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data.

    PubMed

    Menon, Vilas

    2017-12-11

    Advances in single-cell RNA-sequencing technology have resulted in a wealth of studies aiming to identify transcriptomic cell types in various biological systems. There are multiple experimental approaches to isolate and profile single cells, which provide different levels of cellular and tissue coverage. In addition, multiple computational strategies have been proposed to identify putative cell types from single-cell data. From a data generation perspective, recent single-cell studies can be classified into two groups: those that distribute reads shallowly over large numbers of cells and those that distribute reads more deeply over a smaller cell population. Although there are advantages to both approaches in terms of cellular and tissue coverage, it is unclear whether different computational cell type identification methods are better suited to one or the other experimental paradigm. This study reviews three cell type clustering algorithms, each representing one of three broad approaches, and finds that PCA-based algorithms appear most suited to low read depth data sets, whereas gene clustering-based and biclustering algorithms perform better on high read depth data sets. In addition, highly related cell classes are better distinguished by higher-depth data, given the same total number of reads; however, simultaneous discovery of distinct and similar types is better served by lower-depth, higher cell number data. Overall, this study suggests that the depth of profiling should be determined by initial assumptions about the diversity of cells in the population, and that the selection of clustering algorithm(s) is subsequently based on the depth of profiling will allow for better identification of putative transcriptomic cell types. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers

    PubMed Central

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, β-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils. PMID:28611747

  13. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers.

    PubMed

    Bai, Ren; Wang, Jun-Tao; Deng, Ye; He, Ji-Zheng; Feng, Kai; Zhang, Li-Mei

    2017-01-01

    Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria , Chloroflexi , and Firmicutes increased whereas Cyanobacteria , β -proteobacteria , and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota , Thaumarchaeota , and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.

  14. Towards Understanding Soil Forming in Santa Clotilde Critical Zone Observatory: Modelling Soil Mixing Processes in a Hillslope using Luminescence Techniques

    NASA Astrophysics Data System (ADS)

    Sanchez, A. R.; Laguna, A.; Reimann, T.; Giráldez, J. V.; Peña, A.; Wallinga, J.; Vanwalleghem, T.

    2017-12-01

    Different geomorphological processes such as bioturbation and erosion-deposition intervene in soil formation and landscape evolution. The latter processes produce the alteration and degradation of the materials that compose the rocks. The degree to which the bedrock is weathered is estimated through the fraction of the bedrock which is mixing in the soil either vertically or laterally. This study presents an analytical solution for the diffusion-advection equation to quantify bioturbation and erosion-depositions rates in profiles along a catena. The model is calibrated with age-depth data obtained from profiles using the luminescence dating based on single grain Infrared Stimulated Luminescence (IRSL). Luminescence techniques contribute to a direct measurement of the bioturbation and erosion-deposition processes. Single-grain IRSL techniques is applied to feldspar minerals of fifteen samples which were collected from four soil profiles at different depths along a catena in Santa Clotilde Critical Zone Observatory, Cordoba province, SE Spain. A sensitivity analysis is studied to know the importance of the parameters in the analytical model. An uncertainty analysis is carried out to stablish the better fit of the parameters to the measured age-depth data. The results indicate a diffusion constant at 20 cm in depth of 47 (mm2/year) in the hill-base profile and 4.8 (mm2/year) in the hilltop profile. The model has high uncertainty in the estimation of erosion and deposition rates. This study reveals the potential of luminescence single-grain techniques to quantify pedoturbation processes.

  15. GPR studies over the tsunami affected Karaikal beach, Tamil Nadu, south India

    NASA Astrophysics Data System (ADS)

    Loveson, V. J.; Gujar, A. R.; Barnwal, R.; Khare, Richa; Rajamanickam, G. V.

    2014-08-01

    In this study, results of GPR profiling related to mapping of subsurface sedimentary layers at tsunami affected Karaikal beach are presented . A 400 MHz antenna was used for profiling along 262 m stretch of transect from beach to backshore areas with penetration of about 2.0 m depth (50 ns two-way travel time). The velocity analysis was carried out to estimate the depth information along the GPR profile. Based on the significant changes in the reflection amplitude, three different zones are marked and the upper zone is noticed with less moisture compared to other two (saturated) zones. The water table is noticed to vary from 0.5 to 0.75 m depth (12-15 ns) as moving away from the coastline. Buried erosional surface is observed at 1.5 m depth (40-42 ns), which represents the limit up to which the extreme event acted upon. In other words, it is the depth to which the tsunami sediments have been piled up to about 1.5 m thickness. Three field test pits were made along the transect and sedimentary sequences were recorded. The sand layers, especially, heavy mineral layers, recorded in the test pits indicate a positive correlation with the amplitude and velocity changes in the GPR profile. Such interpretation seems to be difficult in the middle zone due to its water saturation condition. But it is fairly clear in the lower zone located just below the erosional surface where the strata is comparatively more compact. The inferences from the GPR profile thus provide a lucid insight to the subsurface sediment sequences of the tsunami sediments in the Karaikal beach.

  16. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  17. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE PAGES

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    2016-10-14

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  18. Addressing the contribution of climate and vegetation cover on hillslope denudation, Chilean Coastal Cordillera (26°-38°S)

    NASA Astrophysics Data System (ADS)

    Schaller, M.; Ehlers, T. A.; Lang, K. A. H.; Schmid, M.; Fuentes-Espoz, J. P.

    2018-05-01

    The Earth surface is modulated by interactions among tectonics, climate, and biota. The influence of each of these factors on hillslope denudation rates is difficult to disentangle. The Chilean Coastal Cordillera offers a strong climate and vegetation gradient from arid and unvegetated in the North to humid and vegetated in the South. A similar (convergent) plate tectonic boundary lies to the West of the Coastal Cordillera. We present eight depth profiles analyzed for in situ-produced cosmogenic 10Be in four study areas. These profiles reveal denudation rates of soil-mantled hillslopes and the depth of mobile layers. Depth profiles were investigated from both S- and N-facing mid-slope positions. Results indicate the depth of the mobile layers in the four study areas increase from N to S in latitude. When mixing is present in the mobile layers they are completely mixed. In the S- and N-facing hillslopes of each study area, mid-slope positions do not show a systematic change in depth of the mobile layers nor in denudation rates based on cosmogenic depth profiles. From N to S in latitude, modelled denudation rates of hillslopes increase from ∼0.46 to ∼5.65 cm/kyr and then decrease to ∼3.22 cm/kyr in the southernmost, highest vegetation cover, study area. Calculated turnover times of soils decrease from ∼30 to ∼11 kyr and then increase to ∼22 kyr. In this work, the increasing denudation rates are attributed to increasing mean annual precipitation from N to S. However, despite the ongoing increase in precipitation from N to S, the denudation rate in the southernmost location does not continue to increase due to the protective nature of increasing vegetation cover. This indicates a vegetation induced non-linear relationship with denudation rates.

  19. Characterization of near-stoichiometric Ti:LiNbO(3) strip waveguides with varied substrate refractive index in the guiding layer.

    PubMed

    Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun

    2008-10-01

    We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.

  20. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    The basic mechanism associated with the photovoltaic phenomena observed in the R.F. sputtered BaTiO3/silicon system is presented. Series of measurements of short circuit photocurrents and open circuit photovoltage were made. The composition depth profiles and the interface characteristics of the BaTiO3/silicon system were investigated for a better understanding of the electronic properties. A Scanning Auger Microprobe combined with ion in depth profiling were used.

  1. The potential of high-frequency profiling to assess vertical and seasonal patterns of phytoplankton dynamics in lakes: An extension of the Plankton Ecology Group (PEG) model

    USGS Publications Warehouse

    Brentrup, Jennifer A.; Williamson, Craig E.; Colom-Montero, William; Eckert, Werner; de Eyto, Elvira; Grossart, Hans-Peter; Huot, Yannick; Isles, Peter D. F.; Knoll, Lesley B.; Leach, Taylor H.; McBride, Christopher G.; Pierson, Don; Pomati, Francesco; Read, Jordan S.; Rose, Kevin C.; Samal, Nihar R.; Staehr, Peter A.; Winslow, Luke A.

    2016-01-01

    The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model’s proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.

  2. Spatial distribution of microbial biomass, activity, community structure, and the biodegradation of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) in the subsurface.

    PubMed

    Federle, T W; Ventullo, R M; White, D C

    1990-12-01

    The vertical distribution of microbial biomass, activity, community structure and the mineralization of xenobiotic chemicals was examined in two soil profiles in northern Wisconsin. One profile was impacted by infiltrating wastewater from a laundromat, while the other served as a control. An unconfined aquifer was present 14 meters below the surface at both sites. Biomass and community structure were determined by acridine orange direct counts and measuring concentrations of phospholipid-derived fatty acids (PLFA). Microbial activity was estimated by measuring fluorescein diacetate (FDA) hydrolysis, thymidine incorporation into DNA, and mixed amino acid (MAA) mineralization. Mineralization kinetics of linear alkylbenzene sulfonate (LAS) and linear alcohol ethoxylate (LAE) were determined at each depth. Except for MAA mineralization rates, measures of microbial biomass and activity exhibited similar patterns with depth. PLFA concentration and rates of FDA hydrolysis and thymidine incorporation decreased 10-100 fold below 3 m and then exhibited little variation with depth. Fungal fatty acid markers were found at all depths and represented from 1 to 15% of the total PLFAs. The relative proportion of tuberculostearic acid (TBS), an actinomycete marker, declined with depth and was not detected in the saturated zone. The profile impacted by wastewater exhibited higher levels of PLFA but a lower proportion of TBS than the control profile. This profile also exhibited faster rates of FDA hydrolysis and amino acid mineralization at most depths. LAS was mineralized in the upper 2 m of the vadose zone and in the saturated zone of both profiles. Little or no LAS biodegradation occurred at depths between 2 and 14 m. LAE was mineralized at all depths in both profiles, and the mineralization rate exhibited a similar pattern with depth as biomass and activity measurements. In general, biomass and biodegradative activities were much lower in groundwater than in soil samples obtained from the same depth.

  3. Neutron Depth Profiling: Overview and Description of NIST Facilities

    PubMed Central

    Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 × 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of 17O profiles. This paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications. PMID:28053461

  4. Experimental validation of a Monte Carlo proton therapy nozzle model incorporating magnetically steered protons.

    PubMed

    Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A

    2009-05-21

    The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.

  5. Reducing the Matrix Effect in Organic Cluster SIMS Using Dynamic Reactive Ionization

    NASA Astrophysics Data System (ADS)

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2016-12-01

    Dynamic reactive ionization (DRI) utilizes a reactive molecule, HCl, which is doped into an Ar cluster projectile and activated to produce protons at the bombardment site on the cold sample surface with the presence of water. The methodology has been shown to enhance the ionization of protonated molecular ions and to reduce salt suppression in complex biomatrices. In this study, we further examine the possibility of obtaining improved quantitation with DRI during depth profiling of thin films. Using a trehalose film as a model system, we are able to define optimal DRI conditions for depth profiling. Next, the strategy is applied to a multilayer system consisting of the polymer antioxidants Irganox 1098 and 1010. These binary mixtures have demonstrated large matrix effects, making quantitative SIMS measurement not feasible. Systematic comparisons of depth profiling of this multilayer film between directly using GCIB, and under DRI conditions, show that the latter enhances protonated ions for both components by 4- to 15-fold, resulting in uniform depth profiling in positive ion mode and almost no matrix effect in negative ion mode. The methodology offers a new strategy to tackle the matrix effect and should lead to improved quantitative measurement using SIMS.

  6. Integrating depth functions and hyper-scale terrain analysis for 3D soil organic carbon modeling in agricultural fields at regional scale

    NASA Astrophysics Data System (ADS)

    Ramirez-Lopez, L.; van Wesemael, B.; Stevens, A.; Doetterl, S.; Van Oost, K.; Behrens, T.; Schmidt, K.

    2012-04-01

    Soil Organic Carbon (SOC) represents a key component in the global C cycle and has an important influence on the global CO2 fluxes between terrestrial biosphere and atmosphere. In the context of agricultural landscapes, SOC inventories are important since soil management practices have a strong influence on CO2 fluxes and SOC stocks. However, there is lack of accurate and cost-effective methods for producing high spatial resolution of SOC information. In this respect, our work is focused on the development of a three dimensional modeling approach for SOC monitoring in agricultural fields. The study area comprises ~420 km2 and includes 4 of the 5 agro-geological regions of the Grand-Duchy of Luxembourg. The soil dataset consist of 172 profiles (1033 samples) which were not sampled specifically for this study. This dataset is a combination of profile samples collected in previous soil surveys and soil profiles sampled for other research purposes. The proposed strategy comprises two main steps. In the first step the SOC distribution within each profile (vertical distribution) is modeled. Depth functions for are fitted in order to summarize the information content in the profile. By using these functions the SOC can be interpolated at any depth within the profiles. The second step involves the use of contextual terrain (ConMap) features (Behrens et al., 2010). These features are based on the differences in elevation between a given point location in the landscape and its circular neighbourhoods at a given set of different radius. One of the main advantages of this approach is that it allows the integration of several spatial scales (eg. local and regional) for soil spatial analysis. In this work the ConMap features are derived from a digital elevation model of the area and are used as predictors for spatial modeling of the parameters of the depth functions fitted in the previous step. In this poster we present some preliminary results in which we analyze: i. The use of different depth functions, ii. The use of different machine learning approaches for modeling the parameters of the fitted depth functions using the ConMap features and iii. The influence of different spatial scales on the SOC profile distribution variability. Keywords: 3D modeling, Digital soil mapping, Depth functions, Terrain analysis. Reference Behrens, T., K. Schmidt, K., Zhu, A.X. Scholten, T. 2010. The ConMap approach for terrain-based digital soil mapping. European Journal of Soil Science, v. 61, p.133-143.

  7. Laser characterization of the depth profile of complex refractive index of PMMA implanted with 50 keV silicon ions

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.

    2013-03-01

    The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).

  8. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  9. Observing continental boundary-layer structure and evolution over the South African savannah using a ceilometer

    NASA Astrophysics Data System (ADS)

    Gierens, Rosa T.; Henriksson, Svante; Josipovic, Micky; Vakkari, Ville; van Zyl, Pieter G.; Beukes, Johan P.; Wood, Curtis R.; O'Connor, Ewan J.

    2018-05-01

    The atmospheric boundary layer (BL) is the atmospheric layer coupled to the Earth's surface at relatively short timescales. A key quantity is the BL depth, which is important in many applied areas of weather and climate such as air-quality forecasting. Studying BLs in climates and biomes across the globe is important, particularly in the under-sampled southern hemisphere. The present study is based on a grazed grassland-savannah area in northwestern South Africa during October 2012-August 2014. Ceilometers are probably the cheapest method for measuring continuous aerosol profiles up to several kilometers above ground and are thus an ideal tool for long-term studies of BLs. A ceilometer-estimated BL depth is based on profiles of attenuated backscattering coefficients from atmospheric aerosols; the sharpest drop often occurs at BL top. Based on this, we developed a new method for layer detection that we call the signal-limited layer method. The new algorithm was applied to ceilometer profiles which thus classified BL into classic regime types: daytime convective mixing, and a double layer at night of surface-based stable with a residual layer above it. We employed wavelet fitting to increase successful BL estimation for noisy profiles. The layer-detection algorithm was supported by an eddy-flux station, rain gauges, and manual inspection. Diurnal cycles were often clear, with BL depth detected for 50% of the daytime typically being 1-3 km, and for 80% of the night-time typically being a few hundred meters. Variability was also analyzed with respect to seasons and years. Finally, BL depths were compared with ERA-Interim estimates of BL depth to show reassuring agreement.

  10. Profilometric characterization of DOEs with continuous microrelief

    NASA Astrophysics Data System (ADS)

    Korolkov, V. P.; Ostapenko, S. V.; Shimansky, R. V.

    2008-09-01

    Methodology of local characterization of continuous-relief diffractive optical elements has been discussed. The local profile depth can be evaluated using "approximated depth" defined without taking a profile near diffractive zone boundaries into account. Several methods to estimate the approximated depth have been offered.

  11. Comparison of Air Fluorescence and Ionization Measurements of E.M. Shower Depth Profiles: Test of a UHECR Detector Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belz, J.; Cao, Z.; Huentemeyer, P.

    Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.

  12. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  13. A study of using femtosecond LIBS in analyzing metallic thin film-semiconductor interface

    NASA Astrophysics Data System (ADS)

    Galmed, A. H.; Kassem, A. K.; von Bergmann, H.; Harith, M. A.

    2011-01-01

    Metals and metal alloys are usually employed as interconnections to guide electrical signals between components into the very large scale integrated (VLSI) devices. These devices demand higher complexity, better performance and lower cost. Thin film is a common geometry for these metallic applications, requiring a substrate for rigidity. Accurate depth profile analysis of coatings is becoming increasingly important with expanding industrial use in technological fields. A number of articles devoted to LIBS applications for depth-resolved analysis have been published in recent years. In the present work, we are studying the ability of femtosecond LIBS to make depth profiling for a Ti thin film of thickness 213 nm deposited onto a silicon (100) substrate before and after thermal annealing. The measurements revealed that an average ablation rates of 15 nm per pulse have been achieved. The thin film was examined using X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM), while the formation of the interface was examined using Rutherford Back Scattering (RBS) before and after annealing. To verify the depth profiling results, a theoretical simulation model is presented that gave a very good agreement with the experimental results.

  14. Profiling defect depth in composite materials using thermal imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2018-04-01

    Sonic Infrared (IR) NDE, is a relatively new NDE technology; it has been demonstrated as a reliable and sensitive method to detect defects. SIR uses ultrasonic excitation with IR imaging to detect defects and flaws in the structures being inspected. An IR camera captures infrared radiation from the target for a period of time covering the ultrasound pulse. This period of time may be much longer than the pulse depending on the defect depth and the thermal properties of the materials. With the increasing deployment of composites in modern aerospace and automobile structures, fast, wide-area and reliable NDE methods are necessary. Impact damage is one of the major concerns in modern composites. Damage can occur at a certain depth without any visual indication on the surface. Defect depth information can influence maintenance decisions. Depth profiling relies on the time delays in the captured image sequence. We'll present our work on the defect depth profiling by using the temporal information of IR images. An analytical model is introduced to describe heat diffusion from subsurface defects in composite materials. Depth profiling using peak time is introduced as well.

  15. NanoSIMS Imaging Alternation Layers of a Leached SON68 Glass Via A FIB-made Wedged Crater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi-Chung; Schreiber, Daniel K.; Neeway, James J.

    2014-11-01

    Currently, nuclear wastes are commonly immobilized into glasses because of their long-term durability. Exposure to water for long periods of time, however, will eventually corrode the waste form and is the leading potential avenue for radionuclide release into the environment. Because such slow processes cannot be experimentally tested, the prediction of release requires a thorough understanding the mechanisms governing glass corrosion. In addition, due to the exceptional durability of glass, much of the testing must be performed on high-surface-area powders. A technique that can provide accurate compositional profiles with very precise depth resolution for non-flat samples would be a majormore » benefit to the field. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling is an excellent tool that has long been used to examine corrosion layers of glass. The roughness of the buried corrosion layers, however, causes the corresponding SIMS depth profiles to exhibit erroneously wide interfaces. In this study, NanoSIMS was used to image the cross-section of the corrosion layers of a leached SON68 glass sample. A wedged crater was prepared by a focused ion beam (FIB) instrument to obtain a 5× improvement in depth resolution for NanoSIMS measurements. This increase in resolution allowed us to confirm that the breakdown of the silica glass network is further from the pristine glass than a second dissolution front for boron, another glass former. The existence of these two distinct interfaces, separated by only ~20 nm distance in depth, was not apparent by traditional ToF-SIMS depth profiling but has been confirmed also by atom probe tomography. This novel sample geometry will be a major benefit to efficient NanoSIMS sampling of irregular interfaces at the nanometer scale that would otherwise be obscured within ToF-SIMS depth profiles.« less

  16. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef

    PubMed Central

    2013-01-01

    Background Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef. Results The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes. Conclusions Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. PMID:24059868

  17. Magnetic Nonuniformity and Thermal Hysteresis of Magnetism in a Manganite Thin Film [Depth profiling of magnetization and coupling of strain with magnetization in (La 0.4Pr 0.6) 0.67Ca 0.33MnO 3 films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surendra; Fitzsimmons, M. R.; Lookman, T.

    We measured the chemical and magnetic depth profiles of a single crystalline film grown on a NdGaO 3 substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first order ferromagnetic transition at low temperatures

  18. Changes in prescribed doses for the Seattle neutron therapy system

    NASA Astrophysics Data System (ADS)

    Popescu, A.

    2008-06-01

    From the beginning of the neutron therapy program at the University of Washington Medical Center, the neutron dose distribution in tissue has been calculated using an in-house treatment planning system called PRISM. In order to increase the accuracy of the absorbed dose calculations, two main improvements were made to the PRISM treatment planning system: (a) the algorithm was changed by the addition of an analytical expression of the central axis wedge factor dependence with field size and depth developed at UWMC. Older versions of the treatment-planning algorithm used a constant central axis wedge factor; (b) a complete newly commissioned set of measured data was introduced in the latest version of PRISM. The new version of the PRISM algorithm allowed for the use of the wedge profiles measured at different depths instead of one wedge profile measured at one depth. The comparison of the absorbed dose calculations using the old and the improved algorithm showed discrepancies mainly due to the missing central axis wedge factor dependence with field size and depth and due to the absence of the wedge profiles at depths different from 10 cm. This study concludes that the previously reported prescribed doses for neutron therapy should be changed.

  19. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  20. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  1. Upper mantle electrical conductivity for seven subcontinental regions of the Earth

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1988-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq) separated for the 7 continental regions of the observatories have been used to determine conductivity profiles to depths of about 600 km by the Schmucker equivalent substitute conductor method. The profiles give evidence of increases in conductivity between about 150 and 350 km depth, then a general increase in conductivity thereafter. For South America we found a high conductivity at shallow depths. The European profile showed a highly conducting layer near 125 km. At the greater depths, Europe, Australia and South America had the lowest values of conductivity. North America and east Asia had intermediate values whereas the African and central Asian profiles both showed the conductivities rising rapidly beyond 450 km depth. The regional differences indicate that there may be considerable lateral heterogeneity of electrical conductivity in the Earth's upper mantle. -Authors

  2. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-01

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  3. Nondestructive depth profile of the chemical state of ultrathin Al2O3/Si interface

    NASA Astrophysics Data System (ADS)

    Lee, Jong Cheol; Oh, S.-J.

    2004-05-01

    We investigated a depth profile of the chemical states of an Al2O3/Si interface using nondestructive photon energy-dependent high-resolution x-ray photoelectron spectroscopy (HRXPS). The Si 2p binding energy, attributed to the oxide interfacial layer (OIL), was found to shift from 102.1 eV to 102.9 eV as the OIL region closer to Al2O3 layer was sampled, while the Al 2p binding energy remains the same. This fact strongly suggests that the chemical state of the interfacial layer is not Al silicate as previously believed. We instead propose from the HRXPS of Al 2p and Si 2p depth-profile studies that the chemical states of the Al2O3/Si interface mainly consist of SiO2 and Si2O3.

  4. Local and profile soil water content monitoring: A comparison of methods in terms of apparent and actual spatial variation

    USDA-ARS?s Scientific Manuscript database

    Although many soil water sensors are now available, questions about their accuracy, precision, and representativeness still abound. This study examined down-hole (access tube profiling type) and insertion or burial (local) type sensors for their ability to assess soil profile water content (depth of...

  5. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As films as probed by polarized neutron and x-ray reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  6. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As as probed with neutron & x-ray reflectivfity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  7. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    PubMed

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  8. A Non-Steady-State Condition in Sediments at the Gashydrate Stability Boundary off West Spitsbergen: Evidence for Gashydrate Dissociation or Just Dynamic Methane Transport?

    NASA Astrophysics Data System (ADS)

    Treude, T.; Krause, S.; Bertics, V. J.; Steinle, L.; Niemann, H.; Liebetrau, V.; Feseker, T.; Burwicz, E.; Krastel, S.; Berndt, C.

    2014-12-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009, GRL 36, doi:10.1029/2009GL039191). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014, Science 343: 284-287). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. δ18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation.

  9. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed to evaluate the potential effects of crystallographic orientation on alpha ejection. The results from both crystals were very reproducible irrespective of crystal surface used and confirm the findings of Monteleone et al. (2008) that the measured alpha ejection profiles deviate significantly from and are shorter than the calculated theoretical average value. Efforts are currently underway to better constrain the measured alpha ejection distance and measure alpha ejection profiles in apatite crystals other than Durango apatite. References: Boyce, J. et al. (2006) GCA 70, pp. 3031-3039. Farley, K. et al. (1996) GCA 60, pp. 4223-4229. Farley, K. (2006) JGR SE 105, p. 2903-2914. Lippolt, H. et al. (1994) Chem Geol 112, pp. 179-191. Monteleone, B. et al. (2008) Eos Trans AGU, 89 Fall Meeting V53B-2162. Wolf, R. et al. (1996) GCA 60, pp. 4231-4240. Zeitler, P. et al. (1987) GCA 51, pp. 2865-2868.

  10. Online, efficient and precision laser profiling of bronze-bonded diamond grinding wheels based on a single-layer deep-cutting intermittent feeding method

    NASA Astrophysics Data System (ADS)

    Deng, Hui; Chen, Genyu; He, Jie; Zhou, Cong; Du, Han; Wang, Yanyi

    2016-06-01

    In this study, an online, efficient and precision laser profiling approach that is based on a single-layer deep-cutting intermittent feeding method is described. The effects of the laser cutting depth and the track-overlap ratio of the laser cutting on the efficiency, precision and quality of laser profiling were investigated. Experiments on the online profiling of bronze-bonded diamond grinding wheels were performed using a pulsed fiber laser. The results demonstrate that an increase in the laser cutting depth caused an increase in the material removal efficiency during the laser profiling process. However, the maximum laser profiling efficiency was only achieved when the laser cutting depth was equivalent to the initial surface contour error of the grinding wheel. In addition, the selection of relatively high track-overlap ratios of laser cutting for the profiling of grinding wheels was beneficial with respect to the increase in the precision of laser profiling, whereas the efficiency and quality of the laser profiling were not affected by the change in the track-overlap ratio. After optimized process parameters were employed for online laser profiling, the circular run-out error and the parallelism error of the grinding wheel surface decreased from 83.1 μm and 324.6 μm to 11.3 μm and 3.5 μm, respectively. The surface contour precision of the grinding wheel significantly improved. The highest surface contour precision for grinding wheels of the same type that can be theoretically achieved after laser profiling is completely dependent on the peak power density of the laser. The higher the laser peak power density is, the higher the surface contour precision of the grinding wheel after profiling.

  11. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    NASA Astrophysics Data System (ADS)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  12. Integral Analysis of Seismic Refraction and Ambient Vibration Survey for Subsurface Profile Evaluation

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Kamarudin, A. F.; Rosli, S.; Fauziah, A.; Akmal, M. A. K.; Aziman, M.; Azhar, A. T. S.; Ashraf, M. I. M.; Shaylinda, M. Z. N.; Rais, Y.; Ishak, M. F.; Alel, M. N. A.

    2018-04-01

    Geotechnical site investigation as known as subsurface profile evaluation is the process of subsurface layer characteristics determination which finally used for design and construction phase. Traditionally, site investigation was performed using drilling technique thus suffers from several limitation due to cost, time, data coverage and sustainability. In order to overcome those problems, this study adopted surface techniques using seismic refraction and ambient vibration method for subsurface profile depth evaluation. Seismic refraction data acquisition and processing was performed using ABEM Terraloc and OPTIM software respectively. Meanwhile ambient vibration data acquisition and processing was performed using CityShark II, Lennartz and GEOPSY software respectively. It was found that studied area consist of two layers representing overburden and bedrock geomaterials based on p-wave velocity value (vp = 300 – 2500 m/s and vp > 2500 m/s) and natural frequency value (Fo = 3.37 – 3.90 Hz) analyzed. Further analysis found that both methods show some good similarity in term of depth and thickness with percentage accuracy at 60 – 97%. Consequently, this study has demonstrated that the application of seismic refractin and ambient vibration method was applicable in subsurface profile depth and thickness estimation. Moreover, surface technique which consider as non-destructive method adopted in this study was able to compliment conventional drilling method in term of cost, time, data coverage and environmental sustainaibility.

  13. Improved depth profiling with slow positrons of ion implantation-induced damage in silicon

    NASA Astrophysics Data System (ADS)

    Fujinami, M.; Miyagoe, T.; Sawada, T.; Akahane, T.

    2003-10-01

    Variable-energy positron annihilation spectroscopy (VEPAS) has been extensively applied to study defects in near-surface regions and buried interfaces, but there is an inherent limit for depth resolution due to broadening of the positron implantation profile. In order to overcome this limit and obtain optimum depth resolution, iterative chemical etching of the sample surface and VEPAS measurement are employed. This etch-and-measure technique is described in detail and the capabilities are illustrated by investigating the depth profile of defects in Si after B and P implantations with 2×1014/cm2 at 100 keV followed by annealing. Defect tails can be accurately examined and the extracted defect profile is proven to extend beyond the implanted ion range predicted by the Monte Carlo code TRIM. This behavior is more remarkable for P ion implantation than B, and the mass difference of the implanted ions is strongly related to it. No significant difference is recognized in the annealing behavior between B and P implantations. After annealing at 300 °C, the defect profile is hardly changed, but the ratio of the characteristic Doppler broadening, S, a parameter for defects, to that for the bulk Si rises by 0.01, indicating that divacancies, V2, are transformed into V4. Annealing at more than 500 °C causes diffusion of the defects toward the surface and positron traps are annealed out at 800 °C. It is proved that this resolution-enhanced VEPAS can eliminate some discrepancies in defect profiles extracted by conventional means.

  14. High Spectral Resolution Lidar Data

    DOE Data Explorer

    Eloranta, Ed

    2004-12-01

    The HSRL provided calibrated vertical profiles of optical depth, backscatter cross section and depoloarization at a wavelength of 532 nm. Profiles were acquired at 2.5 second intervals with 7.5 meter resolution. Profiles extended from an altitude of 100 m to 30 km in clear air. The lidar penetrated to a maximum optical depth of ~ 4 under cloudy conditions. Our data contributed directly to the aims of the M-PACE experiment, providing calibrated optical depth and optical backscatter measurements which were not available from any other instrument.

  15. Spectral analysis of aeromagnetic profiles for depth estimation principles, software, and practical application

    USGS Publications Warehouse

    Sadek, H.S.; Rashad, S.M.; Blank, H.R.

    1984-01-01

    If proper account is taken of the constraints of the method, it is capable of providing depth estimates to within an accuracy of about 10 percent under suitable circumstances. The estimates are unaffected by source magnetization and are relatively insensitive to assumptions as to source shape or distribution. The validity of the method is demonstrated by analyses of synthetic profiles and profiles recorded over Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source depths have been proved by drilling.

  16. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  17. Study to determine peening stress profile of rod peened aluminum structural alloys versus shot peened material

    NASA Technical Reports Server (NTRS)

    Rosas, R. E.; Calfin, B. G.

    1976-01-01

    The objective of this program was to determine the peening stress profiles of rod peened aluminum structural alloys versus shot peened material to define the effective depth of the compressed surface layer.

  18. Changes in dive profiles as an indicator of feeding success in king and Adélie penguins

    NASA Astrophysics Data System (ADS)

    Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.

    2007-02-01

    Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.

  19. Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Dey, S.; Gayathri, N.; Mukherjee, P.

    2018-04-01

    The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.

  20. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  1. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  2. The GEORIFT 2013 wide-angle seismic profile, along Pripyat-Dnieper-Donets Basin

    NASA Astrophysics Data System (ADS)

    Starostenko, Vitaliy; Janik, Tomasz; Yegorova, Tamara; Czuba, Wojciech; Sroda, Piotr; Lysynchuk, Dmytro; Aizberg, Roman; Garetsky, Radim; Karataev, German; Gribik, Yaroslav; Farfuliak, Lliudmyla; Kolomiyets, Katerina; Omelchenko, Victor; Gryn, Dmytro; Guterch, Aleksander; Komminaho, Kari; Legostaeva, Olga; Thybo, Hans; Tiira, Timo; Tolkunov, Anatoly

    2017-04-01

    The GEORIFT 2013 deep seismic sounding (DSS) experiment was carried in August 2013 on territory of Belarus and Ukraine in wide international co-operation. The aim of the work is to study basin architecture and the deep structure of the Pripyat-Dnieper-Donets Basin (PDDB), which is the deepest and best studied Palaeozoic rift basin in Europe. The PDDB locates in the southern part of the East European Craton (EEC) and crosses in NW direction the Sarmatia, the southernmost of three major segments forming the EEC. The long PDDB was formed by Late Devonian rifting in the arch of the ancient Sarmatian shield. During the Late Devonian, rifting, associated with domal basement uplift and magmatism, was widespread in the EEC from the PDDB rift basin in the south to Eastern Barents Sea in the north. The GEORIFT 2013 runs in NW-SE direction along the PDDB and crosses the Pripyat Trough and Dnieper Graben separated by Bragin uplift of the basement. The total profile length was 675 km: 315 km on the Belarusian territory and 360 km in Ukraine. The field acquisition included 14 shot points (charge 600-1000 kg of TNT), and 309 recording stations every 2.2 km. The data quality of the data was good, with visible first arrivals even up to 670 km. We present final model of the structure to the depth of 80 km. Ray-tracing forward modelling (SEIS83 package) was used for the modelling of the seismic data. The thickness of the sedimentary layer (Vp < 6.0 km/s) changes along the profile from 1-4 km in the NW, through 5 km in the central part, to 10-13 km in the SE part of the profile. In 330-530 km distance range, an updoming of the lower crust (with Vp of 7.1 km/s) to 25 km depth is observed. Large variations in the internal structure of the crust and the Moho topography were detected. The depth of the Moho varies from 47 km in the northwestern part of the model, to 40 km in central part, and to 38 km in the southeastern part of the profile. The sub-Moho velocities are 8.25 km/s. Second, near-horizontal mantle discontinuity was found in the northwestern part of the profile at the depth of 50-47 km. It dips to the depth of 60 km at distances of 360-405 km, similarly as on crossing EUROBRIDGE'97 profile (Thybo et al., 2003). In the central part of the profile (distances 180-330 km and 300-480 km) two reflectors were found in the lower lithosphere at depths of about 62 km and 75 km, respectively.

  3. Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site

    NASA Astrophysics Data System (ADS)

    Boisson, A.; Guihéneuf, N.; Perrin, J.; Bour, O.; Dewandel, B.; Dausse, A.; Viossanges, M.; Ahmed, S.; Maréchal, J. C.

    2015-02-01

    Due to extensive irrigation, most crystalline aquifers of south India are overexploited. Aquifer structure consists of an upper weathered saprolite followed by a fractured zone whose fracture density decreases with depth. To achieve sustainable management, the evolution of hydrodynamic parameters (transmissivity and storage coefficient) by depth in the south Indian context should be quantified. Falling-head borehole permeameter tests, injection tests, flowmeter profiles, single-packer tests and pumping tests were carried out in the unsaturated saprolite and saturated fractured granite. Results show that the saprolite is poorly transmissive (T fs = 3 × 10-7 to 8.5 × 10-8 m2 s-1) and that the most conductive part of the aquifer corresponds to the bottom of the saprolite and the upper part of the fractured rock (T = 1.0 × 10-3 to 7.0 × 10-4 m2 s-1). The transmissivity along the profile is mostly controlled by two distinct conductive zones without apparent vertical hydraulic connection. The transmissivity and storage coefficient both decrease with depth depending on the saturation of the main fracture zones, and boreholes are not exploitable after a certain depth (27.5 m on the investigated section). The numerous investigations performed allow a complete quantification with depth of the hydrodynamic parameters along the weathering profile, and a conceptual model is presented. Hydrograph observations (4 years) are shown to be relevant as a first-order characterization of the media and diffusivity evolution with depth. The evolution of these hydrodynamic parameters along the profile has a great impact on groundwater prospecting, exploitation and transport properties in such crystalline rock aquifers.

  4. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.

    2008-12-01

    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  5. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    NASA Astrophysics Data System (ADS)

    Pallix, J. B.; Becker, C. H.; Missert, N.; Char, K.; Hammond, R. H.

    1988-02-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-Tc superconducting thin film of nominal composition YBa2Cu3O7 deposited on SrTiO3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 Å thick film having critical current densities of 1 to 2×106 A/cm2. SALI depth profiles show this film to be more uniform than thicker films (˜1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y2O2+, Y2O3+, Y3O4+, Ba2O+, Ba2O2+, BaCu+, BaCuO+, YBaO2+, YSrO2+, etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and COx are evident particularly in the sample's near surface region (the top ˜100 Å).

  6. Interpretation of TOF SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation

    NASA Astrophysics Data System (ADS)

    Ignatova, V. A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.

    2005-06-01

    The TRIDYN collisional computer simulation has been modified to account for emission of ionic species and molecules during sputter depth profiling, by introducing a power law dependence of the ion yield as a function of the oxygen surface concentration and by modelling the sputtering of monoxide molecules. The results are compared to experimental data obtained with dual beam TOF SIMS depth profiling of ZrO2/SiO2/Si high-k dielectric stacks with thicknesses of the SiO2 interlayer of 0.5, 1, and 1.5 nm. Reasonable agreement between the experiment and the computer simulation is obtained for most of the experimental features, demonstrating the effects of ion-induced atomic relocation, i.e., atomic mixing and recoil implantation, and preferential sputtering. The depth scale of the obtained profiles is significantly distorted by recoil implantation and the depth-dependent ionization factor. A pronounced double-peak structure in the experimental profiles related to Zr is not explained by the computer simulation, and is attributed to ion-induced bond breaking and diffusion, followed by a decoration of the interfaces by either mobile Zr or O.

  7. Influence of Annealing on the Depth Microstructure of the Shot Peened Duplex Stainless Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Feng, Qiang; She, Jia; Xiang, Yong; Wu, Xianyun; Wang, Chengxi; Jiang, Chuanhai

    The depth profiles of residual stresses and lattice parameters in the surface layers of shot peened duplex stainless steel at elevated temperature were investigated utilizing X-ray diffraction analysis. At each deformation depth, residual stress distributions in both ferrite and austenite were studied by X-ray diffraction stress analysis which is performed on the basis of the sin2ψ method and the lattice parameters were explored by Rietveld method. The results reveal that difference changes of depth residual compressive stress profiles between ferrite and austenite under the same annealing condition are resulted from the diverse coefficient of thermal expansion, dislocation density, etc. for different phases in duplex stainless steel. The relaxations of depth residual stresses in austenite are more obvious than those in ferrite. The lattice parameters decrease in the surface layer with the extending of annealing time, however, they increase along the depth after annealing for 16min. The change of the depth lattice parameters can be ascribed to both thermal expansion and the relaxation of residual stress. The different changes of microstructure at elevated temperature between ferrite and austenite are discussed.

  8. Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Breder, D.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Day, C. T.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Heise, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Leich, H.; Lennarz, D.; Lucke, A.; Lundberg, J.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; McParland, C. P.; Meagher, K.; Merck, M.; Mészáros, P.; Middell, E.; Milke, N.; Miyamoto, H.; Mohr, A.; Montaruli, T.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Patton, S.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Potthoff, N.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Satalecka, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; Vogt, C.; Voigt, B.; Walck, C.; Waldenmaier, T.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebusch, C. H.; Wiedemann, A.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; IceCube Collaboration

    2010-06-01

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ˜5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  9. Using Uranium-series isotopes to understand processes of rapid soil formation in tropical volcanic settings: an example from Basse-Terre, French Guadeloupe

    NASA Astrophysics Data System (ADS)

    Ma, Lin

    2015-04-01

    Lin Ma1, Yvette Pereyra1, Peter B Sak2, Jerome Gaillardet3, Heather L Buss4 and Susan L Brantley5, (1) University of Texas at El Paso, El Paso, TX, United States, (2) Dickinson College, Carlisle, PA, United States, (3) Institute de Physique d Globe Paris, Paris, France, (4) University of Bristol, Bristol, United Kingdom, (5) Pennsylvania State University Main Campus, University Park, PA, United States Uranium-series isotopes fractionate during chemical weathering and their activity ratios can be used to determine timescales and rates of soil formation. Such soil formation rates provide important information to understand processes related to rapid soil formation in tropical volcanic settings, especially with respect to their fertility and erosion. Recent studies also highlighted the use of U-series isotopes to trace and quantify atmospheric inputs to surface soils. Such a process is particularly important in providing mineral nutrients to ecosystems in highly depleted soil systems such as the tropical soils. Here, we report U-series isotope compositions in thick soil profiles (>10 m) developed on andesitic pyroclastic flows in Basse-Terre Island of French Guadeloupe. Field observations have shown heterogeneity in color and texture in these thick profiles. However, major element chemistry and mineralogy show some general depth trends. The main minerals present throughout the soil profile are halloysite and gibbsite. Chemically immobile elements such as Al, Fe, and Ti show a depletion profile relative to Th while elements such as K, Mn, and Si show a partial depletion profile at depth. Mobile elements such as Ca, Mg, and Sr have undergone intensive weathering at depths, and an addition profile near the surface, most likely related to atmospheric inputs. (238U/232Th) activity ratios in one soil profile from the Brad David watershed in this study ranged from 0.374 to 1.696, while the (230Th/232Th) ratios ranged from 0.367 to 1.701. A decrease of (238U/232Th) in the deep soil profile depth is observed, and then an increase to the surface. The (230Th /232Th) ratios showed a similar trend as (238U/232Th). Marine aerosols and atmospheric dust from the Sahara region are most likely responsible for the addition of U in shallow soils. Intensive chemical weathering is responsible for the loss of U at depth, consistent with these observations of major element chemistry and mineralogy. Furthermore, U-series chemical weathering model suggests that the weathering duration from 12m to 4m depth in this profile is about 250kyr, with a weathering advancing rate of ~30 m/Ma. The rate is also about one order of magnitude lower than the weathering rate (~300 m/Ma) determined by river chemistry for this watershed. In this profile, the augered core didn't reach the unweathered bedrock. Hence, the derived slow weathering rate most likely represents the intensive weathering of clay minerals, while the transformation of fresh bedrock to regolith occurs at much great depth beneath the thick regolith. The marine aerosols and atmospheric dust are important sources of mineral nutrients for highly depleted surface soils.

  10. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  11. A perspective on two chemometrics tools: PCA and MCR, and introduction of a new one: Pattern recognition entropy (PRE), as applied to XPS and ToF-SIMS depth profiles of organic and inorganic materials

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shiladitya; Singh, Bhupinder; Diwan, Anubhav; Lee, Zheng Rong; Engelhard, Mark H.; Terry, Jeff; Tolley, H. Dennis; Gallagher, Neal B.; Linford, Matthew R.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are much used analytical techniques that provide information about the outermost atomic and molecular layers of materials. In this work, we discuss the application of multivariate spectral techniques, including principal component analysis (PCA) and multivariate curve resolution (MCR), to the analysis of XPS and ToF-SIMS depth profiles. Multivariate analyses often provide insight into data sets that is not easily obtained in a univariate fashion. Pattern recognition entropy (PRE), which has its roots in Shannon's information theory, is also introduced. This approach is not the same as the mutual information/entropy approaches sometimes used in data processing. A discussion of the theory of each technique is presented. PCA, MCR, and PRE are applied to four different data sets obtained from: a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized C3F6 on Si, a ToF-SIMS depth profile through ca. 100 nm of plasma polymerized PNIPAM (poly (N-isopropylacrylamide)) on Si, an XPS depth profile through a film of SiO2 on Si, and an XPS depth profile through a film of Ta2O5 on Ta. PCA, MCR, and PRE reveal the presence of interfaces in the films, and often indicate that the first few scans in the depth profiles are different from those that follow. PRE and backward difference PRE provide this information in a straightforward fashion. Rises in the PRE signals at interfaces suggest greater complexity to the corresponding spectra. Results from PCA, especially for the higher principal components, were sometimes difficult to understand. MCR analyses were generally more interpretable.

  12. Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method

    NASA Astrophysics Data System (ADS)

    Salem, Ahmed; Green, Chris; Ravat, Dhananjay; Singh, Kumar Hemant; East, Paul; Fairhead, J. Derek; Mogren, Saad; Biegert, Ed

    2014-06-01

    The central Red Sea rift is considered to be an embryonic ocean. It is characterised by high heat flow, with more than 90% of the heat flow measurements exceeding the world mean and high values extending to the coasts - providing good prospects for geothermal energy resources. In this study, we aim to map the depth to the Curie isotherm (580 °C) in the central Red Sea based on magnetic data. A modified spectral analysis technique, the “de-fractal spectral depth method” is developed and used to estimate the top and bottom boundaries of the magnetised layer. We use a mathematical relationship between the observed power spectrum due to fractal magnetisation and an equivalent random magnetisation power spectrum. The de-fractal approach removes the effect of fractal magnetisation from the observed power spectrum and estimates the parameters of depth to top and depth to bottom of the magnetised layer using iterative forward modelling of the power spectrum. We applied the de-fractal approach to 12 windows of magnetic data along a profile across the central Red Sea from onshore Sudan to onshore Saudi Arabia. The results indicate variable magnetic bottom depths ranging from 8.4 km in the rift axis to about 18.9 km in the marginal areas. Comparison of these depths with published Moho depths, based on seismic refraction constrained 3D inversion of gravity data, showed that the magnetic bottom in the rift area corresponds closely to the Moho, whereas in the margins it is considerably shallower than the Moho. Forward modelling of heat flow data suggests that depth to the Curie isotherm in the centre of the rift is also close to the Moho depth. Thus Curie isotherm depths estimated from magnetic data may well be imaging the depth to the Curie temperature along the whole profile. Geotherms constrained by the interpreted Curie isotherm depths have subsequently been calculated at three points across the rift - indicating the variation in the likely temperature profile with depth.

  13. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NASA Astrophysics Data System (ADS)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  14. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    PubMed Central

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460

  15. The effect of particle properties on the depth profile of buoyant plastics in the ocean.

    PubMed

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A

    2016-10-10

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  16. Inversely Estimating the Vertical Profile of the Soil CO2 Production Rate in a Deciduous Broadleaf Forest Using a Particle Filtering Method

    PubMed Central

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W.; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the “actual” values by decreasing the variance of the posterior distribution of the values. PMID:25793387

  17. Estimating the Soil Temperature Profile from a Single Depth Observation: A Simple Empirical Heatflow Solution

    NASA Technical Reports Server (NTRS)

    Holmes, Thomas; Owe, Manfred; deJeu, Richard

    2007-01-01

    Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.

  18. Influence of intermittent water releases on groundwater chemistry at the lower reaches of the Tarim River, China.

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen; Zhang, Er-xun

    2009-11-01

    Based on the data of the depths and the chemical properties of groundwater, salinity in the soil profile, and the basic information on each delivery of water collected from the years 2000 to 2006, the varied character of groundwater chemistry and related factors were studied. The results confirmed the three stages of the variations in groundwater chemistry influenced by the intermittent water deliveries. The factors that had close relations to the variations in groundwater chemistry were the distances of monitoring wells from the water channel, the depths of the groundwater, water flux in watercourse, and the salinities in soils. The relations between chemical variation and groundwater depths indicated that the water quality was the best with the groundwater varying from 5 to 6 m. In addition, the constructive species in the study area can survive well with the depth of groundwater varying from 5 to 6 m, so the rational depth of groundwater in the lower reaches of the Tarim River should be 5 m or so. The redistribution of salts in the soil profile and its relations to the chemical properties and depths of groundwater revealed the linear water delivery at present combining with surface water supply in proper sections would promote water quality optimized and speed up the pace of ecological restoration in the study area.

  19. Influence of surface topography on depth profiles obtained with secondary-ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walker, A. J.; Borchert, M. T.; Vriezema, C. J.; Zalm, P. C.

    1990-11-01

    Lithographically generated well-defined surface topography of submicron dimensions has been etched into silicon (100) previously implanted with 25 keV 11B to a fluence of 2×1014 atoms/cm2. The thus-obtained samples were depth profiled via secondary-ion mass spectrometry (SIMS). The boron concentration distributions measured were contrasted against those found on undisturbed flat parts of the target. From this intercomparison the otherwise trivial observation that surface topography causes profile distortion becomes suddenly alarming as an apparent improvement of depth resolution occurs. Scanning electron microscope images enable identification of the origin of this remarkable phenomenon. The present results imply that (i) the hitherto commonly accepted assumption in the interpretation of SIMS depth profiles that perceived gradients are never steeper than actual ones is subject to revision; (ii) it may prove very difficult, if not impossible, to construct SIMS equipment for reliable on-chip analysis of submicron details.

  20. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  1. Results of Electrical Resistivity Data Collected near the Town of Guernsey, Platte County, Wyoming

    USGS Publications Warehouse

    McDougal, Robert R.; Abraham, Jared D.; Bisdorf, Robert J.

    2004-01-01

    As part of a study to investigate subsurface geologic conditions as they relate to ground-water flow in an abandoned landfill near the town of Guernsey, Wyoming, geophysical direct current (DC) resistivity data were collected. Eight vertical resistivity soundings and eight horizontal resistivity profiles were made using single channel and multi-channel DC instruments. Data collected in the field were converted from apparent resistivity to inverted resistivity with depth using a numerical inversion of the data. Results of the inverted resistivity data are presented as horizontal profiles and as profiles derived from the combined horizontal profile and vertical sounding data. The data sets collected using the single-channel and multi-channel DC systems provided for the resistivity investigation to extend to greater depth. Similarity of the electrical properties of the bedrock formations made interpretation of the resistivity profiles more difficult. High resistivity anomalies seen in the profiles are interpreted as quartzite lenses and as limestone or metadolomite structures in the eastern part of the study area. Terrace gravels were mapped as resistive where dry and less resistive in the saturated zone. The DC resistivity methods used in this study illustrate that multi-electrode DC resistivity surveying and more traditional methodologies can be merged and used to efficiently map anomalies of hydrologic interest in geologically complex terrain.

  2. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  3. Pilot study of facial soft tissue thickness differences among three skeletal classes in Japanese females.

    PubMed

    Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Yoshino, Mineo; Oohigashi, Shina; Miyazawa, Hiroo; Inoue, Katsuhiro

    2010-02-25

    Facial reconstruction is a technique used in forensic anthropology to estimate the appearance of the antemortem face from unknown human skeletal remains. This requires accurate skull assessment (for variables such as age, sex, and race) and soft tissue thickness data. However, the skull can provide only limited information, and further data are needed to reconstruct the face. The authors herein obtained further information from the skull in order to reconstruct the face more accurately. Skulls can be classified into three facial types on the basis of orthodontic skeletal classes (namely, straight facial profile, type I, convex facial profile, type II, and concave facial profile, type III). This concept was applied to facial tissue measurement and soft tissue depth was compared in each skeletal class in a Japanese female population. Differences of soft tissue depth between skeletal classes were observed, and this information may enable more accurate reconstruction than sex-specific depth alone. 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy.

    PubMed

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-15

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30cms -1 . The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Depth-Related Changes in Community Structure of Culturable Mineral Weathering Bacteria and in Weathering Patterns Caused by Them along Two Contrasting Soil Profiles

    PubMed Central

    Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong

    2014-01-01

    Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700

  6. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  7. Variable-Depth Liner Evaluation Using Two NASA Flow Ducts

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Nark, D. M.; Watson, W. R.; Howerton, B. M.

    2017-01-01

    Four liners are investigated experimentally via tests in the NASA Langley Grazing Flow Impedance Tube. These include an axially-segmented liner and three liners that use reordering of the chambers. Chamber reordering is shown to have a strong effect on the axial sound pressure level profiles, but a limited effect on the overall attenuation. It is also shown that bent chambers can be used to reduce the liner depth with minimal effects on the attenuation. A numerical study is also conducted to explore the effects of a planar and three higher-order mode sources based on the NASA Langley Curved Duct Test Rig geometry. A four-segment liner is designed using the NASA Langley CDL code with a Python-based optimizer. Five additional liner designs, four with rearrangements of the first liner segments and one with a redistribution of the individual chambers, are evaluated for each of the four sources. The liner configuration affects the sound pressure level profile much more than the attenuation spectra for the planar and first two higher-order mode sources, but has a much larger effect on the SPL profiles and attenuation spectra for the last higher-order mode source. Overall, axially variable-depth liners offer the potential to provide improved fan noise reduction, regardless of whether the axially variable depths are achieved via a distributed array of chambers (depths vary from chamber to chamber) or a group of zones (groups of chambers for which the depth is constant).

  8. Vertical Distribution of Soil Denitrifying Communities in a Wet Sclerophyll Forest under Long-Term Repeated Burning.

    PubMed

    Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei

    2015-11-01

    Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.

  9. Upper Ocean Profiles Measurements with ASIP

    NASA Astrophysics Data System (ADS)

    Ward, B.; Callaghan, A. H.; Fristedt, T.; Vialard, J.; Cuypers, Y.; Weller, R. A.; Grosch, C. E.

    2009-04-01

    This presentation describes results from the Air-Sea Interaction Profiler (ASIP), an autonomous profiling instrument for upper ocean measurements. The measurements from ASIP are well suited to enhancing research on air-sea interfacial and near surface processes. Autonomous profiling is accomplished with a thruster, which submerges ASIP to a programmed depth. Once this depth is reached the positively buoyant instrument will ascend to the surface acquiring data. ASIP can profile from a maximum depth of 100 m to the surface, allowing both mixed layer and near-surface measurements to be conducted. The sensor payload on ASIP include microstructure sensors (two shear probes and a thermistor); a slow response accurate thermometer; a pair of conductivity sensors; pressure for a record of depth; PAR for measurements of light absorption in the water column. Other non-environmental sensors are acceleration, rate, and heading for determination of vehicle motion. Power is provided with rechargable lithium-ion batteries, supplying 1000 Whr, allowing approximately 300 profiles. ASIP also contains an iridium/GPS system, which allows realtime reporting of its position. ASIP was deployed extensively during the Cirene Indian Ocean campaign and our results focus on the data from the temperature, salinity, light, and shear sensors.

  10. The effects of wavelength on photodegradation depth profiles in Japanese cedar (Cryptomeria japonica D. Don) earlywood

    Treesearch

    Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans

    2006-01-01

    FT-IR microscopy was used to depth profile the photodegradation of Japanese cedar earlywood exposed to monochromatic light in the UV and visible ranges (band pass: 20nm). Parallel experiments assessed the transmission of the light through thin sections of Japanese cedar. The depth of photodegradation increased with wavelength up to and including the violet region of...

  11. A measurement system for vertical seawater profiles close to the air-sea interface

    NASA Astrophysics Data System (ADS)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  12. Effects of integration time on in-water radiometric profiles.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito

    2018-03-05

    This work investigates the effects of integration time on in-water downward irradiance E d , upward irradiance E u and upwelling radiance L u profile data acquired with free-fall hyperspectral systems. Analyzed quantities are the subsurface value and the diffuse attenuation coefficient derived by applying linear and non-linear regression schemes. Case studies include oligotrophic waters (Case-1), as well as waters dominated by Colored Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP). Assuming a 24-bit digitization, measurements resulting from the accumulation of photons over integration times varying between 8 and 2048ms are evaluated at depths corresponding to: 1) the beginning of each integration interval (Fst); 2) the end of each integration interval (Lst); 3) the averages of Fst and Lst values (Avg); and finally 4) the values weighted accounting for the diffuse attenuation coefficient of water (Wgt). Statistical figures show that the effects of integration time can bias results well above 5% as a function of the depth definition. Results indicate the validity of the Wgt depth definition and the fair applicability of the Avg one. Instead, both the Fst and Lst depths should not be adopted since they may introduce pronounced biases in E u and L u regression products for highly absorbing waters. Finally, the study reconfirms the relevance of combining multiple radiometric casts into a single profile to increase precision of regression products.

  13. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    NASA Astrophysics Data System (ADS)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  14. Application of ground-penetrating radar methods in determining hydrogeologic conditions in a karst area, west-central Florida

    USGS Publications Warehouse

    Barr, G.L.

    1993-01-01

    Ground-penetrating radar (GPR) is useful as a surface geophysical method for exploring geology and subsurface features in karst settings. Interpretation of GPR data was used to infer lithology and hydrogeologic conditions in west-central Florida. This study demonstrates how GPR methods can be used to investigate the hydrogeology of an area. GPR transmits radio- frequency electromagnetic waves into the ground and receives reflected energy waves from subsurface interfaces. Subsurface profiles showing sediment thickness, depth to water table and clay beds, karst development, buried objects, and lake-bottom structure were produced from GPR traverses obtained during December 1987 and March 1990 in Pinellas, Hillsborough, and Hardee Counties in west-central Florida. Performance of the GPR method is site specific, and data collected are principally affected by the sediment and pore fluids, conductances and dielectric constants. Effective exploration depths of the GPR surveys through predominately unsaturated and saturated sand and clay sediments at five study sites ranged from a few feet to greater than 50 feet below land surface. Exploration depths were limited when high conductivity clay was encountered, whereas greater exploration depths were possible in material composed of sand. Application of GPR is useful in profiling subsurface conditions, but proper interpretation depends upon the user's knowledge of the equipment and the local hydrogeological setting, as well as the ability to interpret the graphic profile.

  15. Depth-resolved photo- and ionoluminescence of LiF and Al2O3

    NASA Astrophysics Data System (ADS)

    Skuratov, V. A.; Kirilkin, N. S.; Kovalev, Yu. S.; Strukova, T. S.; Havanscak, K.

    2012-09-01

    Microluminescence and laser confocal scanning microscopy techniques have been used to study spatial distribution of F-type color centers in LiF and mechanical stress profiles in Al2O3:Cr single crystals irradiated with 1.2 MeV/amu Ar, Kr, Xe and 3 MeV/amu Kr and Bi ions. It was found that F2 and F3+-center profiles at low ion fluences correlate with ionizing energy loss profiles. With increasing ion fluence, after ion track halo overlapping, the luminescence yield is defined by radiation defects formed in elastic collisions in the end-of-range area. Stress profiles and stress tensor components in ruby crystals across swift heavy ion irradiated layers have been deduced from depth-resolved photo-stimulated spectra using piezospectroscopic effect. Experimental data show that that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  16. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  17. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.

    PubMed

    Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S

    2018-03-05

    A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

  18. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  19. Boron depth profiles and residual damage following rapid thermal annealing of low-temperature BSi molecular ion implantation in silicon

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Wang, S. C.

    2007-08-01

    The influence of substrate temperature on both the implantation and post-annealing characteristics of molecular-ion-implanted 5 × 1014 cm-2 77 keV BSi in silicon was investigated in terms of boron depth profiles and damage microstructures. The substrate temperatures under investigation consisted of room temperature (RT) and liquid nitrogen temperature (LT). Post-annealing treatments were performed using rapid thermal annealing (RTA) at 1050 °C for 25 s. Boron depth profiles and damage microstructures in both the as-implanted and as-annealed specimens were determined using secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM), respectively. The as-implanted results revealed that, compared to the RT specimen, the LT specimen yields a shallower boron depth profile with a reduced tail into the bulk. An amorphous layer containing a smooth amorphous-to-crystalline (a/c) interface is evident in the LT specimen while just the opposite is true in the as-implanted RT one. The as-annealed results illustrated that the extension of the boron depth profile into the bulk via transient-enhanced diffusion (TED) in the LT specimen is less than it is in the RT one. Only residual defects are visible in the LT specimen while two clear bands of dislocation loops appear in the RT one.

  20. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDPmore » and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose difference in PDD and dose profiles were achieve using incident electron energy 6.4 MeV.« less

  1. Heat-flow studies in the northwest geysers geothermal field, California

    USGS Publications Warehouse

    Williams, Colin F.; Galanis, S. Peter; Moses, Thomas H.; Grubb, Frederick V.; ,

    1993-01-01

    Temperature and thermal conductivity data were acquired from 3 idle production wells in the Northwest Geysers. Heat-flow profiles derived from data recorded in the caprock which overlies the steam reservoir reveal a decrease of heat flow with depth in 2 of the 3 wells. These observations contradict the generally accepted theory that conductive heat flow is constant with depth within The Geysers caprock. There are several possible explanations for this, but the available data suggest that these profiles reflect a local recession or cooling of the reservoir top within the past 5000 to 10000 years.

  2. Microbial community changes as a possible factor controlling carbon sequestration in subsoil

    NASA Astrophysics Data System (ADS)

    Strücker, Juliane; Jörgensen, Rainer Georg

    2015-04-01

    In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.

  3. LA-ICP-MS depth profile analysis of apatite: Protocol and implications for (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Johnstone, Samuel; Hourigan, Jeremy; Gallagher, Christopher

    2013-05-01

    Heterogeneous concentrations of α-producing nuclides in apatite have been recognized through a variety of methods. The presence of zonation in apatite complicates both traditional α-ejection corrections and diffusive models, both of which operate under the assumption of homogeneous concentrations. In this work we develop a method for measuring radial concentration profiles of 238U and 232Th in apatite by laser ablation ICP-MS depth profiling. We then focus on one application of this method, removing bias introduced by applying inappropriate α-ejection corrections. Formal treatment of laser ablation ICP-MS depth profile calibration for apatite includes construction and calibration of matrix-matched standards and quantification of rates of elemental fractionation. From this we conclude that matrix-matched standards provide more robust monitors of fractionation rate and concentrations than doped silicate glass standards. We apply laser ablation ICP-MS depth profiling to apatites from three unknown populations and small, intact crystals of Durango fluorapatite. Accurate and reproducible Durango apatite dates suggest that prolonged exposure to laser drilling does not impact cooling ages. Intracrystalline concentrations vary by at least a factor of 2 in the majority of the samples analyzed, but concentration variation only exceeds 5x in 5 grains and 10x in 1 out of the 63 grains analyzed. Modeling of synthetic concentration profiles suggests that for concentration variations of 2x and 10x individual homogeneous versus zonation dependent α-ejection corrections could lead to age bias of >5% and >20%, respectively. However, models based on measured concentration profiles only generated biases exceeding 5% in 13 of the 63 cases modeled. Application of zonation dependent α-ejection corrections did not significantly reduce the age dispersion present in any of the populations studied. This suggests that factors beyond homogeneous α-ejection corrections are the dominant source of overdispersion in apatite (U-Th)/He cooling ages.

  4. Electrical conductivity of the Earth's mantle after one year of SWARM magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Civet, François; Thebault, Erwan; Verhoeven, Olivier; Langlais, Benoit; Saturnino, Diana

    2015-04-01

    We present a global EM induction study using L1b Swarm satellite magnetic field measurements data down to a depth of 2000 km. Starting from raw measurements, we first derive a model for the main magnetic field, correct the data for a lithospheric field model, and further select the data to reduce the contributions of the ionospheric field. These computations allowed us to keep a full control on the data processes. We correct residual field from outliers and estimate the spherical harmonic coefficients of the transient field for periods between 2 and 256 days. We used full latitude range and all local times to keep a maximum amount of data. We perform a Bayesian inversion and construct a Markov chain during which model parameters are randomly updated at each iteration. We first consider regular layers of equal thickness and extra layers are added where conductivity contrast between successive layers exceed a threshold value. The mean and maximum likelihood of the electrical conductivity profile is then estimated from the probability density function. The obtained profile particularly shows a conductivity jump in the 600-700 km depth range, consistent with the olivine phase transition at 660 km depth. Our study is the first one to show such a conductivity increase in this depth range without any a priori informations on the internal strucutres. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations in the depth range where the probability density function is the narrowest. We finally obtained a temperature gradient in the lower mantle close to adiabatic.

  5. Dynamic vertical profiles of peat porewater chemistry in a northern peatland

    Treesearch

    Natalie A. Griffiths; Stephen D. Sebestyen

    2016-01-01

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large...

  6. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    NASA Astrophysics Data System (ADS)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  7. Characterisation of nickel silicide thin films by spectroscopy and microscopy techniques.

    PubMed

    Bhaskaran, M; Sriram, S; Holland, A S; Evans, P J

    2009-01-01

    This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.

  8. Distinct Retinal Capillary Plexuses in Normal Eyes as Observed in Optical Coherence Tomography Angiography Axial Profile Analysis.

    PubMed

    Hirano, Takao; Chanwimol, Karntida; Weichsel, Julian; Tepelus, Tudor; Sadda, Srinivas

    2018-06-20

    Optical coherence tomography angiography (OCTA) allows the retinal microvasculature to be visualized at various retinal depths. Previous studies introduced OCTA axial profile analysis and showed regional variations in the number and location of axially distinct vascular retinal plexuses. OCTA acquisition and processing approaches, however, vary in terms of their resulting transverse and axial resolutions, and especially the latter could potentially influence the profile analysis results. Our study imaged normal eyes using the Spectralis OCT2 with a full-spectrum, probabilistic OCTA algorithm, that, in marked contrast to split-spectrum approaches, preserves the original high OCT axial resolution also within the resulting OCTA signal. En face OCTA images are generally created by averaging flow signals over a finite axial depth window. However, we assessed regional OCTA signal profiles at each depth position at full axial resolution. All regions had two sharp vessel density peaks near the inner and outer boundaries of the inner nuclear layer, indicating separate intermediate and deep capillary plexuses. The superficial vascular plexus (SVP) separated into two distinct peaks within the ganglion cell layer in the parafoveal zone. The nasal, superior, and inferior perifovea had a deeper SVP peak that was shifted anteriorly compared to the parafoveal zone. Axial vascular density analysis with high-resolution, full spectrum OCTA thus allows healthy retinal vasculature to be precisely reconstructed and may be useful for clinically assessing retinal pathology.

  9. Analysis shear wave velocity structure obtained from surface wave methods in Bornova, Izmir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pamuk, Eren, E-mail: eren.pamuk@deu.edu.tr; Akgün, Mustafa, E-mail: mustafa.akgun@deu.edu.tr; Özdağ, Özkan Cevdet, E-mail: cevdet.ozdag@deu.edu.tr

    2016-04-18

    Properties of the soil from the bedrock is necessary to describe accurately and reliably for the reduction of earthquake damage. Because seismic waves change their amplitude and frequency content owing to acoustic impedance difference between soil and bedrock. Firstly, shear wave velocity and depth information of layers on bedrock is needed to detect this changing. Shear wave velocity can be obtained using inversion of Rayleigh wave dispersion curves obtained from surface wave methods (MASW- the Multichannel Analysis of Surface Waves, ReMi-Refraction Microtremor, SPAC-Spatial Autocorrelation). While research depth is limeted in active source study, a passive source methods are utilized formore » deep depth which is not reached using active source methods. ReMi method is used to determine layer thickness and velocity up to 100 m using seismic refraction measurement systems.The research carried out up to desired depth depending on radius using SPAC which is utilized easily in conditions that district using of seismic studies in the city. Vs profiles which are required to calculate deformations in under static and dynamic loads can be obtained with high resolution using combining rayleigh wave dispersion curve obtained from active and passive source methods. In the this study, Surface waves data were collected using the measurements of MASW, ReMi and SPAC at the İzmir Bornova region. Dispersion curves obtained from surface wave methods were combined in wide frequency band and Vs-depth profiles were obtained using inversion. Reliability of the resulting soil profiles were provided by comparison with theoretical transfer function obtained from soil paremeters and observed soil transfer function from Nakamura technique and by examination of fitting between these functions. Vs values are changed between 200-830 m/s and engineering bedrock (Vs>760 m/s) depth is approximately 150 m.« less

  10. Lithospheric studies along seismic profile KOKKY, between Gulf of Bothnia and Gulf of Finland, Baltic Shield

    NASA Astrophysics Data System (ADS)

    Tiira, Timo; Skrzynik, Tymon; Janik, Tomasz; Komminaho, Kari; Väkevä, Sakari; Korja, Annakaisa

    2017-04-01

    Controlled source seismology is one of the main tools used in Earth imaging, especially when aiming towards the middle and lower crust structures, Moho shape and upper mantle. Data for such studies are acquired during wide-angle reflection and refraction (WARR) profiles, which are hundreds of kilometers long and require strong explosive sources like e.g. TNT. Given the cost of such experiments, difficult logistics, and the strict regulation on experiments involving explosives in the ground, an attempt was made to register quarry blasts along the set profile. Quarries consume tons of explosive material per week and their utility in crustal studies was already tested during HUKKA experiment in 2007. Profile KOKKY begins on the coast of Bothnian Bay and runs south-east towards Sankt Petersburg in Russia. It crosses three main geological units of southern Finland, Pohjanmaa area, Central Finland Granitoid Complex, and Saimaa area, all represented by Late Proterozoic rocks. Two summer acquisition campaigns resulted in nearly 500 km long profile, crossing southern Finland. Numerous explosions from quarries were recorded, resulting in 63 usable seismic sections. Average distance between shots and the profile was 14 km. The velocity model has high P wave velocities across the entire profile. Upper crust, reaching depths of 22 km, is characterized by velocities from 5.9-6.2 km/s near surface down to 6.25-6.4 km/s. Middle crust is thinning from 30 km at NW, down to 14 km in the central part of the profile, thickening again to 20 km at SE, and has uniformed velocities 6.6-6.8 km/s. High, homogeneous velocities in lower crust, up to 7.4 km/s. Layer is thickening from 4 km in SE part of the profile, reaching 18 km in its central part corresponding to CFGC, and then thinning again to about 12 km in NW part. Moho depth varies from 54 km near the Gulf of Bothnia to 63 km in the middle of the profile, and up to 43 km in Saimaa area. Velocities below the crust are 8.2-8.25 km/s. Good quality of the data allowed to compute S velocity model and Vp/Vs ratio. This profile crosses two pre-existing WARR profiles, SVEKA and BALTIC. New model supports previous interpretations. Velocities, depth to the Moho, and other major boundaries are similar in profile crossing points. However, unlike in perpendicular profiles, no elongated and thin low velocity zones were distinguished along the entire profile. This study was a good lesson for future cost effective DSS profiles and points out key issues.

  11. Accessory Mineral Depth-Profiling Applied to the Corsican Lower Crust: A Continuous Thermal History of Mesozoic Continental Rifting

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2015-12-01

    Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.

  12. Laser depth profiling studies of helium diffusion in Durango fluorapatite

    NASA Astrophysics Data System (ADS)

    van Soest, Matthijs C.; Monteleone, Brian D.; Hodges, Kip V.; Boyce, Jeremy W.

    2011-05-01

    Ultraviolet lasers coupled with sensitive mass spectrometers provide a useful way to measure laboratory-induced noble gas diffusion profiles in minerals, thus enabling the calculation of diffusion parameters. We illustrate this laser ablation depth profiling (LADP) technique for a previously well-studied mineral-isotopic system: 4He in Durango fluorapatite. LADP studies were conducted on oriented, polished slabs from a single crystal that were heated under vacuum to a variety of temperatures between 300 and 450 °C for variable times. The resolved 4He profiles exhibited error-function loss as predicted by previous bulk 4He diffusion studies. All of the slabs, regardless of crystallographic orientation, yielded modeled diffusivities that are statistically co-linear on an Arrhenius diagram, suggesting no diffusional anisotropy of 4He in this material. The data indicate an activation energy of 142.2 ± 5.0 (2 σ) kJ/mol and diffusivity at infinite temperature - reported as ln( D0) - of -4.71 ± 0.94 (2 σ) m 2/s. These values imply a bulk closure temperature for 4He in Durango fluorapatite of 74 °C for a 50 μm radius grain, infinite cylinder geometry, and a cooling rate of 10 °C/Myr.

  13. HIGH EXPLOSIVE CRATER STUDIES: DESERT ALLUVIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphey, B.F.

    1961-05-01

    Crater dimensions were determined for 23 explosions of 256-pound spherical TNT charges buried in desert alluvium. As opposed to previous work covering depths of burst as great as 6 feet, the work presented in this report extends knowledge of apparent crater radius and depth to depths of burst as great as 30 feet. Optimum depth of burst for apparent crater radius was near 10 feet and for apparent crater depth near 8 feet. Surface motion photography illustrated a very great slowing down of the surface motion between depths of burst of 9.5 and 15.9 feet. Crater contours, profiles, snd overheadmore » photographs are presented as illustrations. (auth)« less

  14. Depth profiles of oxygen precipitates in nitride-coated silicon wafers subjected to rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.

    2013-07-01

    Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.

  15. High-sensitivity aeromagnetic survey of the US Atlantic continental margin.

    USGS Publications Warehouse

    Behrendt, John C.; Klitgord, Kim D.

    1980-01-01

    The US Geological Survey contracted a high-sensitivity, digital aeromagnetic survey that was flown over the US Atlantic continental margin over a period of 15 months between 1974 and 1976. The 185 000 km of profile data have a relative accuracy approaching a few tenths of a nanotesla, which allowed compilation into maps at a scale of 1:250 000, with a contour interval of 2 nT. Automatic data processing using the Werner method allowed calculations of apparent depth to sources of the magnetic anomalies on all of the profiles, assuming a dike or interface as a source. Comparison of the computed depths to magnetic basement with multichannel seismic profiles across the survey area helped to reduce ambiguities in magnetic depth estimates and enabled interpolation of basement structures between seismic profiles. The resulting map showing depth to basement of the Atlantic continental margin is compatible with available multichannel seismic data, and we consider it a reasonable representation of the base of the sedimentary column. -Authors

  16. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originatesmore » from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.« less

  17. Studying Degradation in Lithium-Ion Batteries by Depth Profiling with Lithium-Nuclear Reaction Analysis

    NASA Astrophysics Data System (ADS)

    Schulz, Adam

    Lithium ion batteries (LIBs) are secondary (rechargeable) energy storage devices that lose the ability to store charge, or degrade, with time. This charge capacity loss stems from unwanted reactions such as the continual growth of the solid electrolyte interphase (SEI) layer on the negative carbonaceous electrode. Parasitic reactions consume mobile lithium, the byproducts of which deposit as SEI layer. Introducing various electrolyte additives and coatings on the positive electrode reduce the rate of SEI growth and lead to improved calendar lifetimes of LIBs respectively. There has been substantial work both electrochemically monitoring and computationally modeling the development of the SEI layer. Additionally, a plethora of spectroscopic techniques have been employed in an attempt to characterize the components of the SEI layer. Despite lithium being the charge carrier in LIBs, depth profiles of lithium in the SEI are few. Moreover, accurate depth profiles relating capacity loss to lithium in the SEI are virtually non-existent. Better quantification of immobilized lithium would lead to improved understanding of the mechanisms of capacity loss and allow for computational and electrochemical models dependent on true materials states. A method by which to prepare low variability, high energy density electrochemical cells for depth profiling with the non-destructive technique, lithium nuclear reaction analysis (Li-NRA), is presented here. Due to the unique and largely non-destructive nature of Li-NRA we are able to perform repeated measurement on the same sample and evaluate the variability of the technique. By using low variability electrochemical cells along with this precise spectroscopic technique, we are able to confidently report trends of lithium concentration while controlling variables such as charge state, age and electrolyte composition. Conversion of gamma intensity versus beam energy, rendered by NRA, to Li concentration as a function of depth requires calibration and modeling of the nuclear stopping power of the substrate (electrode material). A methodology to accurately convert characteristic gamma intensity versus beam energy raw data to Li % as a function of depth is presented. Depth profiles are performed on the electrodes of commercial LIBs charged to different states of charge and aged to different states of health. In-lab created Li-ion cells are prepared with different electrolytes and then depth profiled by Li-NRA. It was found lithium accumulates within the solid electrolyte interphase (SEI) layer with the square root of time, consistent with previous reports. When vinylene carbonate (VC) is introduced to electrolyte lithium accumulates at a rapidly reduced rate as compared to cells containing ethylene carbonte (EC). Additionally, lithium concentration within the positive electrode surface was observed to decrease linearly with time independent of electrolyte tested. Future experiments to be conducted to finish the work and the underpinnings of a materials based capacity loss model are proposed.

  18. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.

  19. Dual beam organic depth profiling using large argon cluster ion beams

    PubMed Central

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  20. Decomposition of ultrathin LiF cathode underlayer in organic-based devices evidenced by ToF-SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Pakhomov, Georgy L.; Drozdov, Mikhail N.; Travkin, Vlad V.; Bochkarev, Mikhail N.

    2017-11-01

    In this work we investigate the chemical composition of an archetypal thin-film organic device with the Ag/LiF cathode using the time-of-flight secondary ion mass spectrometry (ToF-SIMS) with depth profiling. The LiF cathode underlayer is partly decomposed because a significant amount of lithium is released into the bulk of the multilayer device. The released lithium diffuses all the way to the substrate, accumulating, as revealed by ToF-SIMS depth profiles, at the interfaces rather than uniformly doping the underlying layers. Particularly, the bottom anode becomes chemically modified.

  1. GIS Well Temperature Data from the Roosevelt Hot Springs, Utah FORGE Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwynn, Mark; Hill, Jay; Allis, Rick

    This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching onemore » or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.« less

  2. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region.

    PubMed

    Baskan, Oguz; Kosker, Yakup; Erpul, Gunay

    2013-12-01

    Modeling spatio-temporal variation of soil moisture with depth in the soil profile plays an important role for semi-arid crop production from an agro-hydrological perspective. This study was performed in Guvenc Catchment. Two soil series that were called Tabyabayir (TaS) and Kervanpinari (KeS) and classified as Leptosol and Vertisol Soil Groups were used in this research. The TeS has a much shallower (0-34 cm) than the KeS (0-134 cm). At every sampling time, a total of geo-referenced 100 soil moisture samples were taken based on horizon depths. The results indicated that soil moisture content changed spatially and temporally with soil texture and profile depth significantly. In addition, land use was to be important factor when soil was shallow. When the soil conditions were towards to dry, higher values for the coefficient of variation (CV) were observed for TaS (58 and 43% for A and C horizons, respectively); however, the profile CV values were rather stable at the KeS. Spatial variability range of TaS was always higher at both dry and wet soil conditions when compared to that of KeS. Excessive drying of soil prevented to describe any spatial model for surface horizon, additionally resulting in a high nugget variance in the subsurface horizon for the TaS. On the contrary to TaS, distribution maps were formed all horizons for the KeS at any measurement times. These maps, depicting both dry and wet soil conditions through the profile depth, are highly expected to reduce the uncertainty associated with spatially and temporally determining the hydraulic responses of the catchment soils.

  3. Geoelectrical investigation of oil contaminated soils in former underground fuel base: Borne Sulinowo, NW Poland

    NASA Astrophysics Data System (ADS)

    Zogala, B.; Dubiel, R.; Zuberek, W. M.; Rusin-Zogala, M.; Steininger, M.

    2009-07-01

    The survey has been carried out in the area of 0.23 km2 of the former military underground fuel base. The oil derivative products were observed in excavations and the laboratory tests confirmed the occurrence of hydrocarbons (>C12) in soils. The purpose of the survey was to determine the spatial extent of the contamination. The studied area is covered by postglacial sediments: sands, gravels and till. The first water table was observed at a depth of 10-12 m. The detailed electromagnetic measurements with Geonics EM31-MK2 conductivity meter were performed in the whole area of the former fuel base. Obtained results were elaborated statistically and the map of apparent electrical conductivity to a depth of 6 m was created. Many local low conductivity anomalies were observed. The measurements with Geonics EM34-3XL were performed along one A-A' profile and 1D electromagnetic modelling along with this profile was calculated to obtain the electrical conductivity cross-section to a depth of 30 m. Two-dimensional electrical resistivity imaging measurements were carried out along the same profile and the resistivity cross-section to a depth of 20 m was performed. Both conducivity and resistivity cross-sections show anomalous zones. The zones correlate with oil contaminated zones very well.

  4. Strong-field Photoionization of Sputtered Neutral Molecules for Molecular Depth Profiling

    PubMed Central

    Willingham, D; Brenes, D. A.; Wucher, A

    2009-01-01

    Molecular depth profiles of an organic thin film of guanine vapor deposited onto a Ag substrate are obtained using a 40 keV C60 cluster ion beam in conjunction with time-of-flight secondary ion mass spectrometric (ToF-SIMS) detection. Strong-field, femtosecond photoionization of intact guanine molecules is used to probe the neutral component of the profile for direct comparison with the secondary ion component. The ability to simultaneously acquire secondary ions and photoionized neutral molecules reveals new fundamental information about the factors that influence the properties of the depth profile. Results show that there is an increased ionization probability for protonated molecular ions within the first 10 nm due to the generation of free protons within the sample. Moreover, there is a 50% increase in fragment ion signal relative to steady state values 25 nm before reaching the guanine/Ag interface as a result of interfacial chemical damage accumulation. An altered layer thickness of 20 nm is observed as a consequence of ion beam induced chemical mixing. In general, we show that the neutral component of a molecular depth profile using the strong-field photoionization technique can be used to elucidate the effects of variations in ionization probability on the yield of molecular ions as well as to aid in obtaining accurate information about depth dependent chemical composition that cannot be extracted from TOF-SIMS data alone. PMID:20495665

  5. The biological pump: Profiles of plankton production and consumption in the upper ocean

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan R.; Glen Harrison, W.

    The ‘biological pump’ mediates flux of carbon to the interior of the ocean by interctions between the components of the vertically-structured pelagic ecosystem of the photic zone. Chlorophyll profiles are not a simple indicator of autotrophic biomass or production, because of non-linearities in the physiology of cells and preferential vertical distribution of taxa. Profiles of numbers or biomass of heterotrophs do not correspond with profiles of consumption, because of depth-selection (taxa, seasons) for reasons unconnected with feeding. Depths of highest plant biomass, chlorophyll and growth rate coincide when these depths are shallow, but become progressively separated in profiles where they are deeper - so that highest growth rate lies progressively shallower than the chloropyll maximum. It is still uncertain how plant biomass is distributed in deep profiles. Depths of greatest heterotroph biomass (mesozooplankton) are usually close to depths of fastest plant growth rate, and thus lie shallower than the chlorophyll maximum in profiles where this itself is deep. This correlation is functional, and relates to the role of heterotrophs in excreting metabolic wastes (especially ammonia), which may fuel a significant component of integrated algal production, especially in the oligotrophic ocean. Some, but not all faecal material from mesozooplankton of the photic zone appears in vertical flux below the pycnocine, depending on the size of the source organisms, and the degree of vertical mixing above the pycnocline. Diel, but probably not seasonal, vertical migration is significant in the vertical flux of dissolved nitrogen. Regional generalisations of the vertical relations of the main components of the ‘biological pump’ now appear within reach, and an approach is suggested.

  6. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  7. Chemical information obtained from Auger depth profiles by means of advanced factor analysis (MLCFA)

    NASA Astrophysics Data System (ADS)

    De Volder, P.; Hoogewijs, R.; De Gryse, R.; Fiermans, L.; Vennik, J.

    1993-01-01

    The advanced multivariate statistical technique "maximum likelihood common factor analysis (MLCFA)" is shown to be superior to "principal component analysis (PCA)" for decomposing overlapping peaks into their individual component spectra of which neither the number of components nor the peak shape of the component spectra is known. An examination of the maximum resolving power of both techniques, MLCFA and PCA, by means of artificially created series of multicomponent spectra confirms this finding unambiguously. Substantial progress in the use of AES as a chemical-analysis technique is accomplished through the implementation of MLCFA. Chemical information from Auger depth profiles is extracted by investigating the variation of the line shape of the Auger signal as a function of the changing chemical state of the element. In particular, MLCFA combined with Auger depth profiling has been applied to problems related to steelcord-rubber tyre adhesion. MLCFA allows one to elucidate the precise nature of the interfacial layer of reaction products between natural rubber vulcanized on a thin brass layer. This study reveals many interesting chemical aspects of the oxi-sulfidation of brass undetectable with classical AES.

  8. [Profile distribution and pollution assessment of heavy metals in soils under livestock feces composts].

    PubMed

    Chao, Lei; Zhou, Qi-xing; Cui, Shuang; Chen, Su; Ren, Li-ping

    2007-06-01

    This paper studied the profile distribution of heavy metals in soils under different kind livestock feces composts. The results showed that in the process of livestock feces composting, the pH value and organic matter content of soil under feces compost increased significantly, and had a decreased distribution with soil depth. The contents of soil Zn and Cd also had an obvious increase, and decreased with increasing soil depth. Under the composts of chicken and pig feces, soil Cu content decreased with soil depth, while under cattle feces compost, it had little change. Soil Cd and Zn had a stronger mobility than soil Cu, and the Zn, Cd and Cu contents in some soil layers exceeded the first level of the environmental quality standard for soils in China. The geo-accumulation indices showed that only the 0-10 cm soil layer under chicken feces compost and the 0-40 cm soil layer under egg chicken feces compost were lightly polluted by Zn, while the soil profiles under other kinds of livestock feces compost were not polluted by Pb, Cu, Zn and Cd.

  9. Depth profiling and morphological characterization of AlN thin films deposited on Si substrates using a reactive sputter magnetron

    NASA Astrophysics Data System (ADS)

    Macchi, Carlos; Bürgi, Juan; García Molleja, Javier; Mariazzi, Sebastiano; Piccoli, Mattia; Bemporad, Edoardo; Feugeas, Jorge; Sennen Brusa, Roberto; Somoza, Alberto

    2014-08-01

    It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates.

  10. Selectivity of silica species in ocean observed from seasonal and local changes

    NASA Astrophysics Data System (ADS)

    Tanaka, Miho; Takahashi, Kazuya; Nemoto, Masao; Horimoto, Naho

    2013-03-01

    Silicic acids, derived from SiO2 (silica), have several chemical forms in solution. Silica is a nutrient for diatoms, which are phytoplankton in oceans. Silica species can be used as a tracer to examine the behavior of silica in nature. The speciation for silica by FAB-MS (fast atom bombardment mass spectrometry) has been carried out for seawater samples from Tokyo Bay and Sagami Bay to investigate the seasonal and locational changes of the depth profiles of silica species. The species, [Si(OH)2O2Na+]-, [Si2(OH)5O2]- ([dimer]-), [Si2(OH)4O3Na+]-, [Si(OH)7O5-] ([cyclic tetramer]-), [Si4(OH)6O6Na+]-, [Si(OH)9O]- ([linear tetramer]-) and [Si4(OH)8O5Na+]- were mainly identified by FAB-MS. The seasonal and locational changes and the reproducibility of depth profiles of silica species were determined from October 2001 to July 2002. The depth profile of the ratio of linear tetramer to cyclic tetramer reflects the activity of diatoms, implying that the linear tetramer is the preferred "food" for diatoms. In particular, the depth profile for the ratio of linear tetramer to cyclic tetramer exhibits a critical changes that depend on the season. Furthermore, the depth profiles for the samples from Sagami Bay (open ocean) indicate that seawater is easily exchanged by ocean currents (the Japan Current). Thus, silica speciation by FAB-MS can give us a new tracer indicating the characteristics of the seawater budget, which change with depth, season and ocean locality.

  11. IET. Control and equipment building (TAN620) sections. Depth and profile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Control and equipment building (TAN-620) sections. Depth and profile of earthen shield tunnels. Ralph M. Parsons 902-4-ANP-620-A-321. Date: February 1954. INEEL index code no. 035-0620-00-693-106906 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  13. Distribution and depth profiles of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls in sediment collected from offshore waters of Central Vietnam.

    PubMed

    Tri, Tran Manh; Anh, Hoang Quoc; Tham, Trinh Thi; Van Quy, Tran; Long, Nguyen Quang; Nhung, Dao Thi; Nakamura, Masafumi; Nishida, Masayo; Maeda, Yasuaki; Van Boi, Luu; Minh, Tu Binh

    2016-05-15

    Concentrations of PCBs and OCPs were measured in 35 surface sediment samples collected from offshore waters of Central Vietnam. The mean concentrations of PCBs, HCHs, and DDTs in surface sediments were 86.5, 37.0, and 44.5pgg(-1), respectively. Additionally, nine PCDDs, eleven PCDFs, and twelve dl-PCBs were also examined in 19 sediment core samples collected from five locations. Concentration of PCDDs, PCDFs, and dl-PCBs ranged from 200 to 460, 0.39 to 2.9, and 1.6 to 22pgg(-1), respectively. OCDD was detected at the highest concentration, ranged from 100 to 300pgg(-1). Generally, the concentrations of PCDD/Fs at shallower depths were higher, meanwhile the depth profiles of dl-PCBs in sediment cores were different than the depth profiles of PCDD/Fs. The results suggest that the pollution of PCBs might be from many different sources leading to the variation between depths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Influence of seasonal climatic variability on shallow infiltration at Yucca Mountain

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.

    1993-01-01

    To analyze infiltration and the redistribution of moisture in alluvial deposits at Yucca Mountain, water content profiles at a 13.5 m deep borehole were measured at monthly intervals using a neutron moisture probe. Increases in water content to a maximum depth of 1.8 m in response to winter season precipitation were noted. Below a depth of 1.8 m, a gradual drying trend was indicated. A simulation study showed that, although small amounts of water may be percolating through the deep nonwetted ones of the profile, the influence of climatic variability on infiltration through thick alluvial deposits at Yucca Mountain is greatly mitigated by evapotranspiration.

  15. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.

    PubMed

    Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio

    2017-10-06

    Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.

  16. SU-E-J-121: Measuring Prompt Gamma Emission Profiles with a Multi-Stage Compton Camera During Proton Beam Irradiation: Initial Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polf, J; McCleskey, M; Brown, S

    2014-06-01

    Purpose: Recent studies have suggested that the characteristics of prompt gammas (PG) emitted during proton beam irradiation are advantageous for determining beam range during treatment delivery. The purpose of this work was to determine the feasibility of determining the proton beam range from PG data measured with a prototype Compton camera (CC) during proton beam irradiation. Methods: Using a prototype multi-stage CC the PG emission from a water phantom was measured during irradiation with clinical proton therapy beams. The measured PG emission data was used to reconstruct an image of the PG emission using a backprojection reconstruction algorithm. One dimensionalmore » (1D) profiles extracted from the PG images were compared to: 1) PG emission data measured at fixed depths using collimated high purity Germanium and Lanthanum Bromide detectors, and 2) the measured depth dose profiles of the proton beams. Results: Comparisons showed that the PG emission profiles reconstructed from CC measurements agreed very well with the measurements of PG emission as a function of depth made with the collimated detectors. The distal falloff of the measured PG profile was between 1 mm to 4 mm proximal to the distal edge of the Bragg peak for proton beam ranges from 4 cm to 16 cm in water. Doses of at least 5 Gy were needed for the CC to measure sufficient data to image the PG profile and localize the distal PG falloff. Conclusion: Initial tests of a prototype CC for imaging PG emission during proton beam irradiation indicated that measurement and reconstruction of the PG profile was possible. However, due to limitations of the operational parameters (energy range and count rate) of the current CC prototype, doses of greater than a typical treatment dose (∼2 Gy) were needed to measure adequate PG signal to reconstruct viable images. Funding support for this project provided by a grant from DoD.« less

  17. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions.

    PubMed

    Gao, Guangyao; Fu, Bojie; Zhan, Hongbin; Ma, Ying

    2013-05-01

    Predicting the fate and movement of contaminant in soils and groundwater is essential to assess and reduce the risk of soil contamination and groundwater pollution. Reaction processes of contaminant often decreased monotonously with depth. Time-dependent input sources usually occurred at the inlet of natural or human-made system such as radioactive waste disposal site. This study presented a one-dimensional convection-dispersion equation (CDE) for contaminant transport in soils with depth-dependent reaction coefficients and time-dependent inlet boundary conditions, and derived its analytical solution. The adsorption coefficient and degradation rate were represented as sigmoidal functions of soil depth. Solute breakthrough curves (BTCs) and concentration profiles obtained from CDE with depth-dependent and constant reaction coefficients were compared, and a constant effective reaction coefficient, which was calculated by arithmetically averaging the depth-dependent reaction coefficient, was proposed to reflect the lumped depth-dependent reaction effect. With the effective adsorption coefficient and degradation rate, CDE could produce similar BTCs and concentration profiles as those from CDE with depth-dependent reactions in soils with moderate chemical heterogeneity. In contrast, the predicted concentrations of CDE with fitted reaction coefficients at a certain depth departed significantly from those of CDE with depth-dependent reactions. Parametric analysis was performed to illustrate the effects of sinusoidally and exponentially decaying input functions on solute BTCs. The BTCs and concentration profiles obtained from the solutions for finite and semi-infinite domain were compared to investigate the effects of effluent boundary condition. The finite solution produced higher concentrations at the increasing limb of the BTCs and possessed a higher peak concentration than the semi-infinite solution which had a slightly long tail. Furthermore, the finite solution gave a higher concentration in the immediate vicinity of the exit boundary than the semi-infinite solution. The applicability of the proposed model was tested with a field herbicide and tracer leaching experiment in an agricultural area of northeastern Greece. The simulation results indicated that the proposed CDE with depth-dependent reaction coefficients was able to capture the evolution of metolachlor concentration at the upper soil depths. However, the simulation results at deep depths were not satisfactory as the proposed model did not account for preferential flow observed in the field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods

    NASA Astrophysics Data System (ADS)

    Celorrio, Ricardo; Mendioroz, Arantza; Apiñaniz, Estibaliz; Salazar, Agustín; Wang, Chinhua; Mandelis, Andreas

    2009-04-01

    In this work the surface thermal-wave field (ac temperature) of a solid cylinder illuminated by a modulated light beam is calculated first in two cases: a multilayered cylinder and a cylinder the radial thermal conductivity of which varies continuously. It is demonstrated numerically that, using a few layers of different thicknesses, the surface thermal-wave field of a cylindrical sample with continuously varying radial thermal conductivity can be calculated with high accuracy. Next, an inverse procedure based on the multilayered model is used to reconstruct the radial thermal conductivity profile of hardened C1018 steel rods, the surface temperature of which was measured by photothermal radiometry. The reconstructed thermal conductivity depth profile has a similar shape to those found for flat samples of this material and shows a qualitative anticorrelation with the hardness depth profile.

  19. Ultra-Shallow Depth Profiling of Arsenic Implants in Silicon by Hydride Generation-Inductively Coupled Plasma Atomic Emission Spectrometry

    NASA Astrophysics Data System (ADS)

    Matsubara, Atsuko; Kojima, Hisao; Itoga, Toshihiko; Kanehori, Keiichi

    1995-08-01

    High resolution depth profiling of arsenic (As) implanted into silicon wafers by a chemical technique is described. Silicon wafers are precisely etched through repeated oxidation by hydrogen peroxide solution and dissolution of the oxide by hydrofluoric acid solution. The etched silicon thickness is determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Arsenic concentration is determined by hydride generation ICP-AES (HG-ICP-AES) with prereduction using potassium iodide. The detection limit of As in a 4-inch silicon wafer is 2.4×1018 atoms/cm3. The etched silicon thickness is controlled to less than 4±2 atomic layers. Depth profiling of an ultra-shallow As diffusion layer with the proposed method shows good agreement with profiling using the four-probe method or secondary ion mass spectrometry.

  20. In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination.

    PubMed

    Allan, Pamela; Bellamy, Luke J; Nordon, Alison; Littlejohn, David; Andrews, John; Dallin, Paul

    2013-03-25

    A 785nm diode laser and probe with a 6mm spot size were used to obtain spectra of stationary powders and powders mixing at 50rpm in a high shear convective blender. Two methods of assessing the effect of particle characteristics on the Raman sampling depth for microcrystalline cellulose (Avicel), aspirin or sodium nitrate were compared: (i) the information depth, based on the diminishing Raman signal of TiO(2) in a reference plate as the depth of powder prior to the plate was increased, and (ii) the depth at which a sample became infinitely thick, based on the depth of powder at which the Raman signal of the compound became constant. The particle size, shape, density and/or light absorption capability of the compounds were shown to affect the "information" and "infinitely thick" depths of individual compounds. However, when different sized fractions of aspirin were added to Avicel as the main component, the depth values of aspirin were the same and matched that of the Avicel: 1.7mm for the "information" depth and 3.5mm for the "infinitely thick" depth. This latter value was considered to be the minimum Raman sampling depth when monitoring the addition of aspirin to Avicel in the blender. Mixing profiles for aspirin were obtained non-invasively through the glass wall of the vessel and could be used to assess how the aspirin blended into the main component, identify the end point of the mixing process (which varied with the particle size of the aspirin), and determine the concentration of aspirin in real time. The Raman procedure was compared to two other non-invasive monitoring techniques, near infrared (NIR) spectrometry and broadband acoustic emission spectrometry. The features of the mixing profiles generated by the three techniques were similar for addition of aspirin to Avicel. Although Raman was less sensitive than NIR spectrometry, Raman allowed compound specific mixing profiles to be generated by studying the mixing behaviour of an aspirin-aspartame-Avicel mixture. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Analysis of the Tikhonov regularization to retrieve thermal conductivity depth-profiles from infrared thermography data

    NASA Astrophysics Data System (ADS)

    Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín; Celorrio, Ricardo

    2010-09-01

    We analyze the ability of the Tikhonov regularization to retrieve different shapes of in-depth thermal conductivity profiles, usually encountered in hardened materials, from surface temperature data. Exponential, oscillating, and sigmoidal profiles are studied. By performing theoretical experiments with added white noises, the influence of the order of the Tikhonov functional and of the parameters that need to be tuned to carry out the inversion are investigated. The analysis shows that the Tikhonov regularization is very well suited to reconstruct smooth profiles but fails when the conductivity exhibits steep slopes. We check a natural alternative regularization, the total variation functional, which gives much better results for sigmoidal profiles. Accordingly, a strategy to deal with real data is proposed in which we introduce this total variation regularization. This regularization is applied to the inversion of real data corresponding to a case hardened AISI1018 steel plate, giving much better anticorrelation of the retrieved conductivity with microindentation test data than the Tikhonov regularization. The results suggest that this is a promising way to improve the reliability of local inversion methods.

  2. Spatiotemporal Variability in Particulate Organic Carbon Export Observed Using Bio-Optical Profiling Floats

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.

    2016-02-01

    Autonomous, bio-optical profiling floats are poised to broaden the number and spatiotemporal resolution of observations of the ocean's biological pump. Here, we used multiple optical sensors aboard two bio-optical profiling floats (Navis BGCi, Sea-Bird) deployed in the Sargasso Sea to derive in situ proxies for particulate carbon (PC) flux, sub-mixed layer net community production (NCP) and to drive a model of net primary production (NPP). Profiles were collected at approximately 2-day resolution, and drift-phase PC flux observations were collected at subdaily resolution at a rotating cycle of observation depths between 150 and 1000 m. The magnitudes of NPP, PC flux, and their annually-averaged ratio were generally consistent with observations at the nearby Bermuda Atlantic Timeseries Study (BATS) site. PC flux and the export ratio were enhanced in the autumn as well as in the spring, and varied over short timescales possibly due to the influence of mesoscale eddies. The relatively shallow park depths and short profile cycle lengths allow us to identify ephemeral, subsurface bio-optical features and compare them to measured fluxes and satellite-observed surface properties.

  3. A porewater - based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2011-10-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid moutainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of porewater at various points along a fall line of a pasture hillslope in the southern Black Forest, Germany. The Porewater Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along two transects at the hillslopes. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in stream water during base flow. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  4. Geophysical and Chemical Weathering Signatures Across the Deep Weathered-Unweathered Granite Boundary of the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Richter, D., Jr.; Bacon, A. R.; Brantley, S. L.; Holbrook, W. S.

    2015-12-01

    To understand the relationship between geophysical measurements and chemical weathering at Earth's surface, we combine comprehensive chemical and physical analyses of a 70-m granite weathering profile in the Southern Piedmont in the southeastern United States. The research site is in the uplands of the Calhoun Critical Zone Observatory and is similar to many geomorphically stable, ancient, and highly-weathered Ultisol soils of the region. Surface and downhole geophysical analyses suggest significant physical changes to depths of about 40 m, where geophysical properties are consistent with competent and unweathered granite. At this depth, surface refraction velocities increase to >4.5 km/s; variations in downhole sonic velocities decrease by more than two-fold; and deviations in the downhole caliper log sharply decrease as well. Forty meters depth is also the depth of initiation of plagioclase feldspar weathering, as inferred from bulk geochemical measurement of the full 70-m deep core. Specifically, element-depth profiles, cast as mass transfer coefficient profiles using Ti and Zr as immobile elements, document inferred loss of plagioclase in the depth interval between 15 and 40-m depth. Plagioclase feldspar is the most abundant of the highly reactive minerals in the granite. Such a wide reaction front is characteristic of weathering granites. Some loss of K is observed at these depths but most K loss, as well as Mg loss, occurs at shallower depths. Nearby geophysical profiles and 3D stress models have been interpreted as showing that seismic velocities decrease at 40 m depth due to opening of fractures as rock is exhumed toward the surface. Given our interpretations of both the geochemical and geophysical data, we infer that the onset of chemical weathering of feldspar coincides with the opening of these fractures. The data highlight the ability of geochemistry and geophysics to complement each other and enrich our understanding of Earth's Critical Zone.

  5. Impact of soil characteristics and land use on pipe erosion in a temperate humid climate: Field studies in Belgium

    NASA Astrophysics Data System (ADS)

    Verachtert, E.; Van Den Eeckhaut, M.; Martínez-Murillo, J. F.; Nadal-Romero, E.; Poesen, J.; Devoldere, S.; Wijnants, N.; Deckers, J.

    2013-06-01

    This study investigates the role of soil characteristics and land use in the development of soil pipes in the loess belt of Belgium. First, we tested the hypothesis that discontinuities in the soil profile enhance lateral flow and piping by impeding vertical infiltration. We focus on discontinuities in soil characteristics that can vary with soil depth, including texture, saturated hydraulic conductivity, penetration resistance, and bulk density. These characteristics as well as soil biological activity were studied in detail on 12 representative soil profiles for different land use types. Twelve sites were selected in the Flemish Ardennes (Belgium): four pastures with collapsed pipes (CP), four pastures without CP, two sites under arable land without CP and two sites under forest without CP. Secondly, this study aimed at evaluating the interaction of groundwater table positions (through soil augerings) and CP in a larger area, with a focus on pastures. Pasture is the land use where almost all CP in the study area are observed. Therefore, the position of the groundwater table was compared for 15 pastures with CP and 14 pastures without CP, having comparable topographical characteristics in terms of slope gradient and contributing area. Finally, the effect of land use history on the occurrence of pipe collapse was evaluated for a database of 84 parcels with CP and 84 parcels without CP, currently under pasture. As to the first hypothesis, no clear discontinuities for abiotic soil characteristics in soil profiles were observed at the depth where pipes occur, but pastures with CP had significantly more earthworm channels and mole burrows at larger depths (> 120 cm: mean of > 200 earthworm channels per m2) than pastures without CP, arable land or forest (> 120 cm depth, a few or no earthworm channels left). The land use history appeared to be similar for the pastures with and without CP. Combining all results from soil profiles and soil augering indicates that intense biological activity (especially by earthworms and moles), in combination with a sufficiently high groundwater table, favours the development of soil pipes in the study area.

  6. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles.

    PubMed

    Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J

    2012-08-21

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.

  7. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed Central

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  8. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.

  9. Depth-Profiling Electronic and Structural Properties of Cu(In,Ga)(S,Se)2 Thin-Film Solar Cell.

    PubMed

    Chiang, Ching-Yu; Hsiao, Sheng-Wei; Wu, Pin-Jiun; Yang, Chu-Shou; Chen, Chia-Hao; Chou, Wu-Ching

    2016-09-14

    Utilizing a scanning photoelectron microscope (SPEM) and grazing-incidence X-ray powder diffraction (GIXRD), we studied the electronic band structure and the crystalline properties of the pentanary Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cell as a function of sample depth on measuring the thickness-gradient sample. A novel approach is proposed for studying the depth-dependent information on thin films, which can provide a gradient thickness and a wide cross-section of the sample by polishing process. The results exhibit that the CIGSSe absorber layer possesses four distinct stoichiometries. The growth mechanism of this distinctive compositional distribution formed by a two-stage process is described according to the thermodynamic reaction and the manufacturing process. On the basis of the depth-profiling results, the gradient profiles of the conduction and valence bands were constructed to elucidate the performance of the electrical properties (in this case, Voc = 620 mV, Jsc = 34.6 mA/cm(2), and η = 14.04%); the valence-band maxima (VBM) measured with a SPEM in the spectroscopic mode coincide with this band-structure model, except for a lowering of the VBM observed in the surface region of the absorber layer due to the ordered defect compound (ODC). In addition, the depth-dependent texturing X-ray diffraction pattern presents the crystalline quality and the residual stress for each depth of a thin-film device. We find that the randomly oriented grains in the bottom region of the absorber layer and the different residual stress between the underlying Mo and the absorber interface, which can deteriorate the electrical performance due to peeling-off effect. An anion interstitial defect can be observed on comparing the anion concentration of the elemental distribution with crystalline composition; a few excess sulfur atoms insert in interstitial sites at the front side of the absorber layer, whereas the interstitial selenium atoms insert at the back side.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartantyo, Eddy, E-mail: hartantyo@ugm.ac.id; Brotopuspito, Kirbani S.; Sismanto

    The liquefactions phenomena have been reported after a shocking 6.5Mw earthquake hit Yogyakarta province in the morning at 27 May 2006. Several researchers have reported the damage, casualties, and soil failure due to the quake, including the mapping and analyzing the liquefaction phenomena. Most of them based on SPT test. The study try to draw the liquefaction susceptibility by means the shear velocity profiling using modified Multichannel Analysis of Surface Waves (MASW). This paper is a preliminary report by using only several measured MASW points. The study built 8-channel seismic data logger with 4.5 Hz geophones for this purpose. Several differentmore » offsets used to record the high and low frequencies of surface waves. The phase-velocity diagrams were stacked in the frequency domain rather than in time domain, for a clearer and easier dispersion curve picking. All codes are implementing in Matlab. From these procedures, shear velocity profiling was collected beneath each geophone’s spread. By mapping the minimum depth of shallow water table, calculating PGA with soil classification, using empirical formula for saturated soil weight from shear velocity profile, and calculating CRR and CSR at every depth, the liquefaction characteristic can be identify in every layer. From several acquired data, a liquefiable potential at some depth below water table was obtained.« less

  11. Analysis of the in vivo confocal Raman spectral variability in human skin

    NASA Astrophysics Data System (ADS)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  12. Soil depth mapping using seismic surface waves: Evaluation on eroded loess covered hillslopes

    NASA Astrophysics Data System (ADS)

    Bernardie, Severine; Samyn, Kevin; Cerdan, Olivier; Grandjean, Gilles

    2010-05-01

    The purposes of the multidisciplinary DIGISOIL project are the integration and improvement of in situ and proximal technologies for the assessment of soil properties and soil degradation indicators. Foreseen developments concern sensor technologies, data processing and their integration to applications of (digital) soil mapping (DSM). Among available techniques, the seismic one is, in this study, particularly tested for characterising soil vulnerability to erosion. The spectral analysis of surface waves (SASW) method is an in situ seismic technique used for evaluation of the stiffnesses (G) and associated depth in layered systems. A profile of Rayleigh wave velocity versus frequency, i.e., the dispersion curve, is calculated from each recorded seismogram before to be inverted to obtain the vertical profile of shear wave velocity Vs. Then, the soil stiffness can easily be calculated from the shear velocity if the material density is estimated, and the soil stiffness as a function of depth can be obtained. This last information can be a good indicator to identify the soil bedrock limit. SASW measurements adapted to soil characterisation is proposed in the DIGISOIL project, as it produces in an easy and quick way a 2D map of the soil. This system was tested for the digital mapping of the depth of loamy material in a catchment of the European loess belt. The validation of this methodology has been performed with the realisation of several acquisitions along the seismic profiles: - Several boreholes were drilled until the bedrock, permitting to get the geological features of the soil and the depth of the bedrock; - Several laboratory measurements of various parameters were done on samples taken from the boreholes at various depths, such as dry density, solid density, and water content; - Dynamic penetration tests were also conducted along the seismic profile, until the bedrock is attained. Some empirical correlations between the parameters measured with laboratory tests, the qc obtained from the dynamic penetration tests and the Vs acquired from the SASW measurements permit to assess the accuracy of the procedure and to evaluate its limitations. The depth to bedrock determined by this procedure can then be combined with the soil erosion susceptibility to produce a risk map. This methodology will help to target measures within areas that show a reduced soil depth associated with a high soil erosion susceptibility.

  13. Crack depth profiling using guided wave angle dependent reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volker, Arno, E-mail: arno.volker@tno.nl; Pahlavan, Lotfollah, E-mail: arno.volker@tno.nl; Blacquiere, Gerrit, E-mail: arno.volker@tno.nl

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of anmore » inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.« less

  14. High-Frequency Focused Water-Coupled Ultrasound Used for Three-Dimensional Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2001-01-01

    To interface with other solids, many surfaces are engineered via methods such as plating, coating, and machining to produce a functional surface ensuring successful end products. In addition, subsurface properties such as hardness, residual stress, deformation, chemical composition, and microstructure are often linked to surface characteristics. Surface topography, therefore, contains the signatures of the surface and possibly links to volumetric properties, and as a result serves as a vital link between surface design, manufacturing, and performance. Hence, surface topography can be used to diagnose, monitor, and control fabrication methods. At the NASA Glenn Research Center, the measurement of surface topography is important in developing high-temperature structural materials and for profiling the surface changes of materials during microgravity combustion experiments. A prior study demonstrated that focused air-coupled ultrasound at 1 MHz could profile surfaces with a 25-m depth resolution and a 400-m lateral resolution over a 1.4-mm depth range. In this work, we address the question of whether higher frequency focused water-coupled ultrasound can improve on these specifications. To this end, we employed 10- and 25-MHz focused ultrasonic transducers in the water-coupled mode. The surface profile results seen in this investigation for 25-MHz water-coupled ultrasound, in comparison to those for 1-MHz air-coupled ultrasound, represent an 8 times improvement in depth resolution (3 vs. 25 m seen in practice), an improvement of at least 2 times in lateral resolution (180 vs. 400 m calculated and observed in practice), and an improvement in vertical depth range of 4 times (calculated).

  15. Neutron reflectometry as a tool to study magnetism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felcher, G. P.

    1999-09-21

    Polarized-neutron specular reflectometry (PNR) was developed in the 1980's as a means of measuring magnetic depth profiles in flat films. Starting from simple profiles, and gradually solving structures of greater complexity, PNR has been used to observe or clarify a variety of magnetic phenomena. It has been used to measure the absolute magnetization of films of thickness not exceeding a few atomic planes, the penetration of magnetic fields in micron-thick superconductors, and the detailed magnetic coupling across non-magnetic spacers in multilayers and superlattices. Although PNR is considered a probe of depth dependent magnetic structure, laterally averaged in the plane ofmore » the film, the development of new scattering techniques promises to enable the characterization of lateral magnetic structures. Retaining the depth-sensitivity of specular reflectivity, off-specular reflectivity may be brought to resolve in-plane structures over nanometer to micron length scales.« less

  16. Milford, Utah FORGE Temperature Contours at 200 m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Moore

    The individual shapefiles in this dataset delineate estimated temperature contours (20, 40, 60, and 80) at a depth of 200 m in the Milford, Utah FORGE area. Contours were derived from 86 geothermal, gradient, and other wells drilled in the area since the mid-1970s with depths greater than 50 m. Conductive temperature profiles for wells less than 200 m were extrapolated to determine the temperature at the desired depth. Because 11 wells in the eastern section of the study area (in and around the Mineral Mountains) are at higher elevations compared to those closer to the center of the basin,more » temperature profiles were extrapolated to a constant elevation of 200 m below the 1830 m (6000 ft) a.s.l. datum (approximate elevation of alluvial fans at the base of the Mineral Mountains) to smooth the contours across the ridges and valleys.« less

  17. A Study on Water Surface Profiles of Rivers with Constriction

    NASA Astrophysics Data System (ADS)

    Qian, Chaochao; Yamada, Tadashi

    2013-04-01

    Water surface profile of rivers with constrictions is precious in both classic hydraulics and river management practice. This study was conducted to clarify the essences of the water surface profiles. 3 cases of experiments and 1D numerical calculations with different discharges were made in the study and analysis solutions of the non-linear basic equation of surface profile in varied flow without considering friction were derived. The manning's number was kept in the same in each case by using crosspiece roughness. We found a new type of water surface profile of varied flow from the results of 1D numerical calculation and that of experiments and named it as Mc curve because of its mild condition with constriction segment. This kind of curves appears as a nature phenomenon ubiquitously. The process of water surface forming is dynamic and bore occurs at the upper side of constriction during increasing discharge before the surface profile formed. As a theoretical work, 3 analysis solutions were derived included 2 physical-meaning solutions in the study by using Man-Machine system. One of the derived physical-meaning solutions was confirmed that it is validity by comparing to the results of 1D numerical calculation and that of experiments. The solution represents a flow profile from under critical condition at the upper side to super critical condition at the down side of constriction segment. The other derived physical-meaning solution represents a flow profile from super critical condition at the upper side to under critical condition at the down side of constriction segment. These two kinds of flow profiles exist in the nature but no theoretical solution can express the phenomenon. We find the depth distribution only concerned with unit width discharge distribution and critical depth under a constant discharge from the derived solutions. Therefor, the profile can be gained simply and precisely by using the theoretical solutions instead of numerical calculation even in practice.

  18. LOGISTIC FUNCTION PROFILE FIT: A least-squares program for fitting interface profiles to an extended logistic function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchhoff, William H.

    2012-09-15

    The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less

  19. Social network utilization (Facebook) & e-Professionalism among medical students.

    PubMed

    Jawaid, Masood; Khan, Muhammad Hassaan; Bhutto, Shahzadi Nisar

    2015-01-01

    To find out the frequency and contents of online social networking (Facebook) among medical students of Dow University of Health Sciences. The sample of the study comprised of final year students of two medical colleges of Dow University of Health Sciences - Karachi. Systematic search for the face book profiles of the students was carried out with a new Facebook account. In the initial phase of search, it was determined whether each student had a Facebook account and the status of account as ''private'' ''intermediate'' or ''public'' was also sought. In the second phase of the study, objective information including gender, education, personal views, likes, tag pictures etc. were recorded for the publicly available accounts. An in depth qualitative content analysis of the public profiles of ten medical students, selected randomly with the help of random number generator technique was conducted. Social networking with Facebook is common among medical students with 66.9% having an account out of a total 535 students. One fifth of profiles 18.9% were publicly open, 36.6% profiles were private and 56.9% were identified to have an intermediate privacy setting, having customized settings for the profile information. In-depth analysis of some public profiles showed that potentially unprofessional material mostly related to violence and politics was posted by medical students. The usage of social network (Facebook) is very common among students of the university. Some unprofessional posts were also found on students' profiles mostly related to violence and politics.

  20. Hemispheric variation of the depth dependent attenuation and velocity structures of the top half of the inner core determined from global seismic array data

    NASA Astrophysics Data System (ADS)

    Iritani, R.; Takeuchi, N.; Kawakatsu, H.

    2012-12-01

    Previous studies suggested the existence of the hemispheric heterogeneities in the top 100 km of the inner core [eg. Wen and Niu, 2002]. Although depth profiles of the attenuation and velocity of the inner core provide important clues to constrain the physical mechanism and the growing process of the inner core, they have not yet been well constrained primarily due to difficulties in analyzing core phases with phase overlapping. We have previously developed a waveform inversion method to be applicable to such complex waveforms [Iritani et al., 2010, GRL] and revealed the depth profile of the attenuation beneath North America [Iritani et al., 2011, AGU]. In this study, we applied our method to a large number of broadband seismic arrays to compare depth profiles of the top half of the inner core in various regions. The data set consists of about 8,500 traces from Japanese F-net, NECESSArray (a large temporary broadband seismic array installed in northeastern China), permanent European stations, USArray and PASSCAL arrays deployed in a number of places in the world. Regions of the inner core sampled by core phases are beneath eastern Pacific, North America and Africa in the western hemisphere (WH), and beneath eastern and central Asia in the eastern hemisphere (EH). The obtained attenuation models for the WH show the gradually increase from ICB and have a peak around a 200 km depth. In contrast, the models for the EH have a high attenuation zone at the top 150 km layer. However, almost all models show common features below a depth of 250 km where the attenuation starts to gradually decrease with depth. It appears that hemispheric heterogeneities of the inner core are confined to the top 150 - 250 km of the inner core. Velocity models obtained by using various core phase data (PKP(DF), PKP(BC), PKP(CD) and PKP(Cdiff)) will be also presented to infer the origin of hemispherical heterogeneities and their relationship to the growing process of the inner core.

  1. Auger electron spectroscopy and depth profile study of oxidation of modified 440C steel

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1974-01-01

    Auger electron spectroscopy (AES) and sputtering were used to study selective oxidation of modified 440C steel. The sample was polycrystalline. Oxidation was performed on initially clean surfaces for pressures ranging from 1 x 10 to the minus 7th power to 1 x 10 to the minus 5th power torr and temperatures ranging from room temperature to 800 C. AES traces were taken during oxidation. In situ sputtering depth profiles are also obtained. A transition temperature is observed in the range 600 to 700 C for which the composition of the outer surface oxide changed from iron oxide to chromium oxide. Heating in vacuum about 5 x 10 to the minus 10 power torr to 700 C causes conversion of the iron oxide surface to chromium oxide.

  2. Measurements of Raman crystallinity profiles in thin-film microcrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Choong, G.; Vallat-Sauvain, E.; Multone, X.; Fesquet, L.; Kroll, U.; Meier, J.

    2013-06-01

    Wedge-polished thin film microcrystalline silicon solar cells are prepared and used for micro-Raman measurements. Thereby, the variations of the Raman crystallinity with depth are accessed easily. Depth resolution limits of the measurement set-up are established and calculations evidencing the role of optical limits are presented. Due to this new technique, Raman crystallinity profiles of two microcrystalline silicon cells give first hints for the optimization of the profile leading to improved electrical performance of such devices.

  3. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  4. Nonextensive statistics and skin depth of transverse wave in collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemzadeh, M., E-mail: hashemzade@gmail.com

    Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less

  5. A Methodology to Seperate and Analyze a Seismic Wide Angle Profile

    NASA Astrophysics Data System (ADS)

    Weinzierl, Wolfgang; Kopp, Heidrun

    2010-05-01

    General solutions of inverse problems can often be obtained through the introduction of probability distributions to sample the model space. We present a simple approach of defining an a priori space in a tomographic study and retrieve the velocity-depth posterior distribution by a Monte Carlo method. Utilizing a fitting routine designed for very low statistics to setup and analyze the obtained tomography results, it is possible to statistically separate the velocity-depth model space derived from the inversion of seismic refraction data. An example of a profile acquired in the Lesser Antilles subduction zone reveals the effectiveness of this approach. The resolution analysis of the structural heterogeneity includes a divergence analysis which proves to be capable of dissecting long wide-angle profiles for deep crust and upper mantle studies. The complete information of any parameterised physical system is contained in the a posteriori distribution. Methods for analyzing and displaying key properties of the a posteriori distributions of highly nonlinear inverse problems are therefore essential in the scope of any interpretation. From this study we infer several conclusions concerning the interpretation of the tomographic approach. By calculating a global as well as singular misfits of velocities we are able to map different geological units along a profile. Comparing velocity distributions with the result of a tomographic inversion along the profile we can mimic the subsurface structures in their extent and composition. The possibility of gaining a priori information for seismic refraction analysis by a simple solution to an inverse problem and subsequent resolution of structural heterogeneities through a divergence analysis is a new and simple way of defining a priori space and estimating the a posteriori mean and covariance in singular and general form. The major advantage of a Monte Carlo based approach in our case study is the obtained knowledge of velocity depth distributions. Certainly the decision of where to extract velocity information on the profile for setting up a Monte Carlo ensemble is limiting the a priori space. However, the general conclusion of analyzing the velocity field according to distinct reference distributions gives us the possibility to define the covariance according to any geological unit if we have a priori information on the velocity depth distributions. Using the wide angle data recorded across the Lesser Antilles arc, we are able to resolve a shallow feature like the backstop by a robust and simple divergence analysis. We demonstrate the effectiveness of the new methodology to extract some key features and properties from the inversion results by including information concerning the confidence level of results.

  6. Shipboard Acoustic Current Profiling during the Coastal Ocean Dynamics Experiment,

    DTIC Science & Technology

    1985-05-01

    average profile based on the bottori depth estimated from the ship’s posit ion. in the CODEU region. an efficient computer routine was developed for... forex ~and and( port ward comnport ent s of V. at conistant z ., the depth Iill ships coordi- nlatv (’S(Chap 2). The data cort- from I -mintIe

  7. Investigating the Fundamentals of Molecular Depth Profiling Using Strong-field Photoionization of Sputtered Neutrals

    PubMed Central

    Willingham, D.; Brenes, D. A.; Winograd, N.; Wucher, A.

    2010-01-01

    Molecular depth profiles of model organic thin films were performed using a 40 keV C60+ cluster ion source in concert with TOF-SIMS. Strong-field photoionization of intact neutral molecules sputtered by 40 keV C60+ primary ions was used to analyze changes in the chemical environment of the guanine thin films as a function of ion fluence. Direct comparison of the secondary ion and neutral components of the molecular depth profiles yields valuable information about chemical damage accumulation as well as changes in the molecular ionization probability. An analytical protocol based on the erosion dynamics model is developed and evaluated using guanine and trehalose molecular secondary ion signals with and without comparable laser photoionization data. PMID:26269660

  8. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  9. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  10. Tribological characteristics of gold films deposited on metals by ion plating and vapor deposition

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1986-01-01

    The graded interface between an ion-plated film and a substrate is discussed as well as the friction and wear properties of ion-plated gold. X-ray photoelectron spectroscopy (XPS) depth profiling and microhardness depth profiling were used to investigate the interface. The friction and wear properties of ion-plated and vapor-deposited gold films were studied both in an ultra high vacuum system to maximize adhesion and in oil to minimize adhesion. The results indicate that the solubility of gold on the substrate material controls the depth of the graded interface. Thermal diffusion and chemical diffusion mechanisms are thought to be involved in the formation of the gold-nickel interface. In iron-gold graded interfaces the gold was primarily dispersed in the iron and thus formed a physically bonded interface. The hardness of the gold film was influenced by its depth and was also related to the composition gradient between the gold and the substrate. The graded nickel-gold interface exhibited the highest hardness because of an alloy hardening effect. The effects of film thickness on adhesion and friction were established.

  11. An iterative algorithm for determining depth profiles of collection probability by electron-beam-induced current

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor; Breitenstein, Otwin

    2001-01-01

    An iterative algorithm for the derivation of depth profiles of the minority carrier collection probability in a semiconductor with or without a coating on the top is presented using energy-resolved electron-beam-induced current measurements in planar geometry. The calculation is based on the depth-dose function of Everhart and Hoff (Everhart T E and Hoff P H 1971 J. Appl. Phys. 42 5837) and on the penetration-range function of Kanaya and Okayama (Kanaya K and Okayama S 1972 J. Phys. D: Appl. Phys. 5 43) or on that of Fitting (Fitting H-J 1974 Phys. Status Solidi/ a 26 525). It can also be performed with any other depth-dose functions. Using this algorithm does not require us to make any assumptions on the shape of the collection profile within the depth of interest. The influence of an absorbing top contact and/or a limited thickness of the semiconductor layer appear in the result, but can also be taken explicitly into account. Examples using silicon and CIS solar cells as well as a GaAs LED are presented.

  12. An angle-resolved, wavelength-dispersive x-ray fluorescence spectrometer for depth profile analysis of ion-implanted semiconductors using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Hormes, J.; Kuetgens, U.; Gries, W. H.

    1992-01-01

    An apparatus for angle-resolved, wavelength-dispersive x-ray fluorescence spectroscopy with synchrotron radiation has been built and tested at the beam line BN2 of the Bonn electron stretcher and accelerator (ELSA). The apparatus is to be used for nondestructive depth profile analysis of ion-implanted semiconductors as part of the multinational Versailles Project of Advanced Materials and Standards (VAMAS) project on ion-implanted reference materials. In particular, the centroid depths of depth profiles of various implants is to be determined by use of the angle-resolved signal ratio technique. First results of measurements on implants of phosphorus (100 keV, 1016 cm-2) and sulfur (200 keV, 1014 cm-2) in silicon wafers using ``white'' synchrotron radiation are presented and suggest that it should be generally possible to measure the centroid depth of an implant at dose densities as low as 1014 cm-2. Some of the apparative and technical requirements are discussed which are peculiar to the use of synchrotron radiation in general and to the use of nonmonochromatized radiation in particular.

  13. A porewater-based stable isotope approach for the investigation of subsurface hydrological processes

    NASA Astrophysics Data System (ADS)

    Garvelmann, J.; Külls, C.; Weiler, M.

    2012-02-01

    Predicting and understanding subsurface flowpaths is still a crucial issue in hydrological research. We present an experimental approach to reveal present and past subsurface flowpaths of water in the unsaturated and saturated zone. Two hillslopes in a humid mountainous catchment have been investigated. The H2O(liquid) - H2O(vapor) equilibration laser spectroscopy method was used to obtain high resolution δ2H vertical depth profiles of pore water at various points along two fall lines of a pasture hillslope in the southern Black Forest, Germany. The Porewater-based Stable Isotope Profile (PSIP) approach was developed to use the integrated information of several vertical depth profiles of deuterium along transects at the hillslope. Different shapes of depth profiles were observed in relation to hillslope position. The statistical variability (inter-quartile range and standard deviation) of each profile was used to characterize different types of depth profiles. The profiles upslope or with a weak affinity for saturation as indicated by a low topographic wetness index preserve the isotopic input signal by precipitation with a distinct seasonal variability. These observations indicate mainly vertical movement of soil water in the upper part of the hillslope before sampling. The profiles downslope or at locations with a strong affinity for saturation do not show a similar seasonal isotopic signal. The input signal is erased in the foothills and a large proportion of pore water samples are close to the isotopic values of δ2H in streamwater during base flow conditions indicating the importance of the groundwater component in the catchment. Near the stream indications for efficient mixing of water from lateral subsurface flow paths with vertical percolation are found.

  14. Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-01-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.

  15. Mechanical profiles of murder and murderers: An extensive review.

    PubMed

    Kamaluddin, M R; Md Shariff, N S; Mat Saat, G A

    2018-04-01

    Murder is an extreme form of violent crime which occurs across all social, cultural, and ethnic spheres. It is therefore, crucial to understand the nature and the extent of mechanical profiles of murder and murderers. The purpose of this article is to review such critical aspects of murder in a nutshell. An archival research methodology was employed in this study where relevant search for literatures on these mechanical aspects related to murder was made across search engines such as Google Scholar and Elsevier with relevant articles selected for this review. This review discusses in an in-depth manner, pivotal mechanical profiles which include motives, methods of killing, choice of weapon, settings, targeted body parts, and murder victim concealment. In-depth understanding of each mechanical aspect offers an opportunity to the public at large to expand their knowledge on murder prevention manners which is vital for crime prevention efforts in the future.

  16. Mapping a Pristine Glaciofluvial Aquifer on the Canadian Shield Using Ground-Penetrating Radar and Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Graves, L. W.; Shirokova, V.; Bank, C.

    2013-12-01

    Our study aims to construct a 3D structural model of an unconfined pristine aquifer in Laurentian Hills, Ontario, Canada. The stratigraphy of the study site, which covers about 5400 square meters, features reworked glaciofluvial sands and glacial till on top of Canadian Shield bedrock. A network of 25 existing piezometers provides ground-truth. We used two types of geophysical surveys to map the water table and the aquifer basin. Ground-penetrating radar (GPR) collected 40 profiles over distances up to 140 meters using 200MHz and 400MHz antennas with a survey wheel. The collected radargrams show a distinct reflective layer, which can be mapped to outcrops of glacial till within the area. This impermeable interface forms the aquitard. Depths of the subsurface features were calculated using hyperbolic fits on the radargrams in Matlab by determining wave velocity then converting measured two-way-time to depth. Electrical resistivity was used to determine the water table elevations because the unconfined water table did not reflect the radar waves. 20 resistivity profiles were collected in the same area using Wenner-Alpha and dipole-dipole arrays with both 24 and 48 electrodes and for 0.5, 0.75, 1.0 and 2.0 meter spacing. The inverted resistivity models show low resistivity values (<1000 Ohm.m) below 2 to 5 meter depths and higher resistivity values (2000-6000 Ohm.m) above 1 to 2 meter depths. These contrasting resistivity values correspond to saturated and wet sand (lower resistivity) to dry sand (higher resistivity); a correlation we could verify with several bore-hole logs. The water table is marked on the resistivity profiles as a steep resistivity gradient, and the depth can be added to the comprehensive 3D model. This model also incorporates hydrogeological characteristics and geochemical anomalies found within the aquifer. Ongoing seasonal and annual monitoring of the aquifer using geophysical methods will bring a fourth dimension to our understanding of this dynamic system. GPR Profile with Glacial Till Interface.

  17. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  18. PIGE - Resonance profiling applied to a clinical test of flouride varnishes

    NASA Astrophysics Data System (ADS)

    Zschau, H. E.; Plier, F.; Otto, G.; Wyrwich, C.; Treide, A.

    1992-03-01

    A clinical in-vivo experiment had been carried out to compare two caries preventing fluorine varnishes. The fluorine depth profiles in the near surface region of tooth enamel were measured using the 935 keV resonance of the nuclear reaction 19F( p, p' γ) 19F. The results can be understood by studying the flourine anamnese of the patients.

  19. Lipid Biomarkers Identified for Liver Cancer | Center for Cancer Research

    Cancer.gov

    Hepatocellular carcinoma (HCC) is an aggressive cancer of the liver with poor prognosis and growing incidence in developed countries. Pathology and genetic profiles of HCC are heterogeneous, suggesting that it can begin growing in different cell types. Although human tumors such as HCC have been profiled in-depth by genomics-based studies, not much is known about their overall

  20. Sorption Equilibria of Vapor Phase Organic Pollutants on Unsaturated Soils and Soil Minerals

    DTIC Science & Technology

    1990-04-01

    Sorbent Characterization .. ........ .......... 6 a. Description of Inorganic Solids and Soils. .... ........ 6 b. Moisture Content...compounds (TCE and toluene) is compared for a cored depth profile obtained from an unsaturated soil and for simulated profiles using inorganic solids. The...Sorbent Characterization a. Description of Inorganic Solids and Soils Inorganic solids were used for initial sorption studies to develop experimental

  1. Model studies of diffusion-controlled (2-hydroxyethyl methacrylate) HEMA hydrogel membranes for controlled release of proteins

    NASA Astrophysics Data System (ADS)

    Appawu, Jennifer A. M.

    This thesis project consisted of three main components that were connected by roots in chemical analysis for studies in tissue engineering. The first part focused on characterizing the structural parameters of synthetic cross-linked poly (2-hydroxyethyl methacrylate) (Poly(HEMA) hydrogel membranes to determine optimal formulations for clinical studies. Poly(HEMA) membranes were loaded with Keratincocyte Growth Factor (KGF) for controlled release studies. Protein loading and release kinetics were determined with fluorescence spectroscopy. The spatial distribution of a protein in the membrane was determined using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The last part of the project focused on determining the biological effects of the polymer membranes in-vitro with a model cell line and a pilot in-vivo animal study. Based on the components completed in this project, five chapters are included in this dissertation document and are summarized below. A new protocol was developed using fluorescence spectroscopy that measured the rate of protein diffusion into cross-linked polymer membranes by measuring the change in the fluorescence intensity of the protein solution. This technique was also able to detect a conformational change that occurs within protein when KGF was imbibed within these cross-linked polymer membranes. ToF-SIMS chemical imaging and 3D depth profiling was used to determine the spatial distribution of KGF protein in frozen-hydrated HEMA hydrogel membranes. The 3D depth profiles showed that the KGF protein was aggregated in bright spots that indicated that KGF was not spatially homogenous on the surface and through the depth profiles. 3D depth profiles of the membranes studied at various times during release studies show that areas with aggregated proteins were retained during release, and at times with maximum release. The interpretation of the bright regions is that the KGf protein interacted with the cross-linked network of the hydrogel membranes, making it not available for release. The in-vitro biological experiments with the HaCaT cell line showed that the HEMA hydrogels were capable of sustaining cell viability, proliferation, and adhesion through cell adhesion and wounding experiments. The pilot in-vivo animal study also revealed that KGF protein had retained its pharmacological activity. The study also showed that the KGF protein enhanced the rate of wound closure.

  2. SIMS depth profiling of rubber-tyre cord bonding layers prepared using 64Zn depleted ZnO

    NASA Astrophysics Data System (ADS)

    Fulton, W. S.; Sykes, D. E.; Smith, G. C.

    2006-07-01

    Zinc oxide and copper/zinc sulphide layers are formed during vulcanisation and moulding of rubber to brass-coated steel tyre reinforcing cords. Previous studies have described how zinc diffuses through the rubber-brass interface to form zinc sulphide, and combines with oxygen to create zinc oxide during dezincification. The zinc is usually assumed to originate in the brass of the tyre cord, however, zinc oxide is also present in the rubber formulation. We reveal how zinc from these sources is distributed within the interfacial bonding layers, before and after heat and humidity ageing. Zinc oxide produced using 64Zn-isotope depleted zinc was mixed in the rubber formulation in place of the natural ZnO and the zinc isotope ratios within the interfacial layers were followed by secondary ion mass spectroscopy (SIMS) depth profiling. Variations in the relative ratios of the zinc isotopes during depth profiling were measured for unaged, heat-aged and humidity-aged wire samples and in each case a relatively large proportion of the zinc incorporated into the interfacial layer as zinc sulphide was shown to have originated from ZnO in the rubber compound.

  3. Double-diffusive convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability

    NASA Astrophysics Data System (ADS)

    Vincze, Miklos; Borcia, Ion; Harlander, Uwe; Le Gal, Patrice

    2016-12-01

    A water-filled differentially heated rotating annulus with initially prepared stable vertical salinity profiles is studied in the laboratory. Based on two-dimensional horizontal particle image velocimetry data and infrared camera visualizations, we describe the appearance and the characteristics of the baroclinic instability in this original configuration. First, we show that when the salinity profile is linear and confined between two non-stratified layers at top and bottom, only two separate shallow fluid layers can be destabilized. These unstable layers appear nearby the top and the bottom of the tank with a stratified motionless zone between them. This laboratory arrangement is thus particularly interesting to model geophysical or astrophysical situations where stratified regions are often juxtaposed to convective ones. Then, for more general but stable initial density profiles, statistical measures are introduced to quantify the extent of the baroclinic instability at given depths and to analyze the connections between this depth-dependence and the vertical salinity profiles. We find that, although the presence of stable stratification generally hinders full-depth overturning, double-diffusive convection can lead to development of multicellular sideways convection in shallow layers and subsequently to a multilayered baroclinic instability. Therefore we conclude that by decreasing the characteristic vertical scale of the flow, stratification may even enhance the formation of cyclonic and anticyclonic eddies (and thus, mixing) in a local sense.

  4. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan.

    PubMed

    Nunoura, Takuro; Takaki, Yoshihiro; Shimamura, Shigeru; Kakuta, Jungo; Kazama, Hiromi; Hirai, Miho; Masui, Noriaki; Tomaru, Hitoshi; Morono, Yuki; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken

    2016-06-01

    Subseafloor pelagic sediments with high concentrations of organic matter form habitats for diverse microorganisms. Here, we determined depth profiles of genes for SSU rRNA, mcrA, dsrA and amoA from just beneath the seafloor to 363.3 m below the seafloor (mbsf) using core samples obtained from the forearc basin off the Shimokita Peninsula. The molecular profiles were combined with data on lithostratigraphy, depositional age, sedimentation rate and pore-water chemistry. The SSU rRNA gene tag structure and diversity changed at around the sulfate-methane transition zone (SMTZ), whereas the profiles varied further with depth below the SMTZ, probably in connection with the variation in pore-water chemistry. The depth profiles of diversity and abundance of dsrA, a key gene for sulfate reduction, suggested the possible niche separations of sulfate-reducing populations, even below the SMTZ. The diversity and abundance patterns of mcrA, a key gene for methanogenesis/anaerobic methanotrophy, suggested a stratified distribution and separation of anaerobic methanotrophy and hydrogenotrophic or methylotrophic methanogensis below the SMTZ. This study provides novel insights into the relationships between the composition and function of microbial communities and the chemical environment in the nutrient-rich continental margin subseafloor sediments, which may result in niche separation and variability in subseafloor microbial populations. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Variations of soil profile characteristics due to varying time spans since ice retreat in the inner Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Navas, Ana; Laute, Katja; Beylich, Achim A.; Gaspar, Leticia

    2013-04-01

    In the Erdalen and Bødalen drainage basins located in the inner Nordfjord in western Norway the soils have been formed after deglaciation. The climate in the upper valley part is sub-arctic oceanic with an annual areal precipitation of ca 1500 mm. The lithology in Erdalen and Bødalen consists of Precambrian granitic orthogneisses on which Leptosols and Regosols are the most common soils. Parts of the valleys were affected by the Little Ice Age glacier advance with the maximum glacier extent around 1750 BP. In this study five sites on moraine and colluvium materials were selected to examine the main soil properties of the most representative soils found in the region. The objective was to assess if soil profile characteristics and pattern of fallout radionuclides (FRN's) and environmental radionuclides (ERN's) are affected by different stages of ice retreat. Soil profiles were sampled at 5 cm depth interval increments until 20 cm depth. The Leptosols on the moraines are shallow, poorly developed and vegetated with moss and small birches. The two selected profiles show different radionuclide activities and grain size distribution. At P2 profile where ice retreated earlier (ca., 1767) depth profile activities of FRŃs are more homogenous than in P1 that became ice-free since ca. 1930. The sampled soils on the colluviums outside the LIA glacier limit became ice free during the Preboral. The Regosols present better developed profiles, thicker organic horizons and are fully covered by grasses. Activity of 137Cs and 210Pbex concentrate at the topsoil and decrease sharply with depth. The grain size distribution of these soils also reflects the difference in geomorphic processes that have affected the colluvium sites. Lower activities of FRŃs in soils on the moraines are related to the predominant sand material that has less capacity to fix the radionuclides. Lower 40K activities in Erdalen as compared to Bødalen are likely related to soil mineralogical composition. All profiles show disequilibrium in the uranium and thorium series. These results indicate differences in soil development that are consistent with the age of ice retreat. In addition, the pattern distribution of 137Cs and 210Pbexactivities differs in the soils related to the LIA glacier limits in the drainage basins.

  6. Parameterization of photon beam dosimetry for a linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebron, Sharon; Barraclough, Brendan; Lu, Bo

    2016-02-15

    Purpose: In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modeled data, (3) the quality assurance process of a linear accelerator’s (Linac) beam characteristics, (4) the establishment of a standard data set for comparison with other data, etcetera. Parameterization of the photon beam dosimetry creates a data set that is portable and easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon beam dosimetric quantities, includingmore » percentage depth doses (PDDs), profiles, and total scatter output factors (S{sub cp}). Methods: S{sub cp}, PDDs, and profiles for different field sizes, depths, and energies were measured for a Linac using a cylindrical 3D water scanning system. All data were smoothed for the analysis and profile data were also centered, symmetrized, and geometrically scaled. The S{sub cp} data were analyzed using an exponential function. The inverse square factor was removed from the PDD data before modeling and the data were subsequently analyzed using exponential functions. For profile modeling, one halfside of the profile was divided into three regions described by exponential, sigmoid, and Gaussian equations. All of the analytical functions are field size, energy, depth, and, in the case of profiles, scan direction specific. The model’s parameters were determined using the minimal amount of measured data necessary. The model’s accuracy was evaluated via the calculation of absolute differences between the measured (processed) and calculated data in low gradient regions and distance-to-agreement analysis in high gradient regions. Finally, the results of dosimetric quantities obtained by the fitted models for a different machine were also assessed. Results: All of the differences in the PDDs’ buildup and the profiles’ penumbra regions were less than 2 and 0.5 mm, respectively. The differences in the low gradient regions were 0.20% ± 0.20% (<1% for all) and 0.50% ± 0.35% (<1% for all) for PDDs and profiles, respectively. For S{sub cp} data, all of the absolute differences were less than 0.5%. Conclusions: This novel analytical model with minimum measurement requirements was proved to accurately calculate PDDs, profiles, and S{sub cp} for different field sizes, depths, and energies.« less

  7. Geophysical Studies of Irish Granites Using Magnetotelluric and Gravity Data

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Muller, M. R.; Rath, V.; Feely, M.; Hogg, C.

    2014-12-01

    We present results of on-going geophysical studies of Caledonian radiothermal granite bodies in Ireland, which are being undertaken to investigate the volumetric depth extent and structural features of these granites. During three field seasons, magnetotelluric (MT) and audio-magnetotelluric (AMT) data were acquired at 156 sites targeting three separate granite bodies. These studies will contribute to a crustal-scale investigation of the geothermal energy potential of the granites and their contribution to the thermal field of the Irish crust. Across the calc-alkaline Galway granite, located on the Irish west coast, MT and AMT data were acquired at 75 sites distributed in a grid. Preliminary 3D inversion reveals the presence of a resistor, thickest beneath the central block of the granite where it extends to depths of 11 - 12 km. The greater depth of the resistor beneath the central block is in contrast to previous thinking that proposed the central block granites to have shallower depth extent than those of the western block, based on Bouguer anomaly maps of the area in which the western block exhibited a more pronounced negative Bouguer anomaly than the central block. At the S-type Leinster granite, in eastern Ireland and to the south of Dublin, MT and AMT data were acquired along two profiles (LGN - 27 sites and LGS - 32 sites). Preliminary 1D inversions of AMT data along profile LGN show the Northern Units of the Leinster granite to extend to a depth of 4.5 km and the Lugnaquilla pluton extending to 2.5 km depth. MT and AMT data were acquired at 22 sites along a profile across the buried Kentstown granite, 35 km to the NW of Dublin. The Kentstown granite was intersected by two mineral exploration boreholes at depths of 492 m and 663 m. Preliminary 2D inversions do not yet satisfactorily resolve the top of the buried granite. Inversion of MT and AMT data is continuing, with the electrical conductivity structures revealed by these inversions being used to constrain inversions of gravity data. The integration of MT and gravity data will provide an insight into the potential density distribution within the resistors associated with the granites and whether the granites, likely to have elevated heat-production (HP), are underlain by electrically resistive but denser, more mafic bodies, likely to be associated with lower HP.

  8. A new method for depth profiling reconstruction in confocal microscopy

    NASA Astrophysics Data System (ADS)

    Esposito, Rosario; Scherillo, Giuseppe; Mensitieri, Giuseppe

    2018-05-01

    Confocal microscopy is commonly used to reconstruct depth profiles of chemical species in multicomponent systems and to image nuclear and cellular details in human tissues via image intensity measurements of optical sections. However, the performance of this technique is reduced by inherent effects related to wave diffraction phenomena, refractive index mismatch and finite beam spot size. All these effects distort the optical wave and cause an image to be captured of a small volume around the desired illuminated focal point within the specimen rather than an image of the focal point itself. The size of this small volume increases with depth, thus causing a further loss of resolution and distortion of the profile. Recently, we proposed a theoretical model that accounts for the above wave distortion and allows for a correct reconstruction of the depth profiles for homogeneous samples. In this paper, this theoretical approach has been adapted for describing the profiles measured from non-homogeneous distributions of emitters inside the investigated samples. The intensity image is built by summing the intensities collected from each of the emitters planes belonging to the illuminated volume, weighed by the emitters concentration. The true distribution of the emitters concentration is recovered by a new approach that implements this theoretical model in a numerical algorithm based on the Maximum Entropy Method. Comparisons with experimental data and numerical simulations show that this new approach is able to recover the real unknown concentration distribution from experimental profiles with an accuracy better than 3%.

  9. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  10. Using spin-label W-band EPR to study membrane fluidity profiles in samples of small volume

    NASA Astrophysics Data System (ADS)

    Mainali, Laxman; Hyde, James S.; Subczynski, Witold K.

    2013-01-01

    Conventional and saturation-recovery (SR) EPR at W-band (94 GHz) using phosphatidylcholine spin labels (labeled at the alkyl chain [n-PC] and headgroup [T-PC]) to obtain profiles of membrane fluidity has been demonstrated. Dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol have been studied, and the results have been compared with similar studies at X-band (9.4 GHz) (L. Mainali, J.B. Feix, J.S. Hyde, W.K. Subczynski, J. Magn. Reson. 212 (2011) 418-425). Profiles of the spin-lattice relaxation rate (T1-1) obtained from SR EPR measurements for n-PCs and T-PC were used as a convenient quantitative measure of membrane fluidity. Additionally, spectral analysis using Freed's MOMD (microscopic-order macroscopic-disorder) model (E. Meirovitch, J.H. Freed J. Phys. Chem. 88 (1984) 4995-5004) provided rotational diffusion coefficients (R⊥ and R||) and order parameters (S0). Spectral analysis at X-band provided one rotational diffusion coefficient, R⊥. T1-1, R⊥, and R|| profiles reflect local membrane dynamics of the lipid alkyl chain, while the order parameter shows only the amplitude of the wobbling motion of the lipid alkyl chain. Using these dynamic parameters, namely T1-1, R⊥, and R||, one can discriminate the different effects of cholesterol at different depths, showing that cholesterol has a rigidifying effect on alkyl chains to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. The nondynamic parameter, S0, shows that cholesterol has an ordering effect on alkyl chains at all depths. Conventional and SR EPR measurements with T-PC indicate that cholesterol has a fluidizing effect on phospholipid headgroups. EPR at W-band provides more detailed information about the depth-dependent dynamic organization of the membrane compared with information obtained at X-band. EPR at W-band has the potential to be a powerful tool for studying membrane fluidity in samples of small volume, ˜30 nL, compared with a representative sample volume of ˜3 μL at X-band.

  11. Physical and Chemical Behaviors of HCl on Ice Surface: Insights from an XPS and NEXAFS Study

    NASA Astrophysics Data System (ADS)

    Kong, X.; Waldner, A.; Orlando, F.; Birrer, M.; Artiglia, L.; Ammann, M.; Bartels-Rausch, T.

    2016-12-01

    Ice and snow play active roles for the water cycle, the energy budget of the Earth, and environmental chemistry in the atmosphere and cryosphere. Trace gases can be taken up by ice, and physical and chemical fates of the impurities could modify surface properties significantly and consequently influence atmospheric chemistry and the climate system. However, the understanding of chemical behaviour of impurities on ice surface are very poor, which is largely limited by the difficulties to apply high sensitivity experimental approaches to ambient air conditions, e.g. studies of volatile surfaces, because of the strict requirements of vacuum experimental conditions. In this study, we employed synchrotron-based X-ray photoelectron spectroscopy (XPS) and partial electron yield Near Edge X-ray Absorption Fine Structure (NEXAFS) in a state-of-the-art near-ambient pressure photoelectron (NAPP) spectroscopy end station. The NAPP enables to utilize the surface sensitive experimental methods, XPS and NEXAFS, on volatile surfaces, i.e. ice at temperatures approaching 0°C. XPS and NEXAFS together provide unique information of hydrogen bonding network, dopants surface concentration, dopant depth profile, and acidic dissociation on the surfaces1. Taking the advantages of the highly sensitive techniques, the adsorption, dissociation and depth profile of Hydrogen Chloride (HCl) on ice were studied. In brief, two states of Chloride on ice surface are identified from the adsorbed HCl, and they are featured with different depth profiles along the ice layers. Combining our results and previously reported constants from literatures (e.g. HCl diffusion coefficients in ice)2, a layered kinetic model has been constructed to fit the depth profiles of two states of Chloride. On the other side, pure ice and doped ice are compared for their surface structure change caused by temperature and the presence of HCl, which shows how the strong acid affect the ice surface in turn. 1. Orlando, F., et al., Top Catal 2016, 59, 591-604. 2. Huthwelker, T.; Malmstrom, M. E.; Helleis, F.; Moortgat, G. K.; Peter, T., J Phys Chem A 2004, 108, 6302-6318.

  12. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles

    PubMed Central

    Abbott, Sunshine S.; Harrison, T. Mark; Schmitt, Axel K.; Mojzsis, Stephen J.

    2012-01-01

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85–3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85–3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840–875 °C) than do older or younger zircons or zircon domains (approximately 630–750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB. PMID:22869711

  13. Lignin characteristics in soil profiles of different plant communities in a subtropical mixed forest in Central China

    NASA Astrophysics Data System (ADS)

    Liu, F.; Wang, X.

    2016-12-01

    Lignin is widely considered as a major source of stable soil carbon, its content and degradation states are important indicators of soil carbon quality and stability. Few studies have explored the effects of plant communities on lignin characteristics in soils, and studies on lignin characteristics across soil depths resulted in contradictory findings. In this study, we investigated the lignin contents, their degradation states in the soil aggregates across three soil depths for four major plant communities in a subtropical mixed forest in central China. We found that lignin content in the litter of two deciduous species (Carpinus fargesii CF and Fagus Lucida FL) are higher than that in the two evergreen species ( Cyclobalanopsis multinervis CM and Schima parviflora SP). These differences maintained in the soil with a diminished scale. Lignin content showed a decreased trend in soil profiles of all plant communities, but no significant differences of degradation states were observed. The distribution of aggregation fractions was significantly different among plant communities, the SP community have higher percent of >2000 μm fraction (50.46%) and lower percent of <0.25 μm fraction (12.87%) than the CF community (40.05%, 21.90% respectively). The lignin content increased with decreasing aggregations size, however, no significant differences of lignin degradation states was observed among the four size aggregations. These results collectively reveal the influence of plant communities on lignin characteristics in soil, probably through litter input. Similar degradation states of lignin across soil profile and different size aggregates emphasized the importance of lignin movements association with soil water. This knowledge of lignin characteristics across soil profile can improve our understanding of soil carbon stability at different depths and how it may respond to changes in soil conditions.

  14. Petrologically-based Electrical Profiles vs. Geophysical Observations through the Upper Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Gaillard, F.; Massuyeau, M.; Sifre, D.; Tarits, P.

    2013-12-01

    Mineralogical transformations in the up-welling mantle play a critical role on the dynamics of mass and heat transfers at mid-ocean-ridgeS. The melting event producing ridge basalts occur at 60 km depth below the ridge axis, but because of small amounts of H2O and CO2 in the source region of MOR-basalts, incipient melting can initiate at much greater depth. Such incipient melts concentrate incompatible elements, and are particularly rich in volatile species. These juices evolve from carbonatites, carbonated basalts, to CO2-H2O-rich basalts as recently exposed by petrological surveys; the passage from carbonate to silicate melts is a complex pathway that is strongly non-linear. This picture has recently been complicated further by studies showing that oxygen increasingly partitions into garnet as pressure increases; this implies that incipient melting may be prevented at depth exceeding 200 km because not enough oxygen is available in the system to stabilize carbonate melts. The aim of this work is twofold: - We modelled the complex pathway of mantle melting in presence of C-O-H volatiles by adjusting the thermodynamic properties of mixing in the multi-component C-O-H-melt system. This allows us to calculate the change in melt composition vs. depth following any sortS of adiabat. - We modelled the continuous change in electrical properties from carbonatites, carbonated basalts, to CO2-H2O-rich basalts. We then successfully converted this petrological evolution along a ridge adiabat into electrical conductivity vs. depth signal. The discussion that follows is about comparison of this petrologically-based conductivity profile with the recent profiles obtained by inversion of the long-period electromagnetic signals from the East-Pacific-Rise. These geophysically-based profiles reveal the electrical conductivity structure down to 400 km depth and they show some intriguing highly conductive sections. We will discuss heterogeneity in electrical conductivity of the upper mantle underneath the ridge in terms of melting processes. Our prime conclusion is that the redox melting process, universally predicted by petrological models, might not be universal and that incipient melting can extend down to the transition zone.

  15. SU-E-T-82: A Study On Enhanced Dynamic Wedge (EDW) Dosimetry Using 2D Seven29 Ion Chamber Array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aparna

    2015-06-15

    Purpose: To study the dosimetric properties of Enhanced Dynamic Wedge (EDW) using PTW Seven29 ion chamber array Methods: PTW Seven29 ion chamber array and Solid Water phantoms for different depths were used for the study. The study was carried out in Varian Clinac ix with photon energies, 6MV & 15MV. Primarily the solid water phantoms with the 2D array were scanned using a CT scanner (GE Optima 580) at different depths. These scanned images were used for EDW planning in an Eclipse treatment planning system (version 10). Planning was done for different wedge angles and for different depths for 6MVmore » & 15MV. A dose of 100 CGy was delivered in each cases. For each delivery, calculated the Monitoring Unit (MU) required. Same set-up was created before delivering the plans in Varian Clinac-ix. For each clinically relevant depth and for different wedge angles, the same MU was delivered as calculated. Different wedged dose distributions where reconstructed from the measured 2D array data using the in-house developed excel program. Results: It is observed that the shoulder like region in the profile which reduces as depth increases. For the same depth and energy, the percentage difference between planned and measured dose is lesser than 3%. For smaller wedge angles, the percentage difference is found to be greater than 3% for the largest wedge angle. Standard deviation between measured doses at shoulder region for planned and measured profiles is 0.08 and 0.02 respectively. Standard deviations between planned and measured wedge factors for different depths (2.5cm, 5cm, 10cm, and 15cm) are (0.0021, 0.0007, 0.0050, 0.0001) for 6MV and (0.0024, 0.0191, 0.0013, 0.0005) for 15MV respectively. Conclusion: The 2D Seven29 ion chamber array is a good tool for the Enhanced Dynamic Wedge (EDW) dosimetry.« less

  16. Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles

    NASA Astrophysics Data System (ADS)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2014-09-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.

  17. Magnetic nonuniformity and thermal hysteresis of magnetism in a manganite thin film.

    PubMed

    Singh, Surendra; Fitzsimmons, M R; Lookman, T; Thompson, J D; Jeen, H; Biswas, A; Roldan, M A; Varela, M

    2012-02-17

    We measured the chemical and magnetic depth profiles of a single crystalline (La(1-x)Pr(x))(1-y)Ca(y)MnO(3-δ) (x=0.52±0.05, y=0.23±0.04, δ=0.14±0.10) film grown on a NdGaO(3) substrate using x-ray reflectometry, electron microscopy, electron energy-loss spectroscopy, and polarized neutron reflectometry. Our data indicate that the film exhibits coexistence of different magnetic phases as a function of depth. The magnetic depth profile is correlated with a variation of chemical composition with depth. The thermal hysteresis of ferromagnetic order in the film suggests a first-order ferromagnetic transition at low temperatures.

  18. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  19. Electromagnetic Surveying in the Mangrove Lakes Region of Everglades National Park

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Price, R.; Frankovich, T.; Fourqurean, J.

    2015-12-01

    The Mangrove Lakes are an interconnected set of shallow (~ 1m), brackish lake and creek systems on the southern margin of the Everglades adjacent to Florida Bay. Current efforts associated with the Comprehensive Everglades Restoration Plan (CERP) aim to increase freshwater flow into this region. This study describes preliminary results of geophysical surveys in the lakes conducted to assess changes in the groundwater chemistry as part of a larger hydrologic and geochemical study in the Everglades Lakes region. Marine geophysical profiles were conducted in Alligator Creek (West Lake) and McCormick Creek systems in May, 2014. Data included marine electromagnetic (EM) profiles and soundings, water depth measurements, surface water conductivity and salinity measurements. A GSSI Profiler EMP-400 multi-frequency EM conductivity meter continuously recorded in-phase and quadrature field components at 1, 8, and 15 KHz. The system was deployed in a flat bottomed plastic kayak towed behind a motorized skiff. Lake water depths were continuously measured with a sounder/chart plotter which was calibrated with periodic sounding rod measurements. At periodic intervals during the survey, the profiling was stopped and surface water conductivity, temperature and salinity are recorded with a portable YSI probe on the tow boat. Over 40,000 discrete 3-frequency EM measurements were collected. The data were inverted to 2-layer models representing the water layer thickness and conductivity and the lake bottom conductivity. At spot locations, models were constrained with water depth soundings and surface water conductivity measurements. At other locations along the profiles, the water depth and conductivity were allowed to be free, but the free models were generally consistent with the constrained models. Multilayer sub-bottom models were also explored but were found to be poorly constrained. In West Lake, sub-bottom conductivities decreased from 400 mS/m in the west to 200 mS/m in the east indicating a general W to E decrease in groundwater salinity. In the McCormick Creek system, sub-bottom conductivities increased from 200 mS/m at the north end of Seven Palm Lake to over 650 mS/m at the southern end of Monroe Lake indicating a general N to S increase in ground water salinity. Additional profiles are planned in August, 2015.

  20. Using Nd and Sr isotopes to trace dust and volcanic inputs to soils on French Guadeloupe Island

    NASA Astrophysics Data System (ADS)

    Guo, J.; Pereyra, Y.; Ma, L.; Gaillardet, J.; Sak, P. B.; Bouchez, J.

    2017-12-01

    Soil is at the central part of the Critical Zone for its important roles in sustaining ecosystems and agriculture. At French Guadeloupe, a tropical humid volcanic island, previous studies have shown that the mineral nutrient elements such as K, Na, Ca, and Mg are highly depleted in the surface soil. And mineral nutrients introduced by dusts are an important mineral nutrient source for vegetation growth in this area. It is important to understand and quantify the sources of the mineral dust added to surface soils. Nd isotope ratios, due to their distinct signatures between two unique end-members in soils for this area: the young volcanic areas like Guadeloupe and the dust source region from the old continental shields like Sahara Desert, can be a robust tracer to understand this critical process. Nevertheless, Sr isotope ratios can trace the inputs of marine aerosols. Here we present a new Nd isotope study on Guadeloupe soil depth profiles, combined with previous Sr isotope data, to fingerprint the sources of dust and volcanic inputs into soils. Soil samples from three surface profiles (0 - 1000cm deep) at different locations of the Guadeloupe Island were systematically analyzed. The results show distinct depth variations for Nd isotope signature along profiles. For all profiles, deep soils are relatively consisted with bedrock value (ɛNd: 5.05). But in surface soils (0-600cm), unlike Sr isotope ratios that are significantly modified by marine aerosol input, Nd isotope ratios show similar decrease (to ɛNd:-10) and frequent fluctuations toward the surface, suggesting dust is the dominant source of Nd in these soils. This conclusion is further supported by REE and other trace element data. Thus, with a simplified two end-member model, Sahara dust contributes the Nd percentages in soils varying from 10.7% at the deepest profiles to 69.5% on surface, showing a significant amount of Nd on the surface soil came from dust source. The deep soil profiles are also characterized by the presence of Nd isotope spikes with negative values, suggesting dust signatures at depth. Such a feature could be related to the presence of a paleo-soil surface at the spike depth that was buried by later volcanic eruption. Both Nd and Sr isotopes hence show dust and volcanic inputs are important factors for soil developments on French Guadeloupe Island.

  1. SU-D-207-07: Implementation of Full/half Bowtie Filter Model in a Commercial Treatment Planning System for Kilovoltage X-Ray Imaging Dose Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Alaei, P

    2015-06-15

    Purpose: To implement full/half bowtie filter models in a commercial treatment planning system (TPS) to calculate kilovoltage (kV) x-ray imaging dose of Varian On-Board Imager (OBI) cone beam CT (CBCT) system. Methods: Full/half bowtie filters of Varian OBI were created as compensator models in Pinnacle TPS (version 9.6) using Matlab software (version 2011a). The profiles of both bowtie filters were acquired from the manufacturer, imported into the Matlab system and hard coded in binary file format. A Pinnacle script was written to import each bowtie filter data into a Pinnacle treatment plan as a compensator. A kV x-ray beam modelmore » without including the compensator model was commissioned per each bowtie filter setting based on percent depth dose and lateral profile data acquired from Monte Carlo simulations. To validate the bowtie filter models, a rectangular water phantom was generated in the planning system and an anterior/posterior beam with each bowtie filter was created. Using the Pinnacle script, each bowtie filter compensator was added to the treatment plan. Lateral profile at the depth of 3cm and percent depth dose were measured using an ion chamber and compared with the data extracted from the treatment plans. Results: The kV x-ray beams for both full and half bowtie filter have been modeled in a commercial TPS. The difference of lateral and depth dose profiles between dose calculations and ion chamber measurements were within 6%. Conclusion: Both full/half bowtie filter models provide reasonable results in kV x-ray dose calculations in the water phantom. This study demonstrates the possibility of using a model-based treatment planning system to calculate the kV imaging dose for both full and half bowtie filter modes. Further study is to be performed to evaluate the models in clinical situations.« less

  2. Two-dimensional interferometric characterization of laser-induced refractive index profiles in bulk Topas polymer

    NASA Astrophysics Data System (ADS)

    Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf

    2018-01-01

    In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.

  3. Integrated use of surface geophysical methods for site characterization — A case study in North Kingstown, Rhode Island

    USGS Publications Warehouse

    Johnson, Carole D.; Lane, John W.; Brandon, William C.; Williams, Christine A.P.; White, Eric A.

    2010-01-01

    A suite of complementary, non‐invasive surface geophysical methods was used to assess their utility for site characterization in a pilot investigation at a former defense site in North Kingstown, Rhode Island. The methods included frequency‐domain electromagnetics (FDEM), ground‐penetrating radar (GPR), electrical resistivity tomography (ERT), and multi‐channel analysis of surface‐wave (MASW) seismic. The results of each method were compared to each other and to drive‐point data from the site. FDEM was used as a reconnaissance method to assess buried utilities and anthropogenic structures; to identify near‐surface changes in water chemistry related to conductive leachate from road‐salt storage; and to investigate a resistive signature possibly caused by groundwater discharge. Shallow anomalies observed in the GPR and ERT data were caused by near‐surface infrastructure and were consistent with anomalies observed in the FDEM data. Several parabolic reflectors were observed in the upper part of the GPR profiles, and a fairly continuous reflector that was interpreted as bedrock could be traced across the lower part of the profiles. MASW seismic data showed a sharp break in shear wave velocity at depth, which was interpreted as the overburden/bedrock interface. The MASW profile indicates the presence of a trough in the bedrock surface in the same location where the ERT data indicate lateral variations in resistivity. Depths to bedrock interpreted from the ERT, MASW, and GPR profiles were similar and consistent with the depths of refusal identified in the direct‐push wells. The interpretations of data collected using the individual methods yielded non‐unique solutions with considerable uncertainty. Integrated interpretation of the electrical, electromagnetic, and seismic geophysical profiles produced a more consistent and unique estimation of depth to bedrock that is consistent with ground‐truth data at the site. This test case shows that using complementary techniques that measure different properties can be more effective for site characterization than a single‐method investigation.

  4. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1989-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  5. An analysis of the vertical structure equation for arbitrary thermal profiles

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1987-01-01

    The vertical structure equation is a singular Sturm-Liouville problem whose eigenfunctions describe the vertical dependence of the normal modes of the primitive equations linearized about a given thermal profile. The eigenvalues give the equivalent depths of the modes. The spectrum of the vertical structure equation and the appropriateness of various upper boundary conditions, both for arbitrary thermal profiles were studied. The results depend critically upon whether or not the thermal profile is such that the basic state atmosphere is bounded. In the case of a bounded atmosphere it is shown that the spectrum is always totally discrete, regardless of details of the thermal profile. For the barotropic equivalent depth, which corresponds to the lowest eigen value, upper and lower bounds which depend only on the surface temperature and the atmosphere height were obtained. All eigenfunctions are bounded, but always have unbounded first derivatives. It was proved that the commonly invoked upper boundary condition that vertical velocity must vanish as pressure tends to zero, as well as a number of alternative conditions, is well posed. It was concluded that the vertical structure equation always has a totally discrete spectrum under the assumptions implicit in the primitive equations.

  6. Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS

    DOE PAGES

    Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine; ...

    2018-04-17

    Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less

  7. Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine

    Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less

  8. Principal component analysis of TOF-SIMS spectra, images and depth profiles: an industrial perspective

    NASA Astrophysics Data System (ADS)

    Pacholski, Michaeleen L.

    2004-06-01

    Principal component analysis (PCA) has been successfully applied to time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra, images and depth profiles. Although SIMS spectral data sets can be small (in comparison to datasets typically discussed in literature from other analytical techniques such as gas or liquid chromatography), each spectrum has thousands of ions resulting in what can be a difficult comparison of samples. Analysis of industrially-derived samples means the identity of most surface species are unknown a priori and samples must be analyzed rapidly to satisfy customer demands. PCA enables rapid assessment of spectral differences (or lack there of) between samples and identification of chemically different areas on sample surfaces for images. Depth profile analysis helps define interfaces and identify low-level components in the system.

  9. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  10. Silver/oxygen depth profile in coins by using laser ablation, mass quadrupole spectrometer and X-rays fluorescence

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Torrisi, L.; Caridi, F.; Sayed, R.; Gentile, C.; Mondio, G.; Serafino, T.; Castrizio, E. D.

    2013-05-01

    Silver coins belonging to different historical periods were investigated to determine the Ag/O atomic ratio depth profiles. Laser ablation has been employed to remove, in high vacuum, the first superficial layers of the coins. Mass quadrupole spectrometry has been used to detect the Ag and the O atomic elements vaporized from the coin surface. The depth profile allowed to determine the thickness of the oxidation layer indicating that, in general, it is high in old coins. A complementary technique, using scanning electron microscope and the associated XRF microprobe, have been devoted to confirm the measurements of Ag/O atomic ratio measured with the laser-coupled mass spectrometry. The oxidation layer thicknesses range between about 25 and 250 microns.

  11. Electrophysiological mapping of the accessory olfactory bulb of the rabbit (Oryctolagus cuniculus).

    PubMed

    van Groen, T; Ruardy, L; da Silva, F H

    1986-07-01

    Field potentials elicited by electrical stimulation of the vomeronasal nerve were measured in the accessory olfactory bulb of the rabbit. Maps were made of the distribution of surface field potentials and of the corresponding depth profiles. The surface maps followed closely the contours of the accessory olfactory bulb: at the frontal border the field potential tended to zero and at the center of the structure the field potential attained a maximum. Depth profiles of the field potentials through the accessory olfactory bulb presented a surface-negative wave and, in depth, a positive wave. The polarity reversal occurred at the deep part of the granule cell layer. The zero equipotential line followed closely the curvature of the granule cell layer. Current source density analysis of the depth profiles revealed a main sink at the external plexiform and granule cell layers. This indicates that the main activity in the accessory olfactory bulb is generated by the synapses between the mitral cells and the granule cells as is found in the main olfactory bulb.

  12. Characterization of drug-eluting stent (DES) materials with cluster secondary ion mass spectrometry (SIMS)

    NASA Astrophysics Data System (ADS)

    Mahoney, Christine M.; Patwardhan, Dinesh V.; Ken McDermott, M.

    2006-07-01

    Secondary ion mass spectrometry (SIMS) employing an SF 5+ polyatomic primary ion source was utilized to analyze several materials commonly used in drug-eluting stents (DES). Poly(ethylene- co-vinyl acetate) (PEVA), poly(lactic- co-glycolic acid) (PLGA) and various poly(urethanes) were successfully depth profiled using SF 5+ bombardment. The resultant molecular depth profiles obtained from these polymeric films showed very little degradation in molecular signal as a function of increasing SF 5+ primary ion dose when experiments were performed at low temperatures (signal was maintained for doses up to ˜5 × 10 15 ions/cm 2). Temperature was determined to be an important parameter in both the success of the depth profiles and the mass spectral analysis of the polymers. In addition to the pristine polymer films, paclitaxel (drug released in Taxus™ stent) containing PLGA films were also characterized, where it was confirmed that both drug and polymer signals could be monitored as a function of depth at lower paclitaxel concentrations (10 wt%).

  13. Tracking the Subsurface Signal of Decadal Climate Warming to Quantify Vertical Groundwater Flow Rates

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Kurylyk, B. L.

    2017-12-01

    Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.

  14. XPS and bioactivity study of the bisphosphonate pamidronate adsorbed onto plasma sprayed hydroxyapatite coatings

    NASA Astrophysics Data System (ADS)

    McLeod, Kate; Kumar, Sunil; Smart, Roger St. C.; Dutta, Naba; Voelcker, Nicolas H.; Anderson, Gail I.; Sekel, Ron

    2006-12-01

    This paper reports the use of X-ray photoelectron spectroscopy (XPS) to investigate bisphosphonate (BP) adsorption onto plasma sprayed hydroxyapatite (HA) coatings commonly used for orthopaedic implants. BPs exhibit high binding affinity for the calcium present in HA and hence can be adsorbed onto HA-coated implants to exploit their beneficial properties for improved bone growth at the implant interface. A rigorous XPS analysis of pamidronate, a commonly used nitrogenous BP, adsorbed onto plasma sprayed HA-coated cobalt-chromium substrates has been carried out, aimed at: (a) confirming the adsorption of this BP onto HA; (b) studying the BP diffusion profile in the HA coating by employing the technique of XPS depth profiling; (c) confirming the bioactivity of the adsorbed BP. XPS spectra of plasma sprayed HA-coated discs exposed to a 10 mM aqueous BP solution (pamidronate) for periods of 1, 2 and 24 h showed nitrogen and phosphorous photoelectron signals corresponding to the BP, confirming its adsorption onto the HA substrate. XPS depth profiling of the 2 h BP-exposed HA discs showed penetration of the BP into the HA matrix to depths of at least 260 nm. The bioactivity of the adsorbed BP was confirmed by the observed inhibition of osteoclast (bone resorbing) cell activity. In comparison to the HA sample, the HA sample with adsorbed BP exhibited a 25-fold decrease in primary osteoclast cells.

  15. Inorganic material profiling using Arn+ cluster: Can we achieve high quality profiles?

    NASA Astrophysics Data System (ADS)

    Conard, T.; Fleischmann, C.; Havelund, R.; Franquet, A.; Poleunis, C.; Delcorte, A.; Vandervorst, W.

    2018-06-01

    Retrieving molecular information by sputtering of organic systems has been concretized in the last years due to the introduction of sputtering by large gas clusters which drastically eliminated the compound degradation during the analysis and has led to strong improvements in depth resolution. Rapidly however, a limitation was observed for heterogeneous systems where inorganic layers or structures needed to be profiled concurrently. As opposed to organic material, erosion of the inorganic layer appears very difficult and prone to many artefacts. To shed some light on these problems we investigated a simple system consisting of aluminum delta layer(s) buried in a silicon matrix in order to define the most favorable beam conditions for practical analysis. We show that counterintuitive to the small energy/atom used and unlike monoatomic ion sputtering, the information depth obtained with large cluster ions is typically very large (∼10 nm) and that this can be caused both by a large roughness development at early stages of the sputtering process and by a large mixing zone. As a consequence, a large deformation of the Al intensity profile is observed. Using sample rotation during profiling significantly improves the depth resolution while sample temperature has no significant effect. The determining parameter for high depth resolution still remains the total energy of the cluster instead of the energy per atom in the cluster.

  16. The Moho structure beneath the Yarlung Zangbo Suture and its implications: Evidence from 2000 kg large dynamite shots

    NASA Astrophysics Data System (ADS)

    Gao, R.; Li, H.; Li, W.; Lu, Z.; Guo, X.; WANG, Y.

    2017-12-01

    The YZS (Yarlung Zangbo Suture) is the collisional front between the Indian and Eurasian plates. The depth and geometry of the Moho thus provide first-order information for the restoration of complex geodynamic systems. Over the past three decades, numerous seismic experiments have been conducted across the YZS, including deep seismic reflection profiles, deep seismic soundings and broadband observation studies. However, there is strong disagreement concerning the character of the Moho along the YZS in Tibet. Hirn proposed an offset of more than 15 km along the Moho below the YZS according to wide-angle observations acquired by a Sino-French cooperative experiment. Jiang argued that the Moho exhibits a 20-km offset after analyzing multiple broadband seismic profiles across the YZS. Gao did not find any significant changes in the Moho depth using deep seismic reflection profile data across the western YZS. The above mentioned summary of previous findings shows that similar geophysical observations have yielded contrasting models. Due to the shortage of high-resolution geophysical data, the above controversial problems cannot currently be resolved effectively without improving the accuracy of available geophysical observations and consequently obtaining reliable evidence. The rapid development of the technology of deep seismic reflection profiling has provided an opportunity to resolve the above controversies. two deep seismic reflection profiles across the YZS(88°E) were deployed in 2015(Fig .1 -YZS-B). Four large dynamite shots with 2000 kg charges were employed to improve the signal-to-noise ratio (S/N) along the two transects(Fig .1 and Fig.2). The primary purpose of this experiment is to study images of the Moho both adjacent to and beneath the YZS using four large dynamite shots along two profiles. These four large shots were processed to combine two single-fold profiles. Our two single-fold profiles across the YZS clearly show the existence of a well-imaged Moho. The reflections from the Moho are clear with a narrow band of reflections that are typically <0.3 s between 21-25 s. The depth of the Moho is approximately 63-75 km across the entire profile (assuming an average crustal velocity of 6 km/s). A gap in the Moho is observed approximately 20 km north of the YZS, the amplitude of which is less than 6 km.

  17. How well Can We Classify SWOT-derived Water Surface Profiles?

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Wei, R.; Picamilh, C.; Durand, M. T.

    2015-12-01

    The upcoming Surface Water Ocean Topography (SWOT) mission will detect water bodies and measure water surface elevation throughout the globe. Within its continental high resolution mask, SWOT is expected to deliver measurements of river width, water elevation and slope of rivers wider than ~50 m. The definition of river reaches is an integral step of the computation of discharge based on SWOT's observables. As poorly defined reaches can negatively affect the accuracy of discharge estimations, we seek strategies to break up rivers into physically meaningful sections. In the present work, we investigate how accurately we can classify water surface profiles based on simulated SWOT observations. We assume that most river sections can be classified as either M1 (mild slope, with depth larger than the normal depth), or A1 (adverse slope with depth larger than the critical depth). This assumption allows the classification to be based solely on the second derivative of water surface profiles, with convex profiles being classified as A1 and concave profiles as M1. We consider a HEC-RAS model of the Sacramento River as a representation of the true state of the river. We employ the SWOT instrument simulator to generate a synthetic pass of the river, which includes our best estimates of height measurement noise and geolocation errors. We process the resulting point cloud of water surface heights with the RiverObs package, which delineates the river center line and draws the water surface profile. Next, we identify inflection points in the water surface profile and classify the sections between the inflection points. Finally, we compare our limited classification of simulated SWOT-derived water surface profile to the "exact" classification of the modeled Sacramento River. With this exercise, we expect to determine if SWOT observations can be used to find inflection points in water surface profiles, which would bring knowledge of flow regimes into the definition of river reaches.

  18. Depth-resolved multilayer pigment identification in paintings: combined use of laser-induced breakdown spectroscopy (LIBS) and optical coherence tomography (OCT).

    PubMed

    Kaszewska, Ewa A; Sylwestrzak, Marcin; Marczak, Jan; Skrzeczanowski, Wojciech; Iwanicka, Magdalena; Szmit-Naud, Elżbieta; Anglos, Demetrios; Targowski, Piotr

    2013-08-01

    A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.

  19. An evaluation method of the profile of plasma-induced defects based on capacitance-voltage measurement

    NASA Astrophysics Data System (ADS)

    Okada, Yukimasa; Ono, Kouichi; Eriguchi, Koji

    2017-06-01

    Aggressive shrinkage and geometrical transition to three-dimensional structures in metal-oxide-semiconductor field-effect transistors (MOSFETs) lead to potentially serious problems regarding plasma processing such as plasma-induced physical damage (PPD). For the precise control of material processing and future device designs, it is extremely important to clarify the depth and energy profiles of PPD. Conventional methods to estimate the PPD profile (e.g., wet etching) are time-consuming. In this study, we propose an advanced method using a simple capacitance-voltage (C-V) measurement. The method first assumes the depth and energy profiles of defects in Si substrates, and then optimizes the C-V curves. We applied this methodology to evaluate the defect generation in (100), (111), and (110) Si substrates. No orientation dependence was found regarding the surface-oxide layers, whereas a large number of defects was assigned in the case of (110). The damaged layer thickness and areal density were estimated. This method provides the highly sensitive PPD prediction indispensable for designing future low-damage plasma processes.

  20. Social network utilization (Facebook) & e-Professionalism among medical students

    PubMed Central

    Jawaid, Masood; Khan, Muhammad Hassaan; Bhutto, Shahzadi Nisar

    2015-01-01

    Objective: To find out the frequency and contents of online social networking (Facebook) among medical students of Dow University of Health Sciences. Methods: The sample of the study comprised of final year students of two medical colleges of Dow University of Health Sciences – Karachi. Systematic search for the face book profiles of the students was carried out with a new Facebook account. In the initial phase of search, it was determined whether each student had a Facebook account and the status of account as ‘‘private’’ ‘‘intermediate’’ or ‘‘public’’ was also sought. In the second phase of the study, objective information including gender, education, personal views, likes, tag pictures etc. were recorded for the publicly available accounts. An in depth qualitative content analysis of the public profiles of ten medical students, selected randomly with the help of random number generator technique was conducted. Results: Social networking with Facebook is common among medical students with 66.9% having an account out of a total 535 students. One fifth of profiles 18.9% were publicly open, 36.6% profiles were private and 56.9% were identified to have an intermediate privacy setting, having customized settings for the profile information. In-depth analysis of some public profiles showed that potentially unprofessional material mostly related to violence and politics was posted by medical students. Conclusion: The usage of social network (Facebook) is very common among students of the university. Some unprofessional posts were also found on students’ profiles mostly related to violence and politics. PMID:25878645

  1. Airborne Aerosol Closure Studies During PRIDE

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Livingston, John M.; Russell, Philip B.; Schmid, Beat; Reid, Jeff

    2000-01-01

    The Puerto Rico Dust Experiment (PRIDE) was conducted during June/July of 2000 to study the properties of Saharan dust aerosols transported across the Atlantic Ocean to the Caribbean Islands. During PRIDE, the NASA Ames Research Center six-channel (380 - 1020 nm) airborne autotracking sunphotometer (AATS-6) was operated aboard a Piper Navajo airplane alongside a suite of in situ aerosol instruments. The in situ aerosol instrumentation relevant to this paper included a Forward Scattering Spectrometer Probe (FSSP-100) and a Passive Cavity Aerosol Spectrometer Probe (PCASP), covering the radius range of approx. 0.05 to 10 microns. The simultaneous and collocated measurement of multi-spectral aerosol optical depth and in situ particle size distribution data permits a variety of closure studies. For example, vertical profiles of aerosol optical depth obtained during local aircraft ascents and descents can be differentiated with respect to altitude and compared to extinction profiles calculated using the in situ particle size distribution data (and reasonable estimates of the aerosol index of refraction). Additionally, aerosol extinction (optical depth) spectra can be inverted to retrieve estimates of the particle size distributions, which can be compared directly to the in situ size distributions. In this paper we will report on such closure studies using data from a select number of vertical profiles at Cabras Island, Puerto Rico, including measurements in distinct Saharan Dust Layers. Preliminary results show good agreement to within 30% between mid-visible aerosol extinction derived from the AATS-6 optical depth profiles and extinction profiles forward calculated using 60s-average in situ particle size distributions and standard Saharan dust aerosol refractive indices published in the literature. In agreement with tendencies observed in previous studies, our initial results show an underestimate of aerosol extinction calculated based on the in situ size distributions relative to the extinction obtained from the sunphotometer measurements. However, a more extensive analysis of all available AATS-6 and in situ size distribution data is necessary to ascertain whether the preliminary results regarding the degree of extinction closure is representative of the entire range of dust conditions encountered in PRIDE. Finally, we will compare the spectral extinction measurements obtained in PRIDE to similar data obtained in Saharan dust layers encountered above the Canary Islands during ACE-2 (Aerosol Characterization Experiment) in July 1997. Thus, the evolution of Saharan dust spectral properties during its transport across the Atlantic can be investigated, provided the dust origin and microphysical properties are found to be comparable.

  2. Lithospheric bending at subduction zones based on depth soundings and satellite gravity

    NASA Technical Reports Server (NTRS)

    Levitt, Daniel A.; Sandwell, David T.

    1995-01-01

    A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.

  3. Detection of Intermediate Mediterranean Waters in the Atlantic Ocean by ARGO Floats Data

    NASA Astrophysics Data System (ADS)

    Filyushkin, B. N.; Lebedev, K. V.; Kozhelupova, N. G.

    2017-11-01

    Peculiarities of the spatial distribution of intermediate Mediterranean waters (MW), which are the main source to maintain the heat and salt budgets at depths of 600-1500 m in the Atlantic Ocean, have been studied using the ARGO floats measurements database. About 75000 temperature and salinity profiles recorded by 900 ARGO floats in 2005-2014 in the Atlantic Ocean for latitudes from 20° to 50° N were used. To process these data, we used the ARGO-Based Model for Investigation of the Global Ocean (AMIGO). This technique allowed us for the first time to obtain a complete set of oceanographic characteristics up to a depth of 2000 m for different time averaging intervals (month, season, years). Joint analysis of the temperature, salinity, and velocity distributions at 700-1000 m depths made it possible to revise the distribution of MW and their penetration into the western part of the ocean across the Mid-Atlantic Ridge (MAR). It is shown that at depths of 700 and 1000 m, the Mid-Atlantic Ridge is a barrier to advective propagation of salty waters (>35.5 PSU) to the west and is transparent to fragments of destroyed intrathermocline lenses (ITL) with lower salinity (<35.4 PSU). In the Atlantic region, from 20° to 35° N and from 30° to 70° W, individual lens profiles with an anomalous salinity distribution were sought using ARGO measurements to detect ITL and its separate fragments. About 24 000 measurements from 370 ARGO floats were analyzed, and only about 3% of them showed weak salinity anomalies at 800-1200 m depths. No ITL were found from these observations. Analysis of long-term drifting of individual floats recording temperature and salinity profiles with anomalous layers made it possible to study the nature of MW transport through the MAR.

  4. Automated X-ray quality control of catalytic converters

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2017-02-01

    Catalytic converters are devices attached to the exhaust system of automobile or other engines to eliminate or substantially reduce polluting emissions. They consist of coated substrates enclosed in a stainless steel housing. The substrate is typically made of ceramic honeycombs; however stainless steel foil honeycombs are also used. The coating is usually a slurry of alumina, silica, rare earth oxides and platinum group metals. The slurry also known as the wash coat is applied to the substrate in two doses, one on each end of the substrate; in some cases multiple layers of coating are applied. X-ray imaging is used to inspect the applied coating depth on a substrate to confirm compliance with quality requirements. Automated image analysis techniques are employed to measure the coating depth from the X-ray image. Coating depth is assessed by analysis of attenuation line profiles in the image. Edge detection algorithms with noise reduction and outlier rejection are used to calculate the coating depth at a specified point along an attenuation line profile. Quality control of the product is accomplished using several attenuation line profile regions for coating depth measurements, with individual pass or fail criteria specified for each region.

  5. Alkyl nitrate (C1-C3) depth profiles in the tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.

    2007-01-01

    This paper reports the first depth profile measurements of methyl, ethyl, isopropyl and n-propyl nitrates in the tropical Pacific Ocean. Depth profile measurements were made at 22 stations during the Project Halocarbon Air Sea Exchange cruise, in warm pool, equatorial, subequatorial, and gyre waters. The highest concentrations, up to several hundred pM of methyl nitrate, were observed in the central Pacific within 8 degrees of the equator. In general, alkyl nitrate levels were highest in the surface mixed layer, and decreased with depth below the mixed layer. The spatial distribution of the alkyl nitrates suggests that there is a strong source associated with biologically productive ocean regions, that is characterized by high ratios of methyl:ethyl nitrate. However, the data do not allow discrimination between direct biological emissions and photochemistry as production mechanisms. Alkyl nitrates were consistently detectable at several hundred meters depth. On the basis of the estimated chemical loss rate of these compounds, we conclude that deep water alkyl nitrates must be produced in situ. Possible sources include free radical processes initiated by radioactive decay or cosmic rays, enzymatically mediated reactions involving bacteria, or unidentified chemical mechanisms involving dissolved organic matter.

  6. Regional correlations of VS30 averaged over depths less than and greater than 30 meters

    USGS Publications Warehouse

    Boore, David M.; Thompson, Eric M.; Cadet, Héloïse

    2011-01-01

    Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (VS30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (VSz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that VSz is systematically larger for a given VSz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating VS30 to VSz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate VS30 from VSz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in logVS30 of ±1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to VS30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that VS30 is correlated with VSz for z as great as 400 m for sites of the KiK-net network, providing some justification for using VS30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.

  7. The effect of voxel size on dose distribution in Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Yani, Sitti; Dirgayussa, I. Gde E.; Rhani, Moh. Fadhillah; Haryanto, Freddy; Arif, Idam

    2015-09-01

    Recently, Monte Carlo (MC) calculation method has reported as the most accurate method of predicting dose distributions in radiotherapy. The MC code system (especially DOSXYZnrc) has been used to investigate the different voxel (volume elements) sizes effect on the accuracy of dose distributions. To investigate this effect on dosimetry parameters, calculations were made with three different voxel sizes. The effects were investigated with dose distribution calculations for seven voxel sizes: 1 × 1 × 0.1 cm3, 1 × 1 × 0.5 cm3, and 1 × 1 × 0.8 cm3. The 1 × 109 histories were simulated in order to get statistical uncertainties of 2%. This simulation takes about 9-10 hours to complete. Measurements are made with field sizes 10 × 10 cm2 for the 6 MV photon beams with Gaussian intensity distribution FWHM 0.1 cm and SSD 100.1 cm. MC simulated and measured dose distributions in a water phantom. The output of this simulation i.e. the percent depth dose and dose profile in dmax from the three sets of calculations are presented and comparisons are made with the experiment data from TTSH (Tan Tock Seng Hospital, Singapore) in 0-5 cm depth. Dose that scored in voxels is a volume averaged estimate of the dose at the center of a voxel. The results in this study show that the difference between Monte Carlo simulation and experiment data depend on the voxel size both for percent depth dose (PDD) and profile dose. PDD scan on Z axis (depth) of water phantom, the big difference obtain in the voxel size 1 × 1 × 0.8 cm3 about 17%. In this study, the profile dose focused on high gradient dose area. Profile dose scan on Y axis and the big difference get in the voxel size 1 × 1 × 0.1 cm3 about 12%. This study demonstrated that the arrange voxel in Monte Carlo simulation becomes important.

  8. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-21

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  9. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  10. Speckle variance OCT for depth resolved assessment of the viability of bovine embryos

    PubMed Central

    Caujolle, S.; Cernat, R.; Silvestri, G.; Marques, M. J.; Bradu, A.; Feuchter, T.; Robinson, G.; Griffin, D. K.; Podoleanu, A.

    2017-01-01

    The morphology of embryos produced by in vitro fertilization (IVF) is commonly used to estimate their viability. However, imaging by standard microscopy is subjective and unable to assess the embryo on a cellular scale after compaction. Optical coherence tomography is an imaging technique that can produce a depth-resolved profile of a sample and can be coupled with speckle variance (SV) to detect motion on a micron scale. In this study, day 7 post-IVF bovine embryos were observed either short-term (10 minutes) or long-term (over 18 hours) and analyzed by swept source OCT and SV to resolve their depth profile and characterize micron-scale movements potentially associated with viability. The percentage of en face images showing movement at any given time was calculated as a method to detect the vital status of the embryo. This method could be used to measure the levels of damage sustained by an embryo, for example after cryopreservation, in a rapid and non-invasive way. PMID:29188109

  11. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    EPA Science Inventory

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  12. How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Gutiérrez del Arroyo, O.; Silver, W. L.

    2016-12-01

    Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.

  13. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  14. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.

    2012-11-01

    Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July-September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.

  15. Depth profiling of galvanoaluminium-nickel coatings on steel by UV- and VIS-LIBS

    NASA Astrophysics Data System (ADS)

    Nagy, T. O.; Pacher, U.; Giesriegl, A.; Weimerskirch, M. J. J.; Kautek, W.

    2017-10-01

    Laser-induced depth profiling was applied to the investigation of galvanised steel sheets as a typical modern multi-layer coating system for environmental corrosion protection. The samples were ablated stepwise by the use of two different wavelengths of a frequency-converted Nd:YAG-laser, 266 nm and 532 nm, with a pulse duration of τ = 4 ns at fluences ranging from F = 50 to 250 J cm-2. The emission light of the resulting plasma was analysed as a function of both penetration depth and elemental spectrum in terms of linear correlation analysis. Elemental depth profiles were calculated and compared to EDX-cross sections of the cut sample. A proven mathematical algorithm designed for the reconstruction of layer structures from distorted emission traces caused by the Gaussian ablation profile can even resolve thin intermediate layers in terms of depth and thickness. The obtained results were compared to a purely thermally controlled ablation model. Thereby light-plasma coupling is suggested to be a possible cause of deviations in the ablation behaviour of Al. The average ablation rate h as a function of fluence F for Ni ranges from 1 to 3.5 μm/pulse for λ = 266 nm as well as for λ = 532 nm. In contrast, the range of h for Al differs from 2 to 4 μm/pulse for λ = 532 nm and 4 to 8 μm/pulse for λ = 266 nm in the exact same fluence range on the exact same sample.

  16. Fallon, Nevada FORGE Seismic Reflection Profiles

    DOE Data Explorer

    Blankenship, Doug; Faulds, James; Queen, John; Fortuna, Mark

    2018-02-01

    Newly reprocessed Naval Air Station Fallon (1994) seismic lines: pre-stack depth migrations, with interpretations to support the Fallon FORGE (Phase 2B) 3D Geologic model. Data along seven profiles (>100 km of total profile length) through and adjacent to the Fallon site were re-processed. The most up-to-date, industry-tested seismic processing techniques were utilized to improve the signal strength and coherency in the sedimentary, volcanic, and Mesozoic crystalline basement sections, in conjunction with fault diffractions in order to improve the identification and definition of faults within the study area.

  17. Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart

    2008-03-01

    Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.

  18. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.

    PubMed

    Wang, Yuheng; Zhang, Yajie; Lu, Guanghao; Feng, Xiaoshan; Xiao, Tong; Xie, Jing; Liu, Xiaoyan; Ji, Jiahui; Wei, Zhixiang; Bu, Laju

    2018-04-25

    Photon absorption-induced exciton generation plays an important role in determining the photovoltaic properties of donor/acceptor organic solar cells with an inverted architecture. However, the reconstruction of light harvesting and thus exciton generation at different locations within organic inverted device are still not well resolved. Here, we investigate the film depth-dependent light absorption spectra in a small molecule donor/acceptor film. Including depth-dependent spectra into an optical transfer matrix method allows us to reconstruct both film depth- and energy-dependent exciton generation profiles, using which short-circuit current and external quantum efficiency of the inverted device are simulated and compared with the experimental measurements. The film depth-dependent spectroscopy, from which we are able to simultaneously reconstruct light harvesting profile, depth-dependent composition distribution, and vertical energy level variations, provides insights into photovoltaic process. In combination with appropriate material processing methods and device architecture, the method proposed in this work will help optimizing film depth-dependent optical/electronic properties for high-performance solar cells.

  19. On the temperature dependence of Na migration in thin SiO 2 films during ToF-SIMS O 2+ depth profiling

    NASA Astrophysics Data System (ADS)

    Krivec, Stefan; Detzel, Thomas; Buchmayr, Michael; Hutter, Herbert

    2010-10-01

    The detection of Na in insulating samples by means of time of flight-secondary ion mass spectrometry (ToF-SIMS) depth profiling has always been a challenge. In particular the use of O 2+ as sputter species causes a severe artifact in the Na depth distribution due to Na migration under the influence of an internal electrical filed. In this paper we address the influence of the sample temperature on this artifact. It is shown that the transport of Na is a dynamic process in concordance with the proceeding sputter front. Low temperatures mitigated the migration process by reducing the Na mobility in the target. In the course of this work two sample types have been investigated: (i) A Na doped PMMA layer, deposited on a thin SiO 2 film. Here, the incorporation behavior of Na into SiO 2 during depth profiling is demonstrated. (ii) Na implanted into a thin SiO 2 film. By this sample type the migration behavior could be examined when defects, originating from the implantation process, are present in the SiO 2 target. In addition, we propose an approach for the evaluation of an implanted Na profile, which is unaffected by the migration process.

  20. In vivo confocal Raman microscopic determination of depth profiles of the stratum corneum lipid organization influenced by application of various oils.

    PubMed

    Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E

    2017-08-01

    The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  1. Radiographic film dosimetry of proton beams for depth‐dose constancy check and beam profile measurement

    PubMed Central

    Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in‐phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off‐axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread‐out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5 mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was reproducible within 10%. These large discrepancies were identified to have been contributed by film processor uncertainty across a layer of film and the misalignment of film edge to the frontal phantom surface. The deviations could drop from 5 to 2 mm in SOBP and from 10% to 4.5% at 5 cm depth in a well‐controlled processor condition (i.e., warm up). In addition to the validation of the calibration method done by the DD measurements, the concurrent film and IC measurement independently validated the model by showing the constancy of depth‐dependent calibration factors. For profile measurement, the film showed good agreement with ion chamber measurement. In agreement with the experimental findings, computationally obtained ratio of film dose to water dose assisted understanding of the trend of the film response by revealing relatively large and small variances of the response for DD and beam profile measurements, respectively. Conclusions are as follows. For proton beams, radiographic film proved to offer accurate beam profile measurements. The adaptive calibration method proposed in this study was validated. Using the method, film dosimetry could offer reasonably accurate DD constancy checks, when provided with a well‐controlled processor condition. Although the processor warming up can promote a uniform processing across a single layer of the film, the processing remains as a challenge. PACS number: 87 PMID:26103499

  2. Observations of pockmark flow structure in Belfast Bay, Maine, Part 1: current-induced mixing

    USGS Publications Warehouse

    Fandel, Christina L.; Lippmann, Thomas C.; Irish, James D.; Brothers, Laura L.

    2017-01-01

    Field observations of current profiles and temperature, salinity, and density structure were used to examine vertical mixing within two pockmarks in Belfast Bay, Maine. The first is located in 21 m water depth (sea level to rim), nearly circular in shape with a 45 m rim diameter and 12 m rim-to-bottom relief. The second is located in 25 m water depth, more elongated in shape with an approximately 80 m (36 m) major (minor) axis length at the rim, and 17 m relief. Hourly averaged current profiles were acquired from bottom-mounted acoustic Doppler current profilers deployed on the rim and center of each pockmark over successive 42 h periods in July 2011. Conductivity–temperature–depth casts at the rim and center of each pockmark show warmer, fresher water in the upper water column, evidence of both active and fossil thermocline structure 5–8 m above the rim, and well-mixed water below the rim to the bottom. Vertical velocities show up- and down-welling events that extend into the depths of each pockmark. An observed temperature change at both the rim and center occurs coincident with an overturning event below the rim, and suggests active mixing of the water column into the depths of each pockmark. Vertical profiles of horizontal velocities show depth variation at both the center and rim consistent with turbulent logarithmic current boundary layers, and suggest that form drag may possibly be influencing the local flow regime. While resource limitations prevented observation of the current structure and water properties at a control site, the acquired data suggest that active mixing and overturning within the sampled pockmarks occur under typical benign conditions, and that current flows are influenced by upstream bathymetric irregularities induced by distant pockmarks.

  3. Spectral analysis of the 1976 aeromagnetic survey of Harrat Rahat, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Blank, H. Richard; Sadek, Hamdy S.

    1983-01-01

    Harrat Rahat, an extensive plateau of Cenozoic mafic lava on the Precambrian shield of western Saudi Arabia, has been studied for its water resource and geothermal potential. In support of these investigations, the thickness of the lava sequence at more than 300 points was estimated by spectral analysis of low-level aeromagnetic profiles utilizing the integral Fourier transform of field intensity along overlapping profile segments. The optimum length of segment for analysis was determined to be about 40 km or 600 field samples. Contributions from two discrete magnetic source ensembles could be resolved on almost all spectra computed. The depths to these ensembles correspond closely to the flight height (300 m), and, presumably, to the mean depth to basement near the center of each profile segment. The latter association was confirmed in all three cases where spectral estimates could be directly compared with basement depths measured in drill holes. The maximum thickness estimated for the lava section is 380 m and the mean about 150 m. Data from an isopach map prepared from these results suggest that thickness variations are strongly influenced by pre-harrat, north-northwest-trending topography probably consequent on Cenozoic faulting. The thickest zones show a rough correlation with three axially-disposed volcanic shields.

  4. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley: Implications for earthquake ground-motion assessment

    USGS Publications Warehouse

    Stephenson, W.J.; Louie, J.N.; Pullammanappallil, S.; Williams, R.A.; Odum, J.K.

    2005-01-01

    Multichannel analysis of surface waves (MASW) and refraction microtremor (ReMi) are two of the most recently developed surface acquisition techniques for determining shallow shear-wave velocity. We conducted a blind comparison of MASW and ReMi results with four boreholes logged to at least 260 m for shear velocity in Santa Clara Valley, California, to determine how closely these surface methods match the downhole measurements. Average shear-wave velocity estimates to depths of 30, 50, and 100 m demonstrate that the surface methods as implemented in this study can generally match borehole results to within 15% to these depths. At two of the boreholes, the average to 100 m depth was within 3%. Spectral amplifications predicted from the respective borehole velocity profiles similarly compare to within 15 % or better from 1 to 10 Hz with both the MASW and ReMi surface-method velocity profiles. Overall, neither surface method was consistently better at matching the borehole velocity profiles or amplifications. Our results suggest MASW and ReMi surface acquisition methods can both be appropriate choices for estimating shearwave velocity and can be complementary to each other in urban settings for hazards assessment.

  5. Residual stress measurement in veneering ceramic by hole-drilling.

    PubMed

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Implantation of sodium ions into germanium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korol', V. M., E-mail: vkorol@ctsnet.ru; Kudriavtsev, Yu.

    The donor properties of Na atoms introduced by ion implantation into p-Ge with the resistivity 20-40 {Omega} cm are established for the first time. Na profiles implanted into Ge (the energies 70 and 77 keV and the doses (0.8, 3, 30) Multiplication-Sign 10{sup 14} cm{sup -2}) are studied. The doses and annealing temperatures at which the thermoprobe detects n-type conductivity on the sample surface are established. After implantation, the profiles exhibit an extended tail. The depth of the concentration maximum is in good agreement with the calculated mean projected range of Na ions R{sub p}. Annealing for 30 min atmore » temperatures of 250-700 Degree-Sign C brings about a redistribution of Na atoms with the formation of segregation peaks at a depth, which is dependent on the ion dose, and is accompanied by the diffusion of Na atoms to the surface with subsequent evaporation. After annealing at 700 Degree-Sign C less than 7% of the implanted ions remain in the matrix. The shape of the profile tail portions measured after annealing at temperatures 300-400 Degree-Sign C is indicative of the diffusion of a small fraction of Na atoms into the depth of the sample.« less

  7. Detecting the Water-soluble Chloride Distribution of Cement Paste in a High-precision Way.

    PubMed

    Chang, Honglei; Mu, Song

    2017-11-21

    To improve the accuracy of the chloride distribution along the depth of cement paste under cyclic wet-dry conditions, a new method is proposed to obtain a high-precision chloride profile. Firstly, paste specimens are molded, cured, and exposed to cyclic wet-dry conditions. Then, powder samples at different specimen depths are grinded when the exposure age is reached. Finally, the water-soluble chloride content is detected using a silver nitrate titration method, and chloride profiles are plotted. The key to improving the accuracy of the chloride distribution along the depth is to exclude the error in the powderization, which is the most critical step for testing the distribution of chloride. Based on the above concept, the grinding method in this protocol can be used to grind powder samples automatically layer by layer from the surface inward, and it should be noted that a very thin grinding thickness (less than 0.5 mm) with a minimum error less than 0.04 mm can be obtained. The chloride profile obtained by this method better reflects the chloride distribution in specimens, which helps researchers to capture the distribution features that are often overlooked. Furthermore, this method can be applied to studies in the field of cement-based materials, which require high chloride distribution accuracy.

  8. The use of various X-ray fluorescence analysis modalities for the investigation of historical paintings: The case study on the Late Gothic panel painting

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Trojek, T.; Čechák, T.; Šefců, R.; Chlumská, Š.

    2017-10-01

    The presence of heavy chemical elements in old pigments is possible to identify in historical paintings using X-ray fluorescence analysis (XRF). This is a non-destructive analytical method frequently used in examination of objects that require in situ analysis, where it is necessary to avoid damaging the object by taking samples. Different modalities are available, such as microanalysis, scanning selected areas, or depth profiling techniques. Surface scanning is particularly profitable since 2D element distribution maps are much more understandable than the results of individual analyses. Information on the layered structure of the painting can be also obtained by handheld portable systems. Results presented in our paper combine 2D element distribution maps obtained by scanning analysis, and depth profiling using conventional XRF. The latter is very suitable for objects of art, as it can be evaluated from data measured with portable XRF device. Depth profiling by conventional XRF is based on the differences in X-ray absorption in paint layers. The XRF technique was applied for analysis of panel paintings of the Master of the St George Altarpiece who was active in Prague in the 1470s and 1480s. The results were evaluated by taking micro-samples and performing a material analysis.

  9. Correlation of corneal thickness, endothelial cell density and anterior chamber depth with ocular surface temperature in normal subjects.

    PubMed

    Pattmöller, Johanna; Wang, Jiong; Zemova, Elena; Seitz, Berthold; Eppig, Timo; Langenbucher, Achim; Szentmáry, Nóra

    2015-09-01

    To analyze corneal surface temperature profile in a young and healthy study population and to determine the impact of corneal thickness (CT), anterior chamber depth (ACD), and endothelial cell density (ECD) on surface temperature. In this prospective, single-center study 61 healthy right eyes of 61 subjects without tear film pathologies (mean age 24.9 ± 6.7 years) were recruited. Ocular surface temperature (OST) was measured with the Ocular Surface Thermographer TG-1000. From Pentacam HR CT and ACD, and from specular microscopy ECD and central corneal thickness (CCT) were acquired. From the raw measurement data (OST, CT and ACD) we extracted a) local OST the corneal center and 3mm away from the center at the 3, 6, and 9 o'clock positions, and b) Zernike parameters Z1, Z2 and Z3 to evaluate the general temperature profile within a 6mm circular area around the center. Overall, there was no correlation between OST and CT, ACD or ECD. Local OST did not correlate with CT at any measurement position. On average local OST was highest at measurement positions where CT was lowest, but without reaching statistical significance. Baseline OST was highest at thin corneal regions and temperature decay over time was smallest in those regions. Z1, Z2 and Z3 correlated well with CT. In healthy subjects corneal thickness, endothelial cell density and anterior chamber depth have no effect on corneal surface temperature. The general temperature profile seems to be influenced by the corneal thickness profile effecting a higher temperature and lower decay at thinner corneal regions. Copyright © 2014. Published by Elsevier GmbH.

  10. Mars Sample Return: The Value of Depth Profiles

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.; hide

    2008-01-01

    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.

  11. uleSIMS characterization of silver reference surfaces

    NASA Astrophysics Data System (ADS)

    Palitsin, V. V.; Dowsett, M. G.; Mata, B. Guzmán de la; Oloff, I. W.; Gibbons, R.

    2006-07-01

    Ultra low energy SIMS (uleSIMS) is a high sensitivity analytical technique that is normally used for ultra shallow profiling at a depth resolution of up to1 nm. This work describes the use of uleSIMS as both a spectroscopic and depth-profiling tool for the characterization of the early stages of corrosion formed on reference surfaces of silver. These samples are being developed to help with the characterization of tarnished surfaces in a cultural heritage context, and uleSIMS enables the tarnishing to be studied from its very earliest stages due to its high sensitivity (ppm-ppb) and surface specificity. We show that, uleSIMS can be used effectively to study the surface chemistry and aid the development of reference surfaces themselves. In particular, handling contaminants, surface dust, and residues from polishing are relatively easy to identify allowing them to be separated from the parts of the mass spectrum specific to the early stages of corrosion.

  12. Enhanced Depth SD-OCT Images Reveal Characteristic Choroidal Changes in Patients With Vogt-Koyanagi-Harada Disease.

    PubMed

    Li, Mei; Liu, Qiuhui; Luo, Yan; Li, Yonghao; Lin, Shaofen; Lian, Ping; Yang, Qiufen; Li, Xiaofang; Liu, Xialin; Sadda, SriniVas; Lu, Lin

    2016-11-01

    To identify characteristic choroidal changes of patients with Vogt-Koyanagi-Harada (VKH) disease at different stages. Fifty-four patients with VKH in the acute uveitic or convalescent stages, 24 patients with central serous chorioretinopathy (CSC), and 54 normal participants were enrolled in this prospective, observational study. Enhanced depth imaging spectral-domain optical coherence tomography scans were captured for all subjects to allow for comparison of choroidal morphological findings. Numerous round or oval hyperreflective profiles with hyporeflective cores, corresponding to choroidal vessels, were observed in the choroid of control participants and patients with CSC; whereas the numbers of these profiles were markedly decreased in the choroid of VKH patients in both the acute uveitic and convalescent stages. A reduction in vascular profiles in the choroid is observed in VKH and may aid in the differentiation with disorders such as CSC. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:1004-1012.]. Copyright 2016, SLACK Incorporated.

  13. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  14. The effects of DRIE operational parameters on vertically aligned micropillar arrays

    NASA Astrophysics Data System (ADS)

    Miller, Kane; Li, Mingxiao; Walsh, Kevin M.; Fu, Xiao-An

    2013-03-01

    Vertically aligned silicon micropillar arrays have been created by deep reactive ion etching (DRIE) and used for a number of microfabricated devices including microfluidic devices, micropreconcentrators and photovoltaic cells. This paper delineates an experimental design performed on the Bosch process of DRIE of micropillar arrays. The arrays are fabricated with direct-write optical lithography without photomask, and the effects of DRIE process parameters, including etch cycle time, passivation cycle time, platen power and coil power on profile angle, scallop depth and scallop peak-to-peak distance are studied by statistical design of experiments. Scanning electron microscope images are used for measuring the resultant profile angles and characterizing the scalloping effect on the pillar sidewalls. The experimental results indicate the effects of the determining factors, etch cycle time, passivation cycle time and platen power, on the micropillar profile angles and scallop depths. An optimized DRIE process recipe for creating nearly 90° and smooth surface (invisible scalloping) has been obtained as a result of the statistical design of experiments.

  15. In-depth study of intra-Stark spectroscopy in the x-ray range in relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Oks, E.; Dalimier, E.; Faenov, A. Ya; Angelo, P.; Pikuz, S. A.; Pikuz, T. A.; Skobelev, I. Yu; Ryazanzev, S. N.; Durey, P.; Doehl, L.; Farley, D.; Baird, C.; Lancaster, K. L.; Murphy, C. D.; Booth, N.; Spindloe, C.; McKenna, P.; Neumann, N.; Roth, M.; Kodama, R.; Woolsey, N.

    2017-12-01

    Intra-Stark spectroscopy (ISS) is the spectroscopy within the quasistatic Stark profile of a spectral line. The present paper advances the ISS-based study of the relativistic laser-plasma interaction from our previous paper (Oks et al 2017 Opt. Express 25 1958). By improving the experimental conditions and the diagnostics, it provides an in-depth spectroscopic study of the simultaneous production of the Langmuir waves and of the ion acoustic turbulence at the surface of the relativistic critical density. It demonstrates a reliable reproducibility of the Langmuir-wave-induced dips at the same locations in the experimental profiles of Si XIV Ly-beta line, as well as of the deduced parameters (fields) of the Langmuir waves and ion acoustic turbulence in several individual 1 ps laser pulses and of the peak irradiances of 1-3 × 1020 W cm-2. Besides, this study employs for the first time the most rigorous condition of the dynamic resonance, on which the ISS phenomenon is based, compared to all previous studies in all kinds of plasmas in a wide range of electron densities. It shows how different interplays between the Langmuir wave field and the field of the ion acoustic turbulence lead to distinct spectral line profiles, including the disappearance of the Langmuir-wave-induced dips.

  16. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    NASA Astrophysics Data System (ADS)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  17. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    PubMed

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Geophysical Investigation Along the Great Miami River From New Miami to Charles M. Bolton Well Field, Cincinnati, Ohio

    USGS Publications Warehouse

    Sheets, R.A.; Dumouchelle, D.H.

    2009-01-01

    Three geophysical profiling methods were tested to help characterize subsurface materials at selected transects along the Great Miami River, in southwestern Ohio. The profiling methods used were continuous seismic profiling (CSP), continuous resistivity profiling (CRP), and continuous electromagnetic profiling (CEP). Data were collected with global positioning systems to spatially locate the data along the river. The depth and flow conditions of the Great Miami River limited the amount and quality of data that could be collected with the CSP and CRP methods. Data from the CSP were generally poor because shallow reflections (less than 5 meters) were mostly obscured by strong multiple reflections and deep reflections (greater than 5 meters) were sparse. However, modeling of CRP data indicated broad changes in subbottom geology, primarily below about 3 to 5 meters. Details for shallow electrical conductivity (resistivity) (less than 3 meters) were limited because of the 5-meter electrode spacing used for the surveys. For future studies of this type, a cable with 3-meter electrode spacing (or perhaps even 1-meter spacing) might best be used in similar environments to determine shallow electrical properties of the stream-bottom materials. CEP data were collected along the entire reach of the Great Miami River. The CRP and CEP data did not correlate well, but the CRP electrode spacing probably limited the correlation. Middle-frequency (3,510 hertz) and high-frequency (15,030 hertz) CEP data were correlated to water depth. Low-frequency (750 hertz) CEP data indicate shallow (less than 5-meter) changes in electrical conductivity. Given the variability in depth and flow conditions on a river such as the Great Miami, the CEP method worked better than either the CSP or CRP methods.

  19. Crustal shortening followed by extensional collapse of the Cordilleran orogenic belt in northwestern Montana: Evidence from vintage seismic reflection profiles acquired in the Swan Range and Swan Valley

    NASA Astrophysics Data System (ADS)

    Rutherford, B. S.; Speece, M. A.; Stickney, M. C.; Mosolf, J. G.

    2013-12-01

    Reprocessing of one 24-fold (96 channel) and four 30-fold (120 channel) 2D seismic reflection profiles have revealed crustal scale reflections in the Swan Range and adjacent Swan River Valley of northwestern Montana. The five reprocessed profiles constitute 142.6 of the 303.3 linear km acquired in 1983-84 by Techo of Denver, Colorado. The four 30-fold profiles used helicopter-assisted dynamite shooting (Poulter method) and the 24-fold profile used the Vibroseis method. Acquisition parameters were state of the art for the time. The Swan Range lies east of the Rocky Mountain Trench and is part of the Cordilleran foreland thrust belt where the Lewis thrust system emplaced a thick slab of Proterozoic Belt Supergroup strata eastward and over Paleozoic and Mesozoic rocks during the Late Cretaceous to early Paleocene Laramide orogeny. Deeply drilled borehole data are absent within the study area; however, we generated a synthetic seismogram from the Arco-Marathon 1 Paul Gibbs well (total depth=5418 m), located approximately 70 km west of the reprocessed profiles, and correlated the well data to surface seismic profiles. Large impedance contrasts in the log data are interpreted to be tholeiitic Moyie sills within the Prichard Formation argillite (Lower Belt), which produce strong reflection events in regional seismic sections and result in highly reflective, east-dipping events in the reprocessed profiles. We estimate a depth of 10 km (3 to 3.5 seconds) to the basal detachment of the Lewis thrust sheet. The décollement lies within Belt Supergroup strata to the west of the Swan River Valley before contacting unreflective, west-dipping crystalline basement beneath the Swan Range--a geometry that results in a wedge of eastward-thinning, autochthonous Belt rocks. Distinct fault-plane signatures from the west-dipping, range-bounding Swan fault--produced by extensional collapse of the over-thickened Cordillera--are not successfully imaged. However, reflections from Cenozoic half-graben fill suggest up to 1.5 km of Cenozoic basin filling sediments are present. Refraction tomography velocity modeling of distinct refracted arrivals, prevalent in the gathers, constrain a half-graben geometry for the Swan Valley. Signal attenuation within the low-velocity valley fill make correlation of reflectors at the depth of the décollement impossible underneath the Swan Valley. Prestack depth migration of the sections is anticipated to improve geometric constraints on major structural features of the Swan Range and Swan Valley.

  20. Degradation studies of Martian impact craters

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1991-01-01

    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.

  1. Impact of the geological structures on the groundwater potential using geophysical techniques in West Bani Mazar area, El Minia - Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mahmoud, Hussein Hosni; Kotb, Adel Diab Mohammed

    2017-06-01

    Establishment of the new agricultural projects in west Bani Mazar area, El Minia, Egypt needs a good knowledge about groundwater. Groundwater serves as the unique source of water supplies in the study area. Vertical Electrical Sounding technique is a convenient tool for groundwater exploration. This technique was utilized to illustrate the geoelectric succession, vertical and spatial extensions of the encountered layers, depth to water bearing layers and the structures affecting these layers. Profiling technique was carried out along a grid pattern using different half current electrode spacings (150 m, 300 m and 500 m) to clarify changes in resistivity values throughout the study area at different depths. Geoelectric layers B1 and B2 of the saturated zone are suitable for groundwater extraction in the study area. The resistivity values of the geoelectric layer B1 decrease towards the West direction, they decrease from 23.0 Ωm to 16.0 Ωm; and its thicknesses increase towards the SE direction from 12.0 m to 18.0 m. Whereas, the resistivity values of the geoelectric layer B2 decrease towards the NW direction from 40.0 Ωm to 26.5 Ωm; and its thicknesses vary from 34.0 m to 40.0 m. The depths to the upper surface of the water bearing layer B1 increase towards the NW direction from 44.0 m to 89.4 m. Based on the results obtained from the Vertical Electrical Soundings, four two-dimensional resistivity imaging profiles were measured at the selected sites. These 2-D resistivity profiles aim to determine depths to the water bearing layers, their thicknesses and the shallow structure. The inverted models of these profiles matched with the geoelectric sequence at these sites. In addition, a normal fault is detected at the northwestern part of the study area. According to the results obtained from this study it is clear that the groundwater in the area under consideration is occurred in the fractured limestone layers that belong to Eocene Age. Resistivity values of the water bearing layers increase with depth as a result of decreasing fracture density; and these values decreased towards the northwestern direction due to their proximity from the fault zone. The groundwater potential of these layers depends mainly on the lithologic composition and the geological structures affecting these layers. The secondary porosity of these limestone layers depends mainly on the degree of fracturing and fissuring. The proper sites to drill new productive wells were recommended, and the obtained data from drilling new well in the southeastern part of the study area coincide with the interpreted data of the different geophysical techniques.

  2. A non-steady-state condition in sediments at the gas hydrate stability boundary off West Spitsbergen: Evidence for gas hydrate dissociation or just dynamic methane transport

    NASA Astrophysics Data System (ADS)

    Treude, Tina; Krause, Stefan; Bertics, Victoria; Steinle, Lea; Niemann, Helge; Liebetrau, Volker; Feseker, Tomas; Burwicz, Ewa; Krastel, Sebastian; Berndt, Christian

    2015-04-01

    In 2008, a large area with several hundred methane plumes was discovered along the West Spitsbergen continental margin at water depths between 150 and 400 m (Westbrook et al. 2009). Many of the observed plumes were located at the boundary of gas hydrate stability (~400 m water depth). It was speculated that the methane escape at this depth was correlated with gas hydrate destabilization caused by recent increases in water temperatures recorded in this region. In a later study, geochemical analyses of authigenic carbonates and modeling of heat flow data combined with seasonal changes in water temperature demonstrated that the methane seeps were active already prior to industrial warming but that the gas hydrate system nevertheless reacts very sensitive to even seasonal temperature changes (Berndt et al. 2014). Here, we report about a methane seep site at the gas hydrate stability boundary (394 m water depth) that features unusual geochemical profiles indicative for non-steady state conditions. Sediment was recovered with a gravity corer (core length 210 cm) and samples were analyzed to study porewater geochemistry, methane concentration, authigenic carbonates, and microbial activity. Porewater profiles revealed two zones of sulfate-methane transition at 50 and 200 cm sediment depth. The twin zones were confirmed by a double peaking in sulfide, total alkalinity, anaerobic oxidation of methane, and sulfate reduction. d18O values sharply increased from around -2.8 ‰ between 0 and 126 cm to -1.2 ‰ below 126 cm sediment depth. While U/Th isotope measurements of authigenic seep carbonates that were collected from different depths of the core illustrated that methane seepage must be occurring at this site since at least 3000 years, the biogeochemical profiles suggest that methane flux must have been altered recently. By applying a multi-phase reaction-transport model using known initial parameters from the study site (e.g. water depth, temperature profile, salinity, and sediment surface concentrations of CH4, SO4, DIC, and POC) were able to show that the observed twin sulfate-methane transition zones are an ephemeral phenomenon occurring during increase of methane production in the sediment, which can be introduced by, e.g., gas hydrate dissociation. References Berndt, C., T. Feseker, T. Treude, S. Krastel, V. Liebetrau, H. Niemann, V. J. Bertics, I. Dumke, K. Dunnbier, B. Ferre, C. Graves, F. Gross, K. Hissmann, V. Huhnerbach, S. Krause, K. Lieser, J. Schauer and L. Steinle (2014). "Temporal constraints on hydrate-controlled methane seepage off svalbard." Science 343: 284-287. Westbrook, G. K., K. E. Thatcher, E. J. Rohling, A. M. Piotrowski, H. Pälike, A. H. Osborne, E. G. Nisbet, T. A. Minshull, M. Lanoiselle, R. H. James, V. Hühnerbach, D. Green, R. E. Fisher, A. J. Crocker, A. Chabert, C. Bolton, A. Beszczynska-Möller, C. Berndt and A. Aquilina (2009). "Escape of methane gas from the seabed along the West Spitsbergen continental margin." Geophys. Res. Let. 36: doi:10.1029/2009GL039191.

  3. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi

    2018-02-01

    Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.

  4. A Comparison of Microbial Community Structures by Depth and Season Under Switchgrass

    NASA Astrophysics Data System (ADS)

    Fansler, S. J.; Smith, J. L.; Bolton, H.; Bailey, V. L.

    2008-12-01

    As part of a multidisciplinary study of C sequestration in switchgrass production systems, the soil microbial community structure was monitored at 6 different depths (reaching 90 cm) in both spring and autumn. Microbial community structure was assessed using ribosomal intergenic spacer analysis (RISA), and primers were used specific to either bacteria or fungi, generating microbial community fingerprints for each taxonomic group. Diverse microbial communities for both groups were detected throughout the soil profile. It is notable that while community structure clearly changed with depth, there was the deepest soil samples still retained relatively diverse communities. Seasonally, differences are clearly evident within plots at the surface. As the plots were replicated, significant differences in the community fingerprints with depth and season are reported.

  5. A comparison of upper mantle subcontinental electrical conductivity for North America, Europe, and Asia.

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.

    1986-01-01

    Spherical harmonic analysis coefficients of the external and internal parts of the quiet-day geomagnetic field variations (Sq), separated for the N American, European, Central Asian and E Asian regions, were used to determine conductivity profiles to depths of about 600km by the Schmucker equivalent-substitute conductor method. All 3 regions showed a roughly exponential increase of conductivity with depth. Distinct discontinuities seemed to be evident near 255-300km and near 450-600km. Regional differences in the conductivity profiles were shown by the functional fittings to the data. For depths less than about 275km, the N American conductivities seemed to be significantly higher than the other regions. For depths greater than about 300km, the E Asian conductivities were largest. -Authors

  6. Quantitative secondary ion mass spectrometric analysis of secondary ion polarity in GaN films implanted with oxygen

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Minako; Sakaguchi, Isao; Adachi, Yutaka; Ohashi, Naoki

    2016-10-01

    Quantitative analyses of N and O ions in GaN thin films implanted with oxygen ions (16O+) were conducted by secondary ion mass spectrometry (SIMS). Positive (CsM+) and negative secondary ions extracted by Cs+ primary ion bombardment were analyzed for oxygen quantitative analysis. The oxygen depth profiles were obtained using two types of primary ion beams: a Gaussian-type beam and a broad spot beam. The oxygen peak concentrations in GaN samples were from 3.2 × 1019 to 7.0 × 1021 atoms/cm3. The depth profiles show equivalent depth resolutions in the two analyses. The intensity of negative oxygen ions was approximately two orders of magnitude higher than that of positive ions. In contrast, the O/N intensity ratio measured using CsM+ molecular ions was close to the calculated atomic density ratio, indicating that the SIMS depth profiling using CsM+ ions is much more effective for the measurements of O and N ions in heavy O-implanted GaN than that using negative ions.

  7. Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean.

    PubMed

    Gamo, Toshitaka; Shitashima, Kiminori

    2018-01-01

    Vertical profiles of potential temperature, salinity, and some chemical components were obtained at a trench station (29°05'N, 142°51'E; depth = 9768 m) in the Izu-Ogasawara (Bonin) Trench in 1984 and 1994 to characterize the hadal waters below ∼6000 m depth. We compared portions of both the 1984 and 1994 profiles with nearby data obtained between 1976 and 2013. Results demonstrated that the hadal waters had slightly higher potential temperature and nitrate and lower dissolved oxygen than waters at sill depths (∼6000 m) outside the trench, probably due to the effective accumulation of geothermal heat and active biological processes inside the trench. The silicate, iron, and manganese profiles in 1984 showed slight but significant increases below ∼6000 m depth, suggesting that these components may have been intermittently supplied from the trench bottom. Significant amounts of 222 Rn in excess over 226 Ra were detected in the hadal waters up to 2675 m from the bottom, reflecting laterally supplied 222 Rn from the trench walls.

  8. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.; Bracher, A.

    2013-04-01

    Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m-3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July-September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.

  9. Determining change of bathymetry with GPR method in Ordu-Giresun, a sea-filled airport in the Black Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2016-04-01

    Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the middle point of the runway, representing zero depth of the radargrams of the profiles. To determine the amount of the sinking of the rock filled layer, the first sea level were lined at 3.5 m in depth on the right side depth axes of the radargrams. The second, bathymetry changing lines were placed on the interested radargrams. Finally, differences between the bottom boundary lines of the filled layer and bathymetry lines were compared. The results showed that GPR method could be applied successfully to determine the depth of the rock filled layer in Black Sea and the small amount of the sinking of the bathymetry. Acknowledgement This project has been supported by Cengiz - Içtaş Joint Venture-Turkey. This study is a contribution to the EU funded COST action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).

  10. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  11. Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depth

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich

    2006-08-01

    The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution process. Finally, clear evidence of injection of hydrogenated ionic species from the atmosphere into the sample during poling was obtained from the growth of the infrared extinction peak associated with OH radicals.

  12. Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.

    PubMed

    Chetty, Indrin J; Charland, Paule M

    2002-10-21

    We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.

  13. Structural analysis of the outermost hair surface using TOF-SIMS with gas cluster ion beam sputtering.

    PubMed

    Lshikawa, Kazutaka; Okamoto, Masayuki; Aoyagi, Satoka

    2016-06-28

    A hair cuticle, which consists of flat overlapping scales that surround the hair fiber, protects inner tissues against external stimuli. The outermost surface of the cuticle is covered with a thin membrane containing proteins and lipids called the epicuticle. In a previous study, the authors conducted a depth profile analysis of a hair cuticle's amino acid composition to characterize its multilayer structure. Time-of-flight secondary ion mass spectrometry with a bismuth primary ion source was used in combination with the C60 sputtering technique for the analysis. It was confirmed that the lipids and cysteine-rich layer exist on the outermost cuticle surface, which is considered to be the epicuticle, though the detailed structure of the epicuticle has not been clarified. In this study, depth profile analysis of the cuticle surface was conducted using the argon gas cluster ion beam (Ar-GCIB) sputtering technique, in order to characterize the structure of the epicuticle. The shallow depth profile of the cuticle surface was investigated using an Ar-GCIB impact energy of 5 keV. Compared to the other amino acid peaks rich in the epicuticle, the decay of 18-methyleicosanic acid (18-MEA) thiolate peak was the fastest. This result suggests that the outermost surface of the hair is rich in 18-MEA. In conclusion, our results indicate that the outermost surfaces of cuticles have a multilayer (lipid and protein layers), which is consistent with the previously proposed structure.

  14. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kalman filter (EnKF)

    NASA Astrophysics Data System (ADS)

    Zhang, Shuwen; Li, Haorui; Zhang, Weidong; Qiu, Chongjian; Li, Xin

    2005-11-01

    The paper investigates the ability to retrieve the true soil moisture profile by assimilating near-surface soil moisture into a soil moisture model with an ensemble Kaiman filter (EnKF) assimilation scheme, including the effect of ensemble size, update interval and nonlinearities in the profile retrieval, the required time for full retrieval of the soil moisture profiles, and the possible influence of the depth of the soil moisture observation. These questions are addressed by a desktop study using synthetic data. The “true” soil moisture profiles are generated from the soil moisture model under the boundary condition of 0.5 cm d-1 evaporation. To test the assimilation schemes, the model is initialized with a poor initial guess of the soil moisture profile, and different ensemble sizes are tested showing that an ensemble of 40 members is enough to represent the covariance of the model forecasts. Also compared are the results with those from the direct insertion assimilation scheme, showing that the EnKF is superior to the direct insertion assimilation scheme, for hourly observations, with retrieval of the soil moisture profile being achieved in 16 h as compared to 12 days or more. For daily observations, the true soil moisture profile is achieved in about 15 days with the EnKF, but it is impossible to approximate the true moisture within 18 days by using direct insertion. It is also found that observation depth does not have a significant effect on profile retrieval time for the EnKF. The nonlinearities have some negative influence on the optimal estimates of soil moisture profile but not very seriously.

  15. The stable isotope composition of halite and sulfate of hyperarid soils and its relation to aqueous transport

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald; Barnes, Jaime D.; Ewing, Stephanie; Heimsath, Arjun; Chong, Guillermo

    2012-12-01

    Halite (NaCl) and gypsum or anhydrite (CaSO4) are water-soluble minerals found in soils of the driest regions of Earth, and only modest attention has been given to the hydrological processes that distribute these salts vertically in soil profiles. The two most notable chloride and sulfate-rich deserts on earth are the Dry Valleys of Antarctica and the Atacama Desert of Chile. While each is hyperarid, they possess very different hydrological regimes. We first show, using previously published S and O isotope data for sulfate minerals, that downward migration of water and sulfate is the primary mechanism responsible for depth profiles of sulfate concentration, and S and O isotopes, in both deserts. In contrast, we found quite different soluble Cl concentration and Cl isotope profiles between the two deserts. For Antarctic soils with an ice layer near the soil surface, the Cl concentrations increase with decreasing soil depth, whereas the ratio of 37Cl/35Cl increases. Based on previous field observations by others, we found that thermally driven upward movement of brine during the winter, described by an advection/diffusion model, qualitatively mimics the observed profiles. In contrast, in the Atacama Desert where rare but relatively large rains drive Cl downward through the profiles, Cl concentrations and 37Cl/35Cl ratios increased with depth. The depth trends in Cl isotopes are more closely explained by a Rayleigh-like model of downward fluid flow. The isotope profiles, and our modeling, reveal the similarities and differences between these two very arid regions on Earth, and are relevant for constraining models of fluid flow in arid zone soil and vadose zone hydrology.

  16. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  17. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  18. A comparison of hydrographically and optically derived mixed layer depths

    USGS Publications Warehouse

    Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.

    2005-01-01

    Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.

  19. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  20. Auger compositional depth profiling of the metal contact-TlBr interface

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Swanberg, E. L.; Voss, L. F.; Graff, R. T.; Conway, A. M.; Nikolic, R. J.; Payne, S. A.; Kim, H.; Cirignano, L.; Shah, K.

    2015-08-01

    Degradation of room temperature operation of TlBr radiation detectors with time is thought to be due to electromigration of Tl and Br vacancies within the crystal as well as the metal contacts migrating into the TlBr crystal itself due to electrochemical reactions at the metal/TlBr interface. Scanning Auger electron spectroscopy (AES) in combination with sputter depth profiling was used to investigate the metal contact surface/interfacial structure on TlBr devices. Device-grade TlBr was polished and subjected to a 32% HCl etch to remove surface damage and create a TlBr1-xClx surface layer prior to metal contact deposition. Auger compositional depth profiling results reveal non-equilibrium interfacial diffusion after device operation in both air and N2 at ambient temperature. These results improve our understanding of contact/device degradation versus operating environment for further enhancing radiation detector performance.

  1. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel; Edström, Kristina

    2015-10-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase. Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.

  2. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  3. Surface influence upon vertical profiles in the nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1983-05-01

    Near-surface wind profiles in the nocturnal boundary layer, depth h, above relatively flat, tree-covered terrain are described in the context of the analysis of Garratt (1980) for the unstable atmospheric boundary layer. The observations at two sites imply a surface-based transition layer, of depth z *, within which the observed non-dimensional profiles Φ M 0 are a modified form of the inertial sub-layer relation Φ _M ( {{z L}} = ( {{{1 + 5_Z } L}} ) according to Φ _M^{{0}} ˜eq ( {{{1 + 5z} L}} )exp [ { - 0.7( {{{1 - z} z}_ * } )] , where z is height above the zero-plane displacement and L is the Monin-Obukhov length. At both sites the depth z * is significantly smaller than the appropriate neutral value ( z * N ) found from the previous analysis, as might be expected in the presence of a buoyant sink for turbulent kinetic energy.

  4. Building geomechanical characteristic model in Ilan geothermal area, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Yu-Hsuan; Hung, Jih-Hao

    2015-04-01

    National Energy Program-Phase II (NEPPII) was initiated to understand the geomechanical characteristic in Ilan geothermal area. In this study, we integrate well cores and logs (e.g. Nature Gamma-ray, Normal resistivity, Formation Micro Imager) which were acquired in HongChaiLin (HCL), Duck-Field (DF) and IC21 to determine the depth of fracture zone, in-situ stress state, the depth of basement and lithological characters. In addition, the subsurface in-situ stress state will be helpful to analyze the fault reactivation potential and slip tendency. By retrieved core from HCL well and the results of geophysical logging, indicated that the lithological character is slate (520m ~ 1500m) and the basement depth is around 520m. To get the minimum and maximum horizontal stress, several hydraulic fracturing tests were conducted in the interval of 750~765m on HCL well. The horizontal maximum and minimum stresses including the hydrostatic pressure are calculated as 15.39MPa and 13.57MPa, respectively. The vertical stress is decided by measuring the core density from 738m to 902m depth. The average core density is 2.71 g/cm3, and the vertical stress is 19.95 MPa (at 750m). From DF well, the basement depth is 468.9m. Besides, by analyzing the IC21 well logging data, we know the in-situ orientation of maximum horizontal stress is NE-SW. Using these parameters, the fault reactivation potential and slip tendency can be analyzed with 3DStress, Traptester software and demonstrated on model. On the other hand, we interpreted the horizons and faults from the nine seismic profiles including six N-S profiles, two W-E profiles and one NE-SW profile to construct the 3D subsurface structure model with GOCAD software. The result shows that Zhuosui fault and Kankou Formation are dip to north, but Hanxi fault and Xiaonanao fault are dip to south. In addition, there is a syncline-like structure on Nansuao Formation and the Chingshuihu member of the Lushan Formation. However, there is a conflict on Szeleng sandstone. We need to more drilling data to confirm the dip of Szeleng sandstone.

  5. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  6. Depth Profile of Induced Magnetic Polarization in Cu Layers of Co/Cu(111) Metallic Superlattices by Resonant X-ray Magnetic Scattering at the Cu K Absorption Edge

    NASA Astrophysics Data System (ADS)

    Uegaki, Shin; Yoshida, Akihiro; Hosoito, Nobuyoshi

    2015-03-01

    We investigated induced spin polarization of 4p conduction electrons in Cu layers of antiferromagnetically (AFM) and ferromagnetically (FM) coupled Co/Cu(111) metallic superlattices by resonant X-ray magnetic scattering at the Cu K absorption edge. Magnetic reflectivity profiles of the two superlattices were measured in the magnetic saturation state with circularly polarized synchrotron radiation X-rays at 8985 eV. Depth profiles of the resonant magnetic scattering length of Cu, which corresponds to the induced spin polarization of Cu, were evaluated in the two Co/Cu superlattices by analyzing the observed magnetic reflectivity profiles. We demonstrated that the spin polarization induced in the Cu layer was distributed around the Co/Cu interfaces with an attenuation length of several Å in both AFM and FM coupled superlattices. The uniform component, which exists in Au layers of Fe/Au(001) superlattices, was not found in the depth distribution of induced magnetic polarization in the Cu layers of Co/Cu(111) superlattices.

  7. Morphology and spatial patterns of Macrotermes mounds in the SE Katanga, D.R. Congo

    NASA Astrophysics Data System (ADS)

    Bazirake Mujinya, Basile; Mees, Florias; Erens, Hans; Baert, Geert; Van Ranst, Eric

    2015-04-01

    The spatial distribution patterns and morphological characteristics of Macrotermes falciger mounds were investigated in the Lubumbashi area, D.R. Congo. Examination of the spatial patterns of M. falciger mounds on high resolution satellite images reveals a mean areal number density of 2.9 ± 0.4 mounds ha-1. The high relative number of inactive mounds in the region, along with their regular distribution pattern, suggests that current termite mound occurrences are largely palaeostructures. Mound positions in the habitat are consistent with intraspecific competition rather than soil and substrate characteristics as controlling factor. Detailed morphological description of five deep termite-mound profiles (~7 m height/depth) shows that carbonate pedofeatures are present in all studied profiles, in contrast to the control soils. They mainly occur in the form of soft powdery masses, nodules and coatings on ped faces, all clearly pedogenic. Carbonate coatings occur mainly between 1 m above the soil surface and 1 m below that level in all mound profiles. Carbonate nodules do show a different distribution pattern at each site. Furthermore, when the studied profiles are considered to represent a toposequence, the stone layer occurs at greater depth in topographically low areas compared to crest and slope positions, which is mainly conditioned by erosion. The clay content of epigeal mounds increases from the summit to the toe slope, which can be largely related to differences in parent material. The Mn-Fe oxide concentrations occurring in all studied termite mound profiles reflect a seasonally high perched water table beneath the mound, which is more pronounced at the lower slope positions.

  8. Design of a modulated orthovoltage stereotactic radiosurgery system.

    PubMed

    Fagerstrom, Jessica M; Bender, Edward T; Lawless, Michael J; Culberson, Wesley S

    2017-07-01

    To achieve stereotactic radiosurgery (SRS) dose distributions with sharp gradients using orthovoltage energy fluence modulation with inverse planning optimization techniques. A pencil beam model was used to calculate dose distributions from an orthovoltage unit at 250 kVp. Kernels for the model were derived using Monte Carlo methods. A Genetic Algorithm search heuristic was used to optimize the spatial distribution of added tungsten filtration to achieve dose distributions with sharp dose gradients. Optimizations were performed for depths of 2.5, 5.0, and 7.5 cm, with cone sizes of 5, 6, 8, and 10 mm. In addition to the beam profiles, 4π isocentric irradiation geometries were modeled to examine dose at 0.07 mm depth, a representative skin depth, for the low energy beams. Profiles from 4π irradiations of a constant target volume, assuming maximally conformal coverage, were compared. Finally, dose deposition in bone compared to tissue in this energy range was examined. Based on the results of the optimization, circularly symmetric tungsten filters were designed to modulate the orthovoltage beam across the apertures of SRS cone collimators. For each depth and cone size combination examined, the beam flatness and 80-20% and 90-10% penumbrae were calculated for both standard, open cone-collimated beams as well as for optimized, filtered beams. For all configurations tested, the modulated beam profiles had decreased penumbra widths and flatness statistics at depth. Profiles for the optimized, filtered orthovoltage beams also offered decreases in these metrics compared to measured linear accelerator cone-based SRS profiles. The dose at 0.07 mm depth in the 4π isocentric irradiation geometries was higher for the modulated beams compared to unmodulated beams; however, the modulated dose at 0.07 mm depth remained <0.025% of the central, maximum dose. The 4π profiles irradiating a constant target volume showed improved statistics for the modulated, filtered distribution compared to the standard, open cone-collimated distribution. Simulations of tissue and bone confirmed previously published results that a higher energy beam (≥ 200 keV) would be preferable, but the 250 kVp beam was chosen for this work because it is available for future measurements. A methodology has been described that may be used to optimize the spatial distribution of added filtration material in an orthovoltage SRS beam to result in dose distributions with decreased flatness and penumbra statistics compared to standard open cones. This work provides the mathematical foundation for a novel, orthovoltage energy fluence-modulated SRS system. © 2017 American Association of Physicists in Medicine.

  9. Estimating the Depth of Stratigraphic Units from Marine Seismic Profiles Using Nonstationary Geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chihi, Hayet; Galli, Alain; Ravenne, Christian

    2000-03-15

    The object of this study is to build a three-dimensional (3D) geometric model of the stratigraphic units of the margin of the Rhone River on the basis of geophysical investigations by a network of seismic profiles at sea. The geometry of these units is described by depth charts of each surface identified by seismic profiling, which is done by geostatistics. The modeling starts by a statistical analysis by which we determine the parameters that enable us to calculate the variograms of the identified surfaces. After having determined the statistical parameters, we calculate the variograms of the variable Depth. By analyzingmore » the behavior of the variogram we then can deduce whether the situation is stationary and if the variable has an anisotropic behavior. We tried the following two nonstationary methods to obtain our estimates: (a) The method of universal kriging if the underlying variogram was directly accessible. (b) The method of increments if the underlying variogram was not directly accessible. After having modeled the variograms of the increments and of the variable itself, we calculated the surfaces by kriging the variable Depth on a small-mesh estimation grid. The two methods then are compared and their respective advantages and disadvantages are discussed, as well as their fields of application. These methods are capable of being used widely in earth sciences for automatic mapping of geometric surfaces or for variables such as a piezometric surface or a concentration, which are not 'stationary,' that is, essentially, possess a gradient or a tendency to develop systematically in space.« less

  10. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    PubMed Central

    Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance. PMID:28144525

  11. {sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jull, A.J.T.; Cloudt, S.; Donahue, D.J.

    1998-09-01

    Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C weremore » observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.« less

  12. Distribution and significance of dissolved organic carbon under three land-use systems, NSW, Australia

    NASA Astrophysics Data System (ADS)

    Fancy, Rubeca; Wilson, Brian R.; Daniel, Heiko; Osanai, Yui

    2017-04-01

    Carbon accumulation in surface soils is well documented but very little is known about the mechanisms and processes that result in carbon accumulation and long-term storage in the deeper soil profile. Understanding soil carbon storage and distribution mechanisms is critical to evaluate the sequestration potential of the soils of different land uses. Recent investigations have demonstrated that the movement of dissolved organic carbon (DOC) in the soil profile could contribute significantly to the carbon balance of terrestrial ecosystems. However, very little is known regarding the importance of DOC to vertical distribution of soil organic carbon (SOC) pool through the soil profile in different land-use systems, management practices and conditions prevalent in Australia. We investigated the quantity and distribution of SOC and DOC through the profile under three different land-use systems in northern NSW, Australia. A series of site clusters containing a representative range of land-uses (cultivated, improved pasture and woodland) were selected across the region. Within each land use, we determined SOC and DOC concentration and quantity down the soil profile to a depth of 0-100 cm using six soil depth increments. Here we discuss the distribution and relative importance of DOC down the soil profile to the storage and distribution of carbon. We compare and contrast the patterns associated with the different land use systems and explore potential mechanisms of carbon cycling in these soils. Near to the soil surface, SOC had larger concentrations in the order woodland>improved pasture>cropping at all sites studied. However, DOC was found in significantly larger concentrations in the woodland soils at all soil depths. The larger DOC:TOC ratio in woodland and improved pasture soils suggests a direct relationship between TOC and DOC but increased DOC:TOC ratio in deeper soil layers suggests an increasing importance of DOC in soil carbon cycling in these deeper soils under Australian conditions.

  13. Depth dependence of defect evolution and TED during annealing

    NASA Astrophysics Data System (ADS)

    Colombeau, B.; Cowern, N. E. B.; Cristiano, F.; Calvo, P.; Lamrani, Y.; Cherkashin, N.; Lampin, E.; Claverie, A.

    2004-02-01

    A quantitative transmission electron microscopy (TEM) study on the depth profile of extended defects, formed after Si implantation, has been carried out. Two different Si + implant conditions have been considered. TEM analysis for the highest energy/dose shows that {1 1 3} defects evolve into dislocation loops whilst the defect depth distribution remains unchanged as a function of annealing time. For the lowest energy/dose, {1 1 3} defects grow and dissolve while the defect band shrinks preferentially on the surface side. At the same time, extraction of boron transient enhanced diffusion (TED) as a function of depth shows a decrease of the supersaturation towards the surface, starting at the location of the defect band. The study clearly shows that in these systems the silicon surface is the principal sink for interstitials. The results provide a critical test of the ability of physical models to simulate defect evolution and TED.

  14. The influence of agricultural management on soil's CO2 regime in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Lifshithz, D.; Sternberg, M.; Ben-Dor, E.; Bonfile, D. J.; Arad, B.; Mingelgrin, U.; Fine, P.; Levy, G. J.

    2008-12-01

    Two of the more important parameters which may help us better evaluate the impact of agricultural practices on the global carbon cycle are the in-situ soil pCO2 profile and the corresponding CO2 fluxes to the atmosphere. In an ongoing study, we monitored the pCO2 to a depth of 5 m in two adjacent irrigated Avocado orchards in the coastal plain of Israel (semi-arid region), and to a depth of 2 m in a semi- arid rain-fed and a arid rain-fed wheat fields in southern Israel. The soil pCO2 profiles and CO2 fluxes measurements were supplemented by measurements of soil moisture and temperature. The results showed differences in the CO2 profiles (both in the depth of the highest concentration and its absolute values) and the CO2 fluxes between the orchards and the wheat fields as well as along the year. In the irrigated Avocado orchards pCO2 values were in the range of 1.5 kPa at a depth of 0.5 m up to 8 kPa at depths of 3-5 m (even though Avocado trees are characterized by shallow roots). Such levels could affect reactions (e.g., enhancement of inorganic carbon dissolution) that may take place in the soil and some of its chemical properties (e.g., pH). As expected, soil pCO2 was affected by soil moisture and temperature, and the distance from the trees. Maximum soil respiration was observed during the summer when the orchards are under irrigation. In the wheat fields pCO2 level ranged from 0.2- 0.6 kPa at a depth of 0.2 m to 0.2-1 kPa at depths of 1-1.5 m (in arid and semiarid respectively). These pCO2 levels were much lower than those obtained in the irrigated orchards and seemed to depend on the wheat growing cycle (high concentration were noted at depth of 1-1.5 m close to the end of grain filling) and precipitation gradient (arid vs. semiarid). Since CO2 fluxes are directly affected by the pCO2 profile and soil moister and temperature the CO2 fluxes from the wheat fields were much lower (0.02- 0.2 ml min-1 m-2) compared to those obtained from the Avocado orchards (2-7 ml min-1 m-2). Our results clearly demonstrate the large variability in soil pCO2 concentration and flux to the atmosphere, and its dependence on the soil moisture regime (annual precipitation and irrigation) and type of cropping (orchard vs. field crop).

  15. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    NASA Astrophysics Data System (ADS)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater depths (15.5 and 16.5 m). W5 correlates better with the seismic cross-section and impedance profile from L2 at 10, 12.5, 14.5, 15.5, and 19 m depth. EC maxima align with distinct shear-impedance values for L1 and L2 profiles. Our results provide a new and useful perspective of remotely analyzing the architecture and lithological properties of near-surface point-bars.

  16. CRUSTAL REFRACTION PROFILE OF THE LONG VALLEY CALDERA, CALIFORNIA, FROM THE JANUARY 1983 MAMMOTH LAKES EARTHQUAKE SWARM.

    USGS Publications Warehouse

    Luetgert, James H.; Mooney, Walter D.

    1985-01-01

    Seismic-refraction profiles recorded north of Mammoth Lakes, California, using earthquake sources from the January 1983 swarm complement earlier explosion refraction profiles and provide velocity information from deeper in the crust in the area of the Long Valley caldera. Eight earthquakes from a depth range of 4. 9 to 8. 0 km confirm the observation of basement rocks with seismic velocities ranging from 5. 8 to 6. 4 km/sec extending at least to depths of 20 km. The data provide further evidence for the existence of a partial melt zone beneath Long Valley caldera and constrain its geometry. Refs.

  17. SU-F-T-487: On-Site Beam Matching of An Elekta Infinity with Agility MLC with An Elekta Versa HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C; Garcia, M; Mason, B

    2016-06-15

    Purpose: Historically, beam matching of similar Linear Accelerators has been accomplished by sending beam data to the manufacturer to match at their factory. The purpose of this work is to demonstrate that fine beam matching can be carried out on-site as part of the acceptance test, with similar or better results. Methods: Initial scans of a 10 × 10 Percent depth dose (PDD) and a 40 × 40 beam profile at the depth of Dmax, for 6MV and 10 MV were taken to compare with the standard beam data from the Versa. The energy was then adjusted and the beammore » steered to achieve agreement between the depth dose and the horns of the beam profile. This process was repeated until the best agreement between PDD and profiles was achieved. Upon completion, all other clinical data were measured to verify match. This included PDD, beam profiles, output factors and Wedge factors. For electron beams PDD’s were matched and the beam profiles verified for the final beam energy. Confirmatory PDD and beam profiles for clinical field sizes, as well as Output Factors were measured. Results: The average difference in PDD’s for 6MV and 10MV were within 0.4% for both wedged and open fields. Beam profile comparisons over the central 80% of the field, at multiple depths, show agreement of 0.8% or less for both wedged and open fields. Average output factor agreement over all field sizes was 0.4% for 6MV and 0.2 % for 10MV. Wedge factors agreement was less than 0.6% for both photon energies over all field sizes. Electron PDD agreed to 0.5mm. Cone ratios agreed to 1% or less. Conclusion: This work indicates that beam matching can be carried out on-site simply and quickly. The results of this beam matching can achieve similar or better results than factory matching.« less

  18. Using Short-Lived Fallout Radionuclides to Study Soil Mixing on Hillslopes in Different Climatic and Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Kaste, J. M.; Heimsath, A. M.

    2002-12-01

    Hillslope soil processes can be difficult to quantify, but an understanding of soil and sediment dynamics is required for an accurate prediction of topographic evolution. Our data indicate that soil mixing processes and rates on hillslopes vary widely across different climatic and geologic settings. We use the depth-profiles of short-lived fallout radionuclides 210Pb, 137Cs, and 241Am measured in soils sampled from the Hubbard Brook Experimental Forest in NH (HBEF), USA, from Point Rays National Seashore (PRNS), CA, USA, and from the Nunnock River Valley (NR) in Southeastern Australia to study short-term (<100 y) soil mixing resulting from bioturbation. Results from the radionuclide analysis suggest that some fraction of the soil at NR is mixed from the surface to a depth of up to 0.5m on timescales of a few decades. These results support previous studies at NR quantifying soil mixing at millennial timescales using optically stimulated luminescence (OSL). Field evidence at NR corroborates these data, showing a clear lack of soil profile development and differentiation. However, in well-developed spodosols at the HBEF, radionuclide data suggests that mixing is confined to the forest floor (upper 12 cm of organic matter) and surface grains do not penetrate to significant depth in the profile on short timescales. Tree-throw seems to be the primary process mixing soil at the HBEF, which mixes soil on timescales of several centuries. At NR and PRNS however, bioturbation by insects and burrowing mammals mixes surface soil particles deep into the profile on timescales of decades. These differences in bioturbation rates result from different climatic and geologic settings, and we will discuss the implications for sediment transport mechanisms on hillslopes, as well as for soil carbon storage and the fate of atmospherically-delivered conaminants.

  19. Water prospection in volcanic islands by Time Domain Electromagnetic (TDEM) surveying: The case study of the islands of Fogo and Santo Antão in Cape Verde

    NASA Astrophysics Data System (ADS)

    Martínez-Moreno, F. J.; Monteiro-Santos, F. A.; Madeira, J.; Bernardo, I.; Soares, A.; Esteves, M.; Adão, F.

    2016-11-01

    Water demand in islands, focused in agriculture, domestic use and tourism, is usually supplied by groundwater. Thus the information about groundwater distribution is an important issue in islands water resources management. Time Domain Electromagnetic (TDEM) provides underground resistivity distribution at greater depths and is of easier application than other methods. In this study TDEM technique was used for groundwater prospection in two volcanic islands with water supply problems, the islands of Fogo and Santo Antão in the Republic of Cape Verde. The 10 islands of Cape Verde Archipelago, located off the coast of Senegal (W Africa), present a semi-arid climate and thus suffer from irregular and scarce precipitation. In the Island of Fogo 26 TDEM soundings, presenting an area distribution, were performed on the SW flank of the volcanic edifice. These allowed obtaining a 3D model composed of 5 layers parallel to the topographic surface separated by 50 m depth down to - 250 m. The results indicate the presence of the water-table at a depth of 150 m in the lower ranges of the W flank of the island, and at > 200 m depth in the area above 250 m above sea level (a.s.l.). In the Island of Santo Antão 32 TDEM soundings, distributed along 5 linear profiles, were obtained on the north-eastern half of the island. The profiles are located in two regions exposed to different humidity conditions to the N and S of the main water divide. The northern flank receives the dominant trade winds first and most of the precipitation and, therefore, the water-table is shallower ( 50 m depth) than in the S ( 100 m depth). Our study demonstrates the applicability and usefulness of the TDEM method for groundwater prospection in high resistivity contexts such as in volcanic islands.

  20. Assessing XCTD Fall Rate Errors using Concurrent XCTD and CTD Profiles in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Millar, J.; Gille, S. T.; Sprintall, J.; Frants, M.

    2010-12-01

    Refinements in the fall rate equation for XCTDs are not as well understood as those for XBTs, due in part to the paucity of concurrent and collocated XCTD and CTD profiles. During February and March 2010, the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) conducted 31 collocated 1000-meter XCTD and CTD casts in the Drake Passage. These XCTD/CTD profile pairs are closely matched in space and time, with a mean distance between casts of 1.19 km and a mean lag time of 39 minutes. The profile pairs are well suited to address the XCTD fall rate problem specifically in higher latitude waters, where existing fall rate corrections have rarely been assessed. Many of these XCTD/CTD profile pairs reveal an observable depth offset in measurements of both temperature and conductivity. Here, the nature and extent of this depth offset is evaluated.

  1. Impact energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Fu, Ricky K. Y.; Chu, Paul K.

    2009-08-10

    The implantation energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation (EGD-PIII) is investigated numerically and experimentally. Depth profiles obtained from different samples processed by EGD-PIII and traditional PIII are compared. The retained doses under different pulse widths are calculated by integrating the area under the depth profiles. Our results indicate that the improvement in the impact energy and retained dose uniformity by this technique is remarkable.

  2. pH variation and influence in an autotrophic nitrogen removing biofilm system using an efficient numerical solution strategy.

    PubMed

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Valverde-Pérez, Borja; Gernaey, Krist V; Sin, Gürkan

    2013-01-01

    A pH simulator consisting of an efficient numerical solver of a system of nine nonlinear equations was constructed and implemented in the modeling software MATLAB. The pH simulator was integrated in a granular biofilm model and used to simulate the pH profiles within granules performing the nitritation-anammox process for a range of operating points. The simulation results showed that pH profiles were consistently increasing with increasing depth into the granule, since the proton-producing aerobic ammonium-oxidizing bacteria (AOB) were located close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for anaerobic ammonium oxidizers, located in the center of the granules. However, operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the granule and caused the NH3 concentration profile to increase from the granule surface towards the center. The initial value of the background charge and influent bicarbonate concentration were found to greatly influence the simulation result and should be accurately measured. Since the change in pH over the depth of the biofilm was relatively small, the activity potential of the microbial groups affected by the pH did not change more than 5% over the depth of the granules.

  3. The effects of the depth of web on the bending behaviour of triangular web profile steel beam section

    NASA Astrophysics Data System (ADS)

    De'nan, Fatimah; Keong, Choong Kok; Hashim, Nor Salwani

    2017-10-01

    Due to extensive usage of corrugated web in construction, this paper performs finite element analysis to investigate the web thickness effects on the bending behaviour of Triangular Web Profile (TRIWP) steel section. A TRIWP steel section which are consists two flanges attached to a triangular profile web plate. This paper analyzes two categories of TRIWP steel sections which are D×100×6×3 mm and D×75×5×2 mm. It was observed that for steel section D×100×6×3 mm (TRIWP1), the deflection about minor and major axis increased as the span length increased. Meanwhile, the deflection about major axis decreased when depth of the web increased. About minor axis, the deflection increased for 3m and 4m span, while the deflection at 4.8m decreased with increment the depth of web. However, when the depth of the web exceeds 250mm, deflection at 3m and 4m were increased. For steel section D×75×5×2 mm (TRIWP2), the result was different with TRIWP1 steel section, where the deflection in both major and minor directions increased with the increment of span length and decreased with increment the depth of web. It shows that the deflection increased proportionally with the depth of web. Therefore, deeper web should be more considered because it resulted in smaller deflection.

  4. Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Moser, M.; Reichart, P.; Bergmaier, A.; Greubel, C.; Schiettekatte, F.; Dollinger, G.

    2016-03-01

    Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton-proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness.

  5. Regional correlations of V s30 and velocities averaged over depths less than and greater than 30 meters

    USGS Publications Warehouse

    Boore, D.M.; Thompson, E.M.; Cadet, H.

    2011-01-01

    Using velocity profiles from sites in Japan, California, Turkey, and Europe, we find that the time-averaged shear-wave velocity to 30 m (V S30), used as a proxy for site amplification in recent ground-motion prediction equations (GMPEs) and building codes, is strongly correlated with average velocities to depths less than 30 m (V Sz, with z being the averaging depth). The correlations for sites in Japan (corresponding to the KiK-net network) show that V S30 is systematically larger for a given V Sz than for profiles from the other regions. The difference largely results from the placement of the KiK-net station locations on rock and rocklike sites, whereas stations in the other regions are generally placed in urban areas underlain by sediments. Using the KiK-net velocity profiles, we provide equations relating V S30 to V Sz for z ranging from 5 to 29 m in 1-m increments. These equations (and those for California velocity profiles given in Boore, 2004b) can be used to estimate V S30 from V Sz for sites in which velocity profiles do not extend to 30 m. The scatter of the residuals decreases with depth, but, even for an averaging depth of 5 m, a variation in log V S30 of 1 standard deviation maps into less than a 20% uncertainty in ground motions given by recent GMPEs at short periods. The sensitivity of the ground motions to V S30 uncertainty is considerably larger at long periods (but is less than a factor of 1.2 for averaging depths greater than about 20 m). We also find that V S30 is correlated with V Sz for z as great as 400 m for sites of the KiK-net network, providing some justification for using V S30 as a site-response variable for predicting ground motions at periods for which the wavelengths far exceed 30 m.

  6. Vegetation change alters soil profile δ15N values at the landscape scale in a subtropical savanna

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Mushinski, R. M.; Hyodo, A.; Wu, X. B.; Boutton, T. W.

    2017-12-01

    The assessment of spatial variation in soil δ15N could provide integrative insights on soil N cycling processes across multiple spatial scales. However, little is known about spatial patterns of δ15N within soil profiles in arid and semiarid ecosystems, especially those undergoing vegetation change with a distinct shift in dominance and/or functional type. We quantified how changes from grass to woody plant dominance altered spatial patterns of δ15N throughout a 1.2 m soil profile by collecting 320 spatially-specific soil cores in a 160 m × 100 m subtropical savanna landscape that has undergone encroachment by Prosopis glandulosa (an N2-fixer) during the past century. Leaf δ15N was comparable among different plant life-forms, while fine roots from woody species had significantly lower δ15N than herbaceous species across this landscape. Woody encroachment significantly decreased soil δ15N throughout the entire soil profile, and created horizontal spatial patterns of soil δ15N that strongly resembled the spatial distribution of woody patches and were evident within each depth increment. The lower soil δ15N values that characterized areas beneath woody canopies were mostly due to the encroaching woody species, especially the N2-fixer P. glandulosa, which delivered 15N-depleted organic matter via root turnover to soils along the profile. Soil δ15N increased with depth, reached maximum values at an intermediate depth, and decreased at greater depths. Higher δ15N values at intermediate soil depths were correlated with the presence of a subsurface clay-rich argillic horizon across this landscape which may favor more rapid rates of N-cycling processes that can cause N losses and 15N enrichment of the residual soil N. These results indicate that succession from grassland to woodland has altered spatial variation in soil δ15N across the landscape and to considerable depth, suggesting significant changes in the relative rates of N-inputs vs. N-losses in this subtropical system after vegetation change.

  7. Three-dimensional spatial patterns of soil carbon storage are altered by woody encroachment into grasslands

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Boutton, T. W.; Wu, X. B.

    2016-12-01

    Recent global trends of increasing woody plant abundance in grass-dominated ecosystems may substantially enhance soil organic carbon (SOC) storage and could represent an important carbon (C) sink in the terrestrial environment. However, most studies assessing SOC response to woody encroachment only consider surface soils, and have not explicitly assessed the extent to which deeper portions of the profile may be affected by this phenomenon. Consequently, little is known about the direction, magnitude, and spatial heterogeneity of SOC throughout the soil profile following woody encroachment. These factors were quantified via spatially-specific intensive soil sampling to a depth 1.2 m across a subtropical savanna landscape that has undergone woody proliferation during the past century in southern Texas, USA. Increased SOC sequestration following woody encroachment was observed throughout the profile, albeit at reduced magnitudes at deeper depths. Overall, soils beneath small woody clusters and larger groves accumulated 12.87 and 18.67 Mg C ha-1 more SOC, respectively, to a depth of 1. 2 m compared to grasslands. Recent woody encroachment during the past 100 y significantly altered the spatial pattern and amplified the spatial heterogeneity of SOC at the 0-5 cm depth, with marginal effects at 5-15 cm and no distinct impact on soils below 15 cm. Fine root density explained much of the variation in SOC in the upper 15 cm, while a combination of fine root density and soil clay content accounted for more of the variation in SOC in soils below 15 cm. These findings emphasize the existence of substantial SOC sequestration in deeper portions of the soil profile following woody encroachment. Given the geographical extent of woody encroachment on a global scale, this largely undocumented deep soil C sequestration suggests woody encroachment may play a more significant role in regional and global C sequestration than previously thought.

  8. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments

    USGS Publications Warehouse

    Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.

    2011-01-01

    1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.

  9. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  10. A study of the continuum flux and the line structure in the IUE spectrum of Beta Lyrae

    NASA Technical Reports Server (NTRS)

    Aydin, C.; Engin, S.; Brandi, E.; Ferrer, O. E.; Hack, M.

    1988-01-01

    A study of the available archival IUE images of Beta Lyrae has led to the following results: (1) for lambda in the range of 1250 - 1500 A, the eclipse depth at second conjunction is slightly larger than the eclipse depth at primary conjunction; they are equal at about 1670 A; (2) the profiles of the resonance lines of SiIV (and the same seems to be true for NV and CIV) can be described as composite, formed by the superposition of a stationary P Cygni profile that suggests a velocity of approach of -170 km/s and a broad, less strong, emission that seems to yield a velocity distribution in antiphase with the velocity curve of the B8 II component of the system; and (3) the emission lines of the intercombination doublet of semiforbidden N II at about 2140 A suggest a velocity of about -130 km/s. The interpretation of the latter composite profile appears similar to the one suggested by Sahade (1966) to describe H-alpha and He I 5876 and He I 6678, and by Batten and Sahade (1973) to describe H-alpha.

  11. Diffusion induced atomic islands on the surface of Ni/Cu nanolayers

    NASA Astrophysics Data System (ADS)

    Takáts, Viktor; Csik, Attila; Hakl, József; Vad, Kálmán

    2018-05-01

    Surface islands formed by grain-boundary diffusion has been studied in Ni/Cu nanolayers by in-situ low energy ion scattering spectroscopy, X-ray photoelectron spectroscopy, scanning probe microscopy and ex-situ depth profiling based on ion sputtering. In this paper a new experimental approach of measurement of grain-boundary diffusion coefficients is presented. Appearing time of copper atoms diffused through a few nanometer thick nickel layer has been detected by low energy ion scattering spectroscopy with high sensitivity. The grain-boundary diffusion coefficient can be directly calculated from this appearing time without using segregation factors in calculations. The temperature range of 423-463 K insures the pure C-type diffusion kinetic regime. The most important result is that surface coverage of Ni layer by Cu atoms reaches a maximum during annealing and stays constant if the annealing procedure is continued. Scanning probe microscopy measurements show a Volmer-Weber type layer growth of Cu layer on the Ni surface in the form of Cu atomic islands. Depth distribution of Cu in Ni layer has been determined by depth profile analysis.

  12. [Stable Isotopes Characters of Soil Water Movement in Shijiazhuang City].

    PubMed

    Chen, Tong-tong; Chen, Hui; Han, Lu; Xing, Xing; Fu, Yang-yang

    2015-10-01

    In this study, we analyzed the stable hydrogen and oxygen isotope values of precipitation, soil water, irrigation water that collected in Shijiazhuang City from April 2013 to May 2014 to investigate the changing rule of the stable isotopes in different soil profiles and the process of soil water movement according to using the isotope tracer technique. The results showed that the mean excess deuterium of the local precipitation was -6.188 5 per thousand. Those reflected that the precipitation in Shijiazhuang City mainly brought by the monsoon from the ocean surface moisture, and also to some extent by the local evaporation. Precipitation was the main source of the soil water and the irrigation water played the supplementary role. In the rainy season, precipitation was enough to supply the soil water. The stable oxygen isotopes at 10-100 cm depth decreased with the increase of depth, the maximum depth of evaporation in the rainy season reached 40 cm. The peak of stable oxygen isotopes of soil water pushed down along the profile, which was infected by the interaction of the precipitation infiltration, evaporation and the mixing water.

  13. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  14. Source to Skin Distance (SSD) Characteristics from Varian CX Linear Accelerator

    NASA Astrophysics Data System (ADS)

    Bahari Nurdin, Wira; Purnomo, Aji; Dewang, Syamsir

    2018-03-01

    This study aims to describe the characteristics of the source to skin distance (SSD) of Varian CX linear accelerator (LINAC) using the X-ray beam of 6 MV and 10 MV. The variation of the source to the SSD are 90, 100 and 110 cms; the depth of the water phantom used are 5, 10, 15, 20, and 25 cms, respectively. The depth of the water phantom was created for analysis of percentage depth dose (PDD) and profile dose. It can be concluded from the tests that from the measured SSD, SSD of 110 cm with the depth water phantom of 20-25 cm for energy beam of 6 MV and at all levels of depth for 10 MV energy corresponding tolerance limits to be used in clinical radiotherapy. For the SSD 90 and 100, the values beam symmetry and flatness obtained slightly beyond the limits of tolerance.

  15. Continuous depth profile of the rock strength in the Nankai accretionary prism based on drilling performance parameters.

    PubMed

    Hamada, Yohei; Kitamura, Manami; Yamada, Yasuhiro; Sanada, Yoshinori; Sugihara, Takamitsu; Saito, Saneatsu; Moe, Kyaw; Hirose, Takehiro

    2018-02-14

    A new method for evaluating the in situ rock strength beneath the seafloor is proposed and applied to the Nankai Trough accretionary prism. The depth-continuous in situ rock strength is a critical parameter for numerous studies in earth science, particularly for seismology and tectonics at plate convergence zones; yet, measurements are limited owing to a lack of drilled cores. Here, we propose a new indicator of strength, the equivalent strength (EST), which is determined only by drilling performance parameters such as drill string rotational torque, bit depth, and string rotational speed. A continuous depth profile of EST was drawn from 0 to 3000 m below the seafloor (mbsf) across the forearc basin and accretionary prism in the Nankai Trough. The EST did not show a significant increase around the forearc basin-accretionary prism boundary, but it did show a clear increase within the prism, ca. below 1500 mbsf. This result may indicate that even the shallow accretionary prism has been strengthened by horizontal compression derived from plate subduction. The EST is a potential parameter to continuously evaluate the in situ rock strength during drilling, and its accuracy of the absolute value can be improved by combining with laboratory drilling experiments.

  16. Lipid Biomarkers Identified for Liver Cancer | Center for Cancer Research

    Cancer.gov

    Hepatocellular carcinoma (HCC) is an aggressive cancer of the liver with poor prognosis and growing incidence in developed countries. Pathology and genetic profiles of HCC are heterogeneous, suggesting that it can begin growing in different cell types. Although human tumors such as HCC have been profiled in-depth by genomics-based studies, not much is known about their overall metabolite modifications and how these changes can form a network that leads to aggressive disease and poor outcome.

  17. The Wire Flyer Towed Profiling System

    NASA Astrophysics Data System (ADS)

    Roman, C.; Ullman, D. S.; Hebert, D.

    2016-02-01

    The Wire Flyer is an autonomous profiling vehicle that slides up and down a standard towed cable in a controlled manner using the lift created by wing foils. The vehicle is able to create high resolution water-column sections within a specified depth band in an automated manner. The Wire Flyer is different than standard undulating tow bodies in that it decouples the vehicle's motion from the tow cable dynamics. Due to this separation the vehicle is able to profile with nearly 1:1 horizontal to vertical motion. A heavy depressor weight is fixed to the end of the cable and the cable shape remains relatively static during operation. The vehicle uses a closed loop wing angle controller to achieve desired vertical velocities between 0 and 2.5 m/s for ship speeds between 1.5 and 2.5 m/s. During typical operations, updated commands and condensed data samples can be sent to and from the vehicle via an acoustic modem to adjust the profiling pattern to ensure the desired coverage. The current 1000 meter rated vehicle is equipped with a SBE 49 FastCAT CTD, and can carry additional sensors for oxygen, Chlorophyll fluorescence and acoustic echosounding. Results showing the vehicle performance as well as the quality of the processed CTD data will be presented from three test cruises to the New England Shelf Break Front. Many shallow and deep sections were obtained with horizontal resolution that is not otherwise achievable with undulating tow bodies, underway CTDs, standard CTD tow-yos, gliders or free swimming AUVs. A typical survey at ship speeds of 3-4 knots can profile over a depth band between 200 and 600 meters depth with a repeat cycle length of less than 1 km. The vehicle concept is depth independent and could work with a full ocean depth design. Application areas for the system include sub-meso scale observations of fronts, vent and seep plumes, oxygen minimum layers, mixing and mid-water bioacoustics.

  18. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  19. Soil profiles' development and differentiation as revealed by their magnetic signal

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana

    2017-04-01

    Soil profiles' development is a major theme in soil science research, as far as it gives basic information on soil genesis and classification. The use of soil magnetic properties as indicators for physical and geochemical conditions during pedogenesis received great attention during the last decade mainly in relation to paleoclimate reconstructions. However, tracking the observed general relationships with respect to degree of soil differentiation would lead to capitalization of this knowledge and its further utilization as pedogenic indicator. Here we present an overview of the observed relationships and depth variations of magnetic characteristics along ten soil profiles of Chernozems, Luvisols and Planosols from Bulgaria. Depending on the general soil group considered, different relationships between depth distribution of the relative amount of superparamagnetic (SP), single domain (SD) and larger pseudo single domain (PSD) to multi domain (MD) ferrimagnetic fractions are revealed. The profiles of the soil group with pronounced accumulation of organic matter in the mineral topsoil (Chernozems and Phaeozems) a systematic shift in the relative maxima of SP- and SD- like concentration proxies is observed with the increase of profile differentiation. In contrast, the group of soils with clay-enriched subsoil horizon (e.g. Luvisols) shows different evolution of the depth distribution of the grain-size proxy parameters. The increase of profile's degradation leads to a decrease in the amount of the SP fraction and a split in its maxima into two depth intervals related to the eluvial and illuvial horizons respectively. Along with this tendency, the maximum of the SD fraction moves to progressively deeper levels of the illuvial horizon. The third soil group of the Planosols is characterized by specific re-distribution of the iron oxides, caused by the oscillating oxidation - reduction fluctuations within the profile. The diagnostic eluvial and illuvial soil horizons are enriched with stable SD magnetite-like fraction, likely originating from ferrihydrite transformations under repeating oxidative - reductive conditions. The major magnetic phase in illuvial horizons is hematite, while in eluvial and C-horizons magnetite dominates. These different trends in the evolution of mineralogy and magnetic grain size fractions along the depth of the various soil groups are useful indicators of the soil chemistry, as well as the dynamics of the main soil forming processes.

  20. Field tests of a down-hole TDR profiling water content measurement system

    USDA-ARS?s Scientific Manuscript database

    Accurate soil profile water content monitoring at multiple depths has previously been possible only using the neutron probe (NP), but with great effort and at unsatisfactory intervals. Despite the existence of several capacitance systems for profile water content measurements, accuracy and spatial r...

  1. CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development

    NASA Astrophysics Data System (ADS)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Khanbilvardi, R.; Munoz Barreto, J.; Yu, Y.

    2017-12-01

    CREST-SAFE: Snow LST validation, wetness profiler creation, and depth/SWE product development The Field Snow Research Station (also referred to as Snow Analysis and Field Experiment, SAFE) is operated by the NOAA Center for Earth System Sciences and Remote Sensing Technologies (CREST) in the City University of New York (CUNY). The field station is located within the premises of the Caribou Municipal Airport (46°52'59'' N, 68°01'07'' W) and in close proximity to the National Weather Service (NWS) Regional Forecast Office. The station was established in 2010 to support studies in snow physics and snow remote sensing. The Visible Infrared Imager Radiometer Suite (VIIRS) Land Surface Temperature (LST) Environmental Data Record (EDR) and Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (provided by the Terra and Aqua Earth Observing System satellites) were validated using in situ LST (T-skin) and near-surface air temperature (T-air) observations recorded at CREST-SAFE for the winters of 2013 and 2014. Results indicate that T-air correlates better than T-skin with VIIRS LST data and that the accuracy of nighttime LST retrievals is considerably better than that of daytime. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and night-time values. Results indicate that, although all the data sets showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C). Additionally, we created a liquid water content (LWC)-profiling instrument using time-domain reflectometry (TDR) at CREST-SAFE and tested it during the snow melt period (February-April) immediately after installation in 2014. Results displayed high agreement when compared to LWC estimates obtained using empirical formulas developed in previous studies, and minor improvement over wet snow LWC estimates. Lastly, to improve on global snow cover mapping, a snow product capable of estimating snow depth and snow water equivalent (SWE) using microwave remote sensing and the CREST Snow Depth Regression Tree Model (SDRTM) was developed. Data from AMSR2 onboard the JAXA GCOM-W1 satellite is used to produce daily global snow depth and SWE maps in automated fashion at a 10-km resolution.

  2. Mixed layer warming-deepening in the Mediterranean Sea and its effect on the marine environment

    NASA Astrophysics Data System (ADS)

    Rivetti, Irene; Boero, Ferdinando; Fraschetti, Simonetta; Zambianchi, Enrico; Lionello, Piero

    2015-04-01

    This work aims at investigating the evolution of the ocean mixed layer in the Mediterranean Sea and linking it to the occurrence of mass mortalities of benthic invertebrates. The temporal evolution of selected parameters describing the mixed layer and the seasonal thermocline is provided for the whole Mediterranean Sea for spring, summer and autumn and for the period 1945-2011. For this analysis all temperature profiles collected in the basin with bottles, Mechanical Bathy-Thermographs (MBT), eXpendable Bathy-Thermographs (XBT), and Conductivity-Temperature-Depth (CTD) have been used (166,990). These data have been extracted from three public sources: the MEDAR-MEDATLAS, the World Ocean Database 2013 and the MFS-VOS program. Five different methods for estimating the mixed layer depth are compared using temperature profiles collected at the DYFAMED station in the Ligurian Sea and one method, the so-called three-segment method, has been selected for a systematic analysis of the evolution of the uppermost part of the whole Mediterranean Sea. This method approximates the upper water column with three segments representing mixed layer, thermocline and deep layer and has shown to be the most suitable method for capturing the mixed layer depth for most shapes of temperature profiles. Mass mortalities events of benthic invertebrates have been identified by an extensive search of all data bases in ISI Web of Knowledge considering studies published from 1945 to 2011. Studies reporting the geographical coordinates, the timing of the events, the species involved and the depth at which signs of stress occurred have been considered. Results show a general increase of thickness and temperature of the mixed layer, deepening and cooling of the thermocline base in summer and autumn. Possible impacts of these changes are mass mortalities events of benthic invertebrates that have been documented since 1983 mainly in summer and autumn. It is also shown that most mass mortalities occurred in months with anomalously high mixed layer depth temperature leading to the conclusion that warming of upper Mediterranean Sea has allowed interannual temperature variability to reach environmental conditions beyond the thermal tolerance of some species.

  3. CHARACTERIZING THE DISPERSIVE STATE OF CONVECTIVE BOUNDARY LAYERS FOR APPLIED DISPERSION MODELING

    EPA Science Inventory

    Estimates from semiempirical models that characterize surface heat flux, mixing depth, and profiles of temperature, wind, and turbulence are compared with observations from atmospheric field Studies conducted in Colorado, Illinois, Indiana, and Minnesota. In addition, for wind an...

  4. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  5. Effects of Radiation on Oxide Materials.

    DTIC Science & Technology

    1981-11-01

    argon sputtering. The results show that this technique is quite successful and makes it possible to profile implanted Na that fits the theoretical ...the finite escape depth of the photoionized electrons. Thicker (100 R) oxides were used for depth-profiling XPS measurements. 6.3.2 Results--30-R Films... Scofield , J. Electron Spectrosc. 8, 129 (1976). 63 SOFT SILICON DIOXIOE ON SILICON (WET GROWN) 12 . 0 1 10 o - AUGER z 0 ,- C- IS" SI - 2S Z N-I i sI-P 2 0

  6. Methods of Estimating Initial Crater Depths on Icy Satellites using Stereo Topography

    NASA Astrophysics Data System (ADS)

    Persaud, D. M.; Phillips, C. B.

    2014-12-01

    Stereo topography, combined with models of viscous relaxation of impact craters, allows for the study of the rheology and thermal history of icy satellites. An important step in calculating relaxation of craters is determining the initial depths of craters before viscous relaxation. Two methods for estimating initial crater depths on the icy satellites of Saturn have been previously discussed. White and Schenk (2013) present the craters of Iapetus as relatively unrelaxed in modeling the relaxation of craters of Rhea. Phillips et al. (2013) assume that Herschel crater on Saturn's satellite Mimas is unrelaxed in relaxation calculations and models of Rhea and Dione. In the second method, the depth of Herschel crater is scaled based on the different crater diameters and the difference in surface gravity on the large moons to predict the initial crater depths for Rhea and Dione. In the first method, since Iapetus is of similar size to Dione and Rhea, no gravity scaling is necessary; craters of similar size on Iapetus were chosen and their depths measured to determine the appropriate initial crater depths for Rhea. We test these methods by first extracting topographic profiles of impact craters on Iapetus from digital elevation models (DEMs) constructed from stereo images from the Cassini ISS instrument. We determined depths from these profiles and used them to calculate initial crater depths and relaxation percentages for Rhea and Dione craters using the methods described above. We first assumed that craters on Iapetus were relaxed, and compared the results to previously calculated relaxation percentages for Rhea and Dione relative to Herschel crater (with appropriate scaling for gravity and crater diameter). We then tested the assumption that craters on Iapetus were unrelaxed and used our new measurements of crater depth to determine relaxation percentages for Dione and Rhea. We will present results and conclusions from both methods and discuss their efficacy for determining initial crater depth. References: Phillips, C.B., et al. (2013). Lunar Planet Sci. XLIV, abstract 2766. White, O.L., and P.L. Schenk. Icarus 23, 699-709, 2013. This work was supported by the NASA Outer Planets Research Program grant NNX10AQ09G and by the NSF REU Program.

  7. New seismic Vp- and Vp/Vs- models of HUKKA 2007 wide-angle reflection and refraction profile in northern Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Tiira, T.; Janik, T.; Kozlovskaya, E.; Grad, M.; Korja, A.; Komminaho, K.; Hegedüs, E.; Kovács, C. A.; Silvennoinen, H.; Brückl, E.

    2012-04-01

    We study the block structure within accreationary orogens. We present an example from northern part of the Fennoscandian Shield transected by deep seismic sounding profile HUKKA 2007. The 455 km long profile runs in NNW-SSE direction from Kittilä in northwestern Finnish Lapland to Kostamush in Russia near central part of the border between Finland and Russia. We present 2-D seismic velocity model (Vp and Vp/Vs ratio in the crust, depth to the Moho and depth to the intracrustal reflectors) along HUKKA 2007 wide-angle reflection and refraction profile in northern Finland. Commercial and military chemical explosions at 7 shot points were used as sources of the seismic energy. The shots were recorded by 115 recording stations deployed along the profile with an average station spacing of 3.45 km. The field recordings were cut and sorted into shot gathers. The 2-D velocity model of the HUKKA 2007 profile was developed by SEIS83 forward raytracing package using arrivals of major refracted and reflected P- and S-wave phases. In general the velocities vary in the upper crust between 5.8 and 6.1 km/s. Interesting features are three high P wave velocity (6.30-6.35 km/s) bodies in the upper crust. Two small bodies lie close to surface at first 100 km and the third one can be followed from 200 to 350 km along the profile reaching depth of 5-10 km. The central part of the profile (between 120 and 220 km) has a zone of low (lower than 6 km/s) P-wave velocity in the uppermost crust. This zone is about 4 km thick. In addition, the velocity model along the HUKKA 2007 profile shows significant difference in crustal velocity structure between the northern (up to 120 km) and southern parts of the profile. The differences in P-wave velocities and Vp/Vs ratio can be followed throughout the crust down to the Moho boundary. This suggests that the HUKKA 2007 profile transects a major terrane boundary. However, the position of this boundary with respect to major crustal units is controversial. It may be the boundary that separates the pristine parts of the Archean Karelian craton from those parts reworked in the Paleoproterozoic. Alternatively, it can be the boundary that separates the Karelian craton from the Belomorian mobile belt.

  8. Investigation of Ion-Implanted Photosensitive Silicon Structures by Electrochemical Capacitance–Voltage Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakovlev, G. E., E-mail: geyakovlev@etu.ru; Frolov, D. S.; Zubkova, A. V.

    2016-03-15

    The method of electrochemical capacitance–voltage profiling is used to study boron-implanted silicon structures for CCD matrices with backside illumination. A series of specially prepared structures with different energies and doses of ion implantation and also with various materials used for the coating layers (aluminum, silicon oxide, and their combinations) is studied. The profiles of the depth distribution of majority charge carriers of the studied structures are obtained experimentally. Also, using the Poisson equation and the Fredholm equation of the first kind, the distributions of the charge-carrier concentration and of the electric field in the structures are calculated. On the basismore » of the analysis and comparison of theoretical and experimental concentration profiles, recommendations concerning optimization of the structures’ parameters in order to increase the value of the pulling field and decrease the effect of the surface potential on the transport of charge carriers are suggested.« less

  9. Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling.

    PubMed

    Fukushima, K A; Sadoun, M J; Cesar, P F; Mainjot, A K

    2014-02-01

    The residual stress profile developed within the veneering ceramic during the manufacturing process is an important predicting factor in chipping failures, which constitute a well-known problem with yttria-tetragonal-zirconia polycrystal (Y-TZP) based restorations. The objectives of this study are to measure and to compare the residual stress profile in the veneering ceramic layered on three different polycrystalline ceramic framework materials: Y-TZP, alumina polycrystal (AL) and zirconia toughened alumina (ZTA). The stress profile was measured with the hole-drilling method in bilayered disk samples of 19 mm diameter with a 0.7 mm thick Y-TZP, AL or ZTA framework and a 1.5mm thick layer of the corresponding veneering ceramic. The AL samples exhibited increasing compressive stresses with depth, while compressive stresses switching into interior tensile stresses were measured in Y-TZP samples. ZTA samples exhibited compressive stress at the ceramic surface, decreasing with depth up to 0.6mm from the surface, and then becoming compressive again near the framework. Y-TZP samples exhibited a less favorable stress profile than those of AL and ZTA samples. Results support the hypothesis of the occurrence of structural changes within the Y-TZP surface in contact with the veneering ceramic to explain the presence of tensile stresses. Even if the presence of Y-TZP in the alumina matrix seems to negatively affect the residual stress profiles in ZTA samples in comparison with AL samples, the registered profiles remain positive in terms of veneer fracture resistance. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Climate reconstruction from borehole temperatures influenced by groundwater flow

    NASA Astrophysics Data System (ADS)

    Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.

    2017-12-01

    Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.

  11. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  12. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fluid overpressures and strength of the sedimentary upper crust

    NASA Astrophysics Data System (ADS)

    Suppe, John

    2014-12-01

    The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.

  14. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    NASA Astrophysics Data System (ADS)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  15. Reference independent species level profiling of the largest marine microbial ecosystem.

    NASA Astrophysics Data System (ADS)

    Mende, D. R.; DeLong, E.; Aylward, F.

    2016-02-01

    Marine microbes are of immense importance for the flux of matter and energy within the global oceans. Yet, the temporal variability of microbial communities in response to seasonal and environmental changes remains understudied. In addition, there is only a very limited understanding of the effects that changes within microbial communities at a certain depth have on the other microbes within the water column. Further, existing studies have mostly been limited by the lack of good reference databases. Here we present an reference independent analysis of a year long time series at 5 different water depth of the microbial communities at Station ALOHA, a sampling location representative of the largest contiguous ecosystem on earth, the North Pacific Subtropical Gyre (NPSG). Due to the lack the lack of closely related reference genomes most recent meta-genomic studies of marine microbial ecosystems have been limited to a coarse grained view at higher taxonomic levels. In order to gain a fine grained picture of the microbial communities and their dynamics within the NPSG, we extended the mOTU approach that has been successfully applied to the human microbiome to this marine ecosystem using more than 60 deeply sequenced metagenomic samples. This method allows for species level community profiling and diversity estimates, revealing seasonal shifts within the microbial communities. Additionally, we detected a number of microbes that respond to changes of different changing environmental conditions. We further surveyed the depth specificity of microbes at station ALOHA, showing species specific patterns of presence at different depths.

  16. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.

    PubMed

    James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo

    2002-03-01

    Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.

  17. The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: A field study

    NASA Astrophysics Data System (ADS)

    van de Velde, Sebastiaan; Lesven, Ludovic; Burdorf, Laurine D. W.; Hidalgo-Martinez, Silvia; Geelhoed, Jeanine S.; Van Rijswijk, Pieter; Gao, Yue; Meysman, Filip J. R.

    2016-12-01

    Electro-active sediments distinguish themselves from other sedimentary environments by the presence of microbially induced electrical currents in the surface layer of the sediment. The electron transport is generated by metabolic activity of long filamentous cable bacteria, in a process referred to as electrogenic sulfur oxidation (e-SOx). Laboratory experiments have shown that e-SOx exerts a large impact on the sediment geochemistry, but its influence on the in situ geochemistry of marine sediments has not been previously investigated. Here, we document the biogeochemical cycling associated with e-SOx in a cohesive coastal sediment in the North Sea (Station 130, Belgian Coastal Zone) during three campaigns (January, March and May 2014). Fluorescence in situ hybridization showed that cable bacteria were present in high densities throughout the sampling period, and that filaments penetrated up to 7 cm deep in the sediment, which is substantially deeper than previously recorded. High resolution microsensor profiling (pH, H2S and O2) revealed the typical geochemical fingerprint of e-SOx, with a wide separation (up to 4.8 cm) between the depth of oxygen penetration and the depth of sulfide appearance. The metabolic activity of cable bacteria induced a current density of 25-32 mA m-2 and created an electrical field of 12-17 mV m-1 in the upper centimeters of the sediment. This electrical field created an ionic drift, which strongly affected the depth profiles and fluxes of major cations (Ca2+, Fe2+) and anions (SO42-) in the pore water. The strong acidification of the pore water at depth resulted in the dissolution of calcium carbonates and iron sulfides, thus leading to a strong accumulation of iron, calcium and manganese in the pore water. While sulfate accumulated in the upper centimeters, no significant effect of e-SOx was found on ammonium, phosphate and silicate depth profiles. Overall, our results demonstrate that cable bacteria can strongly modulate the sedimentary biogeochemical cycling under in situ conditions.

  18. Mixed sand and gravel beaches: accurate measurement of active layer depth and sediment transport volumes using PIT tagged tracer pebbles

    NASA Astrophysics Data System (ADS)

    Holland, A.; Moses, C.; Sear, D. A.; Cope, S.

    2016-12-01

    As sediments containing significant gravel portions are increasingly used for beach replenishment projects globally, the total number of beaches classified as `mixed sand and gravel' (MSG) increases. Calculations for required replenishment sediment volumes usually assume a uniform layer of sediment transport across and along the beach, but research into active layer (AL) depth has shown variations both across shore and according to sediment size distribution. This study addresses the need for more accurate calculations of sediment transport volumes on MSG beaches by using more precise measurements of AL depth and width, and virtual velocity of tracer pebbles. Variations in AL depth were measured along three main profile lines (from MHWS to MLWN) at Eastoke, Hayling Island (Hampshire, UK). Passive Integrated Transponder (PIT) tagged pebbles were deployed in columns, and their new locations repeatedly surveyed with RFID technology. These data were combined with daily dGPS beach profiles and sediment sampling for detailed analysis of the influence of beach morphodynamics on sediment transport volumes. Data were collected over two consecutive winter seasons: 2014-15 (relatively calm, average wave height <1 m) and 2015-16 (prolonged periods of moderate storminess, wave heights of 1-2 m). The active layer was, on average, 22% of wave height where beach slope (tanβ) is 0.1, with variations noted according to slope angle, sediment distribution, and beach groundwater level. High groundwater levels and a change in sediment proportions in the sandy lower foreshore reduced the AL to 10% of wave height in this area. The disparity in AL depth across the beach profile indicates that traditional models are not accurately representing bulk sediment transport on MSG beaches. It is anticipated that by improving model inputs, beach managers will be better able to predict necessary volumes and sediment grain size proportions of replenishment material for effective management of MSG beaches.

  19. Development of a self-consistent free-form approach for studying the three-dimensional morphology of a thin film

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Igor V.; Peverini, Luca; Ziegler, Eric

    2012-03-01

    A method capable of extracting the depth distribution of the dielectric constant of a thin film deposited on a substrate and the three power spectral density (PSD) functions characterizing its roughness is presented. It is based on the concurrent analysis of x-ray reflectivity and scattering measurements obtained at different glancing angle values of the probe beam so that the effect of roughness is taken into account during reconstruction of the dielectric constant profile. Likewise, the latter is taken into account when determining the PSD functions describing the film roughness. This approach is using a numerical computation iterative procedure that demonstrated a rapid convergence for the overall set of data leading to a precise description of the three-dimensional morphology of a film. In the case of a tungsten thin film deposited by dc-magnetron sputtering onto a silicon substrate and characterized under vacuum, the analysis of the x-ray data showed the tungsten density to vary with depth from 95% of the bulk density at the top of the film to about 80% near the substrate, where the presence of an interlayer, estimated to be 0.7 nm thick, was evidenced. The latter may be due to diffusion and/or implantation of tungsten atoms into the silicon substrate. In the reconstruction of the depth profile, the resolution (minimum feature size correctly reconstructed) was estimated to be of the order of 0.4-0.5 nm. The depth distribution of the dielectric constant was shown to affect the roughness conformity coefficient extracted from the measured x-ray scattering distributions, while the deposition process increased the film roughness at high spatial frequency as compared to the virgin substrate. On the contrary, the roughness showed a weak influence on the dielectric constant depth profile extracted, as the sample used in our particular experiment was extremely smooth.

  20. MCNP6 model of the University of Washington clinical neutron therapy system (CNTS).

    PubMed

    Moffitt, Gregory B; Stewart, Robert D; Sandison, George A; Goorley, John T; Argento, David C; Jevremovic, Tatjana

    2016-01-21

    A MCNP6 dosimetry model is presented for the Clinical Neutron Therapy System (CNTS) at the University of Washington. In the CNTS, fast neutrons are generated by a 50.5 MeV proton beam incident on a 10.5 mm thick Be target. The production, scattering and absorption of neutrons, photons, and other particles are explicitly tracked throughout the key components of the CNTS, including the target, primary collimator, flattening filter, monitor unit ionization chamber, and multi-leaf collimator. Simulations of the open field tissue maximum ratio (TMR), percentage depth dose profiles, and lateral dose profiles in a 40 cm × 40 cm × 40 cm water phantom are in good agreement with ionization chamber measurements. For a nominal 10 × 10 field, the measured and calculated TMR values for depths of 1.5 cm, 5 cm, 10 cm, and 20 cm (compared to the dose at 1.7 cm) are within 0.22%, 2.23%, 4.30%, and 6.27%, respectively. For the three field sizes studied, 2.8 cm × 2.8 cm, 10.4 cm × 10.3 cm, and 28.8 cm × 28.8 cm, a gamma test comparing the measured and simulated percent depth dose curves have pass rates of 96.4%, 100.0%, and 78.6% (depth from 1.5 to 15 cm), respectively, using a 3% or 3 mm agreement criterion. At a representative depth of 10 cm, simulated lateral dose profiles have in-field (⩾ 10% of central axis dose) pass rates of 89.7% (2.8 cm × 2.8 cm), 89.6% (10.4 cm × 10.3 cm), and 100.0% (28.8 cm × 28.8 cm) using a 3% and 3 mm criterion. The MCNP6 model of the CNTS meets the minimum requirements for use as a quality assurance tool for treatment planning and provides useful insights and information to aid in the advancement of fast neutron therapy.

  1. Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Mechie, J.; Abu-Ayyash, K.; Ben-Avraham, Z.; El-Kelani, R.; Qabbani, I.; Weber, M.

    2009-07-01

    As part of the DEad Sea Integrated REsearch project (DESIRE) a 235 km long seismic wide-angle reflection/refraction (WRR) profile was completed in spring 2006 across the Dead Sea Transform (DST) in the region of the southern Dead Sea basin (DSB). The DST with a total of about 107 km multi-stage left-lateral shear since about 18 Ma ago, accommodates the movement between the Arabian and African plates. It connects the spreading centre in the Red Sea with the Taurus collision zone in Turkey over a length of about 1100 km. With a sedimentary infill of about 10 km in places, the southern DSB is the largest pull-apart basin along the DST and one of the largest pull-apart basins on Earth. The WRR measurements comprised 11 shots recorded by 200 three-component and 400 one-component instruments spaced 300 m to 1.2 km apart along the whole length of the E-W trending profile. Models of the P-wave velocity structure derived from the WRR data show that the sedimentary infill associated with the formation of the southern DSB is about 8.5 km thick beneath the profile. With around an additional 2 km of older sediments, the depth to the seismic basement beneath the southern DSB is about 11 km below sea level beneath the profile. Seismic refraction data from an earlier experiment suggest that the seismic basement continues to deepen to a maximum depth of about 14 km, about 10 km south of the DESIRE profile. In contrast, the interfaces below about 20 km depth, including the top of the lower crust and the Moho, probably show less than 3 km variation in depth beneath the profile as it crosses the southern DSB. Thus the Dead Sea pull-apart basin may be essentially an upper crustal feature with upper crustal extension associated with the left-lateral motion along the DST. The boundary between the upper and lower crust at about 20 km depth might act as a decoupling zone. Below this boundary the two plates move past each other in what is essentially a shearing motion. Thermo-mechanical modelling of the DSB supports such a scenario. As the DESIRE seismic profile crosses the DST about 100 km north of where the DESERT seismic profile crosses the DST, it has been possible to construct a crustal cross-section of the region before the 107 km left-lateral shear on the DST occurred.

  2. Stability of Zircon and its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months) Isotope Exchange Experiment at 850 °C and 50 MPa

    NASA Astrophysics Data System (ADS)

    Bindeman, Ilya N.; Schmitt, Axel K.; Lundstrom, Craig C.; Hervig, Richard L.

    2018-05-01

    Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb) diffuse when zircon is exposed to hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone) treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B) labeled water with a nominal δ18O value of +450‰ over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards) δ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a 130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards) depth profiling on a 2-3 µm thick wafer cut and thinned from treated zircon by focused ion beam (FIB) milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS) frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of 20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with 1 µm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak (1997). Instead, intracrystalline exchange of oxygen between fluid and zircon in wet experimental conditions with excess silica occurred over length-scales equivalent to those predicted for dry diffusion. Oxygen diffusion coefficients even under wet conditions and elevated temperatures (850 °C) are <1-3×10-23 m2/sec, underscoring a virtual lack of oxygen diffusion and an outstanding survivability of zircons

  3. The velocity structure of the lunar crust.

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.

    1973-01-01

    Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (1) velocity increases from 100 to 300 m/sec in the upper 100 m to about 4 km/sec at 5 km depth, (2) a more gradual increase from about 4 km/sec to about 6 km/sec at 25 km depth,(3) a discontinuity at a depth of 25 km, and (4) a constant value of about 7 km/sec at depths from 25 km to about 60 km.

  4. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    PubMed

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Resistivity and Seismic Surface Wave Tomography Results for the Nevşehir Kale Region: Cappadocia, Turkey

    NASA Astrophysics Data System (ADS)

    Coşkun, Nart; Çakır, Özcan; Erduran, Murat; Arif Kutlu, Yusuf

    2014-05-01

    The Nevşehir Kale region located in the middle of Cappadocia with approximately cone shape is investigated for existence of an underground city using the geophysical methods of electrical resistivity and seismic surface wave tomography together. Underground cities are generally known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nevşehir Kale region. Two-dimensional resistivity and seismic profiles approximately 4-km long surrounding the Nevşehir Kale are measured to determine the distribution of electrical resistivities and seismic velocities under the profiles. Several high resistivity anomalies with a depth range 8-20 m are discovered to associate with a systematic void structure beneath the region. Because of the high resolution resistivity measurement system currently employed we were able to isolate the void structure from the embedding structure. Low seismic velocity zones associated with the high resistivity depths are also discovered. Using three-dimensional visualization techniques we show the extension of the void structure under the measured profiles.

  6. Upper limit for the effect of elastic bending stress on the saturation magnetization of L a 0.8 S r 0.2 Mn O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiang; Chen, A. P.; Guo, Erjia J.

    In this study, using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La 0.8Sr 0.2MnO 3 (LSMO) epitaxial film grown on a SrTiO 3 substrate. The elastic bending strain of ±0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La 1-xPr x)1-yCayMnO 3 (LPCMO) films for which strain of ±0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none)more » and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.« less

  7. Upper limit for the effect of elastic bending stress on the saturation magnetization of L a 0.8 S r 0.2 Mn O 3

    DOE PAGES

    Wang, Qiang; Chen, A. P.; Guo, Erjia J.; ...

    2018-01-31

    In this study, using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La 0.8Sr 0.2MnO 3 (LSMO) epitaxial film grown on a SrTiO 3 substrate. The elastic bending strain of ±0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La 1-xPr x)1-yCayMnO 3 (LPCMO) films for which strain of ±0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none)more » and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.« less

  8. High-throughput and targeted in-depth mass spectrometry-based approaches for biofluid profiling and biomarker discovery.

    PubMed

    Jimenez, Connie R; Piersma, Sander; Pham, Thang V

    2007-12-01

    Proteomics aims to create a link between genomic information, biological function and disease through global studies of protein expression, modification and protein-protein interactions. Recent advances in key proteomics tools, such as mass spectrometry (MS) and (bio)informatics, provide tremendous opportunities for biomarker-related clinical applications. In this review, we focus on two complementary MS-based approaches with high potential for the discovery of biomarker patterns and low-abundant candidate biomarkers in biofluids: high-throughput matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy-based methods for peptidome profiling and label-free liquid chromatography-based methods coupled to MS for in-depth profiling of biofluids with a focus on subproteomes, including the low-molecular-weight proteome, carrier-bound proteome and N-linked glycoproteome. The two approaches differ in their aims, throughput and sensitivity. We discuss recent progress and challenges in the analysis of plasma/serum and proximal fluids using these strategies and highlight the potential of liquid chromatography-MS-based proteomics of cancer cell and tumor secretomes for the discovery of candidate blood-based biomarkers. Strategies for candidate validation are also described.

  9. Application effectiveness of the microtremor survey method in the exploration of geothermal resources

    NASA Astrophysics Data System (ADS)

    Tian, Baoqing; Xu, Peifen; Ling, Suqun; Du, Jianguo; Xu, Xueqiu; Pang, Zhonghe

    2017-10-01

    Geophysical techniques are critical tools of geothermal resource surveys. In recent years, the microtremor survey method, which has two branch techniques (the microtremor sounding technique and the two-dimensional (2D) microtremor profiling technique), has become a common method for geothermal resource exploration. The results of microtremor surveys provide important deep information for probing structures of geothermal storing basins and researching the heat-controlling structures, as well as providing the basis for drilling positions of geothermal wells. In this paper, the southern Jiangsu geothermal resources area is taken as a study example. By comparing the results of microtremor surveys and drilling conclusions, and analyzing microtremor survey effectiveness, and geological and technical factors such as observation radius and sampling frequency, we study the applicability of the microtremor survey method and the optimal way of working with this method to achieve better detection results. A comparative study of survey results and geothermal drilling results shows that the microtremor sounding technique effectively distinguishes sub-layers and determines the depth of geothermal reservoirs in the area with excellent layer conditions. The error of depth is generally no more than 8% compared with the results of drilling. It detects deeper by adjusting the size of the probing radius. The 2D microtremor profiling technique probes exactly the buried structures which display as low velocity anomalies in the apparent velocity profile of the S-wave. The anomaly is the critical symbol of the 2D microtremor profiling technique to distinguish and explain the buried geothermal structures. 2D microtremor profiling results provide an important basis for locating exactly the geothermal well and reducing the risk of drilling dry wells.

  10. Complex N-S variations in Moho depth and Vp/Vs ratio beneath the western Tibetan Plateau as revealed by receiver function analysis

    NASA Astrophysics Data System (ADS)

    Murodov, Davlatkhudzha; Zhao, Junmeng; Xu, Qiang; Liu, Hongbing; Pei, Shunping

    2018-04-01

    We present herein detailed images of the Moho depth and Vp/Vs ratio along ANTILOPE-1 profile beneath the western Tibetan Plateau derived from receiver function analysis. Along the ANTILOPE -1 profile, a rapidly northward dipping Moho extends from ˜50 km below the Himalaya to ˜80 km across the Indus-Yarlung suture (IYS), shallowing to ˜66 km under the central Lhasa terrane. The Moho depth shows a dramatic increase from ˜66 km north of the Bangong-Nujiang suture (BNS) to ˜93 km beneath central Qiangtang terrane where it reaches the maximum depth observed along this profile before steeply rising to ˜73 km. We interpret both the 15 km and 20 km offsets of Moho depth occurring beneath the central Lhasa and central Qiangtang terranes as being related to the northern frontiers of the decoupled underthrusting Indian lower crust and lithospheric mantle, respectively. The Moho remains at a depth of ˜70 km with a slight undulation beneath the northern Qiangtang and Songpan-Ganzi terranes, and then abruptly shallows to ˜45 km near the Altyn Tagh Fault. The ˜25 km Moho offset observed at the conjunction of the Tarim Basin and the Altyn Tagh mountain range suggests that the crustal shortening is achieved by pure shear thickening without much underthrusting. The average crustal Vp/Vs ratio changes from 1.66 to 1.80 beneath the Himalaya, the Lhasa terrane and the Tarim Basin indicating a felsic-to-intermediate composition. However, higher Vp/Vs ratios between 1.76 and 1.83 (except for a few outlying low values) are found beneath the Qiangtang and Songpan-Ganzi terranes, which could be attributed to the joint effects of the more mafic composition and partial melt within the crust. The Moho depth and Vp/Vs ratio exhibit complex N-S variations along this profile, which can be attributed to the joint effects of Indian lower crust underthrusting, the low velocity zone of the mid-upper crust, crustal shortening and thickening and other involved dynamic mechanisms.

  11. Clay mineralogy of weathering profiles from the Carolina Piedmont.

    USGS Publications Warehouse

    Loferski, P.J.

    1981-01-01

    Saprolite profiles (12) that formed over various crystalline rocks from the Charlotte 1o X 2o quadrangle showed overall similarity in their clay mineralogy to depths of 6 to 45 m indicating control by weathering processes rather than by rock type. Most saprolite contained 10-25% clay, and ranged 3 to 70%. Kaolinite and halloysite composed = or >75% of the clay fraction of most samples. The ratio kaolinite:halloysite ranged widely, from 95% kaolinite to 90% halloysite, independent of depth. Clay-size mica was present in all profiles, and ranged 5-75% over a sericite schist. Mixed-layer mica-smectite and mica-vermiculite were subordinate; discrete smectite and vermiculite were rare. The abundance of halloysite indicates a continuously humid environment since the time of profile formation, because of the rapidity with which halloysite dehydrates irreversibly. -R.S.M.

  12. Quantifying the variability of snowpack properties and processes in a small-forested catchment representative of the boreal zone

    NASA Astrophysics Data System (ADS)

    Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.

    2017-12-01

    In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.

  13. Secondary Ion Mass Spectrometry SIMS XI

    NASA Astrophysics Data System (ADS)

    Gillen, G.; Lareau, R.; Bennett, J.; Stevie, F.

    2003-05-01

    This volume contains 252 contributions presented as plenary, invited and contributed poster and oral presentations at the 11th International Conference on Secondary Ion Mass Spectrometry (SIMS XI) held at the Hilton Hotel, Walt Disney World Village, Orlando, Florida, 7 12 September, 1997. The book covers a diverse range of research, reflecting the rapid growth in advanced semiconductor characterization, ultra shallow depth profiling, TOF-SIMS and the new areas in which SIMS techniques are being used, for example in biological sciences and organic surface characterization. Papers are presented under the following categories: Isotopic SIMS Biological SIMS Semiconductor Characterization Techniques and Applications Ultra Shallow Depth Profiling Depth Profiling Fundamental/Modelling and Diffusion Sputter-Induced Topography Fundamentals of Molecular Desorption Organic Materials Practical TOF-SIMS Polyatomic Primary Ions Materials/Surface Analysis Postionization Instrumentation Geological SIMS Imaging Fundamentals of Sputtering Ion Formation and Cluster Formation Quantitative Analysis Environmental/Particle Characterization Related Techniques These proceedings provide an invaluable source of reference for both newcomers to the field and experienced SIMS users.

  14. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Alongshore Variation in the Depth of Activation: Implications of Oil Residence Time

    NASA Astrophysics Data System (ADS)

    Flores, P.; Houser, C.

    2016-12-01

    In 2010 the Deepwater Horizon Oil Spill released approximately 5 million barrels of oil into the Gulf of Mexico just as the nearshore and beach profile were recovering from winter storms. As a consequence, oil mats and tar balls were trapped at depth within the beach and nearshore profile. Excavation of this buried oil during subsequent storms creates the potential for the contamination of adjacent beaches and the degradation of marine ecosystems, which can in turn negatively impact local economies that depend on fisheries and tourism. The potential for oil burial and persistence is dependent on four things: the physio-chemical nature of the oil as it reaches the nearshore environment, the pre-existing morphology of the beach and nearshore, and the evolution of that morphology after the oil is deposited. The depth at which the oil is buried is also dependent on the beach profile during the time of the spill. The purpose of this study is to characterize the alongshore variation in depth of activation on a Deepwater Horizon impacted section of Pensacola Beach, Florida with regards to the implications of oil residence time. Ground- Penetrating Radar (GPR) surveys were conducted along two parallel 1-km transects adjacent to the swash zone and the dune. Additional cross- shore transects were completed every 150 m from the base of the dune to the top of the swash zone. Sediments cores were taken at the crossing points of the alongshore and cross-shore transects, to calibrate the GPR surveys and complete an elemental analysis for the identification of storm layers. The cores were also analyzed for the presence of buried oil.

  16. Proper source-receiver distance to obtain surface wave group velocity profile for flaw detection inside a concrete plate-like structure

    NASA Astrophysics Data System (ADS)

    Cheng, Chia-Chi; Hsu, Keng-Tsang; Wang, Hong-Hua; Chiang, Chih-Hung

    2018-04-01

    A technique leads to rapid flaw detection for concrete plate-like structure is realized by obtaining the group velocity dispersion profile of the fundamental antisymmetric mode of the plate (A0 mode). The depth of a delaminating crack, honeycomb or depth of weak surface layer on top of the sound concrete can all be evaluated by the change of velocity in the dispersion profile of A0 mode at the wavelength about twice of the depth. The testing method involves obtaining the A0 group slowness spectrogram produced by single test with one receiver placed away from the source of impact. The image of the spectrogram is obtained by Short-Time Fourier Transfer (STFT) and enhanced by reassigned method. The choice of window length in STFT and the ratio between impactor-receiver distance and plate thickness, d/T, is essential as the dominant surface wave response may simply a non-dispersive Rayleigh wave or following the A0 or S0 (fundamental symmetric mode) modal dispersion curve. In this study, the axisymmetric finite element model of a plate subject to transient load was constructed. The nodal vertical velocity waveforms for various distances were analyzed using various STFT window lengths. The results show, for certain d/T ratio, S0 mode would be dominant when longer window is used. The best window lengths for a d/T ratio as well as the corresponding largest wavelength which follows the A0 theoretical dispersion curve or Rayleigh wave were summarized. The information allows people to determine the proper impactor-receiver distance and analyzing window to successfully detect the depth of flaws inside a plate.

  17. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry.

    PubMed

    Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J

    2015-11-01

    A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth-dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4-41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth-dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  18. Minimalistic models of the vertical distribution of roots under stochastic hydrological forcing

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2014-05-01

    The assessment of the vertical root profile can be useful for multiple purposes: the partition of water fluxes between evaporation and transpiration, the evaluation of root soil reinforcement for bioengineering applications, the influence of roots on biogeochemical and microbial processes in the soil, etc. In water-controlled ecosystems the shape of the root profile is mainly determined by the soil moisture availability at different depths. The long term soil water balance in the root zone can be assessed by modeling the stochastic incoming and outgoing water fluxes, influenced by the stochastic rainfall pulses and/or by the water table fluctuations. Through an ecohydrological analysis one obtains that in water-controlled ecosystems the vertical root distribution is a decreasing function with depth, whose parameters depend on pedologic and climatic factors. The model can be extended to suitably account for the influence of the water table fluctuations, when the water table is shallow enough to exert an influence on root development, in which case the vertical root distribution tends to assume a non-monotonic form. In order to evaluate the validity of the ecohydrological estimation of the root profile we have tested it on a case study in the north of Tuscany (Italy). We have analyzed data from 17 landslide-prone sites: in each of these sites we have assessed the pedologic and climatic descriptors necessary to apply the model, and we have measured the mean rooting depth. The results show a quite good matching between observed and modeled mean root depths. The merit of this minimalistic approach to the modeling of the vertical root distribution relies on the fact that it allows a quantitative estimation of the main features of the vertical root distribution without resorting to time- and money-demanding measuring surveys.

  19. Production of 21Ne in depth-profiled olivine from a 54 Ma basalt sequence, Eastern Highlands (37° S), Australia

    NASA Astrophysics Data System (ADS)

    Matchan, Erin L.; Honda, Masahiko; Barrows, Timothy T.; Phillips, David; Chivas, Allan R.; Fifield, L. Keith; Fabel, Derek

    2018-01-01

    In this study we investigate the cosmogenic neon component in olivine samples from a vertical profile in order to quantify muogenic 21Ne production in this mineral. Samples were collected from an 11 m thick Eocene basalt profile in the Eastern Highlands of southeastern Australia. An eruption age of 54.15 ± 0.36 Ma (2σ) was determined from 40Ar/39Ar step-heating experiments (n = 6) on three whole-rock samples. A 36Cl profile on the section indicated an apparent steady state erosion rate of 4.7 ± 0.5 m Ma-1. The eruption age was used to calculate in situ produced radiogenic 4He and nucleogenic 3He and 21Ne concentrations in olivine. Olivine mineral separates (n = 4), extracted from the upper two metres of the studied profile, reveal cosmogenic 21Ne concentrations that attenuate exponentially with depth. However, olivine (Fo68) extracted from below 2 m does not contain discernible 21Ne aside from magmatic and nucleogenic components, with the exception of one sample that apparently contained equal proportions of nucleogenic and muogenic neon. Modelling results suggest a muogenic neon sea-level high-latitude production rate of 0.02 ± 0.04 to 0.9 ± 1.3 atoms g-1 a-1 (1σ), or <2.5% of spallogenic cosmogenic 21Ne production at Earth's surface. These data support a key implicit assumption in the literature that accumulation of muogenic 21Ne in olivine in surface samples is likely to be negligible/minimal compared to spallogenic 21Ne.

  20. Depth distribution of exchangeable aluminum in acid soils: A study from subtropical Brazil

    USDA-ARS?s Scientific Manuscript database

    High exchangeable aluminum (Al3+) requires greater attention when preparing agricultural soils. However, research examining the relationship between natural levels of soil Al3+ and pedogenetic processes receives little priority, particularly regarding the number of soil profiles investigated. To rep...

  1. Isotopenhydrologische Methoden (2H, 18O) zur Bestimmung der Grundwasserneubildung in Trockengebieten: Potenzial und Grenzen

    NASA Astrophysics Data System (ADS)

    Beyer, Matthias; Gaj, Marcel; Königer, Paul; Tulimeveva Hamutoko, Josefina; Wanke, Heike; Wallner, Markus; Himmelsbach, Thomas

    2018-03-01

    The estimation of groundwater recharge in water-limited environments is challenging due to climatic conditions, the occurrence of deep unsaturated zones, and specialized vegetation. We critically examined two methods based on stable isotopes of soil water: (i) the interpretation of natural isotope depth-profiles and subsequent approximation of recharge using empirical relationships and (ii) the use of deuterium-enriched water (2H2O) as tracer. Numerous depth-profiles were measured directly in the field in semiarid Namibia using a novel in-situ technique. Additionally, 2H2O was injected into the soil and its displacement over a complete rainy season monitored. Estimated recharge ranges between 0 and 29 mm/y for three rainy seasons experiencing seasonal rainfall of 660 mm (2013/14), 313 mm (2014/15) and 535 mm (2015/16). The results of this study fortify the suitability of water stable isotope-based approaches for recharge estimation and highlight enormous potential for future studies of water vapor transport and ecohydrological processes.

  2. Multichannel analysis of the surface waves of earth materials in some parts of Lagos State, Nigeria

    NASA Astrophysics Data System (ADS)

    Adegbola, R. B.; Oyedele, K. F.; Adeoti, L.; Adeloye, A. B.

    2016-09-01

    We present a method that utilizes multichannel analysis of surface waves (MASW), which was used to measure shear wave velocities, with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some local government areas in Lagos, Nigeria. MASW data were acquired using a 24-channel seismograph. The acquired data were processed and transformed into a two-dimensional (2-D) structure reflective of the depth and surface wave velocity distribution within a depth of 0-15 m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/ borehole data that were acquired along the same profile. The comparison and correlation illustrate the accuracy and consistency of MASW-derived shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/ very low velocity data are reflective of organic clay/ peat materials and thus likely responsible for the failure, subsidence and weakening of structures within the study areas.

  3. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  4. Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products

    PubMed Central

    Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan

    2015-01-01

    Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in reproducing depth dose profile of the beam of pions was not negligible. Because the discrepancies were pronounced in smaller depth and also regarding the contribution of pions in deposited dose of a beam of antiproton, further investigation on choosing most suitable and accurate physic list for this purpose should be done. Furthermore, this study showed careful attention must be paid to choose the appropriate Geant4 physic list for neutron tracking depending to the applications criteria. We failed to find any agreement between results from Geant4 and Fluka to reproduce depth dose profile of pion with the energy range used in this study. PMID:26120569

  5. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Anna; Yin, Fang-Fang; Wu, Qiuwen, E-mail: Qiuwen.Wu@Duke.edu

    2015-05-15

    Purpose: To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. Methods: In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimatedmore » field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm{sup 2} were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R{sub 100}, R{sub 50}, R{sub p}, and R{sub p+} for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Results: Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R{sub 100}, R{sub 50}, and R{sub p} were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. Conclusions: We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm{sup 2} were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.« less

  6. A Monte Carlo simulation framework for electron beam dose calculations using Varian phase space files for TrueBeam Linacs.

    PubMed

    Rodrigues, Anna; Sawkey, Daren; Yin, Fang-Fang; Wu, Qiuwen

    2015-05-01

    To develop a framework for accurate electron Monte Carlo dose calculation. In this study, comprehensive validations of vendor provided electron beam phase space files for Varian TrueBeam Linacs against measurement data are presented. In this framework, the Monte Carlo generated phase space files were provided by the vendor and used as input to the downstream plan-specific simulations including jaws, electron applicators, and water phantom computed in the EGSnrc environment. The phase space files were generated based on open field commissioning data. A subset of electron energies of 6, 9, 12, 16, and 20 MeV and open and collimated field sizes 3 × 3, 4 × 4, 5 × 5, 6 × 6, 10 × 10, 15 × 15, 20 × 20, and 25 × 25 cm(2) were evaluated. Measurements acquired with a CC13 cylindrical ionization chamber and electron diode detector and simulations from this framework were compared for a water phantom geometry. The evaluation metrics include percent depth dose, orthogonal and diagonal profiles at depths R100, R50, Rp, and Rp+ for standard and extended source-to-surface distances (SSD), as well as cone and cut-out output factors. Agreement for the percent depth dose and orthogonal profiles between measurement and Monte Carlo was generally within 2% or 1 mm. The largest discrepancies were observed within depths of 5 mm from phantom surface. Differences in field size, penumbra, and flatness for the orthogonal profiles at depths R100, R50, and Rp were within 1 mm, 1 mm, and 2%, respectively. Orthogonal profiles at SSDs of 100 and 120 cm showed the same level of agreement. Cone and cut-out output factors agreed well with maximum differences within 2.5% for 6 MeV and 1% for all other energies. Cone output factors at extended SSDs of 105, 110, 115, and 120 cm exhibited similar levels of agreement. We have presented a Monte Carlo simulation framework for electron beam dose calculations for Varian TrueBeam Linacs. Electron beam energies of 6 to 20 MeV for open and collimated field sizes from 3 × 3 to 25 × 25 cm(2) were studied and results were compared to the measurement data with excellent agreement. Application of this framework can thus be used as the platform for treatment planning of dynamic electron arc radiotherapy and other advanced dynamic techniques with electron beams.

  7. Evaluation of different strategies for quantitative depth profile analysis of Cu/NiCu layers and multilayers via pulsed glow discharge - Time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Muñiz, Rocío; Lobo, Lara; Németh, Katalin; Péter, László; Pereiro, Rosario

    2017-09-01

    There is still a lack of approaches for quantitative depth-profiling when dealing with glow discharges (GD) coupled to mass spectrometric detection. The purpose of this work is to develop quantification procedures using pulsed GD (PGD) - time of flight mass spectrometry. In particular, research was focused towards the depth profile analysis of Cu/NiCu nanolayers and multilayers electrodeposited on Si wafers. PGDs are characterized by three different regions due to the temporal application of power: prepeak, plateau and afterglow. This last region is the most sensitive and so it is convenient for quantitative analysis of minor components; however, major elements are often saturated, even at 30 W of applied radiofrequency power for these particular samples. For such cases, we have investigated two strategies based on a multimatrix calibration procedure: (i) using the afterglow region for all the sample components except for the major element (Cu) that was analyzed in the plateau, and (ii) using the afterglow region for all the elements measuring the ArCu signal instead of Cu. Seven homogeneous certified reference materials containing Si, Cr, Fe, Co, Ni and Cu have been used for quantification. Quantitative depth profiles obtained with these two strategies for samples containing 3 or 6 multilayers (of a few tens of nanometers each layer) were in agreement with the expected values, both in terms of thickness and composition of the layers.

  8. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  9. Impact of land management on soil structure and soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Jirku, Veronika; Nikodem, Antonin; Muhlhanselova, Marcela; Zigova, Anna

    2010-05-01

    Study is focused on a comparison of a soil structure and soil hydraulic properties within soil profiles of a same soil type under different land management. Study was performed in Haplic Luvisol in Hnevceves the Czech Republic. Two soil profiles, which were in close distance from each other, were chosen: 1. under the conventional tillage, 2. under the permanent (30 years) grass cover. Soil sampling and field experiments were carried out immediately after the harvest of winter barley in 2008. The micromorphological images were used to evaluate the soil structure of all Ap, Bt1, Bt2 and C diagnostic horizons. The hydraulic properties of the diagnostic horizons were studied in the laboratory using multistep outflow experiments performed on the undisturbed 100-cm3 soil samples. A tension disc infiltrometer (with a disc radius of 10 cm) and minidisc tension infiltrometers (with a disc radius of 2.2 cm) were used to measure cumulative water infiltration under unsaturated conditions created using a pressure head of -2 cm. Measurements were performed at a depths of 5, 45, 75 and 110 cm, which corresponded to the Ap, Bt1, Bt2 and C horizons of studied Haplic Luvisol at both locations. The Guelph permeameter was used to measure cumulative water flux under surface ponding conditions. The depth of the drilled well was 10, 50, 80 and 115 cm, the well radius was 3 cm, and the well ponding depth was 5 cm. Both tests were used to evaluate hydraulic conductivity (K for h=-2cm, and Ks) values. Results showed, that while properties in the Bt2 and C horizons of both soil profiles were relatively similar, properties in the Ap and Bt1 horizons were different. The fraction of gravitational pores (which may cause preferential flow) in the Ap and Bt1 horizons of the soil profile under the convectional tillage was large than those in the Ap and Bt1 horizons of the soil profile under the permanent grass. This influenced for instance the Ks values measured using the Guelph permeametr. The Ks values were higher and more variable in the soil profile under the convectional tillage than those in the soil profile under the permanent grass. On the other hand, due to the periodical tillage and consequent soil structure breakdown, the fraction of the large capillary pores were smaller in the Ap horizon of the soil profile under the convectional tillage than that in the Ap horizon of the soil profile under the permanent grass. As result the K (h=-2cm) values measured using the tension infiltrometer in the soil profile under the permanent grass was higher than those in the soil profile under the convectional tillage. However, the fraction of the large capillary pores and K (h=-2cm) values were similar in the Bt1 horizons of both soil profiles. Thus the land management impacted both macropores and matrix pores in the Ap horizon and macropores (prismatic structure and biopores) in the Bt1 horizon. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic (grant No. GA CR 526/08/0434) and the Ministry of Education, Youth and Sports of the Czech Republic (grant No. MSM 6046070901).

  10. The Study on Grinding Ratio in Form Grinding with White Fused Alumina (WA) Grinding Wheels

    NASA Astrophysics Data System (ADS)

    Junming, Wang; Jiong, Wang; Deyuan, Lou

    2018-03-01

    The study is carried out based on an experiment of form grinding spur rack with white fused alumina (WA) grinding wheels. In the experiment, SOV-3020A type tri-axial image mapper is utilized to measure the profile of the tooth space in the rack, and the curve equations between the sectional area of the tooth space and the tooth sequence under different grinding depths are established by nonlinear curve regress using software of origin8.0. Then, it deduces the prediction equations for current grinding ratio and cumulative grinding ratio under different grinding depths. The result shows that the grinding ratio is exponential decline relationship with the increase of the number of the tooth to be ground under the same grinding depth, and the decline speed is fast in the initial stage. With the increase of grinding depth, the grinding ratio increases gradually. The cumulative grinding ratio is about twice as high as the current grinding ratio. Thus, large grinding depth is generally used in rough grinding to improve grinding efficiency.

  11. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason

    2017-04-01

    Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.

  12. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent the temperature dynamics. We further show that our proposed initialization procedure is effective and robust to uncertainty in paleo-climate reconstructions and that more than 300 years of reconstructed climate time series are needed for proper model initialization.

  13. Relationships between the geometry of seismogenic faults and observed seismicty: a contribute from reflection seismic

    NASA Astrophysics Data System (ADS)

    Ciaccio, M. G.; Mirabella, F.; Stucchi, E.

    2003-04-01

    We analyze the seismogenic structures of the the Colfiorito area (central Italy), strucked by the 1997-98 relevant seismic sequence. This area has been used as a test site to investigate the possible interactions between earthquake seismology, reflection seismology and structural geology. Here we show the results obtained from the interpretation of the re-processed seismic reflection profile, acquired in the 80' for hydrocarbon exploration by ENI-Agip, crossing the epicentral area and the relationships between relating hypocentral locations and geological features derived from surface and from seismic data. The dense distribution of seismic stations connected to a temporary network installed after the occurrence of the first two large shocks (Mw=5.7 and Mw=6.0) provided high quality data showing earthquakes located at depth varying from 3 to 9 km and characterised by normal faulting mechanisms, with a NE-SW tension axis oriented about N55^o. The non conventional reprocessing sequence adopted was aimed to the early removal of the coherent and random noise and to the optimal definition of fault systems. The obtained profile shows an outstanding increase in the resolution of the geological structures with a better evidence of the faults and allows a much better correlation of surface geology features with the reflectors and the banning of parts of the profiles which run along the strike of the geological structures. The profile also shows a good image of the deep structure which has been interpreted as the depth image of the major fault of the Colfiorito fault system. A first attempt of projection of the earthquakes of the 1997-98 sequence shows a basic consistence with the inferred extensional structures at depth. The study also evidences that at least the upper part of the basement is involved in the thrust sheets, with a stepping and deepening of the basement from west to east from 5.5, to 9 km depth. The average dip at depth of the active faults is about 40^o fitting with the slip plane inferred from the focal mechanism of the main shocks and with the aftershocks distribution alignment in cross section of the aftershock sequence. At a depth of about 8 km, the trace of the active normal fault corresponds to the position of a Basement step, hence suggesting that the position of the Basement steps, generated by Miocene-Pliocene thrust tectonics, may have controlled the location of the subsequent normal faults.

  14. Deuterium depth profile quantification in a ASDEX Upgrade divertor tile using secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ghezzi, F.; Caniello, R.; Giubertoni, D.; Bersani, M.; Hakola, A.; Mayer, M.; Rohde, V.; Anderle, M.; ASDEX Upgrade Team

    2014-10-01

    We present the results of a study where secondary ion mass spectrometry (SIMS) has been used to obtain depth profiles of deuterium concentration on plasma facing components of the first wall of the ASDEX Upgrade tokamak. The method uses primary and secondary standards to quantify the amount of deuterium retained. Samples of bulk graphite coated with tungsten or tantalum-doped tungsten are independently profiled with three different SIMS instruments. Their deuterium concentration profiles are compared showing good agreement. In order to assess the validity of the method, the integrated deuterium concentrations in the coatings given by one of the SIMS devices is compared with nuclear reaction analysis (NRA) data. Although in the case of tungsten the agreement between NRA and SIMS is satisfactory, for tantalum-doped tungsten samples the discrepancy is significant because of matrix effect induced by tantalum and differently eroded surface (W + Ta always exposed to plasma, W largely shadowed). A further comparison where the SIMS deuterium concentration is obtained by calibrating the measurements against NRA values is also presented. For the tungsten samples, where no Ta induced matrix effects are present, the two methods are almost equivalent.The results presented show the potential of the method provided that the standards used for the calibration reproduce faithfully the matrix nature of the samples.

  15. Evaluating abiotic influences on soil salinity of inland managed wetlands and agricultural croplands in a semi-arid environment

    USGS Publications Warehouse

    Fowler, D.; King, Sammy L.; Weindorf, David C.

    2014-01-01

    Agriculture and moist-soil management are important management techniques used on wildlife refuges to provide adequate energy for migrant waterbirds. In semi-arid systems, the accumulation of soluble salts throughout the soil profile can limit total production of wetland plants and agronomic crops and thus jeopardize meeting waterbird energy needs. This study evaluates the effect of distinct hydrologic regimes associated with moist-soil management and agricultural production on salt accumulation in a semi-arid floodplain. We hypothesized that the frequency of flooding and quantity of floodwater in a moist-soil management hydroperiod results in a less saline soil profile compared to profiles under traditional agricultural management. Findings showed that agricultural croplands differed (p-value < 0.001, df = 9) in quantities of total soluble salts (TSS) compared to moist-soil impoundments and contained greater concentrations (TSS range = 1,160-1,750 (mg kg-1)) at depth greater than 55 cm below the surface of the profile, while moist-soil impoundments contained lower concentrations (TSS range = 307-531 (mg kg-1)) at the same depths. Increased salts in agricultural may be attributed to the lack of leaching afforded by smaller summer irrigations while larger periodic flooding events in winter and summer flood irrigations in moist-soil impoundments may serve as leaching events.

  16. GPR investigations along the North Anatolian Fault near Izmit (Turkey): Constraints on the right-lateral movement and slip history

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Meghraoui, M.; Rockwell, T. K.; Kozaci, Ö.; Akyuz, S.; Girard, J.-F.; Barka, A.

    2003-04-01

    The 1999 Ms 7.4 Izmit earthquake produced more than 110 km of surface rupture along the North Anatolian fault. We present here ground-penetrating radar (GPR) profiles surveyed across and parallel to the 1999 Izmit earthquake ruptures at two sites along the Izmit-Sapanca segment. Fine sandy and coarse gravels favor the penetration depth and processed radar profiles image clearly visible reflectors within the uppermost 10 m. In Köseköy, they document cumulative right-lateral offset of a stream channel by the fault. Old fluvial channel deposits also visible in trenches show a maximum 13.5 to 14 m lateral displacement. Younger channel units display 4 m of right-lateral displacement at 2.5 m depth and correlation with dated trench units yields an average slip rate of 15 mm/yr. At site 2, GPR profiles display the successive faulting of a medieval Ottoman Canal which excavation probably took place in 1591 A.D.. GPR profiles image the corresponding surface as well as numerous faults that affect it. A following trench study confirmed these results as they provide consistent results with the occurrence of three faulting events post-1591 A.D., one of which probably as large as the 1999 Izmit earthquake.

  17. Marine Geophysical Investigation of Selected Sites in Bridgeport Harbor, Connecticut, 2006

    USGS Publications Warehouse

    Johnson, Carole D.; White, Eric A.

    2007-01-01

    A marine geophysical investigation was conducted in 2006 to help characterize the bottom and subbottom materials and extent of bedrock in selected areas of Bridgeport Harbor, Connecticut. The data will be used by the U.S. Army Corps of Engineers in the design of confined aquatic disposal (CAD) cells within the harbor to facilitate dredging of the harbor. Three water-based geophysical methods were used to evaluate the geometry and composition of subsurface materials: (1) continuous seismic profiling (CSP) methods provide the depth to water bottom, and when sufficient signal penetration can be achieved, delineate the depth to bedrock and subbottom materials; (2) continuous resistivity profiling (CRP) methods were used to define the electrical properties of the shallow subbottom, and to possibly determine the distribution of conductive materials, such as clay, and resistive materials, such as sand and bedrock; (3) and magnetometer data were used to identify conductive anomalies of anthropogenic sources, such as cables and metallic debris. All data points were located using global positioning systems (GPS), and the GPS data were used for real-time navigation. The results of the CRP, CSP, and magnetometer data are consistent with the conceptual site model of a bedrock channel incised beneath the present day harbor. The channel appears to follow a north-northwest to south-southeast trend and is parallel to the Pequannock River. The seismic record and boring data indicate that under the channel, the depth to bedrock is as much as 42.7 meters (m) below mean low-low water (MLLW) in the dredged part of the harbor. The bedrock channel becomes shallower towards the shore, where bedrock outcrops have been mapped at land surface. CSP and CRP data were able to provide a discontinuous, but reasonable, trace from the channel toward the west under the proposed southwestern CAD cell. The data indicate a high amount of relief on the bedrock surface, as well as along the water bottom. Under the southwestern CAD cell, the sediments are only marginally thick enough for a CAD cell, at about 8 to 15 m in depth. Some of the profiles show small diffractions in the unconsolidated sediments, but no large-scale boulders or boulder fields were identified. No bedrock reflectors were imaged under the southeastern CAD cell, where core logs indicate the rock is as much as 30 m below MLLW. The chirp frequency, tuned transducer, and boomer-plate CSP surveys were adversely affected by a highly reflective water bottom causing strong multiples in the seismic record and very limited depths of penetration. These multiples are attributed to entrapped gas (methane) in the sediments or to very hard bottom conditions. In a limited number of places, the bedrock surface was observed in the CSP record, creating a discontinuous and sporadic image of the bedrock surface. These interpretations generally matched core data at FP-03-10 and FB-06-1. Use of two analog CSP systems, the boomer plate and tuned transducer, did not overcome the reflections off the water bottom and did not improve the depth of penetration. In general, the CRP profiles were used to corroborate the results of the CSP profiles. Relatively resistive zones associated with the locations of seismic reflections were interpreted as bedrock. The shape of the bedrock surface generally was similar in the CRP and CSP profiles. Evaluation of the CRP profiles indicated that the inversions were adversely affected where the depth and (or) ionic concentration of the water column varied. Consequently, the CRP profiles were broken into short intervals that extended just over the area of interest, where the depth to water bottom was fairly constant. Over these short profiles, efforts were made to evaluate the resistivity of the very shallow sediments to determine if there were any large contrasts in the resistivity of the sediments that might indicate differences in the shallow subbottom materials. No conclusions abo

  18. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    PubMed

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated that deep water sources did not maintain E which sharply declined in September, but played an important role in the recovery of tree Psi. Differences in sources of water uptake among these species and their ecological implications on tree-grass dynamics and soil water in semiarid environments are discussed.

  19. Dependence of residual displacements on the width and depth of compliant fault zones: a 3D study

    NASA Astrophysics Data System (ADS)

    Kang, J.; Duan, B.

    2011-12-01

    Compliant fault zones have been detected along active faults by seismic investigations (trapped waves and travel time analysis) and InSAR observations. However, the width and depth extent of compliant fault zones are still under debate in the community. Numerical models of dynamic rupture build a bridge between theories and the geological and geophysical observations. Theoretical 2D plane-strain studies of elastic and inelastic response of compliant fault zones to nearby earthquake have been conducted by Duan [2010] and Duan et al [2010]. In this study, we further extend the experiments to 3D with a focus on elastic response. We are specifically interested in how residual displacements depend on the structure and properties of complaint fault zones, in particular on the width and depth extent. We conduct numerical experiments on various types of fault-zone models, including fault zones with a constant width along depth, with decreasing widths along depth, and with Hanning taper profiles of velocity reduction. . Our preliminary results suggest 1) the width of anomalous horizontal residual displacement is only indicative of the width of a fault zone near the surface, and 2) the vertical residual displacement contains information of the depth extent of compliant fault zones.

  20. Seismic velocity uncertainties and their effect on geothermal predictions: A case study

    NASA Astrophysics Data System (ADS)

    Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group

    2017-04-01

    Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.

  1. Calculation of organ doses from breast cancer radiotherapy: a Monte Carlo study

    PubMed Central

    Berris, T.; Mazonakis, M.; Stratakis, J.; Tzedakis, A.; Fasoulaki, A.

    2013-01-01

    The current study aimed to: a) utilize Monte Carlo simulation methods for the assessment of radiation doses imparted to all organs at risk to develop secondary radiation induced cancer, for patients undergoing radiotherapy for breast cancer; and b) evaluate the effect of breast size on dose to organs outside the irradiation field. A simulated linear accelerator model was generated. The in‐field accuracy of the simulated photon beam properties was verified against percentage depth dose (PDD) and dose profile measurements on an actual water phantom. Off‐axis dose calculations were verified with thermoluminescent dosimetry (TLD) measurements on a humanoid physical phantom. An anthropomorphic mathematical phantom was used to simulate breast cancer radiotherapy with medial and lateral fields. The effect of breast size on the calculated organ dose was investigated. Local differences between measured and calculated PDDs and dose profiles did not exceed 2% for the points at depths beyond the depth of maximum dose and the plateau region of the profile, respectively. For the penumbral regions of the dose profiles, the distance to agreement (DTA) did not exceed 2 mm. The mean difference between calculated out‐of‐field doses and TLD measurements was 11.4%±5.9%. The calculated doses to peripheral organs ranged from 2.32 cGy up to 161.41 cGy depending on breast size and thus the field dimensions applied, as well as the proximity of the organs to the primary beam. An increase to the therapeutic field area by 50% to account for the large breast led to a mean organ dose elevation by up to 85.2% for lateral exposure. The contralateral breast dose ranged between 1.4% and 1.6% of the prescribed dose to the tumor. Breast size affects dose deposition substantially. PACS numbers: 87.10.rt, 87.56.bd, 87.53.Bn, 87.55.K‐, 87.55.ne, 87.56.jf, 87.56.J‐ PMID:23318389

  2. Measuring Concentrations of Dissolved Methane and Ethane and the 13 C of Methane in Shale and Till.

    PubMed

    Hendry, M Jim; Barbour, S Lee; Schmeling, Erin E; Mundle, Scott O C

    2017-01-01

    Baseline characterization of concentrations and isotopic values of dissolved natural gases is needed to identify contamination caused by the leakage of fugitive gases from oil and gas activities. Methods to collect and analyze baseline concentration-depth profiles of dissolved CH 4 and C 2 H 6 and δ 13 C-CH 4 in shales and Quaternary clayey tills were assessed at two sites in the Williston Basin, Canada. Core and cuttings samples were stored in Isojars ® in a low O 2 headspace prior to analysis. Measurements and multiphase diffusion modeling show that the gas concentrations in core samples yield well-defined and reproducible depth profiles after 31-d equilibration. No measurable oxidative loss or production during core sample storage was observed. Concentrations from cuttings and mud gas logging (including IsoTubes ® ) were much lower than from cores, but correlated well. Simulations suggest the lower concentrations from cuttings can be attributed to drilling time, and therefore their use to define gas concentration profiles may have inherent limitations. Calculations based on mud gas logging show the method can provide estimates of core concentrations if operational parameters for the mud gas capture cylinder are quantified. The δ 13 C-CH 4 measured from mud gas, IsoTubes ® , cuttings, and core samples are consistent, exhibiting slight variations that should not alter the implications of the results in identifying the sources of the gases. This study shows core and mud gas techniques and, to a lesser extent, cuttings, can generate high-resolution depth profiles of dissolved hydrocarbon gas concentrations and their isotopes. © 2016, National Ground Water Association.

  3. Temperature and electrical conductivity of the lunar interior from magnetic transient measurements in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.

  4. A new database sub-system for grain-size analysis

    NASA Astrophysics Data System (ADS)

    Suckow, Axel

    2013-04-01

    Detailed grain-size analyses of large depth profiles for palaeoclimate studies create large amounts of data. For instance (Novothny et al., 2011) presented a depth profile of grain-size analyses with 2 cm resolution and a total depth of more than 15 m, where each sample was measured with 5 repetitions on a Beckman Coulter LS13320 with 116 channels. This adds up to a total of more than four million numbers. Such amounts of data are not easily post-processed by spreadsheets or standard software; also MS Access databases would face serious performance problems. The poster describes a database sub-system dedicated to grain-size analyses. It expands the LabData database and laboratory management system published by Suckow and Dumke (2001). This compatibility with a very flexible database system provides ease to import the grain-size data, as well as the overall infrastructure of also storing geographic context and the ability to organize content like comprising several samples into one set or project. It also allows easy export and direct plot generation of final data in MS Excel. The sub-system allows automated import of raw data from the Beckman Coulter LS13320 Laser Diffraction Particle Size Analyzer. During post processing MS Excel is used as a data display, but no number crunching is implemented in Excel. Raw grain size spectra can be exported and controlled as Number- Surface- and Volume-fractions, while single spectra can be locked for further post-processing. From the spectra the usual statistical values (i.e. mean, median) can be computed as well as fractions larger than a grain size, smaller than a grain size, fractions between any two grain sizes or any ratio of such values. These deduced values can be easily exported into Excel for one or more depth profiles. However, such a reprocessing for large amounts of data also allows new display possibilities: normally depth profiles of grain-size data are displayed only with summarized parameters like the clay content, sand content, etc., which always only displays part of the available information at each depth. Alternatively, full spectra were displayed at one depth. The new software now allows to display the whole grain-size spectrum at each depth in a three dimensional display. LabData and the grain-size subsystem are based on MS Access as front-end and MS SQL Server as back-end database systems. The SQL code for the data model, SQL server procedures and triggers and the MS Access basic code for the front end are public domain code, published under the GNU GPL license agreement and are available free of charge. References: Novothny, Á., Frechen, M., Horváth, E., Wacha, L., Rolf, C., 2011. Investigating the penultimate and last glacial cycles of the Sütt dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International 234, 75-85. Suckow, A., Dumke, I., 2001. A database system for geochemical, isotope hydrological and geochronological laboratories. Radiocarbon 43, 325-337.

  5. Anisotropy variety using and wave splitting analysis by using the integration of combine linear and circlcirculare air-gun shotshooting datasurvey in the gas hydrate-enriched continental slops area o,f southwestenSW Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Lin, J. Y.; Cheng, W. B.

    2016-12-01

    Linear seismic refraction analysis based on air- or GI- gun shootings were widely used to determine the velocity structures along 2-D profiles. The data acquisition along several profiles can provide a 3-D view and increases the knowledge related to the lateral variation for the geological structures. However, if the target area has restricted distribution, the structure may not be observed by large spacing seismic profiles. Furthermore, limited by the network geometry, it could be difficult to get the velocity variation for different azimuths. In this study, apart from traditional linear seismic profile shooting geometry, we applied a circular shooting track around a 4-components Ocean-Bottom seismometer (OBS) station deployed in 2014 and 2015 on the continental slops, a hydrate-enriched area in the SW Taiwan, with a radius of 1 mile and 1.5 mile respectively. The aim is to understand if the change of shooting geometry along a single station can provide lateral information about the bathymetry characteristics or velocity composition in the sediment. To better examine the spatial variation of our data, we first rotated the OBS records to the vertical (V), radial (R) and transverse (T) components based the 3-axie rotate method. Distinct changes in the signal intensity in T component were distinguished at depths of 4.5 second between 58-157 degrees and at depths of 4 second between 212-258 degrees. The OBS is located on a sedimentary wedge dipping northeastward, as evidenced by the multichannel reflection profiles shown in the previous study. The ongoing upward activity of the mud diapir do the generation this sedimentary wedge Thus, the appearance of these signals could be linked to the wave refraction from the layer of the wedge, where a clear velocity contrast could be expected. We recognized visible P-S converted phase in R component at depths of approximately at depth of 3.3 second. The time arrivals of the converted phases provide information for the estimation of S wave velocity, which could be a good indicator for the sediment strength. Based on the arrivals, we suggest that the formation of the converted wave should be linked to the bathymetry alteration. Our results show that the experiment along a circular shooting track could bring useful information about the anisotropy characteristics around the OBS site.

  6. Characterisation of case depth in induction-hardened medium carbon steels based on magnetic minor hysteresis loop measurement technique

    NASA Astrophysics Data System (ADS)

    He, Cunfu; Yang, Meng; Liu, Xiucheng; Wang, Xueqian; Wu, Bin

    2017-11-01

    The magnetic hysteresis behaviours of ferromagnetic materials vary with the heat treatment-induced micro-structural changes. In the study, the minor hysteresis loop measurement technique was used to quantitatively characterise the case depth in two types of medium carbon steels. Firstly, high-frequency induction quenching was applied in rod samples to increase the volume fraction of hard martensite to the soft ferrite/pearlite (or sorbite) in the sample surface. In order to determine the effective and total case depth, a complementary error function was employed to fit the measured hardness-depth profiles of induction-hardened samples. The cluster of minor hysteresis loops together with the tangential magnetic field (TMF) were recorded from all the samples and the comparative study was conducted among three kinds of magnetic parameters, which were sensitive to the variation of case depth. Compared to the parameters extracted from an individual minor loop and the distortion factor of the TMF, the magnitude of three-order harmonic of TMF was more suitable to indicate the variation in case depth. Two new minor-loop coefficients were introduced by combining two magnetic parameters with cumulative statistics of the cluster of minor-loops. The experimental results showed that the two coefficients monotonically linearly varied with the case depth within the carefully selected magnetisation region.

  7. Depth Effects on the Decomposition Dynamics of Plant-derived C at Diverse Sites

    NASA Astrophysics Data System (ADS)

    Gregorich, E.; Ellert, B.; Janzen, H.; Beare, M.; Helgason, B. L.; Curtin, D.

    2017-12-01

    Decay of plant residues is tied to many ecosystem functions and affects atmospheric CO2, plant-available nutrients, microbial diversity, soil organic matter quality, among others. The rate of decay, in turn, is governed by soil type and management, location in the soil profile, and environmental variables, some of which may be changing in coming decades. Our objective in this study was to elucidate the decomposition dynamics of plant-derived C and N at different soil depths. To characterize the importance of these variables across a broad scale, we established a long-term study at two sites in Canada and one site in New Zealand. At each site, labelled barley straw (13C = 10.2 atom%,C = 37.9%; N = 0.95%; C:N = 40) was installed at 3 depths (5-10, 20-25 and 40-45 cm). Soil temperature was logged at each depth. Samples were collected at different times over 5-6 years after application of the residues. Results showed that substantial decay occurred at all depths within a relatively short time (< 1 year). Decay was greatest at the warmest site and depth affected the concentration of viable microbes. However, depth had no effect on residue decay after about 5 years.

  8. Positron Annihilation and Complementary Studies of Copper Sandblasted with Alumina Particles at Different Pressures

    PubMed Central

    Horodek, Paweł; Dryzek, Jerzy; Wróbel, Mirosław

    2017-01-01

    Positron annihilation spectroscopy and complementary methods were used to detect changes induced by sandblasting of alumina particles at different pressures varying from 1 to 6 bar in pure well-annealed copper. The positron lifetime measurements revealed existence of dislocations and vacancy clusters in the adjoined surface layer. The presence of retained alumina particles in the copper at the depth below 50 µm was found in the SEM pictures and also in the annihilation line shape parameter profiles measured in the etching experiment. The profiles show us that the total depth of damaged zones induced by sandblasting of alumina particles ranges from 140 µm up to ca. 800 µm and it depends on the applied pressure. The work-hardening of the adjoined surface layer was found in the microhardness measurements at the cross-section of the sandblasted samples. PMID:29168749

  9. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE PAGES

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, X max, of extensive air-shower profiles with energies above 10 17.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the X max measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the X max distributions are comparedmore » to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazareth, A.S.; Sood, D.K.; Zmood, R.B.

    A focusing grid broad beam Kaufman source, using argon ions on a target of nominal composition Nd{sub 2}Fe{sub 14}B has been employed to sputter deposit magnetic thin films of thicknesses ranging from 800 {angstrom} to 1300 {angstrom} on silicon-(111) substrates at room temperature. These films were characterized for their composition depth profile by Rutherford Backscattering Spectroscopy, while x-ray diffraction was used to study the crystallographic structure. Due to a close match between (111) Si with (220) Nd{sub 2}Fe{sub 14}B lattice spacings, preferred crystallographic texturing was expected, and experimental results showed a greatly enhanced (220) texture. The degradation in magnetic propertiesmore » was attributed to the presence of oxygen in the films as indicated by concentration depth profiles. It is premised that another significant role of oxygen may be to relieve the misfit strain across the interface by its incorporation within the Nd{sub 2}Fe{sub 14}B phase.« less

  11. The Use of Ground Penetrating Radar and Electrical Resistivity Imaging for the Characterisation of Slope Movements in Expansive Marls

    NASA Astrophysics Data System (ADS)

    Rey, Isabel; Martínez, Julián; Cortada, Unai; Hildago, Mª Carmen

    2017-04-01

    Slope movements are one of the natural hazards that most affect linear projects, becoming an important waste of money and time for building companies. Thus, studies to identify the processes that provoke these movements, as well as to characterise the landslides are necessary. For this purpose, geophysical prospecting techniques as Ground Penetrating Radar (GPR) and Electrical Resistivity Imaging (ERI) could become useful. However, the effectiveness of these techniques in slope movement characterisation is affected by many factors, like soil humidity, grain size or failure plane depth. Therefore, studies that determine the usefulness of these techniques in different kind of soils and slope movements are required. In this study, GPR and ERI techniques efficiency for the analysis of slope movements in Upper Miocene expansive marls was evaluated. In particular, two landslides in an old regional road in the province of Jaen (Spain) were studied. A total of 53 GPR profiles were made, 31 with a 250 MHz frequency antenna and 22 with an 800 MHz frequency antenna. Marl facies rapidly attenuated the signal of the electromagnetic waves, which means that this technique only provided information of the first two meters of the subsoil. In spite of this low depth of penetration, it is necessary to point out the precision and detail undertaken. Thus, both GPR antennas gave information of the thicknesses and quality-continuity of the different soil layers. In addition, several restoration phases of the linear work were detected. Therefore, this technique was useful to detect the current state and history of the structure, even though it could not detect the shear surface of the slope movement. On the other hand, two profiles of electrical tomography were made, one in each studied sector. The profiles were configured with a total length of 189 m, with 64 electrodes and a spacing of 3 m. This allowed investigating up to 35 m depth. This penetration capability enabled to detect the depth of the shear surfaces and therefore the minimum depth at which the possible piles should be placed in the design of the restoration structures. Thus, this method was more effective than the GPR for the detection of slope surfaces in uniform expansive marls. Nevertheless, the GPR was efficient for the analysis of the previous restoration phases, which was helpful to determine any relation between them and the causes that provoked the slope movements.

  12. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg

    2016-03-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic, half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach reproduced the additional stress obtained by finite element simulations for the simplified profiles well - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. The two study cases presented in this paper showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  13. Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack

    NASA Astrophysics Data System (ADS)

    Monti, F.; Gaume, J.; van Herwijnen, A.; Schweizer, J.

    2015-08-01

    The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach well reproduced the additional stress obtained by finite element simulations for the simplified profiles - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. For the two study cases presented in this paper, this approach showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.

  14. Bathymetric surveys of Morse and Geist Reservoirs in central Indiana made with acoustic Doppler current profiler and global positioning system technology, 1996

    USGS Publications Warehouse

    Wilson, J.T.; Morlock, S.E.; Baker, N.T.

    1997-01-01

    Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.

  15. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico. PMID:24992646

  16. [Spatial distribution and ecological significance of heavy metals in soils from Chatian mercury mining deposit, western Hunan province].

    PubMed

    Sun, Hong-Fei; Li, Yong-Hu; Ji, Yan-Fang; Yang, Lin-Sheng; Wang, Wu-Yi

    2009-04-15

    Ores, waste tailings and slag, together with three typical soil profiles (natural soil profiles far from mine entrance and near mine entrance, soil profile under slag) in Chatian mercury mining deposit (CMD), western Hunan province were sampled and their concentrations of mercury (Hg), arsenic (As), lead (Pb), cadmium (Cd), zinc (Zn) were determined by HG-ICP-AES and ICP-MS. Enrichment factor and correlation analysis were taken to investigate the origins, distribution and migration of Hg, as well as other heavy metals in the CMD. The results show that Hg is enriched in the bottom of the soil profile far from mine entrance but accumulated in the surface of soil profiles near mine entrance and under slag. The soil profiles near mine entrance and under slag are both contaminated by Hg, while the latter is contaminated more heavily. In the soil profile under slag, Hg concentration in the surface soil, Hg average concentration in the total profile, and the leaching depth of soil Hg are 640 microg x g(-1), (76.74 +/- 171.71) microg x g(-1), and more than 100 cm, respectively; while 6.5 microg x g(-1), (2.74 +/- 1.90) microg x g(-1), and 40 cm, respectively, are found in the soil profile near mine entrance. Soil in the mercury mine area is also polluted by Cd, As, Pb, Zn besides metallogenic element Hg, among which Cd pollution is relatively heavier than others. The mobility of the studied heavy metals in soil follows the order as Hg > Cd > As > Zn approximately equal to Pb. The leaching depth of the heavy metals is influenced by total concentration in the surface soil and soil physico-chemical parameters. The origins, distribution and migration of heavy metals in soil profile in the mining area are related to primary geological environment, and strongly influenced by human mining activities.

  17. Endolithic diversity of microorganisms on sandstone and implications for biogenic weathering

    NASA Astrophysics Data System (ADS)

    Hallmann, C.; Friedenberger, H.; Hoppert, M.

    2012-04-01

    Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. All sandstones were taken from quarries where they were exposed to the environment for several years. Approximately 0.1 g of material from the stone surface, from 5 mm and from 30 mm depths was taken under sterile conditions and subjected to analysis of microbial DNA and culturing experiments. In particular, DNA was extracted from the material, the phylogenetic marker gene of eukaryotic organisms (18S rDNA) was amplified and used for generation of clone libraries, which were then analysed by sequencing. "Roter Wesersandstein" was just colonized at the material surface, predominantly with algal and fungal microorganisms. No environmental DNA could be isolated from depth profiles. From "Nebraer Sandstein" with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Though the uppermost layer is dominated by microalgae (as concluded from the retrieved clones), the percentage of algal clones from 5 mm and 30 mm depths drop to 10 % of all clones. There, apart from filamentous fungi, moss clones clearly dominate the microbial community. At a depth of 30 mm, 70-80 % of the retrieved clones match to various mosses (Bryophyta). Though mosses do not form layers on the stone surfaces, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses is not obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.

  18. Stream bed temperature profiles as indicators of percolation characteristics beneath arroyos in the middle Rio Grande Basin, USA

    USGS Publications Warehouse

    Constantz, J.; Thomas, C.L.

    1997-01-01

    Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.

  19. Seismic Images of the Non-Volcanic Tremor Region around Cholame, California, USA

    NASA Astrophysics Data System (ADS)

    Gutjahr, S.; Buske, S.

    2012-04-01

    We reprocessed the industry seismic reflection profile "WSJ-6" which is so far the only seismic profile crossing the San Andreas fault at the non-volcanic tremor region around Cholame. The profile "WSJ-6" runs from Morro Bay eastward to the foothills of the Sierra Nevada and crosses several prominent fault systems, e.g.the Rinconada fault as well as the San Juan fault and the San Andreas fault respectively. By applying the so-called Fresnel Volume migration to the data we produced seismic images of the lower crust and the upper mantle down to depths of approximately 40 km. A 3D tomographic velocity model derived from local earthquake data analysis (Thurber et al., 2006, Lin et al., 2010) was used for slowness analyses and traveltime calculations. The imaging technique was implemented in 3D taking into account the true shot and receiver locations on the crooked profile line. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the San Andreas fault. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the Rinconada fault and the San Andreas fault. Southwest of the San Andreas fault surface trace a broad zone of high reflectivity is located at depths between 20 km to 35 km. In this region non-volcanic tremor has been located below the seismogenic zone down to 30 km depth. Tremor locations correlate with zones of high reflectivity. This correlation may be an indicator for high pore pressures and fluid content in that region as it is assumed by several authors. The images of the eastern part of the profile show slightly west dipping sedimentary layers in the area of the San Joaquin Valley that are folded and faulted below the Kettleman Hills. Our imaging results will be compared to existing interpretations of the same data.

  20. Uplifting of palsa peatlands by permafrost identified by stable isotope depth profiles

    NASA Astrophysics Data System (ADS)

    Krüger, Jan Paul; Conen, Franz; Leifeld, Jens; Alewell, Christine

    2015-04-01

    Natural abundances of stable isotopes are a widespread tool to investigate biogeochemical processes in soils. Palsas are peatlands with an ice core and are common in the discontinuous permafrost region. Elevated parts of palsa peatlands, called hummocks, were uplifted by permafrost out of the influence of groundwater. Here we used the combination of δ15N values and C/N ratio along depth profiles to identify perturbation of these soils. In the years 2009 and 2012 we took in total 14 peat cores from hummocks in two palsa peatlands near Abisko, northern Sweden. Peat samples were analysed in 2 to 4 cm layers for stable isotope ratios and concentrations of C and N. The uplifting of the hummocks by permafrost could be detected by stable isotope depth patterns with the highest δ15N value at permafrost onset, a so-called turning point. Regression analyses indicated in 11 of 14 peat cores increasing δ15N values above and decreasing values below the turning point. This is in accordance with the depth patterns of δ13C values and C/N ratios in these palsa peatlands. Onset of permafrost aggradation identified by the highest δ15N value in the profile and calculated from peat accumulation rates show ages ranging from 80 to 545 years and indicate a mean (±SD) peat age at the turning points of 242 (±66) years for Stordalen and 365 (±53) years for Storflaket peatland. The mean peat ages at turning points are within the period of the Little Ice Age. Furthermore, we tested if the disturbance, in this case the uplifting of the peat material, can be displayed in the relation of δ15N and C/N ratio following the concept of Conen et al. (2013). In unperturbed sites soil δ15N values cover a relatively narrow range at any particular C/N ratio. Changes in N cycling, i.e. N loss or gain, results in the loss or gain of 15N depleted forms. This leads to larger or smaller δ15N values than usual at the observed C/N ratio. All, except one, turning point show a perturbation in the depth profile, with most of the adjacent sampling points also indicating perturbation. This perturbation shows the changes in N cycling, in this case N loss, from these depths due to permafrost aggradation. Deeper parts of some profiles at Stordalen peatland indicate with the same approach an N gain, maybe due to lateral N input to these nutrient poor ecosystems. Most of the uppermost samples in the δ15N depth profiles show no perturbation, potentially due to the adaptation of these soils to the new conditions. Both stable isotope (δ15N and δ13C) depth profiles are suitable to detect palsa uplifting by permafrost. The perturbation of the peat by uplifting as well as the potential nutrient input can be detected by δ15N when related to the C/N ratio. Conen, F., Yakutin, M. V., Carle, N., and Alewell, C. (2013): δ15N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Commun. Mass Spectrom. 27: 1101-1104.

  1. Optoacoustic imaging of tissue blanching during photodynamic therapy of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Jacques, Steven L.; Viator, John A.; Paltauf, Guenther

    2000-05-01

    Esophageal cancer patients often present a highly inflamed esophagus at the time of treatment by photodynamic therapy. Immediately after treatment, the inflamed vessels have been shut down and the esophagus presents a white surface. Optoacoustic imaging via an optical fiber device can provide a depth profile of the blanching of inflammation. Such a profile may be an indicator of the depth of treatment achieved by the PDT. Our progress toward developing this diagnostic for use in our clinical PDT treatments of esophageal cancer patients is presented.

  2. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  3. Impact study of the Argo array definition in the Mediterranean Sea based on satellite altimetry gridded data

    NASA Astrophysics Data System (ADS)

    Sanchez-Roman, Antonio; Ruiz, Simón; Pascual, Ananda; Guinehut, Stéphanie; Mourre, Baptiste

    2016-04-01

    The existing Argo network provides essential data in near real time to constrain monitoring and forecasting centers and strongly complements the observations of the ocean surface from space. The comparison of Sea Level Anomalies (SLA) provided by satellite altimeters with in-situ Dynamic Heights Anomalies (DHA) derived from the temperature and salinity profiles of Argo floats contribute to better characterize the error budget associated with the altimeter observations. In this work, performed in the frame of the E-AIMS FP7 European Project, we focus on the Argo observing system in the Mediterranean Sea and its impact on SLA fields provided by satellite altimetry measurements in the basin. Namely, we focus on the sensitivity of specific SLA gridded merged products provided by AVISO in the Mediterranean to the reference depth (400 or 900 dbar) selected in the computation of the Argo Dynamic Height (DH) as an integration of the Argo T/S profiles through the water column. This reference depth will have impact on the number of valid Argo profiles and therefore on their temporal sampling and the coverage by the network used to compare with altimeter data. To compare both datasets, altimeter grids and synthetic climatologies used to compute DHA were spatially and temporally interpolated at the position and time of each in-situ Argo profile by a mapping method based on an optimal interpolation scheme. The analysis was conducted in the entire Mediterranean Sea and different sub-regions of the basin. The second part of this work is devoted to investigate which configuration in terms of spatial sampling of the Argo array in the Mediterranean will properly reproduce the mesoscale dynamics in this basin, which is comprehensively captured by new standards of specific altimeter products for this region. To do that, several Observing System Simulation Experiments (OSSEs) were conducted assuming that altimetry data computed from AVISO specific reanalysis gridded merged product for the Mediterranean as the "true" field. The choice of the reference depth of Argo profiles impacts the number of valid profiles used to compute DHA and therefore the spatial coverage by the network. Results show that the impact of the reference level in the computation of Argo DH is statistically significant since the standard deviation of the differences between DH computed from Altimetry and Argo data referred to reference depth of 400 dbar and 900 dbar are quite different (4.85 and 5.11 cm, respectively). Therefore, 400 dbar should be taken as reference depth to compute DHA from Argo data in the Mediterranean. On the contrary, similar scores are obtained when shallow floats are not included in the computation (4.85 cm against 4.87 cm). In any case, we must highlight that all the studies show significant correlations (95 %) higher than 0.70 between Altimetry and Argo data with a STD for the differences between both datasets of around 4.90 cm. Furthermore, the sub-basin study shows improved statistics for the eastern sub-basin for DHA referred to 400 dbar while minimum values are obtained for the western sub-basin when computing DHA referred to 900 dbar. On the other hand, results about the OSSEs suggest that maintaining an array of Argo floats of 100×100 km, the variance of the large-scale signal and most of the mesoscale features of SLA fields are recovered. Therefore, the network coverage should be enlarged in the Mediterranean in order to achieve at least this spatial resolution.

  4. What are the associated parameters and temporal coverage?

    Atmospheric Science Data Center

    2014-12-08

    ... Extinction Coefficient, Cloud Vertical Profile, Radar-only Liquid Water Content, Radar-only Liquid Ice Content, Vertical Flux Profile, ... ISCCP-D2like Cloud fraction, Effective Pressure, Temperature, optical depth, IWP/LWP, particle size, IR Emissivity in ...

  5. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wulff, J; Huggins, A

    Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less

  7. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis.

    PubMed

    Kumar, Himanshu; Lund, Riikka; Laiho, Asta; Lundelin, Krista; Ley, Ruth E; Isolauri, Erika; Salminen, Seppo

    2014-12-16

    The core human gut microbiota contributes to the developmental origin of diseases by modifying metabolic pathways. To evaluate the predominant microbiota as an epigenetic modifier, we classified 8 pregnant women into two groups based on their dominant microbiota, i.e., Bacteroidetes, Firmicutes, and Proteobacteria. Deep sequencing of DNA methylomes revealed a clear association between bacterial predominance and epigenetic profiles. The genes with differentially methylated promoters in the group in which Firmicutes was dominant were linked to risk of disease, predominantly to cardiovascular disease and specifically to lipid metabolism, obesity, and the inflammatory response. This is one of the first studies that highlights the association of the predominant bacterial phyla in the gut with methylation patterns. Further longitudinal and in-depth studies targeting individual microbial species or metabolites are recommended to give us a deeper insight into the molecular mechanism of such epigenetic modifications. Epigenetics encompasses genomic modifications that are due to environmental factors and do not affect the nucleotide sequence. The gut microbiota has an important role in human metabolism and could be a significant environmental factor affecting our epigenome. To investigate the association of gut microbiota with epigenetic changes, we assessed pregnant women and selected the participants based on their predominant gut microbiota for a study on their postpartum methylation profile. Intriguingly, we found that blood DNA methylation patterns were associated with gut microbiota profiles. The gut microbiota profiles, with either Firmicutes or Bacteroidetes as a dominant group, correlated with differential methylation status of gene promoters functionally associated with cardiovascular diseases. Furthermore, differential methylation of gene promoters linked to lipid metabolism and obesity was observed. For the first time, we report here a position of the predominant gut microbiota in epigenetic profiling, suggesting one potential mechanism in obesity with comorbidities, if proven in further in-depth studies. Copyright © 2014 Kumar et al.

  8. Measurement of the near-wall velocity profile for a nanofluid flow inside a microchannel

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2015-11-01

    Hydrodynamics and anomalous heat transfer enhancements have been reported in the past for colloidal suspensions of nano-sized particles dispersed in a fluid (nanofluids). However, such augmentations may manifest itself by study of fluid flow characteristics near in the wall region. Present experimental study reports near-wall velocity profile for nanofluids (silicon dioxide nanoparticles in water) measured inside a microchannel. An objective-based nano-Particle Image Velocimetry (nPIV) technique is used to measure fluid velocity within three visible depths, O(100nm), from the wall. The near-wall fluid velocity profile is estimated after implementing the required corrections for optical properties and effects caused by hindered Brownian motion, wall-particle interactions, and non-uniform exponential illumination on the measurement technique. The fluid velocities of nanofluids at each of the three visible depths are observed to be higher than that of the base fluid resulting in a higher shear rate in this region. The relative increase in shear rates for nanofluids is believed to be the result of the near-wall shear-induced particle migration along with the Brownian motion of the nanoparticles. This research is funded by NPRP grant # 08-574-2-239 from the Qatar National Research Fund (a member of Qatar Foundation).

  9. Laser spot size and beam profile studies for tissue welding applications

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Hung, Vincent C.; Walsh, Joseph T., Jr.

    1999-06-01

    We evaluated the effect of changes in laser spot size and beam profile on the thermal denaturation zone produced during laser skin welding. Our objective was to limit heating of the tissue surface, while creating enough thermal denaturation in the deeper layers of the dermis to produce full-thickness welds. Two-cm-long, full-thickness incisions were made on the backs of guinea pigs, in vivo. India ink was used as an absorber. Continuous-wave, 1.06-μm, Nd:YAG laser radiation was scanned over the incisions, producing approximately 100 ms pulses. Cooling times of 10.0 s between scans were used. Laser spot diameters of 1, 2, 4, and 6 mm were studied, with powers of 1, 4, 16, and 36 W, respectively. The irradiance remained constant at 127 W/cm2. 1, 2, and 4 mm diameter spots produced thermal denaturation to a depth of 570 +/- 100 μm, 970 +/- 210 μm, and 1470 +/- 190 μm, respectively. The 6-mm- diameter spot produced full-thickness welds (1900 μm), but also burns due to the high incident power. Monte Carlo simulations were also conducted, varying the laser spot diameter and beam profile. The simulations verified that an increase in laser spot diameter result in an increase in the penetration depth of radiation into the tissue.

  10. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile.

    PubMed

    Höfferle, Špela; Nicol, Graeme W; Pal, Levin; Hacin, Janez; Prosser, James I; Mandić-Mulec, Ines

    2010-11-01

    Oxidation of ammonia, the first step in nitrification, is carried out in soil by bacterial and archaeal ammonia oxidizers and recent studies suggest possible selection for the latter in low-ammonium environments. In this study, we investigated the selection of ammonia-oxidizing archaea and bacteria in wetland soil vertical profiles at two sites differing in terms of the ammonium supply rate, but not significantly in terms of the groundwater level. One site received ammonium through decomposition of organic matter, while the second, polluted site received a greater supply, through constant leakage of an underground septic tank. Soil nitrification potential was significantly greater at the polluted site. Quantification of amoA genes demonstrated greater abundance of bacterial than archaeal amoA genes throughout the soil profile at the polluted site, whereas bacterial amoA genes at the unpolluted site were below the detection limit. At both sites, archaeal, but not the bacterial community structure was clearly stratified with depth, with regard to the soil redox potential imposed by groundwater level. However, depth-related changes in the archaeal community structure may also be associated with physiological functions other than ammonia oxidation. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  11. Effects of soil depth and plant-soil interaction on microbial community in temperate grasslands of northern China.

    PubMed

    Yao, Xiaodong; Zhang, Naili; Zeng, Hui; Wang, Wei

    2018-07-15

    Although the patterns and drivers of soil microbial community composition are well studied, little is known about the effects of plant-soil interactions and soil depth on soil microbial distribution at a regional scale. We examined 195 soil samples from 13 sites along a climatic transect in the temperate grasslands of northern China to measure the composition of and factors influencing soil microbial communities within a 1-m soil profile. Soil microbial community composition was measured using phospholipid fatty acids (PLFA) analysis. Fungi predominated in topsoil (0-10 cm) and bacteria and actinomycetes in deep soils (40-100 cm), independent of steppe types. This variation was explained by contemporary environmental factors (including above- and below-ground plant biomass, soil physicochemical and climatic factors) >58% in the 0-40 cm of soil depth, but <45% in deep soils. Interestingly, when we considered the interactive effects between plant traits (above ground biomass and root biomass) and soil factors (pH, clay content, and soil total carbon, nitrogen, phosphorous), we observed a significant interaction effect occurring at depths of 10-20 cm soil layer, due to different internal and external factors of the plant-soil system along the soil profile. These results improve understanding of the drivers of soil microbial community composition at regional scales. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  13. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams

    NASA Astrophysics Data System (ADS)

    Knapp, Julia L. A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.

    2017-02-01

    Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.

  14. Tracer-based characterization of hyporheic exchange and benthic biolayers in streams

    USGS Publications Warehouse

    Knapp, Julia L.A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.

    2017-01-01

    Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.

  15. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    PubMed Central

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-01-01

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output. PMID:28009845

  16. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation.

    PubMed

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-12-21

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output.

  17. Estimation of the optical errors on the luminescence imaging of water for proton beam

    NASA Astrophysics Data System (ADS)

    Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-04-01

    Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.

  18. Non-perturbational surface-wave inversion: A Dix-type relation for surface waves

    USGS Publications Warehouse

    Haney, Matt; Tsai, Victor C.

    2015-01-01

    We extend the approach underlying the well-known Dix equation in reflection seismology to surface waves. Within the context of surface wave inversion, the Dix-type relation we derive for surface waves allows accurate depth profiles of shear-wave velocity to be constructed directly from phase velocity data, in contrast to perturbational methods. The depth profiles can subsequently be used as an initial model for nonlinear inversion. We provide examples of the Dix-type relation for under-parameterized and over-parameterized cases. In the under-parameterized case, we use the theory to estimate crustal thickness, crustal shear-wave velocity, and mantle shear-wave velocity across the Western U.S. from phase velocity maps measured at 8-, 20-, and 40-s periods. By adopting a thin-layer formalism and an over-parameterized model, we show how a regularized inversion based on the Dix-type relation yields smooth depth profiles of shear-wave velocity. In the process, we quantitatively demonstrate the depth sensitivity of surface-wave phase velocity as a function of frequency and the accuracy of the Dix-type relation. We apply the over-parameterized approach to a near-surface data set within the frequency band from 5 to 40 Hz and find overall agreement between the inverted model and the result of full nonlinear inversion.

  19. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2016-09-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.

  20. Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,340Pu

    USGS Publications Warehouse

    Fuller, C.C.; van Geen, Alexander; Baskaran, M.; Anima, R.

    1999-01-01

    Sediment chronologies based on radioisotope depth profiles were developed at two sites in the San Francisco Bay estuary to provide a framework for interpreting historical trends in organic compound and metal contaminant inputs. At Richardson Bay near the estuary mouth, sediments are highly mixed by biological and/or physical processes. Excess  penetration ranged from 2 to more than 10 cm at eight coring sites, yielding surface sediment mixing coefficients ranging from 12 to 170 cm2/year. At the site chosen for contaminant analyses, excess  activity was essentially constant over the upper 25 cm of the core with an exponential decrease below to the supported activity between 70 and 90 cm. Both  and  penetrated to 57-cm depth and have broad subsurface maxima between 33 and 41 cm. The best fit of the excess  profile to a steady state sediment accumulation and mixing model yielded an accumulation rate of 0.825 g/cm2/year (0.89 cm/year at sediment surface), surface mixing coefficient of 71 cm2/year, and 33-cm mixed zone with a half-Gaussian depth dependence parameter of 9 cm. Simulations of  and  profiles using these parameters successfully predicted the maximum depth of penetration and the depth of maximum  and  activity. Profiles of successive 1-year hypothetical contaminant pulses were generated using this parameter set to determine the age distribution of sediments at any depth horizon. Because of mixing, sediment particles with a wide range of deposition dates occur at each depth. A sediment chronology was derived from this age distribution to assign the minimum age of deposition and a date of maximum deposition to a depth horizon. The minimum age of sediments in a given horizon is used to estimate the date of first appearance of a contaminant from its maximum depth of penetration. The date of maximum deposition is used to estimate the peak year of input for a contaminant from the depth interval with the highest concentration of that contaminant. Because of the extensive mixing, sediment-bound constituents are rapidly diluted with older material after deposition. In addition, contaminants persist in the mixed zone for many years after deposition. More than 75 years are required to bury 90% of a deposited contaminant below the mixed zone. Reconstructing contaminant inputs is limited to changes occurring on a 20-year time scale. In contrast, mixing is much lower relative to accumulation at a site in San Pablo Bay. Instead, periods of rapid deposition and/or erosion occurred as indicated by frequent sand-silt laminae in the X-radiograph. , , and excess  activity all penetrated to about 120 cm. The distinct maxima in the fallout radionuclides at 105–110 cm yielded overall linear sedimentation rates of 3.9 to 4.1 cm/year, which are comparable to a rate of 4.5±1.5 cm/year derived from the excess  profile.

  1. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    NASA Astrophysics Data System (ADS)

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  2. Multiscale Geophysical Characterization of Weathering Fronts Along a Climate and Vegetation Gradient in Chile

    NASA Astrophysics Data System (ADS)

    Dal Bo, I.; Klotzsche, A.; Schaller, M.; Ehlers, T. A.; Vereecken, H.; Van Der Kruk, J.

    2017-12-01

    Understanding how weathering processes act is non-trivial. Direct methods are spatially restricted, time consuming, and expensive. Here, we show how to upscale and extend the point-scale layering information from dug pits deploying a multi-scale geophysical approach. Many studies have recently shown the potential of geophysics in bridging the gap between scales, although limited to specific environments. We applied Electromagnetic Induction (EMI), Ground Penetrating Radar (GPR), and Electrical Resistivity Tomography (ERT) in four study areas separated by 1600 km in the Chilean Coastal Cordillera, and ranging from the arid Atacama Desert in the north and temperate forests in the south. The main goals were to understand how the soil profile and the weathering front vary: 1) from north to south along these gradients, 2) in north- and south-facing hillslopes, and 3) within a single hillslope. We measured at the large-scale (EMI), at the profile scale (EMI, ERT, and GPR), and at the point-scale (GPR). The total length of the EMI, GPR and ERT measurements was 28.95 km, 3.67 km, and 0.27 km. GPR wide angle reflection and refraction measurements were the link between ground-truth data and geophysics. The low electrical conductivity (EC) regime limited the applicability of the EMI and ERT. However, still relative patterns of apparent electrical conductivity (ECa) from EMI could be used. Generally, ECa increased moving uphill and from north to south. Due to the low EC values in the study areas, GPR could image several reflections up to 8 m depth partially confirmed by the pit layering. Thicker layers on GPR profiles were present going from north to south and in the bottom-mid part of the hillslopes, as confirmed by ground-truth data. The main recognizable feature in the GPR profiles was the transition between B and C horizon. Here, hyperbolic-shape signatures were observed that probably were related to the presence of heterogeneities. The soil pits showed deeper layers in more vegetated south-facing hillslopes, which could be correlated with increased signal penetration and reflection depths in the GPR profiles. Soil depths and their interaction with biota in soil-mantled landscapes will be better characterized by combining geophysics with more environmental parameters within the interdisciplinary EarthShape project.

  3. How does whole ecosystem warming of a peatland affect methane production and consumption?

    NASA Astrophysics Data System (ADS)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout the whole peat profile, with the highest rates observed at the surface and initial data suggesting a positive correlation with increasing temperature. While SPRUCE will continue for many years, our initial results suggest that the vast C stores at depth in peatlands are minimally responsive to warming and any response will be driven largely by surface peat.

  4. Soil amplification with a strong impedance contrast: Boston, Massachusetts

    USGS Publications Warehouse

    Baise, Laurie G.; Kaklamanos, James; Berry, Bradford M; Thompson, Eric M.

    2016-01-01

    In this study, we evaluate the effect of strong sediment/bedrock impedance contrasts on soil amplification in Boston, Massachusetts, for typical sites along the Charles and Mystic Rivers. These sites can be characterized by artificial fill overlying marine sediments overlying glacial till and bedrock, where the depth to bedrock ranges from 20 to 80 m. The marine sediments generally consist of organic silts, sand, and Boston Blue Clay. We chose these sites because they represent typical foundation conditions in the city of Boston, and the soil conditions are similar to other high impedance contrast environments. The sediment/bedrock interface in this region results in an impedance ratio on the order of ten, which in turn results in a significant amplification of the ground motion. Using stratigraphic information derived from numerous boreholes across the region paired with geologic and geomorphologic constraints, we develop a depth-to-bedrock model for the greater Boston region. Using shear-wave velocity profiles from 30 locations, we develop average velocity profiles for sites mapped as artificial fill, glaciofluvial deposits, and bedrock. By pairing the depth-to-bedrock model with the surficial geology and the average shear-wave velocity profiles, we can predict soil amplification in Boston. We compare linear and equivalent-linear site response predictions for a soil layer of varying thickness over bedrock, and assess the effects of varying the bedrock shear-wave velocity (VSb) and quality factor (Q). In a moderate seismicity region like Boston, many earthquakes will result in ground motions that can be modeled with linear site response methods. We also assess the effect of bedrock depth on soil amplification for a generic soil profile in artificial fill, using both linear and equivalent-linear site response models. Finally, we assess the accuracy of the model results by comparing the predicted (linear site response) and observed site response at the Northeastern University (NEU) vertical seismometer array during the 2011 M 5.8 Mineral, Virginia, earthquake. Site response at the NEU vertical array results in amplification on the order of 10 times at a period between 0.7-0.8 s. The results from this study provide evidence that the mean short-period and mean intermediate-period amplification used in design codes (i.e., from the Fa and Fv site coefficients) may underpredict soil amplification in strong impedance contrast environments such as Boston.

  5. Pedoturbation by tree uprooting: the key pattern-forming factor in the forest soil

    NASA Astrophysics Data System (ADS)

    Bobrovsky, Maxim; Loyko, Sergey

    2017-04-01

    Treefalls with uprooting are the most powerful and ubiquitous biotic factor changing the structure of forest soil under free forest development. Practically every soil profile in a forest has a number of soil horizons anomalies which are located within the limits of the potential depth of treefall-related pedoturbations and these anomalies are indeed a result of treefalls in most cases. It is important to recognize signs of treefalls with uprooting in a soil profile even when signs of treefalls on the ground surface (pit-and-mound topography) are erased. Numerous field studies of forest soil in the European part of Russia and in the Western Siberia allowed us to generalize signs of treefalls in a soil profile, which can be used to distinguish the patterns of old treefall-related pedoturbations. We distinguish two main types of uprooting of a fallen tree: hinge and rotational tree uprooting (treefall). The signs of treefalls with uprooting in a soil profile are as follows: (1) treefall pits (cauldrons); (2) spotty or streaky structures of different degrees of contrast; (3) blocks of "buried material" from the upper soil layers; (4) washed (bleached) material depositing at the bottom of pits and filling soil pores and channels of various origins; (5) signs of hydrogenous changes of soil material resulting from water stagnation in the pits; (6) root channels at the bottom of the pit and (7) inclusions of litter and charcoal. We cleared that treefall-related pedoturbations affect soil profiles at a depth larger than the depth usually described by the soil horizons A, E, Bhs, etc. Therefore in most forest soils, the middle and lower parts of the profiles have patterns originating from the transfer of soil material upon treefalls. Age since the tree uprooting can be determined by dating of organic matter or charcoal located in old pits. We dated several tens of old tree uprooting pits by charcoal in sandy soil in the center and the east of the Russian Plain: they showed from a few hundreds to 4500 cal years BP. We also dated tens of old tree uprooting pits by mull humus in Luvic Phaeozems on loams in the center of the Russian Plain: they showed from 2500 to more than 8000 cal years BP. Discerning of old treefall-related patterns in soil profile significantly improves our understanding of the forest soil formation and leads to the necessity of serious corrections of pedogenesys concepts. This study was partly supported by the Russian Science Foundation (Grant 16-17-10045).

  6. How Technology Affects Teaching.

    ERIC Educational Resources Information Center

    Wiske, Martha Stone; And Others

    This study presents composite profiles of teachers who were interviewed in order to assess how they are being affected by the challenges and opportunities presented by computer technology use. In-depth interviews were held with 76 teachers from 10 sites around the country, and the interview data were analyzed to identify themes and to construct…

  7. Conformational behaviour of humic substances at different depths along a profile of a Lithosol under loblolly (Pinus taeda) plantation

    NASA Astrophysics Data System (ADS)

    Conte, P.; Maia, C. M. B. F.; de Pasquale, C.; Alonzo, G.

    2009-04-01

    The conformation of natural organic matter (NOM) plays a key role in many physical and chemical processes including interactions with organic and inorganic pollutants and soil aggregates stability thus directly influencing soil quality. NOM conformation can be studied by solid state NMR spectroscopy with cross polarization and magic angle spinning (CPMAS NMR). In the present study we applied CPMAS 13C NMR spectroscopy on three humic acid fractions (HA) each extracted from a different horizon in a Lithosol profile under Pinus taeda. Results showed that the most superficial HA was also the most aliphatic in character. Amount of aromatic moieties and hydrophilic HA constituents increased along the profile. Cross polarization (TCH) and longitudinal relaxation protons times in the rotating frame (T1rho(H)) were measured and compared only for the NMR signals generated by carboxyls and alkyls. This because the signal intensity for the aromatic, C-O and C-N systems was very low, thereby preventing suitable evaluation of TCH and T1rho(H) values for such systems. The cross polarization times of carboxyls decreased, whereas those of the alkyl moieties increased with depth. Conversely, T1rho(H) values increased for both COOH and alkyl groups along the profile. Polarization transfer from protons to carbons is affected by the dipolar interactions among the nuclei. The stronger the H-C dipolar interaction, the faster is the rate of the energy exchange. All the factors affecting the dipolar interaction strength also influence the rate of magnetization transfer. Among the others, fast molecular tumbling and poor proton density around the carbons are responsible for long TCH values. Molecular tumbling and proton density also affect T1rho(H) values. Namely, the larger the molecular tumbling and the proton density, the faster is the proton longitudinal relaxation rate in the rotating frame (shorter T1rho(H) values). The decrease of TCH values of COOH groups along the profile was attributed to an increased rigidity of the carboxyl systems. Very likely COOH groups may form hydrogen bondings with other hydrophilic HA components that were progressively revealed at deeper depths. On the other hand, increasing of TCH values of alkyl components was explained with a progressive enhancement of branched chains number. In fact, branches may favor molecular flexibility, thereby enabling faster molecular tumbling and longer cross polarization times. Since the amount of branched chains in the alkyl moieties appeared to increase from the top to the bottom of the soil horizons, the amount of poorly protonated carbons placed in the branch nodes also increases with soil depth. For this reason, proton spin diffusion becomes more difficult and T1rho(H) values increase with the soil depth. Reduced protonation degree may also account for increasing T1rho(H) values of COOH groups. Ackowledgments. The NMR experiments were done at Centro Grandi Apparecchiature (CGA) - UniNetLab of the University of Palermo (Italy).

  8. Radial widths, optical depths, and eccentricities of the Uranian rings

    NASA Technical Reports Server (NTRS)

    Nicholson, P. D.; Matthews, K.; Goldreich, P.

    1982-01-01

    Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.

  9. Seismic reflection profiling in the Boulder batholith, Montana

    NASA Astrophysics Data System (ADS)

    Vejmelek, Libor; Smithson, Scott B.

    1995-09-01

    Seismic reflection profiling combined with gravity data allows more exact determination of the geometry of the controversial Boulder batholith of Montana, reveals laminated structure of the lower crust beneath the batholith, and identifies the Moho at a depth of 38 km. The batholith has inward-dipping contacts, the dip being about 50° on the west side, on the basis of seismic data; and the depth to the batholith floor is constrained between 12 and 18 km, indicating a great volume for the batholith. The Boulder batholith was emplaced between 80 and 70 Ma during an eastward thrusting in the fold-and-thrust belt. A presumed basal decollement of the thrust system might coincide with the batholith floor and may correspond to the top of the lower-crustal layering at a depth of 18 km.

  10. Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials?

    PubMed

    Flury, Simon; Hayoz, Stefanie; Peutzfeldt, Anne; Hüsler, Jürg; Lussi, Adrian

    2012-05-01

    To evaluate if depth of cure D(ISO) determined by the ISO 4049 method is accurately reflected with bulk fill materials when compared to depth of cure D(new) determined by Vickers microhardness profiles. D(ISO) was determined according to "ISO 4049; Depth of cure" and resin composite specimens (n=6 per group) were prepared of two control materials (Filtek Supreme Plus, Filtek Silorane) and four bulk fill materials (Surefil SDR, Venus Bulk Fill, Quixfil, Tetric EvoCeram Bulk Fill) and light-cured for either 10s or 20s. For D(new), a mold was filled with one of the six resin composites and light-cured for either 10 s or 20 s (n=22 per group). The mold was placed under a microhardness indentation device and hardness measurements (Vickers hardness, VHN) were made at defined distances, beginning at the resin composite that had been closest to the light-curing unit (i.e. at the "top") and proceeding toward the uncured resin composite (i.e. toward the "bottom"). On the basis of the VHN measurements, Vickers hardness profiles were generated for each group. D(ISO) varied between 1.76 and 6.49 mm with the bulk fill materials showing the highest D(ISO). D(new) varied between 0.2 and 4.0 mm. D(new) was smaller than D(ISO) for all resin composites except Filtek Silorane. For bulk fill materials the ISO 4049 method overestimated depth of cure compared to depth of cure determined by Vickers hardness profiles. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  12. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles.

    PubMed

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E; Mazzuca, Silvia; Serra, Ilia A; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (-5 m) and deep (-25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed.

  13. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  14. Weathering profiles in soils and rocks on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hausrath, E.; Adcock, C. T.; Bamisile, T.; Baumeister, J. L.; Gainey, S.; Ralston, S. J.; Steiner, M.; Tu, V.

    2017-12-01

    Interactions of liquid water with rock, soil, or sediments can result in significant chemical and mineralogical changes with depth. These changes can include transformation from one phase to another as well as translocation, addition, and loss of material. The resulting chemical and mineralogical depth profiles can record characteristics of the interacting liquid water such as pH, temperature, duration, and abundance. We use a combined field, laboratory, and modeling approach to interpret the environmental conditions preserved in soils and rocks. We study depth profiles in terrestrial field environments; perform dissolution experiments of primary and secondary phases important in soil environments; and perform numerical modeling to quantitatively interpret weathering environments. In our field studies we have measured time-integrated basaltic mineral dissolution rates, and interpreted the impact of pH and temperature on weathering in basaltic and serpentine-containing rocks and soils. These results help us interpret fundamental processes occurring in soils on Earth and on Mars, and can also be used to inform numerical modeling and laboratory experiments. Our laboratory experiments provide fundamental kinetic data to interpret processes occurring in soils. We have measured dissolution rates of Mars-relevant phosphate minerals, clay minerals, and amorphous phases, as well as dissolution rates under specific Mars-relevant conditions such as in concentrated brines. Finally, reactive transport modeling allows a quantitative interpretation of the kinetic, thermodynamic, and transport processes occurring in soil environments. Such modeling allows the testing of conditions under longer time frames and under different conditions than might be possible under either terrestrial field or laboratory conditions. We have used modeling to examine the weathering of basalt, olivine, carbonate, phosphate, and clay minerals, and placed constraints on the duration, pH, and solution chemistry of past aqueous alteration occurring on Mars.

  15. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.

    PubMed

    Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude

    2015-08-20

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

  16. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided withmore » the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebron, S; Kahler, D; Liu, C

    Purpose: To predict photon percentage depth dose (PDD) from profile due to a change in flattened (FF) and flattening-filter-free (FFF) beam quality. Methods: 6MV photon beam PDDs and profiles in a 3D water tank (3DW) and profiles in an ionization chamber array (ICP) were collected for different field sizes and depths with FF and FFF beams in a Versa HD (Elekta Ltd.). The energy was adjusted by changing the bending magnet current (BMC) ±15% from the clinical beam (6MV) in 5% increments. For baseline establishment, PDDs(depth≥3cm) were parameterized with bi-exponential functions and the PDD 20 to 10cm ratios (PDD{sub 20,10})more » were calculated. Then, the FF profile at 10cm from the central axis (Pr{sub 10}) and the slope of the FFF central linear region (SFFF) were calculated. Calibration curves were established: (1) change in Pr{sub 10} and SFFF as functions of the change in PDD{sub 20,10} and (2) change in PDD(depth=3, 15 and 30cm) as function of the change in PDD{sub 20,10}. The differences between Pr{sub 10} and SFFF from baseline were calculated and, from calibration curves, changes in PDD{sub 20,10} and PDD(depth=3, 15 and 30cm) were obtained. Then, absolute PDD(depth=3, 15 and 30cm) values were input into a least-square-optimization algorithm to calculate the bi-exponential function’s optimal coefficients and generate the PDD(depths≥3cm). Results: The change in PDD{sub 20,10} relative to baseline increased (<±4%) with BMC. Pr{sub 10} increased (±6%) and SFFF decreased (±11%) with BMC. Relative differences between measured and calculated (i.e. PDD calculation from Pr{sub 10} and SFFF) PDDs were less than 1%. Results apply to FF and FFF beams measured in 3DW and ICP. Conclusion: Pr{sub 10} and SFFF are more sensitive than PDD to changes in beam energy and PDD information can be accurately generated from them. With known 3DW and ICP profile relationship, ICP can be used to obtain PDD for current photon beam.« less

  18. Spatial Distribution of Trehalose Dihydrate Crystallization in Tablets by X-ray Diffractometry.

    PubMed

    Thakral, Naveen K; Yamada, Hiroyuki; Stephenson, Gregory A; Suryanarayanan, Raj

    2015-10-05

    Crystallization of trehalose dihydrate (C12H22O11·2H2O) was induced by storing tablets of amorphous anhydrous trehalose (C12H22O11) at 65% RH (RT). Our goal was to evaluate the advantages and limitations of two approaches of profiling spatial distribution of drug crystallization in tablets. The extent of crystallization, as a function of depth, was determined in tablets stored for different time-periods. The first approach was glancing angle X-ray diffractometry, where the penetration depth of X-rays was modulated by the incident angle. Based on the mass attenuation coefficient of the matrix, the depth of X-ray penetration was calculated as a function of incident angle, which in turn enabled us to "calculate" the extent of crystallization to different depths. In the second approach, the tablets were split into halves and the split surfaces were analyzed directly. Starting from the tablet surface and moving toward the midplane, XRD patterns were collected in 36 "regions", in increments of 0.05 mm. The results obtained by the two approaches were, in general, in good agreement. Additionally, the results obtained were validated by determining the "average" crystallization in the entire tablet by using synchrotron radiation in the transmission mode. The glancing angle method could detect crystallization up to ∼650 μm and had a "surface bias". Being a nondestructive technique, this method will permit repeated analyses of the same tablet at different time points, for example, during a stability study. However, split tablet analyses, while a "destructive" technique, provided comprehensive and unbiased depth profiling information.

  19. Three-dimensional prediction of soil physical, chemical, and hydrological properties in a forested catchment of the Santa Catalina CZO

    NASA Astrophysics Data System (ADS)

    Shepard, C.; Holleran, M.; Lybrand, R. A.; Rasmussen, C.

    2014-12-01

    Understanding critical zone evolution and function requires an accurate assessment of local soil properties. Two-dimensional (2D) digital soil mapping provides a general assessment of soil characteristics across a sampled landscape, but lacks the ability to predict soil properties with depth. The utilization of mass-preserving spline functions enable the extrapolation of soil properties with depth, extending predictive functions to three-dimensions (3D). The present study was completed in the Marshall Gulch (MG) catchment, located in the Santa Catalina Mountains, 30 km northwest of Tucson, Arizona, as part of the Santa Catalina-Jemez Mountains Critical Zone Observatory. Twenty-four soil pits were excavated and described following standard procedures. Mass-preserving splines were used to extrapolate mass carbon (kg C m-2); percent clay, silt, and sand (%); sodium mass flux (kg Na m-2); and pH for 24 sampled soil pits in 1-cm depth increments. Saturated volumetric water content (θs) and volumetric water content at 10 kPa (θ10) were predicted using ROSETTA and established empirical relationships. The described profiles were all sampled to differing depths; to compensate for the unevenness of the profile descriptions, the soil depths were standardized from 0.0 to 1.0 and then split into five equal standard depth sections. A logit-transformation was used to normalize the target variables. Step-wise regressions were calculated using available environmental covariates to predict the properties of each variable across the catchment in each depth section, and interpolated model residuals added back to the predicted layers to generate the final soil maps. Logit-transformed R2 for the predictive functions varied widely, ranging from 0.20 to 0.79, with logit-transformed RMSE ranging from 0.15 to 2.77. The MG catchment was further classified into clusters with similar properties based on the environmental covariates, and representative depth functions for each target variable in each cluster calculated. Mass-preserving splines combined with stepwise regressions are an effective tool for predicting soil physical, chemical, and hydrological properties with depth, enhancing our understanding of the critical zone.

  20. Characterizing contaminant concentrations with depth by using the USGS well profiler in Oklahoma, 2003-9

    USGS Publications Warehouse

    Smith, S. Jerrod; Becker, Carol J.

    2011-01-01

    In 2007, the USGS well profiler was used to investigate saline water intrusion in a deep public-supply well completed in the Ozark (Roubidoux) aquifer. In northeast Oklahoma, where the Ozark aquifer is known to be susceptible to contamination from mining activities, the well profiler also could be used to investigate sources (depths) of metals contamination and to identify routes of entry of metals to production wells.Water suppliers can consider well rehabilitation as a potential remediation strategy because of the ability to identify changes in contaminant concentrations with depth in individual wells with the USGS well profiler. Well rehabilitation methods, which are relatively inexpensive compared to drilling and completing new wells, involve modifying the construction or operation of a well to enhance the production of water from zones with lesser concentrations of a contaminant or to limit the production of water from zones with greater concentrations of a contaminant. One of the most effective well rehabilitation methods is zonal isolation, in which water from contaminated zones is excluded from production through installation of cement plugs or packers. By using relatively simple and inexpensive well rehabilitation methods, water suppliers may be able to decrease exposure of customers to contaminants and avoid costly installation of additional wells, conveyance infrastructure, and treatment technologies.

  1. Application of Electrical Resistivity Imaging for Engineering Site Investigation. A Case Study on Prospective Hospital Site, Varamin, Iran

    NASA Astrophysics Data System (ADS)

    Amini, Amin; Ramazi, Hamidreza

    2016-12-01

    The article addresses the application of electrical resistivity imaging for engineering site investigation in Pishva Hospital, Varamin, Iran. Some aqueduct shafts exist in the study area backfilled by loose materials. The goals of this study are to detect probable aqueduct tunnels and their depth, investigate filling quality in the shafts as well as connection(s) between them. Therefore, three profiles were surveyed by dipoledipole electrode array. Also, to investigate the potentially anomalous areas more accurately, five additional resistivity profiles were measured by a Combined Resistivity Sounding-Profiling array (CRSP). According to the results of 2-D inversion modelling, a main aqueduct tunnel was detected beneath the central part of the site. Finally, the resistivity pattern of the detected aqueduct system passing the investigated area was provided using the obtained results.

  2. The extent of lunar regolith mixing

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Imamura, M.; Kohl, C. P.; Murrell, M. T.; Arnold, J. R.; Russ, G. P., III

    1979-01-01

    The activity of solar cosmic-ray-produced Mn-53 measured as a function of depth in the upper 100 g/sq cm of lunar cores 60009-60010 and 12025-12028 is discussed. Analyses of samples from the Apollo 15 and 16 drill stems together with authors' previously published results (1974, 1976), and the Battelle Na-22 and Al-26 data, indicate that in three of the four cases studied the regolith was measurably disturbed within the last 10 m.y. Activities measured in the uppermost 2 g/sq cm indicate frequent mixing within this depth range. The Monte Carlo gardening model of Arnold (1975) was used to derive profiles for the gardened moon-wide average of Mn-53 and Al-26 as a function of depth. The Mn-53 and Al-26 experimental results agreed with theoretical predictions, but the calculated depths of disturbance appeared too low.

  3. Depth profile by Total IBA in perovskite active layers for solar cells

    NASA Astrophysics Data System (ADS)

    Barreiros, M. A.; Alves, L. C.; Brites, M. J.; Corregidor, V.

    2017-08-01

    In recent years the record efficiency of perovskite solar cells (PSCs) has been updated exceeding now 20%. However, it is difficult to make PSCs consistently. Definite correlation has been established between the PSC performance and the perovskite film quality which involves mainly morphology, crystallinity and composition. The manufacturing development of these devices is dependent on the characterisation methodologies, on the availability of suitable and reliable analytical techniques to assess the materials composition and quality and on the relationship of these results with the cell performance. Ion beam analytical (IBA) techniques jointly with a micro-ion beam are powerful tools for materials characterisation and can provide a valuable input for the knowledge of perovskite films. Perovskite films based on CH3NH3PbI3 were prepared (from CH3NH3I and PbI2 precursors) in a planar architecture and in a mesoporous TiO2 scaffold. Proton and helium micro-beams at different energies were used in the analysis of PSC active layers, previously characterised by SEM-FEG (Scanning Electron Microscopy with a field emission gun) and XRD (X-ray diffraction). Self-consistent fit of all the obtained PIXE (Particle Induced X-ray Emission) and RBS (Rutherford Backscattering Spectrometry) spectra through Total IBA approach provided depth profiling of perovskite, its precursors and TiO2 and assess their distribution in the films. PbI2 presence and location on the active layer may hinder the charge transport and highly affect the cell performance. IBA techniques allowed to identify regions of non-uniform surface coverage and homogeneous areas and it was possible to establish the undesired presence of PbI2 and its quantitative depth profile in the planar architecture film. In the mesostructured perovskite film it was verified a non-homogeneous distribution with a decreasing of perovskite concentration down to the thin blocking layer. The good agreement between the best fits obtained in a Total IBA approach and the experimental data granted reliability to depth profile results for the studied perovskite films.

  4. The application of Caesium-137 and Plutonium-239+240 measurements to investigate floodplain deposition in a semi-arid, low-fallout environment

    NASA Astrophysics Data System (ADS)

    Amos, K. J.; Croke, J. C.; Timmers, H.; Owens, P. N.

    2009-04-01

    Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of Cs-137 inventory and depth-profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, north-eastern Australia; a 143 000 km2 semi-arid river system. Caesium-137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of Cs-137 concentration from each floodplain site and a reference location were recorded. The areal density of Cs-137 at reference locations ranged from 13-978 Bq m-2 (0-1367 Bq m-2 at the 95% confidence interval), and the mean value ± 2(standard error of the mean) was 436±264 Bq m-2, similar to published data from other southern hemisphere locations. Floodplain inventories ranged from 68-1142 Bq m-2 (0-1692 Bq m-2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth-profiles of Cs-137 concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from Cs-137 data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0-15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low Cs-137 fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed Cs-137. In this low-fallout environment, detailed depth-profile data are necessary for investigating sedimentation using Cs-137.

  5. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    PubMed

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  6. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012

  7. Rapid skin profiling with non-contact full-field optical coherence tomography: study of patients with diabetes mellitus type I

    NASA Astrophysics Data System (ADS)

    Zakharov, P.; Talary, M. S.; Kolm, I.; Caduff, A.

    2009-07-01

    The application of the full-field optical coherence tomography (OCT) microscope to the characterisation of skin morphology is described. An automated procedure for analysis and interpretation of the OCT data has been developed which provides measures of the laterally averaged depth profiles of the skin reflectance. The skin at the dorsal side of the upper arm of 22 patients with Type 1 Diabetes Mellitus has been characterised in a non-contact way. The OCT signal profile was compared with the optical histological data obtained with a commercial confocal microscope (CM). The highest correlation to the epidermal thickness (ET) obtained using CM was found for the distance from the entrance OCT peak to the first minimum of the reflection profile (R2=0.657, p<0.0001). The distance to the second OCT reflection peak was found to be less correlated to ET (R2=0.403, p=0.0009). A further analysis was undertaken to explore the relation between the subjects' demographical data and the OCT reflection profile. The distance to the second OCT peak demonstrated a correlation with a marginal statistical significance for the body-mass index (positive correlation with p=0.01) and age (negative correlation with p=0.062). At the same time the amplitude of the OCT signal, when compensated for signal attenuation with depth, is negatively correlated with age (p<0.0002). We suggest that this may be an effect of photo degradation of the dermal collagen. In the patient population studied, no relation could be determined between the measured skin morphology and the duration of diabetes or concentration of glycated haemoglobin in the blood.

  8. Numerical analysis of groundwater recharge through stony soils using limited data

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Khan, A. S.; Bannink, M. H.; Birch, D.; Kidd, C.

    1991-10-01

    This study evaluates groundwater recharge on an alluvial fan in Quetta Valley (Baluchistan, Pakistan), through deep stony soils with limited data of soil texture, soil profile descriptions, water-table depths and meteorological variables. From the soil profile descriptions, a representative profile was constructed with typical soil layers. Next, the texture of each layer was compared with textures of soils with known soil physical characteristics; it is assumed that soils from the same textural class have similar water retention and hydraulic conductivity curves. Finally, the water retention and hydraulic conductivity curves were transformed to account for the volume of stones in each layer; this varied between 0 and 60 vol. %. These data were used in a transient finite difference model and in a steady-state analytical solution to evaluate the travel time of the recharge water and the maximum annual recharge volume. Travel times proved to be less sensitive to differences in soil physical characteristics than to differences in annual infiltration rates. Therefore, estimation of soil physical characteristics from soil texture data alone appears justified for this study. Estimated travel times on the alluvial fan in the Quetta Valley vary between 1.6 years, through a soil profile of 25 m with an infiltration rate of 120 cm year -1, to 18.3 years through a soil profile of 100 m with an infiltration rate of 40 cm year -1. When the infiltration rate of the soil exceeds 40 cm day -1, the infiltration process proceeds so fast that evaporation losses are small. If the depth of ponding at the start of infiltration is more than 1 m, at least 90% of the applied recharge water will reach the water table, providing that the ponding area is bare of vegetation.

  9. Neck and shoulder disorders in medical secretaries. Part II. Ergonomical work environment and symptom profile.

    PubMed

    Kamwendo, K; Linton, S J; Moritz, U

    1991-01-01

    Seventy-nine medical secretaries with neck and shoulder pain were included in a study aimed at an in-depth description of the ergonomical work environment and the participant's symptom profile, as well as analysing relationships between ergonomical factors and symptoms. Data were collected by daily ratings, questionnaires, and direct observation. The symptom profile showed low mean daily ratings of perceived fatigue and pain, a low medicine consumption, and few stress symptoms. A mean number of 2.1 undesirable work postures was observed. The correlations between perceived fatigue, pain, and well-being with number of shifts from sitting to standing and time spent typing, were generally small. This study suggests that risk factors for neck and shoulder pain are individual and multifactorial.

  10. SU-F-T-142: An Analytical Model to Correct the Aperture Scattered Dose in Clinical Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, B; Liu, S; Zhang, T

    2016-06-15

    Purpose: Apertures or collimators are used to laterally shape proton beams in double scattering (DS) delivery and to sharpen the penumbra in pencil beam (PB) delivery. However, aperture-scattered dose is not included in the current dose calculations of treatment planning system (TPS). The purpose of this study is to provide a method to correct the aperture-scattered dose based on an analytical model. Methods: A DS beam with a non-divergent aperture was delivered using a single-room proton machine. Dose profiles were measured with an ion-chamber scanning in water and a 2-D ion chamber matrix with solid-water buildup at various depths. Themore » measured doses were considered as the sum of the non-contaminated dose and the aperture-scattered dose. The non-contaminated dose was calculated by TPS and subtracted from the measured dose. Aperture scattered-dose was modeled as a 1D Gaussian distribution. For 2-D fields, to calculate the scatter-dose from all the edges of aperture, a sum of weighted distance was used in the model based on the distance from calculation point to aperture edge. The gamma index was calculated between the measured and calculated dose with and without scatter correction. Results: For a beam with range of 23 cm and aperture size of 20 cm, the contribution of the scatter horn was ∼8% of the total dose at 4 cm depth and diminished to 0 at 15 cm depth. The amplitude of scatter-dose decreased linearly with the depth increase. The 1D gamma index (2%/2 mm) between the calculated and measured profiles increased from 63% to 98% for 4 cm depth and from 83% to 98% at 13 cm depth. The 2D gamma index (2%/2 mm) at 4 cm depth has improved from 78% to 94%. Conclusion: Using the simple analytical method the discrepancy between the measured and calculated dose has significantly improved.« less

  11. Subsurface profiling using integrated geophysical methods for 2D site response analysis in Bangalore city, India: a new approach

    NASA Astrophysics Data System (ADS)

    Chandran, Deepu; Anbazhagan, P.

    2017-10-01

    Recently, site response analysis has become a mandatory step for the design of important structures. Subsurface investigation is an essential step, from where the input parameters for the site response study like density, shear wave velocity (Vs), thickness and damping characteristics, etc, are obtained. Most site response studies at shallow bedrock sites are one-dimensional (1D) and are usually carried out by using Vs from multi-channel analysis of surface waves (MASW) or a standard penetration test (SPT) for N values with assumptions that soil layers are horizontal, uniform and homogeneous. These assumptions are not completely true in shallow bedrock regions as soil deposits are heterogeneous. The objective of this study is to generate the actual subsurface profiles in two-dimensions at shallow bedrock regions using integrated subsurface investigation testing. The study area selected for this work is Bangalore, India. Three survey lines were selected in Bangalore at two different locations; one at the Indian Institute of Science (IISc) Campus and the other at Whitefield. Geophysical surveys like ground penetrating radar (GPR) and 2D MASW were carried out at these survey lines. Geophysical test results are compared and validated with a conventional geotechnical SPT. At the IISc site, the soil profile is obtained from a trench excavated for a proposed pipeline used to compare the geophysical test results. Test results show that GPR is very useful to delineate subsurface layers, especially for shallow depths at both sites (IISc Campus and Whitefield). MASW survey results show variation of Vs values and layer thickness comparatively at deeper depths for both sites. They also show higher density soil strata with high Vs value obtained at the IISc Campus site, whereas at the Whitefield site weaker soil with low shear velocity is observed. Combining these two geophysical methods helped to generate representative 2D subsurface profiles. These subsurface profiles can be further used to understand the difference between 1D and 2D site response.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabbagh, A.; Lardy, M.

    Temperature measurements on shallow vertical profiles undertaken on Matthews and Hunter volcanoes of the New Hebrides arc (SW Pacific) demonstrate the absence of both unsteady and steady conductive abnormal flux at the location of the studied profiles. The reasons for this absence are explained in terms of limits in depth or magnitude for possible sources of heat inside the volcanoes. It implies that the magma chamber is of rather limited extent. This type of flux measurement has a low cost and it will be possible to implant a series of such temperature profiles on an edifice in order to obtainmore » a map of the flux that could be widely used for the location of heat sources.« less

  13. Long-Term (4 mo) Oxygen Isotope Exchange Experiment between Zircon and Hydrothermal Fluid

    NASA Astrophysics Data System (ADS)

    Bindeman, I. N.; Schmitt, A. K.; Lundstrom, C.; Golledge, S.

    2013-12-01

    Knowing oxygen diffusivity in zircon has several critical applications: 1) establishing zircon stability and solubility in hot silica-saturated hydrothermal solutions; 2) deriving metamorphic and magmatic heating timescales from intra-crystal oxygen isotopic gradients; 3) assessing the survivability of oxygen isotopic signatures in Hadean zircons. We report results of a microanalytical investigation of an isotope exchange experiment using a cold-seal pressure apparatus at 850°C and 500 MPa over 4 months duration. Natural zircon, quartz and rutile were sealed with a silica-rich solution doped with 18-O, D, 7-Li and 10-B in a gold capsule. The diffusion length-scales were examined by depth profiling using time-of-flight (TOF) and high-sensitivity dynamic secondary ionization mass spectrometry (SIMS). Starting materials had distinct and homogeneous δ18O: zircon from Mesa Falls tuff of Yellowstone (+3.6‰), rutile from Karelia (-29‰), Bishop Tuff Quartz (+8.4‰), and δ18O doped water (+400‰). Starting material zircon showed invariant 18O/16O during depth profiling. After the 4 month experiment, rutile crystal surfaces displayed etching (100's of nm), while zircon exteriors lacked visible change. Quartz was completely dissolved and reprecipitated in a minor residue. Rutile developed ~2 μm long Fickian diffusion profiles largely consistent with the wet diffusion coefficients for rutile previously reported [1]. Surface U-Pb dating of zircon detected no significant Pb loss from the outermost ~300 nm of the crystal face and returned identical core-face ages. We performed δ18O depth profiling of zircon in two directions. First, forward profiles (crystal rim inwards) by dynamic SIMS (no surface treatment besides Au-coating; Cs+ beam of 20 kV impact energy) showed initially high and decreasing 18O/16O over ~130 nm; TOF-SIMS forward profiles using a 2 kV Cs+ sputter beam and 25 kV Bi3+ primary ions on uncoated zircon surfaces (cleaned for 2 min with HF) yielded decreasing 18O/16O over a similar length scale. These profile lengths are largely consistent with wet diffusion coefficient for zircon reported by [2]. In contrast, back-side depth profiling was conducted by dynamic SIMS on a 1 μm thick wafer cut from the zircon by FIB. No significant elevation in 18O/16O was detected when the surface layer was penetrated, consistent with dry diffusion coefficients of [2]. The results suggest that nm-scale SIMS surface analysis of isotope ratios is challenging. We are investigating if they can be critically affected by knock-on effects and/or continuous mixing of a very thin enriched surface layer during depth profiling in our and previous experiments. [1] Moore et al., 1998, Am. Min. 83, 700-711 [2] Watson and Cherniak, 1997, EPSL 148, 537-544

  14. Estimation of depth to magnetic source using maximum entropy power spectra, with application to the Peru-Chile Trench

    USGS Publications Warehouse

    Blakely, Richard J.

    1981-01-01

    Estimations of the depth to magnetic sources using the power spectrum of magnetic anomalies generally require long magnetic profiles. The method developed here uses the maximum entropy power spectrum (MEPS) to calculate depth to source on short windows of magnetic data; resolution is thereby improved. The method operates by dividing a profile into overlapping windows, calculating a maximum entropy power spectrum for each window, linearizing the spectra, and calculating with least squares the various depth estimates. The assumptions of the method are that the source is two dimensional and that the intensity of magnetization includes random noise; knowledge of the direction of magnetization is not required. The method is applied to synthetic data and to observed marine anomalies over the Peru-Chile Trench. The analyses indicate a continuous magnetic basement extending from the eastern margin of the Nazca plate and into the subduction zone. The computed basement depths agree with acoustic basement seaward of the trench axis, but deepen as the plate approaches the inner trench wall. This apparent increase in the computed depths may result from the deterioration of magnetization in the upper part of the ocean crust, possibly caused by compressional disruption of the basaltic layer. Landward of the trench axis, the depth estimates indicate possible thrusting of the oceanic material into the lower slope of the continental margin.

  15. Electron Beam Lithography Double Step Exposure Technique for Fabrication of Mushroom-Like Profile in Bilayer Resist System

    NASA Astrophysics Data System (ADS)

    Kornelia, Indykiewicz; Bogdan, Paszkiewicz; Tomasz, Szymański; Regina, Paszkiewicz

    2015-01-01

    The Hi/Lo bilayer resist system exposure in e-beam lithography (EBL) process, intended for mushroom-like profile fabrication, was studied. Different exposure parameters and theirs influence on the resist layers were simulated in CASINO software and the obtained results were compared with the experimental data. The AFM technique was used for the estimation of the e-beam penetration depth in the resist stack. Performed numerical and experimental results allow us to establish the useful ranges of the exposure parameters.

  16. Crustal thickness across the Trans-European Suture Zone from ambient noise autocorrelations

    NASA Astrophysics Data System (ADS)

    Becker, G.; Knapmeyer-Endrun, B.

    2018-02-01

    We derive autocorrelations from ambient seismic noise to image the reflectivity of the subsurface and to extract the Moho depth beneath the stations for two different data sets in Central Europe. The autocorrelations are calculated by smoothing the spectrum of the data in order to suppress high amplitude, narrow-band signals of industrial origin, applying a phase autocorrelation algorithm and time-frequency domain phase-weighted stacking. The stacked autocorrelation results are filtered and analysed predominantly in the frequency range of 1-2 Hz. Moho depth is automatically picked inside uncertainty windows obtained from prior information. The processing scheme we developed is applied to data from permanent seismic stations located in different geological provinces across Europe, with varying Moho depths between 25 and 50 km, and to the mainly short period temporary PASSEQ stations along seismic profile POLONAISE P4. The autocorrelation results are spatially and temporarily stable, but show a clear correlation with the existence of cultural noise. On average, a minimum of six months of data is needed to obtain stable results. The obtained Moho depth results are in good agreement with the subsurface model provided by seismic profiling, receiver function estimates and the European Moho depth map. In addition to extracting the Moho depth, it is possible to identify an intracrustal layer along the profile, again closely matching the seismic model. For more than half of the broad-band stations, another change in reflectivity within the mantle is observed and can be correlated with the lithosphere-asthenosphere boundary to the west and a mid-lithospheric discontinuity beneath the East European Craton. With the application of the developed autocorrelation processing scheme to different stations with varying crustal thicknesses, it is shown that Moho depth can be extracted independent of subsurface structure, when station coverage is low, when no strong seismic sources are present, and when only limited amounts of data are available.

  17. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    PubMed

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  18. [Profiles of resilience and quality of life in people with acquired disability due to traffic accidents].

    PubMed

    Suriá Martínez, Raquel

    2015-09-01

    To identify distinct profiles of resilience in people with spinal cord injuries due to traffic accidents and to determine whether the profiles identified are related to differences in subjective well-being. The Resilience Scale (Wagnild and Young, 1993) and an adapted quality of life scale (GENCAT) were administered to 98 people with physical disabilities due to traffic accidents. Cluster analyses identified three different resilience profiles: a high-resilience group, a low-resilience group, and a group showing a predominance of high scores in self and life acceptance and social competence. The results also revealed statistically significant differences among profiles in most domains of subjective well-being. The results suggest the need to study resilience in greater depth and to design programs to enhance quality of life among people with disabilities due to traffic accidents. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. A wave equation migration method for receiver function imaging: 2. Application to the Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Wen, Lianxing; Zheng, Tianyu

    2005-11-01

    The newly developed wave equation poststack depth migration method for receiver function imaging is applied to study the subsurface structures of the Japan subduction zone using the Fundamental Research on Earthquakes and Earth's Interior Anomalies (FREESIA) broadband data. Three profiles are chosen in the subsurface imaging, two in northeast (NE) Japan to study the subducting Pacific plate and one in southwest (SW) Japan to study the Philippine Sea plate. The descending Pacific plate in NE Japan is well imaged within a depth range of 50-150 km. The slab image exhibits a little more steeply dipping angle (˜32°) in the south than in the north (˜27°), although the general characteristics between the two profiles in NE Japan are similar. The imaged Philippine Sea plate in eastern SW Japan, in contrast, exhibits a much shallower subduction angle (˜19°) and is only identifiable at the uppermost depths of no more than 60 km. Synthetic tests indicate that the top 150 km of the migrated images of the Pacific plate is well resolved by our seismic data, but the resolution of deep part of the slab images becomes poor due to the limited data coverage. Synthetic tests also suggest that the breakdown of the Philippine Sea plate at shallow depths reflects the real structural features of the subduction zone, rather than caused by insufficient coverage of data. Comparative studies on both synthetics and real data images show the possibility of retrieval of fine-scale structures from high-frequency contributions if high-frequency noise can be effectively suppressed and a small bin size can be used in future studies. The derived slab geometry and image feature also appear to have relatively weak dependence on overlying velocity structure. The observed seismicity in the region confirms the geometries inferred from the migrated images for both subducting plates. Moreover, the deep extent of the Pacific plate image and the shallow breakdown of the Philippine Sea plate image are observed to correlate well with the depth extent of the seismicity beneath NE and SW Japan. Such a correlation supports the inference that the specific appearance of slabs and intermediate-depth earthquakes are a consequence of temperature-dependent dehydration induced metamorphism occurring in the hydrated descending oceanic crust.

  20. Imaging the Variscan suture at the KTB deep drilling site, Germany

    NASA Astrophysics Data System (ADS)

    Bianchi, Irene; Bokelmann, Götz

    2018-03-01

    The upper crust of the KTB (Kontinentales Tiefbohrprogramm) area in Southeastern Germany is a focal point for the Earth Science community due to the huge amount of information collected throughout the last thirty years. In this study we explore the crustal structure of the KTB area through the application of the receiver function (RF) technique to a new data set recorded by 9 temporary seismic stations and 1 permanent station. We aim to unravel the isotropic structure and compare our results with previous information from the reflection profiles collected during the initial site investigations. Due to the large amount of information collected by previous studies, in terms of P-wave velocity, depth and location of major reflectors, depth reconstruction of major faults zones, this area represents a unique occasion to test the resolution capability of a passive seismological study performed by the application of the RF. We aim to verify which contribution could be given by the application of the receiver functions technique, for future studies, in order to get clear images of the deep structure, and up to which resolution. The RF technique has apparently not been applied in the area before, yet it may give useful additional insight in subsurface structure, particularly at depths larger than the maximum depth reached by drilling, but also on structures in the upper crust, around the area that has been studied in detail previously. In our results vS-depth profiles for stations located on the same geological units display common features and show shallow S-wave velocities typical of the outcropping geological units (i.e. sedimentary basin, granites, metamorphic rocks). At around 10 km depth we observe a strong velocity increase beneath all stations. For the stations located in the center of the area, this variation is weaker, which we assume to be the signature of the main tectonic suture in the area (i.e. the Saxothuringian-Moldanubian suture), along an West-to-East extended region, may be due to the presence of the allochthonous klippe trapped between the main crustal terrains that came in touch during the Variscan orogeny. In the lower crust we see only small variations throughout the area, at the resolution that is possible with a small temporary experiment with just 10 stations.

Top