Science.gov

Sample records for depth profiling techniques

  1. Pulse-shape discrimination in neutron depth profiling technique

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Havránek, V.; Hoffmann, J.; Pošta, S.; Fink, D.; Klett, R.

    1998-07-01

    Pulse-shape discrimination (PSD) is used for the first time for reduction of unwanted background in analyses of solid surfaces by neutron depth profiling method (NDP) based on the detection of charged particles from the (n, p) and (n, α) nuclear reactions induced by thermal neutrons on some light elements. The experimental PSD arrangement is described and its performance is demonstrated on the measurement of real sample. Background reduction by about two orders of magnitude in the energy region below 1 MeV leads to sensitivity improvement by about one order of magnitude and to extension of measurable depth region for some of light elements like N and Cl.

  2. Damage profile examination on ion irradiated PEEK by 6Li doping and neutron depth profiling technique

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Švorčík, V.; Kobayashi, Y.; Fink, D.; Klett, R.

    1998-05-01

    Depth structure of radiation damaged surface layer of poly(aryl-ether-ether ketone) (PEEK) a polymer was studied using doping with 6Li atoms combined with nondestructive neutron depth profiling (NDP) method. The PEEK foils were irradiated with 2 MeV O + ions up to a fluence of 6 × 10 14 ions/cm 2. The damage profiles in the samples were visualized by doping of the samples with 5 M LiCl water solution at room temperature (RT) for 22.5 h. The Li ions are trapped on ion-produced radiation defects and the Li depth profiles are determined by the NDP method. NDP experiments were performed before and after leaching of excess of lithium atoms from the samples in distilled water at RT for 2 h. The leaching leads to dramatic changes in the Li depth distribution which, at low ion fluences, is similar in shape to the electronic energy loss profile of 2 MeV O + ions. For the higher fluences double-peaked profile occurs, which indicates a competition between different degradation processes in ion irradiated polymer.

  3. Threading Dislocation Characterization and Stress Mapping Depth Profiling via Ray Tracing Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Tianyi

    Zinc oxide (ZnO) has been well known as a transparent, dielectric, piezoelectric and wide band gap material. The potential capabilities have been demonstrated for a wide range of applications such as piezoelectric transducer, gas sensor, optical waveguides and transparent electrode. It could also be applied as a substrate material for GaN-based devices. However, while some applications have already been realized, issues relating to crystalline defects remain a barrier to the successful realization of several others. In this thesis, the central focus of Chapter II is to characterize threading dislocations in hydrothermal grown ZnO substrates through simulation work as well as other techniques. The goal of this study is to find the origin of threading dislocations and design strategies to mitigate their negative effects by either reducing their densities or completely eliminating them. In Chapter III, the technique of SMART (stress mapping analysis via ray tracing) is discussed in detail to measure residue stress in packaged silicon circuits. Residual stress plays an important role in the performance and lifetime of single crystal device material. There are mainly two advantages of SMART compared with other techniques: (a) all six components of the stress tensor could be evaluated; (b) it is non-destructive and no damaging trace will be left on the sample. In this study, our goal is to build a relationship between stress distribution and depth. The concept of penetration depth is critically important in this study and its value may cause great changes for real space stress distribution. A new function is applied to get better fitting curves. Data in this study is obtained from various penetration depth, which represents exponentially decaying weighted average of actual stress value or in other words this stress profile is Laplace transform of real stress profile. Mathematical procedure is described to determine real stress profile from Laplace profile. Experiment

  4. Depth-profiling by confocal Raman microscopy (CRM): data correction by numerical techniques.

    PubMed

    Tomba, J Pablo; Eliçabe, Guillermo E; Miguel, María de la Paz; Perez, Claudio J

    2011-03-01

    The data obtained in confocal Raman microscopy (CRM) depth profiling experiments with dry optics are subjected to significant distortions, including an artificial compression of the depth scale, due to the combined influence of diffraction, refraction, and instrumental effects that operate on the measurement. This work explores the use of (1) regularized deconvolution and (2) the application of simple rescaling of the depth scale as methodologies to obtain an improved, more precise, confocal response. The deconvolution scheme is based on a simple predictive model for depth resolution and the use of regularization techniques to minimize the dramatic oscillations in the recovered response typical of problem inversion. That scheme is first evaluated using computer simulations on situations that reproduce smooth and sharp sample transitions between two materials and finally it is applied to correct genuine experimental data, obtained in this case from a sharp transition (planar interface) between two polymeric materials. It is shown that the methodology recovers very well most of the lost profile features in all the analyzed situations. The use of simple rescaling appears to be only useful for correcting smooth transitions, particularly those extended over distances larger than those spanned by the operative depth resolution, which limits the strategy to the study of profiles near the sample surface. However, through computer simulations, it is shown that the use of water immersion objectives may help to reduce optical distortions and to expand the application window of this simple methodology, which could be useful, for instance, to safely monitor Fickean sorption/desorption of penetrants in polymer films/coatings in a nearly noninvasive way.

  5. Thermal depth profiling of materials for defect detection using hot disk technique

    NASA Astrophysics Data System (ADS)

    Mihiretie, B. M.; Cederkrantz, D.; Sundin, M.; Rosén, A.; Otterberg, H.; Hinton, Å.; Berg, B.; Karlsteen, M.

    2016-08-01

    A novel application of the hot disk transient plane source technique is described. The new application yields the thermal conductivity of materials as a function of the thermal penetration depth which opens up opportunities in nondestructive testing of inhomogeneous materials. The system uses the hot disk sensor placed on the material surface to create a time varying temperature field. The thermal conductivity is then deduced from temperature evolution of the sensor, whereas the probing depth (the distance the heat front advanced away from the source) is related to the product of measurement time and thermal diffusivity. The presence of inhomogeneity in the structure is manifested in thermal conductivity versus probing depth plot. Such a plot for homogeneous materials provides fairly constant value. The deviation from the homogeneous curve caused by defects in the structure is used for inhomogeneity detection. The size and location of the defect in the structure determines the sensitivity and possibility of detection. In addition, a complementary finite element numerical simulation through COMSOL Multiphysics is employed to solve the heat transfer equation. Temperature field profile of a model material is obtained from these simulations. The average rise in temperature of the heat source is calculated and used to demonstrate the effect of the presence of inhomogeneity in the system.

  6. Molecular ion implantation technique for obtaining the same depth profile for the component atoms

    SciTech Connect

    Ishikawa, Junzo; Tsuji, Hiroshi; Mimura, Masakazu; Gotoh, Yasuhito

    1996-12-31

    The molecular ion implantation, in which the ions of polyatomic molecule are used as an implantation particle, is expected to have two main advantages: (1) obtaining the similar depth profiles of implanted component atoms of different elements at a single implantation, and (2) achieving simultaneous implantation of different atoms at the same position. In this paper, we have showed these advantages by an analytical estimation of the projected ranges for each implanted atoms of a polyatomic molecule, and then, by the computer simulation by TRIM. In addition, the experimental results obtained by SIMS were also presented. As for the evaluation of depth profiles, the overlap areas between two depth distributions were calculated by a numerical integration as a degree of the similarity between two depth profiles of different atoms. As a result, the projected ranges and overlap areas showed that depth profiles are almost the same in a usual implantation energy range, except of hydrogen due to the lack of neutron in the nucleus. For the simple evaluation for the similarity of two depth profiles, a factor S was proposed instead of the overlap area.

  7. Quantitative depth profiling in glow discharge spectroscopies - A new deconvolution technique to separate effects of an uneven erosion crater shape.

    PubMed

    Prässler, F; Hoffmann, V; Schumann, J; Wetzig, K

    1996-07-01

    An algorithm is presented as a concept for the quantification in direct current and radiofrequency glow discharge (GD) modes for GD optical emission spectroscopy. The algorithm is divided into excitation and sputtering part and thus it is possible to distinguish between the different excitation processes and to consider equivalent sputtering crater formations in both modes. Intensity-time profiles are affected corresponding to the method by several effects. One important effect is that sputtering occurs at a single time in different depths because of curved crater bottoms, this is usually called crater effect. The main purpose is to introduce an iterative deconvolution technique which for the quantification numerically takes into account the curved sputtering crater bottom. Input data for the deconvolution technique are the calibrated mass-time profile, the partial densities of the sample constituents and the measured final shape of the sputtering crater. Using a relatively simple model for ion sputtering the deconvolution technique improves iteratively the calculated layer structure by means of information on crater formation. The mathematical handling is illustrated for the quantification of a depth profile of a multilayer sample of ten 100 nm layers. The resulting concentration-depth profile reflects excellently the real elemental distribution of the multilayer system.

  8. Determination of hydrogen diffusion coefficients in F82H by hydrogen depth profiling with a tritium imaging plate technique

    SciTech Connect

    Higaki, M.; Otsuka, T.; Hashizume, K.; Tokunaga, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.

    2015-03-15

    Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.

  9. Complex use of the diffraction techniques in depth profiling of the crystal lattice parameter and composition of InGaAs/GaAs gradient layers

    NASA Astrophysics Data System (ADS)

    Baidakova, M. V.; Kirilenko, D. A.; Sitnikova, A. A.; Yagovkina, M. A.; Klimko, G. V.; Sorokin, S. V.; Sedova, I. V.; Ivanov, S. V.; Romanov, A. E.

    2016-05-01

    A technique is proposed for testing thick (1 μm and larger) gradient layers with the composition and relaxation degree alternating over the layer depth on the basis of comparative analysis of X-ray scattered intensity maps in the reciprocal space and depth profiles of the crystal lattice parameters obtained by electron microdiffraction. The informativity of the proposed technique is demonstrated using the example of an In x Ga1- x As/GaAs layer with linear depth variation in x. Complex representation of the diffraction data in the form of the depth-profiled reciprocal space map allows taking into account the additional relaxation caused by thinning electron microscopy specimens.

  10. Depth Profiles Using ChemCam

    NASA Astrophysics Data System (ADS)

    Cousin, A.; Maurice, S.; Berger, G.; Forni, O.; Gasnault, O.; Wiens, R.

    2011-03-01

    ChemCam, which is in part of the MSL payload, uses the LIBS technique to investigate the martian surface. The capabilities of ChemCam for the depth profile have to be understood, as ChemCam will shoot several targets which can have alteration coating.

  11. Application of slope-polishing technique for depth profile of selenized CIGS by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Min-Su; Kang, Jeong-yoon; Kim, SeongYeon; Kim, JunHo; Jeon, Chan-Wook

    2016-08-01

    Micro-Raman analysis was carried out on two Cu(In,Ga)Se2 films to determine the location of the secondary phases, which were suspected of being formed during the selenization process of Cu-In-Ga metallic precursor films. A slope polishing technique using a dimple grinder was applied to physically expand the film thickness by several hundred fold, which allowed high resolution Raman analysis. Various secondary phases including CuxSe, InSe, Se, and MoySe at different depths were identified without need for time-consuming sputter etching, which may adversely affect the film chemistry. With the help of the new sample preparation method for depth analysis of thin film, a precise decision on the location of those secondary phases along the film thickness and better understanding of the reaction mechanism was enabled.

  12. Depth profile characterization with noncollinear beam mixing

    SciTech Connect

    Freed, Shaun L. E-mail: jeong.na@wyle.com; Na, Jeong K. E-mail: jeong.na@wyle.com

    2015-03-31

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  13. Depth profile characterization with noncollinear beam mixing

    NASA Astrophysics Data System (ADS)

    Freed, Shaun L.; Na, Jeong K.

    2015-03-01

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  14. An energy spread correction for ERDA hydrogen depth profiling

    SciTech Connect

    Verda, R. D.; Nastasi, Michael Anthony,

    2002-01-01

    A technique for hydrogen depth profiling by reflection elastic recoil detection analysis called the channel-depth conversion was introduced by Verda, et al.' However, the energy spread in elastic recoil detection analysis spectra, which causes a broadening in the energy range and leads to errors in depth profiling, was not addressed by this technique. Here we introduce a technique to addresses this problem, called the energy spread correction. Together, the energy spread correction and the channel-depth conversion techniques comprise the depth profiling method presented in this work.

  15. New Techniques of LASS-ICPMS Depth Profiling Applied to Detrital Zircon from the Central Alps-Apennines System

    NASA Astrophysics Data System (ADS)

    Anfinson, O. A.; Smye, A.; Stockli, D. F.

    2014-12-01

    Detrital zircon U-Pb age dating has become a widely used tool for determining sediment provenance in basins and orogenic systems. While traditional LA-ICPMS zircon geochronology is powerful, it has limitations when source regions are characterized by monotonous or non-diagnostic crystallization ages or by major sediment recycling and homogenization, leading to minimal zircon age variability. In the central Alps of Switzerland and Italy, for example, similar Cadomian, Caledonian, and Variscan zircons dominate with only minor Alpine ages. Samples collected from Oligocene-Miocene strata deposited in both the northern (Swiss Molasse) and southern (Apenninic foredeep) Alpine foreland basins document shifts in the relative abundance of Cadomian, Caledonian, Variscan and Alpine aged detrital zircon, but the exact source region and genesis of the grains remains poorly constrained based on zircon U-Pb age data alone. Laser Ablation Split Stream (LASS)-ICPMS depth profiling of detrital zircon allows for the simultaneous recovery of multiple ages and of chemical/petrogenetic data from single zircons, and has the potential to shed additional light on provenance. This study applies this approach to Oligocene-Miocene strata of the Swiss Molasse Basin and Apenninic foredeep. Recent advances in LA-ICPMS sample cell technology allow for reliable recovery of age and trace element data during progressive ablation into zircons. Decreased washout (<.3 sec) reduces vertical signal smearing during ablation and penetration into unpolished, tape-mounted grains. In contrast to traditional polished mount zircon spot-analysis, depth-profiling of unpolished grains minimizes zonal mixing given that ablation pits are commonly oriented perpendicular to growth zones. Split-stream analysis of U-Pb isotopic data and REE/trace element abundances during ablation improves petrochronologic resolution to the further elucidated the growth history and genesis of individual zircon grains. Results from the

  16. Time-resolved OCT-μPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Menon, Prahlad G.; Kowalski, William; Pekkan, Kerem

    2013-01-01

    In vivo acquisition of endothelial wall shear stress requires instantaneous depth-resolved whole-field pulsatile flow profile measurements in microcirculation. High-accuracy, quantitative and non- invasive velocimetry techniques are essential for emerging real-time mechano-genomic investigations. To address these research needs, a novel biological flow quantification technique, OCT-μPIV, was developed utilizing high-speed optical coherence tomography (OCT) integrated with microscopic Particle Image Velocimetry (μPIV). This technique offers the unique advantage of simultaneously acquiring blood flow profiles and vessel anatomy along arbitrarily oriented sagittal planes. The process is instantaneous and enables real-time 3D flow reconstruction without the need for computationally intensive image processing compared to state-of-the-art velocimetry techniques. To evaluate the line-scanning direction and speed, four sets of parametric synthetic OCT-μPIV data were generated using an in-house code. Based on this investigation, an in vitro experiment was designed at the fastest scan speed while preserving the region of interest providing the depth-resolved velocity profiles spanning across the width of a micro-fabricated channel. High-agreement with the analytical flow profiles was achieved for different flow rates and seed particle types and sizes. Finally, by employing blood cells as non-invasive seeding particles, in vivo embryonic vascular velocity profiles in multiple vessels were measured in the early chick embryo. The pulsatile flow frequency and peak velocity measurements were also acquired with OCT-μPIV, which agreed well with previous reported values. These results demonstrate the potential utility of this technique to conduct practical microfluidic and non-invasive in vivo studies for embryonic blood flows.

  17. Time-resolved OCT-μPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Menon, Prahlad G.; Kowalski, William; Pekkan, Kerem

    2012-12-01

    In vivo acquisition of endothelial wall shear stress requires instantaneous depth-resolved whole-field pulsatile flow profile measurements in microcirculation. High-accuracy, quantitative and non- invasive velocimetry techniques are essential for emerging real-time mechano-genomic investigations. To address these research needs, a novel biological flow quantification technique, OCT-μPIV, was developed utilizing high-speed optical coherence tomography (OCT) integrated with microscopic Particle Image Velocimetry (μPIV). This technique offers the unique advantage of simultaneously acquiring blood flow profiles and vessel anatomy along arbitrarily oriented sagittal planes. The process is instantaneous and enables real-time 3D flow reconstruction without the need for computationally intensive image processing compared to state-of-the-art velocimetry techniques. To evaluate the line-scanning direction and speed, four sets of parametric synthetic OCT-μPIV data were generated using an in-house code. Based on this investigation, an in vitro experiment was designed at the fastest scan speed while preserving the region of interest providing the depth-resolved velocity profiles spanning across the width of a micro-fabricated channel. High-agreement with the analytical flow profiles was achieved for different flow rates and seed particle types and sizes. Finally, by employing blood cells as non-invasive seeding particles, in vivo embryonic vascular velocity profiles in multiple vessels were measured in the early chick embryo. The pulsatile flow frequency and peak velocity measurements were also acquired with OCT-μPIV, which agreed well with previous reported values. These results demonstrate the potential utility of this technique to conduct practical microfluidic and non-invasive in vivo studies for embryonic blood flows.

  18. Neutron depth profiling by large angle coincidence spectroscopy

    SciTech Connect

    Vacik, J.; Cervena, J.; Hnatowicz, V.; Havranek, V.; Fink, D.

    1995-12-31

    Extremely low concentrations of several technologically important elements (mainly lithium and boron) have been studied by a modified neutron depth profiling technique. Large angle coincidence spectroscopy using neutrons to probe solids with a thickness not exceeding several micrometers has proved to be a powerful analytical method with an excellent detection sensitivity. Depth profiles in the ppb atomic range are accessible for any solid material. A depth resolution of about 20 nanometers can be achieved.

  19. Depth profiling of deuterium using nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Hughes, I. G.; Behrisch, R.; Martinelli, A. P.

    1993-06-01

    We report on a method to measure the depth profile of deuterium up to a depth of 7 μm in a carbon/beryllium layer using the D( 3He, p) 4He nuclear reaction in a resonance-like technique. The deuterium depth profile is determined from a measurement of the proton yield as a function of incident 3He ion energy for a limiter tile from the Joint European Torus (JET) tokamak.

  20. Cathodoluminescence Depth Profiling of Zircons

    NASA Astrophysics Data System (ADS)

    Chen, E.; Wooden, J. L.; Vazquez, J. A.; Jones, R. E.; Grove, M.

    2010-12-01

    Cathodoluminescence (CL) images are routinely used as a guide to locate analysis points in ion probe or laser ablation ICP-MS U-Pb age and trace element analysis of zircon. However, because CL imaging’s clear signals are micron-scale, it cannot reveal depth dependent variation. This is important because typical ion microprobe and laser ablation analysis pits are 1-2 µm and 10-20µm respectively. Thus, while the structure detailed by the CL image may be accurate for ion probe analysis, it may no longer be accurate to guide laser ablation analysis based upon excavation of deep pits that are formed to obtain sufficient atoms for precise analysis. Coarse (200-250 µm diameter) standard zircon (R33 and VP-10) were hand-selected, potted in epoxy, and progressively sectioned and polished using conventional methods. CL images were acquired from successive serial sections through the zircons using the CL detector of a JEOL 5600 LV SEM. A digital micrometer was used to determine polishing depth. The average increment of zircon removed during each iteration was 7µm, and a total of 130 µm was removed. This corresponded to ca. 50% removal of most zircons. The images were compiled using ImageJ software, and serial imaging revealed that important features such as mineral and melt inclusions are not orthogonal to the crystal growth planes. Some of the depth dependent variation would not be obvious using a single CL image. This could affect the results of analyses of zircons due to the hidden mineral and melt inclusions. In addition, boundaries between different phases of zircon growth can be poorly defined and affect the results of ion probe and laser ablation analyses. This study could be improved with compositional analyses of the zircon grains to determine the make-up of the mineral and melt inclusions and better determine the changes in the chemical composition of the zircon and its different growth phases .

  1. Depth profiling of deuterium in a beryllium/carbon layer

    NASA Astrophysics Data System (ADS)

    Hughes, I. G.; Behrisch, R.; Martinelli, A. P.

    1992-02-01

    Depth distributions for deuterium trapped within the Be/C layer on a JET limiter after long-term operation have been measured up to a depth of 7 μm using the D( 3He, p) 4He reaction in a resonance-like technique. For several points along a JET limiter tile, depth profiles and the total amount of trapped deuterium have been determined.

  2. Potentials and pitfalls of depth profile (10Be), burial isochron (26Al/10Be) and palaeomagnetic techniques for dating Early Pleistocene terrace deposits of the Moselle valley (Germany)

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; Cordier, Stéphane; May, Simon Matthias; Kelterbaum, Daniel; Szemkus, Nina; Keulertz, Rebecca; Dunai, Tibor; Binnie, Steven; Hambach, Ulrich; Scheidt, Stephanie; Brueckner, Helmut

    2016-04-01

    Throughout the river network of the Rhenish Massif the so-called main terraces complex (MTC) forms the morphological transition between a wide upper palaeovalley and a deeply incised lower valley. The youngest level of this complex (YMT), directly located at the edge of the incised valley, represents a dominant geomorphic feature; it is often used as a reference level to identify the beginning of the main middle Pleistocene incision episode (Demoulin & Hallot, 2009). Although the main terraces are particularly well preserved in the lower Moselle valley, a questionable age of ca. 800 ka is assumed for the YMT, mainly based on the uncertain extrapolation of controversially interpreted palaeomagnetic data obtained in the Rhine valley. In this study, we applied terrestrial cosmogenic nuclide (TCN) dating (10Be/26Al) and palaeomagnetic dating to Moselle fluvial sediments of the MTC. To unravel the spatio-temporal characteristics of the Pleistocene evolution of the valley, several sites along the lower Moselle were sampled following two distinct TCN dating strategies: depth profiles where the original terrace (palaeo-) surface is well preserved and did not experience a major post-depositional burial (e.g., loess cover); and the isochron technique, where the sediment thickness exceeds 4.5-5 m. One terrace deposit was sampled for both approaches (reference site). In addition, palaeomagnetic sampling was systematically performed in each terrace sampled for TCN measurements. The TCN dating techniques show contrasting results for our reference site. Three main issues are observed for the depth profile method: (i) an inability of the modeled profile to constrain the 10Be concentration of the uppermost sample; (ii) an overestimated density value as model output; and (iii) a probable concentration steady state of the terrace deposits. By contrast, the isochron method yields a burial age estimate of 1.26 +0.29/-0.25 Ma, although one sample showed a depleted 26Al/10Be ratio

  3. Development and Applications of Time of Flight Neutron Depth Profiling

    SciTech Connect

    Bingham Cady; Kenan Unlu

    2005-03-17

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. For example, the subtle differences in spatial distribution and composition of many chemical species in the near surface region and across interfacial boundaries can significantly alter the electronic and optical properties of materials. A number of analytical techniques for depth profiling have been developed during the last two decades. neutron Depth Profiling (NDP) is one of the leading analytical techniques. The NDP is a nondestructive near surface technique that utilizes thermal/cold neutron beam to measure the concentration of specific light elements versus their depth in materials. The depth is obtained from the energy loss of protons, alphas or recoil atoms in substrate materials. Since the charged particle energy determination using surface barrier detector is used for NDP, the depth resolution is highly dependent on the detectors an d detection instruments. The depth resolutions of a few tens of nm are achieved with available NDP facilities in the world. However, the performance of NDP needs to be improved in order to obtain a few A depth resolutions.

  4. Influence of non-Gaussian roughness on sputter depth profiles

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jian, W.; Wang, J. Y.; Hofmann, S.; Kovac, J.

    2013-07-01

    Surface/interface roughness has a significant influence on the shape of the depth profile measured by any depth profiling technique. Such an influence is particularly significant for thin delta layers and at sharp interfaces of single- and multilayers. In the mixing-roughness-information (MRI) model for quantification of measured depth profiles, the influence of roughness is usually taken into account by a Gaussian height distribution function (HDF). If the roughness cannot be represented by a Gaussian HDF, a non-Gaussian HDF has to be implemented into the MRI model. Deviations of simulated depth profiles using the MRI model with Gaussian and with several well-defined non-Gaussian HDFs are evaluated quantitatively. The results indicate that a realistic non-Gaussian HDF has to be taken into account if high accuracy in quantification of sputter depth profiles is required. Of particular importance is the case of a roughness given by an asymmetrical HDF. Application of an asymmetrical triangle height distribution function in the MRI model yields an excellent fit for the measured AES depth profiling data of a polycrystalline Al film.

  5. Modeling detector response for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Downing, R. G.; Lamaze, G. P.; Hofsäss, H. C.; Biegel, J.; Ronning, C.

    1995-02-01

    In Neutron Depth Profiling (NDP), inferences about the concentration profile of an element in a material are based on the energy spectrum of charged particles emitted due to specific nuclear reactions. The detector response function relates the depth of emission to the expected energy spectrum of the emitted particles. Here, the detector response function is modeled for arbitrary source and detector geometries based on a model for the stopping power of the material, energy straggling, multiple scattering and random detector measurement error. At the NIST Cold Neutron Research Facility, a NDP spectrum was collected for a diamond-like carbon (DLC) sample doped with boron. A vertical slit was placed in front of the detector for collimation. Based on the computed detector response function, a model for the depth profile of boron is fit to the observed NDP spectrum. The contribution of straggling to overall variability was increased by multiplying the Bohr Model prediction by a ramp factor. The adjustable parameter in the ramp was selected to give the best agreement between the fitted profile and the expected shape of the profile. The expected shape is determined from experimental process control measurements.

  6. Optimization of the depth resolution for deuterium depth profiling up to large depths

    NASA Astrophysics Data System (ADS)

    Wielunska, B.; Mayer, M.; Schwarz-Selinger, T.

    2016-11-01

    The depth resolution of deuterium depth profiling by the nuclear reaction D(3He,p)α is studied theoretically and experimentally. General kinematic considerations are presented which show that the depth resolution for deuterium depth profiling using the nuclear reaction D(3He,p)α is best at reaction angles of 0° and 180° at all incident energies below 9 MeV and for all depths and materials. In order to confirm this theoretical prediction the depth resolution was determined experimentally with a conventional detector at 135° and an annular detector at 175.9°. Deuterium containing thin films buried under different metal cover layers of aluminum, molybdenum and tungsten with thicknesses in the range of 0.5-11 μm served as samples. For all materials and depths an improvement of the depth resolution with the detector at 175.9° is achieved. For tungsten as cover layer a better depth resolution up to a factor of 18 was determined. Good agreement between the experimental results and the simulations for the depth resolution is demonstrated.

  7. Neutron depth profiling: Overview and description of NIST facilities

    SciTech Connect

    Downing, R.G.; Lamaze, G.P.; Langland, J.K.; Hwang, S.T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 x 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of (17)O profiles. The paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications.

  8. Neutron Depth Profiling: Overview and Description of NIST Facilities.

    PubMed

    Downing, R G; Lamaze, G P; Langland, J K; Hwang, S T

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 × 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of (17)O profiles. This paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications.

  9. Neutron Depth Profiling: Overview and Description of NIST Facilities

    PubMed Central

    Downing, R. G.; Lamaze, G. P.; Langland, J. K.; Hwang, S. T.

    1993-01-01

    The Cold Neutron Depth Profiling (CNDP) instrument at the NIST Cold Neutron Research Facility (CNRF) is now operational. The neutron beam originates from a 16 L D2O ice cold source and passes through a filter of 135 mm of single crystal sapphire. The neutron energy spectrum may be described by a 65 K Maxwellian distribution. The sample chamber configuration allows for remote controlled scanning of 150 × 150 mm sample areas including the varying of both sample and detector angle. The improved sensitivity over the current thermal depth profiling instrument has permitted the first nondestructive measurements of 17O profiles. This paper describes the CNDP instrument, illustrates the neutron depth profiling (NDP) technique with examples, and gives a separate bibliography of NDP publications. PMID:28053461

  10. Molecular Depth Profiling by Wedged Crater Beveling

    PubMed Central

    Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas

    2011-01-01

    Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40keV C60+ cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ~1/3 during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm ~4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments. PMID:21744861

  11. Depth profiles of fullerene in ion irradiated polyimide

    NASA Astrophysics Data System (ADS)

    Fink, D.; Klett, R.; Mathis, C.; Vacik, J.; Hnatowicz, V.; Chadderton, L. T.

    1995-05-01

    An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C 60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with "neutron depth profiling" — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C 60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 10 4 to 10 7 C 60 molecules can be identified as being present in a single track. The diffusion coefficient for C 60 is estimated to be at least 2 × 10 -12 to 2 × 10 -13 cm 2s -1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.

  12. Molecular sputter depth profiling using carbon cluster beams.

    PubMed

    Wucher, Andreas; Winograd, Nicholas

    2010-01-01

    Sputter depth profiling of organic films while maintaining the molecular integrity of the sample has long been deemed impossible because of the accumulation of ion bombardment-induced chemical damage. Only recently, it was found that this problem can be greatly reduced if cluster ion beams are used for sputter erosion. For organic samples, carbon cluster ions appear to be particularly well suited for such a task. Analysis of available data reveals that a projectile appears to be more effective as the number of carbon atoms in the cluster is increased, leaving fullerene ions as the most promising candidates to date. Using a commercially available, highly focused C (60) (q+) cluster ion beam, we demonstrate the versatility of the technique for depth profiling various organic films deposited on a silicon substrate and elucidate the dependence of the results on properties such as projectile ion impact energy and angle, and sample temperature. Moreover, examples are shown where the technique is applied to organic multilayer structures in order to investigate the depth resolution across film-film interfaces. These model experiments allow collection of valuable information on how cluster impact molecular depth profiling works and how to understand and optimize the depth resolution achieved using this technique.

  13. Crack depth profiling using guided wave angle dependent reflectivity

    SciTech Connect

    Volker, Arno Pahlavan, Lotfollah Blacquiere, Gerrit

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of an inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.

  14. Nitrogen depth profiles in plasma implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Tian, Xiubo; Kwok, Dixon T. K.; Chu, Paul K.; Chan, Chung

    2002-07-01

    Nitrogen plasma immersion ion implantation (PIII) is a useful technique to enhance the surface properties of stainless steels and the in-depth distribution of the implanted nitrogen is a crucial parameter. A comparison of the nitrogen depth profiles in AISI 304 stainless steel reported in the literature and observed in our laboratory with the one simulated using a plasma sheath model and TRIM shows a discrepancy. The simulated profile is non-Gaussian and shallower due to the non-perfect high voltage pulses whereas the experimental profile is a better fit to a Gaussian distribution. Since most PIII equipment is not designed for ultra-high vacuum (UHV) operation and the plasma is highly reactive in this environment, the surface of the implanted samples is easily contaminated by a large amount of atmospheric species such as oxygen and carbon from the residual vacuum in the processing chamber, thereby converting the materials surface into an oxidized and carburized form. The change in the matrix composition in the near surface skews and translates the nitrogen depth profile obtained by Auger electron spectroscopy. By normalizing the nitrogen signal point-by-point with the combined (Fe+Cr+Ni) signal, a more accurate depth profile can be obtained. This type of normalization, albeit common in secondary ion mass spectrometry (SIMS) data quantification, is seldom implemented in the plasma community when dealing with nitrogen depth profiles acquired by Auger electron spectroscopy. Our results indicate that the excessively high surface contamination renders the raw nitrogen depth profile inaccurate and a proper normalization measure must be adopted.

  15. Oxygen depth profiling by nuclear resonant scattering

    SciTech Connect

    Gibson, G. T.; Sheu, W. J.; Glass, G. A.; Wang, Y. Q.

    1999-06-10

    Nuclear resonance scattering (NRS) {sup 16}O({alpha},{alpha}){sup 16}O at 3.045 MeV ({gamma}=10 keV) has been used for oxygen depth profiling in various thin oxide films. There are two ways by which the oxygen concentration versus depth profile can be obtained from the experimental data: energy spectrum simulation or yield distribution analysis. Energy spectrum simulation is done using the standard RBS software/Rutherford Universal Manipulation Program (RUMP) where only one spectrum is usually needed from the measurement. Yield distribution analysis is accomplished by using a custom developed software/Resonance Analysis Program (RAP) and involves a series of spectra obtained by stepping up the beam energy above the resonance energy. This article aims at comparing the fundamentals of both methods and also discussing their advantages and disadvantages in terms of the data acquisition and the post data analysis. A thermally grown thick SiO{sub 2} film and a thin titanium oxide film grown by corona point discharge were examined.

  16. Oxygen depth profiling by nuclear resonant scattering

    SciTech Connect

    Gibson, G.T.; Sheu, W.J.; Glass, G.A. Wang, Y.Q.

    1999-06-01

    Nuclear resonance scattering (NRS) {sup 16}O({alpha},{alpha}){sup 16}O at 3.045 MeV ({Gamma}=10&hthinsp;keV) has been used for oxygen depth profiling in various thin oxide films. There are two ways by which the oxygen concentration versus depth profile can be obtained from the experimental data: energy spectrum simulation or yield distribution analysis. Energy spectrum simulation is done using the standard RBS software/Rutherford Universal Manipulation Program (RUMP) where only one spectrum is usually needed from the measurement. Yield distribution analysis is accomplished by using a custom developed software/Resonance Analysis Program (RAP) and involves a series of spectra obtained by stepping up the beam energy above the resonance energy. This article aims at comparing the fundamentals of both methods and also discussing their advantages and disadvantages in terms of the data acquisition and the post data analysis. A thermally grown thick SiO{sub 2} film and a thin titanium oxide film grown by corona point discharge were examined. {copyright} {ital 1999 American Institute of Physics.}

  17. Monazite Th-Pb age depth profiling

    SciTech Connect

    Grove, M.; Harrison, T.M.

    1999-06-01

    The significant capabilities of the ion microprobe for thermochronometric investigations of geologic materials remain largely unexploited. Whereas {sup 208}Pb/{sup 232}Th spot analysis allows {approximately} 10-mm-scale imaging of Pb loss profiles or overgrowths in sectioned monazite grains, the spatial resolution offered by depth profiling into the surface region of natural crystals is more than two orders of magnitude higher. The authors document here the ability of the high-resolution ion microprobe to detect {sup 208}Pb/{sup 232}Th age differences of < 1 m.y. with better than 0.05 {micro}m depth resolution in the outer micron of Tertiary monazites from the hanging wall of the Himalayan Main Central thrust. Age gradients on this scale are inaccessible to ion microprobe spot analysis or conventional thermal ionization mass spectrometry. Interpretation of the near-surface {sup 208}Pb distributions with available monazite Pb diffusion data illustrates the potential of the approach for recovering continuous, high-temperature thermal history information not previously available.

  18. Depth Profile Determination of Stratified Layers Using Internal Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shick, Robert Adam

    It is the purpose of this project to develop a method to quantitatively determine depth profile information using internal reflection spectroscopy. The theory allowing depth profile information to be recovered from variable angle attenuated total reflection (VA-ATR) spectroscopy is shown for both perpendicular and parallel polarization. The major approximation is that the extinction coefficient must be small, so that the field decay due to distance and absorption are comparable. The errors invoked by these approximations are evaluated by comparison with exact optical simulations using dispersion theory. Having shown that the newly developed method is theoretically feasible, it is important to show that it is a viable technique with current instrumentation. It is shown that VA-ATR Fourier transform infrared spectroscopy is a valuable technique to recover depth profile information on the molecular level. A number of known step profiles are measured to determine the limits of applicability for this method. Thickness results obtained using the internal reflection technique are compared with thickness determination using a stylus profilometer. It is shown that the results using p-polarization are somewhat more realistic than s -polarization. The VA-ATR infrared technique was used to investigate the interaction and diffusion of poly(2,6-dimethyl-1,4 -phenylene oxide), PPO, and polystyrene, PS. Optical theory was employed to clarify the effect of the local interactions on the infrared spectra. Optical theory was also used to determine composition profiles at various times of inter -diffusion. It was observed that migration occurred between the PPO and the PS layer, even below the glass transition of the PPO. This migration proceeded linearly with time ^{1/2} which is an indication of Fickian diffusion, although the profiles had some additional non-Fickian characteristics.

  19. Depth Profile Analysis of New Materials in Hollow Cathode Discharge

    SciTech Connect

    Djulgerova, R.; Mihailov, V.; Gencheva, V.; Popova, L.; Panchev, B.; Michaylova, V.; Szytula, A.; Gondek, L.; Dohnalik, T.M.; Petrovic, Z.Lj.

    2004-12-01

    In this review the possibility of hollow cathode discharge for depth profile analysis is demonstrated for several new materials: planar optical waveguides fabricated by Ag+-Na+ ion exchange process in glasses, SnO2 thin films for gas sensors modified by hexamethildisilazane after rapid thermal annealing, W- and WC- CVD layers deposited on Co-metalloceramics and WO3- CVD thin films deposited on glass. The results are compared with different standard techniques.

  20. Development of neutron depth profiling at CMRR

    NASA Astrophysics Data System (ADS)

    Li, Run-dong; Yang, Xin; Wang, Guan-bo; Dou, Hai-feng; Qian, Da-zhi; Wang, Shu-yu

    2015-07-01

    A neutron depth profiling (NDP) system has been developed at China Mianyang Research Reactor (CMRR) at Institute of Nuclear Physics and Chemistry (INPC), CAEP. The INPC-NDP system utilizes cold neutrons which are transported along the C1 neutron guide from the cold neutron source. It consists of a beam entrance, a target chamber, a beam stopper, and data acquisition electronics for charged particle pulse-height analysis. A 90 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The neutron beam intensity of 2.1×108 n cm-2 s-1 was calibrated by the Au foil activation method at the sample position. The INPC-NDP system was tested by using a Standard Reference Materials SRM-2137. The measured results agreed well with the reference values.

  1. Chemical state depth profiling by Auger signal decomposition: Silicon oxynitride

    SciTech Connect

    Nelson, G.C.

    1989-01-01

    Thin silicon nitride (Si/sub 3/N/sub 4/) films are widely used as a dielectric in metal-nitride-oxide-silicon (MNOS) structures for radiation hard non-volatile memories. The retention of charge in these devices depends, among other things, on the chemistry of the films. It has been reported that charge transport in MNOS structures can be reduced by replacing the Si/sub 3/N/sub 4/ film by a silicon oxynitride (SiO/sub x/N/sub y/) film. In order to understand the relationship between chemistry and retention of charge, it is necessary to have a technique that can determine the chemistry of the films as a function of depth. This can be accomplished with Auger electron spectroscopy by using fingerprint spectra for each of the elements and compounds present in the sample. By using classical least-squares techniques, a unique combination of the standard spectra can be found that best fits the unknown spectrum. When this method is repeated for each spectrum in a depth profile, a chemical state depth profile is obtained. The use of this technique to profile oxynitride films where the SiO/sub 2/ content varies between 0 and 12 atomic percent is presented. 6 refs., 7 figs.

  2. Depth profiles and free volume in aircraft primer films

    NASA Astrophysics Data System (ADS)

    Van Horn, J. D.; Chen, H.; Jean, Y. C.; Zhang, W.; Jaworowski, M. R.

    2015-06-01

    Positron annihilation lifetime spectroscopy (PALS) and associated techniques provide non-destructive methods to study the free volume inside polymeric materials, and to study material characteristics over a depth profile. Cast free films of organic- or aqueous-based, non-chromated aerospace primers, when cured for about one week, had very different water vapour transport (through-plane) behaviour. In addition, both types of primer films showed strong anisotropic behaviour in in-plane versus through-plane water vapour transport rates. We report the differences between the organic- and aqueous-based aircraft primer films samples and their surface depth profiles. In bulk PALS measurements, an aged, organic-based film exhibited typical lifetimes and intensities for a particulate-containing polymer film on both faces. In contrast, aqueous-based films exhibited face oriented-dependent differences. In all aqueous- based samples, the I3 value of the back of the sample was smaller. The primer film samples were also evaluated with mono-energetic positron beam techniques to generate depth profile information. The heterogeneity in the samples was verified by Doppler broadening of energy spectroscopy (DBES). A model for the differences in the faces of the films, and their layered structure is discussed.

  3. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    PubMed

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis.

  4. Adsorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  5. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  6. Interpretation of sputter depth profiles by mixing simulations.

    PubMed

    Kupris, G; Rössler, H; Ecke, G; Hofmann, S

    1995-10-01

    The interpretation of sputter depth profiles can be simplified by use of computer simulations. Distortions caused by mixing effects and distortions caused by the information depth of the analytical method have to be distinguished. Atomic mixing and the information depth distort the depth profile simultaneously. Therefore, it is necessary to take into consideration a superposition of both distortion effects. The sputtering of a GaAs/A1As multilayer has been calculated on a personal computer with the binary collision approximation code T-DYN by Biersack and with an own layer model. A new computer code LAMBDA has been used for the investigation of the influence of the AES information depth in addition to atomic mixing and preferential sputtering. A comparison of the calculated and the measured depth profile explains the observed effects. Therefore conclusions can be drawn about the original elemental distribution in the sample from the measured depth profile.

  7. Thin film depth profiling by ion beam analysis.

    PubMed

    Jeynes, Chris; Colaux, Julien L

    2016-10-17

    The analysis of thin films is of central importance for functional materials, including the very large and active field of nanomaterials. Quantitative elemental depth profiling is basic to analysis, and many techniques exist, but all have limitations and quantitation is always an issue. We here review recent significant advances in ion beam analysis (IBA) which now merit it a standard place in the analyst's toolbox. Rutherford backscattering spectrometry (RBS) has been in use for half a century to obtain elemental depth profiles non-destructively from the first fraction of a micron from the surface of materials: more generally, "IBA" refers to the cluster of methods including elastic scattering (RBS; elastic recoil detection, ERD; and non-Rutherford elastic backscattering, EBS), nuclear reaction analysis (NRA: including particle-induced gamma-ray emission, PIGE), and also particle-induced X-ray emission (PIXE). We have at last demonstrated what was long promised, that RBS can be used as a primary reference technique for the best traceable accuracy available for non-destructive model-free methods in thin films. Also, it has become clear over the last decade that we can effectively combine synergistically the quite different information available from the atomic (PIXE) and nuclear (RBS, EBS, ERD, NRA) methods. Although it is well known that RBS has severe limitations that curtail its usefulness for elemental depth profiling, these limitations are largely overcome when we make proper synergistic use of IBA methods. In this Tutorial Review we aim to briefly explain to analysts what IBA is and why it is now a general quantitative method of great power. Analysts have got used to the availability of the large synchrotron facilities for certain sorts of difficult problems, but there are many much more easily accessible mid-range IBA facilities also able to address (and often more quantitatively) a wide range of otherwise almost intractable thin film questions.

  8. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  9. Neutron depth profiling of elemental concentration using a focused beam

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, Huaiyu H.; Lamaze, G. P.; Mildner, David F. R.; Downing, Robert G.

    1997-02-01

    Neutron Depth Profiling (NDP) is a nondestructive analytical technique for measuring the concentration of certain light elements as a function of depth near the surface of a solid matrix. The concentration profile is determined by analyzing the energy spectrum of the charged particles emitted as a result of neutron capture by the elements. The measurement sensitivity is directly proportional to the neutron beam current density. A more intense neutron beam achieved by focusing improves sensitivity for specimens of small area. In addition, a narrowly focused beam adds lateral spatial resolution to the technique, which is advantageous compared with that obtained by collimating the beam size using apertures. Capillary neutron lenses have been shown to focus a neutron beam to sub-millimeter spot size. Preliminary tests have been performed in the NDP geometry using such a focusing device. A lateral resolution in the sub-millimeter range is demonstrated by a specimen of non-uniform lateral distribution composed of a row of borosilicate glass fibers.

  10. Wind profiler mixing depth and entrainment measurements with chemical applications

    SciTech Connect

    Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C.; Kok, G.L.

    1994-12-31

    Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.

  11. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  12. Recent developments in neutron depth profiling at NIST

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Langland, J. K.

    1998-11-01

    Neutron Depth Profiling [NDP] is a method of determining the concentration and location of certain isotopes in the near surface region of solids. While only a few isotopes are measurable by this technique, they happen to be isotopes of elements that are currently important to the semiconductor industry, namely boron, nitrogen, and lithium. NDP analysis is both quantitative and non-destructive; this makes it the reference method of choice for these elements. This paper discusses recent measurements at the National Institute of Standards and Technology (NIST) for each of these elements as well as recent improvements in the NDP facility. A brief explanation of the technique, including its advantages and limitations, is presented.

  13. Neutron-induced reactions and secondary-ion mass spectrometry: complementary tools for depth profiling. Final report

    SciTech Connect

    Downing, G.; Fleming, R.; Simons, D.; Newbury, D.

    1982-01-01

    The technique of neutron depth profiling is based upon inducing nuclear reactions by bombardment with low-energy neutrons. The nuclear reactions result in the emission of high-energy alpha particles or protons. The energy spectrum of the emitted particles is used to derive a depth distribution by transforming the energy loss into an equivalent depth by stopping-power calculations. Depth profiles of bismuth distributions in silicon and tin have been measured by both neutron depth profiling and secondary ion mass spectrometry. Information from both techniques can be used synergistically to aid in a full characterization of the depth distribution.

  14. Retrospective sputter depth profiling using 3D mass spectral imaging.

    PubMed

    Zheng, Leiliang; Wucher, Andreas; Winograd, Nicholas

    2011-02-01

    A molecular multilayer stack composed of alternating Langmuir-Blodgett films was analyzed by ToF-SIMS imaging in combination with intermediate sputter erosion using a focused C60(+) cluster ion beam. From the resulting dataset, depth profiles of any desired lateral portion of the analyzed field-of-view can be extracted in retrospect, allowing the influence of the gating area on the apparent depth resolution to be assessed. In a similar way, the observed degradation of depth resolution with increasing depth of the analyzed interface can be analyzed in order to determine the 'intrinsic' depth resolution of the method.

  15. Computing Composition/Depth Profiles From X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1986-01-01

    Diffraction-intensity bands deconvolved relatively quickly. TIBAC constructs composition/depth profiles from X-ray diffraction-intensity bands. Intensity band extremely sensitive to shape of composition/depth profile. TIBAC incorporates straightforward transformation of intensity band that retains accuracy of earlier simulation models, but is several orders of magnitude faster in total computational time. TIBAC written in FORTRAN 77 for batch execution.

  16. Depth profiling of light elements using a nuclear microprobe

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Bodart, F.; Demortier, G.

    1999-10-01

    In this paper, we present some examples of depth profiling of light elements with a nuclear microprobe performed at LARN during the last decade. Some new possibilities of ion beam microanalysis of light elements with our 2 MV Tandetron accelerator are also discussed. The first example of application consists of depth profiling of nitrogen and aluminium on a SiAl alloy implanted with nitrogen. The nuclear microprobe was used to determine three-dimensional distribution of aluminium, silicon and nitrogen in a specific grain of the implanted alloy. The nitrogen depth profile was measured using the well known 15N(p,αγ) 12C nuclear resonant reaction at 429 keV. The aluminium depth profile was measured with the resonant nuclear reaction 27Al(p,γ) 28Si at 991.8 keV. Depth profiling of carbon and oxygen is also possible using nuclear reactions induced by 3He particles. Nuclear reactions like 12C( 3He,p i) 14N ( i=0,1,2) or 16O( 3He,α 0) 15O were used to measure local wear tracks on a diamond coating after a fretting test against a Cr steel ball. PIXE microprobe and nuclear reactions induced by deuterons were also used to characterise the gold-silicon alloy formed by the diffusion of silicon into gold foils. The nuclear reaction 28Si(d,p) 29Si in a transmission geometry was used in order to depth profile silicon especially in the grain boundaries of the gold-silicon alloy. Some new perspectives of depth profiling light elements are also presented using our new 2 MV Tandetron accelerator, such as high energy 4He microbeams for depth profiling of carbon or nitrogen.

  17. SIMS depth profiling of working environment nanoparticles

    NASA Astrophysics Data System (ADS)

    Konarski, P.; Iwanejko, I.; Mierzejewska, A.

    2003-01-01

    Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.

  18. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  19. Confocal volume in laser Raman microscopy depth profiling

    SciTech Connect

    Maruyama, Yutaka; Kanematsu, Wataru

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  20. Deconvolution of charged particle spectra from neutron depth profiling using Simplex method

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacík, J.; Fink, D.

    2010-07-01

    Neutron depth profiling (NDP), based on neutron induced nuclear reactions, is a well known, nondestructive technique for the determination of the concentration depth profiles of some isotopes in the surface layers of solids. The profile determination consists of deconvolution of a relevant part of the energy spectra of the charged reaction products. Several solutions have been suggested for this problem. In this work, an alternative computer code (LIBOR), which makes use of the Simplex minimization technique for the deconvolution of the NDP spectra, is described and its performance is documented on several examples.

  1. Deconvolution of charged particle spectra from neutron depth profiling using Simplex method.

    PubMed

    Hnatowicz, V; Vacík, J; Fink, D

    2010-07-01

    Neutron depth profiling (NDP), based on neutron induced nuclear reactions, is a well known, nondestructive technique for the determination of the concentration depth profiles of some isotopes in the surface layers of solids. The profile determination consists of deconvolution of a relevant part of the energy spectra of the charged reaction products. Several solutions have been suggested for this problem. In this work, an alternative computer code (LIBOR), which makes use of the Simplex minimization technique for the deconvolution of the NDP spectra, is described and its performance is documented on several examples.

  2. Sputter-depth profiling for thin-film analysis.

    PubMed

    Hofmann, S

    2004-01-15

    Following a brief historical background, the concepts and the present state of sputter-depth profiling for thin-film analysis are outlined. There are two main branches: either the removed matter (as in mass- or optical-spectroscopy-based secondary-ion mass spectrometry or glow-discharge optical emission spectroscopy), or the remaining surface (as in Auger electron spectroscopy and X-ray photoelectron spectroscopy) is characterized. These complementary methods show the same result if there is no preferential sputtering of a component. The common root of both is the fundamental ion-solid interaction. Understanding of how the latter influences the depth resolution has led to important improvements in experimental profiling conditions such as sample rotation and the use of low-energy ions at glancing incidence. Modern surface-analysis instruments can provide high-resolution depth profiles on the nanometre scale. Mathematical models of different sophistication were developed to allow deconvolution of the measured profile or quantification by reconstruction of the in-depth distribution of composition. For the latter purpose, the usefulness of the so-called mixing-roughness-information (MRI) depth model is outlined on several thin-film structures (e.g. AlAs/GaAs and Si/Ge), including its extension to quantification of sputter-depth profiles in layer structures with preferential sputtering of one component (Ta/Si). Using the MRI model, diffusion coefficients at interfaces as low as 10(-22) m(2) s(-1) can be determined. Fundamental limitations of sputter-depth profiling are mainly traced back to the stochastic nature of primary-particle energy transfer to the sputtered particle, promoting atomic mixing and the development of surface roughness. Owing to more sophisticated experimental methods, such as low-energy cluster ion bombardment, glancing ion incidence or 'backside' sputtering, these ultimate limitations can be reduced to the atomic monolayer scale.

  3. Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles

    NASA Astrophysics Data System (ADS)

    Kang, H. L.; Lao, J. B.; Li, Z. P.; Yao, W. Q.; Liu, C.; Wang, J. Y.

    2016-12-01

    The GaAs/AlAs superlattice multilayer structures were deposited on GaAs (1 0 0) substrates by molecular beam epitaxial (MBE) technique. The as-prepared samples were characterized respectively by Auger Electron Spectroscopy (AES) and Secondary Ion Mass Spectroscopy (SIMS) depth profiling techniques. The measured depth profiles were then fitted by the Mixing-Roughness-Information (MRI) model. The depth resolution values for both depth profiling techniques were evaluated quantitatively from the fitted MRI parameters and the as-prepared GaAs/AlAs multilayer structure was determined accordingly.

  4. High-resolution SIMS depth profiling of nanolayers.

    SciTech Connect

    Baryshev, S. V.; Zinovev, A. V.; Tripa, C. E.; Pellin, M. J.; Peng, Q.; Elam, J. W.; Veryovkin, I. V.

    2012-10-15

    Although the fundamental physical limits for depth resolution of secondary ion mass spectrometry are well understood in theory, the experimental work to achieve and demonstrate them is still ongoing. We report results of high-resolution TOF SIMS (time-of-flight secondary ion mass spectrometry) depth profiling experiments on a nanolayered structure, a stack of 16 alternating MgO and ZnO {approx}5.5 nm layers grown on a Si substrate by atomic layer deposition. The measurements were performed using a newly developed approach implementing a low-energy direct current normally incident Ar{sup +} ion beam for ion milling (250 eV and 500 eV energy), in combination with a pulsed 5 keV Ar{sup +} ion beam at 60{sup o} incidence for TOF SIMS analysis. By this optimized arrangement, a noticeably improved version of the dual-beam (DB) approach to TOF SIMS depth profiling is introduced, which can be dubbed gentleDB. The mixing-roughness-information model was applied to detailed analysis of experimental results. It revealed that the gentleDB approach allows ultimate depth resolution by confining the ion beam mixing length to about two monolayers. This corresponds to the escape depth of secondary ions, the fundamental depth resolution limitation in SIMS. Other parameters deduced from the measured depth profiles indicated that a single layer thickness is equal to 6 nm so that the 'flat' layer thickness d is 3 nm and the interfacial roughness {sigma} is 1.5 nm, thus yielding d + 2{sigma} = 6 nm. We have demonstrated that gentleDB TOF SIMS depth profiling with noble gas ion beams is capable of revealing the structural features of a stack of nanolayers, resolving its original surface and estimating the roughness of interlayer interfaces, information which is difficult to obtain by traditional approaches.

  5. Neutron depth profiling study of lithium niobate optical waveguides

    NASA Astrophysics Data System (ADS)

    Kolářova, P.; Vacík, J.; Špirková-Hradilová, J.; Červená, J.

    1998-05-01

    The relation between optical properties and the structure of proton exchanged and annealed proton exchanged optical waveguides in lithium niobate was studied using the mode spectroscopy and neutron depth profiling methods. We have found a close correlation between the lithium depletion and the depth profile of the extraordinary refractive index. The form of the observed dependence between Li depletion and refractive index depends on the fabrication procedure by which the waveguide was prepared but it is highly reproducible for specimens prepared by the same procedure.

  6. Three-dimensional depth profiling of molecular structures.

    PubMed

    Wucher, A; Cheng, J; Zheng, L; Winograd, N

    2009-04-01

    Molecular time of flight secondary ion mass spectrometry (ToF-SIMS) imaging and cluster ion beam erosion are combined to perform a three-dimensional chemical analysis of molecular films. The resulting dataset allows a number of artifacts inherent in sputter depth profiling to be assessed. These artifacts arise from lateral inhomogeneities of either the erosion rate or the sample itself. Using a test structure based on a trehalose film deposited on Si, we demonstrate that the "local" depth resolution may approach values which are close to the physical limit introduced by the information depth of the (static) ToF-SIMS method itself.

  7. Nondestructive determination of boron doses in semiconductor materials using neutron depth profiling

    SciTech Connect

    Uenlue, K.; Saglam, M.; Wehring, B.W.

    1996-12-31

    The physical and electrical properties of semiconductor materials are greatly effected by implantation of boron and other elements. The dose and depth distribution of boron in the near surface region and across interfacial boundaries determine the quality of semiconductor devices. Therefore, a number of analytical techniques has been developed in the last two decades to measure boron doses and depth profiles in semiconductor materials. Neutron Depth Profiling (NDP) is one of the techniques which is capable of determining the boron dose as well as the concentration distribution in the near surface region of semiconductor materials. NDP is a nuclear technique which is based on the absorption reaction of thermal/cold neutrons by certain isotopes of low mass elements e.g., boron-10. In this study, boron doses in semiconductor materials were measured using NDP. The results will be used to complement the measurements done with other techniques and provide a basis for accurate dose calibration of commercial ion implant systems.

  8. Technique for estimating depth of 100-year floods in Tennessee

    USGS Publications Warehouse

    Gamble, Charles R.; Lewis, James G.

    1977-01-01

    Preface: A method is presented for estimating the depth of the loo-year flood in four hydrologic areas in Tennessee. Depths at 151 gaging stations on streams that were not significantly affected by man made changes were related to basin characteristics by multiple regression techniques. Equations derived from the analysis can be used to estimate the depth of the loo-year flood if the size of the drainage basin is known.

  9. Measurement of water depth by multispectral ratio techniques

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C.

    1970-01-01

    The technique for measuring the depth of water using a multispectral scanner is discussed. The procedure takes advantage of the absorption properties of different wavelengths of light. Making use of the property of the selected transmission of light at different wavelengths, an equation was developed relating the outputs of at least two channels of multispectral scanner to measure water depth.

  10. Optothermal skin pigment spectral depth profiling using an OPO laser

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Guo, Xinxin; Notingher, Ioan; Cowen, Anna J.; O'Driscoll, Don; Imhof, Robert E.

    1999-06-01

    This paper presents the results of a research program to quantify the factors that determine the visual appearance of human skin. We use in-vivo opto-thermal transient emission radiometry (OTTER) with a tunable OPO laser (400 - 590 nm) to measure spectrally resolved pigment depth profiles. Radiation in this wavelength range is only weakly absorbed by stratum corneum and epidermis, but strongly absorbed by sub-surface pigments, mainly melanin and haemoglobin. These produce characteristic delayed thermal wave (DTW) signals, detected using a high speed Mercury Cadmium Telluride detector sensitive in the wavelength range 6 - 13 microns. The measured intensity-time profiles yield the desired concentration depth profiles through either model-based non-linear least-squares analysis or model-independent inverse analysis. Results on melanin and haemoglobin distributions within normal, tape stripped and wash-damaged skin are presented.

  11. Assessment of hemoglobin dynamics in traumatic bruises using temperature depth profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2013-11-01

    Perceived color of traumatic bruise depends strongly on depth of the spilled blood, natural skin tone, ambient light conditions, etc., which prevents an accurate and reliable determination of the time of the injury. Pulsed photothermal radiometry (PPTR) allows noninvasive determination of the laser-induced temperature depth profile in human skin. We have applied this technique to characterize dynamics of extravasated hemoglobin in the bruise. Next, we use simple model of mass diffusion and biochemical transformation kinetics to simulate bruise dynamics. By applying Monte Carlo simulation of laser energy deposition, comparison with measured temperature profiles is possible. However, parameters of the model were previously not determined directly. Instead, biologically plausible values were assumed. We show how temperature depth profiling enables accurate monitoring of hemoglobin diffusion and degradation. Parameters of the model, hemoglobin mass diffusivity, hemoglobin degradation time, and skin geometry, can be estimated rather accurately. Derivation of bruise evolution parameters will be a valuable addition to existing bruise age determination techniques.

  12. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  13. Mars Sample Return: The Value of Depth Profiles

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.; hide

    2008-01-01

    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.

  14. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  15. Computation and inversion of ion spectra for neutron depth profiling of curved surfaces

    NASA Astrophysics Data System (ADS)

    Shultis, J. Kenneth

    2004-07-01

    Neutron depth profiling (NDP) is a nondestructive technique for determining the concentration of special isotopes within several microns of a sample's surface. Previous NDP analyses, however, have been restricted to samples with plane surfaces. Here samples with curved surfaces are considered. In particular, a method for estimating the energy spectrum of ions emitted from curved surfaces is presented. Also, a robust method for inverting the NDP ion energy spectra is presented that yields accurate concentration profiles for both under- and overdetermined NDP spectra.

  16. Applications for the University of Texas Neutron Depth Profiling Facility

    SciTech Connect

    Uenlue, K.; Wehring, B.W.

    1994-12-31

    A permanent neutron depth profiling (NDP) facility is operational at a tangential beam port of the 1-MW TRIGA Mark II research reactor at the University of Texas at Austin (UT). This facility was developed to perform materials research, specifically measurements of interest to the microelectronics industry. After brief descriptions of the UT-NDP facility and its operation, this paper discusses applications we are planning that are not related to microelectronics materials.

  17. Neutron depth profiling at the University of Texas research reactor

    SciTech Connect

    Unlu, K.; Wehring, B.W. )

    1993-01-01

    A neutron depth profiling (NDP) facility has been developed at the University of Texas at Austin (UT) Nuclear Engineering Teaching Laboratory. The UT-NDP utilizes thermal neutrons from a tangential beam port of the 1-MW TRIGA Mark II research reactor. Aspects of the designs of the thermal neutron beam and target chamber for the UT-NDP facility are given in this paper. Also, a brief description of NDP and possible applications are included.

  18. Depth Profiling Of Small Molecule Ingress Into Planar and Cylindrical Materials Using NRA and PIXE

    SciTech Connect

    Smith, Richard W.; Massingham, Gary; Clough, Anthony S.

    2003-08-26

    The use of a 3He ion micro-beam technique to study the ingress/diffusion of water into a planar fibre optic grade glass and a cylindrical drug-release polymer is described. One-dimensional concentration profiles showing the depth of water ingress were produced. The depth of penetration of water into the glass was measured by fitting a gaussian function to the concentration profile. The ingress of water into the drug-release polymer was found to be Fickian and a cylindrical diffusion model used to obtain a diffusion coefficient.

  19. Depth Profiling of Polymer Composites by Ultrafast Laser Ablation

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Clayton, Clive; Longtin, Jon

    2009-03-01

    Past work has shown femtosecond laser ablation to be an athermal process at low fluences in polymer systems. The ablation rate in this low fluence regime is very low, allowing for micro-scale removal of material. We have taken advantage of this fact to perform shallow depth profiling ablation on carbon fiber reinforced polymer (CFRP) composites. Neat composite and resin samples were studied to establish reference ablation profiles. These profiles and the effects of the heterogeneous distribution of carbon fibers were observed through confocal laser profilometry and optical and scanning electron microscopy. Weathered materials that have been subjected to accelerated tests in artificial sunlight or water conditions were ablated to determine the correlation between exposure and change in ablation characteristics. Preliminary Raman and micro-ATR analysis performed before and after ablation shows no chemical changes indicative of thermal effects. The low-volume-ablation property was utilized in an attempt to expose the sizing-matrix interphase for analysis.

  20. A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials

    SciTech Connect

    Mulligan, P. L.; Cao, L. R.; Turkoglu, D.

    2012-07-15

    Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

  1. A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials

    NASA Astrophysics Data System (ADS)

    Mulligan, P. L.; Cao, L. R.; Turkoglu, D.

    2012-07-01

    Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

  2. A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials.

    PubMed

    Mulligan, P L; Cao, L R; Turkoglu, D

    2012-07-01

    Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

  3. Nitrogen depth profiling using recoil-nucleus time-of-flight spectrometry

    SciTech Connect

    Welsh, J.F. Jr.; Schweikert, E.A.

    1994-12-31

    Neutron depth profiling (NDP) has been shown to be an effective research tool for the profiling of light elements. Significant increases in sensitivity like those realized at the cold neutron NDP facility at the National Institute of Standards and Technology (NIST) reactor continue to advance the technique. Previous work has also shown that the depth resolution of NDP could be improved by measuring (via time of flight) the kinetic energies of recoil nuclei emitted during (n,p) and (n, {alpha}) reactions. The purpose of this work was to extend the technique of recoil-nucleus time-of-flight (TOF) NDP (RN-TOF-NDP) to the profiling of nitrogen in silicon nitride using the {sup 14}N(n,p) {sup 14}C reaction.

  4. Depth profiles of D and T in Metal-hydride films up to large depth

    NASA Astrophysics Data System (ADS)

    Zhang, HongLiang; Ding, Wei; Su, Ranran; Zhang, Yang; Shi, Liqun

    2016-03-01

    In this paper, a method combining D(3He, p) 4He nuclear reaction and proton backscattering (PBS) was adopted to detect the depth profile of both D and T in TiDxTy/Mo film with thickness more than 5 μm. Different energies of 3He and proton beam, varied from 1.0 to 3.0 MeV and 1.5 to 3.8 MeV respectively, were used in order to achieve better depth resolution. With carefully varying incident energies, an optimum resolution of less than 0.5 μm for D and T distribution throughout the whole analyzed range could be achieved.

  5. Effects of Carbon Depth Profile on INS Measurement

    NASA Astrophysics Data System (ADS)

    Wielopolski, L.

    2007-12-01

    Inelastic Neutron Scattering (INS) is a new system for measuring carbon in soil in situ that is non-destructive. In addition the INS can be used in stationary or scanning modes of operation enabling type of measurements not possible till now. It is based on counting 4.44 MeV characteristic gamma rays emitted from carbon nuclei undergoing inelastic neutron scattering with fast, 14 MeV, neutrons. Because of the attenuation of the neutrons, on their way in, and of the gamma rays, on their way out, the large volume of about 0.3 m3 sampled by the INS system causes it to respond preferentially to carbon atoms located near the surface. Thus, the carbon signal depends on the variations in the carbon depth profile; however, this dependence is reduced by an averaging process resulting from the large footprint of about 1 m2 of the INS system. The encountered variability in the depth profiles on small 30 cm scale and on large field size scale is presented for various fields. We also show results of Monte Carlo simulations of the INS response to various carbon depth profiles. Experimentally we show that depending on the field conditions, i.e. profound variability in the carbon depth profile or extensive changes in the carbon distribution in the field, the scanning results with the INS system may differ from the mean value calculated from few INS discrete stationary measurements. Since the static measurements are analogous to conventional chemical analysis using soil cores, it raises the question which type of measurement is more representative of the field carbon content; the discrete chemical analysis using geostatistical considerations or continuous field scanning made possible with the INS system. Clearly the new INS methodology introduces novel capabilities for soil carbon analysis not possible with the conventional approach of dry combustion. The advantages and pitfalls of the INS system with the need to defining practical new calibration concepts for it are discussed in

  6. Depth Profiling Ambient Noise in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Barclay, David Readshaw

    Deep Sound is an un-tethered, free-falling acoustic platform designed to profile the ambient noise field in the ocean from the surface to a pre-programmed depth, at which point a ballast weight is dropped and the instrument returns to the surface under its own buoyancy. Three iterations of the instrument, Mk I, II and III, have been designed, built and tested, the first two rated to descend to 9 km and the third to a full ocean depth of 11 km. During a deployment of the instrument, vertically and horizontally spaced hydrophones continuously record the ambient noise pressure time series over a large bandwidth (5 Hz -- 40 kHz), returning the power spectral density, vertical and horizontal coherence as a function of depth. Deep Sound Mk I and Mk II have been deployed down to 9 km depth in the Mariana Trench and Mk I has descended three times to 5 km, 5.5 km and 6 km in the Philippine Sea. The data reported here examines the depth-dependence of the power spectrum, vertical coherence and directionality of rain and wind noise in the Philippine Sea. Acoustic estimates of rainfall rates and wind speeds are made from the surface to 5.5 km and 6 km respectively and compared to surface meteorological measurements. The depth-dependence of the accuracy of these estimates is relatively small and found to improve with depth. A coherence fitting procedure is employed to return ambient noise directionality and provide information on the spatial variability of an overhead rainstorm. With moderate 7-10 m/s winds, downward propagating noise from directly overhead dominates the noise field directionality from the surface to 6 km. Using the wind generated surface noise and the depth dependence of the spectral slope over the band 1 -- 10 kHz, the frequency dependence of the absorption due to sea water is estimated and used to infer a mean water column value of pH.

  7. Recovering depth from focus using iterative image estimation techniques

    SciTech Connect

    Vitria, J.; Llacer, J.

    1993-09-01

    In this report we examine the possibility of using linear and nonlinear image estimation techniques to build a depth map of a three dimensional scene from a sequence of partially focused images. In particular, the techniques proposed to solve the problem of construction of a depth map are: (1) linear methods based on regularization procedures and (2) nonlinear methods based on statistical modeling. In the first case, we have implemented a matrix-oriented method to recover the point spread function (PSF) of a sequence of partially defocused images. In the second case, the chosen method has been a procedure based on image estimation by means of the EM algorithm, a well known technique in image reconstruction in medical applications. This method has been generalized to deal with optically defocused image sequences.

  8. Neutron depth profiling at the University of Texas

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Wehring, Bernard W.

    1994-12-01

    A Neutron Depth Profiling (NDP) facility has been developed at The University of Texas at Austin (UT) Nuclear Engineering Teaching Laboratory. Thermal neutrons from the tangential beam port of the UT 1-MW TRIGA Mark II research reactor are utilized. The UT-NDP facility consists of a neutron beam collimator, target chamber, beam catcher, and necessary data acquisition and process electronics. The collimator was designed to achieve a high quality thermal neutron beam with good intensity and minimum contamination of neutrons above thermal energies. A target chamber for NDP was constructed from 40.6 cm diameter aluminum tubing. The chamber can accommodate several small samples as well as a single large sample with a diameter up to 30.5 cm. Depth profiles for borophosphosilicate glass films on silicon wafers were measured using the UT-NDP facility. Other potential applications of the UT-NDP facility include the study of implanted boron in semiconductor material; study of nitrogen in metals; and study of helium behavior in metals, and metallic and amorphous alloys.

  9. NDP (Neutron Depth Profiling) Evaluations of Boron-Implanted Compound Semiconductors,

    DTIC Science & Technology

    1988-03-04

    This report describes recent neutron depth profiling (NDP) experiments on the distribution of implanted boron in several semiconductors. The...that were used to remove implant damage and electrically activate the boron. Keywords: Ion implants, Compound semiconductors, Neutron depth profiling .

  10. A method of rapidly obtaining concentration-depth profiles from X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1985-01-01

    A broadened diffraction peak, or intensity band, is observed in the case diffraction from a nonhomogeneous phase in which the variations in compositions result in a range of lattice spacings. An intriguing aspect regarding the relationship between the X-ray diffraction band and the composition-depth profile is the hypersensitivity of the intensity band to the shape of the profile. A number of investigators have sought to use this sensitivity to construct high-precision profiles. Difficulties encountered are related to complications due to intensity broadening, and prohibitive computational requirements. Simulation techniques have provided the most accurate interpretation of the intensity band. However, the involved calculations have been prohibitively long. The present study discusses a technique which has simple computational requirements and is as accurate and flexible as the simulation techniques.

  11. A method of rapidly obtaining concentration-depth profiles from X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1985-01-01

    A broadened diffraction peak, or intensity band, is observed in the case diffraction from a nonhomogeneous phase in which the variations in compositions result in a range of lattice spacings. An intriguing aspect regarding the relationship between the X-ray diffraction band and the composition-depth profile is the hypersensitivity of the intensity band to the shape of the profile. A number of investigators have sought to use this sensitivity to construct high-precision profiles. Difficulties encountered are related to complications due to intensity broadening, and prohibitive computational requirements. Simulation techniques have provided the most accurate interpretation of the intensity band. However, the involved calculations have been prohibitively long. The present study discusses a technique which has simple computational requirements and is as accurate and flexible as the simulation techniques.

  12. Determining concentration depth profiles in fluorinated networks by means of electric force microscopy

    SciTech Connect

    Miccio, Luis A.; Schwartz, Gustavo A.

    2011-08-14

    By means of electric force microscopy, composition depth profiles were measured with nanometric resolution for a series of fluorinated networks. By mapping the dielectric permittivity along a line going from the surface to the bulk, we were able to experimentally access to the fluorine concentration profile. Obtained data show composition gradient lengths ranging from 30 nm to 80 nm in the near surface area for samples containing from 0.5 to 5 wt. % F, respectively. In contrast, no gradients of concentration were detected in bulk. This method has several advantages over other techniques because it allows profiling directly on a sectional cut of the sample. By combining the obtained results with x-ray photoelectron spectroscopy measurements, we were also able to quantify F/C ratio as a function of depth with nanoscale resolution.

  13. Residual stress depth profiles of ausrolled 9310 gear steel

    SciTech Connect

    Paliani, C.M.; Queeney, R.A.; Kozaczek, K.J.

    1995-12-31

    Residual Stress analysis utilizing x-ray diffraction in conjunction with material removal by chemical polishing provides a very effective method of analyzing the near surface residual stress profile of steels. In this experiment, residual stress profiling has been used to analyze the effects of surface ausrolling during the marquenching of a 9310 gear steel which has been carburized to 1% carbon. The ausrolling process is an advanced thermomechanical processing technique used to ausform only the critical surface layer of gears and produce a hard, tough, fine-grained martensitic product. This study compares the residual stress profile of a marquenched specimen with a moderately deformed ausrolled specimen and with a heavily deformed ausrolled specimen, in order to correlate the effects of residual stress with the improved fatigue properties of the gear steel. While no significant variation was observed between the residual stress profile of the marquenched specimens (no deformation) and the line contact ausrolled specimens (moderate deformation), significant increases in the amount of compressive residual stress was noted in the residual stress profile of the point contact ausrolled (heavily deformed) samples. The maximum increase in compressive residual stress due to point contact ausrolling was approximately 500 MPa, when compared to the marquenched sample. This increased residual compressive stress will lower the effective shear stresses during rolling contact fatigue and would therefore explain some of the increase the rolling contact fatigue endurance of the point contact ausrolled specimens.

  14. Measuring Aerosol Optical Depth (AOD) and Aerosol Profiles Simultaneously with a Camera Lidar

    NASA Astrophysics Data System (ADS)

    Barnes, John; Pipes, Robert; Sharma, Nimmi C. P.

    2016-06-01

    CLidar or camera lidar is a simple, inexpensive technique to measure nighttime tropospheric aerosol profiles. Stars in the raw data images used in the CLidar analysis can also be used to calculate aerosol optical depth simultaneously. A single star can be used with the Langley method or multiple star pairs can be used to reduce the error. The estimated error from data taken under clear sky conditions at Mauna Loa Observatory is approximately +/- 0.01.

  15. Modulated magnetization depth profile in dipolarly coupled magnetic multilayers

    SciTech Connect

    Bedanta, S.; Petracic, O.; Kleemann, W.; Kentzinger, E.; Ruecker, U.; Brueckel, Th.; Paul, A.; Cardoso, S.; Freitas, P. P.

    2006-08-01

    Polarized neutron reflectivity (PNR) and magnetometry studies have been performed on the metal-insulator multilayer [Co{sub 80}Fe{sub 20}(1.6 nm)/Al{sub 2}O{sub 3}(3 nm)]{sub 9} which exhibits dominant dipolar coupling between the ferromagnetic layers. Our PNR measurements at the coercive field reveal a novel and unexpected magnetization state of the sample, exhibiting an oscillating magnetization depth profile from CoFe layer to CoFe layer with a period of five bilayers along the multilayer stack. With the help of micromagnetic simulations we demonstrate that competition between long- and short-ranged dipolar interactions apparently gives rise to this unprecedented phenomenon.

  16. Determining concentration depth profiles of thin foam films with neutral impact collision ion scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridings, Christiaan; Andersson, Gunther G.

    2010-11-01

    Equipment is developed to measure the concentration depth profiles in foam films with the vacuum based technique neutral impact collision ion scattering spectroscopy. Thin foam films have not previously been investigated using vacuum based techniques, hence specialized methods and equipment have been developed for generating and equilibrating of foam films under vacuum. A specialized film holder has been developed that encloses the foam film in a pressure cell. The pressure cell is air-tight except for apertures that allow for the entrance and exit of the ion beam to facilitate the analysis with the ion scattering technique. The cell is supplied with a reservoir of solvent which evaporates upon evacuating the main chamber. This causes the cell to be maintained at the vapor pressure of the solvent, thus minimizing further evaporation from the films. In order to investigate the effect of varying the pressure over the films, a hydrostatic pressure is applied to the foam films. Concentration depth profiles of the elements in a thin foam film made from a solution of glycerol and the cationic surfactant hexadecyltrimethylammonium bromide (C16TAB) were measured. The measured concentration depth profiles are used to compare the charge distribution in foam films with the charge distribution at the surface of a bulk solution. A greater charge separation was observed at the films' surface compared to the bulk surface, which implies a greater electrostatic force contribution to the stabilization of thin foam films.

  17. Chemical depth profiling of photovoltaic backsheets after accelerated laboratory weathering

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Krommenhoek, Peter J.; Watson, Stephanie S.; Gu, Xiaohong

    2014-10-01

    Polymeric multilayer backsheets provide protection for the backside of photovoltaic (PV) module from the damage of moisture and ultraviolet (UV). Due to the nature of multilayer films, certain material property characterization of a backsheet could only be studied by examining its cross-section parallel to the thickness direction of the film. In this study, commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films were aged on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) with UV irradiance at 170 W/m2 (300 nm to 400 nm) under accelerated weathering conditions of 85°C and two relative humidity (R.H.) levels of 5% (low) and 60% (high). Cryo-microtomy was used to obtain cross-sectional PPE samples with a flat surface parallel to the thickness direction, and chemical depth profiling of multilayers was conducted by Raman microscopic mapping. Atomic force microscopy with peak force tapping mode was used complementarily for cross-sectional imaging. The results revealed that the PPE backsheet films were comprised of five main layers, including pigmented-PET, core PET, inner EVA, pigmented-EVA and outer EVA, along with their interfacial regions and two adhesive layers. UV and moisture degradation on the outer pigmented PET layer was clearly observed; while the damage on the core PET layer was less significance, indicating that the outer pigmented PET layer effectively reduced the damage from UV. In high R.H. exposure, both adhesive layers were severely deteriorated. It was found that the EVA layers were susceptible to moisture at elevated temperature, especially for the pigmented-EVA. Based on the results of accelerated weathering, this depth profiling study brings new understanding to the mechanisms of failure observed in polymeric multilayer backsheets during field exposure.

  18. Combining dynamic and static depth profiling in low energy ion scattering

    SciTech Connect

    Veen, Rik ter; Fartmann, Michael; Kersting, Reinhard; Hagenhoff, Birgit

    2013-01-15

    The advantages of combining dynamic and static depth profiling in low energy ion scattering are demonstrated for an Si/SiO{sub x}/W/Al{sub 2}O{sub 3} ALD stack. Dynamic depth profiling can be used to calibrate static depth profiling. Energy losses of 152 and 215 eV/nm were found for 3 keV {sup 4}He{sup +} and 5 keV {sup 4}He{sup +} primary ions, respectively, for the experimental configuration used. This is in good agreement with the values used in the field. Static depth profiling can be used to recognize sputter artifacts in dynamic depth profiles.

  19. Shallow fluorine depth profiles of cementum in periodontal disease--a pilot study.

    PubMed

    Crawford, A W; Sampson, W J; de Bruin, H J

    1983-07-01

    A nuclear resonant reaction depth profiling technique was used to analyze elemental fluorine distribution in the first 20 microns of human dental cementum. A pilot sample of six periodontally-involved teeth indicated greater levels of fluorine in exposed cementum (0.9 leads to 2.4%) compared to cementum apical to the zone of epithelial attachment (0.4 leads to 1.1%). Furthermore, the exposed cementum appeared to have fluorine levels within the surface 5 microns comparable to the hypermineralized layer previously reported by x-ray diffraction and microprobe techniques. The nuclear resonant reaction is a non-destructive technique which yields useful information of surface elemental distribution as a function of depth, and may be regarded as a potential means of analyzing changes in the inorganic constitution of cementum during various physico-chemical pre-treatments.

  20. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy.

    PubMed

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-15

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30cms(-1). The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  1. Principal component analysis of TOF-SIMS spectra, images and depth profiles: an industrial perspective

    NASA Astrophysics Data System (ADS)

    Pacholski, Michaeleen L.

    2004-06-01

    Principal component analysis (PCA) has been successfully applied to time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra, images and depth profiles. Although SIMS spectral data sets can be small (in comparison to datasets typically discussed in literature from other analytical techniques such as gas or liquid chromatography), each spectrum has thousands of ions resulting in what can be a difficult comparison of samples. Analysis of industrially-derived samples means the identity of most surface species are unknown a priori and samples must be analyzed rapidly to satisfy customer demands. PCA enables rapid assessment of spectral differences (or lack there of) between samples and identification of chemically different areas on sample surfaces for images. Depth profile analysis helps define interfaces and identify low-level components in the system.

  2. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  3. Identification of Chinese medicinal fungus Cordyceps sinensis by depth-profiling mid-infrared photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, Changwen; Zhou, Jianmin; Liu, Jianfeng

    2017-02-01

    With increased demand for Cordyceps sinensis it needs rapid methods to meet the challenge of identification raised in quality control. In this study Cordyceps sinensis from four typical natural habitats in China was characterized by depth-profiling Fourier transform infrared photoacoustic spectroscopy. Results demonstrated that Cordyceps sinensis samples resulted in typical photoacoustic spectral appearance, but heterogeneity was sensed in the whole sample; due to the heterogeneity Cordyceps sinensis was represented by spectra of four groups including head, body, tail and leaf under a moving mirror velocity of 0.30 cm s- 1. The spectra of the four groups were used as input of a probabilistic neural network (PNN) to identify the source of Cordyceps sinensis, and all the samples were correctly identified by the PNN model. Therefore, depth-profiling Fourier transform infrared photoacoustic spectroscopy provides novel and unique technique to identify Cordyceps sinensis, which shows great potential in quality control of Cordyceps sinensis.

  4. Development of cold neutron depth profiling system at HANARO

    NASA Astrophysics Data System (ADS)

    Park, B. G.; Sun, G. M.; Choi, H. D.

    2014-07-01

    A neutron depth profiling (NDP) system has been designed and developed at HANARO, a 30 MW research reactor at the Korea Atomic Energy Research Institute (KAERI). The KAERI-NDP system utilizes cold neutrons that are transported along the CG1 neutron guide from the cold neutron source and it consists of a neutron beam collimator, a target chamber, a beam stopper, and charged particle detectors along with NIM-standard modules for charged particle pulse-height analysis. A 60 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The energy distribution of the cold neutron beam at the end of the neutron guide was calculated by using the Monte Carlo simulation code McStas, and a neutron flux of 1.8×108 n/cm2 s was determined by using the gold foil activation method at the sample position. The performance of the charged particle detection of the KAERI-NDP system was tested by using Standard Reference Materials. The energy loss spectra of alpha particles and Li ions emitted from 10B, which was irradiated by cold neutrons, were measured. The measured peak concentration and the areal density of 10B in the Standard Reference Material are consistent with the reference values within 1% and 3.4%, respectively.

  5. Molecular depth profiling in ice matrices using C 60 projectiles

    NASA Astrophysics Data System (ADS)

    Wucher, A.; Sun, S.; Szakal, C.; Winograd, N.

    2004-06-01

    The prospects of molecular sputter depth profiling using C 60+ projectiles were investigated on thick ice layers prepared by freezing aqueous solutions of histamine onto a metal substrate. The samples were analyzed in a ToF-SIMS spectrometer equipped with a liquid metal Ga + ion source and a newly developed fullerene ion source. The C 60+ beam was used to erode the surface, while static ToF-SIMS spectra were taken with both ion beams alternatively between sputtering cycles. We find that the signals both related to the ice matrix and to the histamine are about two orders of magnitude higher under 20-keV C 60 than under 15-keV Ga bombardment. Histamine related molecular signals are found to increase drastically if the freshly introduced surface is pre-sputtered with C 60 ions, until at a total ion fluence of about 10 13 cm -2 the spectra are completely dominated by the molecular ion and characteristic fragments of histamine. At larger fluence, the signal is found to decrease with a disappearance cross section of approximately 10 -14 cm 2, until at total fluences of about 10 14 cm -2 a steady state with stable molecular signals is reached. In contrast, no appreciable molecular signal could be observed if Ga + ions were used to erode the surface.

  6. Benchmarking time-of-flight based depth measurement techniques

    NASA Astrophysics Data System (ADS)

    Süss, Andreas; Rochus, Veronique; Rosmeulen, Maarten; Rottenberg, Xavier

    2016-03-01

    In the last decade significant progress has been made on optical non-contact time-of-flight (ToF) based ranging techniques. Direct implementations based on time-correlated single photon counting (TCSPC-dToF), coincidence detection (CD-TCSPC-dToF) as well as multiple indirect realizations based on e.g. single-photon synchronous detection (SPSD-iToF), continuous-wave modulation (CW-iToF) or pulse modulation (PM-iToF) have been presented. All those modulation/demodulation techniques can be employed in scanning (scanning LIDAR) as well as non-scanning (Flash-LIDAR) schemes. Many parameters impact key performance metrics such as depth measurement precision or angular resolution. Unfortunately, publications or datasheets rarely quote all relevant parameters. Thus, benchmarking between different approaches based on published metrics is cumbersome. The authors believe that such a benchmark would have to be founded on modeling in order to ensure fair comparison. This work presents an overview over the most common ToF based depth measurement approaches, how these can be modeled and how they compare.

  7. Micro-Raman Measurements and Depth Profiling of SiC

    NASA Astrophysics Data System (ADS)

    Roughani, Bahram; Ramabadran, Uma

    2003-03-01

    Recent progress in growth of high quality 4H- SiC and 6H-SiC polytypes materials may lead to new applications for SiC as high power, high temperature, and high frequency devices that can tolerate harsh environments. Nondestructive techniques that could be used in analyzing various layers of such materials after growth or after exposure to harsh environment could be used in investigation of induced defects or structural damages. We have utilized micro-Raman scattering to investigate the depth profiling of Nitrogen doped 4H-SiC samples. Heavily N-doped 4H-SiC epilayers grown on low doped 4H-SiC substrates were examined. Each SiC sample was placed on micro-positioning translational stage in order to accurately control the focal plane of the laser beam within the sample by adjusting normal distance of the microscope objective with respect to the SiC wafer. We were able to clearly distinguish the epilayer from the SiC substrate. Strong phonon peaks and distinct coupled plasmon-LO phonon modes from the N-doped epilayer were used in this depth profiling analysis. A scattering efficiency model describing the optimal focusing condition for backscattering from a translucent sample was developed. The experimental results of depth profiling and our model for optimal backscattering condition will be presented and discussed.

  8. Ambient low temperature plasma etching of polymer films for secondary ion mass spectrometry molecular depth profiling.

    PubMed

    Muramoto, Shin; Staymates, Matthew E; Brewer, Tim M; Gillen, Greg

    2012-12-18

    The feasibility of a low temperature plasma (LTP) probe as a way to prepare polymer bevel cross sections for secondary ion mass spectrometry (SIMS) applications was investigated. Poly(lactic acid) and poly(methyl methacrylate) films were etched using He LTP, and the resulting crater walls were depth profiled using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to examine changes in chemistry over the depth of the film. ToF-SIMS results showed that while exposure to even 1 s of plasma resulted in integration of atmospheric nitrogen and contaminants to the newly exposed surface, the actual chemical modification to the polymer backbone was found to be chemistry-dependent. For PLA, sample modification was confined to the top 15 nm of the PLA surface regardless of plasma exposure dose, while measurable change was not seen for PMMA. The confinement of chemical modification to 15 nm or less of the top surface suggests that LTP can be used as a simple method to prepare cross sections or bevels of polymer thin films for subsequent analysis by surface-sensitive molecular depth profiling techniques such as SIMS, X-ray photoelectron spectroscopy (XPS), and other spatially resolved mass spectrometric techniques.

  9. NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films

    SciTech Connect

    Krishnan, S.; Paik, M; Ober, C; Martinelli, E; Galli, G; Sohn, K; Kramer, E; Fischer, D

    2010-01-01

    of the NEXAFS depth profiling technique.

  10. Depth profiling of boron in ultra-shallow junction devices using time-of-flight neutron depth profiling (TOF-NDP)

    NASA Astrophysics Data System (ADS)

    Çetiner, Sacit M.; Ünlü, Kenan

    2007-08-01

    In conventional neutron depth profiling (NDP), residual energies of particles are measured directly by using a semiconductor detector. The measured depth resolution is a function of the material composition as well as a function of the energy resolution of the detector and precision of the measurement electronics. The uncertainty from the substrate is inevitable. However, for relatively thin layers, the predominant uncertainty factor in depth resolution is the metallic layer in front of the semiconductor-charged particle detector. The effect of the layer introduces additional straggling to the particle. Time-of-flight neutron depth profiling (TOF-NDP) is presented to eliminate the need to use semiconductor detectors. Particle energy can be determined from the particle arrival time. Energy resolution improvement achieved with TOF-NDP makes it possible to obtain concentration vs. depth profile of boron in ultra-shallow junction devices.

  11. A semiempirical method for the description of relative crossbeam dose profiles at depth from linear accelerators.

    PubMed

    Tsalafoutas, I; Xenofos, S; Stamatelatos, I E

    1997-01-01

    A semiempirical method for the calculation of the relative crossbeam dose profiles at depth is described. The parameters required to set up the formulae and their dependence with field size and depth are investigated. Using the above method, measured crossbeam dose profiles at depth from two linear accelerators, Philips (SL-18) and AEC (Therac-6) are reproduced. The results indicate that this method is applicable within a wide range of depths and field sizes.

  12. Performance evaluation of different depth from defocus (DFD) techniques

    NASA Astrophysics Data System (ADS)

    Xian, Tao; Subbarao, Murali

    2005-11-01

    In this paper, several binary mask based Depth From Defocus (DFD) algorithms are proposed to improve autofocusing performance and robustness. A binary mask is defined by thresholding image Laplacian to remove unreliable points with low Signal-to-Noise Ratio (SNR). Three different DFD schemes-- with/without spatial integration and with/without squaring-- are investigated and evaluated, both through simulation and actual experiments. The actual experiments use a large variety of objects including very low contrast Ogata test charts. Experimental results show that autofocusing RMS step error is less than 2.6 lens steps, which corresponds to 1.73%. Although our discussion in this paper is mainly focused on a spatial domain method STM1, this technique should be of general value for different approaches such as STM2 and other spatial domain based algorithms.

  13. 1D Seismic reflection technique to increase depth information in surface seismic investigations

    NASA Astrophysics Data System (ADS)

    Camilletti, Stefano; Fiera, Francesco; Umberto Pacini, Lando; Perini, Massimiliano; Prosperi, Andrea

    2017-04-01

    1D seismic methods, such as MASW Re.Mi. and HVSR, have been extensively used in engineering investigations, bedrock research, Vs profile and to some extent for hydrologic applications, during the past 20 years. Recent advances in equipment, sound sources and computer interpretation techniques, make 1D seismic methods highly effective in shallow subsoil modeling. Classical 1D seismic surveys allows economical collection of subsurface data however they fail to return accurate information for depths greater than 50 meters. Using a particular acquisition technique it is possible to collect data that can be quickly processed through reflection technique in order to obtain more accurate velocity information in depth. Furthermore, data processing returns a narrow stratigraphic section, alongside the 1D velocity model, where lithological boundaries are represented. This work will show how collect a single-CMP to determine: (1) depth of bedrock; (2) gravel layers in clayey domains; (3) accurate Vs profile. Seismic traces was processed by means a new software developed in collaboration with SARA electronics instruments S.r.l company, Perugia - ITALY. This software has the great advantage of being able to be used directly in the field in order to reduce the times elapsing between acquisition and processing.

  14. Photothermal depth profiles of mechanically and electrolytically polished NiTi shape memory alloys (abstract)

    NASA Astrophysics Data System (ADS)

    Delgadillo-Holtfort, I.; Gibkes, J.; Kaack, M.; Dietzel, D.; Bein, B. K.; Pelzl, J.; Buschka, M.; Weinert, K.; Bram, M.; Buchkremer, H. P.; Stöver, D.

    2003-01-01

    Machining of NiTi shape memory alloys (SMA) is difficult due to the required special tools, techniques, and the wear of cutting tools. Thus metal injection molding (MIM) of NiTi powders followed by polishing processes may be an alternative fabrication process for SMA components. Transient heat input across the surface and heat transport inside SMA components are important aspects for their functional efficiency. In this work the influence of polishing processes on the thermal depth profiles of SMA materials and the thermal bulk properties of MIM samples are analyzed with the help of photothermal IR radiometry. The effects of polishing have been studied both for polycrystalline nearly equiatomic NiTi alloy and MIM samples. Bulk samples, cut from a polycrystalline ingot of nearly equiatomic NiTi, had first been heat treated and flash cooled to reduce the concentration of nonequiatomic precipitations. In the second step, sample 1 was polished mechanically with a plane grinder, sample 2 was polished electrochemically in an electrolytic bath, and sample 3 was first polished electrolytically and then mechanically. The thermal depth profiles have been measured by frequency dependent photothermal radiometry using an intensity modulated argon-ion laser pump beam. The PTR amplitudes and phases have been calibrated with the signals recorded for glassy carbon. We will show the frequency variation of the inversely normalized amplitudes which correspond to the effusivity depth profile. The polished samples exhibit different depth profiles: that of electrolytic polishing (2) is most distinct from any other, while that after mechanical polishing (1) and that of combined electrolytic and mechanical polishing (3) are similar. The depth dependence of the effusivity can roughly be approximated by a three-layer model consisting of a surface layer of about 10 μm, a subsurface layer extending about 100 μm into the sample, followed by the bulk material at large penetration depths. In

  15. SIMS depth profiling of implanted helium in pure iron using CsHe+ detection mode

    NASA Astrophysics Data System (ADS)

    Lefaix-Jeuland, H.; Moll, S.; Legendre, F.; Jomard, F.

    2013-01-01

    Helium distribution in implanted monocrystalline and polycrystalline Fe samples has been measured by secondary ion mass spectrometry (SIMS). The use of Cs+ primary ions in conjunction with the detection of CsHe+ molecular ions was shown to be an efficient method to overcome the very high first ionization potential of helium. The implantation ranges of 60 keV He ions in samples are measured about 220 nm in agreement with projected ranges calculated by TRIM. He concentrations at or above 5 × 1018 at/cm3 (˜60 ppm) were measured. This study confirms the paramount interest of SIMS as a direct He depth profiling technique.

  16. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  17. Skin surface profile technique and its applications.

    PubMed

    Hatzis, J

    1991-12-01

    Synopsis In this study the 'skin surface profile'(SSP) technique and its applications are described. With this technique the SSP is replicated by means of silicone impression materials. The SSP preparations were studied by a stereomicroscope or microscopic projector. Some applications of SSP technique are as follows: a. measurement of the stratum corneum hydration, b. study of the profile of primary crests and lines, c. measurement of the primary crests reservoir available for extension, and d. estimation of the true area of the skin surface in a body region.

  18. Neutron depth profiling of Li-ion cell electrodes with a gas-controlled environment

    NASA Astrophysics Data System (ADS)

    Nagpure, Shrikant C.; Mulligan, Padhraic; Canova, Marcello; Cao, Lei R.

    2014-02-01

    Neutron depth profiling (NDP) is a nondestructive technique that has been applied to characterize the lithium concentration in the electrode materials of Li-ion batteries as a function of depth. NDP measurements have been traditionally performed ex-situ, under vacuum of the order of 10-6 Torr to avoid any change in the residual energy of the charged particles as they emerge from the sample surface. In this work, we describe the design of the NDP measurement facility that allows for conducting tests at variable pressure conditions, through an inert gas atmosphere. This study enhances the ability of the conventional NDP instrument to measure lithium concentration of air-sensitive materials without exposure to atmospheric conditions and under inert gas atmosphere. Furthermore, it provides the opportunity to conduct in-situ NDP on Li-ion cells using liquid electrolytes that would otherwise evaporate at high vacuum conditions.

  19. Thin film depth profiling using simultaneous particle backscattering and nuclear resonance profiling

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Mateus, R.; Fonseca, M.; Reis, M. A.; Lorenz, K.; Vickridge, I.

    2010-06-01

    We report an important extension to the DataFurnace code for Ion Beam Analysis which allows users to simultaneously and self-consistently analyse Rutherford (RBS) or non-Rutherford (EBS) elastic backscattering together with particle-induced gamma-ray (PIGE) spectra. We show that the code works correctly with a well-known sample. Previously it has not been feasible to self-consistently treat PIGE and RBS/EBS data to extract the depth profiles. The PIGE data can be supplied to the code in the usual way as counts versus beam energy, but the differential cross-sections for the PIGE reaction are required. We also compared the results obtained by the new routine with high resolution narrow resonance profiling (NRP) simulations obtained with the stochastic model of energy loss.

  20. Dealloying evidence on corroded brass by laser-induced breakdown spectroscopy mapping and depth profiling measurements

    NASA Astrophysics Data System (ADS)

    Cerrato, R.; Casal, A.; Mateo, M. P.; Nicolas, G.

    2017-04-01

    The dealloying phenomenon, also called demetalification, is a; consequence of a corrosion problem found in binary alloys where an enrichment of one of the two main elements of the alloy is produced at the expense of the leaching of the other element. In the present work, the ability of laser induced breakdown spectroscopy (LIBS) for the detection and characterization of dealloying films formed on metal has been tested. For this purpose, specific areas of brass specimens have been subjected to a chemical attack of the surface in order to produce a selective leaching of zinc or dezincification. For the lateral and in-depth characterization of the dealloyed areas by LIBS, depth profiles, 2D and 3D maps have been generated from the treated samples and from a reference non-treated sample. The differences in the maps and depth profiles between the corroded and non-corroded regions have allowed to reveal the localization and extension of the dealloying process along the brass sample surface and to estimate the thickness of the dezincification layers, demonstrating the capability of LIBS technique for the characterization of dealloying phenomena.

  1. Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-01-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.

  2. Electrical Load Profile Analysis Using Clustering Techniques

    NASA Astrophysics Data System (ADS)

    Damayanti, R.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.

    2017-03-01

    Data mining is one of the data processing techniques to collect information from a set of stored data. Every day the consumption of electricity load is recorded by Electrical Company, usually at intervals of 15 or 30 minutes. This paper uses a clustering technique, which is one of data mining techniques to analyse the electrical load profiles during 2014. The three methods of clustering techniques were compared, namely K-Means (KM), Fuzzy C-Means (FCM), and K-Means Harmonics (KHM). The result shows that KHM is the most appropriate method to classify the electrical load profile. The optimum number of clusters is determined using the Davies-Bouldin Index. By grouping the load profile, the demand of variation analysis and estimation of energy loss from the group of load profile with similar pattern can be done. From the group of electric load profile, it can be known cluster load factor and a range of cluster loss factor that can help to find the range of values of coefficients for the estimated loss of energy without performing load flow studies.

  3. ADEPT: a program to estimate depth to magnetic basement from sampled magnetic profiles

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    1978-01-01

    A fortran program computes depth to magnetic basement from the spatially varying autocorrelation function of a sampled magnetic profile. The depth calculation assumes a particular form for the autocorrelation function, and this assumption is tested against the measured autocorrelation function in order to reject invalid depth estimates.

  4. Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling

    NASA Astrophysics Data System (ADS)

    McWhinney, Hylton G.; James, William D.; Schweikert, Emile A.; Williams, John R.; Hollenberg, Glen; Welsh, John; Sereatan, Washington

    1993-07-01

    Lithium Ceramics offer tremendous potential as a source for the production of tritium ( 3H) for fusion power reactors. Their successful application will depend to a great extent upon the diffusion properties of the 6Li within the matrix. Consequently knowledge od 6Li concentration gradients in the ceramic matrices is an important requirement in the continued development of the technology. In this investigation, the neutron depth profile (NDP) technique has been applied to the study of concentration profiles of 6Li in lithium aluminate ceramics, doped with 1.8%, 50% and 95% 6Li isotopic concentrations. Specimen for analysis were prepared at Battelle (PNL) as pellet discs. Samples for diffusion studies were arranged as diffusion couples in the following manner: 1.8% 6Li discs/85% 6Li powder. Experiments were performed at the Texas A&M Nuclear Science Center Reactor Building, utilizing 1 MW equivalent thermal neutron fluxes 3 × 10 11n/ m2s. The depth probed by the technique is approximately 15 μ.m. Diffusion coefficients are in the range of 2.1 × 10 -12 to 7.0 × 10 -11m2s-1 for 1.8% 6Li-doped ceramics annealed at 1200 and 1400° C, for 4 to 48-h anneal times.

  5. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the

  6. Optimal Linear Fitting for Objective Determination of Ocean Mixed Layer Depth from Glider Profiles

    DTIC Science & Technology

    2010-09-06

    profile is around 1 m . All the profiles are deeper than 700 m and clearly show the existence of layered structure: mixed layer, thermocline, and deep...controlled profiles observed by the two Seagliders. With high vertical resolution (1 m ), we chose n 5 4. The value of Hmix was calculated for each...compared to the fluctuations in the mixed layer depth observed after this date. The mixed layer depth oscillates between 50 and 90 m before 25 November 2007

  7. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    PubMed

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  9. Depth

    PubMed Central

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  10. Classification of wheat: Badhwar profile similarity technique

    NASA Technical Reports Server (NTRS)

    Austin, W. W.

    1980-01-01

    The Badwar profile similarity classification technique used successfully for classification of corn was applied to spring wheat classifications. The software programs and the procedures used to generate full-scene classifications are presented, and numerical results of the acreage estimations are given.

  11. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  12. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  13. Precise relative earthquake depth determination using array processing techniques

    NASA Astrophysics Data System (ADS)

    Florez, M. A.; Prieto, G. A.

    2017-06-01

    Precise determination of hypocentral depth remains one of the most relevant problems in earthquake seismology. It is well known that using depth phases allows for significant improvement in event depth determination; however, routinely and systematically picking such phases, for teleseismic or regional arrivals, is problematic due to poor signal-to-noise ratios around the pP and sP phases. To overcome this limitation, we have taken advantage of the additional information carried by seismic arrays. We use velocity spectral analysis to precisely measure pP-P times. The individual estimates obtained at different subarrays, for all pairs of earthquakes, are combined using a double-difference algorithm, in order to precisely map seismicity in regions where it is tightly clustered. We illustrate this method by relocating intermediate-depth earthquakes in the Nazca subducting plate, beneath northern Chile, where we confirm the existence of a narrowly spaced double seismic zone, previously imaged using a local dedicated deployment. As a second example we relocate the aftershock sequence of the 2014 Mw 7.9 intermediate depth, Rat Islands earthquake, and provide evidence of a subvertical fault plane for the main shock. Finally, we show that the resulting relative depth errors are typically smaller than 2 km.

  14. Quantitative Analysis of Hemodynamics in Bruised Skin Using Photothermal Depth Profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, L.; Milanič, M.; Majaron, B.

    2015-06-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles, providing useful information on depth distribution of specific absorbers in optically scattering biological tissues. In the present study, PPTR profiling is combined with numerical modeling of light transport in human skin to analyze hemoglobin dynamics in traumatic bruises. Specifically, the influence of regularization degree, applied in iterative reconstruction of temperature depth profiles from PPTR signals measured in bruised volunteers, is studied. The results show that selection between two plausible reconstruction results does not significantly affect the assessed values of key bruise evolution parameters, i.e., hemoglobin mass diffusion and characteristic decomposition time.

  15. Molecular Depth Profiling using a C(60) Cluster Beam: the Role of Impact Energy.

    PubMed

    Wucher, Andreas; Cheng, Juan; Winograd, Nicholas

    2008-10-23

    Molecular depth profiling of organic overlayers was performed using a mass selected C(60) ion beam in conjunction with time-of-flight (TOF-SIMS) mass spectrometry. The characteristics of sputter depth profiles acquired for a 300-nm Trehalose film on silicon were studied as a function of the kinetic impact energy of the projectile ions. The results are interpreted in terms of a simple model describing the balance between sputter erosion and ion induced chemical damage. It is shown that the efficiency of the projectile to clean up the fragmentation debris produced by its own impact represents a key parameter governing the success of molecular depth profile analysis.

  16. Al-26 depth profile in Apollo 15 drill core

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Klein, J.; Middleton, R.

    1984-01-01

    Accelerator mass spectrometry is used in a study of galactic cosmic ray production profiles based on cosmic ray-produced Al-26 in the Apollo 15 long core. The results, which are in general agreement with earlier nondestructive counting data, are of significantly higher precision, yet systematically lower. The half-attenuation length for Al-26 production is presently calculated to be 122 g/sq cm, after normalizing the data to average chemical composition.

  17. Compositional depth profiling of TaCN thin films

    SciTech Connect

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven

    2012-07-15

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  18. Depth profile by Total IBA in perovskite active layers for solar cells

    NASA Astrophysics Data System (ADS)

    Barreiros, M. A.; Alves, L. C.; Brites, M. J.; Corregidor, V.

    2017-08-01

    In recent years the record efficiency of perovskite solar cells (PSCs) has been updated exceeding now 20%. However, it is difficult to make PSCs consistently. Definite correlation has been established between the PSC performance and the perovskite film quality which involves mainly morphology, crystallinity and composition. The manufacturing development of these devices is dependent on the characterisation methodologies, on the availability of suitable and reliable analytical techniques to assess the materials composition and quality and on the relationship of these results with the cell performance. Ion beam analytical (IBA) techniques jointly with a micro-ion beam are powerful tools for materials characterisation and can provide a valuable input for the knowledge of perovskite films. Perovskite films based on CH3NH3PbI3 were prepared (from CH3NH3I and PbI2 precursors) in a planar architecture and in a mesoporous TiO2 scaffold. Proton and helium micro-beams at different energies were used in the analysis of PSC active layers, previously characterised by SEM-FEG (Scanning Electron Microscopy with a field emission gun) and XRD (X-ray diffraction). Self-consistent fit of all the obtained PIXE (Particle Induced X-ray Emission) and RBS (Rutherford Backscattering Spectrometry) spectra through Total IBA approach provided depth profiling of perovskite, its precursors and TiO2 and assess their distribution in the films. PbI2 presence and location on the active layer may hinder the charge transport and highly affect the cell performance. IBA techniques allowed to identify regions of non-uniform surface coverage and homogeneous areas and it was possible to establish the undesired presence of PbI2 and its quantitative depth profile in the planar architecture film. In the mesostructured perovskite film it was verified a non-homogeneous distribution with a decreasing of perovskite concentration down to the thin blocking layer. The good agreement between the best fits obtained

  19. Depth-discrete Geochemical Profiling in Groundwater Using an Innovative In Situ Approach

    NASA Astrophysics Data System (ADS)

    Levison, J.; MacDonald, G.

    2014-12-01

    The presence of nitrate in groundwater is often associated with agricultural activity. Leaching below the root zone to aquifers from agricultural areas is a critical problem in many jurisdictions where concentrations are above drinking water guidelines. Traditionally, nitrate and other water quality parameters are collected using purge and sample techniques. Often this "snapshot" data both disrupts the natural subsurface flow system and is not detailed enough to determine critical water quality or quantity conditions. In this study, depth-discrete, continuous and in situ monitoring techniques are developed. While nitrate is the focus, parameters including temperature, dissolved oxygen (DO), turbidity, redox potential (ORP) and electrical conductivity (EC), are also monitored. Research sites examine a range of hydrogeological conditions from supply wells located in shallow, unconfined sandy aquifers (Norfolk County, Ontario, Canada) to fractured sedimentary bedrock aquifers (Guelph, Ontario) impacted by agricultural activity. The innovative groundwater quality sampling method uses the Submersible Ultraviolet Nitrate Analyzer (SUNATM) as well as the robust YSI EXO2 Water Quality SondeTM. Depth-discrete well profiling is used to evaluate vertical stratification of nitrate and field parameters along the entire borehole with a focus on the screened interval. The high resolution datasets show zones of changing water quality corresponding to different formations. In open bedrock boreholes in Guelph, distinct intervals were identified at different depths for pH, EC, DO and ORP. In the shallower wells in Norfolk County, increases in DO and EC along the screened interval suggest the presence of fresh groundwater representative of the aquifer, with potential implications for in situ long-term monitoring of groundwater parameters. Detailed profiles of DO and ORP at both sites can be combined with nitrate profile data to determine potential zones of denitrification. Water

  20. Spectral analysis of aeromagnetic profiles for depth estimation principles, software, and practical application

    USGS Publications Warehouse

    Sadek, H.S.; Rashad, S.M.; Blank, H.R.

    1984-01-01

    If proper account is taken of the constraints of the method, it is capable of providing depth estimates to within an accuracy of about 10 percent under suitable circumstances. The estimates are unaffected by source magnetization and are relatively insensitive to assumptions as to source shape or distribution. The validity of the method is demonstrated by analyses of synthetic profiles and profiles recorded over Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source depths have been proved by drilling.

  1. Characterization of BPSG films using Neutron Depth Profiling and Neutron/X-ray Reflectometry

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, H. H.; Lamaze, G. P.; Satija, S. K.

    2001-01-01

    Borophosphosilicate glass (BPSG) films with a nominal thickness of 200 nm on Si wafers have been characterized using Neutron Depth Profiling (NDP) and neutron and x-ray reflectometry at the NIST Center for Neutron Research. NDP measures the total boron concentration and distribution. The x-ray reflectivity provides information on the thickness and density of the thin surface oxide layer and the density of the thick BPSG layer, whereas neutron reflectivity reveals the thickness of the BPSG layer. A more complete picture can be established to identify problems in semiconductor fabrication processes that cause undesirable dopant concentration and distribution, or density variations due to doping or implants. We report a first comparison of complementary information on the BPSG films obtained using the three techniques.

  2. Optical and thermal depth profile reconstructions of inhomogeneous photopolymerization in dental resins using photothermal waves

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2010-09-01

    Photopolymerization is a process that depends, among other factors, on the optical properties of polymerized materials. In turn, this process affects longitudinal light transport in these materials, thereby altering their optical absorption coefficient which is thus expected to exhibit depth dependence. Furthermore, polymerization affects the thermal properties of these materials. A robust theoretical approach to the study of the depth-dependent optical absorption coefficient, β(x ), and thermal diffusivity, α(x ), in materials exhibiting depth profiles of these parameters has been developed through the photothermal inverse problem based on the concept of the thermal-harmonic oscillator. Using this concept in the frequency-domain nonhomogeneous photothermal-wave boundary-value problem, the simultaneous reconstruction of arbitrary simultaneous optical and thermal depth profiles was achieved using a multiparameter fitting method to the experimental amplitude and phase. As a first application of the theory to partially polymerized Alert Composite (shade A3) dental resin, with curing induced by a blue light-emitting diode, the β(x ) and α(x ) depth profiles were reconstructed from photothermal radiometric frequency-scanned data. A strong anticorrelation of these two depth profiles was observed and was interpreted in terms of photochemical processes occurring during the optical (photocuring) creation of long polymeric chains in the resin. The photothermally reconstructed depth profiles may have implications for the optimization of blue light curing methods using such resins in dental clinical practice.

  3. Breadth and Depth of Vocabulary Knowledge and Their Effects on L2 Vocabulary Profiles

    ERIC Educational Resources Information Center

    Bardakçi, Mehmet

    2016-01-01

    Breadth and depth of vocabulary knowledge have been studied from many different perspectives, but the related literature lacks serious studies dealing with their effects on vocabulary profiles of EFL learners. In this paper, with an aim to fill this gap, the relative effects of breadth and depth of vocabulary knowledge on L2 vocabulary profiles…

  4. The effects of wavelength on photodegradation depth profiles in Japanese cedar (Cryptomeria japonica D. Don) earlywood

    Treesearch

    Yutaka Kataoka; Makoto Kiguchi; R. Sam Williams; Philip D. Evans

    2006-01-01

    FT-IR microscopy was used to depth profile the photodegradation of Japanese cedar earlywood exposed to monochromatic light in the UV and visible ranges (band pass: 20nm). Parallel experiments assessed the transmission of the light through thin sections of Japanese cedar. The depth of photodegradation increased with wavelength up to and including the violet region of...

  5. Development of an ion time-of-flight spectrometer for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  6. Do different probing depths exhibit striking differences in microbial profiles?

    PubMed

    Pérez-Chaparro, P Juliana; McCulloch, John Anthony; Mamizuka, Elsa Masae; Moraes, Aline da Costa Lima; Faveri, Marcelo; Figueiredo, Luciene Cristina; Duarte, Poliana Mendes; Feres, Magda

    2017-09-04

    To perform a thorough characterization of the subgingival microbiota of shallow, moderate and deep sites in subjects with chronic periodontitis (ChP) MATERIAL AND METHODS: Subgingival samples were collected from subjects with ChP (n=3/category of probing depth: ≤3, 4-6 and ≥7 mm) and periodontal health (PH). Samples were individually analyzed by high-throughput sequencing and the sequences were analyzed using mothur and R packages RESULTS: Nine subjects with ChP and seven with PH were included and 101 samples were evaluated. Thirteen phyla, 118 genera and 211 OTUs were detected. Taxa from Chloroflexi and Spirochaetes phyla were associated with initial stages of disease. Fretibacterium, Eubacterium[XI][G-6], Desulfobulbus, Peptostreptococcaceae[XI][G-1] and [G-3], Bacteroidetes[G-3], Bacteroidaceae[G-1] genera and Filifactor alocis, Fretibacterium fastidiosum, Johnsonella sp HOT166, Peptostreptococcaceae[XIII][G-1] HOT113, Porphyromonas endodontalis and Treponema sp. HOT258, which are not conventionally associated with disease, increased with the deepening of the pockets and/or were elevated in ChP; while Streptococcus, Corynebacterium and Bergeyella genera were associated with PH (p<0.05) CONCLUSION: Striking differences were observed between the microbiota of shallow and moderate/deep sites in ChP subjects. Differences between shallow sites in PH and ChP were also observed. The characterized microbiota included known oral microorganisms and newly identified periodontal taxa, some of them not-yet cultivated. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Confocal Raman microspectroscopy on excised human skin: uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation.

    PubMed

    Tfayli, A; Piot, O; Manfait, M

    2008-05-01

    Confocal Raman microspectroscopy represents the advantage of giving structural and conformational information on samples without any destructive treatment. Recently, several studies were achieved to study the skin hydration, endogenous and exogenous molecules repartition in the skin using the confocal feature of this technique. Meanwhile, when working through a material boundary with a different refractive index, the main limitation remains the spatial precision, especially the distortion in the depth and the depth resolution. Recently, several authors described mathematical models to correct the depth and the resolution values. In this study, we combined theoretical approaches, proposed by different authors with experimental measurements to try to find out the most appropriate approach for correction. We then applied the corrections on in-depth profiles tracking the penetration of Metronidazole, a drug produced by Galderma for rosacea treatment, through excised human skin.

  8. SU-E-T-561: Development of Depth Dose Measurement Technique Using the Multilayer Ionization Chamber for Spot Scanning Method

    SciTech Connect

    Takayanagi, T; Fujitaka, S; Umezawa, M; Ito, Y; Nakashima, C; Matsuda, K

    2014-06-01

    Purpose: To develop a measurement technique which suppresses the difference between profiles obtained with a multilayer ionization chamber (MLIC) and with a water phantom. Methods: The developed technique multiplies the raw MLIC data by a correction factor that depends on the initial beam range and water equivalent depth. The correction factor is derived based on a Bragg curve calculation formula considering range straggling and fluence loss caused by nuclear reactions. Furthermore, the correction factor is adjusted based on several integrated depth doses measured with a water phantom and the MLIC. The measured depth dose profiles along the central axis of the proton field with a nominal field size of 10 by 10 cm were compared between the MLIC using the new technique and the water phantom. The spread out Bragg peak was 20 cm for fields with a range of 30.6 cm and 6.9 cm. Raw MLIC data were obtained with each energy layer, and integrated after multiplying by the correction factor. The measurements were performed by a spot scanning nozzle at Nagoya Proton Therapy Center, Japan. Results: The profile measured with the MLIC using the new technique is consistent with that of the water phantom. Moreover, 97% of the points passed the 1% dose /1mm distance agreement criterion of the gamma index. Conclusion: We have demonstrated that the new technique suppresses the difference between profiles obtained with the MLIC and with the water phantom. It was concluded that this technique is useful for depth dose measurement in proton spot scanning method.

  9. In-depth proteomic profiling of the uveal melanoma secretome

    PubMed Central

    Prendergast, Samuel; Simpson, Deborah; Hammond, Dean E.; Madigan, Michele C.; Beynon, Robert J.; Coupland, Sarah E.

    2016-01-01

    Uveal melanoma (UM), the most common primary intraocular tumour in adults, is characterised by a high frequency of metastases to the liver, typically with a fatal outcome. Proteins secreted from cancer cells (‘secretome’) are biologically important molecules thought to contribute to tumour progression. We examined the UM secretome by applying a label-free nanoLCMS/MS proteomic approach to profile proteins secreted into culture media by primary UM tumours with a high− (HR; n = 11) or low− (LR; n = 4) metastatic risk, compared to normal choroidal melanocytes (NCM) from unaffected post-mortem eyes. Across the three groups, 1843 proteins were identified at a 1% false discovery rate; 758 of these by at least 3 unique peptides, and quantified. The majority (539/758, 71%) of proteins were classified as secreted either by classical (144, 19%), non-classical (43, 6%) or exosomal (352, 46%) mechanisms. Bioinformatic analyzes showed that the secretome composition reflects biological differences and similarities of the samples. Ingenuity® pathway analysis of the secreted protein dataset identified abundant proteins involved in cell proliferation-, growth- and movement. Hepatic fibrosis/hepatic stellate cell activation and the mTORC1-S6K signalling axis were among the most differentially regulated biological processes in UM as compared with NCM. Further analysis of proteins upregulated ≥ 2 in HR-UM only, identified exosomal proteins involved in extracellular matrix remodelling and cancer cell migration/invasion; as well as classically secreted proteins, possibly representing novel biomarkers of metastatic disease. In conclusion, UM secretome analysis identifies novel proteins and pathways that may contribute to metastatic development at distant sites, particularly in the liver. PMID:27391064

  10. NDP (neutron depth profiling) evaluations of boron-implanted compound semiconductors

    SciTech Connect

    Bowman, R.C.; Knudsen, J.F.; Downing, R.G.

    1988-03-04

    This report describes recent neutron depth profiling (NDP) experiments on the distribution of implanted boron in several semiconductors. The objectives are to compare the boron profiles for different materials that had been simultaneously implanted and to assess the effects of annealing treatments that were used to remove implant damage and electrically activate the boron.

  11. SIMS as a new methodology to depth profile helium in as-implanted and annealed pure bcc metals?

    NASA Astrophysics Data System (ADS)

    Gorondy-Novak, S.; Jomard, F.; Prima, F.; Lefaix-Jeuland, H.

    2017-05-01

    Reliable He profiles are highly desirable for better understanding helium behavior in materials for future nuclear applications. Recently, Secondary Ions Mass Spectrometry (SIMS) allowed the characterization of helium distribution in as-implanted metallic systems. The Cs+ primary ion beam coupled with CsHe+ molecular detector appeared to be a promising technique which overcomes the very high He ionization potential. In this study, 4He depth profiles in pure body centered cubic (bcc) metals (V, Fe, Ta, Nb and Mo) as-implanted and annealed, were obtained by SIMS. All as-implanted samples exhibited a projected range of around 200 nm, in agreement with SRIM theoretical calculations. After annealing treatment, SIMS measurements evidenced the evolution of helium depth profile with temperature. The latter SIMS results were compared to the helium bubble distribution obtained by Transmission Electron Microscopy (TEM). This study confirmed the great potential of this experimental procedure as a He-depth profiling technique in bcc metals. Indeed, the methodology described in this work could be extended to other materials including metallic and non-metallic compounds. Nevertheless, the quantification of helium concentration after annealing treatment by SIMS remains uncertain probably due to the non-uniform ionization efficiency in samples containing large bubbles.

  12. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; ...

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  13. Non-destructive depth profiling using variable kinetic energy- x-ray photoelectron spectroscopy with maximum entropy regularization

    NASA Astrophysics Data System (ADS)

    Krajewski, James J.

    This study will describe a nondestructive method to determine compositional depth profiles of thicker films using Variable Kinetic Energy X-ray Photoelectron Spectroscopy (VKE-XPS) data by applying proven regularization methods successfully used in Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS). To demonstrate the applicability of various regularization procedures to the experimental VKE-XPS data, simulated TiO2/Si film structures of two different thicknesses and known compositional profiles were "created" and then analyzed. It is found that superior results are attained when using a maximum entropy-like method with an initial model/prior knowledge of thickness is similar to the simulated film thickness. Other regularization functions, Slopes, Curvature and Total Variance Analysis (TVA) give acceptable results when there is no prior knowledge since they do not depend on an accurate initial model. The maximum entropy algorithm is then applied to two actual films of TiO2 deposited on silicon substrate. These results will show the applicability of generating compositional depth profiles with experimental VKE-XPS data. Accuracy of the profiles is confirmed by subjecting these actual films to a variety of "alternate" analytical thin film techniques including Sputtered Angle Resolved Photoelectron Spectroscopy, Auger Electron Spectroscopy, Rutherford Backscattering Spectroscopy, Focused Ion Beam Spectroscopy, Transmission and Scanning Electron Spectroscopy and Variable Angle Spectroscopic Ellipsometry. Future work will include applying different regularizations functions to better fit the MaxEnt composition depth profile other than those described in this study.

  14. A numerical re-evaluation of the Mcdonald-Vaughan model for Raman depth profiling

    NASA Astrophysics Data System (ADS)

    Caro, Jacob; Heldens, Jeroen; Leenman, Dennis

    2013-02-01

    We re-evaluate the Macdonald-Vaughan model for Raman depth profiling [J. Raman Spectrosc. 38, 584 (2007)]. The model is an geometrical description of the sample regions from which Raman signal is collected in a confocal geometry and indicates that Raman signal also originates from far outside the focus. Although correct shapes of Raman depth profiles were obtained, quantitatively the results were not satisfactory, in view of the highly deviating values of the fitted extinction coefficients of the sample material. Our re-evaluation, based on a new numerical implementation of the model, indicates that the model is not only capable of predicting the proper profiles but also yields the right extinction coefficients. As a result, the model now is highly useful for interpretation of depth profiles, also for biomedical samples such as the human skin.

  15. Neutron Depth Profiling (NDP) of boron thin films in epitaxially grown silicon

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, H. Heather; Lamaze, George P.; Simons, David S.

    2001-03-01

    Neutron Depth Profiling is a technique for the determination of concentration and distribution of certain light elements in the region of about 1 µm below a solid surface. An incident neutron beam activates the nucleus of interest and causes the emission of reaction products in the form of charged particles which carry information of the reaction origin. The eligible elements include boron, lithium, and nitrogen. The most common substrate measured at NIST is silicon. We have studied a calibration sample for the purpose of inter-comparison between NDP and SIMS. The sample is a multilayer consisting of a 1 µm-thick epitaxially grown silicon film with four thin layers of boron about 0.25 micrometers apart. A previous study on the mathematical modeling of the NDP data indicates a discrepancy between the NDP and the SIMS data, either due to the uncertainty of the density of the film or of the stopping power of the alpha particle in silicon. The density has been verified by x-ray reflectivity to be that of the bulk. To understand this discrepancy, we have measured the angular dependence of the charged-particle emission which provides an experimentally determined relation between the energy loss and the depth. The result is compared with the stopping power obtained from TRIM to determine whether the discrepancy can be resolved with a modified stopping power.

  16. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012

  17. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    PubMed

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  18. Fall detection for multiple pedestrians using depth image processing technique.

    PubMed

    Yang, Shih-Wei; Lin, Shir-Kuan

    2014-04-01

    A fall detection method based on depth image analysis is proposed in this paper. As different from the conventional methods, if the pedestrians are partially overlapped or partially occluded, the proposed method is still able to detect fall events and has the following advantages: (1) single or multiple pedestrian detection; (2) recognition of human and non-human objects; (3) compensation for illumination, which is applicable in scenarios using indoor light sources of different colors; (4) using the central line of a human silhouette to obtain the pedestrian tilt angle; and (5) avoiding misrecognition of a squat or stoop as a fall. According to the experimental results, the precision of the proposed fall detection method is 94.31% and the recall is 85.57%. The proposed method is verified to be robust and specifically suitable for applying in family homes, corridors and other public places. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements

    NASA Astrophysics Data System (ADS)

    Bennett, N. S.; Wong, C. S.; McNally, P. J.

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)—a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  20. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements.

    PubMed

    Bennett, N S; Wong, C S; McNally, P J

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)-a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  1. Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart

    2008-03-01

    Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.

  2. Multifocal projection: a multiprojector technique for increasing focal depth.

    PubMed

    Bimber, Oliver; Emmerling, Andreas

    2006-01-01

    In this paper, we describe a novel multifocal projection concept that applies conventional video projectors and camera feedback. Multiple projectors with differently adjusted focal planes, but overlapping image areas are used. They can be either differently positioned in the environment or can be integrated into a single projection unit. The defocus created on an arbitrary surface is estimated automatically for each projector pixel. If this is known, a final image with minimal defocus can be composed in real-time from individual pixel contributions of all projectors. Our technique is independent of the surfaces' geometry, color and texture, the environment light, as well as of the projectors' position, orientation, luminance, and chrominance.

  3. Automated Source Depth Estimation Using Array Processing Techniques

    DTIC Science & Technology

    2009-10-14

    Processing Techniques W.N. Junek, J. Roman- Nieves , R.C. Kemerait, M.T. Woods, and J.P. Creasey 14 October 2009 Approved for public release; Distribution...NUMBER W.N. Junek, J. Roman- Nieves , R.C. Kemerait, M.T. Woods, and J.P. Creasey 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...2006 American Geophysical Union Conference, San Francisco, CA. Junek, W.N., J. Roman- Nieves , R.C. Kemerait, M.T. Woods, and J.P. Creasey, (2007

  4. Aluminum 26, Be-10 and Cl-36 depth profiles in the Canyon Diablo iron meteorite

    NASA Technical Reports Server (NTRS)

    Michlovich, E. S.; Vogt, S.; Masarik, J.; Reedy, R. C.; Elmore, D.; Lipschutz, M. E.

    1994-01-01

    We have measured activities of the long-lived cosmogenic radionuclides Al-26, Be-10, and Cl-36 in 12 fragments of the iron meteorite Canyon Diablo and have constructed production rate-versus-depth profiles of those radionuclides. Profiles determined using differential particle fluxes calculated with the LAHET code system are in good agreement with Al-26, Be-10, and Cl-36 experimental data, but the agreement for Cl-36 was obtained only after neutron-induced cross sections were modified. Profiles calculated with lunar particle fluxes are much lower than experimental Canyon Diablo profiles. The cosmic ray exposure ages of most samples are near 540 m.y.

  5. Aluminum 26, Be-10 and Cl-36 depth profiles in the Canyon Diablo iron meteorite

    NASA Technical Reports Server (NTRS)

    Michlovich, E. S.; Vogt, S.; Masarik, J.; Reedy, R. C.; Elmore, D.; Lipschutz, M. E.

    1994-01-01

    We have measured activities of the long-lived cosmogenic radionuclides Al-26, Be-10, and Cl-36 in 12 fragments of the iron meteorite Canyon Diablo and have constructed production rate-versus-depth profiles of those radionuclides. Profiles determined using differential particle fluxes calculated with the LAHET code system are in good agreement with Al-26, Be-10, and Cl-36 experimental data, but the agreement for Cl-36 was obtained only after neutron-induced cross sections were modified. Profiles calculated with lunar particle fluxes are much lower than experimental Canyon Diablo profiles. The cosmic ray exposure ages of most samples are near 540 m.y.

  6. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  7. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  8. High resolution TOF - SIMS depth profiling of nano-film multilayers

    SciTech Connect

    Bhushan, K. G.; Mukundhan, R.; Gupta, S. K.

    2013-02-05

    We present the results of depth profiling studies conducted using an indigenously developed dual-beam high resolution Time-of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS) on thinfilm W-C-W multilayer structure grown on Si substrate. Opto 8 layers could be clearly identified. Mixing of layers is seen which from analysis using roughness model calculations indicate a mixing thickness of about 2nm that correspond to the escape depth of secondary ions from the sample.

  9. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    SciTech Connect

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen; Wang, Fuyi; Zhu, Zihua

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases are presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.

  10. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Quantification problems in depth profiling of pwr steels using Ar+ ion sputtering and XPS analysis.

    PubMed

    Ignatova, Velislava A; Van Den Berghe, Sven; Van Dyck, Steven; Popok, Vladimir N

    2006-10-01

    The oxide scales of AISI 304 formed in boric acid solutions at 300 degrees C and pH = 4.5 have been studied using X-ray photoelectron spectroscopy (XPS) depth profiling. The present focus is depth profile quantification both in depth and chemical composition on a molecular level. The roughness of the samples is studied by atomic force microscopy before and after sputtering, and the erosion rate is determined by measuring the crater depth with a surface profilometer and vertical scanning interferometry. The resulting roughness (20-30 nm), being an order of magnitude lower than the crater depth (0.2-0.5 microm), allows layer-by-layer profiling, although the ion-induced effects result in an uncertainty of the depth calibration of a factor of 2. The XPS spectrum deconvolution and data evaluation applying target factor analysis allows chemical speciation on a molecular level. The elemental distribution as a function of the sputtering time is obtained, and the formation of two layers is observed-one hydroxide (mainly iron-nickel based) on top and a second one deeper, mainly consisting of iron-chromium oxides.

  12. Pulse-shape discrimination in neutron depth profiling radioanalytical methods. Part II

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Havránek, V.; Hoffmann, J.; Pošta, S.; Fink, D.

    1999-01-01

    Pulse shape discrimination (PSD) is used for the reduction of radiation background in the depth sensitive neutron depth profiling method (NDP) based on the detection of charged particles from the (n, α) and (n, p) nuclear reactions induced by thermal neutrons on some light elements. The experimental NDP-PSD arrangement is described and its performance is demonstrated on the measurement of real samples. Background reduction by several orders of magnitude in the region below 1 MeV leads to a corresponding sensitivity improvement and to an extension of the measurable depth region for some light elements.

  13. The Use of Streambed Temperature Profiles to Estimate the Depth, Duration, and Rate of Percolation Beneath Arroyos

    NASA Astrophysics Data System (ADS)

    Constantz, Jim; Thomas, Carole L.

    1996-12-01

    Temporal variations in a streambed temperature profile between 30 and 300 cm beneath Tijeras Arroyo, New Mexico, were analyzed at 30-min intervals for 1990 to estimate the depth, duration, and rate of percolation during streamflows. The depth of percolation was clearly documented by the rapid response of the streambed temperature profile to streamflows. Results indicate that the streambed possessed small thermal gradients with significant diurnal variations from late November to late May, indicating that ephemeral streamflows created continuous, advection-dominated heat transport to depths below 300 cm during this period. Timing and duration of percolation suggested by temporal variations in the temperature profile were verified by comparison with measured streamflow records for the study reach over 1990. Percolation rates were estimated using a technique based on the travel time of the daily maximum temperature into the streambed. Percolation rates were compared with streambed seepage rates determined from measurements of streamflow loss, stream surface area, and stream evaporative loss for the entire study reach. Travel time estimates of streambed percolation rates ranged from 9 to 40 cm/hr, while streamflow estimates of streambed seepage rates ranged from 6 to 26 cm/hr during the study period. Discrepancies between streambed percolation and seepage rates may be caused by differences in the areal extent of measurements for percolation versus seepages rates. In summary, the depth, timing, and duration of streamflow-induced percolation were well documented by temporal variations in a single streambed temperature profile, while rates of percolation based on the temperature profile were about double the seepage rates based on streamflow records for the entire study reach.

  14. The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos

    USGS Publications Warehouse

    Constantz, J.; Thomas, C.L.

    1996-01-01

    Temporal variations in a streambed temperature profile between 30 and 300 cm beneath Tijeras Arroyo, New Mexico, were analyzed at 30-min intervals for 1990 to estimate the depth, duration, and rate of percolation during streamflows. The depth of percolation was clearly documented by the rapid response of the streambed temperature profile to streamflows. Results indicate that the streambed possessed small thermal gradients with significant diurnal variations from late November to late May, indicating that ephemeral streamflows created continuous, advection-dominated beat transport to depths below 300 cm during this period. Timing and duration of percolation suggested by temporal variations in the temperature profile were verified by comparison with measured streamflow records for the study reach over 1990. Percolation rates were estimated using a technique based on the travel time of the daily maximum temperature into the streambed. Percolation rates were compared with streambed seepage rates determined from measurements of streamflow loss, stream surface area, and stream evaporative loss for the entire study reach. Travel time estimates of streambed percolation rates ranged from 9 to 40 cm/hr, while streamflow estimates of streambed seepage rates ranged from 6 to 26 cm/hr during the study period. Discrepancies between streambed percolation and seepage rates may be caused by differences in the areal extent of measurements for percolation versus seepages rates. In summary, the depth, timing, and duration of streamflow- induced percolation were well documented by temporal variations in a single streambed temperature profile, while rates of percolation based on the temperature profile were about double the seepage rates based on streamflow records for the entire study reach.

  15. Millennial-scale hard rock erosion rates deduced from luminescence-depth profiles

    NASA Astrophysics Data System (ADS)

    Sohbati, R.; Liu, J.; Murray, A. S.; Jain, M.; Pederson, J. L.; Guralnik, B.; Egholm, D. L.; Gupta, S.

    2015-12-01

    Optically stimulated luminescence (OSL) is a well-established Quaternary dating method that is conventionally used to determine the time when sedimentary grains were last exposed to daylight. Recently, a very different approach to this concept has helped develop a new technique to estimate the length of time a rock surface was exposed to daylight. When a rock surface is first exposed to daylight the charge population (and so the latent luminescence signal) trapped in its constituent minerals (e.g. quartz and feldspar) starts to decrease. This charge had accumulated due to previous exposure to natural ionizing radiation. As the surface is exposed to light for longer periods, the latent luminescence signal is reduced farther into the rock. In a rock surface which has been exposed to light for a prolonged period (decades to millennia), the remaining luminescence will be zero (fully bleached) at the surface and then increase, initially exponentially, before approaching saturation at a depth where charge detrapping due to light penetration is negligible compared to the rate of charge trapping due to the environmental dose rate. By modelling the characteristic shape of luminescence resetting with depth into rock surfaces, Sohbati et al. (2012) proposed a new surface-exposure dating technique based on OSL. Here we further develop the current model to include the effect of erosion rate on luminescence-depth profiles. By fitting the model to local known-age calibration samples, we first determine the site-specific resetting rates of the luminescence signal at rock surfaces. We then use the calibration values in a numerical model to derive the steady-state erosion rate for rocks of different mineralogy and different geological settings. The preliminary erosion rates obtained from glacial and landslide granite boulders from the Chinese Pamir Plateau are ~1 mm.ka-1, whereas active streambeds of Permian sandstone in the Grabens district of Canyonlands National Park, Utah, are

  16. Molecular depth profiling of multilayer polymer films using time-of-flight secondary ion mass spectrometry.

    PubMed

    Wagner, M S

    2005-02-01

    The low penetration depth and high sputter rates obtained using polyatomic primary ions have facilitated their use for the molecular depth profiling of some spin-cast polymer films by secondary ion mass spectrometry (SIMS). In this study, dual-beam time-of-flight (TOF) SIMS (sputter ion, 5 keV SF(5)(+); analysis ion, 10 keV Ar(+)) was used to depth profile spin-cast multilayers of poly(methyl methacrylate) (PMMA), poly(2-hydroxyethyl methacrylate) (PHEMA), and trifluoroacetic anhydride-derivatized poly(2-hydroxyethyl methacrylate) (TFAA-PHEMA) on silicon substrates. Characteristic positive and negative secondary ions were monitored as a function of depth using SF(5)(+) primary ion doses necessary to sputter through the polymer layer and uncover the silicon substrate (>5 x10(14) ions/cm(2)). The sputter rates of the polymers in the multilayers were typically less than for corresponding single-layer films, and the order of the polymers in the multilayer affected the sputter rates of the polymers. Multilayer samples with PHEMA as the outermost layer resulted in lowered sputter rates for the underlying polymer layer due to increased ion-induced damage accumulation rates in PHEMA. Additionally, the presence of a PMMA or PHEMA overlayer significantly decreased the sputter rate of TFAA-PHEMA underlayers due to ion-induced damage accumulation in the overlayer. Typical interface widths between adjacent polymer layers were 10-15 nm for bilayer films and increased with depth to approximately 35 nm for the trilayer films. The increase in interface width and observations using optical microscopy showed the formation of sputter-induced surface roughness during the depth profiles of the trilayer polymer films. This study shows that polyatomic primary ions can be used for the molecular depth profiling of some multilayer polymer films and presents new opportunities for the analysis of thin organic films using TOF-SIMS.

  17. 10Be depth-profile dating of glaciofluvial sediments in the northern Alpine Foreland

    NASA Astrophysics Data System (ADS)

    Claude, Anne; Akçar, Naki; Ivy-Ochs, Susan; Schlunegger, Fritz; Kubik, Peter; Christl, Marcus; Vockenhuber, Christof; Dehnert, Andreas; Rahn, Meinert; Schlüchter, Christian

    2016-04-01

    10Be depth-profile dating is based on the fact that nuclide production is decreasing as an exponential function of depth. This method requires collecting at least four sediment samples in a vertical profile. The obtained nuclide concentrations are plotted against depth and fitted depth-profiles to the measured dataset. The age is then calculated based on the best-fit. The requirements for this method are the following: sampling geological units in artificial outcrops with minimum thickness of soil (less than around 80 cm), preferably with a flat-topped landform in order to guarantee that the uppermost surface of the deposit remains as unmodified as possible and is related to a defined geomorphologic process. Additionally at least one sample, preferably three, from the uppermost one meter of the profile as the exponential decrease mainly occurs around this depth. No sample is collected from the overlying soil. In this study, we aim to establish the chronology of the oldest Quaternary sediments in the northern Alpine Foreland using depth-profile dating with 10Be. These ages contribute to the understanding of the Quaternary landscape evolution of the Alpine Foreland. Here, we unravel the chronology of five sites at different morphostratigraphic positions: Mandach and Ängi (canton Aargau), Stadlerberg and Irchel (canton Zurich) and Rechberg (Germany, 4 km from the border to Switzerland). All sites are abandoned gravel pits and at each site we collected between four and seven sediment samples. First results yielded chronologies between 0.8 and 2 Ma for these glaciofluvial deposits. Our study shows that this relatively new method is successful when the geological setting matches the methodological requirements.

  18. Elemental depth profiling of fluoridated hydroxyapatite: saving your dentition by the skin of your teeth?

    PubMed

    Müller, Frank; Zeitz, Christian; Mantz, Hubert; Ehses, Karl-Heinz; Soldera, Flavio; Schmauch, Jörg; Hannig, Matthias; Hüfner, Stefan; Jacobs, Karin

    2010-12-21

    Structural and chemical changes that arise from fluoridation of hydroxyapatite (Ca(5)(PO(4))(3)OH or "HAp"), as representing the synthetic counterpart of tooth enamel, are investigated by X-ray photoelectron spectroscopy (XPS). Elemental depth profiles with a depth resolution on the nanometer scale were determined to reveal the effect of fluoridation in neutral (pH = 6.2) and acidic agents (pH = 4.2). With respect to the chemical composition and the crystal structure, XPS depth profiling reveals different effects of the two treatments. In both cases, however, the fluoridation affects the surface only on the nanometer scale, which is in contrast to recent literature with respect to XPS analysis on dental fluoridation, where depth profiles of F extending to several micrometers were reported. In addition to the elemental depth profiles, as published in various other studies, we also present quantitative depth profiles of the compounds CaF(2), Ca(OH)(2), and fluorapatite (FAp) that were recently proposed by a three-layer model concerning the fluoridation of HAp in an acidic agent. The analysis of our experimental data exactly reproduces the structural order of this model, however, on a scale that differs by nearly 2 orders of magnitude from previous predictions. The results also reveal that the amount of Ca(OH)(2) and FAp is small compared to that of CaF(2). Therefore, it has to be asked whether such narrow Ca(OH)(2) and FAp layers really can act as protective layers for the enamel.

  19. Contrasting relationships between biogeochemistry and prokaryotic diversity depth profiles along an estuarine sediment gradient.

    PubMed

    O'Sullivan, Louise A; Sass, Andrea M; Webster, Gordon; Fry, John C; Parkes, R John; Weightman, Andrew J

    2013-07-01

    Detailed depth profiles of sediment geochemistry, prokaryotic diversity and activity (sulphate reduction and methanogenesis) were obtained along an estuarine gradient from brackish to marine, at three sites on the Colne estuary (UK). Distinct changes in prokaryotic populations [Archaea, Bacteria, sulphate-reducing bacteria (SRB) and methanogenic archaea (MA)] occurred with depth at the two marine sites, despite limited changes in sulphate and methane profiles. In contrast, the brackish site exhibited distinct geochemical zones (sulphidic and methanic) yet prokaryotic depth profiles were broadly homogenous. Sulphate reduction rates decreased with depth at the marine sites, despite nonlimiting sulphate concentrations, and hydrogenotrophic methanogenic rates peaked in the subsurface. Sulphate was depleted with depth at the brackish site, and acetotrophic methanogenesis was stimulated. Surprisingly, sulphate reduction was also stimulated in the brackish subsurface; potentially reflecting previous subsurface seawater incursions, anaerobic sulphide oxidation and/or anaerobic oxidation of methane coupled to sulphate reduction. Desulfobulbaceae, Desulfobacteraceae, Methanococcoides and members of the Methanomicrobiales were the dominant SRB and MA. Methylotrophic Methanococcoides often co-existed with SRB, likely utilising noncompetitive C1-substrates. Clear differences were found in SRB and MA phylotype distribution along the estuary, with only SRB2-a (Desulfobulbus) being ubiquitous. Results indicate a highly dynamic estuarine environment with a more complex relationship between prokaryotic diversity and sediment geochemistry, than previously suggested.

  20. {sup 152}Eu depths profiles granite and concrete cores exposed to the Hiroshima atomic bomb

    SciTech Connect

    Shizuma, Kiyoshi; Iwatani, Kazuo; Oka, Takamitsu

    1997-06-01

    Two granite and two concrete core samples were obtained within 500 m from the hypocenter of the Hiroshima atomic bomb, and the depth profile of {sup 152}Eu was measured to evaluate the incident neutron spectrum. The granite cores were obtained from a pillar of the Motoyasu Bridge located 101 m from the hypocenter and from a granite rock in the Shirakami Shrine (379 m); the concrete cores were obtained from a gate in the Gokoku Shrine (398 m) and from top of the Hiroshima bank (250 m). The profiles of the specific activities of the cores were measured to a depth of 40 cm from the surface using low background germanium (Ge) spectrometers. According to the measured depth profiles, relaxation lengths of incident neutrons were derived as 13.6 cm for Motoyasu Bridge pillar (granite), 12.2 cm for Shirakami Shrine core (granite), and 9.6 cm for concrete cores of Gokoku Shrine and Hiroshima Bank. In addition, a comparison of the granite cores in Hiroshima showed good agreement with Nagasaki data. Present results indicates that the depth profile of {sup 152}Eu reflects incident neutrons not so high but in the epithermal region. 19 refs., 7 figs., 8 tabs.

  1. 152Eu depth profiles in granite and concrete cores exposed to the Hiroshima atomic bomb.

    PubMed

    Shizuma, K; Iwatani, K; Hasai, H; Hoshi, M; Oka, T

    1997-06-01

    Two granite and two concrete core samples were obtained within 500 m from the hypocenter of the Hiroshima atomic bomb, and the depth profile of 152Eu was measured to evaluate the incident neutron spectrum. The granite cores were obtained from a pillar of the Motoyasu Bridge located 101 m from the hypocenter and from a granite rock in the Shirakami Shrine (379 m); the concrete cores were obtained from a gate in the Gokoku Shrine (398 m) and from a pillar top of the Hiroshima bank (250 m). The profiles of the specific activities of the cores were measured to a depth of 40 cm from the surface using low background germanium (Ge) spectrometers. According to the measured depth profiles, relaxation lengths of incident neutrons were derived as 13.6 cm for Motoyasu Bridge pillar (granite), 12.2 cm for Shirakami Shrine core (granite), and 9.6 cm for concrete cores of Gokoku Shrine and Hiroshima Bank. In addition, a comparison of the granite cores in Hiroshima showed good agreement with Nagasaki data. Present results indicates that the depth profile of 152Eu reflects incident neutrons not so high but in the epithermal region.

  2. IET. Control and equipment building (TAN620) sections. Depth and profile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Control and equipment building (TAN-620) sections. Depth and profile of earthen shield tunnels. Ralph M. Parsons 902-4-ANP-620-A-321. Date: February 1954. INEEL index code no. 035-0620-00-693-106906 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  3. An autonomous expendable conductivity, temperature, depth profiler for ocean data collection

    SciTech Connect

    Downing, J.; McCoy, K.

    1992-10-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions is described. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. It records two CTD profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. The AXCTD can provide ``sea truth`` for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  4. An autonomous expendable conductivity, temperature, depth profiler for ocean data collection

    SciTech Connect

    Downing, J. ); DeRoos, B.G. ); McCoy, K. )

    1992-10-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions is described. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. It records two CTD profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. The AXCTD can provide sea truth'' for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  5. Changes in the depth profile of water in the stratum corneum treated with water.

    PubMed

    Egawa, Mariko; Kajikawa, Tomoko

    2009-05-01

    Water in the stratum corneum (SC) plays an important role in keeping the skin surface soft and smooth. Information regarding the depth profile of the molecular composition of the skin, such as water and free amino acids, can be obtained non-invasively using the recently developed confocal Raman spectrometer. In this study, we investigated changes in the depth profile of water in the SC treated with water. We also unveil a relationship between the depth profile patterns of water content in the SC and cutaneous sensation. Depth profiles of Raman spectra in the region 2600-4000 cm(-1) were obtained using a 671-nm laser at 2 mum intervals from the skin surface toward the interior with a confocal Raman spectrometer. Water content (mass%), expressed in grams of water per 100 g wet tissue, was calculated from the water-to-protein ratio of the Raman band. Skin surface temperature was measured by an infrared irradiation thermometer. Changes in the depth profile of water and skin temperature were measured at 1, 5, and 10 min after the application of water to the skin surface. In addition, questionnaires regarding cutaneous sensation were administered. Water content in the middle to lower part of the SC increased with increased water-application time. Warming of the skin during water application increased the water-penetration amount, depth, and holding time in the SC. Steamer application increased water content particularly in the upper part of the SC. Increasing water content in the upper part of the SC was associated with cutaneous sensations, such as hydrate and water-rich feelings. On the other hand, the increasing water content in the middle and lower part of the SC was associated with water penetration and tension feelings. The water content in the upper part of the SC changed easily. When water was applied externally, the water content in both the upper and middle/lower part of the SC increased with increasing water-application time. In addition, warming of the skin

  6. Nondestructive elemental depth-profiling analysis by muonic X-ray measurement.

    PubMed

    Ninomiya, Kazuhiko; Kubo, Michael K; Nagatomo, Takashi; Higemoto, Wataru; Ito, Takashi U; Kawamura, Naritoshi; Strasser, Patrick; Shimomura, Koichiro; Miyake, Yasuhiro; Suzuki, Takao; Kobayashi, Yoshio; Sakamoto, Shinichi; Shinohara, Atsushi; Saito, Tsutomu

    2015-05-05

    Elemental analysis of materials is fundamentally important to science and technology. Many elemental analysis methods have been developed, but three-dimensional nondestructive elemental analysis of bulk materials has remained elusive. Recently, our project team, dreamX (damageless and regioselective elemental analysis with muonic X-rays), developed a nondestructive depth-profiling elemental analysis method after a decade of research. This new method utilizes a new type of probe; a negative muon particle and high-energy muonic X-rays emitted after the muon stops in a material. We performed elemental depth profiling on an old Japanese gold coin (Tempo-Koban) using a low-momentum negative muon beam and successfully determined that the Au concentration in the coin gradually decreased with depth over a micrometer length scale. We believe that this method will be a promising tool for the elemental analysis of valuable samples, such as archeological artifacts.

  7. RBS and PIXE study of gallium depth profiling in ZSM-5 gallo-aluminosilicate zeolites

    NASA Astrophysics Data System (ADS)

    Gabelica, Zelimir; Demortier, Guy

    1998-03-01

    Gallium concentration depth profiling in various as-synthesised and post-synthesis thermally treated Ga- and (Ga,Al)-ZSM-5 zeolites was quantitatively evaluated by RBS. This technique proved for the first time that Ga-ZSM-5 synthesised in the presence of methylamine involves a homogeneous Ga framework distribution. When both Al and Ga are present in the gel precursor, they form mixed complexes with methylamine and incorporate the zeolite lattice at different rates while some unreacted Ga-amino complex overcoats the outer rim of the crystals. Gallosilicates synthesised in the fluoride medium show a fairly homogeneous Ga incorporation with an increased Ga concentration on surface due to its overcoating by residual Ga fluoro complexes. Post-synthesis thermal treatments result in a partial degalliation of the framework that could be quantified by RBS. The nature, mobility and location of the extra framework Ga species markedly depend on the calcination conditions. A rapid calcination in dry conditions leads to the formation of extra framework Ga oxides that migrate towards the crystal core. Under milder heating, these species stay homogeneously partitioned within the crystal channels. Under a humid atmosphere, the extra framework Ga species migrate towards the crystal surface, the migration being enhanced by a partial reduction of Ga during non-oxidative treatments. Humid air treatment maintains the homogeneous distribution of both Ga 2O 3 and residual Ga 3+ framework ions.

  8. In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries.

    PubMed

    Wang, Chengwei; Gong, Yunhui; Dai, Jiaqi; Zhang, Lei; Xie, Hua; Pastel, Glenn; Liu, Boyang; Wachsman, Eric; Wang, Howard; Hu, Liangbing

    2017-09-27

    The garnet-based solid state electrolyte (SSE) is considered a promising candidate to realize all solid state lithium (Li) metal batteries. However, critical issues require additional investigation before practical applications become possible, among which high interfacial impedance and low interfacial stability remain the most challenging. In this work, neutron depth profiling (NDP), a nondestructive and uniquely Li-sensitive technique, has been used to reveal the interfacial behavior of garnet SSE in contact with metallic Li through in situ monitoring of Li plating-stripping processes. The NDP measurement demonstrates predictive capabilities for diagnosing short-circuits in solid state batteries. Two types of cells, symmetric Li/garnet/Li (LGL) cells and asymmetric Li/garnet/carbon-nanotubes (LGC), are fabricated to emulate the behavior of Li metal and Li-free Li metal anodes, respectively. The data imply the limitation of Li-free Li metal anode in forming reliable interfacial contacts, and strategies of excessive Li and better interfacial engineering need to be investigated.

  9. Observations from a 4-year contamination study of a sample depth profile through Martian meteorite Nakhla.

    PubMed

    Toporski, Jan; Steele, Andrew

    2007-04-01

    Morphological, compositional, and biological evidence indicates the presence of numerous well-developed microbial hyphae structures distributed within four different sample splits of the Nakhla meteorite obtained from the British Museum (allocation BM1913,25). By examining depth profiles of the sample splits over time, morphological changes displayed by the structures were documented, as well as changes in their distribution on the samples, observations that indicate growth, decay, and reproduction of individual microorganisms. Biological staining with DNA-specific molecular dyes followed by epifluorescence microscopy showed that the hyphae structures contain DNA. Our observations demonstrate the potential of microbial interaction with extraterrestrial materials, emphasize the need for rapid investigation of Mars return samples as well as any other returned or impactor-delivered extraterrestrial materials, and suggest the identification of appropriate storage conditions that should be followed immediately after samples retrieved from the field are received by a handling/curation facility. The observations are further relevant in planetary protection considerations as they demonstrate that microorganisms may endure and reproduce in extraterrestrial materials over long (at least 4 years) time spans. The combination of microscopy images coupled with compositional and molecular staining techniques is proposed as a valid method for detection of life forms in martian materials as a first-order assessment. Time-resolved in situ observations further allow observation of possible (bio)dynamics within the system.

  10. Ensuring the homogeneity of spray pyrolised SnS thin films employing XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Sajeesh, T. H.; Deepa, K. G.; Vijayakumar, K. P.

    2017-05-01

    SnS thin films were prepared using chemical spray pyrolysis (CSP) technique. p-type SnS films with direct band gap of 1.33 eV and having very high absorption coefficient were obtained with the optimized deposition conditions. In this paper we focus on investigating the uniformity and phase purity of the hence deposited SnS films employing Raman and X-ray Photoelectron Spectroscopy (XPS) analysis. Raman Spectra of the films had only single peak corresponding to the Raman active Ag mode at 224 cm-1 which is characteristic for phase-pure SnS thin films. Detailed XPS analysis on these samples were performed by scanning the peaks for Sn, S, and O with high resolution to estimate the chemical states and composition. Employing Ar-ion sputtering, the depth profiles showing variation in concentration and binding energies of S, Sn, O over the sample thickness were obtained and the uniformity in composition along the thickness has been discussed in detail.

  11. Correction techniques for depth errors with stereo three-dimensional graphic displays

    NASA Technical Reports Server (NTRS)

    Parrish, Russell V.; Holden, Anthony; Williams, Steven P.

    1992-01-01

    Three-dimensional (3-D), 'real-world' pictorial displays that incorporate 'true' depth cues via stereopsis techniques have proved effective for displaying complex information in a natural way to enhance situational awareness and to improve pilot/vehicle performance. In such displays, the display designer must map the depths in the real world to the depths available with the stereo display system. However, empirical data have shown that the human subject does not perceive the information at exactly the depth at which it is mathematically placed. Head movements can also seriously distort the depth information that is embedded in stereo 3-D displays because the transformations used in mapping the visual scene to the depth-viewing volume (DVV) depend intrinsically on the viewer location. The goal of this research was to provide two correction techniques; the first technique corrects the original visual scene to the DVV mapping based on human perception errors, and the second (which is based on head-positioning sensor input data) corrects for errors induced by head movements. Empirical data are presented to validate both correction techniques. A combination of the two correction techniques effectively eliminates the distortions of depth information embedded in stereo 3-D displays.

  12. Enamel roughness and depth profile after phosphoric acid etching of healthy and fluorotic enamel.

    PubMed

    Torres-Gallegos, I; Zavala-Alonso, V; Patiño-Marín, N; Martinez-Castañon, G A; Anusavice, K; Loyola-Rodríguez, J P

    2012-06-01

    Dental fluorosis requires aesthetic treatment to improve appearance and etching of enamel surfaces with phosphoric acid is a key step for adhesive restorations. The aim of this study was to evaluate surface roughness and a depth profile in healthy and fluorotic enamel before and after phosphoric acid etching at 15, 30 and 60 seconds. One hundred and sixty enamel samples from third molars with no fluorosis to severe fluorosis were evaluated by atomic force microscopy. Healthy enamel showed a statistically significant difference (p < 0.05) between mean surface roughness at 15 seconds (180.3 nm), 30 seconds (260.9 nm) and 60 seconds (346.5 nm); depth profiles revealed a significant difference for the 60 second treatment (4240.2 nm). For mild fluorosis, there was a statistically significant difference (p < 0.05) between mean surface roughness for 30 second (307.8 nm) and 60 second (346.6 nm) treatments; differences in depth profiles were statistically significant at 15 seconds (2546.7 nm), 30 seconds (3884.2 nm) and 60 seconds (3612.1 nm). For moderate fluorosis, a statistically significant difference (p < 0.05) was observed for surface roughness for 30 second (324.5 nm) and 60 second (396.6 nm) treatments. Surface roughness and depth profile analyses revealed that the best etching results were obtained at 15 seconds for the no fluorosis and mild fluorosis groups, and at 30 seconds for the moderate fluorosis group. Increasing the etching time for severe fluorosis decreased surface roughness and the depth profile, which suggests less micromechanical enamel retention for adhesive bonding applications. © 2012 Australian Dental Association.

  13. Measuring glacial erosion of bedrock landforms with cosmogenic nuclide depth profiles

    NASA Astrophysics Data System (ADS)

    Ploskey, Z. T.; Stone, J. O.

    2013-12-01

    Erosion by glaciers and ice sheet shapes alpine and continental topography, renews soil cover, and plays a crucial role in the long-term carbon cycle by exposing fresh silicate rock to weathering. Rates of glacial erosion are difficult to quantify directly, and sediment budgets provide only catchment-wide averages. We have developed a method for measuring long-term average subglacial erosion at the outcrop scale, based on inverse analysis of cosmogenic nuclide depth profiles. Cosmogenic nuclide production decreases with depth (markedly so by 2-3 m depth), but persists at low levels to depths of tens to hundreds of meters. Because subglacial erosion removes only the upper part of the nuclide profile, nuclides can accumulate in the deep production zone of the profile over many glacial cycles. Using the Neighorhood Algorithm, we invert depth profile measurements for posterior probability distributions of recent and long term average erosion rates. However, inversion using any method requires putting constraints on the fraction of time that the rock surface has been exposed, and for rapid erosion, low concentrations require difficult measurements. One can not deduce specific erosional history, but it is possible to approximate the erosion rate over the past million years or less. We measured Be-10 in trial profiles from quarry sections on glacially-shaped mountains in Maine. Initial results indicate glacial erosion rates at these sites of 70-80 m/Myr, assuming the surface is ice-covered 15% of the time. We plan to measure two drill cores from a third site, to contrast abrasion rates on the mountain summit with rates of erosion dominated by plucking from lee-side surfaces.

  14. The relationship between depth profiles of nitrogen concentration, hardness, and wear rate in ion-implanted Ti—6Al—4V

    NASA Astrophysics Data System (ADS)

    Blanchard, James P.; Chen, An; Qiu, Bogin

    1993-07-01

    The property changes induced by nitrogen ion implantation of Ti sbnd 6Al sbnd 4V alloys are considered, with emphasis on the effects of the nitrogen concentration profiles on hardness and wear rate. The comparison of the measured hardness profile to the profile from a finite element simulation reinforces the assumption that nitride formation, rather than damage, is the primary hardening mechanism. In addition, these techniques allow determination of the increase in the yield stress caused by the ion implantation. In this case, a ten-fold increase in the yield stress is found. Wear rate profiles are compared to the nitrogen concentration profile and are found to be low at depths greater than the nitrogen profile depth. This is assumed to occur because of the geometry of the wear test device.

  15. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.

    2009-12-01

    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed

  16. A technique using a stellar spectrographic plate to measure terrestrial ozone column depth

    SciTech Connect

    Wong, Alec Y.

    1995-08-01

    This thesis examines the feasibility of a technique to extract ozone column depths from photographic stellar spectra in the 5000--7000 Angstrom spectral region. A stellar spectrographic plate is measured to yield the relative intensity distribution of a star`s radiation after transmission through the earth`s atmosphere. The amount of stellar radiation absorbed by the ozone Chappuis band is proportional to the ozone column depth. The measured column depth is within 10% the mean monthly value for latitude 36{degree}N, however the uncertainty is too large to make the measurement useful. This thesis shows that a 10% improvement to the photographic sensitivity uncertainty can decrease the column depth uncertainty to a level acceptable for climatic study use. This technique offers the possibility of measuring past ozone column depths.

  17. Effect of hold depth and grip technique on maximal finger forces in rock climbing.

    PubMed

    Amca, Arif Mithat; Vigouroux, Laurent; Aritan, Serdar; Berton, Eric

    2012-01-01

    The aim of this study was to understand how the commonly used climbing-specific grip techniques and hold depths influence the finger force capacities. Ten advanced climbers performed maximal voluntary force on four different hold depths (from 1 to 4 cm) and in two force directions (antero-posterior and vertical) using three grip techniques (slope, half crimp and full crimp). A specially designed platform instrumented with a 6-degrees-of-freedom (DoF) force/torque sensor was used to record force values. Results showed that the maximal vertical forces differed significantly according to the hold depth and the grip technique (ranged from 350.8 N to 575.7 N). The maximal vertical forces increased according to the hold depth but the form of this increase differed depending on grip technique. These results seemed to be more associated with finger-hold contact/interaction than with internal biomechanical factors. Similar results were revealed for antero-posterior forces (ranged from 69.9 N to 138.0 N) but, it was additionally noted that climbers have different hand-forearm posture strategies with slope and crimp grip techniques when applying antero-posterior forces. This point is important as it could influence the body position adopted during climbing according to the chosen grip technique. For trainers and designers, a polynomial regression model was proposed in order to predict the mean maximal force based on hold depth and adopted grip technique.

  18. Reconstructing accurate ToF-SIMS depth profiles for organic materials with differential sputter rates

    PubMed Central

    Taylor, Adam J.; Graham, Daniel J.; Castner, David G.

    2015-01-01

    To properly process and reconstruct 3D ToF-SIMS data from systems such as multi-component polymers, drug delivery scaffolds, cells and tissues, it is important to understand the sputtering behavior of the sample. Modern cluster sources enable efficient and stable sputtering of many organics materials. However, not all materials sputter at the same rate and few studies have explored how different sputter rates may distort reconstructed depth profiles of multicomponent materials. In this study spun-cast bilayer polymer films of polystyrene and PMMA are used as model systems to optimize methods for the reconstruction of depth profiles in systems exhibiting different sputter rates between components. Transforming the bilayer depth profile from sputter time to depth using a single sputter rate fails to account for sputter rate variations during the profile. This leads to inaccurate apparent layer thicknesses and interfacial positions, as well as the appearance of continued sputtering into the substrate. Applying measured single component sputter rates to the bilayer films with a step change in sputter rate at the interfaces yields more accurate film thickness and interface positions. The transformation can be further improved by applying a linear sputter rate transition across the interface, thus modeling the sputter rate changes seen in polymer blends. This more closely reflects the expected sputtering behavior. This study highlights the need for both accurate evaluation of component sputter rates and the careful conversion of sputter time to depth, if accurate 3D reconstructions of complex multi-component organic and biological samples are to be achieved. The effects of errors in sputter rate determination are also explored. PMID:26185799

  19. Reconstructing accurate ToF-SIMS depth profiles for organic materials with differential sputter rates.

    PubMed

    Taylor, Adam J; Graham, Daniel J; Castner, David G

    2015-09-07

    To properly process and reconstruct 3D ToF-SIMS data from systems such as multi-component polymers, drug delivery scaffolds, cells and tissues, it is important to understand the sputtering behavior of the sample. Modern cluster sources enable efficient and stable sputtering of many organics materials. However, not all materials sputter at the same rate and few studies have explored how different sputter rates may distort reconstructed depth profiles of multicomponent materials. In this study spun-cast bilayer polymer films of polystyrene and PMMA are used as model systems to optimize methods for the reconstruction of depth profiles in systems exhibiting different sputter rates between components. Transforming the bilayer depth profile from sputter time to depth using a single sputter rate fails to account for sputter rate variations during the profile. This leads to inaccurate apparent layer thicknesses and interfacial positions, as well as the appearance of continued sputtering into the substrate. Applying measured single component sputter rates to the bilayer films with a step change in sputter rate at the interfaces yields more accurate film thickness and interface positions. The transformation can be further improved by applying a linear sputter rate transition across the interface, thus modeling the sputter rate changes seen in polymer blends. This more closely reflects the expected sputtering behavior. This study highlights the need for both accurate evaluation of component sputter rates and the careful conversion of sputter time to depth, if accurate 3D reconstructions of complex multi-component organic and biological samples are to be achieved. The effects of errors in sputter rate determination are also explored.

  20. Numerical Simulations of Carbon and Nitrogen Composition-Depth Profiles in Nitrocarburized Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoting; Michal, Gary M.; Ernst, Frank; Kahn, Harold; Heuer, Arthur H.

    2014-09-01

    Unusual composition-depth profiles have been observed after low-temperature nitrocarburization of austenitic stainless steels. When nitridation is performed after carburization, the carbon concentration in the nitrogen diffusion zone is reduced from ≈10 to ≈2 at. pct. Conversely, the carbon concentration in advance of the nitrogen diffusion zone is as high as 10 at. pct. This has been called a "push" effect of nitrogen on carbon, but this concept is non-physical. The profiles can be better understood from conventional thermodynamic principles, recognizing that (1) diffusion always occurs in response to gradients in chemical potentials and (2) the diffusivity of interstitial solutes in austenite is strongly concentration dependent, increasing dramatically with higher solute concentrations. Parameters from the CALPHAD literature quantitatively indicate that interstitial nitrogen and carbon in austenitic stainless steel mutually increase their chemical potentials. Based on these data, we have conducted numerical simulations of composition-depth profiles that correctly account for the chemical potential gradients and the concentration dependence of the diffusion coefficients for nitrogen and carbon. The simulations predict the "push" effect observed on nitridation after carburization, as well as the corresponding composition-depth profiles for other scenarios, e.g., carburization followed by nitridation or simultaneous nitridation and carburization (nitrocarburization).

  1. Depth profiling 137Cs and 60Co non-intrusively for a suite of industrial shielding materials and at depths beyond 50 mm.

    PubMed

    Adams, Jamie C; Joyce, Malcolm J; Mellor, Matthew

    2012-07-01

    A phantom has been used to position two radiation sources, separately, when buried under dry-silica sand at depths between 5 and 50 mm. A γ-ray energy spectrum was then measured at every 1 mm depth. Principal component analysis has been conducted, which has led to a non-linear fit being established, allowing the depth of entrainment to be accurately inferred. The technique has been expanded for additional shielding media: water, aggregate and both wet and dry soil. The technique has also been expanded beyond the previous depth constraint of 50 mm.

  2. Depth profiles of oxygen precipitates in nitride-coated silicon wafers subjected to rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.

    2013-07-01

    Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.

  3. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  4. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  5. Oxygen bleed-in during SIMS depth profiling: curse or blessing?

    NASA Astrophysics Data System (ADS)

    Zalm, P. C.; Vriezema, C. J.

    1992-02-01

    Oxygen flooding of the target during SIMS depth profiling finds widespread application foranumber of reasons. Among others it enhances the (positive) secondary ionization efficiency, helps in suppressing bombardment-induced surface topography development and reduces the transition time to steady-state erosion conditions. These attractive properties are offset by a number of artefacts that may be introduced by O 2 inlet. A summary of vices and virtues, largely based on existing knowledge, is presented. Then one of the few open questions is addressed, namely to what extent O 2 bleed-in ffects depth resolution. This is examined in some detail by studying ultrashallow dopant profiles of B, P, Ga or Sb in Si by SIMS with and without O 2 leak.

  6. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  7. Simulation of oxide sputtering and SIMS depth profiling of delta-doped layer

    NASA Astrophysics Data System (ADS)

    Yamamura, Y.; Ishida, M.

    2003-01-01

    Using the dynamic Monte Carlo code, ACAT-DIFFUSE, the oxide sputtering and the SIMS depth profiling of a multilayered thin film sample was investigated. The ACAT-DIFFUSE code is based on the binary collision approximation, taking into account the generation of interstitial atoms and vacancies, annihilation of vacancies, diffusion and the relaxation of target materials according to the packing condition which include not only beam and target particles but also defects (interstitial atoms and vacancies). The observed shift of the delta layer peak to the surface in SIMS depth profiles can be reproduced by the ACAT-DIFFUSE simulation. It is found that this peak shift is mainly due to the relaxation or expansion caused by defects produced behind the delta layer, not due to preferential sputtering.

  8. Depth profiling and stoichiometric changes due to high-fluence ion bombardments

    NASA Astrophysics Data System (ADS)

    Nakagawa, S. T.; Yamamura, Y.

    1988-06-01

    In order to investigate the depth profiles and stoichiometric changes of two component targets due to high-fluence bombardments, the ACAT-DIFFUSE code has been developed. This ACAT-DIFFUSE code is composed of the ACAT code (slowing down process) and a part of the DIFFUSE code (diffusion process of thermalized particles). This ACAT-DIFFUSE code is applied to calculations of depth profiles and stoichiometric changes due to low energy Ar ion bombardments on two component target. It is found that the replacement reaction and ion-induced diffusion play a role in the stoichiometric change due to high-fluence ion bombardment, and reasonable agreement with experimental results is obtained.

  9. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  10. Elemental depth profiling in transparent conducting oxide thin film by X-ray reflectivity and grazing incidence X-ray fluorescence combined analysis

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.

    2017-09-01

    The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.

  11. Comparability and accuracy of nitrogen depth profiling in nitrided austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Manova, D.; Díaz, C.; Pichon, L.; Abrasonis, G.; Mändl, S.

    2015-04-01

    A comparative study of nitrogen depth profiles in low energy ion implantation nitrided austenitic stainless steel 1.4301 by glow discharge optical emission spectroscopy (GDOES), secondary ion mass spectrometry (SIMS) and nuclear reaction analysis (NRA) is presented. All methods require calibration either from reference samples or known scattering or reaction cross sections for the nitrogen concentration, while the methods producing a sputter crater - SIMS and GDOES - need additional conversion from sputter time to depth. NRA requires an assumption of material density for a correct conversion from the 'natural' units inherent to all ion beam analysis methods into 'conventional' depth units. It is shown that a reasonable agreement of the absolute concentrations and very good agreement of the layer thickness is obtained. The observed differences in broadening between the nitrogen distribution near the surface and the deeper region of the nitrided layer-steel interface are discussed on the basis of surface contaminations, surface roughening and energy straggling effects.

  12. Depth profiling of mechanical degradation of PV backsheets after UV exposure

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohong; Krommenhoek, Peter J.; Lin, Chiao-Chi; Yu, Li-Chieh; Nguyen, Tinh; Watson, Stephanie S.

    2015-09-01

    Polymeric multilayer backsheets protect the photovoltaic modules from damage of moisture and ultraviolet (UV) while providing electrical insulation. Due to the multilayer structures, the properties of the inner layers of the backsheets, including their interfaces, during weathering are not well known. In this study, a commercial type of PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films was selected as a model system for a depth profiling study of mechanical properties of a backsheet film during UV exposure. The NIST SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) was used for the accelerated laboratory exposure of the materials with UV at 85°C and two relative humidities (RH) of 5 % (dry) and 60 % (humid). Cryomicrotomy was used to obtain cross-sectional PPE samples. Mechanical depth profiling of the cross-sections of aged and unaged samples was conducted by nanoindentation, and a peak-force based quantitative nanomechanical atomic force microscopy (QNM-AFM) mapping techniquewas used to investigate the microstructure and adhesion properties of the adhesive tie layers. The nanoindentation results show the stiffening of the elastic modulus in the PET outer and pigmented EVA layers. From QNM-AFM, the microstructures and adhesion properties of the adhesive layers between PET outer and core layers and between PET core and EVA inner layers are revealed and found to degrade significantly after aging under humidity environment. The results from mechanical depth profiling of the PPE backsheet are further related to the previous chemical depth profiling of the same material, providing new insights into the effects of accelerated UV and humidity on the degradation of multilayer backsheet.

  13. Dating a tropical ice core by time-frequency analysis of ion concentration depth profiles

    NASA Astrophysics Data System (ADS)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2014-09-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and ice age generally cannot be easily established and requires the combination of numerous investigations and/or modelling efforts. This paper presents a new approach to ice core dating based on time-frequency analysis of chemical profiles at a site where seasonal patterns may be significantly distorted by sporadic events of regional importance, specifically at the summit area of Nevado Illimani (6350 m a.s.l.), located in the eastern Bolivian Andes (16°37' S, 67°46' W). We used ion concentration depth profiles collected along a 100 m deep ice core. The results of Fourier time-frequency and wavelet transforms were first compared. Both methods were applied to a nitrate concentration depth profile. The resulting chronologies were checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points. With this first experiment, we demonstrated the efficiency of Fourier time-frequency analysis when tracking the nitrate natural variability. In addition, we were able to show spectrum aliasing due to under-sampling below 70 m. In this article, we propose a method of de-aliasing which significantly improves the core dating in comparison with annual layer manual counting. Fourier time-frequency analysis was applied to concentration depth profiles of seven other ions, providing information on the suitability of each of them for the dating of tropical Andean ice cores.

  14. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of

  15. A Systematic Review of the Evolution of Laser Doppler Techniques in Burn Depth Assessment

    PubMed Central

    Fitzgerald O'Connor, Edmund; Philp, Bruce

    2014-01-01

    Aims. The introduction of laser Doppler (LD) techniques to assess burn depth has revolutionized the treatment of burns of indeterminate depth. This paper will systematically review studies related to these two techniques and trace their evolution. At the same time we hope to highlight current controversies and areas where further research is necessary with regard to LD imaging (LDI) techniques. Methods. A systematic search for relevant literature was carried out on PubMed, Medline, EMBASE, and Google Scholar. Key search terms included the following: “Laser Doppler imaging,” “laser Doppler flow,” and “burn depth.” Results. A total of 53 studies were identified. Twenty-six studies which met the inclusion/exclusion criteria were included in the review. Conclusions. The numerous advantages of LDI over those of LD flowmetry have resulted in the former technique superseding the latter one. Despite the presence of alternative burn depth assessment techniques, LDI remains the most favoured. Various newer LDI machines with increasingly sophisticated methods of assessing burn depth have been introduced throughout the years. However, factors such as cost effectiveness, scanning of topographically inconsistent areas of the body, and skewing of results due to tattoos, peripheral vascular disease, and anaemia continue to be sighted as obstacles to LDI which require further research. PMID:25180087

  16. Depth sensing technique using time-to-peak of anode signal in CZT detectors

    NASA Astrophysics Data System (ADS)

    Fu, Jianqiang; Li, Yulan; Zhang, Lan; Li, Yuanjing; Niu, Libo; Wang, Yiming; Liu, Yilin; Li, Jun; Du, Yingshuai; Zhang, Wei; Liu, Yanqing

    2015-10-01

    This paper presents a depth sensing technique implemented on the CZT detectors, which uses the amplitude and the time-to-peak of the anode signal to reconstruct the depth of interaction and the initial deposited energy. The principle and procedure of the reconstruction are described in detail. The feasibility of this technique implemented on a Pixel CZT detector was investigated through simulations and a prototype was fabricated for an experimental test. The experimental results demonstrated the effectiveness of this technique. Depth indexes reconstructed by time-to-peak were in agreement with depth sensing by the C/A ratio, and the performance of the reconstructed spectrum improved obviously. Extensive investigation showed that it is feasible to extend this technique to Strengthened Electric Field Line Anode (SEFLA) detectors. Although the depth sensing had some limitation in practical application due to the non-uniform electric field, energy resolution was significantly improved from 3.2% (FWHM@662 keV) to 1.7%. Efforts will be made to apply this technique on the portable spectrometric systems based on SEFLA detectors.

  17. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  18. Alkyl nitrate (C1-C3) depth profiles in the tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.

    2007-01-01

    This paper reports the first depth profile measurements of methyl, ethyl, isopropyl and n-propyl nitrates in the tropical Pacific Ocean. Depth profile measurements were made at 22 stations during the Project Halocarbon Air Sea Exchange cruise, in warm pool, equatorial, subequatorial, and gyre waters. The highest concentrations, up to several hundred pM of methyl nitrate, were observed in the central Pacific within 8 degrees of the equator. In general, alkyl nitrate levels were highest in the surface mixed layer, and decreased with depth below the mixed layer. The spatial distribution of the alkyl nitrates suggests that there is a strong source associated with biologically productive ocean regions, that is characterized by high ratios of methyl:ethyl nitrate. However, the data do not allow discrimination between direct biological emissions and photochemistry as production mechanisms. Alkyl nitrates were consistently detectable at several hundred meters depth. On the basis of the estimated chemical loss rate of these compounds, we conclude that deep water alkyl nitrates must be produced in situ. Possible sources include free radical processes initiated by radioactive decay or cosmic rays, enzymatically mediated reactions involving bacteria, or unidentified chemical mechanisms involving dissolved organic matter.

  19. Depth profiling of polishing-induced contamination on fused silica surfaces

    SciTech Connect

    Kozlowski, M.R.; Carr, J.; Hutcheon, I,; Torres, R.; Sheehan, L. Camp, D.; Yan, M.

    1997-12-20

    Laser-induced damage on optical surfaces is often associated with absorbing contaminants introduced by the polishing process. This is particularly the case for UV optics. Here secondary ion mass spectroscopy (SIMS) was used to measure depth profiles of finished process contamination on fused silica surfaces. Contaminants detected include the major polishing compound components (Ce or Zr from CeO2 or ZrO2), Al presently largely because of the use of Al2O3 in the final cleaning process (Fe, Cu,Cr) incorporated during the polishing step or earlier grinding steps. Depth profile data typically showed an exponential decay of contaminant concentration to a depth of 100-200 nm. This depth is consistent with a polishing redeposition layers formed during the chemo-mechanical polishing of fused silica. Peak contaminant levels are typically in the 10-100 ppm range, except for Al with exceeds 1000 ppm. A strong correlation has been shown between the presence of a gray haze damage morphology and the use of CeO2 polishing compound. No strong correlation was found however between high levels of Ce, or any other contaminant and the low damage threshold was observed. In fact one of the strongest indications of a correlation is between increased damage thresholds and increased Zr contamination. This suggests that the correlation between redeposition layer and laser damage threshold is not simple an absorbing contaminant issue.

  20. An iterative algorithm for determining depth profiles of collection probability by electron-beam-induced current

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor; Breitenstein, Otwin

    2001-01-01

    An iterative algorithm for the derivation of depth profiles of the minority carrier collection probability in a semiconductor with or without a coating on the top is presented using energy-resolved electron-beam-induced current measurements in planar geometry. The calculation is based on the depth-dose function of Everhart and Hoff (Everhart T E and Hoff P H 1971 J. Appl. Phys. 42 5837) and on the penetration-range function of Kanaya and Okayama (Kanaya K and Okayama S 1972 J. Phys. D: Appl. Phys. 5 43) or on that of Fitting (Fitting H-J 1974 Phys. Status Solidi/ a 26 525). It can also be performed with any other depth-dose functions. Using this algorithm does not require us to make any assumptions on the shape of the collection profile within the depth of interest. The influence of an absorbing top contact and/or a limited thickness of the semiconductor layer appear in the result, but can also be taken explicitly into account. Examples using silicon and CIS solar cells as well as a GaAs LED are presented.

  1. LA-ICP-MS depth profiling perspective on cleaning protocols for elemental analyses in planktic foraminifers

    NASA Astrophysics Data System (ADS)

    Vetter, Lael; Spero, Howard J.; Russell, Ann D.; Fehrenbacher, Jennifer S.

    2013-08-01

    Measurements of trace metal ratios in foraminiferal calcite are routinely used to reconstruct paleoceanographic conditions. Analyses using solution-based inductively coupled plasma mass spectrometry (ICP-MS) require dissolution of the entire foraminifer shell. The potential exists for contamination from adherent clays, mineralized coatings, and other diagenetic components that confound the biogenic trace metal signal. We present results from a cleaning experiment on fossil specimens of the planktic foraminifer Orbulina universa that were cracked into several shell fragments and subjected to different cleaning protocols. We use laser ablation ICP-MS (LA-ICP-MS) depth profiling to evaluate the effects of reductive, oxidative, and chelating (diethylene-triamine pentaacetic acid) cleaning protocols on shell Mg/Ca and Ba/Ca ratios. Using the natural pattern of intrashell Mg/Ca heterogeneity exhibited by O. universa, we demonstrate that reductive and oxidative cleaning can dissolve shell calcite from available surfaces, although intrashell Mg/Ca minima and maxima are unaffected. High-resolution depth profiles can be used to identify areas of heterogeneous intrashell Ba/Ca, which can be excluded from computations of whole-shell Ba/Ca. The size and density of shell pores plays a major role in the degree of contamination from sedimentary material. We demonstrate an approach for computing whole-shell Me/Ca ratios from LA-ICP-MS depth profiles that accounts for potential contamination and diagenetic overprinting.

  2. Novel approach of signal normalization for depth profile of cultural heritage materials

    NASA Astrophysics Data System (ADS)

    Syvilay, D.; Detalle, V.; Wilkie-Chancellier, N.; Texier, A.; Martinez, L.; Serfaty, S.

    2017-01-01

    The investigation of cultural heritage materials is always complex and specific because unique. Materials are most often heterogeneous and organized in several layers such as mural paintings or corrosion products. The characterization of a complete artwork's stratigraphy is actually one of the questions of science conservation. Indeed, the knowledge of these layers allows completing the history of the work of art and a better understanding of alteration processes in order to set up an appropriate conservation action. The LIBS technique has been employed to study the stratigraphy of an artwork thanks to the ablation laser. However, as we know, atomic information could be insufficient to characterize two materials composed by the same based elements. Therefore, an additional molecular analysis, like Raman spectroscopy; is sometimes necessary for a better identification of the material in particular for organic coatings in cultural heritage. We suggest in this study to use Standard Normal Variate (SNV) as a common normalization for different kinds of spectra (LIBS and Raman spectroscopy) combined with a 3D colour representation for stratigraphic identification of the different layers composing the complex material from artwork. So in this investigation, the SNV method will be applied on LIBS and Raman spectra but also on baseline Raman spectra often considering as nuisance. The aim of this study is to demonstrate the versatility of SNV applied on varied spectra like LIBS, Raman spectra as well as the luminescence background. This original work considers the SNV with a 3D colour representation as a probable new perspective for an easy recognition of a structure layered with a direct overview of the depth profile of the artwork.

  3. Implication of Land Use and Belowground Weather on Nitrous Oxide Soil Depth Profiles and Denitrification Potential

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Song, B.; Saliendra, N.; Liebig, M. A.

    2013-12-01

    oxygen profiles followed similar patterns for cropland and prairie, ranging from 12 to 21%, with median values of 19 and 20% at both depths. We did not observe linear concentration gradients between 15 and 90 cm depths, likely due to differences in rates of production and consumption throughout the soil profile. Potential rates of denitrification at 0-15 cm were over two times higher in the cropland, as compared to prairie. We conclude that N2O production occurs not only close to the surface but also nearly a meter beneath both undisturbed prairie and cropland. Greater surface fluxes and N2O concentrations at all depths in the cropland under variable conditions point to enhanced N2O production in the absence of synthetic N addition from 2009-2013. While denitrification potential in the laboratory was greater beneath this alfalfa field, the soil oxygen profile measurements indicated conditions favorable for complete denitrification of N to N2 were rare at near-surface and sub-surface soil depths. Microbial N2O production and consumption processes vary with soil depth and land use in the absence of synthetic N inputs, and further investigation is warranted.

  4. Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: Comparison with resonant NRA and SIMS

    NASA Astrophysics Data System (ADS)

    Reiche, Ina; Castaing, Jacques; Calligaro, Thomas; Salomon, Joseph; Aucouturier, Marc; Reinholz, Uwe; Weise, Hans-Peter

    2006-08-01

    Hydrogen is present in anhydrous materials as a result of their synthesis and of their environment during conservation. IBA provides techniques to measure H concentration depth profiles allowing to identify various aspects of the materials including the history of objects such as gemstones used in cultural heritage. A newly established ERDA set-up, using an external microbeam of alpha particles, has been developed to study hydrated near-surface layers in quartz and sapphire by non-destructive H depth profiling in different atmospheres. The samples were also analysed using resonant NRA and SIMS.

  5. Depth distribution of lithium in oxidized binary Al-Li alloys determined by secondary ion mass spectrometry and neutron depth profiling

    SciTech Connect

    Soni, K.K. ); Williams, D.B. ); Newbury, D.E.; Chi, P.; Downing, R.G.; Lamaza, G. )

    1993-01-01

    Oxidation of binary Al-Li alloys during short exposures at 530 C and long exposures at 200 C was studied with regard to the Li distribution. Secondary ion mass spectrometry (SIMS) and neutron depth profiling (NDP) were used to obtain quantitative Li depth profiles across the surface oxide layer and the underlying alloy. The underlying alloy was depleted in Li as a result of oxidation at 530 and 200 C. The SIMS and NDP results showed good mutual agreement and were used to evaluate the oxide thickness, the Li concentration at the oxide-ally interface, and the mass balance between oxide and alloy. The Li depletion profiles in the alloy were also calculated using the interdiffusion coefficients reported in the literature and compared with the measured profiles; the two profiles differed at 530 C but showed good agreement at 200 C.

  6. An effective visualization technique for depth perception in augmented reality-based surgical navigation.

    PubMed

    Choi, Hyunseok; Cho, Byunghyun; Masamune, Ken; Hashizume, Makoto; Hong, Jaesung

    2016-03-01

    Depth perception is a major issue in augmented reality (AR)-based surgical navigation. We propose an AR and virtual reality (VR) switchable visualization system with distance information, and evaluate its performance in a surgical navigation set-up. To improve depth perception, seamless switching from AR to VR was implemented. In addition, the minimum distance between the tip of the surgical tool and the nearest organ was provided in real time. To evaluate the proposed techniques, five physicians and 20 non-medical volunteers participated in experiments. Targeting error, time taken, and numbers of collisions were measured in simulation experiments. There was a statistically significant difference between a simple AR technique and the proposed technique. We confirmed that depth perception in AR could be improved by the proposed seamless switching between AR and VR, and providing an indication of the minimum distance also facilitated the surgical tasks. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Molecular depth-profiling of polycarbonate with low-energy Cs+ ions.

    PubMed

    Mine, Nicolas; Douhard, Bastien; Brison, Jeremy; Houssiau, Laurent

    2007-01-01

    In this work, we explored the possibility of performing molecular depth-profiling by using very low-energy (about 200 eV) monoatomic Cs(+) ions. We show, for the first time, that this simple approach is successful on polymer layers of polycarbonate (PC). Under 200 eV Cs(+) irradiation of PC, a fast decrease of all characteristic negatively charged molecular ion signals is first observed but, rather surprisingly, these signals reach a minimum before rising again. A steady state is reached at which time most specific PC fragments are detected, some with even higher signal intensity (e.g. C(6)H(5)O(-)) than before irradiation. It is believed that the implanted Cs plays a major role in enhancing the negative ionisation of molecular fragments, leading to their easy detection for all the profile, although some material degradation obviously occurs. In the positive ion mode, all molecular fragments of the polymer disappear very rapidly, but clusters combining two Cs atoms and one molecular fragment (e.g. Cs(2)C(6)H(5)O(+)) are detected during the profile, proving that some molecular identification remains possible. In conclusion, this work presents a simple approach to molecular depth-profiling, complementary to cluster ion beam sputtering. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. A simple method of obtaining concentration depth-profiles from X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1984-01-01

    The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.

  9. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NASA Astrophysics Data System (ADS)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  10. The effect of particle properties on the depth profile of buoyant plastics in the ocean.

    PubMed

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F; Schmid, Moritz S; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E W; Schoeneich-Argent, Rosanna I; Koelmans, Albert A

    2016-10-10

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5-1.5 and 1.5-5.0 mm) and types ('fragments' and 'lines'), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04-30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  11. Tissue diagnostics by depth profiling of optical characteristics using broadband fiber optic interferometry

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Farahi, Faramarz; Raja, M. Yasin A.; Svenson, Robert H.

    1996-02-01

    A broadband interferometer is used to acquire scattered light as a function of depth in biological media. The `tissue-light-signature' that is obtained by this depth scan can be correlated with the computer simulated light distributions for well defined tissue parameters, and wavelengths of specific interest. In theory, the collimated irradiation of heart tissue, by low coherence light will generate a statistically significant different light signature for respective myocardial tissues, and pathological tissue conditions. Interferometric axial scanning of in vitro myocardial tissues confirmed the statistically significant difference between normal, coagulated myocardium, and aneurysm at the 790 nm wavelength. The scanning depth however is presented limited by the intensity of the illumination and the choice of detection scheme. Identification of the local optical characteristics as a function of depth directly underneath the target zone will provide discrimination between healthy and pathological conditions in addition to real time assessment of laser dosimetry. Theoretically the scanning depth is limited to a maximum of 4 mm. The beam profile of the irradiation source significantly affects the ability to distinguish between certain tissues. Broadband interferometric axial tissue scanning, will provide a tool for an accurate light energy delivery guided by the desired outcome, while being able to verify the appropriate target location, in real time.

  12. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    PubMed Central

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460

  13. Uncertainty quantification of three-dimensional velocimetry techniques for small measurement depths

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Hain, Rainer; Kähler, Christian J.

    2016-05-01

    In this paper, the multi-camera techniques tomographic PTV and 3D-PTV as well as the single-camera defocusing PTV approach are assessed for flow measurements with a small measurement depth in conjunction with a high resolution along the optical axis. This includes the measurement of flows with strong velocity gradients in z direction and flow features, which have smaller scales than the actual light sheet thickness. Furthermore, in fields like turbomachinery, the measurement of flows in domains with small depth dimensions is of great interest. Typically, these domains have dimensions on the order of 100 mm in z direction and of 101 mm in x and y direction. For small domain depths, employing a 3D flow velocimetry technique is inevitable, since the measurement depths lie in the range of the light sheet thickness. To resolve strong velocity gradients and small-scale flow features along the z axis, the accuracy and spatial resolution of the 3D technique are very important. For the comparison of the different measurement methods, a planar Poiseuille flow is investigated. Quantitative uncertainty analyses reveal the excellent suitability of all three methods for the measurement of flows in domains with small measurement depths. Naturally, the multi-camera approaches tomographic PTV and 3D-PTV yield lower uncertainties, since they image the measurement volume from different angles. Other criteria, such as optical access requirements, hardware costs, and setup complexity, clearly favor defocusing PTV over the more complex multi-camera techniques.

  14. Energy-tunable x-ray diffraction: A tool for depth profiling in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Zolotoyabko, E.; Quintana, J. P.

    2002-03-01

    We have developed a new variant of depth-sensitive x-ray diffraction technique to study structural parameters in inhomogeneous polycrystalline materials. In this method, diffraction patterns are measured at different x-ray energies which are varied by small steps, and then the depth-resolved structural characteristics are retrieved from the energy-dependent x-ray diffraction data. In the current articles, this approach is applied to extract preferred orientation with depth resolution. In the case of uniaxial preferred orientation, the analytical algorithm has been developed based on March functions. Application of this technique to seashells allowed us to characterize the microstructure evolution in the nacre layer. Near the inner surface, adjacent to the mollusk mantle, the nacre consists of well-defined lamellas which reveal a high degree of the (001)-preferred orientation. This preferred orientation deteriorates in depth due to the accumulation of cracks and other imperfections. The texture distribution is characterized quantitatively by depth-dependent March parameters, which allows us to compare samples taken from different shells. In a similar way, energy-variable x-ray diffraction can be used for nondestructive characterization of a very broad spectrum of laminated structures and composite materials and systems.

  15. Direct evidence for anisotropic He diffusivity in zircon provided by laser depth profiling (Invited)

    NASA Astrophysics Data System (ADS)

    Hodges, K.; van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.

    2009-12-01

    While zircon (U-Th)/He dating has become an increasingly popular tool for studies of the thermal evolution of orogenic systems, several issues complicate interpretations of the geologic significance of zircon “dates”. Zircons frequently exhibit complex U-Th zoning, which makes corrections for alpha ejection loss uncertain. It has been known for decades that radiation damage enhances the rate of diffusive loss of helium in zircon, sometimes making the unique assignment of a (U-Th)/He closure temperature difficult. Here we consider another complicating factor: the proposal by Reich et al. (2007) - based on computer simulations - that He diffusion is anisotropic in zircon, which also may have significant implications regarding (U-Th)/He closure temperature. We present, for the first time, direct measurements of crystallographically controlled, anisotropic diffusion profiles in zircon that appear to support the conclusions of Reich et al. (2007). For this study, we conducted replicate vacuum heating experiments on slices from euhedral crystals of Cretaceous De Beers zircon from South Africa and Proterozoic Mud Tank zircon from Australia. (All slices were cut from the central portions of very large crystals in order to avoid natural alpha ejection profiles near crystal margins.) In each experiment, we heated slices of the two zircons cut both parallel and perpendicular to their c-axes for 24 hours at 415° C. Depth profiling of the resulting 4He diffusion profiles using an ArF excimer laser revealed extremely similar c-axis parallel diffusion profiles for both zircons, and extremely similar c-axis perpendicular diffusion profiles for both zircons. However, the c-axis parallel and perpendicular profiles were markedly different. The loss profiles parallel to c extended over twice as far into the crystals as did the perpendicular profiles, implying much more rapid thermally activated diffusion parallel to the c direction, as predicted by the Reich et al. models

  16. Analyses of thin films and surfaces by cold neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Soni, K. K.

    2004-11-01

    Neutron depth profiling (NDP) has been employed to examine manufacturing processes and starting materials for several high-technology applications. NDP combines nuclear and atomic physics processes to determine the concentration profile of several light elements in the near surface region (∼1-8 μm) of smooth surfaces. The method is both quantitative and non-destructive. Analyses are performed at the Center for Neutron Research at NIST on samples prepared at Corning Incorporated. Two types of samples have been analyzed: (1) Boron profiles are measured in glasses to determine B loss due to its volatilization during manufacturing. Surface depletion of B is a key characteristic of borosilicate materials for both chemical vapor deposition and conventional melting processes. (2) For lithium niobate, a quantitative measure of Li concentration can differentiate congruent and stoichiometric compositions and any surface depletion in commercial wafers.

  17. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  18. Technical note: A new approach for comparing soil depth profiles using bootstrapped Loess regression (BLR)

    NASA Astrophysics Data System (ADS)

    Keith, A. M.; Henrys, P.; Rowe, R. L.; McNamara, N. P.

    2015-12-01

    Understanding the consequences of different land uses for the soil system is important to better inform decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped Loess regressions (BLR). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil carbon (C). While this straightforward non-parametric approach may be most useful in comparing soil C or organic matter profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles.

  19. Technical note: A bootstrapped LOESS regression approach for comparing soil depth profiles

    NASA Astrophysics Data System (ADS)

    Keith, Aidan M.; Henrys, Peter A.; Rowe, Rebecca L.; McNamara, Niall P.

    2016-07-01

    Understanding the consequences of different land uses for the soil system is important to make better informed decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped LOESS regressions (BLRs). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil organic carbon (SOC). While this straightforward non-parametric approach may be most useful in comparing SOC profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles.

  20. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias H.; Alaoui, Abdallah; Kuells, Christoph; Leistert, Hannes; Meusburger, Katrin; Stumpp, Christine; Weiler, Markus; Alewell, Christine

    2014-11-01

    Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (δ18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection-dispersion model using δ18O values of precipitation (ranging from -24.7 to -2.9‰) as input data to simulate the δ18O profiles of soil water. The variability of δ18O values with depth within each soil profile and a comparison of the simulated and measured δ18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of δ18O in precipitation was found in several profiles, ranging from -14.5 to -4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46°. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated δ18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The δ18O value of snow (-17.7 ± 1.9‰) was absent in several measured δ18O profiles but present in the respective simulated δ18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied

  1. Inner defect depth detection using a multifrequency alternating current potential drop technique

    NASA Astrophysics Data System (ADS)

    Gan, Fangji; Li, Yuting; Wan, Zhengjun; Liao, Junbi

    2016-10-01

    The alternating current potential drop technique is usually used to monitor surface defects in metal structures by taking advantage of the skin effect. However, defects often occur in the inner walls of oil or gas pipes as a result of corrosion or erosion. In this work, a multifrequency exciting current is injected into a defective pipe to obtain a series of potential drop values. The magnitude of the potential drop decreases with decreasing frequency and finally tends toward a stable value. The trend of the potential drop is related to the depth of the defect. A general solution for calculating defect depth using this multifrequency alternating current potential drop technique is given.

  2. {sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815

    SciTech Connect

    Jull, A.J.T.; Cloudt, S.; Donahue, D.J.; Sisterson, J.M.; Reedy, R.C.; Masarik, J.

    1998-09-01

    Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C were observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.

  3. Depth profiling of galvanoaluminium-nickel coatings on steel by UV- and VIS-LIBS

    NASA Astrophysics Data System (ADS)

    Nagy, T. O.; Pacher, U.; Giesriegl, A.; Weimerskirch, M. J. J.; Kautek, W.

    2017-10-01

    Laser-induced depth profiling was applied to the investigation of galvanised steel sheets as a typical modern multi-layer coating system for environmental corrosion protection. The samples were ablated stepwise by the use of two different wavelengths of a frequency-converted Nd:YAG-laser, 266 nm and 532 nm, with a pulse duration of τ = 4 ns at fluences ranging from F = 50 to 250 J cm-2. The emission light of the resulting plasma was analysed as a function of both penetration depth and elemental spectrum in terms of linear correlation analysis. Elemental depth profiles were calculated and compared to EDX-cross sections of the cut sample. A proven mathematical algorithm designed for the reconstruction of layer structures from distorted emission traces caused by the Gaussian ablation profile can even resolve thin intermediate layers in terms of depth and thickness. The obtained results were compared to a purely thermally controlled ablation model. Thereby light-plasma coupling is suggested to be a possible cause of deviations in the ablation behaviour of Al. The average ablation rate h as a function of fluence F for Ni ranges from 1 to 3.5 μm/pulse for λ = 266 nm as well as for λ = 532 nm. In contrast, the range of h for Al differs from 2 to 4 μm/pulse for λ = 532 nm and 4 to 8 μm/pulse for λ = 266 nm in the exact same fluence range on the exact same sample.

  4. Neutron depth profiling measurements for implanted boron-10 characterization in semiconductor materials

    SciTech Connect

    Uenlue, K.; Saglam, M.; Wehring, B.W.

    1997-12-01

    The implantation of boron and other elements affects the physical and electrical properties of semiconductor materials. The quality of semiconductor devices is determined mainly by the dose and depth distribution of boron in the near-surface region and across interfacial boundaries. The capability to measure these quantities accurately is becoming more important with the production of {open_quotes}shallow junction{close_quotes} devices. A number of techniques are available to measure the boron doses and depth distribution in semiconductor materials, some of which have been developed in the past two decades. Traditionally, the semiconductor industry uses second ion mass spectroscopy (SIMS) for this purpose.

  5. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  6. Comparison of fullerene and large argon clusters for the molecular depth profiling of amino acid multilayers.

    PubMed

    Wehbe, N; Mouhib, T; Delcorte, A; Bertrand, P; Moellers, R; Niehuis, E; Houssiau, L

    2014-01-01

    A major challenge regarding the characterization of multilayer films is to perform high-resolution molecular depth profiling of, in particular, organic materials. This experimental work compares the performance of C60(+) and Ar1700(+) for the depth profiling of model multilayer organic films. In particular, the conditions under which the original interface widths (depth resolution) were preserved were investigated as a function of the sputtering energy. The multilayer samples consisted of three thin δ-layers (~8 nm) of the amino acid tyrosine embedded between four thicker layers (~93 nm) of the amino acid phenylalanine, all evaporated on to a silicon substrate under high vacuum. When C60(+) was used for sputtering, the interface quality degraded with depth through an increase of the apparent width and a decay of the signal intensity. Due to the continuous sputtering yield decline with increasing the C60(+) dose, the second and third δ-layers were shifted with respect to the first one; this deterioration was more pronounced at 10 keV, when the third δ-layer, and a fortiori the silicon substrate, could not be reached even after prolonged sputtering. When large argon clusters, Ar1700(+), were used for sputtering, a stable molecular signal and constant sputtering yield were achieved throughout the erosion process. The depth resolution parameters calculated for all δ-layers were very similar irrespective of the impact energy. The experimental interface widths of approximately 10 nm were barely larger than the theoretical thickness of 8 nm for the evaporated δ-layers.

  7. Quantitative considerations in medium energy ion scattering depth profiling analysis of nanolayers

    NASA Astrophysics Data System (ADS)

    Zalm, P. C.; Bailey, P.; Reading, M. A.; Rossall, A. K.; van den Berg, J. A.

    2016-11-01

    The high depth resolution capability of medium energy ion scattering (MEIS) is becoming increasingly relevant to the characterisation of nanolayers in e.g. microelectronics. In this paper we examine the attainable quantitative accuracy of MEIS depth profiling. Transparent but reliable analytical calculations are used to illustrate what can ultimately be achieved for dilute impurities in a silicon matrix and the significant element-dependence of the depth scale, for instance, is illustrated this way. Furthermore, the signal intensity-to-concentration conversion and its dependence on the depth of scattering is addressed. Notably, deviations from the Rutherford scattering cross section due to screening effects resulting in a non-coulombic interaction potential and the reduction of the yield owing to neutralization of the exiting, backscattered H+ and He+ projectiles are evaluated. The former mainly affects the scattering off heavy target atoms while the latter is most severe for scattering off light target atoms and can be less accurately predicted. However, a pragmatic approach employing an extensive data set of measured ion fractions for both H+ and He+ ions scattered off a range of surfaces, allows its parameterization. This has enabled the combination of both effects, which provides essential information regarding the yield dependence both on the projectile energy and the mass of the scattering atom. Although, absolute quantification, especially when using He+, may not always be achievable, relative quantification in which the sum of all species in a layer adds up to 100%, is generally possible. This conclusion is supported by the provision of some examples of MEIS derived depth profiles of nanolayers. Finally, the relative benefits of either using H+ or He+ ions are briefly considered.

  8. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    SciTech Connect

    Barlow, Anders J. Portoles, Jose F.; Cumpson, Peter J.

    2014-08-07

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-κ dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025 nm/min (3.95 × 10{sup −2} amu/atom in ion) for 6 keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

  9. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-05-08

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  10. XPS depth profiling of derivatized amine and anhydride plasma polymers: Evidence of limitations of the derivatization approach

    NASA Astrophysics Data System (ADS)

    Manakhov, Anton; Michlíček, Miroslav; Felten, Alexandre; Pireaux, Jean-Jacques; Nečas, David; Zajíčková, Lenka

    2017-02-01

    The quantitative analysis of the chemistry at the surface of functional plasma polymers is highly important for the optimization of their deposition conditions and, therefore, for their subsequent applications. The chemical derivatization of amine and carboxyl-anhydride layers is a well-known technique already applied by many researchers, notwithstanding the known drawback of the derivatization procedures like side or uncomplete reactions that could lead to "unreliable" results. In this work, X-ray photoelectron spectroscopy (XPS) combined with depth profiling with argon clusters is applied for the first time to study derivatized amine and carboxyl-anhydride plasma polymer layers. It revealed an additional important parameter affecting the derivatization reliability, namely the permeation of the derivatizing molecule through the target analysed layer, i.e. the composite effect of the probe molecule size and the layer porosity. Amine-rich films prepared by RF low pressure plasma polymerization of cyclopropylamine were derivatized with trifluoromethyl benzaldehide (TFBA) and it was observed by that the XPS-determined NH2 concentration depth profile is rapidly decreasing over top ten nanometers of the layer. The anhydride-rich films prepared by atmospheric plasma co-polymerization of maleic anhydride and C2H2 have been reacted with, parafluoroaniline and trifluoroethyl amine. The decrease of the F signal in top surface layer of the anhydride films derivatized by the "large" parafluoroaniline was observed similarly as for the amine films but the derivatization with the smaller trifluoroethylamine (TFEA) led to a more homogenous depth profile. The data analysis suggests that the size of the derivatizing molecule is the main factor, showing that the very limited permeation of the TFBA molecule can lead to underestimated densities of primary amines if the XPS analysis is solely carried out at a low take-off angle. In contrast, TFEA is found to be an efficient

  11. Uplifting of palsa peatlands by permafrost identified by stable isotope depth profiles

    NASA Astrophysics Data System (ADS)

    Krüger, Jan Paul; Conen, Franz; Leifeld, Jens; Alewell, Christine

    2015-04-01

    Natural abundances of stable isotopes are a widespread tool to investigate biogeochemical processes in soils. Palsas are peatlands with an ice core and are common in the discontinuous permafrost region. Elevated parts of palsa peatlands, called hummocks, were uplifted by permafrost out of the influence of groundwater. Here we used the combination of δ15N values and C/N ratio along depth profiles to identify perturbation of these soils. In the years 2009 and 2012 we took in total 14 peat cores from hummocks in two palsa peatlands near Abisko, northern Sweden. Peat samples were analysed in 2 to 4 cm layers for stable isotope ratios and concentrations of C and N. The uplifting of the hummocks by permafrost could be detected by stable isotope depth patterns with the highest δ15N value at permafrost onset, a so-called turning point. Regression analyses indicated in 11 of 14 peat cores increasing δ15N values above and decreasing values below the turning point. This is in accordance with the depth patterns of δ13C values and C/N ratios in these palsa peatlands. Onset of permafrost aggradation identified by the highest δ15N value in the profile and calculated from peat accumulation rates show ages ranging from 80 to 545 years and indicate a mean (±SD) peat age at the turning points of 242 (±66) years for Stordalen and 365 (±53) years for Storflaket peatland. The mean peat ages at turning points are within the period of the Little Ice Age. Furthermore, we tested if the disturbance, in this case the uplifting of the peat material, can be displayed in the relation of δ15N and C/N ratio following the concept of Conen et al. (2013). In unperturbed sites soil δ15N values cover a relatively narrow range at any particular C/N ratio. Changes in N cycling, i.e. N loss or gain, results in the loss or gain of 15N depleted forms. This leads to larger or smaller δ15N values than usual at the observed C/N ratio. All, except one, turning point show a perturbation in the depth

  12. On the Feasibility of Depth Profiling of Animal Tissue by Ultrashort Pulse Laser Ablation

    PubMed Central

    Milasinovic, Slobodan; Liu, Yaoming; Bhardwaj, Chhavi; Melvin, Blaze M.T.; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    Experiments were performed to examine the feasibility of MS depth profiling of animal tissue by ~75 fs, 800 nm laser pulses to expose underlying layers of tissue for subsequent MS analysis. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was used to analyze phospholipids and proteins from both intact bovine eye lens tissue and tissue ablated by ultrashort laser pulses. Laser desorption postionization (LDPI-MS) with 10.5 eV single photon ionization was also used to analyze cholesterol and other small molecules in the tissue before and after laser ablation. Scanning electron microscopy was applied to examine the ablation patterns in the tissue and estimate the depth of the ablation craters. Ultrashort pulse laser ablation was found able to remove a layer of several tens of micrometers from the surface of eye lens tissue while leaving the underlying tissue relatively undamaged for subsequent MS analysis. MS analysis of cholesterol, phospholipids, peptides, and various unidentified species did not reveal any chemical damage caused by ultrashort pulse laser ablation for analytes smaller than ~6 kDa. However, a drop in intensity of larger protein ions was detected by MALDI-MS following laser ablation. An additional advantage was that ablated tissue displayed up to an order of magnitude higher signal intensities than intact tissue when subsequently analyzed by MS. These results support the use of ultrashort pulse laser ablation in combination with MS analysis to permit depth profiling of animal tissue. PMID:22482364

  13. An Investigation of Hydrogen Depth Profiling Using ToF-SIMS

    SciTech Connect

    Zhu, Zihua; Shutthanandan, V.; Engelhard, Mark H.

    2012-02-01

    Hydrogen depth distributions in silicon, zinc oxide and glass are of great interest in material research and industry. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been used for hydrogen depth profiling for many years. However, some critical information, such as optimal instrumental settings and detection limits, is not easily available from previous publications. In this work, optimal instrumental settings and detection limits of hydrogen in silicon, zinc oxide and common glass were investigated. The recommended experimental settings for hydrogen depth profiling using ToF-SIMS are: (1) keeping pressure in the analysis chamber as low as possible, (2) using a cesium beam for sputtering and monitoring the H{sup -} signal, (3) employing monatomic ion analysis beams with the highest currents, and (4) using interlace mode. In addition, monatomic secondary ions from a matrix are recommended as references to normalize the H{sup -} signal. Detection limits of hydrogen are limited by pressure of residual gases in the analysis chamber. The base pressure of the analysis chamber (with samples) is about 7 x 10{sup -10} mbar in this study, and the corresponding detection limits of hydrogen in silicon, zinc oxide, and common glass are 1.3 x 10{sup 18} atoms/cm{sup 3}, 1.8 x 10{sup 18} atoms/cm{sup 3}, and 5.6 x 10{sup 18} atoms/cm{sup 3}, respectively.

  14. Suicide Bombers: Profiles, Methods and Techniques

    DTIC Science & Technology

    2007-01-01

    in the makeup of suicide terrorists is “just a myth” and that religious convictions, political sentiments, and social conditions are of secondary...most terrorists are young and that their actions and psychological makeup vary according to social and cultural conditions.22 Professor Ian Ross...of the University of Baltimore provides an alternate view and believes that profiling is possible by combining social factors and psychological

  15. Characterizing contaminant concentrations with depth by using the USGS well profiler in Oklahoma, 2003-9

    USGS Publications Warehouse

    Smith, S. Jerrod; Becker, Carol J.

    2011-01-01

    In 2007, the USGS well profiler was used to investigate saline water intrusion in a deep public-supply well completed in the Ozark (Roubidoux) aquifer. In northeast Oklahoma, where the Ozark aquifer is known to be susceptible to contamination from mining activities, the well profiler also could be used to investigate sources (depths) of metals contamination and to identify routes of entry of metals to production wells.Water suppliers can consider well rehabilitation as a potential remediation strategy because of the ability to identify changes in contaminant concentrations with depth in individual wells with the USGS well profiler. Well rehabilitation methods, which are relatively inexpensive compared to drilling and completing new wells, involve modifying the construction or operation of a well to enhance the production of water from zones with lesser concentrations of a contaminant or to limit the production of water from zones with greater concentrations of a contaminant. One of the most effective well rehabilitation methods is zonal isolation, in which water from contaminated zones is excluded from production through installation of cement plugs or packers. By using relatively simple and inexpensive well rehabilitation methods, water suppliers may be able to decrease exposure of customers to contaminants and avoid costly installation of additional wells, conveyance infrastructure, and treatment technologies.

  16. Depth profiling of polymer films with grazing-incidence small-angle X-ray scattering.

    PubMed

    Singh, Marsha A; Groves, Michael N

    2009-05-01

    A model-free method of reconstructing depth-specific lateral scattering from incident-angle-resolved grazing-incidence small-angle X-ray scattering (GISAXS) data is proposed. The information on the material which is available through variation of the X-ray penetration depth with incident angle is accessed through reference to the reflected branch of the GISAXS process. Reconstruction of the scattering from lateral density fluctuations is achieved by solving the resulting Fredholm integral equation with minimal a priori information about the experimental system. Results from simulated data generated for hypothetical multilayer polymer systems with constant absorption coefficient are used to verify that the method can be applied to cases with large X-ray penetration depths, as typically seen with polymer materials. Experimental tests on a spin-coated thick film of a blend of diblock copolymers demonstrate that the approach is capable of reconstruction of the scattering from a multilayer structure with the identification of lateral scattering profiles as a function of sample depth.

  17. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  18. Design of Optical Systems with Extended Depth of Field: An Educational Approach to Wavefront Coding Techniques

    ERIC Educational Resources Information Center

    Ferran, C.; Bosch, S.; Carnicer, A.

    2012-01-01

    A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…

  19. Peat soil organic matter composition depth profiles - is the diplotelmic model real?

    NASA Astrophysics Data System (ADS)

    Boothroyd, Ian; Clay, Gareth; Moody, Catherine; Archer, Elaine; Dixon, Simon; Worrall, Fred

    2016-04-01

    Measures of bulk density and organic matter composition provide important insights into peat formation, degradation and hydrology as well as carbon and nutrient cycles, and indeed underpin the diplotelmic model of peat formation. This study presents soil core data from 23 upland and lowland peat sites across the United Kingdom. A series of soil cores up to ~3m depth were analysed for bulk density, gross heat value (energy content) and carbon, hydrogen, nitrogen and oxygen composition. Atomic ratios of C/N, H/C and O/C were used as indicators of the origin and quality of soil organic matter. Results show no consistent soil depth profiles evident across multiple sites, this challenges whether historical interpretations of peat soil formation and structure are appropriate.

  20. Semiconductor steady state defect effective Fermi level and deep level transient spectroscopy depth profiling

    NASA Astrophysics Data System (ADS)

    Chin, Ken K.; Cheng, Zimeng

    2016-09-01

    The widely used deep level transient spectroscopy (DLTS) theory and data analysis usually assume that the defect level distribution is uniform through the depth of the depletion region of the n—p junction. In this work we introduce the concept of effective Fermi level of the steady state of semiconductor, by using which deep level transient spectroscopy depth profiling (DLTSDP) is proposed. Based on the relationship of its transition free energy level (TFEL) and the effective Fermi level, the rules of detectivity of the defect levels are listed. Computer simulation of DLTSDP is presented and compared with experimental data. The experimental DLTS data are compared with what the DLTSDP selection rules predicted. The agreement is satisfactory.

  1. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  2. X-ray photoelectron spectroscopy study of polyimide thin films with Ar cluster ion depth profiling

    SciTech Connect

    Miyayama, T.; Sanada, N.; Suzuki, M.; Hammond, J. S.; Si, S.-Q. D.; Takahara, A.

    2010-03-15

    X-ray photoelectron spectroscopy depth profiling of polyimide thin films on silicon substrates using an Ar cluster ion beam results in an extremely low degradation of the polyimide chemistry. In the range from 2.5 to 20 kV, a lower cluster ion energy produces a lower sputter induced damage to the polymer and results in an improved polyimide to silicon interface width. The sputtering rates of the polyimide are found to increase exponentially with an increase in the Ar cluster ion energy.

  3. Detection and depth profiling of hazardous elements using N-SCAN prompt gamma neutron activation analysis

    SciTech Connect

    Ruddy, F.H.; Congedo, T.V.; Dulloo, A.R.

    1995-12-31

    A low-background method of prompt gamma neutron activation analysis (PGNAA) has been developed and demonstrated. This method employs a pulsed electronic neutron generator, a high resolution, high purity germanium detector, and microsecond coordination of neutron pulsing and gamma detection through a computer-controlled acquisition interface module. The system has been used to detect trace amounts of hazardous elements in concretes and soils to provide depth profiles of contaminant burden down to nearly 1 ft in packed soil, and also to perform rapid identification of the contents of munitions bearing simulants of chemical weapons agents.

  4. Simulation of sputter-induced roughness for depth profiling of thin film structures.

    PubMed

    Wöhner, T; Ecke, G; Rössler, H; Hofmann, S

    1995-10-01

    Sputtering induced surface roughening is the dominant factor that degrades depth resolution in sputter profiling of polycrystalline film samples. Due to the dependence of the sputtering yield on the crystallographic orientation, ion beam incidence angle and composition, the local sputtering rate differs from grain to grain. A simple computer program based on a model of Marton and Fine can simulate such a roughness development within one layer, an improved version can even be applied for interfaces. A further extension of the program using a model of Hauffe includes effects like shadowing and enhanced peak erosion leading to surface smoothing.

  5. Photothermal depth profiling: Comparison between genetic algorithms and thermal wave backscattering (abstract)

    NASA Astrophysics Data System (ADS)

    Li Voti, R.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal depth profiling has been the subject of many papers in the last years. Inverse problems on different kinds of materials have been identified, classified, and solved. A first classification has been done according to the type of depth profile: the physical quantity to be reconstructed is the optical absorption in the problems of type I, the thermal effusivity for type II, and both of them for type III. Another classification may be done depending on the time scale of the pump beam heating (frequency scan, time scan), or on its geometrical symmetry (one- or three-dimensional). In this work we want to discuss two different approaches, the genetic algorithms (GA) [R. Li Voti, C. Melchiorri, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 410 (2001); R. Li Voti, Proceedings, IV Int. Workshop on Advances in Signal Processing for Non-Destructive Evaluation of Materials, Quebec, August 2001] and the thermal wave backscattering (TWBS) [R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 414 (2001); J. C. Krapez and R. Li Voti, Anal. Sci. 17, 417 (2001)], showing their performances and limits of validity for several kinds of photothermal depth profiling problems: The two approaches are based on different mechanisms and exhibit obviously different features. GA may be implemented on the exact heat diffusion equation as follows: one chromosome is associated to each profile. The genetic evolution of the chromosome allows one to find better and better profiles, eventually converging towards the solution of the inverse problem. The main advantage is that GA may be applied to any arbitrary profile, but several disadvantages exist; for example, the complexity of the algorithm, the slow convergence, and consequently the computer time consumed. On the contrary, TWBS uses a simplified theoretical model of heat diffusion in inhomogeneous materials. According to such a model, the photothermal signal depends linearly on the thermal effusivity

  6. Depths, Diameters, and Profiles of Small Lunar Craters From LROC NAC Stereo Images

    NASA Astrophysics Data System (ADS)

    Stopar, J. D.; Robinson, M.; Barnouin, O. S.; Tran, T.

    2010-12-01

    Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images (pixel scale ~0.5 m) provide new 3-D views of small craters (40m>D>200m). We extracted topographic profiles from 85 of these craters in mare and highland terrains between 18.1-19.1°N and 5.2-5.4°E to investigate relationships among crater shape, age, and target. Obvious secondary craters (e.g., clustered) and moderately- to heavily-degraded craters were excluded. The freshest craters included in the study have crisp rims, bright ejecta, and no superposed craters. The depth, diameter, and profiles of each crater were determined from a NAC-derived DTM (M119808916/M119815703) tied to LOLA topography with better than 1 m vertical resolution (see [1]). Depth/diameter ratios for the selected craters are generally between 0.12 and 0.2. Crater profiles were classified into one of 3 categories: V-shaped, U-shaped, or intermediate (craters on steep slopes were excluded). Craters were then morphologically classified according to [2], where crater shape is determined by changes in material strength between subsurface layers, resulting in bowl-shaped, flat-bottomed, concentric, or central-mound crater forms. In this study, craters with U-shaped profiles tend to be small (<60 m) and flat-bottomed, while V-shaped craters have steep slopes (~20°), little to no floor, and a range of diameters. Both fresh and relatively degraded craters display the full range of profile shapes (from U to V and all stages in between). We found it difficult to differentiate U-shaped craters from V-shaped craters without the DTM, and we saw no clear correlation between morphologic and profile classification. Further study is still needed to increase our crater statistics and expand on the relatively small population of craters included here. For the craters in this study, we found that block abundances correlate with relative crater degradation state as defined by [3], where abundant blocks signal fresher craters; however

  7. Near-Surface Shear Wave Velocity Versus Depth Profiles, VS30, and NEHRP Classifications for 27 Sites in Puerto Rico

    USGS Publications Warehouse

    Odum, Jack K.; Williams, Robert A.; Stephenson, William J.; Worley, David M.; von Hillebrandt-Andrade, Christa; Asencio, Eugenio; Irizarry, Harold; Cameron, Antonio

    2007-01-01

    In 2004 and 2005 the Puerto Rico Seismic Network (PRSN), Puerto Rico Strong Motion Program (PRSMP) and the Geology Department at the University of Puerto Rico-Mayaguez (UPRM) collaborated with the U.S. Geological Survey to study near-surface shear-wave (Vs) and compressional-wave (Vp) velocities in and around major urban areas of Puerto Rico. Using noninvasive seismic refraction-reflection profiling techniques, we acquired velocities at 27 locations. Surveyed sites were predominantly selected on the premise that they were generally representative of near-surface materials associated with the primary geologic units located within the urbanized areas of Puerto Rico. Geologic units surveyed included Cretaceous intrusive and volcaniclastic bedrock, Tertiary sedimentary and volcanic units, and Quaternary unconsolidated eolian, fluvial, beach, and lagoon deposits. From the data we developed Vs and Vp depth versus velocity columns, calculated average Vs to 30-m depth (VS30), and derived NEHRP (National Earthquake Hazards Reduction Program) site classifications for all sites except one where results did not reach 30-m depth. The distribution of estimated NEHRP classes is as follows: three class 'E' (VS30 below 180 m/s), nine class 'D' (VS30 between 180 and 360 m/s), ten class 'C' (VS30 between 360 and 760 m/s), and four class 'B' (VS30 greater than 760 m/s). Results are being used to calibrate site response at seismograph stations and in the development of regional and local shakemap models for Puerto Rico.

  8. Nonaqueous chemical depth profiling of YBa2Cu3O(7-x)

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.

    1989-01-01

    A nonaqueous solution of Br in absolute ethanol (EtOH) has recently been reported to be effective at removing nonsuperconducting surface species from YBa2Cu3O(7-x) films, leaving the surface close to the ideal stoichiometry. This same etchant is shown here to be an effective bulk etchant in chemical depth profiling through 1-micron-thick films. The Cu remains in the 2 + oxidation state and the stoichiometry, as determined by X-ray photoelectron spectroscopy, is close to ideal and nearly constant throughout the profile, indicating the absence of any large preferential etching effects. The reaction of YBa2Cu3O(7-x) films with HF/EtOH, HCl/EtOH, and I/EtOH solutions is also reported.

  9. Measurement of percentage depth dose and lateral beam profile for kilovoltage x-ray therapy beams.

    PubMed

    Li, X A; Ma, C M; Salhani, D

    1997-12-01

    In this work, nine commonly used dosimetry detectors have been investigated to determine suitable relative dosimeters for kilovoltage x-ray beams. By comparison with the Monte Carlo calculated data, it was determined that for the detectors studied the PTW N23342, Markus and NACP parallel-plate chambers are more suitable for the measurement of percentage depth dose (PDD) data for this beam quality range with an uncertainty of about 3%. A diode detector may be used to measure the PDD for the 100 kVp beam, but it is not suitable for higher energies (300 kVp). The Capintec parallel-plate chamber may be adequate for medium-energy photons, but it has a slightly higher uncertainty for low-energy x-rays (100 kVp). For the measurement of beam profiles, diode and film yield incorrect profile tails, which can be corrected using the RK ionization chamber.

  10. Magnetic depth profiles of complex oxide F/S/F trilayers.

    NASA Astrophysics Data System (ADS)

    Visani, C.; Sefrioui, Z.; Leon, C.; Santamaria, J.; Te Velthuis, S. G. E.; Hoffmann, A.; Nemes, Norbert M.; Garcia-Hernandez, M.; Fitzsimmons, M. R.; Kirby, B. J.

    2008-03-01

    The origin of the large magnetoresitance in epitaxial F/S/F trilayers composed of highly spin polarized ferromagnetic La0.7Ca0.3MnO3 and high-Tc superconducting YBa2Cu3O7-δ (YBCO) is investigated by characterizing the magnetic structure. Polarized neutron reflectometry experiments have determined the detailed magnetization depth profiles in trilayers with varying YBCO layer thicknesses. In addition to inhomogeneous magnetization profiles, rotation of the magnetization during the magnetization reversal for the films with thick (>= 17.7 nm) YBCO layers has been observed. The results are consistent with the presence of an (in plane) easy-axis tilted away from the (100) direction.

  11. Team activity analysis and recognition based on Kinect depth map and optical imagery techniques

    NASA Astrophysics Data System (ADS)

    Elangovan, Vinayak; Bandaru, Vinod K.; Shirkhodaie, Amir

    2012-06-01

    Kinect cameras produce low-cost depth map video streams applicable for conventional surveillance systems. However, commonly applied image processing techniques are not directly applicable for depth map video processing. Kinect depth map images contain range measurement of objects at expense of having spatial features of objects suppressed. For example, typical objects' attributes such as textures, color tones, intensity, and other characteristic attributes cannot be fully realized by processing depth map imagery. In this paper, we demonstrate application of Kinect depth map and optical imagery for characterization of indoor and outdoor group activities. A Casual-Events State Inference (CESI) technique is proposed for spatiotemporal recognition and reasoning of group activities. CESI uses an ontological scheme for representation of casual distinctiveness of a priori known group activities. By tracking and serializing distinctive atomic group activities, CESI allows discovery of more complex group activities. A Modified Sequential Hidden Markov Model (MS-HMM) is implemented for trail analysis of atomic events representing correlated group activities. CESI reasons about five levels of group activities including: Merging, Planning, Cooperation, Coordination, and Dispersion. In this paper, we present results of capability of CESI approach for characterization of group activities taking place both in indoor and outdoor. Based on spatiotemporal pattern matching of atomic activities representing a known group activities, the CESI is able to discriminate suspicious group activity from normal activities. This paper also presents technical details of imagery techniques implemented for detection, tracking, and characterization of atomic events based on Kinect depth map and optical imagery data sets. Various experimental scenarios in indoors and outdoors (e.g. loading and unloading of objects, human-vehicle interactions etc.,) are carried to demonstrate effectiveness and

  12. Analyses of Thin Films and Surfaces by Cold Neutron Depth Profiling

    NASA Astrophysics Data System (ADS)

    Lamaze, George; Chen-Mayer, Heather; Soni, Kamal

    2003-03-01

    Neutron depth profiling (NDP) has been employed to examine manufacturing processes and starting materials for several high technology applications. NDP combines nuclear and atomic physics processes to determine the concentration profile of several light elements in the near surface region ( ˜1μm) of smooth surfaces. The method is both quantitative and non-destructive. Samples were prepared at the Corning Laboratories and the analyses were performed at the Center for Neutron Research at the NIST. Nitride based gallium alloys hold promise for the production of blue light emitting devices and for VCSEL lasers for high-speed communication systems. The solubility of N in GaAs is very small, and phase separation occurs at high levels of N. Therefore, the N concentration is a crucial parameter for establishing the device characteristics. Results will also be reported on lithium profiles of LiNbO3 (specifically addressing the problem of lithium depletion) and boron profiles in boron doped GaAs.

  13. Influence of relative abundance of isotopes on depth resolution for depth profiling of metal coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Fariñas, Juan C; Coedo, Aurora G; Dorado, Teresa

    2010-04-15

    A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used. Five different depth profile types were established, which showed a clear dependence on A(c)/A(s) ratio. In general, depth profiles obtained for ratios above 1-10 could not be used to determine Delta z. We found that Delta z increased non-linearly with A(c)/A(s) ratio. The best depth profile types, leading to highest depth resolution and reproducibility, were attained in all cases by using the isotopes with low/medium A(c) values and with the highest A(s) values. In these conditions, an improvement of up to 4 times in Delta z values was achieved. The average ablation rates were in the range from 0.55 microm pulse(-1) for copper coating on steel to 0.83 microm pulse(-1) for zinc coating on steel, and the Delta z values were between 2.74 microm for nickel coating on chromium and 5.91 microm for nickel coating on copper, with RSD values about 5-8%.

  14. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  15. TRIM-DYNAMIC applied to marker broadening and SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Biersack, Jochen

    1999-06-01

    The collisional mixing of thin metal markers in silicon is investigated with the computer program TRIM-DYNAMIC (T-DYN). This code assumes that, at high dose irradiation, the substrate Si or Ge will get fully amorphized, and the recoil atom can stop in any position after slowing down below a certain final energy Ef (taken here as 3 eV). In order to avoid chemical effects, the system of a Au marker in a silicon matrix was chosen for the TRIM simulation. The results are in good agreement with the experimental findings, as compiled in the review article by Paine and Averback [Nucl. Instr. and Meth. B 7/8 (1985) 666]. Similar collisional mixing effects occur in the process of SIMS or AES depth profiling and cannot be avoided. Examples are given here for a thin film of antimony, which was vapor deposited on silicon and covered by amorphous silicon, and an arsenic implant of 0.5 keV in silicon which was known to exhibit no channeling tails. The analysing beam was 1 keV Ar + incident at 45°. Good agreement was found between the T-DYN simulations and the experimental results obtained with SIMS measurements using modern depth profiling equipment.

  16. Atomic force microscopy observation of the enamel roughness and depth profile after phosphoric acid etching.

    PubMed

    Loyola-Rodriguez, Juan Pablo; Zavala-Alonso, Veronica; Reyes-Vela, Enrique; Patiño-Marin, Nuria; Ruiz, Facundo; Anusavice, Kenneth J

    2010-01-01

    The aim was to compare the enamel surface roughness (ESR) and absolute depth profile (ADP) (mean peak-to-valley height) by atomic force microscopy (AFM) before and after using four different phosphoric acids. A total of 160 enamel samples from 40 upper premolars were prepared. The inclusion criterion was that the teeth have healthy enamel. Exclusion criteria included any of the following conditions: facial restorations, caries lesions, enamel hypoplasia and dental fluorosis. Evaluations of the ESR and ADP were carried out by AFM. The Mann-Whitney U-test was used to compare continuous variables and the Wilcoxon test was used to analyze the differences between before and after etching. There were statistically significant differences (P depth before and after using four different phosphoric acids in healthy enamel; Etch-37 and Scotchbond Etching Gel showed higher profiles after etching (P

  17. Simulation on SIMS depth profiling of delta-doped layer including relaxation caused by defects

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Nagao, S.; Yamamura, Y.

    2001-06-01

    Using the dynamic Monte Carlo (MC) code, ACAT-DIFFUSE, the SIMS depth profiling of a multilayered thin film (Ta 2O 5 (18 nm)/SiO 2 (0.5 nm)) sample was investigated. The ACAT-DIFFUSE code is based on the binary collision approximation, taking into account the generation of interstitial atoms and vacancies, annihilation of vacancies, diffusion of interstitial atoms and primary ions and the relaxation of target materials according to the packing condition which include not only beam and target particles but also defects (interstitial atoms and vacancies). The observed 1-3 nm shift of the delta layer peak to the surface in SIMS depth profiles can be reproduced by the ACAT-DIFFUSE simulation. It is found that this peak shift is mainly due to the relaxation or expansion caused by defects produced behind the delta layer, not due to the collision mixing which results mainly in broadening the observed delta layer peak. Therefore, as ion energy decreases or the angle of incidence becomes large, the peak shift becomes small, because the total amount of defects produced behind the delta layer is small before the delta layer is sputtered off.

  18. Depth Profiling (ICP-MS) Study of Trace Metal `Grains' in Solid Asphaltenes

    NASA Astrophysics Data System (ADS)

    Pillay, Avin E.; Bassioni, Ghada; Stephen, Sasi; Kühn, Fritz E.

    2011-08-01

    Knowledge of trace metal `grains' in asphaltenes could play a significant role in enhancing refining and processing of crudes and also in providing useful information on mechanistic and migratory features linked to asphaltenes. These metals originate directly from interaction of oils with source-rock, mineral matter, and formation water and their accumulation in asphaltene matrices could vary from oil well to oil well. Suitable asphaltene samples were subjected to high-performance ICP-MS laser depth profiling (213 nm) to depths of 50 μm at 5 μm intervals. The study was conducted in the absence of standardization and characteristic intensities originating from the metals of interest were measured. Ten metal profiles were investigated (Na, Mg, Al, Mn, Fe, Zn, Sr, Pb, V, and Ni). The experimental results showed non-uniform distribution of trace metals and identified areas where such metals agglomerate. The data suggested that certain chemical and physical conditions within the structure of asphaltenes are favorable for metal `grain' formation at specific points. The exact mechanism for this behavior is not clear at this stage, and has considerable scope for future studies, including mathematical modeling simulations of asphaltenes. We also found that solid asphaltenes could be a useful forerunner of scale formation.

  19. Dual beam organic depth profiling using large argon cluster ion beams.

    PubMed

    Holzweber, M; Shard, A G; Jungnickel, H; Luch, A; Unger, Wes

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4'-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd.

  20. Assessment of in-depth degradation of artificially aged triterpenoid paint varnishes using nonlinear microscopy techniques.

    PubMed

    Filippidis, George; Mari, Meropi; Kelegkouri, Lambrini; Philippidis, Aggelos; Selimis, Aleksandros; Melessanaki, Kristallia; Sygletou, Maria; Fotakis, Costas

    2015-04-01

    The present work investigates the applicability of nonlinear imaging microscopy for the precise assessment of degradation of the outer protective layers of painted artworks as a function of depth due to aging. Two fresh and artificially aged triterpenoid varnishes, dammar and mastic, were tested. Nonlinear imaging techniques have been employed as a new diagnostic tool for determination of the exact thickness of the affected region due to artificial aging of the natural varnishes. The measured thicknesses differ from the calculated mean penetration depths of the samples. These nondestructive, high resolution modalities are valuable analytical tools for aging studies and they have the potential to provide unique in-depth information. Single photon laser induced fluorescence measurements and Raman spectroscopy were used for the integrated investigation and analysis of aging effects in varnishes.

  1. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy.

    PubMed

    Philipp, Patrick; Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He(+) or Ne(+) beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 10(18) ions/cm(2). Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  2. Estimating the Depth of Stratigraphic Units from Marine Seismic Profiles Using Nonstationary Geostatistics

    SciTech Connect

    Chihi, Hayet; Galli, Alain; Ravenne, Christian; Tesson, Michel; Marsily, Ghislain de

    2000-03-15

    The object of this study is to build a three-dimensional (3D) geometric model of the stratigraphic units of the margin of the Rhone River on the basis of geophysical investigations by a network of seismic profiles at sea. The geometry of these units is described by depth charts of each surface identified by seismic profiling, which is done by geostatistics. The modeling starts by a statistical analysis by which we determine the parameters that enable us to calculate the variograms of the identified surfaces. After having determined the statistical parameters, we calculate the variograms of the variable Depth. By analyzing the behavior of the variogram we then can deduce whether the situation is stationary and if the variable has an anisotropic behavior. We tried the following two nonstationary methods to obtain our estimates: (a) The method of universal kriging if the underlying variogram was directly accessible. (b) The method of increments if the underlying variogram was not directly accessible. After having modeled the variograms of the increments and of the variable itself, we calculated the surfaces by kriging the variable Depth on a small-mesh estimation grid. The two methods then are compared and their respective advantages and disadvantages are discussed, as well as their fields of application. These methods are capable of being used widely in earth sciences for automatic mapping of geometric surfaces or for variables such as a piezometric surface or a concentration, which are not 'stationary,' that is, essentially, possess a gradient or a tendency to develop systematically in space.

  3. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    PubMed Central

    Rzeznik, Lukasz; Wirtz, Tom

    2016-01-01

    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance. PMID:28144525

  4. Non-standard Fickian self-diffusion of isotopically pure boron observed by neutron reflectometry and depth profiling

    SciTech Connect

    Baker, S.M.; Wu, K.; Smith, G.S.; Hubbard, K.M.; Nastasi, M.; Downing, R.G.; Lamaze, G.P.

    1995-12-31

    Neutron reflectometry (NR) studies of thin films of amorphous {sup 11}B/{sup 10}B on silicon indicate that a non-standard form of Fickian diffusion occurs across the boron interface upon annealing. In order to verify this observation, the samples were examined by neutron depth profiling (NDP). Comparison of the results from models of a step function, standard Fickian diffusion and Fickian diffusion with a fixed composition at the interface were made and compared to the previous NR results. The diffusion constant resulting from the non-standard Fickian model for the NDP data differs slightly from that obtained from the commonly used Fickian diffusion model and is not inconsistent with the NR results. This finding suggests that more information regarding diffusion at interfaces can be gained from these higher resolution neutron scattering techniques.

  5. RBS measurement of depth profiles of erbium incorporated into lithium niobate for optical amplifier applications

    NASA Astrophysics Data System (ADS)

    Peřina, Vratislav; Vacík, Jiří; Hnatovicz, Vladimír.; Červená, Jarmila; Kolářová, Pavla; Špirková-Hradilová, Jarmila; Schröfel, Josef

    1998-04-01

    Rutherford Backscattering Spectrometry (RBS) was used for the determination of Er 3+ concentration profiles in locally doped lithium niobate. The doped layers are the basic substrates for the fabrication of optical waveguiding structures which may be utilized as planar optical amplifiers and waveguiding lasers making use of the 4I 13/2 → 4I 15/2 transition in Er 3+, which falls into the third low loss telecommunication window (1.5 μm). We present a new aproach of fabrication of locally doped lithium niobate single crystal wafers. The doping occurs under moderate temperature (˜350°C) from reaction melts containing ca. 10 wt% of erbium nitrate. The erbium content in particular cuts varies dramatically between ca. 3 at.% in the Y- and Z-cut up to 20 at.% in the X-cuts. Erbium ions are localized in a 50 nm thick layer, but they can be diffused deeper into the substrate by subsequent annealing at 350°C. The Er concentrations of the samples doped at moderated temperature are compared with the Er concentrations of the samples doped by a standard high-temperature diffusion (>1000°C) from evaporated metal layers. To utilize the Er doped substrates in integrated optic circuits high quality waveguides must be subsequently fabricated. For that we used the Annealed Proton Exchange (APE) method with adipic acid. For the actual fabrication of the waveguides the following order of operation should be kept: the erbium doping should be done before the APE because the substantially changed structure of APE layers prevents the doping process. The APE process is checked by measurements of lithium depth profiles by Neutron Depth Profiling (NDP).

  6. Temperature and depth profiles recorded during dives of elephant seals reflect distinct ocean environments

    NASA Astrophysics Data System (ADS)

    Campagna, Claudio; Rivas, Andrés L.; Marin, M. Rosa

    2000-03-01

    Foraging adult southern elephant seals, Mirounga leonina, from Penı´nsula Valdés, Argentina, dive continuously while travelling across the continental shelf towards deep waters of the SW Atlantic. This study attempted to identify distinct ocean environments encountered by these seals during foraging migrations based on bathymetric and water temperature profiles, and to interpret these profiles in terms of mixing and systems of currents. Depth and water temperature were obtained with data loggers carried by 14 diving adult animals during spring (October-December) and summer (February-March) months. Dive depths allowed us to unmistakably differentiate extensive areas of the SW Atlantic: the Patagonian shelf, shelf slope and open waters of the Argentine Basin. Water temperature profiles added further details to the latter general oceanographic areas, and could be related to large-scale oceanographic processes that led to different water column structures. Temperature data reflected the mixing effects of winds and tides in coastal waters, the formation of a thermocline in mid-shelf areas, the northward flow of the sub-antartic Malvinas Current at the edge of the shelf, and the effect of the subtropical Brazil Current further east over deep off-shelf waters. Some of these distinct areas are known for their enhanced primary production associated with frontal systems. The study shows that elephant seals could be useful, low-cost platforms to obtain oceanographic data. Studies that require extensive sampling of physical variables in large areas over long periods of time would benefit from this approach, pending on more precise and frequent locations of animals at sea.

  7. Acquisition of the depth profiles and reproducible mass spectra in matrix-assisted laser desorption/ionization of inhomogeneous samples.

    PubMed

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2015-04-30

    In our previous analysis of the matrix-assisted laser desorption/ionization (MALDI) spectra of peptides, we treated their depth profiles in solid samples as homogeneous. Here, we wanted to determine if the reproducible MALDI spectra and linear calibration curves reported previously would be obtained even when the depth profiles were inhomogeneous. We derived a formula relating shot-number-dependent ion abundance data in temperature-controlled MALDI with the analyte depth profile in a solid sample. We prepared samples containing peptides, amino acids, and serotonin in α-cyano-4-hydroxycinnamic acid matrix by vacuum-drying and micro-spotting methods, recorded their MALDI spectra, and analyzed them with the aforementioned formula. For the samples prepared by vacuum-drying, the analyte depth profiles were inhomogeneous and maximized at the sample surface. Although the MALDI spectra changed as the shot continued, their sum over the entire set of spectra acquired from a spot was reproducible. Similarly, a high-quality calibration curve could be obtained with the spectral data summed over the entire set. Depth profiles were homogeneous for samples prepared by micro-spotting. A method has been developed to obtain a reproducible MALDI spectrum and a linear calibration curve for an analyte with an inhomogeneous depth profile in a solid sample. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Mass Spectral Analysis of Water Column Samples from a Single Depth Profile Near the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Boysen, A. K.; Kujawinski, E. B.

    2010-12-01

    The Deepwater Horizon oil spill is the largest offshore oil spill in history, spilling an estimated 4.9 million barrels of oil. Additionally, over 1.8 million gallons of dispersants have been applied, both through underwater and surface applications. The depth and volume of this spill as well as the underwater dispersant applications likely allowed for the dissolution of oil components into the water column during transport to the ocean surface. We examined the water-soluble components of dissolved organic matter, oil, and dispersants at various depths and locations within 10km of the wellhead in order to assess the degree of oil dissolution into the water column. Here we present results from analysis of four samples from a depth profile collected 1.16km from the wellhead. We used ultrahigh resolution negative-ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, a technique that has been used to characterize both DOM and crude oil. We compared oil from the wellhead with the composition of different extracts from the water samples and observed hundreds of compounds which are present in both the original oil and the water column. The oil compounds contained in the extracts were similar for all four depths. Compounds within the heteroatom classes N and O were most abundant in the source oil, while oil compounds in the formula classes O2 and SO3 were enhanced in the water samples. Compounds from these classes may be good markers for tracing the impact of this spill in the Gulf of Mexico ecosystem.

  9. Modeling soil temperatures at different depths by using three different neural computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Tombul, Mustafa; Kermani, Mohammad Zounemat

    2015-07-01

    This study compares the accuracy of three different neural computing techniques, multi-layer perceptron (MLP), radial basis neural networks (RBNN), and generalized regression neural networks (GRNN), in modeling soil temperatures (ST) at different depths. Climatic data of air temperature, wind speed, solar radiation, and relative humidity from Mersin Station, Turkey, were used as inputs to the models to estimate monthly ST values. In the first part of the study, the effect of each climatic variable on ST was investigated by using GRNN models. Air temperature was found to be the most effective variable in modeling monthly ST. In the second part of the study, the accuracy of GRNN models was compared with MLP, RBNN, and multiple linear regression (MLR) models. RBNN models were found to be better than the GRNN, MLP, and MLR models in estimating monthly ST at the depths of 5 and 10 cm while the MLR and GRNN models gave the best accuracy in the case of 50- and 100-cm depths, respectively. In the third part of the study, the effect of periodicity on the training, validation, and test accuracy of the applied models was investigated. The results indicated that the adding periodicity component significantly increase models' accuracies in estimating monthly ST at different depths. Root mean square errors of the GRNN, MLP, RBNN, and MLR models were decreased by 19, 15, 19, and 15 % using periodicity in estimating monthly ST at 5-cm depth.

  10. Definition of initial conditions and soil profile depth for Hydrological Land Surface Models in Cold Regions

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, G.; Gamazo, P. A.; Razavi, S.; Wheater, H. S.

    2016-12-01

    Earth system models are essential for the evaluation of the impact of climate change. At global and regional scales, General Circulation Models (GCM) and Regional Climate Models (RCM) are used to simulate climate change evolution. Hydrological Land Surface Models (HLSM) are used along with GCMs and RCMs (coupled or offline) to have a better representation of the hydrological cycle. All these models typically have a common implementation of the energy and water balance in the soil, known as the Land Surface Model (LSM). In general, a standard soil configuration with a depth of no more than 4 meters is used in all LSMs that are commonly implemented in GCMs, RCMs and HLSMs. For moderate climate conditions, this depth is sufficient to capture the intra-annual variability in the energy and water balance. However, for cold regions and for long-term simulations, deeper subsurface layers are needed in order to allow the heat signal to propagate through the soil to deeper layers and hence to avoid erroneous near-surface states and fluxes. Deeper soil/rock configurations create longer system memories, and as such, particular care should be taken to define the initial conditions for the subsurface system. In this work we perform a sensitivity analysis of the main factors that affect the subsurface energy and water balance for LSMs in cold regions - depth of soil, soil parameters, initial conditions and climate conditions for a warm-up period. We implement a 1D model using the Canadian Land Surface Scheme (CLASS) LSM for a study area in northern Canada where measurements of soil temperature profiles are available. Results suggest that an adequate representation of the heat propagation process in the soil requires the simulation of a soil depth of greater than 25 meters. As for initial conditions we recommend to spin-up over a cycle of an average climate year and then use reconstructed climate time series with a length of more than 300 years.

  11. Metal(loid) speciation and size fractionation in sediment pore water depth profiles examined with a new meso profiling system.

    PubMed

    Schroeder, Henning; Fabricius, Anne-Lena; Ecker, Dennis; Ternes, Thomas A; Duester, Lars

    2017-03-23

    In an exemplary incubation study with an anaerobic sediment sampled at an oxbow of the river Lahn in Germany (50°18'56.87″N; 7°37'41.25″E) and contaminated by former mining activity, a novel meso profiling and sampling system (messy) is presented. Messy enables a low invasive, automated sampling of pore water profiles across the sediment water interface (SWI), down to ∼20 cm depth with a spacial resolution of 1 cm. In parallel to the pore water sampling it measures physicochemical sediment parameters such as redox potential and pH value. In an incubation experiment of 151 days the ability of the setup was proven to address several different aspects relevant for fresh water and marine sediment studies: (i) The influence of mechanical disturbance and oxygen induced acidification on the mobility of 13 metals and metalloids (Cd, Co, Cu, Fe, Mn, Mo, Ni, Sb, U, V, Zn) was quantified based on 11 profiles. The analytes were quantified by inductively coupled plasma-mass spectrometry. Three groups of elements were identified with respect to the release into the pore water and the overlying water under different experimental conditions. (ii) The capability to investigate the impacts of changing physicochemical sediment properties on arsenic and antimony (III/V) speciation is shown. (iii) An approach to obtain information on size fractionation effects and to address the colloidal pore water fractions (0.45 μm-16 μm) was successfully conducted for the elements Ag, As, Cu, Fe and Mn.

  12. Review of surface profile measurement techniques based on optical interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Xie, Fang; Ma, Sen; Dong, Lianlian

    2017-06-01

    With the fast development of modern science and technology, two or three-dimensional surface profile measurement techniques with high resolution and large dynamic range are urgently required. Among them, the techniques based on optical interferometry have been widely used for their good properties of non-contact, high resolution, large dynamic measurement range and well-defined traceability route to the definition of meter. A review focused on surface profile measurement techniques of optical interferometry is introduced in this paper with a detailed classification sorted by operating principles. Examples in each category are discussed and analyzed for better understanding.

  13. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-11-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  14. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    PubMed

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  15. Groundwater flow estimation using temperature-depth profiles in a complex environment and a changing climate.

    PubMed

    Irvine, Dylan J; Kurylyk, Barret L; Cartwright, Ian; Bonham, Mariah; Post, Vincent E A; Banks, Eddie W; Simmons, Craig T

    2017-01-01

    Obtaining reliable estimates of vertical groundwater flows remains a challenge but is of critical importance to the management of groundwater resources. When large scale land clearing or groundwater extraction occurs, methods based on water table fluctuations or water chemistry are unreliable. As an alternative, a number of methods based on temperature-depth (T-z) profiles are available to provide vertical groundwater flow estimates from which recharge rates may be calculated. However, methods that invoke steady state assumptions have been shown to be inappropriate for sites that have experienced land surface warming. Analytical solutions that account for surface warming are available, but they typically include unrealistic or restrictive assumptions (e.g. no flow initial conditions or linear surface warming). Here, we use a new analytical solution and associated computer program (FAST) that provides flexible initial and boundary conditions to estimate fluxes using T-z profiles from the Willunga Super Science Site, a complex, but densely instrumented groundwater catchment in South Australia. T-z profiles from seven wells (ranging from high elevation to near sea level) were utilised, in addition to mean annual air temperatures at nearby weather stations to estimate boundary conditions, and thermal properties were estimated from down borehole geophysics. Temperature based flux estimates were 5 to 23mmy(-1), which are similar to those estimated using chloride mass balance. This study illustrates that T-z profiles can be studied to estimate recharge in environments where more commonly applied methods fail. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A lithium depth-marker technique for rapid erosion and deposition measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. M.; Pang, A.; Martinez-Sanchez, M.; Whyte, D. G.

    2014-01-01

    A novel, high-resolution technique has been developed for the measurement of erosion and deposition in solid material surfaces. The technique uses a combination of nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS) to determine the change in depth of a previously implanted marker layer consisting of 7Li. A scoping study shows that 7Li is an ideal marker candidate due to a high Q (∼18 MeV) nuclear reaction, 7Li(p,α)4He. Net erosion or deposition is measured by NRA of modified alpha energy passing through the bulk material. The reaction's high cross-section provides for the fast time resolution needed to measure erosion from high flux plasmas, and a highly penetrating proton beam provides for a large range of erosion/deposition measurements. Additionally, the implantation of low-Z Li leads to relatively low vacancy concentrations in the solid material due to implantation. This technique thus provides greater assurance that the measured erosion rate is indicative of the solid material: due to both the low vacancy production and the fact that no films or deposits are involved. Validation was performed by comparing the measured and predicted amount of erosion based on previously measured sputtering yields; the two were found to agree, within the uncertainty of the experiment. The depth resolution of the techniques is ∼60 nm at a net erosion depth of about 1 μm. The benefits of this technique are summarized as: short time scales (minutes) to obtain results, the marker layer can be used in any solid material, greater assurance that the measured erosion is indicative of the unperturbed solid material, and the continuous monitoring of the surface composition for contaminants and/or identification of deposited species using RBS simultaneous with the NRA.

  17. Extraction of depth information for 3D imaging using pixel aperture technique

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Soo; Bae, Myunghan; Kim, Sang-Hwan; Lee, Jimin; Oh, Chang-Woo; Chang, Seunghyuk; Park, JongHo; Lee, Sang-Jin; Shin, Jang-Kyoo

    2017-02-01

    A 3dimensional (3D) imaging is an important area which can be applied to face detection, gesture recognition, and 3D reconstruction. In this paper, extraction of depth information for 3D imaging using pixel aperture technique is presented. An active pixel sensor (APS) with in-pixel aperture has been developed for this purpose. In the conventional camera systems using a complementary metal-oxide-semiconductor (CMOS) image sensor, an aperture is located behind the camera lens. However, in our proposed camera system, the aperture implemented by metal layer of CMOS process is located on the White (W) pixel which means a pixel without any color filter on top of the pixel. 4 types of pixels including Red (R), Green (G), Blue (B), and White (W) pixels were used for pixel aperture technique. The RGB pixels produce a defocused image with blur, while W pixels produce a focused image. The focused image is used as a reference image to extract the depth information for 3D imaging. This image can be compared with the defocused image from RGB pixels. Therefore, depth information can be extracted by comparing defocused image with focused image using the depth from defocus (DFD) method. Size of the pixel for 4-tr APS is 2.8 μm × 2.8 μm and the pixel structure was designed and simulated based on 0.11 μm CMOS image sensor (CIS) process. Optical performances of the pixel aperture technique were evaluated using optical simulation with finite-difference time-domain (FDTD) method and electrical performances were evaluated using TCAD.

  18. Auger electron spectroscopy and depth profile study of oxidation of modified 440C steel

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1974-01-01

    Auger electron spectroscopy (AES) and sputtering were used to study selective oxidation of modified 440C steel. The sample was polycrystalline. Oxidation was performed on initially clean surfaces for pressures ranging from 1 x 10 to the minus 7th power to 1 x 10 to the minus 5th power torr and temperatures ranging from room temperature to 800 C. AES traces were taken during oxidation. In situ sputtering depth profiles are also obtained. A transition temperature is observed in the range 600 to 700 C for which the composition of the outer surface oxide changed from iron oxide to chromium oxide. Heating in vacuum about 5 x 10 to the minus 10 power torr to 700 C causes conversion of the iron oxide surface to chromium oxide.

  19. Adaptive use of prior information in inverse problems: an application to neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Levenson, Mark S.; Coakley, Kevin J.

    2000-03-01

    A flexible class of Bayesian models is proposed to solve linear inverse problems. The models generalize linear regularization methods such as Tikhonov regularization and are motivated by the ideas of the image restoration model of Johnson et al (1991 IEEE Trans. Pattern Anal. Machine Intell. 13 413-25). The models allow for the existence of sharp boundaries between regions of different intensities in the signal, as well as the incorporation of prior information on the locations of the boundaries. The use of the prior boundary information is adaptive to the data. The models are applied to data collected to study a multilayer diamond-like carbon film sample using a nondestructive testing procedure known as neutron depth profiling.

  20. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  1. In-air fluence profiles and water depth dose for uncollimated electron beams

    PubMed Central

    Toutaoui, Abedelkadar; Aichouche, Amar Nassim; Adjidir, Kenza Adjidir; Chami, Ahmed Chafik

    2008-01-01

    Advanced electron beam dose calculation models for radiation treatment planning systems require the input of a phase space beam model to configure a clinical electron beam in a computer. This beam model is a distribution in position, energy, and direction of electrons and photons in a plane in front of the patient. The phase space beam model can be determined by Monte Carlo simulation of the treatment head or from a limited set of measurements. In the latter case, parameters of the electron phase space beam model are obtained by fitting measured to calculated dosimetric data. In the present work, data for air fluence profiles and water depth doses have been presented for electron beams without an applicator for a medical linear accelerator. These data are used to parameterize the electron phase space beam model to a Monte Carlo dose calculation module available in the first commercial (MDS Nordion, now Nucletron) Monte Carlo treatment planning for electron beams. PMID:19893707

  2. Thickness dependent CARS measurement of polymeric thin films without depth-profiling.

    PubMed

    Choi, Dae Sik; Jeoung, Sae Chae; Chon, Byung-Hyuk

    2008-02-18

    Coherent anti-Stokes Raman scattering (CARS) microscopy is demonstrated to be a promising optical method for the characterization of polymer films with film thickness varying between 180 nm to 4300 nm. In case of PMMA films with a thickness of few hundreds of nanometers, the observed CARS signal was mainly associated with the interference effect of large nonresonant CARS field from glass substrate and the weak resonant field of PMMA. The dependence of resonant CARS intensity of PMMA film on film thickness is in good agreement with the theoretical prediction on a CARS field. The current work offers potential possibilities of noninvasive thickness measurement of polymeric thin film of thickness less than 180 nm by multiplex CARS microscopy without depth-profiling.

  3. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    SciTech Connect

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; Yurimoto, Hisayoshi

    2015-01-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile is consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.

  4. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles.

    PubMed

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki

    2016-04-01

    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development

    PubMed Central

    Turner, Stephanie; Mikutta, Robert; Meyer-Stüve, Sandra; Guggenberger, Georg; Schaarschmidt, Frank; Lazar, Cassandre S.; Dohrmann, Reiner; Schippers, Axel

    2017-01-01

    Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR) and community composition (pyrosequencing) as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand). Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate), O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR) and community patterns (T-RFLP) were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to subsoil conditions

  6. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

    SciTech Connect

    Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.; Gilmore, I. S.; Alexander, Morgan R.; Angerer, Tina B.; Aoyagi, Satoka; Barnes, Jean P.; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D.; Deeks, Christopher; Fletcher, John S.; Graham, Daniel J.; Heuser, Christian; Lee, Tae G.; Marie, Camille; Marzec, Mateusz M.; Mishra, Gautam; Rading, Derk; Renault, Oliver; Scurr, David J.; Shon, Hyun K.; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua

    2015-07-23

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

  7. Optoelectronic properties and depth profile of charge transport in nanocrystal films

    NASA Astrophysics Data System (ADS)

    Aigner, Willi; Bienek, Oliver; Desta, Derese; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.

    2017-07-01

    We investigate the charge transport in nanocrystal (NC) films using field effect transistors (FETs) of silicon NCs. By studying films with various thicknesses in the dark and under illumination with photons with different penetration depths (UV and red light), we are able to predictably change the spatial distribution of charge carriers across the films' profile. The experimental data are compared with photoinduced charge carrier generation rates computed using finite-difference time-domain (FDTD) simulations complemented with optical measurements. This enables us to understand the optoelectronic properties of NC films and the depth profile dependence of the charge transport properties. From electrical measurements, we extract the total (bulk) photoinduced charge carrier densities (nphoto) and the photoinduced charge carrier densities in the FETs channel (nphoto*). We observe that the values of nphoto and their dependence on film thickness are similar for UV and red light illumination, whereas a significant difference is observed for the values of nphoto*. The dependencies of nphoto and nphoto* on film thickness and illumination wavelength are compared with data from FDTD simulations. Combining experimental data and simulation results, we find that charge carriers in the top rough surface of the films cannot contribute to the macroscopic charge transport. Moreover, we conclude that below the top rough surface of NC films, the efficiency of charge transport, including the charge carrier mobility, is homogeneous across the film thickness. Our work shows that the use of NC films as photoactive layers in applications requiring harvesting of strongly absorbed photons such as photodetectors and photovoltaics demands a very rigorous control over the films' roughness.

  8. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study.

    PubMed

    Shard, Alexander G; Havelund, Rasmus; Spencer, Steve J; Gilmore, Ian S; Alexander, Morgan R; Angerer, Tina B; Aoyagi, Satoka; Barnes, Jean-Paul; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D P; Deeks, Christopher; Fletcher, John S; Graham, Daniel J; Heuser, Christian; Lee, Tae Geol; Marie, Camille; Marzec, Mateusz M; Mishra, Gautam; Rading, Derk; Renault, Olivier; Scurr, David J; Shon, Hyun Kyong; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua; Cristaudo, Vanina; Poleunis, Claude

    2015-08-20

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-l-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray photoelectron spectroscopy (XPS) or time-of-flight secondary ion mass spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants' data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally, we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

  9. Extraction of depth profiles of third-order elastic constants in cracked media

    NASA Astrophysics Data System (ADS)

    Rjelka, Marek; Koehler, Bernd; Mayer, Andreas

    2017-02-01

    Elastic constants of components are usually determined by tensile tests in combination with ultrasonic experiments. However, these properties may change due to e.g. mechanical treatments or service conditions during their lifetime. Knowledge of the actual material parameters is key to the determination of quantities like residual stresses present in the medium. In this work the acoustic nonlinearity parameter (ANP) for surface acoustic waves is examined through the derivation of an evolution equation for the amplitude of the second harmonic. Given a certain depth profile of the third-order elastic constants, the dependence of the ANP with respect to the input frequency is determined and on the basis of these results, an appropriate inversion method is developed. This method is intended for the extraction of the depth dependence of the third-order elastic constants of the material from second-harmonic generation and guided wave mixing experiments, assuming that the change in the linear Rayleigh wave velocity is small. The latter assumption is supported by a 3D-FEM model study of a medium with randomly distributed micro-cracks as well as theoretical works on this topic in the literature.

  10. Magnetic properties of epitaxial CoCr films with depth-dependent exchange-coupling profiles

    NASA Astrophysics Data System (ADS)

    Fallarino, Lorenzo; Kirby, Brian J.; Pancaldi, Matteo; Riego, Patricia; Balk, Andrew L.; Miller, Casey W.; Vavassori, Paolo; Berger, Andreas

    2017-04-01

    We present a study of the compositional and temperature-dependent magnetic properties of epitaxial CoCr thin films whose composition has a bathtublike depth profile Co /C o1 →1 -xcC r0 →xc/C o1 -xcC rxc/Co1 -x c→1C rxc→0/Co with the highest Cr concentration (xc) at the center of the sample. Polarized neutron reflectometry (PNR) shows that the effective Curie temperature varies as a function of depth and exhibits a minimum in the center of the structure. Correspondingly, we observe that the effective coupling between the two outer Co layers is strongly dependent on the magnetization of the graded CoCr spacer and can be continuously tuned via xc and temperature T . In particular, for xc=0.28 , magnetometry reveals a transition from one-step to two-step reversal behavior for temperatures T > 260 K, indicating a transition from a fully correlated magnetic film structure to an uncoupled system containing effectively two independent magnetic sublayers. Corroborating evidence of the temperature-dependent coupling of the top and bottom regions for xc=0.28 was revealed by PNR, which demonstrated the field-dependent occurrence of antiparallel magnetization alignment on opposite interfaces at sufficiently high temperatures only.

  11. Assessment of biofilm changes and concentration-depth profiles during arsenopyrite oxidation by Acidithiobacillus thiooxidans.

    PubMed

    Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H

    2017-07-12

    Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS2)-like, S n(2-)/S(0), and As2S3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.

  12. Computer studies of reemission and depth profiles for helium on molybdenum

    NASA Astrophysics Data System (ADS)

    Yamamura, Yasunori

    1987-08-01

    Adding the diffusion processes to the existing ACAT code, the reemission mechanisms and depth profiles under heavy bombardments have been investigated for 4 keV 3He + ions on molybdenum, where the ion-induced detrapping or the collisions between newly implanted helium ions and previously trapped heliums are taken into account, and the diffusion of thermalized helium atoms is numerically calculated. It is found that the reemission processes are composed of three mechanisms, i.e., ordinary particle reflection, ion-induced reemission promoted by radiation-enhanced diffusion, and thermal release due to radiation-enhanced diffusion. At low temperatures the ion-induced reemission promoted by the radiation-enhanced diffusion is the most important process. Concerning the critical dose, the helium saturation concentration and the helium retention curve, we have obtained good agreement with the experiments, but the calculated penetration depth has shown a larger values than the experimental results. The calculated reemission rate curve has a sharp peak at the critical dose or shows oscillatory behavior, which is explained explicitly by introducing the critical surface density for the ion-induced reemission.

  13. Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis in Si/SiGe/Si Heterostructures

    SciTech Connect

    Chen, Xin; Zuo, Daniel; Kim, Seongwon; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min

    2014-08-27

    We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of ~7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the “strained” SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.

  14. Large area and depth-profiling dislocation imaging and strain analysis in Si/SiGe/Si heterostructures.

    PubMed

    Chen, Xin; Zuo, Daniel; Kim, Seongwon; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min

    2014-10-01

    We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of ~7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the "strained" SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.

  15. Historical Tracking of Nitrate in Contrasting Vineyard Using Water Isotopes and Nitrate Depth Profiles

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Erhardt, M.; Riedel, M.; Weiler, M.

    2015-12-01

    The European Water Framework Directive (EWFD) aims to achieve a good chemical status for the groundwater bodies in Europe by the year 2015. Despite the effort to reduce the nitrate pollution from agriculture within the last two decades, there are still many groundwater aquifers that exceed nitrate concentrations above the EWFD threshold of 50 mg/l. Viticulture is seen as a major contributor of nitrate leaching and sowing of a green cover was shown to have a positive effect on lowering the nitrate loads in the upper 90 cm of the soil. However, the consequences for nitrate leaching into the subsoil were not yet tested. We analyzed the nitrate concentrations and pore water stable isotope composition to a depth of 380 cm in soil profiles under an old vineyard and a young vineyard with either soil tillage or permanent green cover in between the grapevines. The pore water stable isotopes were used to calibrate a soil physical model, which was then used to infer the age of the soil water at different depths. This way, we could relate elevated nitrate concentrations below an old vineyard to tillage processes that took place during the winter two years before the sampling. We further showed that the elevated nitrate concentration in the subsoil of a young vineyard can be related to the soil tillage prior to the planting of the new vineyard. If the soil is kept bare due to tillage, a nitrate concentration of 200 kg NO3--N/ha is found in 290 to 380 cm depth 2.5 years after the installation of the vineyard. The amount of nitrate leaching is considerably reduced due to a seeded green cover between the grapevines that takes up a high share of the mobilized nitrate reducing a potential contamination of the groundwater.

  16. Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio-Oyashio Extension region

    NASA Astrophysics Data System (ADS)

    Itoh, Sachihiko; Yasuda, Ichiro; Saito, Hiroaki; Tsuda, Atsushi; Komatsu, Kosei

    2015-11-01

    Variability in the chlorophyll a concentration (Chl) in relation to fluctuations in the mixed layer (ML) was investigated together with turbidity (Tur) in the Kuroshio-Oyashio Extension region, using profiling floats. A particular focus was the validity of two hypotheses concerning the spring bloom: the critical depth hypothesis (CDH) and the recently proposed alternative, the disturbance-recovery hypothesis (DRH). During the period from winter to early spring, Chl and Tur integrated over the photosynthetically active layer (PL; defined as the greatest depth of the ML and the euphotic layer) increased with increasing PL depth (PLD), indicating an increase in the phytoplankton biomass. This result is partly consistent with the DRH in that the observed increase in biomass was not explained by an increase in production. Instead, it was more likely attributable to a reduction in the loss rate. However, theoretical analyses revealed that grazer dilution alone could not cause this increase in biomass because such an increase in the ML in the real ocean (as opposed to a dilution experiment within a bottle) would cause a reduction in the mean light intensity. Despite the loss-controlled fluctuation in biomass during the period of low light, a production-driven fluctuation in biomass was also revealed. This occurred when the light intensity was elevated, particularly after late spring, and was consistent with the CDH. Thus, the present study suggests that both the production-driven and loss-driven hypotheses are responsible for the dynamics of the phytoplankton dynamics from winter to spring in the Kuroshio-Oyashio Extension region.

  17. Extremely eroded or incredibly young - 10Be depth profile dating of moraines in the Swiss Midlands

    NASA Astrophysics Data System (ADS)

    Wüthrich, Lorenz; Zech, Roland; Haghipour, Negar; Gnägi, Christian; Christl, Markus; Ivy-Ochs, Susan; Veit, Heinz

    2014-05-01

    During the Pleistocene, glaciers advanced repeatedly from the Alps into the Swiss Midlands. The exact extent and timing are still under debate, even for the last glacial advances. Decalcification depths, for example, increase from west to east in the western Swiss Midlands and have been interpreted to indicate that the Valais (Rhone) glacier may have been less extensive during the global Last Glacial Maximum (LGM) at 20 ka than assumed so far [1]. In an attempt to provide more quantitative age control, we applied 10Be depth profile dating [2] on moraines at two locations. Steinhof has previously been dated to the global LGM based on exposure ages from four boulders [3], and Niederbuchsiten presumably lies outside the last glacial ice extent [1]. The 10Be concentrations at both sites decrease consistently with depth, but are very similar. Assuming only a few decimeters of erosion since moraine deposition, we obtain apparent exposure ages of ~20 ka. Niederbuchsiten would thus be unexpectedly young, implying a much more extensive extent of the LGM glacier than assumed so far. Alternatively, if the till at Niederbuchsiten was deposited during or before the penultimate glaciation (>130 ka), the surprisingly low 10Be concentrations indicate several meters of erosion during the last glacial cycle and/or the Holocene, which seems to be at odds with the deep and intensive soil formation. References: [1] Bitterli et al. (2011) Geologischer Atlas der Schweiz, Blatt 1108. [2] Hidy et al. (2010) Geochem. Geophys. Geosyst. 11, doi:10.1029/2010GC003084. [3] Ivy- Ochs et al. (2004) Ecl. Geol. Helv. 97, 47-55.

  18. In vivo diffuse reflectance micro-spectroscopy for correction of Raman depth profiles acquired on skin

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Manfait, Michel; Dinten, Jean-Marc

    2016-04-01

    Confocal Raman microspectroscopy is a relevant and useful tool to perform in vivo diagnosis of cutaneous tissues noninvasively and without labeling. This optical technique provides in-depth molecular and conformational characterization of skin. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering elastic scattering in biological tissues. In this purpose, a correction model was constructed using skin scattering properties as parameters thus enabling quantitative analysis. The work presented here is a technique of in vivo Diffuse Reflectance Micro-Spectroscopy called Micro-DRS. It achieves optical properties characterization in the skin layers probed by Raman microspectroscopy. The Micro-DRS setup can easily be coupled to a confocal Raman micro-probe to perform simultaneous measurements. Thanks to Monte Carlo simulations and experimental results obtained on homemade solid phantoms mimicking skin optical properties, we show that it is possible to measure the absorption coefficient μa, the reduced scattering coefficient μs', the scattering coefficient μs and the anisotropy of scattering g with this new apparatus. The measured scattering properties can be used subsequently as parameters in our correction model. Coupled to a Raman micro-spectrometer, Micro-DRS enables a quantitative analysis when tracking drug penetration through skin and it can be used independently to provide additional diagnosing criterions.

  19. Depth resolved compositional analysis of aluminium oxide thin film using non-destructive soft x-ray reflectivity technique

    NASA Astrophysics Data System (ADS)

    Sinha, Mangalika; Modi, Mohammed H.

    2017-10-01

    In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.

  20. Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers

    NASA Astrophysics Data System (ADS)

    Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni

    2016-08-01

    We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.

  1. New radiosonde techniques to measure radiation profiles through the atmosphere

    NASA Astrophysics Data System (ADS)

    Kräuchi, Andreas; Philipona, Rolf; Romanens, Gonzague; Levrat, Gilbert

    2013-04-01

    Solar and thermal radiation fluxes are usually measured at Earth's surface and at the top of the atmosphere. Here we show radiosonde techniques that allow measuring radiation flux profiles and the radiation budget from the Earth's surface to above 30 km in the stratosphere. During two-hour flights solar shortwave and thermal longwave irradiance, downward and upward, is measured with four individual sensors at one-second resolution, along with standard PTU radiosonde profiles. Daytime and nighttime shortwave and longwave radiation measurements, and 24 hours surface measurements, allow determining radiation budget- and total net radiation profiles through the atmosphere. We use a double balloon technique to prevent pendulum motion during the ascent and to keep the sonde as horizontal as possible. New techniques using auto controlled airplanes are now investigated to retrieve the sonde after release at a certain altitude and to land it if possible at the launch station.

  2. Neutron Depth Profiling benchmarking and analysis of applications to lithium ion cell electrode and interfacial studies research

    NASA Astrophysics Data System (ADS)

    Whitney, Scott M.

    The role of the lithium ion cell is increasing with great intensity due to global concerns for the decreased use of fossil fuels as well as the growing popularity of portable electronics. With the dramatic increase in demand for these cells follows an outbreak of research to optimize the lithium ion cells in terms of safety, cost, and also performance. The work shown in this dissertation sets out to distinguish the role of Neutron Depth Profiling (NDP) in the expanding research of lithium ion cells. Lithium ions play the primary role in the performance of lithium ion batteries. Moving from anode to cathode, and cathode to anode, the lithium ions are constantly being disturbed during the cell's operation. The ability to accurately determine the lithium's behavior within the electrodes of the cell after different operating conditions is a powerful tool to better understand the faults and advantages of particular electrode compositions and cell designs. NDP has this ability through the profiling of 6Li. This research first validates the ability of The University of Texas NDP (UT-NDP) facility to accurately profile operated lithium ion cell electrodes to a precision within 2% over 10 mum for concentration values, and with a precision for depth measurements within 77 nm. The validation of the UT-NDP system is performed by comparing UT-NDP profiles to those from the NIST-NDP system, from the Secondary Ion Mass Spectrometry (SIMS) technique, and also from Monte Carlo n-Particle (MCNPX) code simulations. All of the comparisons confirmed that the UT-NDP facility is fully capable of providing accurate depth profiles of lithium ion cell electrodes in terms of depth, shape of distribution, and concentration. Following the validation studies, this research investigates three different areas of lithium ion cell research and provides analysis based on NDP results. The three areas of investigation include storage of cells at temperature, cycling of cells, and the charging of cells

  3. What Can Radiocarbon Depth Profiles Tell Us About The LGM Circulation?

    NASA Astrophysics Data System (ADS)

    Burke, A.; Stewart, A.; Adkins, J. F.; Ferrari, R. M.; Thompson, A. F.; Jansen, M. F.

    2014-12-01

    Published reconstructions of radiocarbon in the Atlantic sector of the Southern Ocean indicate that there is a mid-depth maximum in radiocarbon age during the last glacial maximum (LGM). This is in contrast to the modern ocean where intense mixing between water masses along shared density surfaces (isopycnals) results in a relatively homogenous radiocarbon profile. A recent study (Ferrari et al. 2014) suggested that the extended Antarctic sea ice cover during the LGM necessitated a shallower boundary between the upper and lower branches of the meridional overturning circulation (MOC). This shoaled boundary lay above major topographic features and their associated strong diapycnal mixing, which isolated dense southern-sourced water in the lower branch of the overturning circulation. This isolation would have allowed radiocarbon to decay, and thus provides a possible explanation for the mid-depth radiocarbon age bulge. We test this hypothesis using an idealized, 2D, residual-mean dynamical model of the global overturning circulation. Concentration distributions of a decaying tracer that is advected by the simulated overturning are compared to published radiocarbon data. We test the sensitivity of the mid-depth radiocarbon age to changes in sea ice extent, wind strength, and isopycnal and diapycnal diffusion. The mid-depth radiocarbon age bulge is most likely caused by the different circulation geometry, associated with increased sea ice extent. In particular, with an LGM-like sea ice extent the upper and lower branches of the MOC no longer share isopycnals, so radiocarbon-rich northern-sourced water is no longer mixed rapidly into the southern-sourced water. However, this process alone cannot explain the magnitude of the glacial radiocarbon anomalies; additional isolation (e.g. from reduced air-sea gas exchange associated with the increased sea ice) is required. Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson (2014), Antarctic sea

  4. The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.

    PubMed

    Lasagna, Manuela; De Luca, Domenico Antonio

    2016-10-01

    Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  5. 'Expanding bubble' modification of 'big-bubble' technique for performing maximum-depth anterior lamellar keratoplasty.

    PubMed

    Daneshgar, F; Fallahtafti, M

    2011-06-01

    To describe a new technique for performing maximum-depth anterior lamellar keratoplasty. This was a case series study using a novel method. We introduce and describe a new sign (sunny-side up sign) that reveals the presence and extent of the air bubble at the Descemet membrane (DM)-stroma interface. We also report a novel technique to expand the bubble by injecting viscoelastic material into the bubble cavity and to excise the stromal tissues within the trephination area almost completely. The follow-up period ranged from 12 to 16 months. In all patients we recorded the best spectacle-corrected visual acuity, keratometry, and endothelial cell count preoperatively and postoperatively and the air bubble diameter using the sunny-side up sign. In eight of nine patients, a big bubble formed. The size of the air bubble ranged from 2 to 7 mm. All the bubbles were expanded to 8 mm and the bare DM throughout the trephination area was obtained in all cases. The postoperative mean keratometric readings were reduced compared with the preoperative mean keratometric readings. The BSCVA was increased postoperatively compared with the preoperative acuity. The difference between the preoperative and postoperative endothelial cell counts was not statistically significant. The early outcomes in our series using the expanding bubble technique suggest that it is safe and easy in performing maximum-depth anterior lamellar keratoplasty.

  6. Molecular depth profiling of organic photovoltaic heterojunction layers by ToF-SIMS: comparative evaluation of three sputtering beams.

    PubMed

    Mouhib, T; Poleunis, C; Wehbe, N; Michels, J J; Galagan, Y; Houssiau, L; Bertrand, P; Delcorte, A

    2013-11-21

    With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.

  7. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    NASA Astrophysics Data System (ADS)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.

    2008-12-01

    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  8. Depth Profile of Mn in GaAs/Mn/GaAs Heterostuctures and Thermal Annealing Effects Studied by Angular Dependence of X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Kim, S.; Soo, Y. L.; Kioseoglou, G.; Chen, X.; Luo, H.; Kao, Y. H.; Sasaki, Y.; Liu, X.; Furdyna, J. K.

    2003-03-01

    Angular dependence of x-ray fluorescence (ADXRF) technique has been utilized to study Mn depth profile in GaAs (60 ÅMn (5 Åstructures MBE-grown on GaAs and annealed at temperatures 350, 450, and 550^oC. The nominal structure for as-grown sample was confirmed from detailed fluorescence analysis. We have found that a large amount of Mn migrate into the top GaAs layer in the sample annealed at 550^oC while the other samples showed only a slight change in the Mn profile as compared to the as-grown sample. These results provide unique information on the depth distribution of Mn atoms in Mn/GaAs magnetic digital alloys as a function of temperature in addition to those obtained previously^1 by means of grazing incidence x-ray scattering (GIXS) and x-ray diffraction. We have thus demonstrated that ADXRF technique is a useful nondestructive tool for probing the depth profile of samples with an ultra thin overlay or containing a small amount of impurity atoms. 1. G. Kioseoglou, S. Kim, Y. L. Soo, X. Chen, H. Luo, Y. H. Kao, Y. Sasaki, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 80, 1150 (2002).

  9. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2016-05-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  10. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  11. The use of streambed temperature profiles to delineate the depth of groundwater-stream water mixing in Haean basin, Korea

    NASA Astrophysics Data System (ADS)

    Kim, H.; Lee, J.; Lee, K.

    2012-12-01

    Temporal variations in a streambed temperature profile between 0.01 and 0.60 m were analyzed to delineate the stream water and groundwater mixing depth. Seepage velocity at several deths were estimated using data from installed seepage meters and mini-piezometers. The depth range of stream water and groundwater interaction was evaluated based on the temperature and seepage velcity data. Computed temperature distribution based on heat transport equation was compared with the observed temperatures. Results indicate that the magnitude and direction of advection are pivotal factor delineating mixing depth. The streambed temperature patterns at the top of the mixing area suggested downwelling stream water was dominant and it reflected diurnal air temperature. Also, the patterns at the bottom of mixing area represented upwelling groundwater. These results suggest that well documented streambed temperature profiles could be usefully for delineating the stream water and groundwater mixing depth.

  12. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  13. Investigations Into the Interactions of a MALDI Matrix with Organic Thin Films Using C60+ SIMS Depth Profiling

    PubMed Central

    Lerach, Jordan O.; Keskin, Selda; Winograd, Nicholas

    2015-01-01

    Molecular depth profiling of multilayer organic films is now an established protocol for cluster secondary ion mass spectrometry (SIMS). This unique capability is exploited here to study the ionization mechanism associated with matrix-enhanced SIMS and possibly matrix assisted laser desorption/ionization (MALDI). Successful depth profiling experiments were performed on model bi-layer systems using 2,5-dihydroxybenzoic acid (DHB) as the matrix with dipalmitoylphosphatidylcholine (DPPC) or phenylalanine (PHE). The interaction between the matrix and organic analyte is monitored at the interface of the films. Tri-layer films with D2O as a thin-film sandwiched between the matrix and organic layers are also investigated to determine what role, if any, water plays during ionization. The results show successful depth profiles when taken at 90K. Mixing is observed at the interfaces of the films due to primary ion bombardment, but this mixing does not recreate the conditions necessary for ionization enhancement. PMID:26494930

  14. Anomalous Mn depth profiles for GaMnAs/GaAs(001) thin films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, J. F.; Thibado, P. M.; Awo-Affouda, C.; Ramos, F.; Labella, V. P.

    Mn concentration depth profiles in Mn-doped GaAs thin films grown at substrate temperatures of 580 and 250 {\\deg}C using various Mn cell temperatures have been investigated with dynamic secondary ion mass spectrometry and Auger electron spectroscopy. When the samples are grown at a low substrate temperature of 250 {\\deg}C, the Mn distributes uniformly. For the samples grown at a high substrate temperature of 580 {\\deg}C, the concentration depth profiles are easily fitted with a temperature-dependent Fermi function only if the Mn concentration is above the solubility limit. However, when the Mn concentration is below the solubility limit, unexpected peaks are observed in the concentration depth profiles.

  15. Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Celussi, Mauro; Cataletto, Bruno; Fonda Umani, Serena; Del Negro, Paola

    2009-12-01

    The identification of bacterial community structure has led, since the beginning of the 1990s, to the idea that bacterioplankton populations are stratified in the water column and that diverse lineages with mostly unknown phenotypes dominate marine microbial communities. The diversity of depth-related assemblages is also reflected in their patterns of activities, as bacteria affiliated to different groups can express different activities in a given ecosystem. We analysed bacterial assemblages (DGGE fingerprinting) and their activities (prokaryotic carbon production, protease, phosphatase, chitinase, beta-glucosidase and lipase activities) in two areas in the Ross Sea, differing mainly in their productivity regime: two stations are located in the Terra Nova Bay polynya area (highly productive during summer) and two close to Cape Adare (low phytoplankton biomass and activity). At every station a pronounced stratification of bacterial assemblages was identified, highlighting epipelagic communities differing substantially from the mesopelagic and the bathypelagic communities. Multivariate analysis suggested that pressure and indirectly light-affected variables (i.e. oxygen and fluorescence) had a great effect on the bacterial communities outcompeting the possible influences of temperature and dissolved organic carbon concentration. Generally activities decreased with depth even though a signal of the Circumpolar Deep Water (CDW) at one of the northern stations corresponded to an increase in some of the degradative activities, generating some 'hot spots' in the profile. We also found that similar assemblages express similar metabolic requirements reflected in analogous patterns of activity (similar degradative potential and leucine uptake rate). Furthermore, the presence of eukaryotic chloroplasts' 16S rDNA in deep samples highlighted how in some cases the dense surface-water formation (in this case High Salinity Shelf Water—HSSW) and downwelling can affect, at least

  16. Deuterium Depth Profile in Neutron-Irradiated Tungsten Exposed to Plasma

    SciTech Connect

    Masashi Shimada; G. Cao; Y. Hatano; T. Oda; Y. Oya; M. Hara; P. Calderoni

    2011-05-01

    The effect of radiation damage has been mainly simulated using high-energy ion bombardment. The ions, however, are limited in range to only a few microns into the surface. Hence, some uncertainty remains about the increase of trapping at radiation damage produced by 14 MeV fusion neutrons, which penetrate much farther into the bulk material. With the Japan-US joint research project: Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), the tungsten samples (99.99 % pure from A.L.M.T., 6mm in diameter, 0.2mm in thickness) were irradiated to high flux neutrons at 50 C and to 0.025 dpa in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL). Subsequently, the neutron-irradiated tungsten samples were exposed to a high-flux deuterium plasma (ion flux: 1021-1022 m-2s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment (TPE) at the Idaho National Laboratory (INL). First results of deuterium retention in neutron-irradiated tungsten exposed in TPE have been reported previously. This paper presents the latest results in our on-going work of deuterium depth profiling in neutron-irradiated tungsten via nuclear reaction analysis. The experimental data is compared with the result from non neutron-irradiated tungsten, and is analyzed with the Tritium Migration Analysis Program (TMAP) to elucidate the hydrogen isotope behavior such as retention and depth distribution in neutron-irradiated and non neutron-irradiated tungsten.

  17. Combining bulk sediment OSL and meteoric 10Be fingerprinting techniques to identify gully initiation sites and erosion depths

    NASA Astrophysics Data System (ADS)

    Portenga, E. W.; Bishop, P.; Rood, D. H.; Bierman, P. R.

    2017-02-01

    Deep erosional gullies dissect landscapes around the world. Existing erosion models focus on predicting where gullies might begin to erode, but identifying where existing gullies were initiated and under what conditions is difficult, especially when historical records are unavailable. Here we outline a new approach for fingerprinting alluvium and tracing it back to its source by combining bulk sediment optically stimulated luminescence (bulk OSL) and meteoric 10Be (10Bem) measurements made on gully-derived alluvium samples. In doing so, we identify where gully erosion was initiated and infer the conditions under which such erosion occurred. As both 10Bem and bulk OSL data have distinctive depth profiles in different uneroded and depositional settings, we are able to identify the likely incision depths in potential alluvium source areas. We demonstrate our technique at Birchams Creek in the southeastern Australian Tablelands—a well-studied and recent example of gully incision that exemplifies a regional landscape transition from unchanneled swampy meadow wetlands to gully incision and subsequent wetland burial by post-European settlement alluvium. We find that such historic alluvium was derived from a shallow erosion of valley fill upstream of former swampy meadows and was deposited down the center of the valley. Incision likely followed catchment deforestation and the introduction of livestock, which overgrazed and congregated in valley bottoms in the early 20th century during a period of drought. As a result, severe gully erosion was likely initiated in localized, compacted, and oversteepened reaches of the valley bottom.

  18. Application of different techniques to obtain spatial estimates of debris flows erosion and deposition depths

    NASA Astrophysics Data System (ADS)

    Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino

    2016-04-01

    In Alpine regions, debris flows endanger settlements and human life. Danger mitigation strategies based on the preparation of hazard maps are necessary tools for the current land planning. To date, hazard maps are obtained by using one- or two-dimensional numerical models that are able to forecast the potential inundated areas, after careful calibration of those input parameters that directly affect the flow motion and its interaction with the ground surface (sediments entrainment or deposition). In principle, the reliability of these numerical models can be tested by flume experiments in laboratory using, for example, particles and water mixtures. However, for more realistic materials including coarse particles, the scaling effects are still difficult to account for. In some cases, where there are enough data (for example, point measures of flow depths and velocities or spatial estimation of erosion and deposition depths), these models can be tested against field observations. As it regards the spatial estimates of debris flows erosion and deposition depths, different approaches can be followed to obtain them, mainly depending on both the type and accuracy of the available initial data. In this work, we explain the methods that have been employed to obtain the maps of erosion and deposition depths for three occurred debris flows in the Dolomites area (North-Eastern Italian Alps). The three events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006 and at Rio Val Molinara (Trento) on the 15th of August 2010. For each case study, we present the available initial data and the related problems, the techniques that have been used to overcome them and finally the results obtained.

  19. New approach to online monitoring of the Al depth profile of the hot-dip galvanised sheet steel using LIBS.

    PubMed

    Balzer, Herbert; Hoehne, Manuela; Noll, Reinhard; Sturm, Volker

    2006-05-01

    In this study a new approach to the online monitoring of the Al depth profile of hot-dip galvanised sheet steel is presented, based on laser-induced breakdown spectroscopy (LIBS). The coating composition is measured by irradiating the traversing sheet steel with a series of single laser bursts, each at a different sheet steel position. An ablation depth in the same range as the coating thickness (about 10 microm) is achieved by applying a Nd:YAG laser at 1064 nm in collinear double-pulse and triple-pulse mode. The ablation depth is controlled by adjusting the burst energy with an external electro-optical attenuator. A fingerprint of the depth profile is gained by measuring the LIBS signals from zinc, aluminium and iron as a function of the burst energy, and by post-processing the data obtained. Up to three depths can be sampled simultaneously with a single laser burst by measuring the LIBS signals after each pulse within the laser burst. A concept for continuously monitoring the Al depth profile during the galvanising process is presented and applied to different hot-dip galvanised coatings. The method was tested on rotating sheet steel disks moving at a speed of up to 1 m/s. The potential and limitations of the new method are discussed.

  20. Parallel detection, quantification, and depth profiling of peptides with dynamic-secondary ion mass spectrometry (D-SIMS) ionized by C60(+)-Ar(+) co-sputtering.

    PubMed

    Chang, Chi-Jen; Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang; Kuo, Yu-Ting; Kao, Wei-Lun; Yen, Guo-Ji; Tsai, Meng-Hung; Shyue, Jing-Jong

    2012-03-09

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) using pulsed C(60)(+) primary ions is a promising technique for analyzing biological specimens with high surface sensitivities. With molecular secondary ions of high masses, multiple molecules can be identified simultaneously without prior separation or isotope labeling. Previous reports using the C(60)(+) primary ion have been based on static-SIMS, which makes depth profiling complicated. Therefore, a dynamic-SIMS technique is reported here. Mixed peptides in the cryoprotectant trehalose were used as a model for evaluating the parameters that lead to the parallel detection and quantification of biomaterials. Trehalose was mixed separately with different concentrations of peptides. The peptide secondary ion intensities (normalized with respect to those of trehalose) were directly proportional to their concentration in the matrix (0.01-2.5 mol%). Quantification curves for each peptide were generated by plotting the percentage of peptides in trehalose versus the normalized SIMS intensities. Using these curves, the parallel detection, identification, and quantification of multiple peptides was achieved. Low energy Ar(+) was used to co-sputter and ionize the peptide-doped trehalose sample to suppress the carbon deposition associated with C(60)(+) bombardment, which suppressed the ion intensities during the depth profiling. This co-sputtering technique yielded steadier molecular ion intensities than when using a single C(60)(+) beam. In other words, co-sputtering is suitable for the depth profiling of thick specimens. In addition, the smoother surface generated by co-sputtering yielded greater depth resolution than C(60)(+) sputtering. Furthermore, because C(60)(+) is responsible for generating the molecular ions, the dosage of the auxiliary Ar(+) does not significantly affect the quantification curves.

  1. Optical center alignment technique based on inner profile measurement method

    NASA Astrophysics Data System (ADS)

    Wakayama, Toshitaka; Yoshizawa, Toru

    2014-05-01

    Center alignment is important technique to tune up the spindle of various precision machines in manufacturing industry. Conventionally such a tool as a dial indicator has been used to adjust and to position the axis by manual operations of a technical worker. However, it is not easy to precisely control its axis. In this paper, we developed the optical center alignment technique based on inner profile measurement using a ring beam device. In this case, the center position of the cylinder hole can be determined from circular profile detected by optical sectioning method using a ring beam device. In our trials, the resolution of the center position is proved less than 10 micrometers in extreme cases. This technique is available for practical applications in machine tool industry.

  2. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    NASA Astrophysics Data System (ADS)

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; Liu, Kai; Kirby, B. J.; Borchers, Julie A.; Maranville, Brian B.

    2016-07-01

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.

  3. Analysis of diamond and diamondlike thin films using neutron depth profiling

    SciTech Connect

    Lamaze, G.P.

    1994-12-31

    Much progress in recent years has been made on the development of the technology for the production of thin films of diamond and diamond-like materials. Because of its physical properties, much interest has been shown in diamond as a material to construct semiconductor devices. Among the most important of these physical properties are the highest known thermal conductivity (20 W/cm {times} K), wide energy gap (5.5 eV), and high breakdown fields (107 V/cm). Natural type-II diamond crystals are known to be semiconductors where boron is the dominant acceptor with an activation energy of {approximately}0.3 eV. Recent efforts have concentrated on introducing the boron during the synthesis of thin diamond and diamond-like films. Fujimori et al. have shown that boron doping can be accomplished during the gas-phase growth by adding B{sub 2}H{sub 6} to the gas mixture. Knowing both the concentration and distribution of dopants in the diamond is important both for understanding the synthesis process and the correlation with the physical properties of the material. Neutron depth profiling is a procedure that allows the measurement of the concentration and distribution of the dopant (boron) in chemical vapor deposition diamonds.

  4. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    SciTech Connect

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; Liu, Kai; Kirby, B. J.; Borchers, Julie A.; Maranville, Brian B.

    2016-07-22

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.

  5. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    PubMed Central

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; Liu, Kai; Kirby, B. J.; Borchers, Julie A.; Maranville, Brian B.

    2016-01-01

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films. PMID:27447691

  6. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    DOE PAGES

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; ...

    2016-07-22

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically softmore » phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.« less

  7. Depth profiling of cells and tissues by using C 60+ and SF 5+ as sputter ions

    NASA Astrophysics Data System (ADS)

    Malmberg, Per; Kriegeskotte, Christian; Arlinghaus, Heinrich F.; Hagenhoff, Birgit; Holmgren, Jan; Nilsson, Mikael; Nygren, Håkan

    2008-12-01

    In the present study, SF 5+ and C 60+ were used as primary ions for sputtering and Bi 3+ was used as primary ions for analysis. The depth profiling procedure was utilized to make 3D images of the chemistry of single cultured cells and tissue samples of intact intestinal epithelium. The results show sputtering of organic material from cells and tissue with both SF 5+ and C 60+ sources. Cholesterol fragments were found in the superficial layers when sputtering with C 60+. Spectra were collected revealing the change in yield along the z-axis of the sample. 3D images of the localization of Na, K, phosphocholine and cholesterol were constructed with both ion sources for single cell cultures and the mouse intestine. Cryostate sections of mouse intestine were analysed in 2D and the results were compared with the 3D image of the intestine. The localization of cholesterol and phosphocholine was found to be similar in cryostate sections analysed in two dimensions and the sputtered, freeze-dried intestine analysed in 3D. The comparison of 2D and 3D images suggest that the phosphocholine signal faded with C 60+ sputtering. In conclusion, both C 60+ and SF 5+ can be used as primary ion sources for sputtering of organic material from cells and tissues. Consecutive analysis with a Bi 3+ source can be used to obtain image stacks that could be used for reconstruction of 3D images.

  8. Depth profile analysis of various titanium based coatings on steel and tungsten carbide using laser ablation inductively coupled plasma--"time of flight" mass spectrometry.

    PubMed

    Bleiner, D; Plotnikov, A; Vogt, C; Wetzig, K; Günther, D

    2000-01-01

    A homogenized 193 nm ArF* laser ablation system coupled to an inductively coupled plasma-"Time of Flight"-mass spectrometer (LA-ICP-TOFMS) was tested for depth profiling analysis on different single-layer Ti based coatings on steel and W carbides. Laser parameters, such as repetition rate, pulse energy and spatial resolution were tested to allow optimum depth related calibration curves. The ablation process using a laser repetition rate of 3 Hz, 120 microm crater diameter, and 100 mJ output energy, leads to linear calibration curves independent of the drill time or peak area used for calibrating the thickness of the layer. The best depth resolution obtained (without beam splitter) was 0.20 microm per laser shot. The time resolution of the ICP-TOFMS of 102 ms integration time per isotope was sufficient for the determination of the drill time of the laser through the coatings into the matrix with better than 2.6% RSD (about 7 microm coating thickness, n = 7). Variation of the volume of the ablation cell was not influencing the depth resolution, which suggests that the depth resolution is governed by the ablation process. However, the application on the Ti(N,C) based single layer shows the potential of LA-ICP-TOFMS as a complementary technique for fast depth determinations on various coatings in the low to medium microm region.

  9. Gallium In-Depth Profile in Bromine- Etched Copper-Indium-Galium-(Di)selenide (CIGS) Thin Films Inspected Using Raman Spectroscopy.

    PubMed

    Parravicini, Jacopo; Acciarri, Maurizio; Lomuscio, Alberto; Murabito, Matteo; Le Donne, Alessia; Gasparotto, Andrea; Binetti, Simona

    2017-06-01

    In the thin film solar cells domain, copper indium galium (di)selenide (CIGS) is a material with well-established photovoltaic purpose. Here the presence of a suitable [Ga]/([Ga]+[In]) (GGI) in-depth profile has proved to play a key role in the performance of cells. The implementation of a routine method based on reliable but easily available experimental techniques is mandatory to obtain information on the GGI profile of any CIGS layer, in order to achieve high efficiency chalcogenide layers. In this vein, we here propose and systematically test a simple method for the GGI profile determination based on repeated bromine etching of CIGS thin films followed by Raman analysis of the A1 peak position. The reliability of the proposed approach is verified using a methodical comparison with energy-dispersive X-ray spectroscopy (EDS) analysis and secondary ion mass spectroscopy (SIMS) profiles, showing a good agreement with the GGI in-depth profiles determined using Raman analysis on bromine etched samples.

  10. Bioturbation depths, rates and processes in Massachusetts Bay sediments inferred from modeling of 210Pb and 239 + 240Pu profiles

    USGS Publications Warehouse

    Crusius, John; Bothner, Michael H.; Sommerfield, Christopher K.

    2004-01-01

    Profiles of 210Pb and 239 + Pu from sediment cores collected throughout Massachusetts Bay (water depths of 36-192 m) are interpreted with the aid of a numerical sediment-mixing model to infer bioturbation depths, rates and processes. The nuclide data suggest extensive bioturbation to depths of 25-35 cm. Roughly half the cores have 210Pb and 239 + 240Pu profiles that decrease monotonically from the surface and are consistent with biodiffusive mixing. Bioturbation rates are reasonably well constrained by these profiles and vary from ~0.7 to ~40 cm2 yr-1. As a result of this extensive reworking, however, sediment ages cannot be accurately determined from these radionuclides and only upper limits on sedimentation rates (of ~0.3 cm yr-1) can be inferred. The other half of the radionuclide profiles are characterized by subsurface maxima in each nuclide, which cannot be reproduced by biodiffusive mixing models. A numerical model is used to demonstrate that mixing caused by organisms that feed at the sediment surface and defecate below the surface can cause the subsurface maxima, as suggested by previous work. The deep penetration depths of excess 210Pb and 239 + 240Pu suggest either that the organisms release material over a range of >15 cm depth or that biodiffusive mixing mediated by other organisms is occurring at depth. Additional constraints from surficial sediment 234Th data suggest that in this half of the cores, the vast majority of the present-day flux of recent, nuclide-bearing material to these core sites is transported over a timescale of a month or more to a depth of a few centimeters below the sediment surface. As a consequence of the complex mixing processes, surface sediments include material spanning a range of ages and will not accurately record recent changes in contaminant deposition.

  11. Electron sterilization validation techniques using the controlled depth of sterilization process

    NASA Astrophysics Data System (ADS)

    Cleghorn, Denise A.; Nablo, Sam V.

    Many pharmaceutical products, especially parenteral drugs, cannot be sterilized with gamma rays or high energy electrons due to the concomitant product degradation. most of these products are filled under aseptic conditions so that for qualification as a sterile product, techniques are often required only for treatment of the container surfaces and package interior. Gas sterilization (ETO) is often used for this purpose but is beset with difficulties known to the reader, especially for critical "contact" products such as in the ophthalmic field. In view of the well-controlled electron energy spectrum available in modern electron processors, it is practical to deliver sterilizing doses over depths considerably less than those defining the thickness of blister-pack constructions or pharmaceutical containers. Because bremsstrahlung and x-ray production are minimized at these low electron energies and in these low Z materials, very high electron: penetrating x-ray dose ratios are possible for the application of the technique. Some of these data illustrating package: parenteral ratios of 10 5:1 have been reported (Rangwalla et al, 1985; Aaronson and Nablo, 1988). Standard techniques have been developed for the validation of the process and are reported here. Thin film dosimetric techniques have been developed utilizing radiochromic film in the 10-60 g/m 2 range for determining the surface dose distribution in occluded surface areas where direct electron illumination is not possible. Procedures for validation of the process using dried spore inoculum on the product as well as in good geometry are employed to determine the process lethality and its dependence on product surface geometry. Applications of the process to labile pharmaceuticals in glass and polystyrene syringes are reviewed. It has been applied to the sterilization of commercial sterile products since 1987, and the advantages and the natural limitations of the technique are discussed.

  12. Into the depths: Techniques for in vitro three-dimensional microtissue visualization

    PubMed Central

    Kabadi, Pranita K.; Vantangoli, Marguerite M.; Rodd, April L.; Leary, Elizabeth; Madnick, Samantha J.; Morgan, Jeffrey R.; Kane, Agnes; Boekelheide, Kim

    2016-01-01

    Three-dimensional (3-D) in vitro platforms have been shown to closely recapitulate human physiology when compared with conventional two-dimensional (2-D) in vitro or in vivo animal model systems. This confers a substantial advantage in evaluating disease mechanisms, pharmaceutical drug discovery, and toxicity testing. Despite the benefits of 3-D cell culture, limitations in visualization and imaging of 3-D microtissues present significant challenges. Here we optimized histology and microscopy techniques to overcome the constraints of 3-D imaging. For morphological assessment of 3-D microtissues of several cell types, different time points, and different sizes, a two-step glycol methacrylate embedding protocol for evaluating 3-D microtissues produced using agarose hydrogels improved resolution of nuclear and cellular histopathology characteristic of cell death and proliferation. Additional immunohistochemistry, immunofluorescence, and in situ immunostaining techniques were successfully adapted to these microtissues and enhanced by optical clearing. Utilizing the ClearT2 protocol greatly increased fluorescence signal intensity, imaging depth, and clarity, allowing for more complete confocal fluorescence microscopy imaging of these 3-D microtissues compared with uncleared samples. The refined techniques presented here address the key challenges associated with 3-D imaging, providing new and alternative methods in evaluating disease pathogenesis, delineating toxicity pathways, and enhancing the versatility of 3-D in vitro testing systems in pharmacological and toxicological applications. PMID:26554505

  13. Software-based stacking techniques to enhance depth of field and dynamic range in digital photomicrography.

    PubMed

    Piper, Jörg

    2010-01-01

    Several software solutions are powerful tools to enhance the depth of field and improve focus in digital photomicrography. By these means, the focal depth can be fundamentally optimized so that three-dimensional structures within specimens can be documented with superior quality. Thus, images can be created in light microscopy which will be comparable with scanning electron micrographs. The remaining sharpness will no longer be dependent on the specimen's vertical dimension or its range in regional thickness. Moreover, any potential lack of definition associated with loss of planarity and unsteadiness in the visual accommodation can be mitigated or eliminated so that the contour sharpness and resolution can be strongly enhanced.Through the use of complementary software, ultrahigh ranges in brightness and contrast (the so-called high-dynamic range) can be corrected so that the final images will also be free from locally over- or underexposed zones. Furthermore, fine detail in low natural contrast can be visualized in much higher clarity. Fundamental enhancements of the global visual information will result from both techniques.

  14. New signal processing technique for density profile reconstruction using reflectometry

    SciTech Connect

    Clairet, F.; Bottereau, C.; Ricaud, B.; Briolle, F.; Heuraux, S.

    2011-08-15

    Reflectometry profile measurement requires an accurate determination of the plasma reflected signal. Along with a good resolution and a high signal to noise ratio of the phase measurement, adequate data analysis is required. A new data processing based on time-frequency tomographic representation is used. It provides a clearer separation between multiple components and improves isolation of the relevant signals. In this paper, this data processing technique is applied to two sets of signals coming from two different reflectometer devices used on the Tore Supra tokamak. For the standard density profile reflectometry, it improves the initialization process and its reliability, providing a more accurate profile determination in the far scrape-off layer with density measurements as low as 10{sup 16} m{sup -1}. For a second reflectometer, which provides measurements in front of a lower hybrid launcher, this method improves the separation of the relevant plasma signal from multi-reflection processes due to the proximity of the plasma.

  15. Depth profile reconstructions of electronic transport properties in H{sup +} MeV-energy ion-implanted n-Si wafers using photocarrier radiometry

    SciTech Connect

    Tai, Rui; Wang, Chinhua Hu, Jingpei; Mandelis, Andreas

    2014-07-21

    A depth profiling technique using photocarrier radiometry (PCR) is demonstrated and used for the reconstruction of continuously varying electronic transport properties (carrier lifetime and electronic diffusivity) in the interim region between the ion residence layer and the bulk crystalline layer in H{sup +} implanted semiconductor wafers with high implantation energies (∼MeV). This defect-rich region, which is normally assumed to be part of the homogeneous “substrate” in all existing two- and three-layer models, was sliced into many virtual thin layers along the depth direction so that the continuously and monotonically variable electronic properties across its thickness can be considered uniform within each virtual layer. The depth profile reconstruction of both carrier life time and diffusivity in H{sup +} implanted wafers with several implantation doses (3 × 10{sup 14}, 3 × 10{sup 15}, and 3 × 10{sup 16} cm{sup −2}) and different implantation energies (from 0.75 to 2.0 MeV) is presented. This all-optical PCR method provides a fast non-destructive way of characterizing sub-surface process-induced electronic defect profiles in devices under fabrication at any intermediate stage before final metallization and possibly lead to process correction and optimization well before electrical testing and defect diagnosis becomes possible.

  16. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence

    2014-05-01

    In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.

  17. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    SciTech Connect

    Peters, Katharina; Raupp, Sebastian Scharfer, Philip; Schabel, Wilhelm; Hummel, Helga; Bruns, Michael

    2016-06-15

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N’-Di(1-naphthyl)-N,N’-diphenyl-(1,1’-biphenyl)-4,4’-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  18. Recent changes in Red Lake (Romania) sedimentation rate determined from depth profiles of 210Pb and 137Cs radioisotopes.

    PubMed

    Begy, R; Cosma, C; Timar, A

    2009-08-01

    This work presents a first estimation of the sedimentation rate for the Red Lake (Romania). The sediment accumulation rates were determined by two well-known methods for recent sediment dating: (210)Pb and (137)Cs methods. Both techniques implied used the gamma emission of the above-mentioned radionuclides. The (210)Pb and (137)Cs concentrations in the sediment were measured using a gamma spectrometer with a HpGe detector, Gamma-X type. Activities ranging from 41+/-7 to 135+/-34Bq/kg were found for (210)Pb and from 3+/-0.5 to 1054+/-150Bq/kg for (137)Cs. The sediment profile indicates acceleration in sedimentation rate in the last 18 years. Thus, the sedimentation process for the Red Lake can be divided in two periods, the last 18 years, and respectively, the period before that. Using the Constant Rate of (210)Pb Supply method values between 0.18+/-0.04 and 1.85+/-0.5g/cm(2) year (0.32+/-0.08 and 2.83+/-0.7cm/year) were obtained. Considering both periods, an average sedimentation rate of 0.87+/-0.17g/cm(2) year (1.17cm/year) was calculated. Considering an average depth of 5.41m for the lake and the sedimentation rate estimated for the last 18 years, it could be estimated that the lake will disappear in 195 years.

  19. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  20. Latent practice profiles of substance abuse treatment counselors: do evidence-based techniques displace traditional techniques?

    PubMed

    Smith, Brenda D; Liu, Junqing

    2014-04-01

    As more substance abuse treatment counselors begin to use evidence-based treatment techniques, questions arise regarding the continued use of traditional techniques. This study aims to (1) assess whether there are meaningful practice profiles among practitioners reflecting distinct combinations of cognitive-behavioral and traditional treatment techniques; and (2) if so, identify practitioner characteristics associated with the distinct practice profiles. Survey data from 278 frontline counselors working in community substance abuse treatment organizations were used to conduct latent profile analysis. The emergent practice profiles illustrate that practitioners vary most in the use of traditional techniques. Multinomial regression models suggest that practitioners with less experience, more education, and less traditional beliefs about treatment and substance abuse are least likely to mix traditional techniques with cognitive-behavioral techniques. Findings add to the understanding of how evidence-based practices are implemented in routine settings and have implications for training and support of substance abuse treatment counselors. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. NMR depth profiles as a non-invasive analytical tool to probe the penetration depth of hydrophobic treatments and inhomogeneities in treated porous stones.

    PubMed

    Di Tullio, Valeria; Proietti, Noemi; Capitani, Donatella; Nicolini, Ilaria; Mecchi, Anna Maria

    2011-07-01

    Hydrophobic treatment is one of the most important interventions usually carried out in the conservation of stone artifacts and monuments. The analytical study reported in this paper was aimed at answering general questions such as the penetration depth of a hydrophobic treatment into a porous material, its capability to impair the water absorption, how the presence of a treatment may change the open porosity available to the water, and how a treatment may affect the diffusion of water inside a porous structure. Also, inhomogeneities in treated stones due to sharp variations of the amount of the absorbed product in the porous material were evidenced and scaled. The results of this fully non-invasive analytical study were rationalized in terms of new parameters obtained by a suitable process of nuclear magnetic resonance data. These analytical parameters reported here for the first time, namely the hydrophobic efficiency, the penetration depth, and angles describing changes in slope in depth profiles, gave important information in assessing the performance of a treatment.

  2. Low Temperature Plasma for the Preparation of Crater Walls for Compositional Depth Profiling of Thin Inorganic Multilayers.

    PubMed

    Muramoto, Shin; Bennett, Joe

    2017-06-01

    An indirect, compositional depth profiling of an inorganic multilayer system using a helium low temperature plasma (LTP) containing 0.2% (v/v) SF6 was evaluated. A model multilayer system consisting of four 10 nm layers of silicon separated by four 50 nm layers of tungsten was plasma-etched for (10, 20, and 30) s at substrate temperatures of (50, 75, and 100) °C to obtain crater walls with exposed silicon layers that were then visualized using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to determine plasma-etching conditions that produced optimum depth resolutions. At a substrate temperature of 100 °C and an etch time of 10 s, the FWHM of the 2nd, 3rd, and 4th Si layers were (6.4, 10.9, and 12.5) nm, respectively, while the 1/e decay lengths were (2.5, 3.7, and 3.9) nm, matching those obtained from a SIMS depth profile. Though artifacts remain that contribute to degraded depth resolutions, a few experimental parameters have been identified that could be used to reduce their contributions. Further studies are needed, but as long as the artifacts can be controlled, plasma etching was found to be an effective method for preparing samples for compositional depth profiling of both organic and inorganic films, which could pave the way for an indirect depth profile analysis of inorganic-organic hybrid structures that have recently evolved into innovative next-generation materials.

  3. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    SciTech Connect

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D’Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  4. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration*

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax ), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  5. Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers.

    PubMed

    Gilbert, Jonathan B; Rubner, Michael F; Cohen, Robert E

    2013-04-23

    Functional organic thin films often demand precise control over the nanometer-level structure. Interlayer diffusion of materials may destroy this precise structure; therefore, a better understanding of when interlayer diffusion occurs and how to control it is needed. X-ray photoelectron spectroscopy paired with C60(+) cluster ion sputtering enables high-resolution analysis of the atomic composition and chemical state of organic thin films with depth. Using this technique, we explore issues common to the polyelectrolyte multilayer field, such as the competition between hydrogen bonding and electrostatic interactions in multilayers, blocking interlayer diffusion of polymers, the exchange of film components with a surrounding solution, and the extent and kinetics of interlayer diffusion. The diffusion coefficient of chitosan (M = ∼100 kDa) in swollen hydrogen-bonded poly(ethylene oxide)/poly(acrylic acid) multilayer films was examined and determined to be 1.4*10(-12) cm(2)/s. Using the high-resolution data, we show that upon chitosan diffusion into the hydrogen-bonded region, poly(ethylene oxide) is displaced from the film. Under the conditions tested, a single layer of poly(allylamine hydrochloride) completely stops chitosan diffusion. We expect our results to enhance the understanding of how to control polyelectrolyte multilayer structure, what chemical compositional changes occur with diffusion, and under what conditions polymers in the film exchange with the solution.

  6. Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers

    PubMed Central

    Gilbert, Jonathan B.; Rubner, Michael F.; Cohen, Robert E.

    2013-01-01

    Functional organic thin films often demand precise control over the nanometer-level structure. Interlayer diffusion of materials may destroy this precise structure; therefore, a better understanding of when interlayer diffusion occurs and how to control it is needed. X-ray photoelectron spectroscopy paired with C60+ cluster ion sputtering enables high-resolution analysis of the atomic composition and chemical state of organic thin films with depth. Using this technique, we explore issues common to the polyelectrolyte multilayer field, such as the competition between hydrogen bonding and electrostatic interactions in multilayers, blocking interlayer diffusion of polymers, the exchange of film components with a surrounding solution, and the extent and kinetics of interlayer diffusion. The diffusion coefficient of chitosan (M = ∼100 kDa) in swollen hydrogen-bonded poly(ethylene oxide)/poly(acrylic acid) multilayer films was examined and determined to be 1.4*10−12 cm2/s. Using the high-resolution data, we show that upon chitosan diffusion into the hydrogen-bonded region, poly(ethylene oxide) is displaced from the film. Under the conditions tested, a single layer of poly(allylamine hydrochloride) completely stops chitosan diffusion. We expect our results to enhance the understanding of how to control polyelectrolyte multilayer structure, what chemical compositional changes occur with diffusion, and under what conditions polymers in the film exchange with the solution. PMID:23569265

  7. Profiling the atmosphere with the airborne radio occultation technique

    NASA Astrophysics Data System (ADS)

    Muradyan, Paytsar

    The GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) was designed for dense sampling of meteorological targets using the airborne radio occultation (RO) technique. Airborne RO refers to an atmospheric limb sounding technique in which Global Positioning System (GPS) signals are recorded at a receiver onboard an aircraft as the satellites descend beyond the limb of the Earth. The GPS signals, that are unaffected by clouds and precipitation, experience refractive bending as well as a delay in the travel time through the atmosphere. Bending can be used to retrieve information about atmospheric refractivity, which depends on atmospheric moisture and temperature. The new system has the potential for improving numerical weather prediction (NWP) forecasts through assimilation of many high-resolution atmospheric profiles in an area of interest, compared to spaceborne RO, which samples sparsely around the globe. In February 2008, GISMOS was deployed on the National Science Foundation Gulfstream-V aircraft to make atmospheric observations in the Gulf of Mexico coastal region with an objective to test the performance of the profiling system. Recordings from this flight campaign made with the conventional phase lock loop GPS receivers descend from flight level to 5 km altitude. However, below that level strong refractivity gradients, especially those associated with the boundary layer, cause rapid phase accelerations resulting in loss of lock in the receiver. To extend the RO profiles deeper in the atmosphere, the GISMOS system was also equipped with a GPS Recording System (GRS) that records the raw RF signals. Post-processing this dataset in open-loop (OL) tracking mode enables reliable atmospheric profiling at lower altitudes. We present a comprehensive analysis of the performance of the airborne system OL tracking algorithm during a 5 hour flight on 15 February 2008. Excess phase and amplitude profiles for 5 setting and 5 rising occultations were

  8. Motor unit activity within the depth of the masseter characterized by an adapted scanning EMG technique.

    PubMed

    van Dijk, J P; Eiglsperger, U; Hellmann, D; Giannakopoulos, N N; McGill, K C; Schindler, H J; Lapatki, B G

    2016-09-01

    To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.

  9. Observationally-constrained estimates of aerosol optical depths (AODs) over East Asia via data assimilation techniques

    NASA Astrophysics Data System (ADS)

    Lee, K.; Lee, S.; Song, C. H.

    2015-12-01

    Not only aerosol's direct effect on climate by scattering and absorbing the incident solar radiation, but also they indirectly perturbs the radiation budget by influencing microphysics and dynamics of clouds. Aerosols also have a significant adverse impact on human health. With an importance of aerosols in climate, considerable research efforts have been made to quantify the amount of aerosols in the form of the aerosol optical depth (AOD). AOD is provided with ground-based aerosol networks such as the Aerosol Robotic NETwork (AERONET), and is derived from satellite measurements. However, these observational datasets have a limited areal and temporal coverage. To compensate for the data gaps, there have been several studies to provide AOD without data gaps by assimilating observational data and model outputs. In this study, AODs over East Asia simulated with the Community Multi-scale Air Quality (CMAQ) model and derived from the Geostationary Ocean Color Imager (GOCI) observation are interpolated via different data assimilation (DA) techniques such as Cressman's method, Optimal Interpolation (OI), and Kriging for the period of the Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March - May 2012). Here, the interpolated results using the three DA techniques are validated intensively by comparing with AERONET AODs to examine the optimal DA method providing the most reliable AODs over East Asia.

  10. Estimation of bony orbit depth for optimal selection of the injection technique to correct the tear trough and palpebromalar groove.

    PubMed

    El-Garem, Yehia Farouk

    2015-01-01

    Different techniques have been used for filler injection of the tear trough and palpebromalar groove. Most patients report good results; however, some patients here experienced variable degrees of side effects. To assess if previous estimation of the bony orbit depth could affect the choice between bolus and serial puncture technique, and thereby the procedure outcome. In 32 patients, the periosteum depth was measured by using a 28 G needle at 2 points: Point A at the midpupillary line and Point B at the outer canthus. The bolus technique was performed in the right side, and serial puncture technique was done on the left side. There was a significant difference in the degree of improvement between both sides in 71% of patients: 40% had better improvement on the right side, whereas 31% had better improvement on the left side. Cases with skin-to-periosteum depth less than 0.5 cm showed better results with serial puncture technique, whereas those with more than 0.5 cm depth showed better results with bolus technique. Assessment of bony orbit depth could offer new tool for selecting infraorbital groove injection technique.

  11. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    NASA Astrophysics Data System (ADS)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., < 1 km distance from land, < 20 m depth); however, land runoff, user conflicts and environmental impact in coastal areas are concerns and interest in developing deep water (> 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  12. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume

    USGS Publications Warehouse

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M.; Bailey, Zach; Pruden, Amy

    2014-01-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.

  13. Iron isotope composition of the suspended matter along depth and lateral profiles in the Amazon River and its tributaries

    NASA Astrophysics Data System (ADS)

    dos Santos Pinheiro, Giana Márcia; Poitrasson, Franck; Sondag, Francis; Vieira, Lucieth Cruz; Pimentel, Márcio Martins

    2013-07-01

    Samples of suspended matter were collected at different locations, seasons, depths and lateral profiles in the Amazon River and three of its main tributaries, the Madeira, the Solimões and the Negro rivers. Their iron isotope compositions were studied in order to understand the iron cycle and investigate the level of isotopic homogeneity at the river cross-section scale. Samples from four depth profiles and three lateral profiles analyzed show suspended matter δ57Fe values (relative to IRMM-14) between -0.501 ± 0.075‰ and 0.196 ± 0.083‰ (2SE). Samples from the Negro River, a blackwater river, yield the negative values. Samples from other stations (whitewater rivers, the Madeira, the Solimões and the Amazon) show positive values, which are indistinguishable from the average composition of the continental crust (δ57FeIRMM-14 ˜ 0.1‰). Individual analyses of the depth and lateral profiles show no significant variation in iron isotope signatures, indicating that, in contrast to certain chemical or other isotopic tracers, one individual subsurface sample is representative of river deeper waters. This also suggests that, instead of providing detailed information on the riverine iron cycling, iron isotopes of particulate matter in rivers will rather yield a general picture of the iron sources.

  14. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  15. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions.

    PubMed

    Ingerle, D; Meirer, F; Pepponi, G; Demenev, E; Giubertoni, D; Wobrauschek, P; Streli, C

    2014-09-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  16. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-09-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  17. Development of a lidar technique for profiling optical turbulence

    NASA Astrophysics Data System (ADS)

    Gimmestad, Gary; Roberts, David; Stewart, John; Wood, Jack

    2012-10-01

    Many techniques have been proposed for active optical remote sensing of the strength of atmospheric refractive turbulence. The early techniques, based on degradation of laser beams by turbulence, were susceptible to artifacts. In 1999, we began investigating a new idea, based on differential image motion (DIM), which is inherently immune to artifacts. The new lidar technique can be seen as a combination of two astronomical instruments: a laser guide star transmitter/receiver and a DIM monitor. The technique was successfully demonstrated on a horizontal path, with a hard-target analog of a lidar, and then a true lidar was developed. Several investigations were carried out first, including an analysis to predict the system's performance; new hard-target field measurements in the vertical direction; development of a robust inversion technique; and wave optics simulations. A brassboard lidar was then constructed and operated in the field, along with instruments to acquire truth data. The tests revealed many problems and pitfalls that were all solvable with engineering changes, and the results served to verify the new lidar technique for profiling turbulence. The results also enabled accurate performance predictions for future versions of the lidar. A transportable turbulence lidar system is currently being developed to support field tests of high-energy lasers.

  18. The use of mineralogic techniques as relative age indicators for weathering profiles on the Atlantic Coastal Plain, USA

    USGS Publications Warehouse

    Soller, D.R.; Owens, J.P.

    1991-01-01

    Textural, geochemical, and mineralogic study of soils and weathering profiles has led to the practice of applying varioys weathering parameters as relative age indicators. In our studies examined the entire thickness of weathered sediment (i.e., the weathering profile) for evidence of weathering-induced changes in both sand- and clay-sized mineralogy, and used two techniques for relative age determinations. These techniques were developed as tools to support geologic mapping. One of our techniques for determining relative ages is based on the depth of weathering as recorded by progressive loss of denrital sand-sized minerals upward in the weathering profile. This is our preferred tool, especially in areas where weathering profiles have been truncated. We have found a gradual trend of increasing loss of labile sand-sized minerals (e.g., hornblendes, feldspars) and increasing depth of weathering with increasing age of the deposit. Of significance to many research programs, this technique does not require expensive instruments such as an X-ray diffractometer. Our other technique depends on accumulation of stable, secondary clay-sized minerals in the upper part of the weathering profile. In our study area on the Atlantic Coastal Plain of the United States, the stable assemblage consists of vermiculite, kaolinite, gibbsite, and iron oxides and hydroxides. This technique can be effective for relative age determinations where profiles have not been truncated, and can provide useful information on depositional and erosional history. However, in areas of widespread erosion and profile truncation, such as the Carolinas, the utility of this technique for relative age determinations is limited. There, soils were partially or completely removed in many localities in relatively recent times. ?? 1991.

  19. Aluminum 26, {sup 10}Be, and {sup 36}Cl depth profiles in the Canyon Diablo iron meteorite

    SciTech Connect

    Michlovich, E.S.; Elmore, D.; Vogt, S.; Lipschutz, M.E.; Masarik, J.; Reedy, R.C.

    1994-11-25

    The authors have measured activities of the long-lived cosmogenic radionuclides {sup 26}Al, {sup 10}Be, and {sup 36}Cl in 12 fragments of the iron meteorite Canyon Diablo and have constructed production rate-versus-depth profiles of those radionuclides. Profiles determined using differential particle fluxes calculated with the LAHET code system are in good agreement with {sup 26}Al, {sup 10}Be, and {sup 36}Cl experimental data, but the agreement for {sup 36}Cl was obtained only after neutron-induced cross sections were modified. Profiles calculated with lunar particle fluxes are much lower than experimental Canyon Diablo profiles. The cosmic ray exposure ages of most samples are near 540 m.y. 34 refs., 4 figs., 2 tabs.

  20. Sulcal depth-position profile is a genetically mediated neuroscientific trait: description and characterization in the central sulcus.

    PubMed

    McKay, D Reese; Kochunov, Peter; Cykowski, Matthew D; Kent, Jack W; Laird, Angela R; Lancaster, Jack L; Blangero, John; Glahn, David C; Fox, Peter T

    2013-09-25

    Genetic and environmental influences on brain morphology were assessed in an extended-pedigree design by extracting depth-position profiles (DPP) of the central sulcus (CS). T1-weighted magnetic resonance images were used to measure CS length and depth in 467 human subjects from 35 extended families. Three primary forms of DPPs were observed. The most prevalent form, present in 70% of subjects, was bimodal, with peaks near hand and mouth regions. Trimodal and unimodal configurations accounted for 15 and 8%, respectively. Genetic control accounted for 56 and 66% of between-subject variance in average CS depth and length, respectively, and was not significantly influenced by environmental factors. Genetic control over CS depth ranged from 1 to 50% across the DPP. Areas of peak heritability occurred at locations corresponding to hand and mouth areas. Left and right analogous CS depth measurements were strongly pleiotropic. Shared genetic influence lessened as the distance between depth measurements was increased. We argue that DPPs are powerful phenotypes that should inform genetic influence of more complex brain regions and contribute to gene discovery efforts.

  1. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves.

    PubMed

    Faddegon, B A; Villarreal-Barajas, J E

    2005-11-01

    The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10 x 10, 2.5 x 2.5, and 2 x 8 cm2 inserts. Dose was calculated to 0.5% precision in 0.4 x 0.4 x 0.2 cm3 voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a

  2. Depth magnitude from stereopsis: Assessment techniques and the role of experience.

    PubMed

    Hartle, Brittney; Wilcox, Laurie M

    2016-08-01

    Investigations of the relationship between binocular disparity and suprathreshold depth magnitude percepts have used a variety of tasks, stimuli, and methods. Collectively, the results confirm that depth percepts increase with increasing disparity, but there are large differences in how well the estimates correspond to geometric predictions. To evaluate the source of these differences, we assessed depth magnitude percepts for simple stereoscopic stimuli, using both intra- and cross-modal estimation methods, and a large range of test disparities for both experienced and inexperienced observers. Our results confirm that there is a proportional relationship between perceived depth and binocular disparity; this relationship is not impacted by the measurement method. However, observers with minimal prior experience showed strong systematic biases in depth estimation, which resulted in large overestimates at small disparities and substantial underestimates at large disparities. By comparison, experienced observers' depth judgements were much closer to geometric predictions. In subsequent studies we show that unpracticed observers' depth estimates are improved by removing conflicting depth cues, and the observed biases are eliminated when they view physical targets. We conclude that differences in the depth magnitude estimates as a function of disparity in the existing literature are likely due to observers' experience with stereoscopic display systems in which binocular disparity is manipulated while other depth cues are held constant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-01-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  4. An ultrasonic technique to measure the depth of burn wounds in humans

    NASA Astrophysics Data System (ADS)

    Yost, William T.; Cantrell, John H.; Hanna, Pamela D.

    1991-06-01

    Whenever ultrasound encounters discontinuity in its medium of propagation, some energy is reflected from the interface. Such reflections or echoes occur when incident energy encounters the front skin, viable/necrotic, and dermis/fat skin tissue interfaces. It was shown that the most probable cause of the viable/necrotic interface is the uncoiling of collagen in the necrotic tissue, which can cause a reflection at the viable/necrotic interface of approximately 10 percent of the wave amplitude, and is approximately the same as that from the other two interfaces noted. The instrument, still in the prototype stage, was designed to detect the various reflections from within the skin layer. It is shown that, by studying the timing between the various echoes, one can use ultrasound as an aid in diagnosing the depth of burned skin tissue in humans. The instrument is a 60-MHz A-scan unit, modified to more easily identify the echoes occurring within the short time interval during which the reflections are received from the skin layers. A high frequency unit was selected so that various transducers could be utilized to optimize the system. Signal conditioning circuits were modified and added to provide an adequate display of the principle reflections expected. The unit was successful in studying burned tissue in pigs and was recently used to study burn wounds in humans. Measurement techniques and preliminary results are presented.

  5. Reflectivity and depth images based on time-correlated single photon counting technique

    NASA Astrophysics Data System (ADS)

    Duan, Xuejie; Ma, Lin; Kang, Yan; Zhang, Tongyi

    2016-10-01

    We presented three-dimensional image including reflectivity and depth image of a target with two traditional optical imaging systems based on time-correlated single photon counting technique (TCSPC), when it was illuminated by a MHz repetition rate pulsed laser source. The first one is bi-static system of which transmitted and received beams path are separated. Another one called mono-static system of which transmit and receive channels are coaxial, so it was also named by transceiver system. Experimental results produced by both systems showed that the mono-static system had more advantages of less noise from ambient light and no limitation about field area of view. While in practical applications, the target was far away leading to there were few photons return which was prejudicial to build 3D images with traditional imaging system. Thus an advanced one named first photon system was presented. This one was also a mono-static system on hardware system structure, but the control system structure was different with traditional transceiver system described in this paper. The difference was that the first return photon per pixel was recorded across system with first photon system, instead of overall return photons per pixel. That's to say only one detected return photon is needed for per pixel of this system to rebuild 3D images of target with less energy and time.

  6. In-depth hardness profiles of stainless steel and Ni-Ti endodontic instrument cross-sections by nano-indentation.

    PubMed

    Zinelis, S; Akhtar, R; Tsakiridis, P; Watts, D C; Silikas, N

    2008-09-01

    To evaluate the in-depth hardness profiles of Stainless Steel (SS) and nickel titanium (Ni-Ti) endodontic instrument cross-sections using a nano-indentation technique. Three SS (Reamer, K and Hedström) and three Ni-Ti (ProFile, NRT and Liberator) instruments were studied. After embedding and metallographic preparation the in-depth hardness profiles of instrument cross-sections were measured starting from the cutting surface towards the centre to a depth of 2000 nm using an MTS XP nanoindenter with a Berkovich diamond indenter. The results of hardness measurements of outer (near to cutting edge) and inner locations were statistically analyzed by two-way anova followed by SNK test (alpha = 0.05). For all instrument cross-sections the maximum hardness was obtained at the outer surface followed by hardness attenuation towards the centre of the cross section. The statistical analysis of hardness classified the instruments, for both outer and innermost locations, to the following decreasing order: Reamer > K > Hedström > Profile > NRT shank (without thermal treatment) > NRT tip (with thermal treatment) > Liberator. The maximal hardness, at the outer surface of endodontic instruments, can be attributed to the residual stresses developed due to cutting and thermal effects during the manufacturing process. The increased outer layer hardness may have a beneficial effect on the cutting ability and wear resistance of endodontic instruments. All endodontic instruments had a decrease in hardness towards their centre. This implies that the surface hardness of contemporary endodontic instruments is significantly enhanced by the consequences of manufacturing processes.

  7. Confocal Raman Microspectroscopy: The Measurement of VX Depth Profiles in Hairless Guinea Pig Skin and the Evaluation of RSDL

    DTIC Science & Technology

    2015-02-01

    method used all Raman spectra that were recorded in the skin during the depth profile measurements ... method was their approach to determining the initial point at which measurements represented VX measurement in skin . The initial point posed a...surface of the skin and above the level of the first scan into the skin . Each of the three methods treated all subsequent incremental skin measurements

  8. Magnitude of shear stress on the San Andreas fault: Implications of a stress measurement profile at shallow depth

    USGS Publications Warehouse

    Zoback, M.D.; Roller, J.C.

    1979-01-01

    A profile of measurements of shear stress perpendicular to the San Andreas fault near Palmdale, California, shows a marked increase in stress with distance from the fault. The pattern suggests that shear stress on the fault increases slowly with depth and reaches a value on the order of the average stress released during earthquakes. This result has important implications for both long- and short-term prediction of large earthquakes. Copyright ?? 1979 AAAS.

  9. Large Area and Depth-Profiling Dislocation Imaging and Strain Analysis in Si/SiGe/Si Heterostructures

    DTIC Science & Technology

    2014-01-01

    angle annular dark- field (HAADF) STEM mode using 123 200 keV electrons. 124 RESULTS AND DISCUSSION 125 Depth-Profiling Dislocation Imaging Using EBIC...of the defect trapping state ( Higgs & Kittler, 2441994), the temperature dependence of c is determined by the 245temperature dependence of lifetime...Lett 65(22), 2804–2806. 397KITTLER, M., ULHAQBOUILLET, C. & HIGGS , V. (1995). Influence of 398copper contamination on recombination activity of misfit

  10. Detrital zircon LASS-ICP-MS petrochronologic depth profiling for determining source-to-sink relationships in the Central Alps.

    NASA Astrophysics Data System (ADS)

    Anfinson, O. A.; Stockli, D. F.; Stockli, L.; Malusa', M. G.

    2015-12-01

    Laser Ablation-Split Stream Depth Profiling (LASS-DP) ICP-MS petrochronology of detrital zircon (DZ) from Oligocene-Miocene strata in the Molasse and Northern Apennines showcases, in the light of the well-constrained depositional history of these successions, the advantages of this novel approach compared to traditional single and split-stream detrital zircon techniques in elucidating sediment provenance and source-to-sink relationships. While DZ U-Pb data from Oligocene-Miocene strata deposited in both the Molasse and Northern Apennines document shifts in the relative abundance of Cadomian, Caledonian, Variscan and Alpine aged detrital zircon, the source regions remain ambiguous due to non-diagnostic crystallization ages, leading to minimal zircon age variability. In contrast, DZ LASS-DP-ICP-MS petrochronology allows for the simultaneous recovery of multiple U-Pb ages and corresponding geochemical data, and thus dramatically increases our ability to resolve the petrogenetic history of individual DZ grains. The technique shows the immense power of determining the growth history of single DZ grains (rim to core relationships) and identifying/resolving the presence and age of thin magmatic/metamorphic overgrowths. Rupelian turbidites in the Apenninic foredeep exhibit a DZ population with consistent <5 mm Cretaceous metamorphic overgrowths that would likely not be resolved as a coherent population in polished sections. LASS-DP ICP-MS analysis of Caledonian and Variscan detrital zircon populations from the Molasse Basin show a distinct shift in rim-core age pairs in individual zircons that point to the erosion of different source during progressive Alpine unroofing. The geochemical data confirm a crustally derived magmatic source for the majority of the detrital zircon grains within the basin. While this technique, in comparison to traditional polished mounts, might underrepresent older core ages, this slight bias is clearly offset by the better definition and

  11. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  12. Study of LiOH etching of polyethyleneterephtalate irradiated with 11.4 MeV/amu Pb ions by neutron depth profiling and alpha particle transmission

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Fink, D.; Strauss, P.

    1998-12-01

    Polyethyleneterephtalate (PETP) foils, 23 μm thick, irradiated with 11.4 MeV/amu Pb ions to the fluence of about 1 × 107 cm-2 were etched in 5M LiOH solution at the temperature of 40°C for 30-570 min and the etching process kinetics was examined by combined alpha particle transmission (APT) and neutron depth profiling (NDP) techniques. The etching process was visualized from very initial stages up to the breakthrough and the appearance of first openings after about 300 min of etching. Several parameters characterizing the etching process were determined and the pore internal profile was determined by comparing the measured APT spectra with those simulated by Monte-Carlo method.

  13. How Confocal Is Confocal Raman Microspectroscopy on the Skin? Impact of Microscope Configuration and Sample Preparation on Penetration Depth Profiles.

    PubMed

    Lunter, Dominique Jasmin

    2016-01-01

    The aim of the study was to elucidate the effect of sample preparation and microscope configuration on the results of confocal Raman microspectroscopic evaluation of the penetration of a pharmaceutical active into the skin (depth profiling). Pig ear skin and a hydrophilic formulation containing procaine HCl were used as a model system. The formulation was either left on the skin during the measurement, or was wiped off or washed off prior to the analysis. The microscope configuration was varied with respect to objectives and pinholes used. Sample preparation and microscope configuration had a tremendous effect on the results of depth profiling. Regarding sample preparation, the best results could be observed when the formulation was washed off the skin prior to the analysis. Concerning microscope configuration, the use of a 40 × 0.6 numerical aperture (NA) objective in combination with a 25-µm pinhole or a 100 × 1.25 NA objective in combination with a 50-µm pinhole was found to be advantageous. Complete removal of the sample from the skin before the analysis was found to be crucial. A thorough analysis of the suitability of the chosen microscope configuration should be performed before acquiring concentration depth profiles. © 2016 S. Karger AG, Basel.

  14. Combining snow depth and innovative skier flow measurements in order to improve snow grooming techniques

    NASA Astrophysics Data System (ADS)

    Carmagnola, Carlo Maria; Albrecht, Stéphane; Hargoaa, Olivier

    2017-04-01

    In the last decades, ski resort managers have massively improved their snow management practices, in order to adapt their strategies to the inter-annual variability in snow conditions and to the effects of climate change. New real-time informations, such as snow depth measurements carried out on the ski slopes by grooming machines during their daily operations, have become available, allowing high saving, efficiency and optimization gains (reducing for instance the groomer fuel consumption and operation time and the need for machine-made snow production). In order to take a step forward in improving the grooming techniques, it would be necessary to keep into account also the snow erosion by skiers, which depends mostly on the snow surface properties and on the skier attendance. Today, however, most ski resort managers have only a vague idea of the evolution of the skier flows on each slope during the winter season. In this context, we have developed a new sensor (named Skiflux) able to measure the skier attendance using an infrared beam crossing the slopes. Ten Skiflux sensors have been deployed during the 2016/17 winter season at Val Thorens ski area (French Alps), covering a whole sector of the resort. A dedicated software showing the number of skier passages in real time as been developed as well. Combining this new Skiflux dataset with the snow depth measurements from grooming machines (Snowsat System) and the snow and meteorological conditions measured in-situ (Liberty System from Technoalpin), we were able to create a "real-time skiability index" accounting for the quality of the surface snow and its evolution during the day. Moreover, this new framework allowed us to improve the preparation of ski slopes, suggesting new strategies for adapting the grooming working schedule to the snow quality and the skier attendance. In the near future, this work will benefit from the advances made within the H2020 PROSNOW project ("Provision of a prediction system allowing

  15. Novel Method for Sizing Metallic Bottom Crack Depth Using Multi-frequency Alternating Current Potential Drop Technique

    NASA Astrophysics Data System (ADS)

    Li, Yuting; Gan, Fangji; Wan, Zhengjun; Liao, Junbi; Li, Wenqiang

    2015-10-01

    Potential drop techniques are of two types: the direct current potential drop (DCPD) technique and alternating current potential drop (ACPD) technique, and both of them are used in nondestructive testing. ACPD, as a kind of valid method in sizing metal cracks, has been applied to evaluate metal structures. However, our review of most available approaches revealed that some improvements can be done in measuring depth of metal bottom crack by means of ACPD, such as accuracy and sensitivity of shallow crack. This paper studied a novel method which utilized the slope of voltage ratio-frequency curve to solve bottom crack depth by using a simple mathematic equation based on finite element analysis. It is found that voltage ratio varies linearly with frequency in the range of 5-15 Hz; this range is slightly higher than the equivalent frequency and lower than semi-permeable frequency. Simulation and experiment show that the novel method can measure the bottom crack depth accurately.

  16. Techniques that acquire donor profiling information from fingermarks - A review.

    PubMed

    van Dam, Annemieke; van Beek, Fleur T; Aalders, Maurice C G; van Leeuwen, Ton G; Lambrechts, Saskia A G

    2016-03-01

    Fingermarks are among the most important types of evidence that can be encountered at the scene of a crime since the unique ridge pattern of a fingerprint can be used for individualization. But fingermarks contain more than the characteristic pattern of ridges and furrows, they are composed of a wide variety of different components that originate from endogenous and exogenous sources. The chemical composition can be used to obtain additional information from the donor of the fingermark, which in turn can be used to create a donor profile. Donor profiling can serve at least two purposes i) to enhance the evidential value of fingermarks and ii) to provide valuable tactical information during the crime scene investigation. Retrieving this additional information is not limited to fingermarks that have been used for individualization, but can also be applied on partial and/or distorted fingermarks. In this review we have summarized the types of information that can be obtained from fingermarks. Additionally, an overview is given of the techniques that are available addressing their unique characteristics and limitations. We expect that in the nearby future, donor profiling from contact traces, including fingermarks will be possible.

  17. Role of fluid overpressures in controlling the form of crustal strength-depth profiles

    NASA Astrophysics Data System (ADS)

    Suppe, John

    2015-04-01

    The classic crustal strength-depth model of Brace and Kolhstedt (1980) based on experimental rock mechanics depends in the brittle regime on the assumption of linearly increasing hydrostatic pore-fluid pressures. This leads to a predicted linearly increasing brittle strength that is well established based on deep borehole stress measurements in crystalline crust. In contrast, fluid overpressures are widely documented in orogenic belts based on borehole data, seismic velocity analysis, modeling of seismic tremors, and analysis of veins, which in some cases show complex fault-valve pressure fluctuations between lithostatic and hydrostatic. Typical observed overpressure-depth relationships show approximately constant effective stress and therefore a pressure-dependent crustal strength that is approximately constant with depth in contrast with the classic model. This constant-strength behavior below the fluid-retention depth ZFRDhas been confirmed using deep borehole stress and fluid-pressure measurements (Suppe, 2014). The pressure-dependent strength magnitude is the strength at the fluid-retention depth, which is commonly ~50MPa or less because ZFRD is typically

  18. In-depth cDNA library sequencing provides quantitative gene expression profiling in cancer biomarker discovery.

    PubMed

    Yang, Wanling; Ying, Dingge; Lau, Yu-Lung

    2009-06-01

    Quantitative gene expression analysis plays an important role in identifying differentially expressed genes in various pathological states, gene expression regulation and co-regulation, shedding light on gene functions. Although microarray is widely used as a powerful tool in this regard, it is suboptimal quantitatively and unable to detect unknown gene variants. Here we demonstrated effective detection of differential expression and co-regulation of certain genes by expressed sequence tag analysis using a selected subset of cDNA libraries. We discussed the issues of sequencing depth and library preparation, and propose that increased sequencing depth and improved preparation procedures may allow detection of many expression features for less abundant gene variants. With the reduction of sequencing cost and the emerging of new generation sequencing technology, in-depth sequencing of cDNA pools or libraries may represent a better and powerful tool in gene expression profiling and cancer biomarker detection. We also propose using sequence-specific subtraction to remove hundreds of the most abundant housekeeping genes to increase sequencing depth without affecting relative expression ratio of other genes, as transcripts from as few as 300 most abundantly expressed genes constitute about 20% of the total transcriptome. In-depth sequencing also represents a unique advantage of detecting unknown forms of transcripts, such as alternative splicing variants, fusion genes, and regulatory RNAs, as well as detecting mutations and polymorphisms that may play important roles in disease pathogenesis.

  19. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    SciTech Connect

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  20. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Coetsee, E.; Wang, J. Y.; Swart, H. C.; Terblans, J. J.

    2017-07-01

    The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar+ ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  1. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species.

  2. Depth profile studies of ZrTiN coatings by laser ablation inductively coupled plasma mass spectrometry.

    PubMed

    Kanický, Viktor; Kuhn, Hans-Rudolf; Guenther, Detlef

    2004-09-01

    The feasibility of depth profiling was studied by using a 193-nm ArF* excimer laser ablation system (GeoLas, MicroLas, Goettingen, Germany) with a lens array-based beam homogenizer in combination with an ICP-QMS Agilent 7500. Two ablation cells (20 and 1.5 cm3) were compared at the laser repetition rate of 1 Hz, laser beam energy of 135 mJ and the carrier gas flow rate 1.5 L min(-1) He + 0.78 L min(-1) Ar. The ablation cell dimensions are important parameters for signal tailing; however, very small cell volumes (e.g. 1.5 cm3) may cause memory effects, which can be probably explained by dominant inertial losses of aerosol on cell walls with its delayed mobilization. The 20-cm3 ablation cell seems to be appropriate for depth profiling by continuous single-hole drilling. The study of the influence of the pit diameter magnitude on the waning and emerging signals under small crater depth/diameter aspect ratios, which range between 0.75 and 0.0375 for the 3-microm-thick coatings and pit diameters 4-80 microm, revealed that the steady-state signals of pure coating and pure substrate (out of interface) were obtained at crater diameters between 20 and 40 microm. Depth resolution defined by means of slopes of tangents in the layer interface region depend on the pit diameter and has an optimum value between 20 and 40 microm and gives 0.6 microm for the 20-microm pit. In-depth variation of concentration of coating constituent (Ti) was proved to be almost identical with two different laser/ICP systems.

  3. Depth profile of persistent and emerging organic pollutants upstream of the Three Gorges Dam gathered in 2012/2013.

    PubMed

    Deyerling, Dominik; Wang, Jingxian; Bi, Yonghong; Peng, Chengrong; Pfister, Gerd; Henkelmann, Bernhard; Schramm, Karl-Werner

    2016-03-01

    Persistent and emerging organic pollutants were sampled in September 2012 and 2013 at a sampling site in front of the Three Gorges Dam near Maoping (China) in a water depth between 11 and 61 m to generate a depth profile of analytes. A novel compact water sampling system with self-packed glass cartridges was employed for the on-site enrichment of approximately 300 L of water per sample to enable the detection of low analytes levels in the picogram per liter-scale in the large water body. The overall performance of the sampling system was acceptable for the qualitative detection of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), perfluoroalkylic acids (PFAAs), pharmaceutical residues and polar pesticides. Strongly particle-associated analytes like PAHs and PCBs resided mainly in the glass wool filter of the sampling system, whereas all other compounds have mainly been enriched on the XAD-resin of the self-packed glass cartridges. The sampling results revealed qualitative information on the presence, depth distribution and origin of the investigated compounds. Although the depth profile of PAHs, PCBs, OCPs, and PFAAs appeared to be homogeneous, pharmaceuticals and polar pesticides were detected in distinct different patterns with water depth. Source analysis with diagnostic ratios for PAHs revealed their origin to be pyrogenic (burning of coal, wood and grass). In contrast, most PCBs and OCPs had to be regarded as legacy pollutants which have been released into the environment in former times and still remain present due to their persistence. The abundance of emerging organic pollutants could be confirmed, and their most abundant compounds could be identified as perfluorooctanoic acid, diclofenac and atrazine among investigated PFAAs, pharmaceuticals and polar pesticides, respectively.

  4. Techniques for estimating flood-depth frequency relations for streams in West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1987-01-01

    Multiple regression analyses are applied to data from 119 U.S. Geological Survey streamflow stations to develop equations that estimate baseline depth (depth of 50% flow duration) and 100-yr flood depth on unregulated streams in West Virginia. Drainage basin characteristics determined from the 100-yr flood depth analysis were used to develop 2-, 10-, 25-, 50-, and 500-yr regional flood depth equations. Two regions with distinct baseline depth equations and three regions with distinct flood depth equations are delineated. Drainage area is the most significant independent variable found in the central and northern areas of the state where mean basin elevation also is significant. The equations are applicable to any unregulated site in West Virginia where values of independent variables are within the range evaluated for the region. Examples of inapplicable sites include those in reaches below dams, within and directly upstream from bridge or culvert constrictions, within encroached reaches, in karst areas, and where streams flow through lakes or swamps. (Author 's abstract)

  5. Instantaneous attribute profiling of GPR data using the HHT technique

    NASA Astrophysics Data System (ADS)

    Jeng*, Y.; Yu**, H.-M.; Chen, C.-S.

    2012-04-01

    * Corresponding author ** Presenting author The analysis of instantaneous attributes (IAs) is a useful tool for interpreting ground penetrating radar (GPR) data. However, the conventional Hilbert transform used for deriving the IAs is controversial because it cannot provide the full IAs of the data. The conventional method only leads to an apparent spectrogram. A newer analysis method, the Hilbert-Huang transform (HHT), consisting of empirical mode decomposition (EMD) and the Hilbert transform is applied in this study for seeking a better resolution of IAs. In this study, we decomposed the original GPR data into a series of intrinsic mode functions (IMFs) with ensemble empirical mode decomposition (EEMD), and then applied the Hilbert transform to generate the imaginary part of each IMF component. As a consequence, the IMF can be expressed in complex form after the Hilbert transform, and the IAs of each IMF component is obtained by simple trigonometry calculation and differentiation accordingly. With the aid of the EEMD technique, the Hilbert transform is well-behaved; therefore, it renders full IAs of each decomposed component as functions of time. We display the IAs of the GPR section in separate profiles to demonstrate the interpretation of their physical significance. A controlled experimental study was performed on a site of known buried targets to acquire sample data for testing this new method and establishing the basic data processing sequence. We also conducted a pseudo-3D GPR survey with 50 MHz antennas along the channel bed of the Chingshui River in Ilan County, northeastern Taiwan to collect real data for further evaluation. To compare the HHT with the conventional Hilbert transform, we applied both techniques to the GPR stacked section. The IAs are displayed in amplitude, phase, and frequency profiles. The residue resulting from the EEMD is normally excluded to remove the bias. The signal can further be enhanced by removing noisy components before

  6. In-depth analyses of oceanic CloudSat reflectivity profiles burdened by multiple-scattering

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Simmer, C.

    2009-04-01

    Multiple scattering strongly affects the CloudSat Profiling Radar reflectivity when the satellite is over-passing moderate and heavy precipitation systems. Following a criterion developed by the authors in the past (Battaglia et al., 2008) and based on the freezing level altitude (FLA) and on the path integrated attenuation (PIA), oceanic CloudSat reflectivities profiles affected by multiple scattering are identified and further analysed. Profiles are clustered according to PIA, FLA, position and value of the profile maximum reflectivity, jump of the reflectivity from pixels close to the surface to the surface pixel. This last variable represents a rough estimate of the multiple-scattering strength, i.e. of the reflectivity enhancement produced by higher-than-one scattering orders in proximity to the surface. The slopes of the reflectivity profiles (which results from the combined effect of vertical variability, attenuation and multiple scattering) are then computed at different altitudes above the surface and their variability is discussed in relationships to the profile characteristic variables. Results from one full year of CloudSat data are discussed and compared with numerical simulation outputs based on Cloud Resolving Model (Battaglia and Simmer 2008). This study has strong relevance for attenuation-based retrievals of rainfall from high frequency space-borne radars (Matrosov et al., 2008). Battaglia, A., J. Haynes, T. L'Ecuyer, and C. Simmer, Identifying multiple-scattering-affected profiles in CloudSat observations over the Oceans, J. Geoph. Res., 113, D00A17, doi:101029/2008JD009960 Battaglia, A., and C. Simmer, How does multiple scattering affect the spaceborne W-band radar measurements at ranges close to and crossing the surface-range?, IEEE Tran. Geo. Rem. Sens., , Vol. 46, No. 6,1644-1651, 2008 Matrosov, S., Battaglia, A., Rodriguez, P. Effects of multiple scattering on attenuation-based retrievals of stratiform rainfall from CloudSat, J. Atm. Oc

  7. Laser microdissection: a sample preparation technique for plant micrometabolic profiling.

    PubMed

    Fang, Jingjing; Schneider, Bernd

    2014-01-01

    Unlike unicellular organisms, plants have evolved as complex organisms that are defined by their ability to distribute special vital functions to spatially separated organs and tissues. Current phytochemical approaches mostly ignore this fact by analysing samples that consist of different cell types and thus average the information obtained. A comprehensive metabolite analysis with high spatial resolution is essential to fully characterise the state of a certain tissue; hence, the analysis of metabolites occurring in specialised plant cells is of considerable interest in chemical ecology, plant natural product chemistry and other bioscience disciplines. Laser microdissection (LMD), including laser capture microdissection and laser microdissection and pressure catapulting, is a convenient sampling technique to harvest homogeneous cell types for the microanalysis of plant metabolites. The objective of this work is to provide an introduction to LMD methodology and a concise review of recent applications of LMD in the high-resolution analysis of metabolites in different plant materials. A step-by-step approach to LMD sampling techniques is described. How LMD can be used to sample cells or microscopic tissue pieces from different plant organs, such as leaves, stems, and seeds, is shown in detail. Finally, the future of LMD in plant metabolites analysis is discussed. This review summarises studies over the past decade not only showing technical details but also indicating the wide application of this method for high-resolution plant metabolite analysis. Laser microdissection is a powerful sampling technique for plant micrometabolic profiling and metabolomics research. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Accessory Mineral Depth-Profiling Applied to the Corsican Lower Crust: A Continuous Thermal History of Mesozoic Continental Rifting

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2015-12-01

    Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.

  9. Improvement of Depth Profiling into Biotissues Using Micro Electrical Impedance Spectroscopy on a Needle with Selective Passivation

    PubMed Central

    Yun, Joho; Kim, Hyeon Woo; Lee, Jong-Hyun

    2016-01-01

    A micro electrical impedance spectroscopy (EIS)-on-a-needle for depth profiling (μEoN-DP) with a selective passivation layer (SPL) on a hypodermic needle was recently fabricated to measure the electrical impedance of biotissues along with the penetration depths. The SPL of the μEoN-DP enabled the sensing interdigitated electrodes (IDEs) to contribute predominantly to the measurement by reducing the relative influence of the connection lines on the sensor output. The discrimination capability of the μEoN-DP was verified using phosphate-buffered saline (PBS) at various concentration levels. The resistance and capacitance extracted through curve fitting were similar to those theoretically estimated based on the mixing ratio of PBS and deionized water; the maximum discrepancies were 8.02% and 1.85%, respectively. Depth profiling was conducted using four-layered porcine tissue to verify the effectiveness of the discrimination capability of the μEoN-DP. The magnitude and phase between dissimilar porcine tissues (fat and muscle) were clearly discriminated at the optimal frequency of 1 MHz. Two kinds of simulations, one with SPL and the other with complete passivation layer (CPL), were performed, and it was verified that the SPL was advantageous over CPL in the discrimination of biotissues in terms of sensor output. PMID:28009845

  10. Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry.

    PubMed

    Nemes, Peter; Barton, Alexis A; Li, Yue; Vertes, Akos

    2008-06-15

    Mass spectrometry in conjunction with atmospheric pressure ionization methods enables the in vivo investigation of biochemical changes with high specificity and sensitivity. Laser ablation electrospray ionization (LAESI) is a recently introduced ambient ionization method suited for the analysis of biological samples with sufficient water content. With LAESI mass spectrometric analysis of chimeric Aphelandra squarrosa leaf tissue, we identify the metabolites characteristic for the green and yellow sectors of variegation. Significant parts of the related biosynthetic pathways (e.g., kaempferol biosynthesis) are ascertained from the detected metabolites and metabolomic databases. Scanning electron microscopy of the ablated areas indicates the feasibility of both two-dimensional imaging and depth profiling with a approximately 350 microm lateral and approximately 50 microm depth resolution. Molecular distributions of some endogenous metabolites show chemical contrast between the sectors of variegation and quantitative changes as the ablation reaches the epidermal and mesophyll layers. Our results demonstrate that LAESI mass spectrometry opens a new way for ambient molecular imaging and depth profiling of metabolites in biological tissues and live organisms.

  11. Be-10 and Cl-36 depth profiles in an Apollo 15 drill core

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Elmore, D.; Ma, X. Z.

    1984-01-01

    The present study of galactic cosmic ray production profiles by means of tandem accelerator mass spectrometry has measured cosmic ray-produced Be-10 and Cl-36, whose half-attenuation lengths are respectively calculated to be 120 and 132 g/sq cm. The measured half-attenuation lengths for Be-10 are noted to be slightly longer than predicted by the Reedy-Arnold (1972) theoretical model. Secondary thermal neutron production from Cl-35 is invoked as an explanation for the flatter and deeper maximum seen in the Cl-36 profile.

  12. Depth profile of a time-reversal focus in an elastic solid

    SciTech Connect

    Remillieux, Marcel C.; Anderson, Brian E.; Ulrich, T. J.; Le Bas, Pierre -Yves; Payan, Cedric

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb’s problem and the use of the diffraction limit.

  13. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  14. A new technique for measurements of the urethra pressure profile.

    PubMed

    Asmussen, M; Ulmsten, U

    1976-01-01

    A new standardized technique for continuous recording of the urethral pressure profile simultaneously with intravesical pressure has been developed. The pressures were recorded using two micr-transducers enclosed in a thin Dacron catheter. The catheter moved with a constant speed through the urethra with the aid of a specially designed instrument. This instrument is described. Twenty-five healthy women were examined. The patients were divided into two groups: (A) 10 postmenopausal women, and (B) 15 fertile women. The results of the recordings showed that the functional length and the absolute length of the urethra could be reproduced with an error of less than 1 mm. The maximal pressure amplitude was significantly less in group A.

  15. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles

    PubMed Central

    Abbott, Sunshine S.; Harrison, T. Mark; Schmitt, Axel K.; Mojzsis, Stephen J.

    2012-01-01

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85–3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85–3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840–875 °C) than do older or younger zircons or zircon domains (approximately 630–750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB. PMID:22869711

  16. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles.

    PubMed

    Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J

    2012-08-21

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.

  17. Accelerating Uplift Rate and Non-uniform Inheritance: Cosmogenic Be10 Depth Profiles from the Montecito Anticline, Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Bohon, W.; Schoenbohm, L.; Brooks, B.; Costa, C.

    2008-12-01

    The Andean orogenic front between 31° S and 33° S marks the transition between west-vergent thick- skinned faulting in the Sierras Pampeanas, and east vergent thin-skinned faulting in the Precordillera. This area has experienced several devastating earthquakes in the last century, and geodetic studies indicate that this area has a long-term shortening rate of ~5mm/yr. One of the growing anticlines in this region that partially accommodates this shortening is the Montecito anticline, a fault propagation fold above a blind thrust fault. Uplifted and deformed fluvial terraces formed along the axis of this anticline were dated using Be10 cosmogenic depth profiles. In 3 of the 5 dated terraces the horizon sampled directly above the strath had a higher nuclide concentration than the other samples in the profile, which suggests that the assumption of constant inheritance with depth is violated. One possible explanation for the cosmogenic profile irregularity is that catastrophic flooding events mobilize sediment from storage locations which are not normally tapped, such as hillslopes or alluvial fan surfaces. This sediment, which has an abnormally high inheritance value due to its increased time in storage, is deposited on the strath of the newly formed terrace, thus leading to higher Be10 values at the base of the profile. After discarding the abnormally high bottom value in each profile the terrace ages are found to be ~6.5 ka, ~4.1 ka, ~1.9 ka. Given their height above the river the uplift rate is 0.63-0.68 mm/yr for the period between 6.5 ka and 1.9 ka. However, surprising preliminary data indicates that the uplift rate of the Montecito Anticline has increased 4-fold since 1.9 ka. This could reflect stochastic variations in slip rate or interactions with other regional faults, and suggests a greater seismic threat in this earthquake prone region.

  18. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements

    NASA Astrophysics Data System (ADS)

    Pal, Sandip; Haeffelin, Martial; Batchvarova, Ekaterina

    2013-08-01

    A new objective method for the determination of the atmospheric boundary layer (ABL) depth using routine vertically pointing aerosol lidar measurements is presented. A geophysical process-based analysis is introduced to improve the attribution of the lidar-derived aerosol gradients, which is so far the most challenging part in any gradient-based technique. Using micrometeorological measurements of Obukhov length scale, both early morning and evening transition periods are determined which help separate the turbulence regimes during well-mixed convective ABL and nocturnal/stable ABL. The lidar-derived aerosol backscatter signal intensity is used to determine the hourly-averaged vertical profiles of variance of the fluctuations of particle backscatter signal providing the location of maximum turbulent mixing within the ABL; thus, obtained mean ABL depth guides the attribution by searching for the appropriate minimum of the gradients. An empirical classification of the ABL stratification patterns into three different types is proposed by determining the changes in the near-surface stability scenarios. First results using the lidar observations obtained between March and July in 2011 at SIRTA atmospheric observatory near Palaiseau (Paris suburb) in France demonstrate that the new attribution technique makes the lidar estimations of ABL depth more physically reliable under a wide spectrum of meteorological conditions. While comparing lidar and nearby radiosonde measurements of ABL depths, an excellent concordance was found with a correlation coefficient of 0.968 and 0.927 for daytime and nighttime measurements, respectively. A brief climatology of the characteristics of the ABL depth, its diurnal cycle, a detailed discussion of the morning and evening transitions are presented.

  19. Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Balzer, H.; Hoehne, M.; Sturm, V.; Noll, R.

    2005-08-01

    In this study a new method for online analysis of the zinc coating of galvanized sheet steel based on laser-induced breakdown spectroscopy (LIBS) is presented. The coating is characterized with a series of single laser bursts irradiated on the traversing sheet steel, each on a different sheet steel position. To achieve an ablation depth in the range of the coating thickness of about 10 μm a Nd:YAG laser at 1064 nm in collinear double pulse mode was used. The depth information is obtained by control of the ablation depth by adjusting the burst energy using an external electro-optical attenuator. Concepts for the determination of the coating thickness and the chemical composition are presented. The achieved thickness resolution is estimated to about 400 nm for coating thicknesses of electrolytic galvanized sheet steel in the range of 3.2 to 11.2 μm. In the case of hot-dip galvanized sheet steel information about the depth profile of aluminium can be gained by the new method.

  20. Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo.

    PubMed

    Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E

    2017-08-24

    In this study, stratum corneum (SC) depth profiles of hydrogen bound water molecule types, intercellular lipid (ICL) ordering, concentration of natural moisturizing factor (NMF) and keratin folding/unfolding properties are investigated in vivo for older (mean 50 years old) and younger (mean 29 years old) human skin using confocal Raman microscopy. The results show that the SC of the older group is modestly thicker (p<0.1), has more hydrogen bound water molecules at the depth 10-30% of the SC thickness (p<0.05), has a higher ordered organization of ICL (p<0.1) and higher concentration of NMF (p<0.05) at the depth 20-40% of the SC thickness compared to the younger group. This study also reveals, that the hydrogen bonding state of water highly correlates with NMF and the lateral structure of ICL but not with keratin's folding/unfolding properties. The presented results let suggest, that the decreased trans-epidermal water loss (TEWL) with increasing age cannot be sufficiently explained by only the increased SC thickness, but additionally by the increase of ICL ordering, higher NMF concentration and thus larger amount of hydrogen bound water molecules at the depth 20-40% of the SC thickness. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  2. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  3. Statistics of aerosol extinction coefficient profiles and optical depth using lidar measurement over Lanzhou, China since 2005-2008

    NASA Astrophysics Data System (ADS)

    Cao, X.; Wang, Z.; Tian, P.; Wang, J.; Zhang, L.; Quan, X.

    2013-06-01

    The aerosol extinction coefficient profiles and optical depth over Lanzhou in China were observed under no precipitation and dust free condition using the micropulse lidar CE370-2 from September 2005 to July 2008. The statistics of the variations of monthly average aerosol optical depth (AOD) and daily average AOD, frequency distribution of daily average AOD, and the seasonal variation of aerosol vertical distribution were analyzed based on the observation data. The results showed that the daily average AOD of Main Observatory and City Observatory was 87.8% and 78.2% ranged below 0.4 respectively with similar frequency distribution patterns. The AOD in autumn and winter were larger than that in spring and summer, and AOD in suburb was in certain extent smaller than that in city of Lanzhou. Aerosol existed in the layer below 4km, and its extinction coefficient decreased with increasing of height.

  4. Chemical Analysis of the Interface in Bulk-Heterojunction Solar Cells by X-ray Photoelectron Spectroscopy Depth Profiling.

    PubMed

    Busby, Yan; List-Kratochvil, Emil J W; Pireaux, Jean-Jacques

    2017-02-01

    Despite the wide use of blends combining an organic p-type polymer and molecular fullerene-based electron acceptor, the proper characterization of such bulk heterojunction materials is still challenging. To highlight structure-to-function relations and improve the device performance, advanced tools and strategies need to be developed to characterize composition and interfaces with sufficient accuracy. In this work, high-resolution X-ray photoelectron spectroscopy (XPS) is combined with very low energy argon ion beam sputtering to perform a nondestructive depth profile chemical analysis on full Al/P3HT:PCBM/PEDOT:PSS/ITO (P3HT, poly(3-hexylthiophene); PCBM, [6,6]-phenyl-C61-butyric acid methyl ester; PEDOT, poly(3,4-ethylenedioxythiophene; PSS, polystyrenesulfonate; ITO, indium tin oxide) bulk-heterojunction solar cell device stacks. Key information, such as P3HT and PCBM composition profiles and Al-PCBM chemical bonding, are deduced in this basic device structure. The interface chemical analysis allows us to evidence, with unprecedented accuracy, the inhomogeneous distribution of PCBM, characterized by a strong segregation toward the top metal electrode. The chemical analysis high-resolution spectra allows us to reconstruct P3HT/PCBM ratio through the active layer depth and correlate with the device deposition protocol and performance. Results evidence an inhomogeneous P3HT/PCBM ratio and poorly controllable PCBM migration, which possibly explains the limited light-to-power conversion efficiency in this basic device structure. The work illustrates the high potential of XPS depth profile analysis for studying such organic/inorganic device stacks.

  5. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  6. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments

    USGS Publications Warehouse

    Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.

    2011-01-01

    1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.

  7. Comparison of vestibular sulcus depth in vestibuloplasty using standard Clark's technique with and without amnion as graft material.

    PubMed

    Sikkerimath, Basavaraj C; Dandagi, Satyajit; Gudi, Santosh S; Jayapalan, Deeptha

    2012-01-01

    A number of materials are used as grafts in vestibuloplasty like mucosal and skin grafts with several advantages and disadvantages. To circumvent the disadvantages of these grafts, biological membranes such as amnion membranes are often recommended. The objective of this study was to clinically assess the vestibular sulcus depth in vestibuloplasty using Clark's technique with and without amnion as graft material. Twenty edentulous patients underwent mandibular labial vestibuloplasty using Clark's technique. Amnion was used as graft material in 10 patients (group I) and no grafts used in remaining 10 patients (group II). The vestibular depth was evaluated at time intervals of 1 week, 2 weeks, 1 month and 3 months, postoperatively. Mean postoperative vestibular depth after 3 months in group I and II were 10.0 ± 3.13 mm and 7.8±0.63 mm, respectively. Mean of 2.2 ± 2.50 mm increase in depth was achieved after 3 months in Group I. Amnion graft is a viable and reliable option that promotes early healing and maintains postoperative vestibular depth.

  8. Comparison of vestibular sulcus depth in vestibuloplasty using standard Clark's technique with and without amnion as graft material

    PubMed Central

    Sikkerimath, Basavaraj C.; Dandagi, Satyajit; Gudi, Santosh S.; Jayapalan, Deeptha

    2012-01-01

    Introduction: A number of materials are used as grafts in vestibuloplasty like mucosal and skin grafts with several advantages and disadvantages. To circumvent the disadvantages of these grafts, biological membranes such as amnion membranes are often recommended. Materials and Methods: The objective of this study was to clinically assess the vestibular sulcus depth in vestibuloplasty using Clark's technique with and without amnion as graft material. Twenty edentulous patients underwent mandibular labial vestibuloplasty using Clark's technique. Amnion was used as graft material in 10 patients (group I) and no grafts used in remaining 10 patients (group II). The vestibular depth was evaluated at time intervals of 1 week, 2 weeks, 1 month and 3 months, postoperatively. Results: Mean postoperative vestibular depth after 3 months in group I and II were 10.0 ± 3.13 mm and 7.8±0.63 mm, respectively. Mean of 2.2 ± 2.50 mm increase in depth was achieved after 3 months in Group I. Conclusion: Amnion graft is a viable and reliable option that promotes early healing and maintains postoperative vestibular depth. PMID:23482953

  9. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    SciTech Connect

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  10. Resident identification using kinect depth image data and fuzzy clustering techniques.

    PubMed

    Banerjee, Tanvi; Keller, James M; Skubic, Marjorie

    2012-01-01

    As a part of our passive fall risk assessment research in home environments, we present a method to identify older residents using features extracted from their gait information from a single depth camera. Depth images have been collected continuously for about eight months from several apartments at a senior housing facility. Shape descriptors such as bounding box information and image moments were extracted from silhouettes of the depth images. The features were then clustered using Possibilistic C Means for resident identification. This technology will allow researchers and health professionals to gather more information on the individual residents by filtering out data belonging to non-residents. Gait related information belonging exclusively to the older residents can then be gathered. The data can potentially help detect changes in gait patterns which can be used to analyze fall risk for elderly residents by passively observing them in their home environments.

  11. Comparison of diagnostic accuracies of various endoscopic examination techniques for evaluating the invasion depth of colorectal tumors.

    PubMed

    Haruki, Satomi; Kobayashi, Kiyonori; Yokoyama, Kaoru; Sada, Miwa; Koizumi, Wasaburo

    2012-01-01

    This study was designed to assess the clinical value of magnifying endoscopy combined with EUS for estimating the invasion depth of colorectal tumors. We studied 168 colorectal adenomas and carcinomas that were sequentially examined by conventional endoscopy followed by magnifying endoscopy and EUS in the same session to evaluate invasion depth. Endoscopic images obtained by each technique were reassessed by 3 endoscopists to determine whether endoscopic resection (adenoma, mucosal cancer, or submucosal cancer with slight invasion) or colectomy (submucosal cancer with massive invasion or advanced cancer) was indicated. The accuracy of differential diagnosis was compared among the examination techniques. The rate of correct differential diagnosis according to endoscopic examination technique was similar. The proportion of lesions that were difficult to diagnose was significantly higher for EUS (15.5%) than for conventional endoscopy and magnifying endoscopy. Among lesions that could be diagnosed, the rate of correct differential diagnosis was the highest for EUS (89.4%), but did not significantly differ among three endoscopic examination techniques. When it is difficult to evaluate the invasion depth of colorectal tumors on conventional endoscopy alone, the combined use of different examination techniques such as EUS may enhance diagnostic accuracy in some lesions.

  12. Depth profile study of Ti implanted Si at very high doses

    NASA Astrophysics Data System (ADS)

    Olea, J.; Pastor, D.; Toledano-Luque, M.; Mártil, I.; González-Díaz, G.

    2011-09-01

    A detailed study on the resulting impurity profile in Si samples implanted with high doses of Ti and subsequently annealed by pulsed-laser melting (PLM) is reported. Two different effects are shown to rule the impurity profile redistribution during the annealing. During the melting stage, the thickness of the implanted layer increases while the maximum peak concentration decreases (box-shaped effect). On the contrary, during the solidifying stage, the thickness of the layer decreases and the maximum peak concentration increases (snow-plow effect). Both effects are more pronounced as the energy density of the annealing increases. Moreover, as a direct consequence of the snow-plow effect, part of the impurities is expelled from the sample through the surface.

  13. Depth profile of a time-reversal focus in an elastic solid.

    PubMed

    Remillieux, Marcel C; Anderson, Brian E; Ulrich, T J; Le Bas, Pierre-Yves; Payan, Cedric

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb's problem and the use of the diffraction limit. Published by Elsevier B.V.

  14. Depth profile of a time-reversal focus in an elastic solid

    DOE PAGES

    Remillieux, Marcel C.; Anderson, Brian E.; Ulrich, T. J.; ...

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb’s problemmore » and the use of the diffraction limit.« less

  15. A cross-validation procedure for stopping the EM algorithm and deconvolution of neutron depth profiling spectra

    SciTech Connect

    Coakley, K.J. )

    1991-02-01

    The iterative EM algorithm is used to deconvolve neutron depth profiling spectra. Because of statistical noise in the data, artifacts in the estimated particle emission rate profile appear after too many iterations of the EM algorithm. To avoid artifacts, the EM algorithm is stopped using a cross-validation procedure. The data are split into two independent halves. The EM algorithm is applied to one half of the data to get an estimate of the emission rates. The algorithm is stopped when the conditional likelihood of the other half of the data passes through its maximum. The roles of the two halves of the data are then switched to get a second estimate of the emission rates. The two estimates are then averaged.

  16. Beneath the surface: profiling blubber depth in pinnipeds with infrared imaging.

    PubMed

    Mellish, J; Nienaber, J; Polasek, L; Horning, M

    2013-01-01

    Infrared thermography (IRT) was assessed as a non-invasive tool to evaluate body condition in juvenile female harbor seals (Phoca vitulina), (n=6) and adult female Steller sea lions (Eumetopias jubatus), (n=2). Surface temperature determined by IRT and blubber depth assessed with portable imaging ultrasound were monitored concurrently at eight body sites over the course of a year in long-term captive individuals under controlled conditions. Site-specific differences in surface temperature were noted between winter and summer in both species. Overall, surface temperature was slightly higher and more variable in harbor seals (9.8±0.6°C) than Steller sea lions (9.1±0.5°C). Limited site-specific relationships were found between surface temperature and blubber thickness, however, insulation level alone explained a very small portion of the variance. Therefore, while validated IRT data collection can potentially provide valuable information on the health, condition and metabolic state of an animal, it cannot provide a generalized proxy for blubber depth.

  17. Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea.

    PubMed

    Pearman, John K; Irigoien, Xabier

    2015-01-01

    The composition of zooplankton in the water column has received limited attention in the main body of the Red Sea and this study investigates the change in the community both spatially and temporally across 11 stations in the central Red Sea. Using molecular methods to target the v9 region of the 18S rRNA gene a total of approximately 11.5 million reads were sequenced resulting in 2528 operational taxonomic units (OTUs) at 97% similarity. The phylum Arthropoda dominated in terms of reads accounting for on average 86.2% and 65.3% for neuston nets and vertical multinets respectively. A reduction in the number of OTUs was noticed with depth for both total metazoa and Maxillopoda whilst there was also a significant change in the composition of the Maxillopoda community. The genus Corycaeus had a higher proportion of reads in the epipelagic zone with Pleuromamma becoming increasingly dominant with depth. No significant difference was observed in the community between night and day sampling however there was a significant difference in the zooplankton community between two sampling periods separated by 10 days.

  18. Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea

    PubMed Central

    Pearman, John K.; Irigoien, Xabier

    2015-01-01

    The composition of zooplankton in the water column has received limited attention in the main body of the Red Sea and this study investigates the change in the community both spatially and temporally across 11 stations in the central Red Sea. Using molecular methods to target the v9 region of the 18S rRNA gene a total of approximately 11.5 million reads were sequenced resulting in 2528 operational taxonomic units (OTUs) at 97% similarity. The phylum Arthropoda dominated in terms of reads accounting for on average 86.2% and 65.3% for neuston nets and vertical multinets respectively. A reduction in the number of OTUs was noticed with depth for both total metazoa and Maxillopoda whilst there was also a significant change in the composition of the Maxillopoda community. The genus Corycaeus had a higher proportion of reads in the epipelagic zone with Pleuromamma becoming increasingly dominant with depth. No significant difference was observed in the community between night and day sampling however there was a significant difference in the zooplankton community between two sampling periods separated by 10 days. PMID:26186220

  19. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  20. In situ 14C depth profile of subsurface vein quartz samples from Macraes Flat New Zealand

    NASA Astrophysics Data System (ADS)

    Kim, K. J.; Lal, D.; Englert, P. A. J.; Southon, J.

    2007-06-01

    We present results of measurements of cosmogenic in situ 14C produced in a quartz vein from Macraes Flat, East Otago, New Zealand, where concentrations of in situ produced 10Be and 26Al were previously studied by Kim and Englert [Earth Planet. Sci. Lett. 223 (2004) 113]. 14C was extracted from the quartz samples up to depths of 400 g cm-2 using a low temperature wet extraction method [D. Lal, A.J.T. Jull, Nucl. Instr. and Meth. B 92 (1994) 291]. Based on the results for 10Be and 26Al, we expected that the 14C activity in the samples would be at saturation levels, in equilibrium with erosion. The surface exposure age of this site was found to be about 25 000 years using 10Be and 26Al at the surface, with a surface erosion rate of at least 10-3 cm/y [K.J. Kim, P.A.J. Englert, Earth Planet. Sci. Lett. 223 (2004) 113]. The measured 14C activities were compared with those expected from spallation of Si and O in quartz by energetic neutrons and fast muons, and from capture of negative muons in O in quartz [B. Heisinger, A.J.T. Jull, D. Lal, P. Kubik, S. Ivy-Ochs, K. Knie, E. Nolte, Earth Planet. Sci. Lett. 200 (2002) 357; B. Heisinger, D. Lal, A.J.T. Jull, P. Kubik, S. Ivy-Ochs, S. Neumaier, K. Knie, V. Lazarev, E. Nolte, Earth Planet. Sci. Lett. 200 (2002) 345]. Surprisingly, we found that the 14C activities were significantly greater than those expected, by factors of 2 3, especially in samples of depths <200 g cm-2. We suspect that the excess 14C probably resulted from capture of thermal neutrons in nitrogen present in the fluid inclusions in quartz. This study shows that great care has to be taken in measurements of in situ 14C in quartz, especially in samples exposed near sea level and greater depths, where rates of spallation produced 14C are low.

  1. Hyperspectral depth-profiling with deep Raman spectroscopy for detecting chemicals in building materials.

    PubMed

    Cho, Youngho; Song, Si Won; Sung, Jiha; Jeong, Young-Su; Park, Chan Ryang; Kim, Hyung Min

    2017-09-25

    Toxic chemicals inside building materials have long-term harmful effects on human bodies. To prevent secondary damage caused by the evaporation of latent chemicals, it is necessary to detect the chemicals inside building materials at an early stage. Deep Raman spectroscopy is a potential candidate for on-site detection because it can provide molecular information about subsurface components. However, it is very difficult to spectrally distinguish the Raman signal of the internal chemicals from the background signal of the surrounding materials and to acquire the geometric information of chemicals. In this study, we developed hyperspectral wide-depth spatially offset Raman spectroscopy coupled with a data processing algorithm to identify toxic chemicals, such as chemical warfare agent (CWA) simulants in building materials. Furthermore, the spatial distribution of the chemicals and the thickness of the building material were also measured from one-dimensional (1D) spectral variation.

  2. Magnetometry and transport data complement polarized neutron reflectometry in magnetic depth profiling

    NASA Astrophysics Data System (ADS)

    Wang, Yi; He, Xi; Mukherjee, T.; Fitzsimmons, M. R.; Sahoo, S.; Binek, Ch.

    2011-11-01

    Exchange coupled magnetic hard layer/soft layer thin films show a variety of complex magnetization reversal mechanisms depending on the hierarchy of interaction strengths within and between the films. Magnetization reversal can include uniform rotation, soft layer biasing, as well as exchange spring behavior. We investigate the magnetization reversal of a CoPt/Permalloy/Ta/Permalloy heterostructure. Here, Stoner-Wohlfarth-type uniform magnetization rotation of the virtually free Permalloy layer and exchange spring behavior of the strongly pinned Permalloy layer are found in the same sample. We investigate the complex magnetization reversal by polarized neutron reflectometry, magnetometry, and magneto-transport. The synergy of combining these experimental methods together with theoretical modeling is key to obtain the complete quantitative depth resolved information of the magnetization reversal processes for a multilayer of mesoscopic thickness.

  3. Oxide scale depth profiling of lanthanum-deposited AISI-304: An ion beam analysis

    NASA Astrophysics Data System (ADS)

    Ager, F. J.; Respaldiza, M. A.; Paúl, A.; Odriozola, J. A.; da Silva, M. F.; Soares, J. C.

    1998-03-01

    A detailed study of the composition and evolution with time of oxide scales formed onto lanthanum-coated AISI-304 stainless steel specimens by means of the PYROSOL deposition method at 1173 K in air, has been done with the help of ion beam analysis techniques such as Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) of Cr and Mn. Complementary data have been obtained by means of other analytical techniques such as Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and thermogravimetric measurements (TG), proving the effectiveness of the deposition method for enhancing the refractory behaviour.

  4. Uranium-236 as a new oceanic tracer: A first depth profile in the Japan Sea and comparison with caesium-137

    PubMed Central

    Sakaguchi, Aya; Kadokura, Akinobu; Steier, Peter; Takahashi, Yoshio; Shizuma, Kiyoshi; Hoshi, Masaharu; Nakakuki, Tomoeki; Yamamoto, Masayoshi

    2012-01-01

    We present a feasibility study for using 236U as an oceanic circulation tracer based on depth profiles of 236U and 137Cs in the Japan/East Sea. The concentration of the predominantly anthropogenic 236U, measured with Accelerator Mass Spectrometry (AMS), decreased from (13±3)×106 atom/kg in surface water to (1.6±0.3)×106 atom/kg close to the sea floor (2800 m). The profile has a smooth trend with depth and concentration values are generally proportional to that of 137Cs for the same water samples, but with a slightly lower ratio of 137Cs/236U below 2000 m. The cumulative inventory of dissolved 236U in the water column was estimated to be (13.7±0.9)×1012 atom/m2, which is similar to the global-fallout level (17.8×1012 atom/m2) in Japan. Additional analyses of suspended solids (SS) and bottom sediments yielded negligible amounts of 236U. Our results suggest that 236U behaves as a conservative nuclide in seawater, with potential advantages over other tracers of oceanic circulation. PMID:23564965

  5. Study on depth profiles of hydrogen in boron-doped diamond films by elastic recoil detection analysis

    SciTech Connect

    Changgeng, Liao; Shengsheng, Yang; Ximeng, Chen; Yongqiang, Wang

    1999-06-10

    Depth profiles of hydrogen in a set of boron-doped diamond films were studied by a convolution method to simulate the recoil proton spectra induced by {sup 4}He ions of 3 MeV. Results show that the hydrogen depth profiles in these varying-level boron-doped diamond films exhibit a similar three-layer structure: the surface absorption layer, the diffusion region, and the uniform hydrogen-containing matrix. Hydrogen concentrations at all the layers, especially in the surface layer, are found to increase significantly with the boron-doping concentration, implying that more dangling-bonds and/or CH-bonds were introduced by the boron-doping process. While the increased dangling-bonds and/or CH-bonds degrade the microstructure of the diamond films as observed by Raman Shift, the boron-doping significantly reduces the specific resistance and makes semiconducting diamond films possible. Hydrogen mobility (or hydrogen loss) in these films as a result of the {sup 4}He beam irradiation was also observed and discussed.

  6. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    DOE PAGES

    Cahill, J. F.; Fei, H.; Cohen, S. M.; ...

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for anmore » uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.« less

  7. Characterization of core–shell MOF particles by depth profiling experiments using on-line single particle mass spectrometry

    SciTech Connect

    Cahill, J. F.; Fei, H.; Cohen, S. M.; Prather, K. A.

    2015-01-05

    Materials with core-shell structures have distinct properties that lend themselves to a variety of potential applications. Characterization of small particle core-shell materials presents a unique analytical challenge. Herein, single particles of solid-state materials with core-shell structures were measured using on-line aerosol time-of-flight mass spectrometry (ATOFMS). Laser 'depth profiling' experiments verified the core-shell nature of two known core-shell particle configurations (< 2 mu m diameter) that possessed inverted, complimentary core-shell compositions (ZrO2@SiO2 versus SiO2@ZrO2). The average peak area ratios of Si and Zr ions were calculated to definitively show their core-shell composition. These ratio curves acted as a calibrant for an uncharacterized sample - a metal-organic framework (MOF) material surround by silica (UiO-66(Zr)@SiO2; UiO = University of Oslo). ATOFMS depth profiling was used to show that these particles did indeed exhibit a core-shell architecture. The results presented here show that ATOFMS can provide unique insights into core-shell solid-state materials with particle diameters between 0.2-3 mu m.

  8. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    NASA Astrophysics Data System (ADS)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  9. Study on depth profiles of hydrogen in boron-doped diamond films by elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Changgeng, Liao; Yongqiang, Wang; Shengsheng, Yang; Ximeng, Chen

    1999-06-01

    Depth profiles of hydrogen in a set of boron-doped diamond films were studied by a convolution method to simulate the recoil proton spectra induced by 4He ions of 3 MeV. Results show that the hydrogen depth profiles in these varying-level boron-doped diamond films exhibit a similar three-layer structure: the surface absorption layer, the diffusion region, and the uniform hydrogen-containing matrix. Hydrogen concentrations at all the layers, especially in the surface layer, are found to increase significantly with the boron-doping concentration, implying that more dangling-bonds and/or CH-bonds were introduced by the boron-doping process. While the increased dangling-bonds and/or CH-bonds degrade the microstructure of the diamond films as observed by Raman Shift, the boron-doping significantly reduces the specific resistance and makes semiconducting diamond films possible. Hydrogen mobility (or hydrogen loss) in these films as a result of the 4He beam irradiation was also observed and discussed.

  10. Quantitative XPS depth profiling of codeine loaded poly(l-lactic acid) films using a coronene ion sputter source.

    PubMed

    Rafati, Ali; Davies, Martyn C; Shard, Alexander G; Hutton, Simon; Mishra, Gautam; Alexander, Morgan R

    2009-08-19

    The controlled release of active pharmaceutical ingredients from polymers over prolonged periods of time is vital for the function of drug eluting stents and other drug loaded delivery devices. Characterisation of the drug distribution in polymers allows the in vitro and in vivo performance to be rationalised. We present the first X-ray photoelectron spectroscopy (XPS) depth profiling study of such a drug eluting stent system for which we employ a novel coronene ion sputter source. The rationale for this is to ascertain quantitative atomic concentration data through the thickness of flat films containing codeine and poly(l-lactic acid) (PLA) as a model of a drug loaded polymer device. A range of films of thickness of up to 96 nm are spun cast from chloroform onto Piranha cleaned silicon wafers. Ellipsometry of the films is undertaken prior to depth profiling to determine the total film thickness and provide a measure of the relative loading of drug within the PLA matrix through spectroscopic analysis. Progressive XPS analysis of the bottom of the sputter crater with sputter time indicated codeine to be depleted from the surface and segregated to the bulk of the polymer films by comparison with a uniform distribution calculated from the bulk loading. This serves to illustrate that surface depletion of drug occurs, which poses important implications for drug loaded polymer delivery systems.

  11. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.

    PubMed

    Niehoff, Philip; Passerini, Stefano; Winter, Martin

    2013-05-14

    Here we provide a detailed X-ray photoelectron spectroscopy (XPS) study of the electrode/electrolyte interface of a graphite anode from commercial NMC/graphite cells by intense sputter depth profiling using a polyatomic ion gun. The uniqueness of this method lies in the approach using 13-step sputter depth profiling (SDP) to obtain a detailed model of the film structure, which forms at the electrode/electrolyte interface often noted as the solid electrolyte interphase (SEI). In addition to the 13-step SDP, several reference experiments of the untreated anode before formation with and without electrolyte were carried out to support the interpretation. Within this work, it is shown that through charging effects during X-ray beam exposure chemical components cannot be determined by the binding energy (BE) values only, and in addition, that quantification by sputter rates is complicated for composite electrodes. A rough estimation of the SEI thickness was carried out by using the LiF and graphite signals as internal references.

  12. Monte Carlo simulation of ruthenium eye plaques with GEANT4: influence of multiple scattering algorithms, the spectrum and the geometry on depth dose profiles

    NASA Astrophysics Data System (ADS)

    Sommer, H.; Ebenau, M.; Spaan, B.; Eichmann, M.

    2017-03-01

    Previous studies show remarkable differences in the simulation of electron depth dose profiles of ruthenium eye plaques. We examined the influence of the scoring and simulation geometry, the source spectrum and the multiple scattering algorithm on the depth dose profile using GEANT4. The simulated absolute dose deposition agrees with absolute dose data from the manufacturer within the measurement uncertainty. Variations in the simulation geometry as well as the source spectrum have only a small influence on the depth dose profiles. However, the multiple scattering algorithms have the largest influence on the depth dose profiles. They deposit up to 20% less dose compared to the single scattering implementation. We recommend researchers who are interested in simulating low- to medium-energy electrons to examine their simulation under the influence of different multiple scattering settings. Since the simulation and scoring geometry as well as the exact physics settings are best described by the source code of the application, we made the code publicly available.

  13. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    NASA Technical Reports Server (NTRS)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2008-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  14. System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

    NASA Technical Reports Server (NTRS)

    Hassebrook, Laurence G. (Inventor); Lau, Daniel L. (Inventor); Guan, Chun (Inventor)

    2010-01-01

    A technique, associated system and program code, for retrieving depth information about at least one surface of an object, such as an anatomical feature. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the anatomical feature; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face--or other animal feature or inanimate object--recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.

  15. ChemCam Depth Profiles at Gale Crater to Assess Coating and Alteration Distribution and Chemistry

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Clegg, S. M.; Wiens, R. C.; Maurice, S.; Lanza, N.; Bridges, N.

    2014-12-01

    Coating and rock alteration formation on Mars is constrained by both the availability of water and rock composition. Detection of these materials depends on the both formation rate and the rate of abrasion that these alteration products and coatings experience. ChemCam on the Curiosity rover can investigate coating/alteration formation and preservation by looking at chemical composition as a function of depth into the rock. ChemCam LIBS works by firing a laser focused to a 350 - 550 mm diameter spot that produces plasma from the rock. Spectra of elemental emission lines are recorded from 240-850 nm and used to determine the elemental composition of the rock. A chemical composition is generated from each individual spectrum. Each laser firing penetrates deeper into the rock allowing for a composition as a function of depth to be determined. By comparing geochemical trends from the beginning and end of the observations evidence for coatings and alteration can be assessed by geologic setting and rock type. Previous ChemCam work has identified Li variations (Ollila et al 2014) and MnO coatings (Lanza et al 2014) on a few rocks with high abundances of these elements. However this work is the first systematic assessment of alteration and coatings in the entire data set. From landing until Sol 583 there were 2,610 good quality ChemCam rock and outcrop observations. These measurements were assessed for internal elemental composition variability by the calculation of heterogeneity index. Only 7% (178) had positive internal heterogeneity. However, internal heterogeneity can be due to other factors besides coatings and alteration. Thick soil coverage and differential sampling of materials in coarse-grained rocks also produce positive heterogeneity indexes. The actual number of potential coatings at Gale is significantly lower. For most of Gale, current geochemical alteration rates are slower the rate of abrasion. This result is consistent with limited availability of water in

  16. Does strip-tillage could limit the drop of yields on soils of reduced depth of profiles in loess areas?

    NASA Astrophysics Data System (ADS)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Jadzczyszyn, Jan; Rodzik, Jan

    2016-04-01

    Strip tillage restrict a tillage operation to seed rows and enables a combination of tillage, sowing and application of fertilizers during one pass of agricultural machines. The practice decreases the costs of fuel and limits the risk of water erosion by the increase of infiltration of soil water. In the studies, we put a hypothesis that strip tillage is a tool to increase the yields on soils of reduced profiles. Studies were carried out in the loess area of the Lublin Upland (Poland). The site is cultivated from the beginning of the 18th century, and strip tillage is performed from 2008. All plant residues is left after harvest in the field and mixed with the soil by disc harrow. Measurements of solum depth (Ap-BC), soil properties and parameters of plant growth were carried out in 108 points in the field of the area of 4 ha. Crops included winter wheat (2014) and maize (2015). Studies showed that the profiles of Haplic Luvisol were largely truncated or overbuilt due to erosion and moldboard plow in the past. Solum depth ranged from 0.2 to 3.6 m (mean=1.29 m, CV=64%), and soils with the non-eroded, slightly, moderately, severely, very severely eroded and depositional profiles represented 13, 32, 10, 5, 8 and 32% of total number of cores, respectively. In a result of modification of profiles, clay content ranged from 84 to 222 (145; 16%) in the layer of 0-15 cm, whereas SOC concentration remained on relatively low level and ranged from 4.3 to 16.8 g/kg (9.1; 21.4%). Soil water content (SWC) within depth of 1-m profile was differentiated at the start of measurements in the middle of June 2015. The SWC was the highest in non-eroded and depositional soils and the smallest in severely and very severely eroded soils. The difference of 5% has maintained during the whole growing season and did not affect the growth of plants till the phase of flowering. Then, the plants on shallower soils passed quicker to the next phenological phases in comparison to the plants on deeper

  17. Colon cancer prediction with genetic profiles using intelligent techniques.

    PubMed

    Alladi, Subha Mahadevi; P, Shinde Santosh; Ravi, Vadlamani; Murthy, Upadhyayula Suryanarayana

    2008-01-01

    Micro array data provides information of expression levels of thousands of genes in a cell in a single experiment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. In our present study we have used the benchmark colon cancer data set for analysis. Feature selection is done using t-statistic. Comparative study of class prediction accuracy of 3 different classifiers viz., support vector machine (SVM), neural nets and logistic regression was performed using the top 10 genes ranked by the t-statistic. SVM turned out to be the best classifier for this dataset based on area under the receiver operating characteristic curve (AUC) and total accuracy. Logistic Regression ranks as the next best classifier followed by Multi Layer Perceptron (MLP). The top 10 genes selected by us for classification are all well documented for their variable expression in colon cancer. We conclude that SVM together with t-statistic based feature selection is an efficient and viable alternative to popular techniques.

  18. Depth Profiles of Persistent Organic Pollutants in the North and Tropical Atlantic Ocean.

    PubMed

    Sun, Caoxin; Soltwedel, Thomas; Bauerfeind, Eduard; Adelman, Dave A; Lohmann, Rainer

    2016-06-21

    Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g., sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L(-1)) were similar to previous measurements. At both sites, PCB concentrations showed subsurface maxima (tropical Atlantic Ocean -800 m, North Atlantic -500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners' subcooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26% of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean.

  19. Depth profiling of APTES self-assembled monolayers using surface-enhanced confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yingying; Yanagisawa, Masahiro; Kunimoto, Masahiro; Nakamura, Masatoshi; Homma, Takayuki

    2017-09-01

    The internal structure of self-assembled monolayers (SAMs) such as 3-aminopropyltriethoxysilane (APTES) fabricated on a glass substrate is difficult to characterize and analyze at nanometer level. In this study, we employed surface-enhanced Raman spectroscopy (SERS) to study the internal molecular structure of APTES SAMs. The sample APTES SAMs were deposited with Ag nanoparticles to enhance the Raman signal and to obtain subtler structure information, which were supported by density functional theory calculations. In addition, in order to carry out high-resolution analysis, especially for vertical direction, a fine piezo electric positioner was used to control the depth scanning with a step of 0.1 nm. We measured and distinguished the vertical Raman intensity variations of specific groups in APTES, such as Ag/NH2, CH2, and Sisbnd O, with high resolution. The interfacial bond at the two interfaces of Ag-APTES and APTES-SiO2 was identified. Moreover, APTES molecule orientation was demonstrated to be inhomogeneous from frequency shift.

  20. A study of the properties of beryllium doped silicon with particular emphasis on diffusion mechanisms: Profiles of depth dependent conductivity as determined by electrical surface probes

    NASA Technical Reports Server (NTRS)

    Franks, R. K.; Robertson, J. B.

    1972-01-01

    Very large diffusion coefficients were encountered and required the determination of impurity profiles for samples approximately 1 cm thick. Since conductivity values are readily converted into concentrations of electrically active impurities, the major problem became that of accurately determining the conductivity profiles of beryllium diffused silicon samples. Four-point probe measurements on samples having depth conductivities are interpreted in terms of conductivity profiles, based on an exact solution of the problem of exponentially depth dependent conductivity. Applications include surface conductivity determination where the form of the conductivity profile is known, and conductivity profile determination from probe measurements taken as the sample surface is progressively lapped away. The application is limited to samples having conductivity monotonically decreasing with depth from the probed surface.

  1. Secondary ion mass spectrometry depth profiling of amorphous polymer multilayers using O{sub 2}{sup +} and Cs{sup +} ion bombardment with a magnetic sector instrument

    SciTech Connect

    Harton, S.E.; Stevie, F.A.; Ade, H.

    2006-03-15

    Thin planar polymer films are model systems in a number of fields, including nano- and biotechnology. In contrast to reciprocal space techniques such as reflectivity or diffraction, secondary ion mass spectrometry (SIMS) can provide depth profiles of tracer labeled polymers in real space directly with sufficient depth resolution to characterize many important aspects in these systems. Yet, continued improvements in characterization methods are highly desirable in order to optimize the trade-offs between depth resolution, mass resolution, detection sensitivity, data acquisition time, and artifacts. In this context, the utility of a magnetic sector SIMS instrument for amorphous polymer film analysis was evaluated using model polymer bilayer systems of polystyrene (PS) with poly(methyl methacrylate) (PMMA), PS with poly(2-vinylpyridine), and poly(cyclohexyl methacrylate) (PCHMA) with PMMA. Deuterium-labeled polystyrene embedded in PS or PCHMA at concentrations ranging from 5% to 20%(v/v) was used as tracer polymer. Analysis conditions for a magnetic sector SIMS instrument (CAMECA IMS-6f) were varied to achieve a depth resolution of {approx}10 nm, high signal/noise ratios, and high sensitivity, while minimizing matrix effects and sample charging. Use of Cs{sup +} and O{sub 2}{sup +} primary ions with detection of negative and positive secondary ions, respectively, has been explored. Primary beam impact energy and primary ion species have been shown to affect matrix secondary ion yields. Sputtering rates have been determined for PS and PMMA using both primary ion species and referenced to values for intrinsic (100) silicon (Si) under identical analysis conditions.

  2. Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Le Beon, Maryline; Klinger, Yann; Amrat, Abdel Qader; Agnon, Amotz; Dorbath, Louis; Baer, Gidon; Ruegg, Jean-Claude; Charade, Olivier; Mayyas, Omar

    2008-11-01

    The Dead Sea Transform is a major strike-slip fault bounding the Arabia plate and the Sinai subplate. On the basis of two GPS campaign measurements, 6 years apart, at 17 sites distributed in Israel and Jordan, complemented by Israeli permanent stations, we compute the present-day deformation across the southern segment of the Dead Sea Transform, the Wadi Araba fault. Elastic locked-fault modeling of fault-parallel velocities provides a slip rate of 4.9 ± 1.4 mm/a and a best fit locking depth of ˜12 km. This slip rate is slightly higher than previous results based only on Israeli permanent GPS stations data, which are located west of the fault. It is in good agreement with results based on offset geomorphologic and geologic features that average longer periods of time (10 ka to 1 Ma). Projection in ITRF2000 reference frame allows using our data, combined with results published earlier, to further study the kinematics between Arabia, Nubia, and Sinai. Systematic combination of Euler poles available in the literature, in addition to our new set of data, shows that a wide range of Arabia-Sinai pole positions and angular velocities predict reasonable slip rate on the Dead Sea fault. We highlight uncertainties of calculating such poles due to the small size of the blocks and their slow relative motion along a short and almost straight strand of the transform fault, which lead to a large trade-off between pole location and angular velocity.

  3. Background Spectra For Rapid- Or Step-Scan FTIR Depth Profiling

    NASA Astrophysics Data System (ADS)

    Carter, R. O.; Palmer, Richard A.; Dittmar, Rebecca M.; Manning, Christopher J.; Bains, Maharaj S.; Chao, James L.

    1989-12-01

    The evaluation of a polymer of commercial significance to withstand processing and to perform properly has been generally a "trial by fire" process. As industry seeks to improve its product, control costs, and minimize environmental impact and waste, attention to system optimization and control are being pursued. To this end, the need to understand the chemical changes that accompany processing and/or weathering of polymeric systems is making new demands on analytical science. To meet these demands in a timely and direct fashion new techniques for obtaining spectro-chemical information are being investigated. One of these tools is the topic of this report, photoacoustic infrared spectroscopy (PAS-FTIR).

  4. In-Depth Profiling of the Peripheral Blood Mononuclear Cells Proteome for Clinical Blood Proteomics

    PubMed Central

    Končarević, Saša; Lößner, Christopher; Pike, Ian; Zucht, Hans-Dieter

    2014-01-01

    Peripheral blood mononuclear cells (PBMCs) are an easy accessible cellular part of the blood organ and, along with platelets, represent the only site of active gene expression in blood. These cells undergo immunophenotypic changes in various diseases and represent a peripheral source of monitoring gene expression and posttranslational modifications relevant to many diseases. Little is known about the source of many blood proteins and we hypothesise that release from PBMCs through active and passive mechanisms may account for a substantial part of the plasma proteome. The use of state-of-the-art proteomic profiling methods in PBMCs will enable minimally invasive monitoring of disease progression or response to treatment and discovery of biomarkers. To achieve this goal, detailed mapping of the PBMC proteome using a sensitive, robust, and quantitative methodological setup is required. We have applied an indepth gel-free proteomics approach using tandem mass tags (TMT), unfractionated and SCX fractionated PBMC samples, and LC-MS/MS with various modulations. This study represents a benchmark in deciphering the PBMC proteome as we provide a deep insight by identifying 4129 proteins and 25503 peptides. The identified proteome defines the scope that enables PBMCs to be characterised as cellular major biomarker pool within the blood organ. PMID:24724028

  5. In-depth profiling of the peripheral blood mononuclear cells proteome for clinical blood proteomics.

    PubMed

    Končarević, Saša; Lößner, Christopher; Kuhn, Karsten; Prinz, Thorsten; Pike, Ian; Zucht, Hans-Dieter

    2014-01-01

    Peripheral blood mononuclear cells (PBMCs) are an easy accessible cellular part of the blood organ and, along with platelets, represent the only site of active gene expression in blood. These cells undergo immunophenotypic changes in various diseases and represent a peripheral source of monitoring gene expression and posttranslational modifications relevant to many diseases. Little is known about the source of many blood proteins and we hypothesise that release from PBMCs through active and passive mechanisms may account for a substantial part of the plasma proteome. The use of state-of-the-art proteomic profiling methods in PBMCs will enable minimally invasive monitoring of disease progression or response to treatment and discovery of biomarkers. To achieve this goal, detailed mapping of the PBMC proteome using a sensitive, robust, and quantitative methodological setup is required. We have applied an indepth gel-free proteomics approach using tandem mass tags (TMT), unfractionated and SCX fractionated PBMC samples, and LC-MS/MS with various modulations. This study represents a benchmark in deciphering the PBMC proteome as we provide a deep insight by identifying 4129 proteins and 25503 peptides. The identified proteome defines the scope that enables PBMCs to be characterised as cellular major biomarker pool within the blood organ.

  6. In-depth proteomic profiling of left ventricular tissues in human end-stage dilated cardiomyopathy

    PubMed Central

    Liu, Shanshan; Xia, Yan; Liu, Xiaohui; Wang, Yi; Chen, Zhangwei; Xie, Juanjuan; Qian, Juying; Shen, Huali; Yang, Pengyuan

    2017-01-01

    Dilated cardiomyopathy (DCM) is caused by reduced left ventricular (LV) myocardial function, which is one of the most common causes of heart failure (HF). We performed iTRAQ-coupled 2D-LC-MS/MS to profile the cardiac proteome of LV tissues from healthy controls and patients with end-stage DCM. We identified 4263 proteins, of which 125 were differentially expressed in DCM tissues compared to LV controls. The majority of these were membrane proteins related to cellular junctions and neuronal metabolism. In addition, these proteins were involved in membrane organization, mitochondrial organization, translation, protein transport, and cell death process. Four key proteins involved in the cell death process were also detected by western blotting, indicated that cell death was activated in DCM tissues. Furthermore, S100A1 and eEF2 were enriched in the “cellular assembly and organization” and “cell cycle” networks, respectively. We verified decreases in these two proteins in end-stage DCM LV samples through multiple reaction monitoring (MRM). These observations demonstrate that our understanding of the mechanisms underlying DCM can be deepened through comparison of the proteomes of normal LV tissues with that from end-stage DCM in humans. PMID:28427148

  7. A Perceptual Matching Technique for Depth Judgements in Optical, See-Through Augmented Reality

    DTIC Science & Technology

    2006-03-01

    a perceptual matching task. Figure 1 shows the experimental setting. We seated observers on a tall stool 3.4 meters from one end of a 50.1-meter...center of each lens was 147.3 cm above the floor, and we adjusted the height of the stool so that observers could comforta- bly look through the display...234–250. [15] MON-WILLIAMS, M, TRESILIAN, JR, “Ordinal depth information from accommodation?”, Ergonomics , 43(3), March 2000, pages 391–404. [16

  8. Depth oriented brief therapy: an ideal technique as hospice lengths-of-stay continue to shorten.

    PubMed

    Thomson, Judith E; Jordan, Merle R

    2002-01-01

    The authors note that as hospice patients' lengths-of-stay continue to shorten, psychosocial/spiritual counselors are being challenged to help patients and families process the myriad of issues terminal illness gives rise to. Given this reality, the authors suggest that the Depth Oriented Brief Therapy (DOBT) approach should prove especially useful. The DOBT premise is that if people can be helped to experience the emotional meanings of why they hold on to emotionally painful symptoms then they can abandon their symptoms for healthier ways of being.

  9. Depths and grids in brain tumors: implantation strategies, techniques, and complications.

    PubMed

    Sweet, Jennifer A; Hdeib, Alia M; Sloan, Andrew; Miller, Jonathan P

    2013-12-01

    Patients with intracranial mass lesions are at increased risk of intractable epilepsy even after tumor resection due to the potential epileptogenicity of lesional and perilesional tissue. Risk factors for tumoral epilepsy include tumor location, histology, and extent of tumor resection. In epilepsy that occurs after tumor resection, the epileptogenic zone often does not correspond precisely with the area of abnormality on imaging, and seizures often arise from a relatively restricted area despite widespread changes on imaging. Invasive monitoring via subdural grids and/or depth electrodes can therefore be helpful to delineate areas of eloquence and localize the epileptogenic zone for subsequent resection. Subdural grids offer excellent contiguous coverage of superficial cortex and allow resection using the same craniotomy, facilitating understanding of anatomic relationships. Depth electrodes offer superior coverage of deep structures, are easier to use in cases where a previous craniotomy is present, are not associated with anatomic distortion due to brain shift, and may be associated with a lower complication rate. We review the biology of focal postoperative epilepsy and invasive diagnostic strategies for the surgical evaluation of medically refractory epilepsy in patients who have undergone resection of intracranial mass lesions. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  10. Laser Ablation/Ionisation Mass Spectrometry: Sensitive and Quantitative Chemical Depth Profiling of Solid Materials.

    PubMed

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-01-01

    Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed.

  11. A robust economic technique for crosswell seismic profiling. Final report

    SciTech Connect

    Hardage, B.A.; Simmons, J.L. Jr.

    1998-01-01

    The objective of this research program was to investigate a novel way to acquire crosswell tomographic data, that being to use a standard surface-positioned seismic energy source stationed inline with two wells that have downhole receiver arrays. This field technique differs from the traditional way that crosswell tomography is done, which requires that a downhole receiver array be in one well and that a downhole seismic source be in a second well. The purpose of the research effort was to evaluate the relative merits of the potential advantages and pitfalls of surface-source crosswell tomography, which some also refer to as twin-receiver-well crosswell tomography. The principal findings were: (1) surface-source crosswell tomography is a viable technology and can be used in appropriate reservoir conditions, (2) raypath modeling should be done to determine if the targeted interwell space is properly illuminated by surface-generated wavefields before proceeding to collect surface-source tomographic data, (3) crosswell data generated by a surface-based source are subject to a greater range of traveltime errors than are data generated by a downhole source, primarily due to shot statics caused by variable weathered layers, and (4) the accuracy and reliability of the interwell tomogram increase as more independent velocity information (sonic logs, velocity checkshots, vertical seismic profiles, downhole-source crosswell data) is available to constrain the inversion. The surface-source approach to crosswell tomography was evaluated by recording twin-receiver well data at the Texaco Borehole Test Site in Humble, Texas.

  12. Accurate automated non-resonant NRA depth profiling: Application to the low 3He concentration detection in UO 2 and SiC

    NASA Astrophysics Data System (ADS)

    Martin, G.; Sauvage, T.; Desgardin, P.; Garcia, P.; Carlot, G.; Barthe, M. F.

    2007-05-01

    An automated method was developed to extract elemental depth profiles from non-resonant nuclear reaction analyses (NRA), which involves a two-stage procedure. The first stage enables the determination of the number of layers to be used in the final depth profile determination along with the thicknesses of each of the layers. To this end, the RESNRA program, which relies on the SIMNRA 5.0 simulation software to calculate a multilayer target, was designed at CERI. A definition of the depth resolution based on statistical considerations is proposed. In the second stage of the fitting process, a depth profile and corresponding error bars are extracted from the experimental spectrum by running a generalized reduced gradient (GRG2) algorithm using the previously calculated multilayer target. The one-to-one correspondence between the experimental spectrum and the depth profile demonstrates the objectivity of the method. The method is then applied to determining low concentration 3He depth profiles in implanted UO 2 and SiC samples using the 3He( 2H, 4He) 1H non-resonant nuclear reaction. The results clearly demonstrate the relevance and potential of the method.

  13. Depth profiles and amorphization behavior under channeling conditions for low energy Bi ions implanted into Si crystals

    NASA Astrophysics Data System (ADS)

    de M. Azevedo, G.; Martini, J. C.; Behar, M.; Grande, P. L.

    1999-02-01

    We have implanted Bi along the Si <1 0 0> direction for 20, 30 and 40 keV at 623 K and measured the depth profiles by using the Rutherford Backscattering Spectroscopy (RBS). The results have been compared to MARLOWE calculations using different interatomic potentials and electronic stopping powers. The simulations using realistic interatomic potentials reproduce the experimental data by assuming a Debye temperature of 490 K for the thermal vibration amplitudes. This temperature is in good agreement with the one obtained with channeling experiments at much lower temperatures. In addition we have studied the amorphization behavior of the Si matrix implanted with Bi at channeling and random directions. In this last case we have observed that the results obtained in a 170-623 K temperature interval are well reproduced by the Morehead and Crowder model using realistic input parameters.

  14. The depth-profiled carrier concentration and scattering mechanism in undoped GaN film grown on sapphire

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Chen, X. D.; Fung, S.; Beling, C. D.; Ling, C. C.; Wei, Z. F.; Xu, S. J.; Zhi, C. Y.

    2004-07-01

    Temperature-dependent Hall (TDH) measurements and confocal micro-Raman spectroscopy have been used to study the free carrier spatial distribution and scattering mechanism in unintentionally doped GaN film grown on the sapphire substrate with the method of metalorganic chemical vapor deposition. Both the TDH data and the depth-profiled Raman spectra agreed with the existence of a nonuniform spatial distribution of free carriers in the GaN film with a highly conductive layer of ˜1 μm thickness near the GaN sapphire boundary. With the consideration of this parallel conduction channel adjacent to GaN sapphire boundary, detailed analysis of the TDH mobility data suggests that a relatively high concentration of nitrogen vacancies exists and nitrogen vacancy scattering has an important influence on limiting the electron mobility in the bulk film of the present GaN sample.

  15. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers

    NASA Astrophysics Data System (ADS)

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K. K.; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-03-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  16. Noninvasive detection of concealed explosives: depth profiling through opaque plastics by time-resolved Raman spectroscopy.

    PubMed

    Petterson, Ingeborg E Iping; López-López, María; García-Ruiz, Carmen; Gooijer, Cees; Buijs, Joost B; Ariese, Freek

    2011-11-15

    The detection of explosives concealed behind opaque, diffusely scattering materials is a challenge that requires noninvasive analytical techniques for identification without having to manipulate the package. In this context, this study focuses on the application of time-resolved Raman spectroscopy (TRRS) with a picosecond pulsed laser and an intensified charge-coupled device (ICCD) detector for the noninvasive identification of explosive materials through several millimeters of opaque polymers or plastic packaging materials. By means of a short (250 ps) gate which can be delayed several hundred picoseconds after the laser pulse, the ICCD detector allows for the temporal discrimination between photons from the surface of a sample and those from deeper layers. TRRS was applied for the detection of the two main isomers of dinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene as well as for various other components of explosive mixtures, including akardite II, diphenylamine, and ethyl centralite. Spectra were obtained through different diffuse scattering white polymer materials: polytetrafluoroethylene (PTFE), polyoxymethylene (POM), and polyethylene (PE). Common packaging materials of various thicknesses were also selected, including polystyrene (PS) and polyvinyl chloride (PVC). With the demonstration of the ability to detect concealed, explosives-related compounds through an opaque first layer, this study may have important applications in the sec