An analytic formula for H-infinity norm sensitivity with applications to control system design
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Lim, Kyong B.
1992-01-01
An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X; Bues, M
2015-06-15
Purpose: To present an analytical formula for deriving mechanical isocenter (MIC) of a rotational gantry treatment unit. The input data to the formula is obtained by a custom-made device. The formula has been implemented and used in an operational proton therapy facility since 2005. Methods: The custom made device consisted of 3 mutually perpendicular dial indicators and 5 clinometers, to obtain displacement data and gantry angle data simultaneously. During measurement, a steel sphere was affixed to the patient couch, and the device was attached to the snout rotating with the gantry. The displacement data and angle data were obtained simultaneouslymore » at angular increments of less than 1 degree. The analytical formula took the displacement and angle as input and derived the positions of dial indicator tips (DIT) position in room-fixed coordinate system. The formula derivation presupposes trigonometry and 3-dimentional coordinate transformations. Due to the symmetry properties of the defining equations, the DIT position can be solved for analytically without using mathematical approximations. We define the mean of all points in the DIT trajectory as the MIC. The formula was implemented in computer code, which has been employed during acceptance test, commissioning, as well as routine QA practice in an operational proton facility since 2005. Results: It took one minute for the custom-made device to acquire the measurement data for a full gantry rotation. The DIT trajectory and MIS are instantaneously available after the measurement. The MIC Result agrees well with vendor’s Result, which came from a different measurement setup, as well as different data analysis algorithm. Conclusion: An analytical formula for deriving mechanical isocenter was developed and validated. The formula is considered to be absolutely accurate mathematically. Be analyzing measured data of radial displacements as function of gantry angle, the formula calculates the MI position in room coordinate.« less
A New Newton-Like Iterative Method for Roots of Analytic Functions
ERIC Educational Resources Information Center
Otolorin, Olayiwola
2005-01-01
A new Newton-like iterative formula for the solution of non-linear equations is proposed. To derive the formula, the convergence criteria of the one-parameter iteration formula, and also the quasilinearization in the derivation of Newton's formula are reviewed. The result is a new formula which eliminates the limitations of other methods. There is…
Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes
NASA Astrophysics Data System (ADS)
El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.
2014-05-01
We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.
Frechet derivatives for shallow water ocean acoustic inverse problems
NASA Astrophysics Data System (ADS)
Odom, Robert I.
2003-04-01
For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.
Transport of a decay chain in homogenous porous media: analytical solutions.
Bauer, P; Attinger, S; Kinzelbach, W
2001-06-01
With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.
Why does the sign problem occur in evaluating the overlap of HFB wave functions?
NASA Astrophysics Data System (ADS)
Mizusaki, Takahiro; Oi, Makito; Shimizu, Noritaka
2018-04-01
For the overlap matrix element between Hartree-Fock-Bogoliubov states, there are two analytically different formulae: one with the square root of the determinant (the Onishi formula) and the other with the Pfaffian (Robledo's Pfaffian formula). The former formula is two-valued as a complex function, hence it leaves the sign of the norm overlap undetermined (i.e., the so-called sign problem of the Onishi formula). On the other hand, the latter formula does not suffer from the sign problem. The derivations for these two formulae are so different that the reasons are obscured why the resultant formulae possess different analytical properties. In this paper, we discuss the reason why the difference occurs by means of the consistent framework, which is based on the linked cluster theorem and the product-sum identity for the Pfaffian. Through this discussion, we elucidate the source of the sign problem in the Onishi formula. We also point out that different summation methods of series expansions may result in analytically different formulae.
Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.
Guérin, T; Dean, D S
2015-12-01
We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.
ERIC Educational Resources Information Center
Wang, Tianyou
2009-01-01
Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…
Alberer, Martin; Hoefele, Julia; Benz, Marcus R; Bökenkamp, Arend; Weber, Lutz T
2017-01-01
Measurement of inulin clearance is considered to be the gold standard for determining kidney function in children, but this method is time consuming and expensive. The glomerular filtration rate (GFR) is on the other hand easier to calculate by using various creatinine- and/or cystatin C (Cys C)-based formulas. However, for the determination of serum creatinine (Scr) and Cys C, different and non-interchangeable analytical methods exist. Given the fact that different analytical methods for the determination of creatinine and Cys C were used in order to validate existing GFR formulas, clinicians should be aware of the type used in their local laboratory. In this study, we compared GFR results calculated on the basis of different GFR formulas and either used Scr and Cys C values as determined by the analytical method originally employed for validation or values obtained by an alternative analytical method to evaluate any possible effects on the performance. Cys C values determined by means of an immunoturbidimetric assay were used for calculating the GFR using equations in which this analytical method had originally been used for validation. Additionally, these same values were then used in other GFR formulas that had originally been validated using a nephelometric immunoassay for determining Cys C. The effect of using either the compatible or the possibly incompatible analytical method for determining Cys C in the calculation of GFR was assessed in comparison with the GFR measured by creatinine clearance (CrCl). Unexpectedly, using GFR equations that employed Cys C values derived from a possibly incompatible analytical method did not result in a significant difference concerning the classification of patients as having normal or reduced GFR compared to the classification obtained on the basis of CrCl. Sensitivity and specificity were adequate. On the other hand, formulas using Cys C values derived from a compatible analytical method partly showed insufficient performance when compared to CrCl. Although clinicians should be aware of applying a GFR formula that is compatible with the locally used analytical method for determining Cys C and creatinine, other factors might be more crucial for the calculation of correct GFR values.
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Zhang, Lei
2006-07-01
A theoretical model is proposed to describe coherent dark hollow beams (DHBs) with rectangular symmetry. The electric field of a coherent rectangular DHB is expressed as a superposition of a series of the electric field of a finite series of fundamental Gaussian beams. Analytical propagation formulas for a coherent rectangular DHB passing through paraxial optical systems are derived in a tensor form. Furthermore, for the more general case, we propose a theoretical model to describe a partially coherent rectangular DHB. Analytical propagation formulas for a partially coherent rectangular DHB passing through paraxial optical systems are derived. The beam propagation factor (M2 factor) for both coherent and partially coherent rectangular DHBs are studied. Numerical examples are given by using the derived formulas. Our models and method provide an effective way to describe and treat the propagation of coherent and partially coherent rectangular DHBs.
Analytical skin friction and heat transfer formula for compressible internal flows
NASA Technical Reports Server (NTRS)
Dechant, Lawrence J.; Tattar, Marc J.
1994-01-01
An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671
Yang, Yi; Tang, Xiangyang
2012-12-01
The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Satoshi; Toda, Mikito; Kubotani, Hiroto
The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state ismore » so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovsek-Wilf-Zeilberger theory that calculates definite hypergeometric sums in a closed form.« less
Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls
Zhou, Chenming
2017-01-01
At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995
Higher-order jump conditions for conservation laws
NASA Astrophysics Data System (ADS)
Oksuzoglu, Hakan
2018-04-01
The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.
NASA Technical Reports Server (NTRS)
King, H. F.; Komornicki, A.
1986-01-01
Formulas are presented relating Taylor series expansion coefficients of three functions of several variables, the energy of the trial wave function (W), the energy computed using the optimized variational wave function (E), and the response function (lambda), under certain conditions. Partial derivatives of lambda are obtained through solution of a recursive system of linear equations, and solution through order n yields derivatives of E through order 2n + 1, extending Puley's application of Wigner's 2n + 1 rule to partial derivatives in couple perturbation theory. An examination of numerical accuracy shows that the usual two-term second derivative formula is less stable than an alternative four-term formula, and that previous claims that energy derivatives are stationary properties of the wave function are fallacious. The results have application to quantum theoretical methods for the computation of derivative properties such as infrared frequencies and intensities.
NASA Astrophysics Data System (ADS)
Doha, E. H.
2003-05-01
A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.
NASA Astrophysics Data System (ADS)
Doha, E. H.
2004-01-01
Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.
Analytical probabilistic modeling of RBE-weighted dose for ion therapy.
Wieser, H P; Hennig, P; Wahl, N; Bangert, M
2017-11-10
Particle therapy is especially prone to uncertainties. This issue is usually addressed with uncertainty quantification and minimization techniques based on scenario sampling. For proton therapy, however, it was recently shown that it is also possible to use closed-form computations based on analytical probabilistic modeling (APM) for this purpose. APM yields unique features compared to sampling-based approaches, motivating further research in this context. This paper demonstrates the application of APM for intensity-modulated carbon ion therapy to quantify the influence of setup and range uncertainties on the RBE-weighted dose. In particular, we derive analytical forms for the nonlinear computations of the expectation value and variance of the RBE-weighted dose by propagating linearly correlated Gaussian input uncertainties through a pencil beam dose calculation algorithm. Both exact and approximation formulas are presented for the expectation value and variance of the RBE-weighted dose and are subsequently studied in-depth for a one-dimensional carbon ion spread-out Bragg peak. With V and B being the number of voxels and pencil beams, respectively, the proposed approximations induce only a marginal loss of accuracy while lowering the computational complexity from order [Formula: see text] to [Formula: see text] for the expectation value and from [Formula: see text] to [Formula: see text] for the variance of the RBE-weighted dose. Moreover, we evaluated the approximated calculation of the expectation value and standard deviation of the RBE-weighted dose in combination with a probabilistic effect-based optimization on three patient cases considering carbon ions as radiation modality against sampled references. The resulting global γ-pass rates (2 mm,2%) are [Formula: see text]99.15% for the expectation value and [Formula: see text]94.95% for the standard deviation of the RBE-weighted dose, respectively. We applied the derived analytical model to carbon ion treatment planning, although the concept is in general applicable to other ion species considering a variable RBE.
Spatial derivatives of flow quantities behind curved shocks of all strengths
NASA Technical Reports Server (NTRS)
Darden, C. M.
1984-01-01
Explicit formulas in terms of shock curvature are developed for spatial derivatives of flow quantities behind a curved shock for two-dimensional inviscid steady flow. Factors which yield the equations indeterminate as the shock strength approaches 0 have been cancelled analytically so that formulas are valid for shocks of any strength. An application for the method is shown in the solution of shock coalescence when nonaxisymmetric effects are felt through derivatives in the circumferential direction. The solution of this problem requires flow derivatives behind the shock in both the axial and radial direction.
Improved multidimensional semiclassical tunneling theory.
Wagner, Albert F
2013-12-12
We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.
Thermal Cyclotron Absorption Coefficients. II. Opacities in the Stokes Formalism
NASA Astrophysics Data System (ADS)
Vaeth, H. M.; Chanmugam, G.
1995-05-01
We extend the discussion of the calculation of the cyclotron opacities α± of the ordinary and extraordinary mode (Chanmugam et al.) to the opacities κ, q, υ in the Stokes formalism. We derive formulae with which a can be calculated from κ, q, υ. We are hence able to compare our calculations of the opacities, which are based on the single-particle method, with results obtained with the dielectric tensor method of Tam or. Excellent agreement is achieved. We present extensive tables of the opacities in the Stokes formalism for frequencies up to 25ωc, where ωc is the cyclotron frequency, and temperatures kT = 5, 10,20, 30,40, and 50 keV. Furthermore, we derive approximate formulae with which κ, q, υ can be calculated from α± and hence use the Robinson & Melrose analytic formulae for α± in order to calculate the opacities in the Stokes formalism. We compare these opacities to accurate numerical opacities and find that the analytic formulae can reproduce the qualitative behavior of the opacities in the regions where the harmonic structure is unimportant.
NASA Astrophysics Data System (ADS)
Doha, E. H.; Ahmed, H. M.
2004-08-01
A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed.
NASA Technical Reports Server (NTRS)
Ng, C. F.
1988-01-01
Static postbuckling and nonlinear dynamic analysis of plates are usually accomplished by multimode analyses, although the methods are complicated and do not give straightforward understanding of the nonlinear behavior. Assuming single-mode transverse displacement, a simple formula is derived for the transverse load displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the static postbuckling displacement and nonlinear dynamic responses of postbuckled plates under sinusoidal or random excitation. Regions with softening and hardening spring behavior are identified. Also, the highly nonlinear motion of snap-through and its effects on the overall dynamic response can be easily interpreted using the single-mode formula. Theoretical results are compared with experimental results obtained using a buckled aluminum panel, using discrete frequency and broadband point excitation. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are found.
Anomaly formulas for the complex-valued analytic torsion on compact bordisms
Maldonado Molina, Osmar
2013-01-01
We extend the complex-valued analytic torsion, introduced by Burghelea and Haller on closed manifolds, to compact Riemannian bordisms. We do so by considering a flat complex vector bundle over a compact Riemannian manifold, endowed with a fiberwise nondegenerate symmetric bilinear form. The Riemmanian metric and the bilinear form are used to define non-selfadjoint Laplacians acting on vector-valued smooth forms under absolute and relative boundary conditions. In order to define the complex-valued analytic torsion in this situation, we study spectral properties of these generalized Laplacians. Then, as main results, we obtain so-called anomaly formulas for this torsion. Our reasoning takes into account that the coefficients in the heat trace asymptotic expansion associated to the boundary value problem under consideration, are locally computable. The anomaly formulas for the complex-valued Ray–Singer torsion are derived first by using the corresponding ones for the Ray–Singer metric, obtained by Brüning and Ma on manifolds with boundary, and then an argument of analytic continuation. In odd dimensions, our anomaly formulas are in accord with the corresponding results of Su, without requiring the variations of the Riemannian metric and bilinear structures to be supported in the interior of the manifold. PMID:27087744
Design sensitivity analysis of nonlinear structural response
NASA Technical Reports Server (NTRS)
Cardoso, J. B.; Arora, J. S.
1987-01-01
A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jae Gil, E-mail: jgchoi@dankook.ac.kr; Chang, Seung Jun, E-mail: sejchang@dankook.ac.kr
In this paper we derive a Cameron-Storvick theorem for the analytic Feynman integral of functionals on product abstract Wiener space B{sup 2}. We then apply our result to obtain an evaluation formula for the analytic Feynman integral of unbounded functionals on B{sup 2}. We also present meaningful examples involving functionals which arise naturally in quantum mechanics.
Constraints on the [Formula: see text] form factor from analyticity and unitarity.
Ananthanarayan, B; Caprini, I; Kubis, B
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic [Formula: see text] form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the [Formula: see text] form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around [Formula: see text].
Theory and Circuit Model for Lossy Coaxial Transmission Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genoni, T. C.; Anderson, C. N.; Clark, R. E.
2017-04-01
The theory of signal propagation in lossy coaxial transmission lines is revisited and new approximate analytic formulas for the line impedance and attenuation are derived. The accuracy of these formulas from DC to 100 GHz is demonstrated by comparison to numerical solutions of the exact field equations. Based on this analysis, a new circuit model is described which accurately reproduces the line response over the entire frequency range. Circuit model calculations are in excellent agreement with the numerical and analytic results, and with finite-difference-time-domain simulations which resolve the skindepths of the conducting walls.
Theoretical study on phase-locking of a radial array CO2 laser
NASA Astrophysics Data System (ADS)
Xu, Yonggen
2014-11-01
The phase-locking of the radial array CO2 laser (RAL) is introduced based on the injection-locking principle. The characteristic parameters of laser beams used in the phase-locking are described, and the coupling coefficient c00 between the injected mode and the eigenmode of RAL is calculated. The laser modes from RAL are the low-order Hermite Gaussian modes due to the diffraction loss. The analytical formula for the output beam through an ABCD optical system is derived according Collins formula. The numerical examples are given to illustrate our analytical results.
NASA Technical Reports Server (NTRS)
Lautenschlager, L.; Perry, C. R., Jr. (Principal Investigator)
1981-01-01
The development of formulae for the reduction of multispectral scanner measurements to a single value (vegetation index) for predicting and assessing vegetative characteristics is addressed. The origin, motivation, and derivation of some four dozen vegetation indices are summarized. Empirical, graphical, and analytical techniques are used to investigate the relationships among the various indices. It is concluded that many vegetative indices are very similar, some being simple algebraic transforms of others.
(U) Analytic First and Second Derivatives of the Uncollided Leakage for a Homogeneous Sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favorite, Jeffrey A.
2017-04-26
The second-order adjoint sensitivity analysis methodology (2nd-ASAM), developed by Cacuci, has been applied by Cacuci to derive second derivatives of a response with respect to input parameters for uncollided particles in an inhomogeneous transport problem. In this memo, we present an analytic benchmark for verifying the derivatives of the 2nd-ASAM. The problem is a homogeneous sphere, and the response is the uncollided total leakage. This memo does not repeat the formulas given in Ref. 2. We are preparing a journal article that will include the derivation of Ref. 2 and the benchmark of this memo.
Actuation of Piezoelectric Layered Beams With and Coupling.
Nguyen, Cuong H; Hanke, Ulrik; Halvorsen, Einar
2018-05-01
In this paper, we derive and compare the linear static bending of piezoelectric actuators with transversal ( ) and longitudinal ( ) coupling. The transducers are, respectively, structures utilizing top and bottom electrodes (TBEs) and interdigitated electrodes (IDEs). While the theory is well developed for the TBE beam, governing equations for the bending of the piezoelectric beams with IDEs are far less developed. We improve on this by deriving the governing equation for the IDE beam with an arbitrary number of layers and with coupling consistently included. In addition, we introduce a phenomenological quadratic form for the nonuniform field that lets us derive a deflection formula with nontrivial effects of the field accounted for. The theory is applied to derive deflection formulas for both cantilever and clamped-clamped beams. All analytic results are validated with numerical simulations. From the analytic models, two different figures of merit (FOMs) are derived. We show that these FOMs are the same for cantilevers and doubly clamped beams. The analysis indicates the optimal transducer length for clamped-clamped beams and gives a criterion that can be used to determine which design concept ( or ) gives the largest deflection.
An alternative model for a partially coherent elliptical dark hollow beam
NASA Astrophysics Data System (ADS)
Li, Xu; Wang, Fei; Cai, Yangjian
2011-04-01
An alternative theoretical model named partially coherent hollow elliptical Gaussian beam (HEGB) is proposed to describe a partially coherent beam with an elliptical dark hollow profile. Explicit expression for the propagation factors of a partially coherent HEGB is derived. Based on the generalized Collins formula, analytical formulae for the cross-spectral density and mean-squared beam width of a partially coherent HEGB, propagating through a paraxial ABCD optical system, are derived. Propagation properties of a partially coherent HEGB in free space are studied as a numerical example.
Leading multi-soft limits from scattering equations
NASA Astrophysics Data System (ADS)
Zlotnikov, Michael
2017-10-01
A Cachazo-He-Yuan (CHY) type formula is derived for the leading gluon, bi-adjoint scalar ϕ 3, Yang-Mills-scalar and non-linear sigma model m-soft factors S m in arbitrary dimension. The general formula is used to evaluate explicit examples for up to three soft legs analytically and up to four soft legs numerically via comparison with amplitude ratios under soft kinematics. A structural pattern for gluon m-soft factor is inferred and a simpler formula for its calculation is conjectured. In four dimensions, a Cachazo-Svrček-Witten (CSW) recursive procedure producing the leading m-soft gluon factor in spinor helicity formalism is developed as an alternative, and Britto-Cachazo-Feng-Witten (BCFW) recursion is used to obtain the leading four-soft gluon factor for all analytically distinct helicity configurations.
NASA Astrophysics Data System (ADS)
Sakhr, Jamal; Nieminen, John M.
2018-03-01
Two decades ago, Wang and Ong, [Phys. Rev. A 55, 1522 (1997)], 10.1103/PhysRevA.55.1522 hypothesized that the local box-counting dimension of a discrete quantum spectrum should depend exclusively on the nearest-neighbor spacing distribution (NNSD) of the spectrum. In this Rapid Communication, we validate their hypothesis by deriving an explicit formula for the local box-counting dimension of a countably-infinite discrete quantum spectrum. This formula expresses the local box-counting dimension of a spectrum in terms of single and double integrals of the NNSD of the spectrum. As applications, we derive an analytical formula for Poisson spectra and closed-form approximations to the local box-counting dimension for spectra having Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE) spacing statistics. In the Poisson and GOE cases, we compare our theoretical formulas with the published numerical data of Wang and Ong and observe excellent agreement between their data and our theory. We also study numerically the local box-counting dimensions of the Riemann zeta function zeros and the alternate levels of GOE spectra, which are often used as numerical models of spectra possessing GUE and GSE spacing statistics, respectively. In each case, the corresponding theoretical formula is found to accurately describe the numerically computed local box-counting dimension.
Computer modeling of lung cancer diagnosis-to-treatment process
Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick
2015-01-01
We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181
NASA Astrophysics Data System (ADS)
Kirk, Toby L.
2018-03-01
This paper presents new analytical formulae for flow in a channel with one or both walls patterned with a longitudinal array of ridges and arbitrarily protruding menisci. Derived from a matched asymptotic expansion, they extend results by Crowdy (J. Fluid Mech., vol. 791, 2016, R7) for shear flow, and thus make no restriction on the protrusion into or out of the liquid. The slip length formula is compared against full numerical solutions and, despite the assumption of small ridge period in its derivation, is found to have a very large range of validity; relative errors are small even for periods large enough for the protruding menisci to degrade the flow and touch the opposing wall.
NASA Astrophysics Data System (ADS)
Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.
2008-07-01
We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.
A time-domain Kirchhoff formula for the convective acoustic wave equation
NASA Astrophysics Data System (ADS)
Ghorbaniasl, Ghader; Siozos-Rousoulis, Leonidas; Lacor, Chris
2016-03-01
Kirchhoff's integral method allows propagated sound to be predicted, based on the pressure and its derivatives in time and space obtained on a data surface located in the linear flow region. Kirchhoff's formula for noise prediction from high-speed rotors and propellers suffers from the limitation of the observer located in uniform flow, thus requiring an extension to arbitrarily moving media. This paper presents a Kirchhoff formulation for moving surfaces in a uniform moving medium of arbitrary configuration. First, the convective wave equation is derived in a moving frame, based on the generalized functions theory. The Kirchhoff formula is then obtained for moving surfaces in the time domain. The formula has a similar form to the Kirchhoff formulation for moving surfaces of Farassat and Myers, with the presence of additional terms owing to the moving medium effect. The equation explicitly accounts for the influence of mean flow and angle of attack on the radiated noise. The formula is verified by analytical cases of a monopole source located in a moving medium.
NASA Astrophysics Data System (ADS)
Zeng, Fanhai; Zhang, Zhongqiang; Karniadakis, George Em
2017-12-01
Starting with the asymptotic expansion of the error equation of the shifted Gr\\"{u}nwald--Letnikov formula, we derive a new modified weighted shifted Gr\\"{u}nwald--Letnikov (WSGL) formula by introducing appropriate correction terms. We then apply one special case of the modified WSGL formula to solve multi-term fractional ordinary and partial differential equations, and we prove the linear stability and second-order convergence for both smooth and non-smooth solutions. We show theoretically and numerically that numerical solutions up to certain accuracy can be obtained with only a few correction terms. Moreover, the correction terms can be tuned according to the fractional derivative orders without explicitly knowing the analytical solutions. Numerical simulations verify the theoretical results and demonstrate that the new formula leads to better performance compared to other known numerical approximations with similar resolution.
Wu, Wen; Wu, Zhouhu; Song, Zhiwen
2017-07-01
Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.
Hollow Gaussian Schell-model beam and its propagation
NASA Astrophysics Data System (ADS)
Wang, Li-Gang; Wang, Li-Qin
2008-03-01
In this paper, we present a new model, hollow Gaussian Schell-model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.
Accuracy of analytic energy level formulas applied to hadronic spectroscopy of heavy mesons
NASA Technical Reports Server (NTRS)
Badavi, Forooz F.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.
1988-01-01
Linear and harmonic potential models are used in the nonrelativistic Schroedinger equation to obtain article mass spectra for mesons as bound states of quarks. The main emphasis is on the linear potential where exact solutions of the S-state eigenvalues and eigenfunctions and the asymptotic solution for the higher order partial wave are obtained. A study of the accuracy of two analytical energy level formulas as applied to heavy mesons is also included. Cornwall's formula is found to be particularly accurate and useful as a predictor of heavy quarkonium states. Exact solution for all partial waves of eigenvalues and eigenfunctions for a harmonic potential is also obtained and compared with the calculated discrete spectra of the linear potential. Detailed derivations of the eigenvalues and eigenfunctions of the linear and harmonic potentials are presented in appendixes.
Dispersive analysis of the pion transition form factor.
Hoferichter, M; Kubis, B; Leupold, S; Niecknig, F; Schneider, S P
We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the [Formula: see text] cross section, generalizing previous studies on [Formula: see text] decays and [Formula: see text] scattering, and verify our result by comparing to [Formula: see text] data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below [Formula: see text], and extract the slope of the form factor at vanishing momentum transfer [Formula: see text]. We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.
Wu, Yang; Kelly, Damien P
2014-12-12
The distribution of the complex field in the focal region of a lens is a classical optical diffraction problem. Today, it remains of significant theoretical importance for understanding the properties of imaging systems. In the paraxial regime, it is possible to find analytical solutions in the neighborhood of the focus, when a plane wave is incident on a focusing lens whose finite extent is limited by a circular aperture. For example, in Born and Wolf's treatment of this problem, two different, but mathematically equivalent analytical solutions, are presented that describe the 3D field distribution using infinite sums of [Formula: see text] and [Formula: see text] type Lommel functions. An alternative solution expresses the distribution in terms of Zernike polynomials, and was presented by Nijboer in 1947. More recently, Cao derived an alternative analytical solution by expanding the Fresnel kernel using a Taylor series expansion. In practical calculations, however, only a finite number of terms from these infinite series expansions is actually used to calculate the distribution in the focal region. In this manuscript, we compare and contrast each of these different solutions to a numerically calculated result, paying particular attention to how quickly each solution converges for a range of different spatial locations behind the focusing lens. We also examine the time taken to calculate each of the analytical solutions. The numerical solution is calculated in a polar coordinate system and is semi-analytic. The integration over the angle is solved analytically, while the radial coordinate is sampled with a sampling interval of [Formula: see text] and then numerically integrated. This produces an infinite set of replicas in the diffraction plane, that are located in circular rings centered at the optical axis and each with radii given by [Formula: see text], where [Formula: see text] is the replica order. These circular replicas are shown to be fundamentally different from the replicas that arise in a Cartesian coordinate system.
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
NASA Astrophysics Data System (ADS)
Nakai, Yohta; Shirai, Toshizo; Tabata, Tatsuo; Ito, Rinsuke
1989-01-01
A universal analytic formula is given for the total cross sections of single-electron capture by multiply-charged ions colliding with H, H2 or He. Values of constants in the formula have been determined by least-squares fit to experimental data collected from the literature. The formula is applicable to ions of almost all atomic species with charge q greater than 4 (for the H and H2 targets) or 5 (for the He target) in the energy region from about 1 to 107 eV amu-1. The root-mean-square deviation of the data from the formula is 29%. The formula shows that the cross sections are proportional to q1.07 at low energies and to q2.86 at high energies. Other trends of the cross sections that can be derived from the formula are also discussed.
Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.
Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin
2012-08-20
Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.
Capacity of a quantum memory channel correlated by matrix product states
NASA Astrophysics Data System (ADS)
Mulherkar, Jaideep; Sunitha, V.
2018-04-01
We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.
Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin
2011-03-01
The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.
Irradiance tailoring by fractional Fourier transform of a radial Gaussian beam array
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Ma, Haotong; Liu, Zejin
2010-07-01
The fractional Fourier transform (FRFT) is applied to a radial Gaussian beam array. Analytical formula is derived for the irradiance distribution of coherent and incoherent radial Gaussian beam array in FRFT domain using Collins integral formula. It is revealed that the irradiance pattern can be tailored to be controllable dark-hollow, flat-topped and Gaussian beam pattern by changing of the fractional order of FRFT and the coherent state of the laser array.
A time-domain Kirchhoff formula for the convective acoustic wave equation
Ghorbaniasl, Ghader; Siozos-Rousoulis, Leonidas; Lacor, Chris
2016-01-01
Kirchhoff’s integral method allows propagated sound to be predicted, based on the pressure and its derivatives in time and space obtained on a data surface located in the linear flow region. Kirchhoff’s formula for noise prediction from high-speed rotors and propellers suffers from the limitation of the observer located in uniform flow, thus requiring an extension to arbitrarily moving media. This paper presents a Kirchhoff formulation for moving surfaces in a uniform moving medium of arbitrary configuration. First, the convective wave equation is derived in a moving frame, based on the generalized functions theory. The Kirchhoff formula is then obtained for moving surfaces in the time domain. The formula has a similar form to the Kirchhoff formulation for moving surfaces of Farassat and Myers, with the presence of additional terms owing to the moving medium effect. The equation explicitly accounts for the influence of mean flow and angle of attack on the radiated noise. The formula is verified by analytical cases of a monopole source located in a moving medium. PMID:27118912
Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation
NASA Astrophysics Data System (ADS)
Tsamasphyros, George J.; Bikakis, George S.
2015-01-01
GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.
Formula for the rms blur circle radius of Wolter telescope based on aberration theory
NASA Technical Reports Server (NTRS)
Shealy, David L.; Saha, Timo T.
1990-01-01
A formula for the rms blur circle for Wolter telescopes has been derived using the transverse ray aberration expressions of Saha (1985), Saha (1984), and Saha (1986). The resulting formula for the rms blur circle radius over an image plane and a formula for the surface of best focus based on third-, fifth-, and seventh-order aberration theory predict results in good agreement with exact ray tracing. It has also been shown that one of the two terms in the empirical formula of VanSpeybroeck and Chase (1972), for the rms blur circle radius of a Wolter I telescope can be justified by the aberration theory results. Numerical results are given comparing the rms blur radius and the surface of best focus vs the half-field angle computed by skew ray tracing and from analytical formulas for grazing incidence Wolter I-II telescopes and a normal incidence Cassegrain telescope.
Propagation of various dark hollow beams through an apertured paraxial ABCD optical system
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Ge, Di
2006-08-01
Propagation of a dark hollow beam (DHB) of circular, elliptical or rectangular symmetry through an apertured paraxial ABCD optical system is investigated. Approximate analytical formulas for various DHBs propagating through an apertured paraxial optical system are derived by expanding the hard-aperture function into a finite sum of complex Gaussian functions in terms of a tensor method. Some numerical results are given. Our formulas provide a convenient way for studying the propagation of various DHBs through an apertured paraxial optical system.
McClure, Foster D; Lee, Jung K
2005-01-01
Sample size formulas are developed to estimate the repeatability and reproducibility standard deviations (Sr and S(R)) such that the actual error in (Sr and S(R)) relative to their respective true values, sigmar and sigmaR, are at predefined levels. The statistical consequences associated with AOAC INTERNATIONAL required sample size to validate an analytical method are discussed. In addition, formulas to estimate the uncertainties of (Sr and S(R)) were derived and are provided as supporting documentation. Formula for the Number of Replicates Required for a Specified Margin of Relative Error in the Estimate of the Repeatability Standard Deviation.
Guérin, T
2017-08-01
Estimating the probability that two monomers of the same polymer chain are close together is a key ingredient to characterize intramolecular reactions and polymer looping. In the case of stiff wormlike polymers (rigid fluctuating elastic rods), for which end-to-end encounters are rare events, we derive an explicit analytical formula for the probability η(r_{c}) that the distance between the chain extremities is smaller than some capture radius r_{c}. The formula is asymptotically exact in the limit of stiff chains, and it leads to the identification of two distinct scaling regimes for the closure factor, originating from a strong variation of the fluctuations of the chain orientation at closure. Our theory is compatible with existing analytical results from the literature that cover the cases of a vanishing capture radius and of nearly fully extended chains.
Phenomenological model to fit complex permittivity data of water from radio to optical frequencies.
Shubitidze, Fridon; Osterberg, Ulf
2007-04-01
A general factorized form of the dielectric function together with a fractional model-based parameter estimation method is used to provide an accurate analytical formula for the complex refractive index in water for the frequency range 10(8)-10(16)Hz . The analytical formula is derived using a combination of a microscopic frequency-dependent rational function for adjusting zeros and poles of the dielectric dispersion together with the macroscopic statistical Fermi-Dirac distribution to provide a description of both the real and imaginary parts of the complex permittivity for water. The Fermi-Dirac distribution allows us to model the dramatic reduction in the imaginary part of the permittivity in the visible window of the water spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naito, O.
2015-08-15
An analytic formula has been derived for the relativistic incoherent Thomson backscattering spectrum for a drifting anisotropic plasma when the scattering vector is parallel to the drifting direction. The shape of the scattering spectrum is insensitive to the electron temperature perpendicular to the scattering vector, but its amplitude may be modulated. As a result, while the measured temperature correctly represents the electron distribution parallel to the scattering vector, the electron density may be underestimated when the perpendicular temperature is higher than the parallel temperature. Since the scattering spectrum in shorter wavelengths is greatly enhanced by the existence of drift, themore » diagnostics might be used to measure local electron current density in fusion plasmas.« less
Connection between encounter volume and diffusivity in geophysical flows
NASA Astrophysics Data System (ADS)
Rypina, Irina I.; Smith, Stefan G. Llewellyn; Pratt, Larry J.
2018-04-01
Trajectory encounter volume - the volume of fluid that passes close to a reference fluid parcel over some time interval - has been recently introduced as a measure of mixing potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. We derive the analytical relationship between the encounter volume and diffusivity under the assumption of an isotropic random walk, i.e., diffusive motion, in one and two dimensions. We apply the derived formulas to produce maps of encounter volume and the corresponding diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula for estimating diffusivity from oceanographic data are discussed, as well as applications to other disciplines.
Degenerate limit thermodynamics beyond leading order for models of dense matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinou, Constantinos, E-mail: c.constantinou@fz-juelich.de; Muccioli, Brian, E-mail: bm956810@ohio.edu; Prakash, Madappa, E-mail: prakash@ohio.edu
2015-12-15
Analytical formulas for next-to-leading order temperature corrections to the thermal state variables of interacting nucleons in bulk matter are derived in the degenerate limit. The formalism developed is applicable to a wide class of non-relativistic and relativistic models of hot and dense matter currently used in nuclear physics and astrophysics (supernovae, proto-neutron stars and neutron star mergers) as well as in condensed matter physics. We consider the general case of arbitrary dimensionality of momentum space and an arbitrary degree of relativity (for relativistic models). For non-relativistic zero-range interactions, knowledge of the Landau effective mass suffices to compute next-to-leading order effects,more » but for finite-range interactions, momentum derivatives of the Landau effective mass function up to second order are required. Results from our analytical formulas are compared with the exact results for zero- and finite-range potential and relativistic mean-field theoretical models. In all cases, inclusion of next-to-leading order temperature effects substantially extends the ranges of partial degeneracy for which the analytical treatment remains valid. Effects of many-body correlations that deserve further investigation are highlighted.« less
Adding a solar-radiance function to the Hošek-Wilkie skylight model.
Hošek, Lukáš; Wilkie, Alexander
2013-01-01
One prerequisite for realistic renderings of outdoor scenes is the proper capturing of the sky's appearance. Currently, an explicit simulation of light scattering in the atmosphere isn't computationally feasible, and won't be in the foreseeable future. Captured luminance patterns have proven their usefulness in practice but can't meet all user needs. To fill this capability gap, computer graphics technology has employed analytical models of sky-dome luminance patterns for more than two decades. For technical reasons, such models deal with only the sky dome's appearance, though, and exclude the solar disc. The widely used model proposed by Arcot Preetham and colleagues employed a separately derived analytical formula for adding a solar emitter of suitable radiant intensity. Although this yields reasonable results, the formula is derived in a manner that doesn't exactly match the conditions in their sky-dome model. But the more sophisticated a skylight model is and the more subtly it can represent different conditions, the more the solar radiance should exactly match the skylight's conditions. Toward that end, researchers propose a solar-radiance function that exactly matches a recently published high-quality analytical skylight model.
Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian
2015-05-04
We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.
Acoustic sounding of wind velocity profiles in a stratified moving atmosphere.
Ostashev, V E; Georges, T M; Clifford, S F; Goedecke, G H
2001-06-01
The paper deals with analytical and numerical studies of the effects of atmospheric stratification on acoustic remote sensing of wind velocity profiles by sodars. Both bistatic and monostatic schemes are considered. Formulas for the Doppler shift of an acoustic echo signal scattered by atmospheric turbulence advected with the mean wind in a stratified moving atmosphere are derived. Numerical studies of these formulas show that errors in retrieving wind velocity can be of the order of 1 m/s if atmospheric stratification is ignored. Formulas for the height at which wind velocity is retrieved are also derived. Approaches are proposed which allow one to take into account the effects of atmospheric stratification when restoring the wind velocity profile from measured values of the Doppler shift and the time interval of acoustic impulse propagation from a sodar to the scattering volume and back to the ground.
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
This paper discusses the calculation of sensitivities. or derivatives, for optimization problems involving systems governed by differential equations and other state relations. The subject is examined from the point of view of nonlinear programming, beginning with the analytical structure of the first and second derivatives associated with such problems and the relation of these derivatives to implicit differentiation and equality constrained optimization. We also outline an error analysis of the analytical formulae and compare the results with similar results for finite-difference estimates of derivatives. We then attend to an investigation of the nature of the adjoint method and the adjoint equations and their relation to directions of steepest descent. We illustrate the points discussed with an optimization problem in which the variables are the coefficients in a differential operator.
Topological and statistical properties of nonlinear force-free fields
NASA Astrophysics Data System (ADS)
Mangalam, A.; Prasad, A.
2018-01-01
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Suto, Yasushi; Taruya, Atsushi
We obtain analytical expressions for the velocity anomaly due to the Rossiter-McLaughlin (RM) effect, for the case when the anomalous radial velocity is obtained by cross-correlation with a stellar template spectrum. In the limit of vanishing width of the stellar absorption lines, our result reduces to the formula derived by Ohta et al., which is based on the first moment of distorted stellar lines. Our new formula contains a term dependent on the stellar line width, which becomes important when rotational line broadening is appreciable. We generate mock transit spectra for four existing exoplanetary systems (HD 17156, TrES-2, TrES-4, andmore » HD 209458) following the procedure of Winn et al., and find that the new formula is in better agreement with the velocity anomaly extracted from the mock data. Thus, our result provides a more reliable analytical description of the velocity anomaly due to the RM effect, and explains the previously observed dependence of the velocity anomaly on the stellar rotation velocity.« less
Lee, Yoojin; Callaghan, Martina F; Nagy, Zoltan
2017-01-01
In magnetic resonance imaging, precise measurements of longitudinal relaxation time ( T 1 ) is crucial to acquire useful information that is applicable to numerous clinical and neuroscience applications. In this work, we investigated the precision of T 1 relaxation time as measured using the variable flip angle method with emphasis on the noise propagated from radiofrequency transmit field ([Formula: see text]) measurements. The analytical solution for T 1 precision was derived by standard error propagation methods incorporating the noise from the three input sources: two spoiled gradient echo (SPGR) images and a [Formula: see text] map. Repeated in vivo experiments were performed to estimate the total variance in T 1 maps and we compared these experimentally obtained values with the theoretical predictions to validate the established theoretical framework. Both the analytical and experimental results showed that variance in the [Formula: see text] map propagated comparable noise levels into the T 1 maps as either of the two SPGR images. Improving precision of the [Formula: see text] measurements significantly reduced the variance in the estimated T 1 map. The variance estimated from the repeatedly measured in vivo T 1 maps agreed well with the theoretically-calculated variance in T 1 estimates, thus validating the analytical framework for realistic in vivo experiments. We concluded that for T 1 mapping experiments, the error propagated from the [Formula: see text] map must be considered. Optimizing the SPGR signals while neglecting to improve the precision of the [Formula: see text] map may result in grossly overestimating the precision of the estimated T 1 values.
NASA Astrophysics Data System (ADS)
Liu, W.; Ning, T.; Han, X.
2015-12-01
The climate elasticity based on the Budyko curves has been widely used to evaluate the hydrological responses to climate change. The Mezentsev-Choudhury-Yang formula is one of the representative analytical equations for Budyko curves. Previous researches mostly used the variation of runoff (R) caused by the changes of annual precipitation (P) and potential evapotranspiration (ET0) as the hydrological response to climate change and evaluated it by a first-order approximation in a form of total differential, the major components of which include the partial derivatives of R to P and ET0, as well as climate elasticity on this basis. Based on analytic derivation and the characteristics of Budyko curves, this study proposed a modified formula of the first-order approximation to reduce the errors from the approximation. In the calculation of partial derivatives and climate elasticity, the values of P and ET0 were taken to the sum of their base values and half increments, respectively. The calculation was applied in 33 catchments of the Hai River basin in China and the results showed that the mean absolute value of relative error of approximated runoff change decreased from 8.4% to 0.4% and the maximum value, from 23.4% to 1.3%. Given the variation values of P, ET0 and the controlling parameter (n), the modified formula can exactly quantify the contributions of climate fluctuation and underlying surface change to runoff. Taking the Murray-Darling basin in Australia as an example of the contribution calculated by the modified formula, the reductions of mean annual runoff caused by changes of P, ET0 and n from 1895-1996 to 1997-2006 were 2.6, 0.6 and 2.9 mm, respectively, and the sum of them was 6.1 mm, which was completely consistent with the observed runoff. The modified formula of the first-order approximation proposed in this study can be not only used to assess the contributions of climate change to the runoff, but also widely used to analyze the effects of similar issues based on a certain functional relationship in hydrological and climate changes.
Theory of the control of structures by low authority controllers
NASA Technical Reports Server (NTRS)
Aubrun, J. N.
1978-01-01
The novel idea presented is based on the observation that if a structure is controlled by distributed systems of sensors and actuators with limited authority, i.e., if the controller is allowed to modify only moderately the natural modes and frequencies of the structure, then it should be possible to apply root perturbation techniques to predict analytically the behavior of the total system. Attention is given to the root perturbation formula first derived by Jacobi for infinitesimal perturbations which neglect the induced eigenvector perturbation, a more general form of Jacobi's formula, first-order structural equations and modal state vectors, state-space equations for damper-augmented structures, and modal damping prediction formulas.
A Requirements-Driven Optimization Method for Acoustic Liners Using Analytic Derivatives
NASA Technical Reports Server (NTRS)
Berton, Jeffrey J.; Lopes, Leonard V.
2017-01-01
More than ever, there is flexibility and freedom in acoustic liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. In a previous paper on this subject, a method deriving the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground was described. A simple code-wrapping approach was used to evaluate a community noise objective function for an external optimizer. Gradients were evaluated using a finite difference formula. The subject of this paper is an application of analytic derivatives that supply precise gradients to an optimization process. Analytic derivatives improve the efficiency and accuracy of gradient-based optimization methods and allow consideration of more design variables. In addition, the benefit of variable impedance liners is explored using a multi-objective optimization.
Uncertainties in extracted parameters of a Gaussian emission line profile with continuum background.
Minin, Serge; Kamalabadi, Farzad
2009-12-20
We derive analytical equations for uncertainties in parameters extracted by nonlinear least-squares fitting of a Gaussian emission function with an unknown continuum background component in the presence of additive white Gaussian noise. The derivation is based on the inversion of the full curvature matrix (equivalent to Fisher information matrix) of the least-squares error, chi(2), in a four-variable fitting parameter space. The derived uncertainty formulas (equivalent to Cramer-Rao error bounds) are found to be in good agreement with the numerically computed uncertainties from a large ensemble of simulated measurements. The derived formulas can be used for estimating minimum achievable errors for a given signal-to-noise ratio and for investigating some aspects of measurement setup trade-offs and optimization. While the intended application is Fabry-Perot spectroscopy for wind and temperature measurements in the upper atmosphere, the derivation is generic and applicable to other spectroscopy problems with a Gaussian line shape.
On the Gompertzian growth in the fractal space-time.
Molski, Marcin; Konarski, Jerzy
2008-06-01
An analytical approach to determination of time-dependent temporal fractal dimension b(t)(t) and scaling factor a(t)(t) for the Gompertzian growth in the fractal space-time is presented. The derived formulae take into account the proper boundary conditions and permit a calculation of the mean values b(t)(t) and a(t)(t) at any period of time. The formulae derived have been tested on experimental data obtained by Schrek for the Brown-Pearce rabbit's tumor growth. The results obtained confirm a possibility of successful mapping of the experimental Gompertz curve onto the fractal power-law scaling function y(t)=a(t)tb(t) and support a thesis that Gompertzian growth is a self-similar and allometric process of a holistic nature.
An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells
Diot, Steven; François, Marianne M.
2015-10-22
In this study, we are interested in an interface reconstruction method for 3D arbitrary convex cells that could be used in multi-material flow simulations for instance. We assume that the interface is represented by a plane whose normal vector is known and we focus on the volume-matching step that consists in finding the plane constant so that it splits the cell according to a given volume fraction. We follow the same approach as in the recent authors' publication for 2D arbitrary convex cells in planar and axisymmetrical geometries, namely we derive an analytical formula for the volume of the specificmore » prismatoids obtained when decomposing the cell using the planes that are parallel to the interface and passing through all the cell nodes. This formula is used to bracket the interface plane constant such that the volume-matching problem is rewritten in a single prismatoid in which the same formula is used to find the final solution. Finally, the proposed method is tested against an important number of reproducible configurations and shown to be at least five times faster.« less
Stochastic-analytic approach to the calculation of multiply scattered lidar returns
NASA Astrophysics Data System (ADS)
Gillespie, D. T.
1985-08-01
The problem of calculating the nth-order backscattered power of a laser firing short pulses at time zero into an homogeneous cloud with specified scattering and absorption parameters, is discussed. In the problem, backscattered power is measured at any time less than zero by a small receiver colocated with the laser and fitted with a forward looking conical baffle. Theoretical calculations are made on the premise that the laser pulse is composed of propagating photons which are scattered and absorbed by the cloud particles in a probabilistic manner. The effect of polarization was not taken into account in the calculations. An exact formula is derived for backscattered power, based on direct physical arguments together with a rigorous analysis of random variables. It is shown that, for values of n less than or equal to 2, the obtained formula is a well-behaved (3n-4) dimensionless integral. The computational feasibility of the integral formula is demonstrated for a model cloud of isotropically scattering particles. An analytical formula is obtained for a value of n = 2, and a Monte Carlo program was used to obtain numerical results for values of n = 3, . . ., 6.
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.
Point spread functions and deconvolution of ultrasonic images.
Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten
2015-03-01
This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.
1980-12-01
to sound pressure level in decibels assuming a fre- quency of 1000 Hz. 249 The perceived noisiness values are derived from a formula specified in...Analyses .......... 244 6.i.16 Perceived Noise Level Analysis .............249 6.1.17 Acoustic Weighting Networks ................250 6.2 DERIVATIONS...BAND ANALYSIS BASIC STATISTICAL ANALYSES: *OCTAVE ANALYSIS MEAN *THIRD OCTAVE ANALYSIS VARIANCE *PERCEIVED NOISE LEVEL STANDARD DEVIATION CALCULATION
NASA Technical Reports Server (NTRS)
You, J. H.; Chen, W. P.; Zhang, S. N.; Chen, L.; Liu, D.; Chou, C. K.
2003-01-01
We present simple analytical formulae for the emission spectrum and total power of a special kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense magnetic field. In contrast with the available formulae system, we obtain a markedly simplified one based on the semiclassical quantum theory, which is more understandable for people who are unfamiliar with quantum electrodynamics. We show that the RICS process, under an appropriate 'accommodation condition' derived in this paper, is predominantly much more efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed high-frequency radiation with moderately good monochromaticity. Our formulae are simple to use - thus offering a lucid physical intuition for the theory - and may find wide applications in hard X-ray and gamma-ray astrophysics.
NASA Astrophysics Data System (ADS)
Abbot, Dorian S.
2016-08-01
The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.
NASA Astrophysics Data System (ADS)
Abbot, D. S.
2016-12-01
The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a Snowball state and a warm climate are only possible beyond this limit if the weathering rate in the Snowball climate is smaller than the CO2 outgassing rate (otherwise stable Snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.
Highly accurate analytic formulae for projectile motion subjected to quadratic drag
NASA Astrophysics Data System (ADS)
Turkyilmazoglu, Mustafa
2016-05-01
The classical phenomenon of motion of a projectile fired (thrown) into the horizon through resistive air charging a quadratic drag onto the object is revisited in this paper. No exact solution is known that describes the full physical event under such an exerted resistance force. Finding elegant analytical approximations for the most interesting engineering features of dynamical behavior of the projectile is the principal target. Within this purpose, some analytical explicit expressions are derived that accurately predict the maximum height, its arrival time as well as the flight range of the projectile at the highest ascent. The most significant property of the proposed formulas is that they are not restricted to the initial speed and firing angle of the object, nor to the drag coefficient of the medium. In combination with the available approximations in the literature, it is possible to gain information about the flight and complete the picture of a trajectory with high precision, without having to numerically simulate the full governing equations of motion.
Constrained minimization problems for the reproduction number in meta-population models.
Poghotanyan, Gayane; Feng, Zhilan; Glasser, John W; Hill, Andrew N
2018-02-14
The basic reproduction number ([Formula: see text]) can be considerably higher in an SIR model with heterogeneous mixing compared to that from a corresponding model with homogeneous mixing. For example, in the case of measles, mumps and rubella in San Diego, CA, Glasser et al. (Lancet Infect Dis 16(5):599-605, 2016. https://doi.org/10.1016/S1473-3099(16)00004-9 ), reported an increase of 70% in [Formula: see text] when heterogeneity was accounted for. Meta-population models with simple heterogeneous mixing functions, e.g., proportionate mixing, have been employed to identify optimal vaccination strategies using an approach based on the gradient of the effective reproduction number ([Formula: see text]), which consists of partial derivatives of [Formula: see text] with respect to the proportions immune [Formula: see text] in sub-groups i (Feng et al. in J Theor Biol 386:177-187, 2015. https://doi.org/10.1016/j.jtbi.2015.09.006 ; Math Biosci 287:93-104, 2017. https://doi.org/10.1016/j.mbs.2016.09.013 ). These papers consider cases in which an optimal vaccination strategy exists. However, in general, the optimal solution identified using the gradient may not be feasible for some parameter values (i.e., vaccination coverages outside the unit interval). In this paper, we derive the analytic conditions under which the optimal solution is feasible. Explicit expressions for the optimal solutions in the case of [Formula: see text] sub-populations are obtained, and the bounds for optimal solutions are derived for [Formula: see text] sub-populations. This is done for general mixing functions and examples of proportionate and preferential mixing are presented. Of special significance is the result that for general mixing schemes, both [Formula: see text] and [Formula: see text] are bounded below and above by their corresponding expressions when mixing is proportionate and isolated, respectively.
NASA Astrophysics Data System (ADS)
Fontchastagner, Julien; Lubin, Thierry; Mezani, Smaïl; Takorabet, Noureddine
2018-03-01
This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.
NASA Astrophysics Data System (ADS)
Ashmawy, E. A.
2017-03-01
In this paper, we investigate the translational motion of a slip sphere with time-dependent velocity in an incompressible viscous fluid. The modified Navier-Stokes equation with fractional order time derivative is used. The linear slip boundary condition is applied on the spherical boundary. The integral Laplace transform technique is employed to solve the problem. The solution in the physical domain is obtained analytically by inverting the Laplace transform using the complex inversion formula together with contour integration. An exact formula for the drag force exerted by the fluid on the spherical object is deduced. This formula is applied to some flows, namely damping oscillation, sine oscillation and sudden motion. The numerical results showed that the order of the fractional derivative contributes considerably to the drag force. The increase in this parameter resulted in an increase in the drag force. In addition, the values of the drag force increased with the increase in the slip parameter.
The thermoelectric properties of strongly correlated systems
NASA Astrophysics Data System (ADS)
Cai, Jianwei
Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.
Time delay of critical images in the vicinity of cusp point of gravitational-lens systems
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Zhdanov, V.
2016-12-01
We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.
CONSTRUCTING AND DERIVING RECIPROCAL TRIGONOMETRIC RELATIONS: A FUNCTIONAL ANALYTIC APPROACH
Ninness, Chris; Dixon, Mark; Barnes-Holmes, Dermot; Rehfeldt, Ruth Anne; Rumph, Robin; McCuller, Glen; Holland, James; Smith, Ronald; Ninness, Sharon K; McGinty, Jennifer
2009-01-01
Participants were pretrained and tested on mutually entailed trigonometric relations and combinatorially entailed relations as they pertained to positive and negative forms of sine, cosine, secant, and cosecant. Experiment 1 focused on training and testing transformations of these mathematical functions in terms of amplitude and frequency followed by tests of novel relations. Experiment 2 addressed training in accordance with frames of coordination (same as) and frames of opposition (reciprocal of) followed by more tests of novel relations. All assessments of derived and novel formula-to-graph relations, including reciprocal functions with diversified amplitude and frequency transformations, indicated that all 4 participants demonstrated substantial improvement in their ability to identify increasingly complex trigonometric formula-to-graph relations pertaining to same as and reciprocal of to establish mathematically complex repertoires. PMID:19949509
Constructing and deriving reciprocal trigonometric relations: a functional analytic approach.
Ninness, Chris; Dixon, Mark; Barnes-Holmes, Dermot; Rehfeldt, Ruth Anne; Rumph, Robin; McCuller, Glen; Holland, James; Smith, Ronald; Ninness, Sharon K; McGinty, Jennifer
2009-01-01
Participants were pretrained and tested on mutually entailed trigonometric relations and combinatorially entailed relations as they pertained to positive and negative forms of sine, cosine, secant, and cosecant. Experiment 1 focused on training and testing transformations of these mathematical functions in terms of amplitude and frequency followed by tests of novel relations. Experiment 2 addressed training in accordance with frames of coordination (same as) and frames of opposition (reciprocal of) followed by more tests of novel relations. All assessments of derived and novel formula-to-graph relations, including reciprocal functions with diversified amplitude and frequency transformations, indicated that all 4 participants demonstrated substantial improvement in their ability to identify increasingly complex trigonometric formula-to-graph relations pertaining to same as and reciprocal of to establish mathematically complex repertoires.
Yang, Yi; Tang, Xiangyang
2014-10-01
Under the existing theoretical framework of x-ray phase contrast imaging methods implemented with Talbot interferometry, the dark-field contrast refers to the reduction in interference fringe visibility due to small-angle x-ray scattering of the subpixel microstructures of an object to be imaged. This study investigates how an object's subpixel microstructures can also affect the phase of the intensity oscillations. Instead of assuming that the object's subpixel microstructures distribute in space randomly, the authors' theoretical derivation starts by assuming that an object's attenuation projection and phase shift vary at a characteristic size that is not smaller than the period of analyzer grating G₂ and a characteristic length dc. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the zeroth- and first-order Fourier coefficients of the x-ray irradiance recorded at each detector cell are derived. Then the concept of complex dark-field contrast is introduced to quantify the influence of the object's microstructures on both the interference fringe visibility and the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues and high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. Through computer simulation study with a specially designed numerical phantom, they evaluate and validate the derived analytic formulae and the proposed retrieval method. Both theoretical analysis and computer simulation study show that the effect of an object's subpixel microstructures on x-ray phase contrast imaging method implemented with Talbot interferometry can be fully characterized by a complex dark-field contrast. The imaginary part of complex dark-field contrast quantifies the influence of the object's subpixel microstructures on the phase of intensity oscillations. Furthermore, at relatively high energies, for soft tissues it can be retrieved for imaging with a method based on the phase-attenuation duality. The analytic formulae derived in this work to characterize the complex dark-field contrast in x-ray phase contrast imaging method implemented with Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive biomedical applications.
A direct method for nonlinear ill-posed problems
NASA Astrophysics Data System (ADS)
Lakhal, A.
2018-02-01
We propose a direct method for solving nonlinear ill-posed problems in Banach-spaces. The method is based on a stable inversion formula we explicitly compute by applying techniques for analytic functions. Furthermore, we investigate the convergence and stability of the method and prove that the derived noniterative algorithm is a regularization. The inversion formula provides a systematic sensitivity analysis. The approach is applicable to a wide range of nonlinear ill-posed problems. We test the algorithm on a nonlinear problem of travel-time inversion in seismic tomography. Numerical results illustrate the robustness and efficiency of the algorithm.
Minimum-Cost Aircraft Descent Trajectories with a Constrained Altitude Profile
NASA Technical Reports Server (NTRS)
Wu, Minghong G.; Sadovsky, Alexander V.
2015-01-01
An analytical formula for solving the speed profile that accrues minimum cost during an aircraft descent with a constrained altitude profile is derived. The optimal speed profile first reaches a certain speed, called the minimum-cost speed, as quickly as possible using an appropriate extreme value of thrust. The speed profile then stays on the minimum-cost speed as long as possible, before switching to an extreme value of thrust for the rest of the descent. The formula is applied to an actual arrival route and its sensitivity to winds and airlines' business objectives is analyzed.
Sound velocity in five-component air mixtures of various densities
NASA Astrophysics Data System (ADS)
Bogdanova, N. V.; Rydalevskaya, M. A.
2018-05-01
The local equilibrium flows of five-component air mixtures are considered. Gas dynamic equations are derived from the kinetic equations for aggregate values of collision invariants. It is shown that the traditional formula for sound velocity is true in air mixtures considered with the chemical reactions and the internal degrees of freedom. This formula connects the square of sound velocity with pressure and density. However, the adiabatic coefficient is not constant under existing conditions. The analytical expression for this coefficient is obtained. The examples of its calculation in air mixtures of various densities are presented.
Simplified analysis about horizontal displacement of deep soil under tunnel excavation
NASA Astrophysics Data System (ADS)
Tian, Xiaoyan; Gu, Shuancheng; Huang, Rongbin
2017-11-01
Most of the domestic scholars focus on the study about the law of the soil settlement caused by subway tunnel excavation, however, studies on the law of horizontal displacement are lacking. And it is difficult to obtain the horizontal displacement data of any depth in the project. At present, there are many formulas for calculating the settlement of soil layers. In terms of integral solutions of Mindlin classic elastic theory, stochastic medium theory, source-sink theory, the Peck empirical formula is relatively simple, and also has a strong applicability at home. Considering the incompressibility of rock and soil mass, based on the principle of plane strain, the calculation formula of the horizontal displacement of the soil along the cross section of the tunnel was derived by using the Peck settlement formula. The applicability of the formula is verified by comparing with the existing engineering cases, a simple and rapid analytical method for predicting the horizontal displacement is presented.
Standard deviations of composition measurements in atom probe analyses-Part II: 3D atom probe.
Danoix, F; Grancher, G; Bostel, A; Blavette, D
2007-09-01
In a companion paper [F. Danoix, G. Grancher, A. Bostel, D. Blavette, Surf. Interface Anal. this issue (previous paper).], the derivation of variances of the estimates of measured composition, and the underlying hypotheses, have been revisited in the the case of conventional one dimensional (1D) atom probes. In this second paper, we will concentrate on the analytical derivation of the variance when the estimate of composition is obtained from a 3D atom probe. As will be discussed, when the position information is available, compositions can be derived either from constant number of atoms, or from constant volume, blocks. The analytical treatment in the first case is identical to the one developed for conventional 1D instruments, and will not be discussed further in this paper. Conversely, in the second case, the analytical treatment is different, as well as the formula of the variance. In particular, it will be shown that the detection efficiency plays an important role in the determination of the variance.
Firing rate of noisy integrate-and-fire neurons with synaptic current dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrieux, David; Monnai, Takaaki; Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555
2009-08-15
We derive analytical formulas for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular, we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description. The latter affects the firing rate through its interaction with the synaptic dynamics.
NASA Astrophysics Data System (ADS)
Comastri, S. A.; Perez, Liliana I.; Pérez, Gervasio D.; Bastida, K.; Martin, G.
2008-04-01
The wavefront aberration of any image forming system and, in particular, of a human eye, is often expanded in Zernike modes each mode being weighed by a coefficient that depends both on the image forming components of the system and on the contour, size and centering of the pupil. In the present article, expanding up to 7th order the wavefront aberration, an analytical method to compute a new set of Zernike coefficients corresponding to a pupil in terms of an original set evaluated via ray tracing for a dilated and transversally arbitrarily displaced pupil is developed. A transformation matrix of dimension 36×36 is attained multiplying the scaling-horizontal traslation matrix previously derived by appropriate rotation matrices. Multiplying the original coefficients by this transformation matrix, analytical formulas for each new coefficient are attained and supplied and, for the information concerning the wavefront aberration to be available, these formulas must be employed in cases in which the new pupil is contained in the original one. The use of these analytical formulas is exemplified applying them to study the effect of pupil contraction and/or decentering in 3 situations: calculation of corneal aberrations of a keratoconic subject for the natural photopic pupil size and various decenterings; coma compensation by means of pupil shift in a fictitious system solely having primary aberrations and evaluation of the amount of astigmatism and coma of a hypothetical system originally having spherical aberration alone.
Analyticity in Time and Smoothing Effect of Solutions to Nonlinear Schrödinger Equations
NASA Astrophysics Data System (ADS)
Hayashi, Nakao; Kato, Keiichi
In this paper we consider analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations
On a product-type operator from weighted Bergman-Orlicz space to some weighted type spaces.
Jiang, Zhi-Jie
2015-04-01
Let [Formula: see text] be the open unit disk, [Formula: see text] an analytic self-map of [Formula: see text] and [Formula: see text] an analytic function on [Formula: see text]. Let D be the differentiation operator and [Formula: see text] the weighted composition operator. The boundedness and compactness of the product-type operator [Formula: see text] from the weighted Bergman-Orlicz space to the Bers type space, weighted Bloch space and weighted Zygmund space on [Formula: see text] are characterized.
NASA Astrophysics Data System (ADS)
Stupakov, Gennady; Zhou, Demin
2016-04-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Teruyuki; Winn, Joshua N.; Albrecht, Simon
We present an improved formula for the anomalous radial velocity of the star during planetary transits due to the Rossiter-McLaughlin (RM) effect. The improvement comes from a more realistic description of the stellar absorption line profiles, taking into account stellar rotation, macroturbulence, thermal broadening, pressure broadening, and instrumental broadening. Although the formula is derived for the case in which radial velocities are measured by cross-correlation, we show through numerical simulations that the formula accurately describes the cases where the radial velocities are measured with the iodine absorption-cell technique. The formula relies on prior knowledge of the parameters describing macroturbulence, instrumentalmore » broadening, and other broadening mechanisms, but even 30% errors in those parameters do not significantly change the results in typical circumstances. We show that the new analytic formula agrees with previous ones that had been computed on a case-by-case basis via numerical simulations. Finally, as one application of the new formula, we reassess the impact of the differential rotation on the RM velocity anomaly. We show that differential rotation of a rapidly rotating star may have a significant impact on future RM observations.« less
An analytical study of physical models with inherited temporal and spatial memory
NASA Astrophysics Data System (ADS)
Jaradat, Imad; Alquran, Marwan; Al-Khaled, Kamel
2018-04-01
Du et al. (Sci. Reb. 3, 3431 (2013)) demonstrated that the fractional derivative order can be physically interpreted as a memory index by fitting the test data of memory phenomena. The aim of this work is to study analytically the joint effect of the memory index on time and space coordinates simultaneously. For this purpose, we introduce a novel bivariate fractional power series expansion that is accompanied by twofold fractional derivatives ordering α, β\\in(0,1]. Further, some convergence criteria concerning our expansion are presented and an analog of the well-known bivariate Taylor's formula in the sense of mixed fractional derivatives is obtained. Finally, in order to show the functionality and efficiency of this expansion, we employ the corresponding Taylor's series method to obtain closed-form solutions of various physical models with inherited time and space memory.
Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential
Wang, Ying; Zhou, Yu; Zhou, Shuyu
2016-01-01
We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129
NASA Technical Reports Server (NTRS)
Kudritzki, R. P.; Pauldrach, A.; Puls, J.; Abbott, D. C.
1989-01-01
Analytical solutions for radiation-driven winds of hot stars including the important finite cone angle effect (see Pauldrach et al., 1986; Friend and Abbott, 1986) are derived which approximate the detailed numerical solutions of the exact wind equation of motion very well. They allow a detailed discussion of the finite cone angle effect and provide for given line force parameters k, alpha, delta definite formulas for mass-loss rate M and terminal velocity v-alpha as function of stellar parameters.
A Stochastic Super-Exponential Growth Model for Population Dynamics
NASA Astrophysics Data System (ADS)
Avila, P.; Rekker, A.
2010-11-01
A super-exponential growth model with environmental noise has been studied analytically. Super-exponential growth rate is a property of dynamical systems exhibiting endogenous nonlinear positive feedback, i.e., of self-reinforcing systems. Environmental noise acts on the growth rate multiplicatively and is assumed to be Gaussian white noise in the Stratonovich interpretation. An analysis of the stochastic super-exponential growth model with derivations of exact analytical formulae for the conditional probability density and the mean value of the population abundance are presented. Interpretations and various applications of the results are discussed.
Fractional Fourier transform of truncated elliptical Gaussian beams.
Du, Xinyue; Zhao, Daomu
2006-12-20
Based on the fact that a hard-edged elliptical aperture can be expanded approximately as a finite sum of complex Gaussian functions in tensor form, an analytical expression for an elliptical Gaussian beam (EGB) truncated by an elliptical aperture and passing through a fractional Fourier transform system is derived by use of vector integration. The approximate analytical results provide more convenience for studying the propagation and transformation of truncated EGBs than the usual way by using the integral formula directly, and the efficiency of numerical calculation is significantly improved.
Ansorge, Martin; Dubský, Pavel; Ušelová, Kateřina
2018-03-01
The partial-filling affinity capillary electrophoresis (pf-ACE) works with a ligand present in a background electrolyte that forms a weak complex with an analyte. In contrast to a more popular mobility-shift affinity capillary electrophoresis, only a short plug of the ligand is introduced into a capillary in the pf-ACE. Both methods can serve for determining apparent stability constants of the formed complexes but this task is hindered in the pf-ACE by the fact that the analyte spends only a part of its migration time in a contact with the ligand. In 1998, Amini and Westerlund published a linearization strategy that allows for extracting an effective mobility of an analyte in the presence of a neutral ligand out of the pf-ACE data. The main purpose of this paper is to show that the original formula is only approximate. We derive a new formula and demonstrate its applicability by means of computer simulations. We further inspect several strategies of data processing in the pf-ACE regarding a risk of an error propagation. This establishes a good practice of determining apparent stability constants of analyte-ligand complexes by means of the pf-ACE. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios
2010-12-01
We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.
NASA Astrophysics Data System (ADS)
Zuiani, Federico; Vasile, Massimiliano
2015-03-01
This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.
A Functional Analytic Approach To Computer-Interactive Mathematics
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed. PMID:15898471
A functional analytic approach to computer-interactive mathematics.
Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M; Ninness, Sharon K
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed.
Incremental viscosity by non-equilibrium molecular dynamics and the Eyring model
NASA Astrophysics Data System (ADS)
Heyes, D. M.; Dini, D.; Smith, E. R.
2018-05-01
The viscoelastic behavior of sheared fluids is calculated by Non-Equilibrium Molecular Dynamics (NEMD) simulation, and complementary analytic solutions of a time-dependent extension of Eyring's model (EM) for shear thinning are derived. It is argued that an "incremental viscosity," ηi, or IV which is the derivative of the steady state stress with respect to the shear rate is a better measure of the physical state of the system than the conventional definition of the shear rate dependent viscosity (i.e., the shear stress divided by the strain rate). The stress relaxation function, Ci(t), associated with ηi is consistent with Boltzmann's superposition principle and is computed by NEMD and the EM. The IV of the Eyring model is shown to be a special case of the Carreau formula for shear thinning. An analytic solution for the transient time correlation function for the EM is derived. An extension of the EM to allow for significant local shear stress fluctuations on a molecular level, represented by a gaussian distribution, is shown to have the same analytic form as the original EM but with the EM stress replaced by its time and spatial average. Even at high shear rates and on small scales, the probability distribution function is almost gaussian (apart from in the wings) with the peak shifted by the shear. The Eyring formula approximately satisfies the Fluctuation Theorem, which may in part explain its success in representing the shear thinning curves of a wide range of different types of chemical systems.
Franssens, G; De Maziére, M; Fonteyn, D
2000-08-20
A new derivation is presented for the analytical inversion of aerosol spectral extinction data to size distributions. It is based on the complex analytic extension of the anomalous diffraction approximation (ADA). We derive inverse formulas that are applicable to homogeneous nonabsorbing and absorbing spherical particles. Our method simplifies, generalizes, and unifies a number of results obtained previously in the literature. In particular, we clarify the connection between the ADA transform and the Fourier and Laplace transforms. Also, the effect of the particle refractive-index dispersion on the inversion is examined. It is shown that, when Lorentz's model is used for this dispersion, the continuous ADA inverse transform is mathematically well posed, whereas with a constant refractive index it is ill posed. Further, a condition is given, in terms of Lorentz parameters, for which the continuous inverse operator does not amplify the error.
Turbulent equipartition pinch of toroidal momentum in spherical torus
NASA Astrophysics Data System (ADS)
Hahm, T. S.; Lee, J.; Wang, W. X.; Diamond, P. H.; Choi, G. J.; Na, D. H.; Na, Y. S.; Chung, K. J.; Hwang, Y. S.
2014-12-01
We present a new analytic expression for turbulent equipartition (TEP) pinch of toroidal angular momentum originating from magnetic field inhomogeneity of spherical torus (ST) plasmas. Starting from a conservative modern nonlinear gyrokinetic equation (Hahm et al 1988 Phys. Fluids 31 2670), we derive an expression for pinch to momentum diffusivity ratio without using a usual tokamak approximation of B ∝ 1/R which has been previously employed for TEP momentum pinch derivation in tokamaks (Hahm et al 2007 Phys. Plasmas 14 072302). Our new formula is evaluated for model equilibria of National Spherical Torus eXperiment (NSTX) (Ono et al 2001 Nucl. Fusion 41 1435) and Versatile Experiment Spherical Torus (VEST) (Chung et al 2013 Plasma Sci. Technol. 15 244) plasmas. Our result predicts stronger inward pinch for both cases, as compared to the prediction based on the tokamak formula.
Non-Gaussian limit fluctuations in active swimmer suspensions
NASA Astrophysics Data System (ADS)
Kurihara, Takashi; Aridome, Msato; Ayade, Heev; Zaid, Irwin; Mizuno, Daisuke
2017-03-01
We investigate the hydrodynamic fluctuations in suspensions of swimming microorganisms (Chlamydomonas) by observing the probe particles dispersed in the media. Short-term fluctuations of probe particles were superdiffusive and displayed heavily tailed non-Gaussian distributions. The analytical theory that explains the observed distribution was derived by summing the power-law-decaying hydrodynamic interactions from spatially distributed field sources (here, swimming microorganisms). The summing procedure, which we refer to as the physical limit operation, is applicable to a variety of physical fluctuations to which the classical central limiting theory does not apply. Extending the analytical formula to compare to experiments in active swimmer suspensions, we show that the non-Gaussian shape of the observed distribution obeys the analytic theory concomitantly with independently determined parameters such as the strength of force generations and the concentration of Chlamydomonas. Time evolution of the distributions collapsed to a single master curve, except for their extreme tails, for which our theory presents a qualitative explanation. Investigations thereof and the complete agreement with theoretical predictions revealed broad applicability of the formula to dispersions of active sources of fluctuations.
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. Two examples are given to illustrate the validity and usefulness of the formulations.
Lin, Chen-Yen; Halabi, Susan
2017-01-01
We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496
Lin, Chen-Yen; Halabi, Susan
2017-01-01
We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.
An explicit closed-form analytical solution for European options under the CGMY model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Du, Meiyu; Xu, Xiang
2017-01-01
In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.
NASA Astrophysics Data System (ADS)
Zhao, T. L.; Bao, X. J.; Guo, S. Q.
2018-02-01
Systematic calculations on the α decay half-lives are performed by using three analytical formulas and two semiclassical approaches. For the three analytical formulas, the experimental α decay half-lives and {Q}α values of the 66 reference nuclei have been used to obtain the coefficients. We get only four adjustable parameters to describe α decay half-lives for even-even, odd-A, and odd-odd nuclei. By comparison between the calculated values from ten analytical formulas and experimental data, it is shown that the new universal decay law (NUDL) foumula is the most accurate one to reproduce the experimental α decay half-lives of the superheavy nuclei (SHN). Meanwhile it is found that the experimental α decay half-lives of SHN are well reproduced by the Royer formula although many parameters are contained. The results show that the NUDL formula and the generalized liquid drop model (GLDM2) with consideration of the preformation factor can give fairly equivalent results for the superheavy nuclei.
Bending elasticity of macromolecules: analytic predictions from the wormlike chain model.
Polley, Anirban; Samuel, Joseph; Sinha, Supurna
2013-01-01
We present a study of the bend angle distribution of semiflexible polymers of short and intermediate lengths within the wormlike chain model. This enables us to calculate the elastic response of a stiff molecule to a bending moment. Our results go beyond the Hookean regime and explore the nonlinear elastic behavior of a single molecule. We present analytical formulas for the bend angle distribution and for the moment-angle relation. Our analytical study is compared against numerical Monte Carlo simulations. The functional forms derived here can be applied to fluorescence microscopic studies on actin and DNA. Our results are relevant to recent studies of "kinks" and cyclization in short and intermediate length DNA strands.
High-Contrast Gratings based Spoof Surface Plasmons
NASA Astrophysics Data System (ADS)
Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan
2016-02-01
In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics.
On the superposition principle in interference experiments.
Sinha, Aninda; H Vijay, Aravind; Sinha, Urbasi
2015-05-14
The superposition principle is usually incorrectly applied in interference experiments. This has recently been investigated through numerics based on Finite Difference Time Domain (FDTD) methods as well as the Feynman path integral formalism. In the current work, we have derived an analytic formula for the Sorkin parameter which can be used to determine the deviation from the application of the principle. We have found excellent agreement between the analytic distribution and those that have been earlier estimated by numerical integration as well as resource intensive FDTD simulations. The analytic handle would be useful for comparing theory with future experiments. It is applicable both to physics based on classical wave equations as well as the non-relativistic Schrödinger equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady; Zhou, Demin
2016-04-21
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. Furthermore, all our formulas are benchmarked against numerical simulations with the CSRZ computermore » code.« less
Analytic solution for American strangle options using Laplace-Carson transforms
NASA Astrophysics Data System (ADS)
Kang, Myungjoo; Jeon, Junkee; Han, Heejae; Lee, Somin
2017-06-01
A strangle has been important strategy for options when the trader believes there will be a large movement in the underlying asset but are uncertain of which way the movement will be. In this paper, we derive analytic formula for the price of American strangle options. American strangle options can be mathematically formulated into the free boundary problems involving two early exercise boundaries. By using Laplace-Carson Transform(LCT), we can derive the nonlinear system of equations satisfied by the transformed value of two free boundaries. We then solve this nonlinear system using Newton's method and finally get the free boundaries and option values using numerical Laplace inversion techniques. We also derive the Greeks for the American strangle options as well as the value of perpetual American strangle options. Furthermore, we present various graphs for the free boundaries and option values according to the change of parameters.
NASA Astrophysics Data System (ADS)
Kuzmina, K. S.; Marchevsky, I. K.; Ryatina, E. P.
2017-11-01
We consider the methodology of numerical schemes development for two-dimensional vortex method. We describe two different approaches to deriving integral equation for unknown vortex sheet intensity. We simulate the velocity of the surface line of an airfoil as the influence of attached vortex and source sheets. We consider a polygonal approximation of the airfoil and assume intensity distributions of free and attached vortex sheets and attached source sheet to be approximated with piecewise constant or piecewise linear (continuous or discontinuous) functions. We describe several specific numerical schemes that provide different accuracy and have a different computational cost. The study shows that a Galerkin-type approach to solving boundary integral equation requires computing several integrals and double integrals over the panels. We obtain exact analytical formulae for all the necessary integrals, which makes it possible to raise significantly the accuracy of vortex sheet intensity computation and improve the quality of velocity and vorticity field representation, especially in proximity to the surface line of the airfoil. All the formulae are written down in the invariant form and depend only on the geometric relationship between the positions of the beginnings and ends of the panels.
Spatiotemporal behaviour of isodiffracting hollow Gaussian pulsed beams
NASA Astrophysics Data System (ADS)
Xu, Yanbing; Lü, Baida
2007-05-01
A model of isodiffracting hollow Gaussian pulsed beams (HGPBs) is presented. Based on the Fourier transform method, an analytical formula for the HGPBs propagating in free space is derived, which enables us to study the spatiotemporal behaviour of the ultrashort pulsed beams. Some interesting phenomena of ultrashort pulsed beams, such as the symmetrical temporal profiles, the dark rings, etc, are discussed in detail and illustrated numerically.
NASA Technical Reports Server (NTRS)
Rowe, C. K.
1971-01-01
The symbolic manipulation capabilities of the FORMAC (Formula Manipulation Compiler) language are employed to expand and analytically evaluate integrals. The program integration is effected by expanding the integral(s) into a series of subintegrals and then substituting a pre-derived and pre-coded solution for that particular subintegral. Derivation of the integral solutions necessary for precoding is included, as is a discussion of the FORMAC system limitations encountered in the programming effort.
Mironova, Lidia A.; Mironov, Sergej L.
2008-01-01
Local Ca2+ signaling controls many neuronal functions, which is often achieved through spatial localization of Ca2+ signals. These nanodomains are formed due to combined effects of Ca2+ diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca2+ diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca2+ levels up to 50 μM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca2+] transients, which participate in various physiological processes. PMID:17872951
Value of the distant future: Model-independent results
NASA Astrophysics Data System (ADS)
Katz, Yuri A.
2017-01-01
This paper shows that the model-independent account of correlations in an interest rate process or a log-consumption growth process leads to declining long-term tails of discount curves. Under the assumption of an exponentially decaying memory in fluctuations of risk-free real interest rates, I derive the analytical expression for an apt value of the long run discount factor and provide a detailed comparison of the obtained result with the outcome of the benchmark risk-free interest rate models. Utilizing the standard consumption-based model with an isoelastic power utility of the representative economic agent, I derive the non-Markovian generalization of the Ramsey discounting formula. Obtained analytical results allowing simple calibration, may augment the rigorous cost-benefit and regulatory impact analysis of long-term environmental and infrastructure projects.
Highly excited bound-state resonances of short-range inverse power-law potentials
NASA Astrophysics Data System (ADS)
Hod, Shahar
2017-11-01
We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.
KAM Tori for 1D Nonlinear Wave Equationswith Periodic Boundary Conditions
NASA Astrophysics Data System (ADS)
Chierchia, Luigi; You, Jiangong
In this paper, one-dimensional (1D) nonlinear wave equations
Perihelion precession from power law central force and magnetic-like force
NASA Astrophysics Data System (ADS)
Xu, Feng
2011-04-01
By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury’s 43”/century is reproduced, and 2) spherically distributed dark matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.
Perihelion precession from power law central force and magnetic-like force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Feng
2011-04-15
By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury's 43''/century is reproduced, and 2) spherically distributed darkmore » matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.« less
A Malaria Transmission Model with Temperature-Dependent Incubation Period.
Wang, Xiunan; Zhao, Xiao-Qiang
2017-05-01
Malaria is an infectious disease caused by Plasmodium parasites and is transmitted among humans by female Anopheles mosquitoes. Climate factors have significant impact on both mosquito life cycle and parasite development. To consider the temperature sensitivity of the extrinsic incubation period (EIP) of malaria parasites, we formulate a delay differential equations model with a periodic time delay. We derive the basic reproduction ratio [Formula: see text] and establish a threshold type result on the global dynamics in terms of [Formula: see text], that is, the unique disease-free periodic solution is globally asymptotically stable if [Formula: see text]; and the model system admits a unique positive periodic solution which is globally asymptotically stable if [Formula: see text]. Numerically, we parameterize the model with data from Maputo Province, Mozambique, and simulate the long-term behavior of solutions. The simulation result is consistent with the obtained analytic result. In addition, we find that using the time-averaged EIP may underestimate the basic reproduction ratio.
The mean and variance of phylogenetic diversity under rarefaction
Matsen, Frederick A.
2013-01-01
Summary Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required. PMID:23833701
The mean and variance of phylogenetic diversity under rarefaction.
Nipperess, David A; Matsen, Frederick A
2013-06-01
Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950
2015-05-15
When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
A two-dimensional solution of the FW-H equation for rectilinear motion of sources
NASA Astrophysics Data System (ADS)
Bozorgi, Alireza; Siozos-Rousoulis, Leonidas; Nourbakhsh, Seyyed Ahmad; Ghorbaniasl, Ghader
2017-02-01
In this paper, a subsonic solution of the two-dimensional Ffowcs Williams and Hawkings (FW-H) equation is presented for calculation of noise generated by sources moving with constant velocity in a medium at rest or in a moving medium. The solution is represented in the frequency domain and is valid for observers located far from the noise sources. In order to verify the validity of the derived formula, three test cases are considered, namely a monopole, a dipole, and a quadrupole source in a medium at rest or in motion. The calculated results well coincide with the analytical solutions, validating the applicability of the formula to rectilinear subsonic motion problems.
Time delay of critical images of a point source near the gravitational lens fold-caustic
NASA Astrophysics Data System (ADS)
Alexandrov, A.; Zhdanov, V.
2016-06-01
Within the framework of the analytical theory of the gravitational lensing we derive asymptotic formula for the time delay of critical images of apoint source, which is situated near a fold-caustic. We found corrections of the first and second order in powers of a parameter, which describescloseness of the source to the caustic. Our formula modifies earlier result by Congdon, Keeton &Nordgren (MNRAS, 2008) obtained in zero-orderapproximation. We have proved the hypothesis put forward by these authors that the first-order correction to the relative time delay of two criticalmages is identically zero. The contribution of the corrections is illustrated in model example by comparison with exact expression.
Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia
2017-03-01
The matrix Sturm-Liouville equation on a finite interval with a Bessel-type singularity in the end of the interval is studied. Special fundamental systems of solutions for this equation are constructed: analytic Bessel-type solutions with the prescribed behavior at the singular point and Birkhoff-type solutions with the known asymptotics for large values of the spectral parameter. The asymptotic formulas for Stokes multipliers, connecting these two fundamental systems of solutions, are derived. We also set boundary conditions and obtain asymptotic formulas for the spectral data (the eigenvalues and the weight matrices) of the boundary value problem. Our results will be useful in the theory of direct and inverse spectral problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor
A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less
An invariance property of generalized Pearson random walks in bounded geometries
NASA Astrophysics Data System (ADS)
Mazzolo, Alain
2009-03-01
Invariance properties of random walks in bounded domains are a topic of growing interest since they contribute to improving our understanding of diffusion in confined geometries. Recently, limited to Pearson random walks with exponentially distributed straight paths, it has been shown that under isotropic uniform incidence, the average length of the trajectories through the domain is independent of the random walk characteristic and depends only on the ratio of the volume's domain over its surface. In this paper, thanks to arguments of integral geometry, we generalize this property to any isotropic bounded stochastic process and we give the conditions of its validity for isotropic unbounded stochastic processes. The analytical form for the traveled distance from the boundary to the first scattering event that ensures the validity of the Cauchy formula is also derived. The generalization of the Cauchy formula is an analytical constraint that thus concerns a very wide range of stochastic processes, from the original Pearson random walk to a Rayleigh distribution of the displacements, covering many situations of physical importance.
Pricing foreign equity option under stochastic volatility tempered stable Lévy processes
NASA Astrophysics Data System (ADS)
Gong, Xiaoli; Zhuang, Xintian
2017-10-01
Considering that financial assets returns exhibit leptokurtosis, asymmetry properties as well as clustering and heteroskedasticity effect, this paper substitutes the logarithm normal jumps in Heston stochastic volatility model by the classical tempered stable (CTS) distribution and normal tempered stable (NTS) distribution to construct stochastic volatility tempered stable Lévy processes (TSSV) model. The TSSV model framework permits infinite activity jump behaviors of return dynamics and time varying volatility consistently observed in financial markets through subordinating tempered stable process to stochastic volatility process, capturing leptokurtosis, fat tailedness and asymmetry features of returns. By employing the analytical characteristic function and fast Fourier transform (FFT) technique, the formula for probability density function (PDF) of TSSV returns is derived, making the analytical formula for foreign equity option (FEO) pricing available. High frequency financial returns data are employed to verify the effectiveness of proposed models in reflecting the stylized facts of financial markets. Numerical analysis is performed to investigate the relationship between the corresponding parameters and the implied volatility of foreign equity option.
A climate-based malaria model with the use of bed nets.
Wang, Xiunan; Zhao, Xiao-Qiang
2018-07-01
Insecticide-treated bed nets (ITNs) are among the most important and effective intervention measures against malaria. In order to investigate the impact of bed net use on disease control, we formulate a periodic vector-bias malaria model incorporating the juvenile stage of mosquitoes and the use of ITNs. We derive the vector reproduction ratio [Formula: see text] and the basic reproduction ratio [Formula: see text]. We show that the global dynamics of the model is completely determined by these two reproduction ratios. More precisely, the mosquito-free periodic solution is globally attractive if [Formula: see text]; the unique disease-free periodic solution is globally attractive if [Formula: see text] and [Formula: see text]; and the model admits a unique positive periodic solution and it is globally attractive if [Formula: see text] and [Formula: see text]. Numerically, we study the malaria transmission case in Port Harcourt, Nigeria. Our findings show that the use of ITNs has a positive effect on reducing [Formula: see text], and that malaria may be eliminated from this area if over 75% of the human population were to use ITNs. The simulation about the long term behavior of solutions has good agreement with the obtained analytic result. Moreover, we find that the ignorance of the vector-bias effect may result in underestimation of the basic reproduction ratio [Formula: see text]. Another notable result is that the infection risk would be underestimated if the basic reproduction ratio [Formula: see text] of the time-averaged autonomous system were used.
Universality in volume-law entanglement of scrambled pure quantum states.
Nakagawa, Yuya O; Watanabe, Masataka; Fujita, Hiroyuki; Sugiura, Sho
2018-04-24
A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. The thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and mandate a correction to this simple volume law. The elucidation of the size dependence of the entanglement entropy is thus essentially important in linking quantum physics with thermodynamics. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing equilibrium. We numerically find that our formula applies universally to any sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of non-integrable models and states after quantum quenches. Our formula is exploited as diagnostics for chaotic systems; it can distinguish integrable models from non-integrable models and many-body localization phases from chaotic phases.
Propagation of a general-type beam through a truncated fractional Fourier transform optical system.
Zhao, Chengliang; Cai, Yangjian
2010-03-01
Paraxial propagation of a general-type beam through a truncated fractional Fourier transform (FRT) optical system is investigated. Analytical formulas for the electric field and effective beam width of a general-type beam in the FRT plane are derived based on the Collins formula. Our formulas can be used to study the propagation of a variety of laser beams--such as Gaussian, cos-Gaussian, cosh-Gaussian, sine-Gaussian, sinh-Gaussian, flat-topped, Hermite-cosh-Gaussian, Hermite-sine-Gaussian, higher-order annular Gaussian, Hermite-sinh-Gaussian and Hermite-cos-Gaussian beams--through a FRT optical system with or without truncation. The propagation properties of a Hermite-cos-Gaussian beam passing through a rectangularly truncated FRT optical system are studied as a numerical example. Our results clearly show that the truncated FRT optical system provides a convenient way for laser beam shaping.
Current matrix element in HAL QCD's wavefunction-equivalent potential method
NASA Astrophysics Data System (ADS)
Watanabe, Kai; Ishii, Noriyoshi
2018-04-01
We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.
NASA Astrophysics Data System (ADS)
Tikhonov, D. A.; Sobolev, E. V.
2011-04-01
A method of integral equations of the theory of liquids in the reference interaction site model (RISM) approximation is used to estimate the Gibbs energy averaged over equilibrium trajectories computed by molecular mechanics. Peptide oxytocin is selected as the object of interest. The Gibbs energy is calculated using all chemical potential formulas introduced in the RISM approach for the excess chemical potential of solvation and is compared with estimates by the generalized Born model. Some formulas are shown to give the wrong sign of Gibbs energy changes when peptide passes from the gas phase into water environment; the other formulas give overestimated Gibbs energy changes with the right sign. Note that allowance for the repulsive correction in the approximate analytical expressions for the Gibbs energy derived by thermodynamic perturbation theory is not a remedy.
McClure, Foster D; Lee, Jung K
2012-01-01
The validation process for an analytical method usually employs an interlaboratory study conducted as a balanced completely randomized model involving a specified number of randomly chosen laboratories, each analyzing a specified number of randomly allocated replicates. For such studies, formulas to obtain approximate unbiased estimates of the variance and uncertainty of the sample laboratory-to-laboratory (lab-to-lab) STD (S(L)) have been developed primarily to account for the uncertainty of S(L) when there is a need to develop an uncertainty budget that includes the uncertainty of S(L). For the sake of completeness on this topic, formulas to estimate the variance and uncertainty of the sample lab-to-lab variance (S(L)2) were also developed. In some cases, it was necessary to derive the formulas based on an approximate distribution for S(L)2.
NASA Astrophysics Data System (ADS)
Nakwaski, W.
1988-11-01
An analysis is made of the thermal conductivity of quaternary solid solutions (alloys) allowing for their disordered structure on the basis of a phenomenological analysis proposed by Abeles. This method is applied to a quaternary solid solution In1 - xGaxAsyP1 - y. A simple analytic expression is derived for the thermal conductivity of this material.
Closed-form recursive formula for an optimal tracker with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J. N.; Turner, J. D.; Chun, H. M.
1986-01-01
Feedback control laws are derived for a class of optimal finite time tracking problems with terminal constraints. Analytical solutions are obtained for the feedback gain and the closed-loop response trajectory. Such formulations are expressed in recursive forms so that a real-time computer implementation becomes feasible. An example involving the feedback slewing of a flexible spacecraft is given to illustrate the validity and usefulness of the formulations.
Temperature dependence of nuclear fission time in heavy-ion fusion-fission reactions
NASA Astrophysics Data System (ADS)
Eccles, Chris; Roy, Sanil; Gray, Thomas H.; Zaccone, Alessio
2017-11-01
Accounting for viscous damping within Fokker-Planck equations led to various improvements in the understanding and analysis of nuclear fission of heavy nuclei. Analytical expressions for the fission time are typically provided by Kramers' theory, which improves on the Bohr-Wheeler estimate by including the time scale related to many-particle dissipative processes along the deformation coordinate. However, Kramers' formula breaks down for sufficiently high excitation energies where Kramers' assumption of a large barrier no longer holds. Focusing on the overdamped regime for energies T >1 MeV, Kramers' theory should be replaced by a new analytical theory derived from the Ornstein-Uhlenbeck first-passage time method that is proposed here. The theory is applied to fission time data from fusion-fission experiments on 16O+208Pb→224Th . The proposed model provides an internally consistent one-parameter fitting of fission data with a constant nuclear friction as the fitting parameter, whereas Kramers' fitting requires a value of friction which falls out of the allowed range. The theory provides also an analytical formula that in future work can be easily implemented in numerical codes such as cascade or joanne4.
Ciccarello, Annalisa; Bolognesi, Andrea; Maglionico, Marco; Artina, Sandro
2012-01-01
Roadside gully pots are the connecting points between surface runoff and the underground drainage network; therefore they can be considered as the most superficial component of urban drainage systems. Gully pots are supposed to trap particulate matter washed off the catchment surface, but also to collect and convey stormwater into the network. The continuous accumulation of particulate matter results in a progressive loss of the gully pot hydraulic conveyance, thereby increasing the probability of urban flooding during rainstorm events. This study has therefore the objective to determine which variables influence the gully pot capability of retaining solids (efficiency), both experimentally and analytically. Several laboratory tests have been performed on a simple plastic gully pot, with different inflow rates and using both mono and hetero-disperse particle samples. Particular attention has been given to the influence exerted by the way particle settling velocity is expressed: efficiency has been analytically determined by means of multiple settling velocity formulas proposed by various authors and eventually compared to experimental data. Results deriving from the adoption of each single settling velocity formula have been extensively analysed, showing fairly different outcomes.
NASA Astrophysics Data System (ADS)
Wong, C. K.; Poon, Y. M.; Shin, F. G.
2003-01-01
Explicit formulas were derived for the effective piezoelectric stress coefficients of a 0-3 composite of ferroelectric spherical particles in a ferroelectric matrix which were then combined to give the more commonly used strain coefficients. Assuming that the elastic stiffness of the inclusion phase is sufficiently larger than that of the matrix phase, the previously derived explicit expressions for the case of a low volume concentration of inclusion particles [C. K. Wong, Y. M. Poon, and F. G. Shin, Ferroelectrics 264, 39 (2001); J. Appl. Phys. 90, 4690 (2001)] were "transformed" analytically by an effective medium theory (EMT) with appropriate approximations, to suit the case of a more concentrated suspension. Predictions of the EMT expressions were compared with the experimental values of composites of lead zirconate titanate ceramic particles dispersed in polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene copolymer, reported by Furukawa [IEEE Trans. Electr. Insul. 24, 375 (1989)] and by Ng et al. [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1308 (2000)] respectively. Fairly good agreement was obtained. Comparisons with other predictions, including the predictions given by numerically solving the EMT scheme, were also made. It was found that the analytic and numeric EMT schemes agreed with each other very well for an inclusion of volume fraction not exceeding 60%.
NASA Astrophysics Data System (ADS)
Ladiges, Daniel R.; Sader, John E.
2018-05-01
Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com
2017-10-01
In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper wemore » derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta-Schubert, N.; Reyes, M.A.
2007-11-15
The predictive accuracy of the generalized liquid drop model (GLDM) formula for alpha-decay half-lives has been investigated in a detailed manner and a variant of the formula with improved coefficients is proposed. The method employs the experimental alpha half-lives of the well-known alpha standards to obtain the coefficients of the analytical formula using the experimental Q{sub {alpha}} values (the DSR-E formula), as well as the finite range droplet model (FRDM) derived Q{sub {alpha}} values (the FRDM-FRDM formula). The predictive accuracy of these formulae was checked against the experimental alpha half-lives of an independent set of nuclei (TEST) that span approximatelymore » the same Z, A region as the standards and possess reliable alpha spectroscopic data, and were found to yield good results for the DSR-E formula but not for the FRDM-FRDM formula. The two formulae were used to obtain the alpha half-lives of superheavy elements (SHE) and heavy nuclides where the relative accuracy was found to be markedly improved for the FRDM-FRDM formula, which corroborates the appropriateness of the FRDM masses and the GLDM prescription for high Z, A nuclides. Further improvement resulted, especially for the FRDM-FRDM formula, after a simple linear optimization over the calculated and experimental half-lives of TEST was used to re-calculate the half-lives of the SHE and heavy nuclides. The advantage of this optimization was that it required no re-calculation of the coefficients of the basic DSR-E or FRDM-FRDM formulae. The half-lives for 324 medium-mass to superheavy alpha decaying nuclides, calculated using these formulae and the comparison with experimental half-lives, are presented.« less
Prediction of transmission distortion for wireless video communication: analysis.
Chen, Zhifeng; Wu, Dapeng
2012-03-01
Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.
Nuclear isospin effect on α-decay half-lives
NASA Astrophysics Data System (ADS)
Akrawy, Dashty T.; Hassanabadi, H.; Hosseini, S. S.; Santhosh, K. P.
2018-07-01
The α-decay half-lives for the even-even, even-odd, odd-even and odd-odd of 356 nuclei in the range 52 ≤Zp ≤ 118 have been studied within the analytical formula of Royer and also within the modified analytical formula of Royer. We calculated the new coefficient of the Royer by fitting 356 isotopes. Also, we considered the Denisov and Khudenko formula and obtained the new coefficient for the modified Denisov and Khudenko formula. We calculated the standard deviation and the average deviation. Analytical results are compared with the experimental data. The results are in better agreement with the experimental data when the effect of the isospin considered for the parent nuclei.
Meenupriya, J; Thangaraj, M
2011-10-01
To isolate and characterize the bioactive secondary metabolites from Aspergillus ochraceus (A. ochraceus) MP2 fungi. The anti bacterial activity of marine sponge derived fungi A. ochraceus MP2 was thoroughly investigated against antagonistic human pathogens. The optimum inhibitory concentration of the fungi in the elite solvent was also determined. The promising extracts that showed good antimicrobial activity were subjected to further analytical separation to get individual distinct metabolites and the eluants were further identified by GC MS instrumental analysis. The molecular characterization of the elite fungal strains were done by isolating their genomic DNA and amplify the internal transcribed spacer (ITS) region of 5.8s rRNA using specific ITS primer. The novelty of the strain was proved by homology search tools and elite sequences was submitted to GENBANK. Three bioactive compounds were characterized to reveal their identity, chemical formula and structure. The first elutant was identified asα- Campholene aldehyde with chemical formula C10 H16 O and molecular weight 152 Da. The second elutant was identified as Lucenin-2 and chemical formula C27 H30 O16 and molecular weight 610 Da. The third elutant was identified as 6-Ethyloct- 3-yl- 2- ethylhexyl ester with Chemical formula C26 H42 O4 with molecular weight 418 Da. The isolated compounds showed significant antimicrobial activity against potential human pathogens. Microbial secondary metabolites represent a large source of compounds endowed with ingenious structures and potent biological activities.
Gaussian intrinsic entanglement for states with partial minimum uncertainty
NASA Astrophysics Data System (ADS)
Mišta, Ladislav; Baksová, Klára
2018-01-01
We develop a recently proposed theory of a quantifier of bipartite Gaussian entanglement called Gaussian intrinsic entanglement (GIE) [L. Mišta, Jr. and R. Tatham, Phys. Rev. Lett. 117, 240505 (2016), 10.1103/PhysRevLett.117.240505]. Gaussian intrinsic entanglement provides a compromise between computable and physically meaningful entanglement quantifiers and so far it has been calculated for two-mode Gaussian states including all symmetric partial minimum-uncertainty states, weakly mixed asymmetric squeezed thermal states with partial minimum uncertainty, and weakly mixed symmetric squeezed thermal states. We improve the method of derivation of GIE and show that all previously derived formulas for GIE of weakly mixed states in fact hold for states with higher mixedness. In addition, we derive analytical formulas for GIE for several other classes of two-mode Gaussian states with partial minimum uncertainty. Finally, we show that, like for all previously known states, also for all currently considered states the GIE is equal to Gaussian Rényi-2 entanglement of formation. This finding strengthens a conjecture about the equivalence of GIE and Gaussian Rényi-2 entanglement of formation for all bipartite Gaussian states.
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2016-11-01
Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.
Analytic solution for quasi-Lambertian radiation transfer.
Braun, Avi; Gordon, Jeffrey M
2010-02-10
An analytic solution is derived for radiation transfer between flat quasi-Lambertian surfaces of arbitrary orientation, i.e., surfaces that radiate in a Lambertian fashion but within a numerical aperture smaller than unity. These formulas obviate the need for ray trace simulations and provide exact, physically transparent results. Illustrative examples that capture the salient features of the flux maps and the efficiency of flux transfer are presented for a few configurations of practical interest. There is also a fundamental reciprocity relation for quasi-Lambertian exchange, akin to the reciprocity theorem for fully Lambertian surfaces. Applications include optical fiber coupling, fiber-optic biomedical procedures, and solar concentrators.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Quantum mechanics on Laakso spaces
NASA Astrophysics Data System (ADS)
Kauffman, Christopher J.; Kesler, Robert M.; Parshall, Amanda G.; Stamey, Evelyn A.; Steinhurst, Benjamin A.
2012-04-01
We first review the spectrum of the Laplacian operator on a general Laakso space before considering modified Hamiltonians for the infinite square well, parabola, and Coulomb potentials. Additionally, we compute the spectrum for the Laplacian and its multiplicities when certain regions of a Laakso space are compressed or stretched and calculate the Casimir force experienced by two uncharged conducting plates by imposing physically relevant boundary conditions and then analytically regularizing the resulting zeta function. Lastly, we derive a general formula for the spectral zeta function and its derivative for Laakso spaces with strict self-similar structure before listing explicit spectral values for some special cases
Evaluation of geopotential and luni-solar perturbations by a recursive algorithm
NASA Technical Reports Server (NTRS)
Giacaglia, G. E. O.
1975-01-01
The disturbing functions due to the geopotential and Luni-solar attractions are linear and bilinear forms in spherical harmonics. Making use of recurrence relations for the solid spherical harmonics and their derivatives, recurrence formulas are obtained for high degree terms as function of lower degree for any term of those disturbing functions and their derivative with respect to any element. The equations obtained are effective when a numerical integration of the equations of motion is appropriate. In analytical theories, they provide a fast way of obtaining high degree terms starting from initial very simple functions.
Atmospheric guidance law for planar skip trajectories
NASA Technical Reports Server (NTRS)
Mease, K. D.; Mccreary, F. A.
1985-01-01
The applicability of an approximate, closed-form, analytical solution to the equations of motion, as a basis for a deterministic guidance law for controlling the in-plane motion during a skip trajectory, is investigated. The derivation of the solution by the method of matched asymptotic expansions is discussed. Specific issues that arise in the application of the solution to skip trajectories are addressed. Based on the solution, an explicit formula for the approximate energy loss due to an atmospheric pass is derived. A guidance strategy is proposed that illustrates the use of the approximate solution. A numerical example shows encouraging performance.
Comment on ‘Monogamy of multi-qubit entanglement using Rényi entropy’
NASA Astrophysics Data System (ADS)
Yu, Long-Bao; Zhang, Li-Hua; Zhao, Jun-Long; Tang, Yong-Sheng
2018-02-01
In an article in 2010, Kim et al introduced the definition of Rényi-α entanglement for bipartite quantum states and established an analytic formula of Rényi-α entanglement for arbitrary two-qubit states with α≥slant 1 . They also derived a monogamy of entanglement in multi-qubit systems in terms of Rényi-α entanglement for α≥slant 2 Kim et al (2010 J. Phys. A: Math. Theor. 43 445305). We find the proofs of theorems 2 and 3 contain some errors and we also present an improved derivation to overcome this flaw. The alternative derivation shows that the main conclusions remain valid despite the invalidity of the proofs.
Third-rank chromatic aberrations of electron lenses.
Liu, Zhixiong
2018-02-01
In this paper the third-rank chromatic aberration coefficients of round electron lenses are analytically derived and numerically calculated by Mathematica. Furthermore, the numerical results are cross-checked by the differential algebraic (DA) method, which verifies that all the formulas for the third-rank chromatic aberration coefficients are completely correct. It is hoped that this work would be helpful for further chromatic aberration correction in electron microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371
Analytic H I-to-H2 Photodissociation Transition Profiles
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Sternberg, Amiel
2016-05-01
We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.
Garg, Prabhat; Purohit, Ajay; Tak, Vijay K; Dubey, D K
2009-11-06
N,N-Dialkylamino alcohols, N-methyldiethanolamine, N-ethyldiethanolamine and triethanolamine are the precursors of VX type nerve agents and three different nitrogen mustards respectively. Their detection and identification is of paramount importance for verification analysis of chemical weapons convention. GC-FTIR is used as complimentary technique to GC-MS analysis for identification of these analytes. One constraint of GC-FTIR, its low sensitivity, was overcome by converting the analytes to their fluorinated derivatives. Owing to high absorptivity in IR region, these derivatives facilitated their detection by GC-FTIR analysis. Derivatizing reagents having trimethylsilyl, trifluoroacyl and heptafluorobutyryl groups on imidazole moiety were screened. Derivatives formed there were analyzed by GC-FTIR quantitatively. Of these reagents studied, heptafluorobutyrylimidazole (HFBI) produced the greatest increase in sensitivity by GC-FTIR detection. 60-125 folds of sensitivity enhancement were observed for the analytes by HFBI derivatization. Absorbance due to various functional groups responsible for enhanced sensitivity were compared by determining their corresponding relative molar extinction coefficients ( [Formula: see text] ) considering uniform optical path length. The RSDs for intraday repeatability and interday reproducibility for various derivatives were 0.2-1.1% and 0.3-1.8%. Limit of detection (LOD) was achieved up to 10-15ng and applicability of the method was tested with unknown samples obtained in international proficiency tests.
The forced sound transmission of finite single leaf walls using a variational technique.
Brunskog, Jonas
2012-09-01
The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.
NASA Astrophysics Data System (ADS)
Qi, Xianfei; Gao, Ting; Yan, Fengli
2017-01-01
Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.
Robustness and fragility in coupled oscillator networks under targeted attacks.
Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei
2017-01-01
The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y; Dahlman, E
2014-06-01
Purpose: To evaluate the analytic formula of the cell death probability after single fraction dose. Methods: Cancer cells endlessly divide, but radiation causes the cancer cells to die. Not all cells die right away after irradiation. Instead, they continue dividing for next few cell cycles before they stop dividing and die. At the end of every cell cycle, the cell decides if it undertakes the mitotic process with a certain probability, Pdiv, which is altered by the radiation. Previously, by using a simple analytic model of radiobiology experiments, we obtained a formula of Pdeath (= 1 − Pdiv). A questionmore » is if the proposed probability can reproduce the well-known survival data of the LQ model. In this study, we evaluated the formula by doing a Monte Carlo simulation of the cell proliferation process. Starting with Ns seed cells, the cell proliferation process was simulated for N generations or until all cells die. We counted the number of living cells at the end. Assuming that the cell colony survived when more than Nc cells were still alive, the surviving fraction S was estimated. We compared the S vs. dose, or S-D curve, with the LQ model. Results: The results indicated that our formula does not reproduce the experimentally observed S-D curve without selecting appropriate α and α/β. With parameter optimization, there was a fair agreement between the MC result and the LQ curve of dose lower than 20Gy. However, the survival fraction of MC decreased much faster in comparison to the LQ data for doses higher than 20 Gy. Conclusion: This study showed that the previously derived probability of cell death per cell cycle is not sufficiently accurate to replicate common radiobiological experiments. The formula must be modified by considering its cell cycle dependence and some other unknown effects.« less
Olendski, Oleg
2015-04-01
Analytical solutions of the Schrödinger equation for the one-dimensional quantum well with all possible permutations of the Dirichlet and Neumann boundary conditions (BCs) in perpendicular to the interfaces uniform electric field [Formula: see text] are used for the comparative investigation of their interaction and its influence on the properties of the system. Limiting cases of the weak and strong voltages allow an easy mathematical treatment and its clear physical explanation; in particular, for the small [Formula: see text], the perturbation theory derives for all geometries a linear dependence of the polarization on the field with the BC-dependent proportionality coefficient being positive (negative) for the ground (excited) states. Simple two-level approximation elementary explains the negative polarizations as a result of the field-induced destructive interference of the unperturbed modes and shows that in this case the admixture of only the neighboring states plays a dominant role. Different magnitudes of the polarization for different BCs in this regime are explained physically and confirmed numerically. Hellmann-Feynman theorem reveals a fundamental relation between the polarization and the speed of the energy change with the field. It is proved that zero-voltage position entropies [Formula: see text] are BC independent and for all states but the ground Neumann level (which has [Formula: see text]) are equal to [Formula: see text] while the momentum entropies [Formula: see text] depend on the edge requirements and the level. Varying electric field changes position and momentum entropies in the opposite directions such that the entropic uncertainty relation is satisfied. Other physical quantities such as the BC-dependent zero-energy and zero-polarization fields are also studied both numerically and analytically. Applications to different branches of physics, such as ocean fluid dynamics and atmospheric and metallic waveguide electrodynamics, are discussed.
NASA Astrophysics Data System (ADS)
Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.
2018-02-01
This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.
Analytical Problems and Suggestions in the Analysis of Behavioral Economic Demand Curves.
Yu, Jihnhee; Liu, Liu; Collins, R Lorraine; Vincent, Paula C; Epstein, Leonard H
2014-01-01
Behavioral economic demand curves (Hursh, Raslear, Shurtleff, Bauman, & Simmons, 1988) are innovative approaches to characterize the relationships between consumption of a substance and its price. In this article, we investigate common analytical issues in the use of behavioral economic demand curves, which can cause inconsistent interpretations of demand curves, and then we provide methodological suggestions to address those analytical issues. We first demonstrate that log transformation with different added values for handling zeros changes model parameter estimates dramatically. Second, demand curves are often analyzed using an overparameterized model that results in an inefficient use of the available data and a lack of assessment of the variability among individuals. To address these issues, we apply a nonlinear mixed effects model based on multivariate error structures that has not been used previously to analyze behavioral economic demand curves in the literature. We also propose analytical formulas for the relevant standard errors of derived values such as P max, O max, and elasticity. The proposed model stabilizes the derived values regardless of using different added increments and provides substantially smaller standard errors. We illustrate the data analysis procedure using data from a relative reinforcement efficacy study of simulated marijuana purchasing.
Perturbations of the seismic reflectivity of a fluid-saturated depth-dependent poroelastic medium.
de Barros, Louis; Dietrich, Michel
2008-03-01
Analytical formulas are derived to compute the first-order effects produced by plane inhomogeneities on the point source seismic response of a fluid-filled stratified porous medium. The derivation is achieved by a perturbation analysis of the poroelastic wave equations in the plane-wave domain using the Born approximation. This approach yields the Frechet derivatives of the P-SV- and SH-wave responses in terms of the Green's functions of the unperturbed medium. The accuracy and stability of the derived operators are checked by comparing, in the time-distance domain, differential seismograms computed from these analytical expressions with complete solutions obtained by introducing discrete perturbations into the model properties. For vertical and horizontal point forces, it is found that the Frechet derivative approach is remarkably accurate for small and localized perturbations of the medium properties which are consistent with the Born approximation requirements. Furthermore, the first-order formulation appears to be stable at all source-receiver offsets. The porosity, consolidation parameter, solid density, and mineral shear modulus emerge as the most sensitive parameters in forward and inverse modeling problems. Finally, the amplitude-versus-angle response of a thin layer shows strong coupling effects between several model parameters.
Path probability of stochastic motion: A functional approach
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Abe, Sumiyoshi
2016-06-01
The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.
NASA Astrophysics Data System (ADS)
Yamazaki, Ken'ichi
2016-07-01
Fault ruptures in the Earth's crust generate both elastic and electromagnetic (EM) waves. If the corresponding EM signals can be observed, then earthquakes could be detected before the first seismic waves arrive. In this study, I consider the piezomagnetic effect as a mechanism that converts elastic waves to EM energy, and I derive analytical formulas for the conversion process. The situation considered in this study is a whole-space model, in which elastic and EM properties are uniform and isotropic. In this situation, the governing equations of the elastic and EM fields, combined with the piezomagnetic constitutive law, can be solved analytically in the time domain by ignoring the displacement current term. Using the derived formulas, numerical examples are investigated, and the corresponding characteristics of the expected magnetic signals are resolved. I show that temporal variations in the magnetic field depend strongly on the electrical conductivity of the medium, meaning that precise detection of signals generated by the piezomagnetic effect is generally difficult. Expected amplitudes of piezomagnetic signals are estimated to be no larger than 0.3 nT for earthquakes with a moment magnitude of ≥7.0 at a source distance of 25 km; however, this conclusion may not extend to the detection of real earthquakes, because piezomagnetic stress sensitivity is currently poorly constrained.
Heat capacity of a self-gravitating spherical shell of radiations
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Chan
2017-10-01
We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity δ Srad=β δ Mrad additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one β-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crull, E W; Brown Jr., C G; Perkins, M P
2008-07-30
For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less
Morse oscillator propagator in the high temperature limit I: Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae
2017-02-15
In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated. - Highlights: • Derives the quantum propagator of Morse oscillator in the high temperature limit. • Uses the resulting diagonal propagatormore » to derive a closed form of Morse oscillator partition function. • Provides a more sophisticated formula of the quantum propagator to test the accuracy of the herein results.« less
Brownian aggregation rate of colloid particles with several active sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V., E-mail: chern@ns.kinetics.nsc.ru
2014-08-14
We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shownmore » to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.« less
Bassi, Gabriele; Blednykh, Alexei; Smalyuk, Victor
2016-02-24
A novel algorithm for self-consistent simulations of long-range wakefield effects has been developed and applied to the study of both longitudinal and transverse coupled-bunch instabilities at NSLS-II. The algorithm is implemented in the new parallel tracking code space (self-consistent parallel algorithm for collective effects) discussed in the paper. The code is applicable for accurate beam dynamics simulations in cases where both bunch-to-bunch and intrabunch motions need to be taken into account, such as chromatic head-tail effects on the coupled-bunch instability of a beam with a nonuniform filling pattern, or multibunch and single-bunch effects of a passive higher-harmonic cavity. The numericalmore » simulations have been compared with analytical studies. For a beam with an arbitrary filling pattern, intensity-dependent complex frequency shifts have been derived starting from a system of coupled Vlasov equations. The analytical formulas and numerical simulations confirm that the analysis is reduced to the formulation of an eigenvalue problem based on the known formulas of the complex frequency shifts for the uniform filling pattern case.« less
Valuing options in shot noise market
NASA Astrophysics Data System (ADS)
Laskin, Nick
2018-07-01
A new exactly solvable option pricing model has been introduced and elaborated. It is assumed that a stock price follows a Geometric shot noise process. An arbitrage-free integro-differential option pricing equation has been obtained and solved. The new Greeks have been analytically calculated. It has been shown that in diffusion approximation the developed option pricing model incorporates the well-known Black-Scholes equation and its solution. The stochastic dynamic origin of the Black-Scholes volatility has been uncovered. To model the observed market stock price patterns consisting of high frequency small magnitude and low frequency large magnitude jumps, the superposition of two Geometric shot noises has been implemented. A new generalized option pricing equation has been obtained and its exact solution was found. Merton's jump-diffusion formula for option price was recovered in diffusion approximation. Despite the non-Gaussian nature of probability distributions involved, the new option pricing model has the same degree of analytical tractability as the Black-Scholes model and the Merton jump-diffusion model. This attractive feature allows one to derive exact formulas to value options and option related instruments in the market with jump-like price patterns.
Radiative processes in the intracluster plasma
NASA Astrophysics Data System (ADS)
Itoh, N.; Sakamoto, T.; Kusano, S.; Kawana, Y.; Nozawa, S.
2002-02-01
We present useful analytic fitting formulae for the study of the radiative processes which take place in the hot intracluster plasma (the plasma which exists in the clusters of galaxies). The first is for the frequency-integrated emissivity of the relativistic thermal bremsstrahlung. The Gaunt factor for the relativistic thermal bremsstrahlung as a function of the ionic charge Zj, the electron temperature Te, and the photon frequency omega has been recently calculated by us and its analytic fitting formula has been presented. In this paper we will integrate this Gaunt factor over the photon frequency omega and express the results by accurate analytic fitting formulae. These results will be useful when one wishes to evaluate the total amount of energy emitted by the hot intracluster plasma as well as other hot plasmas that exist in supernova remnants. The present results for the frequency-integrated emissivity of the thermal bremsstrahlung generally have accuracy of the order of 0.1%, thus making the present results the most accurate to date that calculate the thermal bremsstrahlung due to electron-ion scattering. The present accurate results will be especially useful for the analysis of the precision data taken by the Chandra X-Ray Observatory and XMM-Newton. The second analytic fitting formula that we will present in this paper is for the thermal Sunyaev-Zeldovich effect for clusters of galaxies. The thermal Sunyaev-Zeldovich effect for clusters of galaxies has been recently calculated with high precision by the present authors as well as by other groups. We have, in particular, presented an analytic fitting formula for this effect. In this paper we will present an analytic fitting formula which has still higher accuracy. The present fitting formula will be particularly suited for the forthcoming measurements of the kinematical Sunyaev-Zeldovich effect such as the BOLOCAM project that will be carried out in the crossover frequency region where the thermal Sunyaev-Zeldovich signal changes from negative to positive sign.
Optimized formulas for the gravitational field of a tesseroid
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2013-07-01
Various tasks in geodesy, geophysics, and related geosciences require precise information on the impact of mass distributions on gravity field-related quantities, such as the gravitational potential and its partial derivatives. Using forward modeling based on Newton's integral, mass distributions are generally decomposed into regular elementary bodies. In classical approaches, prisms or point mass approximations are mostly utilized. Considering the effect of the sphericity of the Earth, alternative mass modeling methods based on tesseroid bodies (spherical prisms) should be taken into account, particularly in regional and global applications. Expressions for the gravitational field of a point mass are relatively simple when formulated in Cartesian coordinates. In the case of integrating over a tesseroid volume bounded by geocentric spherical coordinates, it will be shown that it is also beneficial to represent the integral kernel in terms of Cartesian coordinates. This considerably simplifies the determination of the tesseroid's potential derivatives in comparison with previously published methodologies that make use of integral kernels expressed in spherical coordinates. Based on this idea, optimized formulas for the gravitational potential of a homogeneous tesseroid and its derivatives up to second-order are elaborated in this paper. These new formulas do not suffer from the polar singularity of the spherical coordinate system and can, therefore, be evaluated for any position on the globe. Since integrals over tesseroid volumes cannot be solved analytically, the numerical evaluation is achieved by means of expanding the integral kernel in a Taylor series with fourth-order error in the spatial coordinates of the integration point. As the structure of the Cartesian integral kernel is substantially simplified, Taylor coefficients can be represented in a compact and computationally attractive form. Thus, the use of the optimized tesseroid formulas particularly benefits from a significant decrease in computation time by about 45 % compared to previously used algorithms. In order to show the computational efficiency and to validate the mathematical derivations, the new tesseroid formulas are applied to two realistic numerical experiments and are compared to previously published tesseroid methods and the conventional prism approach.
NASA Astrophysics Data System (ADS)
Alekseev, V. A.; Krylova, D. D.
1996-02-01
The analytical investigation of Bloch equations is used to describe the main features of the 1D velocity selective coherent population trapping cooling scheme. For the initial stage of cooling the fraction of cooled atoms is derived in the case of a Gaussian initial velocity distribution. At very long times of interaction the fraction of cooled atoms and the velocity distribution function are described by simple analytical formulae and do not depend on the initial distribution. These results are in good agreement with those of Bardou, Bouchaud, Emile, Aspect and Cohen-Tannoudji based on statistical analysis in terms of Levy flights and with Monte-Carlo simulations of the process.
Tang, Bin; Jiang, Chun; Zhu, Haibin
2012-08-01
Based on the scalar diffraction theory and the fact that a hard-edged aperture function can be expanded into a finite sum of complex Gaussian functions, an approximate analytical solution for Bessel-Gaussian (BG) beams propagating through a double-apertured fractional Fourier transform (FrFT) system is derived in the cylindrical coordinate. By using the approximate analytical formulas, the propagation properties of BG beams passing through a double-apertured FrFT optical system have been studied in detail by some typical numerical examples. The results indicate that the double-apertured FrFT optical system provides a convenient way for controlling the properties of the BG beams by properly choosing the optical parameters.
Modeling the within-host dynamics of cholera: bacterial-viral interaction.
Wang, Xueying; Wang, Jin
2017-08-01
Novel deterministic and stochastic models are proposed in this paper for the within-host dynamics of cholera, with a focus on the bacterial-viral interaction. The deterministic model is a system of differential equations describing the interaction among the two types of vibrios and the viruses. The stochastic model is a system of Markov jump processes that is derived based on the dynamics of the deterministic model. The multitype branching process approximation is applied to estimate the extinction probability of bacteria and viruses within a human host during the early stage of the bacterial-viral infection. Accordingly, a closed-form expression is derived for the disease extinction probability, and analytic estimates are validated with numerical simulations. The local and global dynamics of the bacterial-viral interaction are analysed using the deterministic model, and the result indicates that there is a sharp disease threshold characterized by the basic reproduction number [Formula: see text]: if [Formula: see text], vibrios ingested from the environment into human body will not cause cholera infection; if [Formula: see text], vibrios will grow with increased toxicity and persist within the host, leading to human cholera. In contrast, the stochastic model indicates, more realistically, that there is always a positive probability of disease extinction within the human host.
Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol.
Ullah, Sana; Chen, Min; Kwak, Kyung Sup
2012-12-01
The IEEE 802.15.6 is a new communication standard on Wireless Body Area Network (WBAN) that focuses on a variety of medical, Consumer Electronics (CE) and entertainment applications. In this paper, the throughput and delay performance of the IEEE 802.15.6 is presented. Numerical formulas are derived to determine the maximum throughput and minimum delay limits of the IEEE 802.15.6 for an ideal channel with no transmission errors. These limits are derived for different frequency bands and data rates. Our analysis is validated by extensive simulations using a custom C+ + simulator. Based on analytical and simulation results, useful conclusions are derived for network provisioning and packet size optimization for different applications.
NASA Astrophysics Data System (ADS)
Šprlák, Michal; Novák, Pavel
2017-02-01
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy.
PDB-NMA of a protein homodimer reproduces distinct experimental motility asymmetry.
Tirion, Monique M; Ben-Avraham, Daniel
2018-01-16
We have extended our analytically derived PDB-NMA formulation, Atomic Torsional Modal Analysis or ATMAN (Tirion and ben-Avraham 2015 Phys. Rev. E 91 032712), to include protein dimers using mixed internal and Cartesian coordinates. A test case on a 1.3 [Formula: see text] resolution model of a small homodimer, ActVA-ORF6, consisting of two 112-residue subunits identically folded in a compact 50 [Formula: see text] sphere, reproduces the distinct experimental Debye-Waller motility asymmetry for the two chains, demonstrating that structure sensitively selects vibrational signatures. The vibrational analysis of this PDB entry, together with biochemical and crystallographic data, demonstrates the cooperative nature of the dimeric interaction of the two subunits and suggests a mechanical model for subunit interconversion during the catalytic cycle.
The Adams formulas for numerical integration of differential equations from 1st to 20th order
NASA Technical Reports Server (NTRS)
Kirkpatrick, J. C.
1976-01-01
The Adams Bashforth predictor coefficients and the Adams Moulton corrector coefficients for the integration of differential equations are presented for methods of 1st to 20th order. The order of the method as presented refers to the highest order difference formula used in Newton's backward difference interpolation formula, on which the Adams method is based. The Adams method is a polynomial approximation method derived from Newton's backward difference interpolation formula. The Newton formula is derived and expanded to 20th order. The Adams predictor and corrector formulas are derived and expressed in terms of differences of the derivatives, as well as in terms of the derivatives themselves. All coefficients are given to 18 significant digits. For the difference formula only, the ratio coefficients are given to 10th order.
Hyltoft Petersen, Per; Lund, Flemming; Fraser, Callum G; Sandberg, Sverre; Sölétormos, György
2018-01-01
Background Many clinical decisions are based on comparison of patient results with reference intervals. Therefore, an estimation of the analytical performance specifications for the quality that would be required to allow sharing common reference intervals is needed. The International Federation of Clinical Chemistry (IFCC) recommended a minimum of 120 reference individuals to establish reference intervals. This number implies a certain level of quality, which could then be used for defining analytical performance specifications as the maximum combination of analytical bias and imprecision required for sharing common reference intervals, the aim of this investigation. Methods Two methods were investigated for defining the maximum combination of analytical bias and imprecision that would give the same quality of common reference intervals as the IFCC recommendation. Method 1 is based on a formula for the combination of analytical bias and imprecision and Method 2 is based on the Microsoft Excel formula NORMINV including the fractional probability of reference individuals outside each limit and the Gaussian variables of mean and standard deviation. The combinations of normalized bias and imprecision are illustrated for both methods. The formulae are identical for Gaussian and log-Gaussian distributions. Results Method 2 gives the correct results with a constant percentage of 4.4% for all combinations of bias and imprecision. Conclusion The Microsoft Excel formula NORMINV is useful for the estimation of analytical performance specifications for both Gaussian and log-Gaussian distributions of reference intervals.
Effect of polarization on the evolution of electromagnetic hollow Gaussian Schell-model beam
NASA Astrophysics Data System (ADS)
Long, Xuewen; Lu, Keqing; Zhang, Yuhong; Guo, Jianbang; Li, Kehao
2011-02-01
Based on the theory of coherence, an analytical propagation formula for partially polarized and partially coherent hollow Gaussian Schell-model beams (HGSMBs) passing through a paraxial optical system is derived. Furthermore, we show that the degree of polarization of source may affect the evolution of HGSMBs and a tunable dark region may exist. For two special cases of fully coherent and partially coherent δxx = δyy, normalized intensity distributions are independent of the polarization of source.
Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, I.H.
The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.
Hanging angles of two electrostatically repelling pith balls of different masses
NASA Astrophysics Data System (ADS)
Tran, Phuc G.; Mungan, Carl E.
2011-09-01
An analytic solution can be derived for the angles of two mutually repelling charged pith balls of unequal mass hanging from strings from a common point of attachment. Just as in the equal-mass case, a cubic equation is found for the square of the sine of either angle, and an approximation can be used to avoid Cardano's formula for small angles. These results extend a standard problem treated in introductory undergraduate courses in electricity and magnetism.
NASA Astrophysics Data System (ADS)
Lee, Hyoung-In; Mok, Jinsik
2018-05-01
We investigate electromagnetic waves propagating through non-magnetic and loss-free dielectric media, but with spatially inhomogeneous refractive indices. We derive hence a set of analytic formulae for conservation laws and energy-current (Poynting) vector. As a result, we deduce that the energy-current vector cannot be neatly separated into its orbital and spin parts in contrast to the cases with spatially homogeneous media. In addition, we present physical interpretations of the two additional terms due to spatial material inhomogeneity.
Optical response of photopolymer materials for holographic data storage applications.
Sheridan, J T; Gleeson, M R; Close, C E; Kelly, J V
2007-01-01
We briefly review the application of photopolymer recording materials in the area of holographic data storage. In particular we discuss the recent development of the Non-local Polymerisation Driven Diffusion model. Applying this model we develop simple first-order analytic expressions describing the spatial frequency response of photopolymer materials. The assumptions made in the derivation of these formulae are described and their ranges of validity are examined. The effects of particular physical parameters of a photopolymer on the material response are discussed.
A short history of the development of the Turc-Mezentsev water balance formula
NASA Astrophysics Data System (ADS)
Andréassian, Vazken; Lebecherel, Laure
2013-04-01
In the 1950s, a formula linking long term average evaporation to long-term average precipitation and potential evaporation was quasi-simultaneously proposed in France and in the Soviet Union. However, because Turc and Mezentsev published in French and Russian respectively, their work has received limited attention, and the formula they proposed is often given different names. • Work of Lucien Turc in France (1954) Lucien Turc, a French soil scientist, worked at the Versailles soil science laboratory of the French National Agronomical Research Institute. For agronomic purposes, he was interested in developing a formula to estimate actual evapotranspiration from precipitation and temperature data. Since lysimeter data were so scarce at that time, he had the idea to derive such a formula from catchment water balance. With the help of the hydrologist Maurice Pardé, he assembled a set of data on 254 catchments from all over the world. He derived long-term average actual evapotranspiration (E) from estimates of long-term average precipitation (P) and long-term average discharge (Q). Then, Turc looked for a mathematical function linking two non-dimensional terms: the aridity index (the ratio of precipitation P and potential evapotranspiration E0) and the evapotranspiration rate (the ratio of E and E0). He proposed the following formulation: E/P=1/[1+(P/E0)**n]**(1/n) in which n is an exponent to estimate. Turc graphically looked for the most convenient value for n, and concluded that the best fit was "with n=3, or may be n=2" (Turc, 1954, p.563). • Work of Varfolomeï Mezentsev in the Soviet Union (1955) Mezentsev (1955) worked at the University of Omsk in Siberia. He started his analysis from a formula proposed by Bagrov (1953): dE/dP=1-(E/E0)**n (Eq.1) This formula presents the interesting property to integrate into the Schreiber (1904) water balance formula for n=1:and into the Ol'Dekop (1911) water balance formula for n=2. But it had no analytical solution for other values of n. Mezentsev (1955) complexified Bagrov's formula by rewriting it as follows: dE/dP=[1-(E/E0)**n]**(1+1/n) (Eq.2) which keeps the same interpretation as Eq. 1. Eq. 2 can be integrated analytically and yields Eq. 3: E/P=1/[1+(P/E0)**n]**(1/n) (Eq.3) which is identical to the general formulation proposed by Turc. Based on a set of 35 catchments of the Siberian plateau, Mezentsev suggested using the value of 2.3 for parameter n, which is close to the value advised by Turc. References Bagrov, N. A., 1953. O srednem mnogoletnem ispraeniiz c paverknosti sushi (on the average long-term evaporation from the land surface), Meteorologia i Gidrologia, 10, 20-25. Mezentsev, V., 1955. More on the computation of total evaporation (Yechio raz o rastchetie srednevo summarnovo ispareniia). Meteorologia i Gidrologia, 5: 24-26. Turc, L., 1954. Le bilan d'eau des sols: relation entre les précipitations, l'évaporation et l'écoulement. Annales Agronomiques, Série A(5): 491-595.
High-latitude analytical formulas for scintillation levels
NASA Astrophysics Data System (ADS)
Aarons, J.; MacKenzie, E.; Bhavnani, K.
The paper deals with the seasonal, solar flux, and magnetic dependence at auroral and subauroral latitudes as well as at a mid-latitude station. Analytical formulas are developed from a large data base. The data base used is a series of measurements of the scintillations of one synchronous satellite beacon, ATS 3, transmitting at 137 MHz. The analytical terms provide mean scintillation excursions as a function of time of day, month, solar flux, and magnetic index.
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Casper, Jay H.
2012-01-01
We show that a simple modification of Formulation 1 of Farassat results in a new analytic expression that is highly suitable for broadband noise prediction when extensive turbulence simulation is available. This result satisfies all the stringent requirements, such as permitting the use of the exact geometry and kinematics of the moving body, that we have set as our goal in the derivation of useful acoustic formulas for the prediction of rotating blade and airframe noise. We also derive a simple analytic expression for the autocorrelation of the acoustic pressure that is valid in the near and far fields. Our analysis is based on the time integral of the acoustic pressure that can easily be obtained at any resolution for any observer time interval and digitally analyzed for broadband noise prediction. We have named this result as Formulation 2B of Farassat. One significant consequence of Formulation 2B is the derivation of the acoustic velocity potential for the thickness and loading terms of the Ffowcs Williams-Hawkings (FW-H) equation. This will greatly enhance the usefulness of the Fast Scattering Code (FSC) by providing a high fidelity boundary condition input for scattering predictions.
Ozarda, Yesim; Ichihara, Kiyoshi; Aslan, Diler; Aybek, Hulya; Ari, Zeki; Taneli, Fatma; Coker, Canan; Akan, Pinar; Sisman, Ali Riza; Bahceci, Onur; Sezgin, Nurzen; Demir, Meltem; Yucel, Gultekin; Akbas, Halide; Ozdem, Sebahat; Polat, Gurbuz; Erbagci, Ayse Binnur; Orkmez, Mustafa; Mete, Nuriye; Evliyaoglu, Osman; Kiyici, Aysel; Vatansev, Husamettin; Ozturk, Bahadir; Yucel, Dogan; Kayaalp, Damla; Dogan, Kubra; Pinar, Asli; Gurbilek, Mehmet; Cetinkaya, Cigdem Damla; Akin, Okhan; Serdar, Muhittin; Kurt, Ismail; Erdinc, Selda; Kadicesme, Ozgur; Ilhan, Necip; Atali, Dilek Sadak; Bakan, Ebubekir; Polat, Harun; Noyan, Tevfik; Can, Murat; Bedir, Abdulkerim; Okuyucu, Ali; Deger, Orhan; Agac, Suret; Ademoglu, Evin; Kaya, Ayşem; Nogay, Turkan; Eren, Nezaket; Dirican, Melahat; Tuncer, GulOzlem; Aykus, Mehmet; Gunes, Yeliz; Ozmen, Sevda Unalli; Kawano, Reo; Tezcan, Sehavet; Demirpence, Ozlem; Degirmen, Elif
2014-12-01
A nationwide multicenter study was organized to establish reference intervals (RIs) in the Turkish population for 25 commonly tested biochemical analytes and to explore sources of variation in reference values, including regionality. Blood samples were collected nationwide in 28 laboratories from the seven regions (≥400 samples/region, 3066 in all). The sera were collectively analyzed in Uludag University in Bursa using Abbott reagents and analyzer. Reference materials were used for standardization of test results. After secondary exclusion using the latent abnormal values exclusion method, RIs were derived by a parametric method employing the modified Box-Cox formula and compared with the RIs by the non-parametric method. Three-level nested ANOVA was used to evaluate variations among sexes, ages and regions. Associations between test results and age, body mass index (BMI) and region were determined by multiple regression analysis (MRA). By ANOVA, differences of reference values among seven regions were significant in none of the 25 analytes. Significant sex-related and age-related differences were observed for 10 and seven analytes, respectively. MRA revealed BMI-related changes in results for uric acid, glucose, triglycerides, high-density lipoprotein (HDL)-cholesterol, alanine aminotransferase, and γ-glutamyltransferase. Their RIs were thus derived by applying stricter criteria excluding individuals with BMI >28 kg/m2. Ranges of RIs by non-parametric method were wider than those by parametric method especially for those analytes affected by BMI. With the lack of regional differences and the well-standardized status of test results, the RIs derived from this nationwide study can be used for the entire Turkish population.
A simple method for estimating frequency response corrections for eddy covariance systems
W. J. Massman
2000-01-01
A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approximation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain...
The Kirchhoff Formulas for Moving Surfaces in Aeroacoustics - The Subsonic and Supersonic Cases
NASA Technical Reports Server (NTRS)
Farassat, F.
1996-01-01
One of the active areas of computational aeroacoustics is the application of the Kirchhoff formulas to the problems of the rotating machinery noise predictions. The original Kirchhoff formula was derived for a stationary surface. In 1988, Farassat and Myers derived a Kirchhoff Formula obtained originally by Morgans using modem mathematics. These authors gave a formula particularly useful for applications in aeroacoustics. This formula is for a surface moving at subsonic speed. Later in 1995 these authors derived the Kirchhoff formula for a super-sonically moving surface. This technical memorandum presents the viewgraphs of a day long workshop by the author on the derivation of the Kirchhoff formulas. All necessary background mathematics such as differential geometry and multidimensional generalized function theory are discussed in these viewgraphs. Abstraction is kept at minimum level here. These viewgraphs are also suitable for understanding the derivation and obtaining the solutions of the Ffowcs Williams-Hawkings equation. In the first part of this memorandum, some introductory remarks are made on generalized functions, the derivation of the Kirchhoff formulas and the development and validation of Kirchhoff codes. Separate lists of references by Lyrintzis, Long, Strawn and their co-workers are given in this memorandum. This publication is aimed at graduate students, physicists and engineers who are in need of the understanding and applications of the Kirchhoff formulas in acoustics and electromagnetics.
An analytical computation of magnetic field generated from a cylinder ferromagnet
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro
2018-04-01
An analytical formulation to compute a magnetic field generated from an uniformly magnetized cylinder ferromagnet is developed. Exact solutions of the magnetic field generated from the magnetization pointing in an arbitrary direction are derived, which are applicable both inside and outside the ferromagnet. The validities of the present formulas are confirmed by comparing them with demagnetization coefficients estimated in earlier works. The results will be useful for designing practical applications, such as high-density magnetic recording and microwave generators, where nanostructured ferromagnets are coupled to each other through the dipole interactions and show cooperative phenomena such as synchronization. As an example, the magnetic field generated from a spin torque oscillator for magnetic recording based on microwave assisted magnetization reversal is studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmauder, S.; Haake, S.; Mueller, W.H.
Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less
Poitevin, Eric
2016-01-01
The minerals and trace elements that account for about 4% of total human body mass serve as materials and regulators in numerous biological activities in body structure building. Infant formula and milk products are important sources of endogenic and added minerals and trace elements and hence, must comply with regulatory as well as nutritional and safety requirements. In addition, reliable analytical data are necessary to support product content and innovation, health claims, or declaration and specific safety issues. Adequate analytical platforms and methods must be implemented to demonstrate both the compliance and safety assessment of all declared and regulated minerals and trace elements, especially trace-element contaminant surveillance. The first part of this paper presents general information on the mineral composition of infant formula and milk products and their regulatory status. In the second part, a survey describes the main techniques and related current official methods determining minerals and trace elements in infant formula and milk products applied for by various international organizations (AOAC INTERNATIONAL, the International Organization for Standardization, the International Dairy Federation, and the European Committe for Standardization). The third part summarizes method officialization activities by Stakeholder Panels on Infant Formula and Adult Nutritionals and Stakeholder Panel on Strategic Food Analytical Methods. The final part covers a general discussion focusing on analytical gaps and future trends in inorganic analysis that have been applied for in infant formula and milk-based products.
Phonon dispersion on Ag (100) surface: A modified analytic embedded atom method study
NASA Astrophysics Data System (ADS)
Xiao-Jun, Zhang; Chang-Le, Chen
2016-01-01
Within the harmonic approximation, the analytic expression of the dynamical matrix is derived based on the modified analytic embedded atom method (MAEAM) and the dynamics theory of surface lattice. The surface phonon dispersions along three major symmetry directions , and X¯M¯ are calculated for the clean Ag (100) surface by using our derived formulas. We then discuss the polarization and localization of surface modes at points X¯ and M¯ by plotting the squared polarization vectors as a function of the layer index. The phonon frequencies of the surface modes calculated by MAEAM are compared with the available experimental and other theoretical data. It is found that the present results are generally in agreement with the referenced experimental or theoretical results, with a maximum deviation of 10.4%. The agreement shows that the modified analytic embedded atom method is a reasonable many-body potential model to quickly describe the surface lattice vibration. It also lays a significant foundation for studying the surface lattice vibration in other metals. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471301 and 61078057), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1301), and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20126102110045).
NASA Astrophysics Data System (ADS)
Chen, Y. F.; Chang, C. C.; Lee, C. Y.; Tung, J. C.; Liang, H. C.; Huang, K. F.
2018-01-01
Theoretical wave functions are analytically derived to characterize the propagation evolution of the Hermite-Gaussian (HG) beams transformed by a single-lens astigmatic mode converter with arbitrary angle. The derived wave functions are related to the combination of the rotation transform and the antisymmetric fractional Fourier transform. The derived formula is systematically validated by using an off-axis diode-pumped solid-state laser to generate various high-order HG beams for mode conversions. In addition to validation, the creation and evolution of vortex structures in the transformed HG beams are numerically manifested. The present theoretical analyses can be used not only to characterize the evolution of the transformed beams but to design the optical vortex beams with various forms.
More on the decoder error probability for Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Cheung, K.-M.
1987-01-01
The decoder error probability for Reed-Solomon codes (more generally, linear maximum distance separable codes) is examined. McEliece and Swanson offered an upper bound on P sub E (u), the decoder error probability given that u symbol errors occurs. This upper bound is slightly greater than Q, the probability that a completely random error pattern will cause decoder error. By using a combinatoric technique, the principle of inclusion and exclusion, an exact formula for P sub E (u) is derived. The P sub e (u) for the (255, 223) Reed-Solomon Code used by NASA, and for the (31,15) Reed-Solomon code (JTIDS code), are calculated using the exact formula, and the P sub E (u)'s are observed to approach the Q's of the codes rapidly as u gets larger. An upper bound for the expression is derived, and is shown to decrease nearly exponentially as u increases. This proves analytically that P sub E (u) indeed approaches Q as u becomes large, and some laws of large numbers come into play.
Direct S -matrix calculation for diffractive structures and metasurfaces
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexey A.; Stebunov, Yury V.; Baidin, Denis F.; Kämpfe, Thomas; Jourlin, Yves
2018-06-01
The paper presents a derivation of analytical components of S matrices for arbitrary planar diffractive structures and metasurfaces in the Fourier domain. The attained general formulas for S -matrix components can be applied within both formulations in the Cartesian and curvilinear metric. A numerical method based on these results can benefit from all previous improvements of the Fourier domain methods. In addition, we provide expressions for S -matrix calculation in the case of periodically corrugated layers of two-dimensional materials, which are valid for arbitrary corrugation depth-to-period ratios. As an example, the derived equations are used to simulate resonant grating excitation of graphene plasmons and the impact of a silica interlayer on corresponding reflection curves.
Elastic properties of spherically anisotropic piezoelectric composites
NASA Astrophysics Data System (ADS)
Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming
2010-09-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.
Analysis of Mathematical Modelling on Potentiometric Biosensors
Mehala, N.; Rajendran, L.
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765
Analysis of mathematical modelling on potentiometric biosensors.
Mehala, N; Rajendran, L
2014-01-01
A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.
NASA Astrophysics Data System (ADS)
Chernikova, Dina; Axell, Kåre; Avdic, Senada; Pázsit, Imre; Nordlund, Anders; Allard, Stefan
2015-05-01
Two versions of the neutron-gamma variance to mean (Feynman-alpha method or Feynman-Y function) formula for either gamma detection only or total neutron-gamma detection, respectively, are derived and compared in this paper. The new formulas have particular importance for detectors of either gamma photons or detectors sensitive to both neutron and gamma radiation. If applied to a plastic or liquid scintillation detector, the total neutron-gamma detection Feynman-Y expression corresponds to a situation where no discrimination is made between neutrons and gamma particles. The gamma variance to mean formulas are useful when a detector of only gamma radiation is used or when working with a combined neutron-gamma detector at high count rates. The theoretical derivation is based on the Chapman-Kolmogorov equation with the inclusion of general reactions and corresponding intensities for neutrons and gammas, but with the inclusion of prompt reactions only. A one energy group approximation is considered. The comparison of the two different theories is made by using reaction intensities obtained in MCNPX simulations with a simplified geometry for two scintillation detectors and a 252Cf-source. In addition, the variance to mean ratios, neutron, gamma and total neutron-gamma are evaluated experimentally for a weak 252Cf neutron-gamma source, a 137Cs random gamma source and a 22Na correlated gamma source. Due to the focus being on the possibility of using neutron-gamma variance to mean theories for both reactor and safeguards applications, we limited the present study to the general analytical expressions for Feynman-alpha formulas.
Theoretical approximation of focusing-wave induced load upon a large-scale vertical cylinder
NASA Astrophysics Data System (ADS)
Xue, Hong-xiang; Hu, Zhe; Tang, Wen-yong; Zhang, Xiao-ying; Wang, Kun-peng
2017-10-01
Until now, most researches into the rogue-wave-structure interaction have relied on experimental measurement and numerical simulation. Owing to the complexity of the physical mechanism of rogue waves, theoretical study on the wave-structure issue still makes little progress. In this paper, the rogue wave flow around a vertical cylinder is analytically studied within the scope of the potential theory. The rogue wave is modeled by the Gauss envelope, which is one particular case of the well-known focusing theory. The formulae of the wave-induced horizontal force and bending moment are proposed. For the convenience of engineering application, the derived formulae are simplified appropriately, and verified against numerical results. In addition, the influence of wave parameters, such as the energy focusing degree and the wave focusing position, is thoroughly investigated.
Agent-based model for the h-index - exact solution
NASA Astrophysics Data System (ADS)
Żogała-Siudem, Barbara; Siudem, Grzegorz; Cena, Anna; Gagolewski, Marek
2016-01-01
Hirsch's h-index is perhaps the most popular citation-based measure of scientific excellence. In 2013, Ionescu and Chopard proposed an agent-based model describing a process for generating publications and citations in an abstract scientific community [G. Ionescu, B. Chopard, Eur. Phys. J. B 86, 426 (2013)]. Within such a framework, one may simulate a scientist's activity, and - by extension - investigate the whole community of researchers. Even though the Ionescu and Chopard model predicts the h-index quite well, the authors provided a solution based solely on simulations. In this paper, we complete their results with exact, analytic formulas. What is more, by considering a simplified version of the Ionescu-Chopard model, we obtained a compact, easy to compute formula for the h-index. The derived approximate and exact solutions are investigated on a simulated and real-world data sets.
NASA Astrophysics Data System (ADS)
Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing
2013-05-01
A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.
Chandrasekhar's dynamical friction and non-extensive statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.M.; Lima, J.A.S.; De Souza, R.E.
2016-05-01
The motion of a point like object of mass M passing through the background potential of massive collisionless particles ( m || M ) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass M . In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the q -nonextensive kinetic theory. Inmore » the extensive limiting case ( q = 1), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical N -body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive q -parameter.« less
Analytical studies on holographic superconductor in the probe limit
NASA Astrophysics Data System (ADS)
Peng, Yan; Liu, Guohua
2017-09-01
We investigate the holographic superconductor model constructed in the (2+1)-dimensional AdS soliton background in the probe limit. With analytical methods, we obtain the formula of critical phase transition points with respect to the scalar mass. We also generalize this formula to higher-dimensional space-time. We mention that these formulas are precise compared to numerical results. In addition, we find a correspondence between the value of the charged scalar field at the tip and the scalar operator at infinity around the phase transition points.
Accuracy-preserving source term quadrature for third-order edge-based discretization
NASA Astrophysics Data System (ADS)
Nishikawa, Hiroaki; Liu, Yi
2017-09-01
In this paper, we derive a family of source term quadrature formulas for preserving third-order accuracy of the node-centered edge-based discretization for conservation laws with source terms on arbitrary simplex grids. A three-parameter family of source term quadrature formulas is derived, and as a subset, a one-parameter family of economical formulas is identified that does not require second derivatives of the source term. Among the economical formulas, a unique formula is then derived that does not require gradients of the source term at neighbor nodes, thus leading to a significantly smaller discretization stencil for source terms. All the formulas derived in this paper do not require a boundary closure, and therefore can be directly applied at boundary nodes. Numerical results are presented to demonstrate third-order accuracy at interior and boundary nodes for one-dimensional grids and linear triangular/tetrahedral grids over straight and curved geometries.
NASA Astrophysics Data System (ADS)
Feng, Bin; Shi, Zelin; Zhang, Chengshuo; Xu, Baoshu; Zhang, Xiaodong
2016-05-01
The point spread function (PSF) inconsistency caused by temperature variation leads to artifacts in decoded images of a wavefront coding infrared imaging system. Therefore, this paper proposes an analytical model for the effect of temperature variation on the PSF consistency. In the proposed model, a formula for the thermal deformation of an optical phase mask is derived. This formula indicates that a cubic optical phase mask (CPM) is still cubic after thermal deformation. A proposed equivalent cubic phase mask (E-CPM) is a virtual and room-temperature lens which characterizes the optical effect of temperature variation on the CPM. Additionally, a calculating method for PSF consistency after temperature variation is presented. Numerical simulation illustrates the validity of the proposed model and some significant conclusions are drawn. Given the form parameter, the PSF consistency achieved by a Ge-material CPM is better than the PSF consistency by a ZnSe-material CPM. The effect of the optical phase mask on PSF inconsistency is much slighter than that of the auxiliary lens group. A large form parameter of the CPM will introduce large defocus-insensitive aberrations, which improves the PSF consistency but degrades the room-temperature MTF.
Mechanical oscillatory behavior of a C60 fullerene tunneling through open carbon nanocones
NASA Astrophysics Data System (ADS)
Sadeghi, F.; Ansari, R.
2017-07-01
This paper deals with the mechanical oscillatory behavior of a C60 fullerene inside open carbon nanocones (CNCs). The fullerene molecule is assumed to enter the nanocone through its small end or wide end. Following our previously published study, semi-analytical expressions for the evaluation of vdW interactions are presented which facilitate obtaining a formula for oscillation frequency. The equation of motion is numerically solved to attain the time histories of separation distance and velocity of the fullerene molecule. Based on the conservation of the mechanical energy law, a new semi-analytical formula is also derived to accurately evaluate the oscillation frequency of the system. With respect to the present formulation, a detailed parametric study is conducted to gain an insight into the effects of both geometrical parameters (small-end radius, wide-end radius and vertex angle of nanocone) and initial conditions (initial separation distance and initial velocity) on the oscillatory behavior of C60 fullerene-open CNC oscillators. For given geometrical parameters and initial conditions, it is shown that higher oscillation frequencies can be achieved when the fullerene molecule enters the open nanocone through its small end.
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Dan, Youquan; Yu, Jiayi; Cai, Yangjian
2017-10-01
General analytical formulae for the kurtosis parameters K (K parameters) of the arbitrary electromagnetic (AE) beams propagating through non-Kolmogorov turbulence are derived, and according to the unified theory of polarization and coherence, the effect of degree of polarization (DOP) of an electromagnetic beam on the K parameter is studied. The analytical formulae can be given by the second-order moments and fourth-order moments of the Wigner distribution function for AE beams at source plane, the two turbulence quantities relating to the spatial power spectrum, and the propagation distance. Our results can also be extended to the arbitrary beams and the arbitrary spatial power spectra of Kolmogorov turbulence or non-Kolmogorov turbulence. Taking the stochastic electromagnetic Gaussian Schell-model (SEGSM) beam as an example, the numerical examples indicate that the K parameters of a SEGSM beam in non-Kolmogorov turbulence depend on propagation distance, the beam parameters and turbulence parameters. The K parameter of a SEGM beam is more sensitive to effect of turbulence with smaller inner scale and generalized exponent parameter. A non-polarized light has the strongest ability of resisting turbulence (ART), however, a fully polarized SEGSM beam has the poorest ART.
Chen, Y; Tsong, T Y
1994-01-01
The stationary-state kinetic properties of a simplified two-state electro-conformational coupling model (ECC) in the presence of alternating rectangular electric potential pulses are derived analytically. Analytic expressions for the transport flux, the rate of electric energy dissipation, and the efficiency of the transducing system are obtained as a function of the amplitude and frequency of the oscillation. These formulas clarify some fundamental concept of the ECC model and are directly applicable to the interpretation and design of experiments. Based on these formulas, the reversibility and the degree of coupling of the system can be studied quantitatively. It is found that the oscillation-induced free energy transduction is reversible and tight-coupled only when the amplitude of the oscillating electric field is infinitely large. In general, the coupling is not tight when the amplitude of the electric field is finite. Furthermore, depending on the kinetic parameters of the model, there may exist a "critical" electric field amplitude, below which free energy transduction is not reversible. That is, energy may be transduced from the electric to the chemical, but not from the chemical to the electric. PMID:8075348
The H I-to-H2 Transition in a Turbulent Medium
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel
2017-07-01
We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
Kotlyar, Victor V; Almazov, Anton A; Khonina, Svetlana N; Soifer, Victor A; Elfstrom, Henna; Turunen, Jari
2005-05-01
We deduce and study an analytical expression for Fresnel diffraction of a plane wave by a spiral phase plate (SPP) that imparts an arbitrary-order phase singularity on the light field. Estimates for the optical vortex radius that depends on the singularity's integer order n (also termed topological charge, or order of the dislocation) have been derived. The near-zero vortex intensity is shown to be proportional to rho2n, where p is the radial coordinate. Also, an analytical expression for Fresnel diffraction of the Gaussian beam by a SPP with nth-order singularity is analyzed. The far-field intensity distribution is derived. The radius of maximal intensity is shown to depend on the singularity number. The behavior of the Gaussian beam intensity after a SPP with second-order singularity (n = 2) is studied in more detail. The parameters of the light beams generated numerically with the Fresnel transform and via analytical formulas are in good agreement. In addition, the light fields with first- and second-order singularities were generated by a 32-level SPP fabricated on the resist by use of the electron-beam lithography technique.
NASA Astrophysics Data System (ADS)
Abd-Elhameed, W. M.
2017-07-01
In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.
Yavari, Issa; Zahedi, Nooshin; Baoosi, Leila; Skoulika, Stavroula
2018-02-01
A synthesis of functionalized 4,5-bis(phenylimino)-1,3-thiazolidine-2-ylidenes via a simple reaction between ketene [Formula: see text]-acetals (derived from isothiocyanates and acetonitrile derivatives) with N,[Formula: see text]-diphenyloxalimidoyl dichloride in the presence of KOH in DMF is described. When CS[Formula: see text] was used as the heterocumulene component, the reaction led to the formation of 4,5-bis(phenylimino)-1,3-dithiolan-2-ylidene derivatives, in moderate to good yields.
Ohtaki, Megu; Tonda, Tetsuji; Aihara, Kazuyuki
2015-10-01
We consider a two-phase Poisson process model where only early successive transitions are assumed to be sensitive to exposure. In the case where intensity transitions are low, we derive analytically an approximate formula for the distribution of time to event for the excess hazard ratio (EHR) due to a single point exposure. The formula for EHR is a polynomial in exposure dose. Since the formula for EHR contains no unknown parameters except for the number of total stages, number of exposure-sensitive stages, and a coefficient of exposure effect, it is applicable easily under a variety of situations where there exists a possible latency time from a single point exposure to occurrence of event. Based on the multistage hypothesis of cancer, we formulate a radiation carcinogenesis model in which only some early consecutive stages of the process are sensitive to exposure, whereas later stages are not affected. An illustrative analysis using the proposed model is given for cancer mortality among A-bomb survivors. Copyright © 2015 Elsevier Inc. All rights reserved.
Thin-plate spline quadrature of geodetic integrals
NASA Technical Reports Server (NTRS)
Vangysen, Herman
1989-01-01
Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.
NASA Astrophysics Data System (ADS)
Frants, E. A.; Ganchenko, G. S.; Shelistov, V. S.; Amiroudine, S.; Demekhin, E. A.
2018-02-01
Electrokinetics and the movement of charge-selective micro-granules in an electrolyte solution under the influence of an external electric field are investigated theoretically. Straightforward perturbation analysis is applied to a thin electric double layer and a weak external field, while a numerical solution is used for moderate electric fields. The asymptotic solution enables the determination of the salt concentration, electric charge distribution, and electro-osmotic velocity fields. It may also be used to obtain a simple analytical formula for the electrophoretic velocity in the case of quasi-equilibrium electrophoresis (electrophoresis of the first kind). This formula differs from the famous Helmholtz-Smoluchowski relation, which applies to dielectric microparticles, but not to ion-selective granules. Numerical calculations are used to validate the derived formula for weak external electric fields, but for moderate fields, nonlinear effects lead to a significant increase in electrophoretic mobility and to a transition from quasi-equilibrium electrophoresis of the first kind to nonequilibrium electrophoresis of the second kind. Theoretical results are successfully compared with experimental data.
Ichihara, Kiyoshi; Ozarda, Yesim; Barth, Julian H; Klee, George; Qiu, Ling; Erasmus, Rajiv; Borai, Anwar; Evgina, Svetlana; Ashavaid, Tester; Khan, Dilshad; Schreier, Laura; Rolle, Reynan; Shimizu, Yoshihisa; Kimura, Shogo; Kawano, Reo; Armbruster, David; Mori, Kazuo; Yadav, Binod K
2017-04-01
The IFCC Committee on Reference Intervals and Decision Limits coordinated a global multicenter study on reference values (RVs) to explore rational and harmonizable procedures for derivation of reference intervals (RIs) and investigate the feasibility of sharing RIs through evaluation of sources of variation of RVs on a global scale. For the common protocol, rather lenient criteria for reference individuals were adopted to facilitate harmonized recruitment with planned use of the latent abnormal values exclusion (LAVE) method. As of July 2015, 12 countries had completed their study with total recruitment of 13,386 healthy adults. 25 analytes were measured chemically and 25 immunologically. A serum panel with assigned values was measured by all laboratories. RIs were derived by parametric and nonparametric methods. The effect of LAVE methods is prominent in analytes which reflect nutritional status, inflammation and muscular exertion, indicating that inappropriate results are frequent in any country. The validity of the parametric method was confirmed by the presence of analyte-specific distribution patterns and successful Gaussian transformation using the modified Box-Cox formula in all countries. After successful alignment of RVs based on the panel test results, nearly half the analytes showed variable degrees of between-country differences. This finding, however, requires confirmation after adjusting for BMI and other sources of variation. The results are reported in the second part of this paper. The collaborative study enabled us to evaluate rational methods for deriving RIs and comparing the RVs based on real-world datasets obtained in a harmonized manner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, Yangjian
2011-03-01
Partially coherent beams, such as Gaussian Schell-model beam, partially coherent dark hollow beam, partially coherent flat-topped beam and electromagnetic Gaussian Schell-model beam, have important applications in free space optical communications, optical imaging, optical trapping, inertial confinement fusion and nonlinear optics. In this paper, experimental generations of various partially coherent beams are introduced. Furthermore, with the help of a tensor method, analytical formulae for such beams propagating in turbulent atmosphere are derived, and the propagation properties of such beams in turbulent atmosphere are reviewed.
Aerodynamic response of an airfoil with thickness to a longitudinal and transverse periodic gust
NASA Technical Reports Server (NTRS)
Hamad, G.; Atassi, H.
1980-01-01
The unsteady lift of an airfoil with thickness subject to a two-dimensional periodic gust is analyzed using the recent theory of Goldstein and Atassi. It is found that to properly account for the coupling between the steady potential flow and the unsteady vortical flow, one has to consider the contribution of order alpha-squared (when alpha is steady state disturbance) to the potential flowfield. A closed form analytical formula is then derived for the lift function. The results show strong dependence on the wave members of the gust.
Einstein-Podolsky-Rosen steering and coherence in the family of entangled three-qubit states
NASA Astrophysics Data System (ADS)
Kalaga, J. K.; Leoński, W.; Peřina, J.
2018-04-01
Considering the system of three interacting qubits, we analyze four families of states from the point of view of bipartite correlations appearing in two-qubit subsystems of a three-qubit model, such as Einstein-Podolsky-Rosen steering, entanglement, and coherence. We reveal mutual relations among the steering parameter, concurrence, and three measures of coherence (degree of coherence, first-, and second-order correlation functions). Analyzing in parallel the steerable and unsteerable states, we derive analytical formulas giving the maximal and minimal values of coherence measures as concurrence varies.
Chang, Y C; Chu, J Y; Wang, T J; Lin, M W; Yeh, J T; Wang, J K
2008-01-21
The authors report the investigation of surface plasmon waves (SPW) generated by single nanohole and nanohole arrays. Scattering-type scanning near-field microscopy is used to directly observe near-field distribution. The images after Fourier transformation display characteristic patterns that match with the derived analytic formula. The correspondence helps to identify the role of the scanning tip in generating SPW, making possible of the removal of this tip-induced effect. This study provides a means to perform in-depth investigation on surface plasmon polaritons.
Properties of two-mode squeezed number states
NASA Technical Reports Server (NTRS)
Chizhov, Alexei V.; Murzakhmetov, B. K.
1994-01-01
Photon statistics and phase properties of two-mode squeezed number states are studied. It is shown that photon number distribution and Pegg-Barnett phase distribution for such states have similar (N + 1)-peak structure for nonzero value of the difference in the number of photons between modes. Exact analytical formulas for phase distributions based on different phase approaches are derived. The Pegg-Barnett phase distribution and the phase quasiprobability distribution associated with the Wigner function are close to each other, while the phase quasiprobability distribution associated with the Q function carries less phase information.
NASA Astrophysics Data System (ADS)
Biswas, Debabrata
2018-04-01
Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.
An analytic formula for the supercluster mass function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seunghwan; Lee, Jounghun, E-mail: slim@astro.umass.edu, E-mail: jounghun@astro.snu.ac.kr
2014-03-01
We present an analytic formula for the supercluster mass function, which is constructed by modifying the extended Zel'dovich model for the halo mass function. The formula has two characteristic parameters whose best-fit values are determined by fitting to the numerical results from N-body simulations for the standard ΛCDM cosmology. The parameters are found to be independent of redshifts and robust against variation of the key cosmological parameters. Under the assumption that the same formula for the supercluster mass function is valid for non-standard cosmological models, we show that the relative abundance of the rich superclusters should be a powerful indicatormore » of any deviation of the real universe from the prediction of the standard ΛCDM model.« less
New aspects in single-body meteor physics
NASA Astrophysics Data System (ADS)
Pecina, P.; Ceplecha, Z.
1983-03-01
An exact analytical solution of the atmospheric meteoroid single-body problem is presented expressing the distance along the trajectory as a function of time, which yields a least-square fit of the observed trajectory, and analytical expressions for the velocity at the point of maximum deceleration are derived. These results are used to determine the ablation coefficient from observations. These methods are applied to 17 Prairie Network fireballs observed below the maximum deceleration point and to the Innisfree fireball, and the results are found to be superior to the ones obtained with the usual interpolation formula. A model of luminous efficiencies for small velocities and for masses up to several hundred grams based on data on Innisfree and on artificial rocketry meteors is proposed and applied to separate the shape-density coefficient from the meteoroid mass.
Collective phase response curves for heterogeneous coupled oscillators
NASA Astrophysics Data System (ADS)
Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.
2015-08-01
Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.
Antiferromagnetic nano-oscillator in external magnetic fields
NASA Astrophysics Data System (ADS)
Checiński, Jakub; Frankowski, Marek; Stobiecki, Tomasz
2017-11-01
We describe the dynamics of an antiferromagnetic nano-oscillator in an external magnetic field of any given time distribution. The oscillator is powered by a spin current originating from spin-orbit effects in a neighboring heavy metal layer and is capable of emitting a THz signal in the presence of an additional easy-plane anisotropy. We derive an analytical formula describing the interaction between such a system and an external field, which can affect the output signal character. Interactions with magnetic pulses of different shapes, with a sinusoidal magnetic field and with a sequence of rapidly changing magnetic fields are discussed. We also perform numerical simulations based on the Landau-Lifshitz-Gilbert equation with spin-transfer torque effects to verify the obtained results and find a very good quantitative agreement between analytical and numerical predictions.
NASA Technical Reports Server (NTRS)
Fymat, A. L.; Smith, C. B.
1979-01-01
It is shown that the inverse analytical solutions, provided separately by Fymat and Box-McKellar, for reconstructing particle size distributions from remote spectral transmission measurements under the anomalous diffraction approximation can be derived using a cosine and a sine transform, respectively. Sufficient conditions of validity of the two formulas are established. Their comparison shows that the former solution is preferable to the latter in that it requires less a priori information (knowledge of the particle number density is not needed) and has wider applicability. For gamma-type distributions, and either a real or a complex refractive index, explicit expressions are provided for retrieving the distribution parameters; such expressions are, interestingly, proportional to the geometric area of the polydispersion.
NASA Astrophysics Data System (ADS)
Zhou, Xing-Yu; Wang, Ya-Di; Xia, Li-Gang
2017-08-01
A detailed theoretical derivation of the cross sections of e+e- → e+e- and e+e- → μ + μ - around the J/ψ resonance is reported. The resonance and interference parts of the cross sections, related to J/ψ resonance parameters, are calculated. Higher-order corrections for vacuum polarization and initial-state radiation are considered. An arbitrary upper limit of radiative correction integration is involved. Full and simplified versions of analytic formulae are given with precision at the level of 0.1% and 0.2%, respectively. Moreover, the results obtained in the paper can be applied to the case of the ψ(3686) resonance. Supported by National Natural Science Foundation of China (11275211) and Istituto Nazionale di Fisica Nucleare, Italy
Offner stretcher aberrations revisited to compensate material dispersion
NASA Astrophysics Data System (ADS)
Vyhlídka, Štěpán; Kramer, Daniel; Meadows, Alexander; Rus, Bedřich
2018-05-01
We present simple analytical formulae for the calculation of the spectral phase and residual angular dispersion of an ultrashort pulse propagating through the Offner stretcher. Based on these formulae, we show that the radii of curvature of both convex and concave mirrors in the Offner triplet can be adapted to tune the fourth order dispersion term of the spectral phase of the pulse. As an example, a single-grating Offner stretcher design suitable for the suppression of material dispersion in the Ti:Sa PALS laser system is proposed. The results obtained by numerical raytracing well match those calculated from the analytical formulae.
An extended Zel'dovich model for the halo mass function
NASA Astrophysics Data System (ADS)
Lim, Seunghwan; Lee, Jounghun
2013-01-01
A new way to construct a fitting formula for the halo mass function is presented. Our formula is expressed as a solution to the modified Jedamzik matrix equation that automatically satisfies the normalization constraint. The characteristic parameters expressed in terms of the linear shear eigenvalues are empirically determined by fitting the analytic formula to the numerical results from the high-resolution N-body simulation and found to be independent of scale, redshift and background cosmology. Our fitting formula with the best-fit parameters is shown to work excellently in the wide mass-range at various redshifts: The ratio of the analytic formula to the N-body results departs from unity by up to 10% and 5% over 1011 <= M/(h-1Msolar) <= 5 × 1015 at z = 0,0.5 and 1 for the FoF-halo and SO-halo cases, respectively.
Probing-models for interdigitated electrode systems with ferroelectric thin films
NASA Astrophysics Data System (ADS)
Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.; Hanke, Ulrik; Halvorsen, Einar; Muralt, Paul
2018-05-01
In this paper, a new method to characterize ferroelectric thin films with interdigitated electrodes is presented. To obtain accurate properties, all parasitic contributions should be subtracted from the measurement results and accurate models for the ferroelectric film are required. Hence, we introduce a phenomenological model for the parasitic capacitance. Moreover, two common analytical models based on conformal transformations are compared and used to calculate the capacitance and the electric field. With a thin film approximation, new simplified electric field and capacitance formulas are derived. By using these formulas, more consistent CV, PV and stress-field loops for samples with different geometries are obtained. In addition, an inhomogeneous distribution of the permittivity due to the non-uniform electric field is modelled by finite element simulation in an iterative way. We observed that this inhomogeneous distribution can be treated as a homogeneous one with an effective value of the permittivity.
Cutting solid figures by plane - analytical solution and spreadsheet implementation
NASA Astrophysics Data System (ADS)
Benacka, Jan
2012-07-01
In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.
Volume Diffusion Growth Kinetics and Step Geometry in Crystal Growth
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Ramachandran, Narayanan
1998-01-01
The role of step geometry in two-dimensional stationary volume diff4sion process used in crystal growth kinetics models is investigated. Three different interface shapes: a) a planar interface, b) an equidistant hemispherical bumps train tAx interface, and c) a train of right angled steps, are used in this comparative study. The ratio of the super-saturation to the diffusive flux at the step position is used as a control parameter. The value of this parameter can vary as much as 50% for different geometries. An approximate analytical formula is derived for the right angled steps geometry. In addition to the kinetic models, this formula can be utilized in macrostep growth models. Finally, numerical modeling of the diffusive and convective transport for equidistant steps is conducted. In particular, the role of fluid flow resulting from the advancement of steps and its contribution to the transport of species to the steps is investigated.
NASA Astrophysics Data System (ADS)
Wei, Huazhou; Fu, Shiwei
We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.
Modeling direct interband tunneling. I. Bulk semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority ofmore » the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.« less
Wang, Zhigang; Fu, Zhenguo; He, Bin; Hu, Zehua; Zhang, Ping
2016-09-01
The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-01
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Bubin, Sergiy; Adamowicz, Ludwik
2006-06-14
In this work we present analytical expressions for Hamiltonian matrix elements with spherically symmetric, explicitly correlated Gaussian basis functions with complex exponential parameters for an arbitrary number of particles. The expressions are derived using the formalism of matrix differential calculus. In addition, we present expressions for the energy gradient that includes derivatives of the Hamiltonian integrals with respect to the exponential parameters. The gradient is used in the variational optimization of the parameters. All the expressions are presented in the matrix form suitable for both numerical implementation and theoretical analysis. The energy and gradient formulas have been programmed and used to calculate ground and excited states of the He atom using an approach that does not involve the Born-Oppenheimer approximation.
Cen, Xiuli; Feng, Zhilan; Zheng, Yiqiang; Zhao, Yulin
2017-12-01
Antibiotic-resistant bacteria have posed a grave threat to public health by causing a number of nosocomial infections in hospitals. Mathematical models have been used to study transmission dynamics of antibiotic-resistant bacteria within a hospital and the measures to control antibiotic resistance in nosocomial pathogens. Studies presented in Lipstich et al. (Proc Natl Acad Sci 97(4):1938-1943, 2000) and Lipstich and Bergstrom (Infection control in the ICU environment. Kluwer, Boston, 2002) have provided valuable insights in understanding the transmission of antibiotic-resistant bacteria in a hospital. However, their results are limited to numerical simulations of a few different scenarios without analytical analyses of the models in broader parameter regions that are biologically feasible. Bifurcation analysis and identification of the global stability conditions can be very helpful for assessing interventions that are aimed at limiting nosocomial infections and stemming the spread of antibiotic-resistant bacteria. In this paper we study the global dynamics of the mathematical model of antibiotic resistance in hospitals considered in Lipstich et al. (2000) and Lipstich and Bergstrom (2002). The invasion reproduction number [Formula: see text] of antibiotic-resistant bacteria is derived, and the relationship between [Formula: see text] and two control reproduction numbers of sensitive bacteria and resistant bacteria ([Formula: see text] and [Formula: see text]) is established. More importantly, we prove that a backward bifurcation may occur at [Formula: see text] when the model includes superinfection, which is not mentioned in Lipstich and Bergstrom (2002). More specifically, there exists a new threshold [Formula: see text], such that if [Formula: see text], then the system can have two positive interior equilibria, which leads to an interesting bistable phenomenon. This may have critical implications for controlling the antibiotic-resistance in a hospital.
NASA Astrophysics Data System (ADS)
Zhang, F. H.; Zhang, L.; Cui, W. Y.; Zhang, B.
2017-09-01
Recent studies have shown that, for the current s-process nucleosynthesis model for the low-mass asymptotic giant branch (AGB) stars with (13C) pocket radiative burning during the interpulse period, the neutron exposure distribution in the nucleosynthesis region can be regarded as an exponential function, and the relation between the mean neutron exposure (τ0) and the model parameters is τ0 = - Δ τ/ln [q/(1 - r + q)]), in which (Δ τ) is the exposure value of each neutron irradiation, (r) is the overlap factor, and (q) is the mass ratio of the (13C) shell to the He intershell. Using the published data resulted from fitting the observed abundances of neutron-capture elements in 20 CEMP (Carbon-Enhanced Metal-Poor)-s and CEMP-s/r stars with the parametric AGB stellar s-process model, the reliability of the derived formula is tested, and further more the application of the formula in the s-process nucleosynthesis study is explored preliminarily. Our results show that, under the radiative s-process nucleosynthesis mechanism, the formula is suitable for CEMP stars experiencing recurrent neutron exposures. Combined with the parametric AGB nucleosynthesis model, the formula could be regarded as an effective tool to screen the CEMP stars with a single neutron exposure or a special type. Considering the uncertainty of the (13C) pocket, the role of this formula in understanding the physical conditions necessary to reproduce the observed s-process abundances in CEMP stars needs further study.
NASA Technical Reports Server (NTRS)
Tanimoto, T.
1983-01-01
A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the Earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the Earth.
Analytical formulas for short bunch wakes in a flat dechirper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; Stupakov, Gennady; Zagorodnov, Igor
2016-08-04
We develop analytical models of the longitudinal and transverse wakes, on and off axis for a flat, corrugated beam pipe with realistic parameters, and then compare them with numerical calculations, and generally find good agreement. These analytical “first order” formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, “zeroth order” formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. As a result, withmore » the beam moved to 200 μm from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μm length.« less
MODELS OF KILONOVA/MACRONOVA EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaguchi, Kyohei; Shibata, Masaru; Kyutoku, Koutarou
2016-07-01
Black hole–neutron star (BH–NS) mergers are among the most promising gravitational-wave sources for ground-based detectors, and gravitational waves from BH–NS mergers are expected to be detected in the next few years. The simultaneous detection of electromagnetic counterparts with gravitational waves would provide rich information about merger events. Among the possible electromagnetic counterparts from BH–NS mergers is the so-called kilonova/macronova, emission powered by the decay of radioactive r-process nuclei, which is one of the best targets for follow-up observations. We derive fitting formulas for the mass and the velocity of ejecta from a generic BH–NS merger based on recently performed numerical-relativitymore » simulations. We combine these fitting formulas with a new semi-analytic model for a BH–NS kilonova/macronova lightcurve, which reproduces the results of radiation-transfer simulations. Specifically, the semi-analytic model reproduces the results of each band magnitude obtained by the previous radiation-transfer simulations within ∼1 mag. By using this semi-analytic model we found that, at 400 Mpc, the kilonova/macronova is as bright as 22–24 mag for cases with a small chirp mass and a high black hole spin, and >28 mag for a large chirp mass and a low black hole spin. We also apply our model to GRB 130603B as an illustration, and show that a BH–NS merger with a rapidly spinning black hole and a large neutron star radius is favored.« less
Abd-Elhameed, W. M.
2014-01-01
This paper is concerned with deriving some new formulae expressing explicitly the high-order derivatives of Jacobi polynomials whose parameters difference is one or two of any degree and of any order in terms of their corresponding Jacobi polynomials. The derivatives formulae for Chebyshev polynomials of third and fourth kinds of any degree and of any order in terms of their corresponding Chebyshev polynomials are deduced as special cases. Some new reduction formulae for summing some terminating hypergeometric functions of unit argument are also deduced. As an application, and with the aid of the new introduced derivatives formulae, an algorithm for solving special sixth-order boundary value problems are implemented with the aid of applying Galerkin method. A numerical example is presented hoping to ascertain the validity and the applicability of the proposed algorithms. PMID:25386599
The Cockroft and Gault formula for estimation of creatinine clearance: a friendly deconstruction.
Millar, J Alasdair
2012-02-24
To review the derivation of the Cockroft and Gault formula for estimating creatinine clearance from serum creatinine in a historical context. The derivation described by Cockroft and Gault was reviewed, and an alternative formula was sought using the data reported in the paper. Cockroft and Gault used 24 hour urine creatinine data expressed as mg/kg body weight and mathematical manipulation of a linear regression equation which introduced body weight as an independent variable into the formula. This involved a circular logic and may have been mathematically invalid. A more logical equation not containing body weight was derived from the data. The Cockcroft and Gault formula has been validated by long usage but the derivation appears logically insecure. Nevertheless, its role in estimating renal function at the bedside is established.
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
2018-02-01
In order to accelerate the spherical harmonic synthesis and/or analysis of arbitrary function on the unit sphere, we developed a pair of procedures to transform between a truncated spherical harmonic expansion and the corresponding two-dimensional Fourier series. First, we obtained an analytic expression of the sine/cosine series coefficient of the 4 π fully normalized associated Legendre function in terms of the rectangle values of the Wigner d function. Then, we elaborated the existing method to transform the coefficients of the surface spherical harmonic expansion to those of the double Fourier series so as to be capable with arbitrary high degree and order. Next, we created a new method to transform inversely a given double Fourier series to the corresponding surface spherical harmonic expansion. The key of the new method is a couple of new recurrence formulas to compute the inverse transformation coefficients: a decreasing-order, fixed-degree, and fixed-wavenumber three-term formula for general terms, and an increasing-degree-and-order and fixed-wavenumber two-term formula for diagonal terms. Meanwhile, the two seed values are analytically prepared. Both of the forward and inverse transformation procedures are confirmed to be sufficiently accurate and applicable to an extremely high degree/order/wavenumber as 2^{30} {≈ } 10^9. The developed procedures will be useful not only in the synthesis and analysis of the spherical harmonic expansion of arbitrary high degree and order, but also in the evaluation of the derivatives and integrals of the spherical harmonic expansion.
Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears
NASA Technical Reports Server (NTRS)
Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)
2001-01-01
Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.
Emittance formula for slits and pepper-pot measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, M.
1996-10-01
In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.
Galactic Warps in Triaxial Halos
NASA Astrophysics Data System (ADS)
Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae
2009-05-01
We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.
Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter
2010-01-01
In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.
An analytic approach for the study of pulsar spindown
NASA Astrophysics Data System (ADS)
Chishtie, F. A.; Zhang, Xiyang; Valluri, S. R.
2018-07-01
In this work we develop an analytic approach to study pulsar spindown. We use the monopolar spindown model by Alvarez and Carramiñana (2004 Astron. Astrophys. 414 651–8), which assumes an inverse linear law of magnetic field decay of the pulsar, to extract an all-order formula for the spindown parameters using the Taylor series representation of Jaranowski et al (1998 Phys. Rev. D 58 6300). We further extend the analytic model to incorporate the quadrupole term that accounts for the emission of gravitational radiation, and obtain expressions for the period P and frequency f in terms of transcendental equations. We derive the analytic solution for pulsar frequency spindown in the absence of glitches. We examine the different cases that arise in the analysis of the roots in the solution of the non-linear differential equation for pulsar period evolution. We provide expressions for the spin-down parameters and find that the spindown values are in reasonable agreement with observations. A detection of gravitational waves from pulsars will be the next landmark in the field of multi-messenger gravitational wave astronomy.
Yan, Yifei; Zhang, Lisong; Yan, Xiangzhen
2016-01-01
In this paper, a single-slope tunnel pipeline was analysed considering the effects of vertical earth pressure, horizontal soil pressure, inner pressure, thermal expansion force and pipeline—soil friction. The concept of stagnation point for the pipeline was proposed. Considering the deformation compatibility condition of the pipeline elbow, the push force of anchor blocks of a single-slope tunnel pipeline was derived based on an energy method. Then, the theoretical formula for this force is thus generated. Using the analytical equation, the push force of the anchor block of an X80 large-diameter pipeline from the West—East Gas Transmission Project was determined. Meanwhile, to verify the results of the analytical method, and the finite element method, four categories of finite element codes were introduced to calculate the push force, including CAESARII, ANSYS, AutoPIPE and ALGOR. The results show that the analytical results agree well with the numerical results, and the maximum relative error is only 4.1%. Therefore, the results obtained with the analytical method can satisfy engineering requirements. PMID:26963097
Recent α decay half-lives and analytic expression predictions including superheavy nuclei
NASA Astrophysics Data System (ADS)
Royer, G.; Zhang, H. F.
2008-03-01
New recent experimental α decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the α emitter and the Qα value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the α decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Qα of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].
Hypoallergenic formulas: optimal choices for treatment versus prevention.
Bahna, Sami L
2008-11-01
To provide information on certain formulas that are relevant to allergy practice, focusing on their protein source and allergenicity, and to provide recommendations for selecting an optimal formula, taking into consideration efficacy, safety, palatability, and cost. A literature search using the PubMed database for the following keywords: hypoallergenic formulas, infant formulas, hydrolysate formulas, elemental formulas, and amino acids formulas. Information was derived from pertinent original studies and selected reviews, including recent Cochrane Database Systematic Reviews, published in the English-language literature. For a formula to be considered hypoallergenic, it should be well tolerated by at least 90% of individuals who are allergic to the parent protein from which that formula has been derived. Extensively hydrolyzed formulas (EHFs), derived from bovine casein or whey, are tolerated by approximately 95% of cow's milk allergic individuals. Elemental formulas are prepared from synthesized free amino acids and are well tolerated practically by all individuals, including those who are allergic to EHFs. Partially hydrolyzed whey formula (PHWFs) cause allergy in one-third to half of milk allergic individuals and are not considered hypoallergenic. Both EHFs and PHWFs seem to be equally effective in reducing the risk of development of allergy in infants of atopic families. The EHFs and amino acids formulas, but not the partially hydrolyzed formulas, are optimal for milk allergic individuals. All 3 types of formulas are useful for prevention. The cost and palatability should be considered in deciding which formula to use.
Magnetically-driven medical robots: An analytical magnetic model for endoscopic capsules design
NASA Astrophysics Data System (ADS)
Li, Jing; Barjuei, Erfan Shojaei; Ciuti, Gastone; Hao, Yang; Zhang, Peisen; Menciassi, Arianna; Huang, Qiang; Dario, Paolo
2018-04-01
Magnetic-based approaches are highly promising to provide innovative solutions for the design of medical devices for diagnostic and therapeutic procedures, such as in the endoluminal districts. Due to the intrinsic magnetic properties (no current needed) and the high strength-to-size ratio compared with electromagnetic solutions, permanent magnets are usually embedded in medical devices. In this paper, a set of analytical formulas have been derived to model the magnetic forces and torques which are exerted by an arbitrary external magnetic field on a permanent magnetic source embedded in a medical robot. In particular, the authors modelled cylindrical permanent magnets as general solution often used and embedded in magnetically-driven medical devices. The analytical model can be applied to axially and diametrically magnetized, solid and annular cylindrical permanent magnets in the absence of the severe calculation complexity. Using a cylindrical permanent magnet as a selected solution, the model has been applied to a robotic endoscopic capsule as a pilot study in the design of magnetically-driven robots.
NASA Astrophysics Data System (ADS)
Ha, T.-K.; Günthard, H. H.
1989-07-01
Structural parameters like bond length, bond angles, etc. and harmonic and anharmonic potential coefficients of molecules with internal rotation, inversion or puckering modes are generally assumed to vary with the large amplitude internal coordinates in a concerted manner (relaxation). Taking the coordinate vectors of the nuclear configuration of semirigid molecules with relaxation (SRMRs) as functions of relaxing structural parameters and finite amplitude internal coordinate, the isometric group of SRMRs is discussed and the irreducible representations of the latter are shown to classify into engendered and nonengendered ones. On this basis a concept of equivalent sets of nuclei SRMRs is introduced and an analytical expression is derived which defines the most general functional form of relaxation increments of all common types of structural parameters compatible with isometric symmetry. This formula is shown to be a close analog of an analytical expression defining the transformations induced by the isometric group of infinitesimal internal coordinates associated with typical structural parameters. Furthermore analogous formulae are given for the most general form of the relaxation of harmonic potential coefficients as a function of finite internal coordinates. The general relations are illustrated by ab initio calculations for 1,2-difluoroethane at the MP4/DZP//HF/4-31G* level for twelve values of the dihedral angle including complete structure optimization. The potential to internal rotation is found to be in essential agreement with experimentally derived data. For a complete set of ab initio structural parameters the associated relaxation increments are represented as Fourier series, which are shown to confirm the form predicted by the general formula and the isometric group of 1,2-difluoroethane. Depending on type of the structural parameters (bond length, bond angles, etc.), the associated relaxation increments appear to follow some simple rules. Similarly a complete set of harmonic potential coefficients derived from the ab initio calculations will be analyzed in terms of Fourier series and shown to conform to the symmetry requirements of the symmetry group. Relaxation of potential coefficients is found to amount to up to ≈5% for some types of diagonal and nondiagonal terms and to reflect certain "topological" rules similar to regularities of harmonic potential constants of quasi-rigid molecules found in empirical determinations of valence force fields.
Charged reflecting stars supporting charged massive scalar field configurations
NASA Astrophysics Data System (ADS)
Hod, Shahar
2018-03-01
The recently published no-hair theorems of Hod, Bhattacharjee, and Sarkar have revealed the intriguing fact that horizonless compact reflecting stars cannot support spatially regular configurations made of scalar, vector and tensor fields. In the present paper we explicitly prove that the interesting no-hair behavior observed in these studies is not a generic feature of compact reflecting stars. In particular, we shall prove that charged reflecting stars can support charged massive scalar field configurations in their exterior spacetime regions. To this end, we solve analytically the characteristic Klein-Gordon wave equation for a linearized charged scalar field of mass μ , charge coupling constant q, and spherical harmonic index l in the background of a spherically symmetric compact reflecting star of mass M, electric charge Q, and radius R_{ {s}}≫ M,Q. Interestingly, it is proved that the discrete set {R_{ {s}}(M,Q,μ ,q,l;n)}^{n=∞}_{n=1} of star radii that can support the charged massive scalar field configurations is determined by the characteristic zeroes of the confluent hypergeometric function. Following this simple observation, we derive a remarkably compact analytical formula for the discrete spectrum of star radii in the intermediate regime M≪ R_{ {s}}≪ 1/μ . The analytically derived resonance spectrum is confirmed by direct numerical computations.
NASA Astrophysics Data System (ADS)
Shevchenko, I. I.
2008-05-01
The problem of stability of the triangular libration points in the planar circular restricted three-body problem is considered. A software package, intended for normalization of autonomous Hamiltonian systems by means of computer algebra, is designed so that normalization problems of high analytical complexity could be solved. It is used to obtain the Birkhoff normal form of the Hamiltonian in the given problem. The normalization is carried out up to the 6th order of expansion of the Hamiltonian in the coordinates and momenta. Analytical expressions for the coefficients of the normal form of the 6th order are derived. Though intermediary expressions occupy gigabytes of the computer memory, the obtained coefficients of the normal form are compact enough for presentation in typographic format. The analogue of the Deprit formula for the stability criterion is derived in the 6th order of normalization. The obtained floating-point numerical values for the normal form coefficients and the stability criterion confirm the results by Markeev (1969) and Coppola and Rand (1989), while the obtained analytical and exact numeric expressions confirm the results by Meyer and Schmidt (1986) and Schmidt (1989). The given computational problem is solved without constructing a specialized algebraic processor, i.e., the designed computer algebra package has a broad field of applicability.
The H i-to-H{sub 2} Transition in a Turbulent Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il
2017-07-10
We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less
A numerical test of the topographic bias
NASA Astrophysics Data System (ADS)
Sjöberg, L. E.; Joud, M. S. S.
2018-02-01
In 1962 A. Bjerhammar introduced the method of analytical continuation in physical geodesy, implying that surface gravity anomalies are downward continued into the topographic masses down to an internal sphere (the Bjerhammar sphere). The method also includes analytical upward continuation of the potential to the surface of the Earth to obtain the quasigeoid. One can show that also the common remove-compute-restore technique for geoid determination includes an analytical continuation as long as the complete density distribution of the topography is not known. The analytical continuation implies that the downward continued gravity anomaly and/or potential are/is in error by the so-called topographic bias, which was postulated by a simple formula of L E Sjöberg in 2007. Here we will numerically test the postulated formula by comparing it with the bias obtained by analytical downward continuation of the external potential of a homogeneous ellipsoid to an inner sphere. The result shows that the postulated formula holds: At the equator of the ellipsoid, where the external potential is downward continued 21 km, the computed and postulated topographic biases agree to less than a millimetre (when the potential is scaled to the unit of metre).
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
NASA Astrophysics Data System (ADS)
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport.
Kershaw, Vincent F; Kosov, Daniel S
2017-12-14
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Motion of vortices in inhomogeneous Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Groszek, Andrew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.
2018-02-01
We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial, and are thus difficult to efficiently and accurately model using a simplified point-vortex description.
Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions
NASA Astrophysics Data System (ADS)
Kubenko, V. D.
2016-11-01
The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed
Tan, Ming-Hui; Chong, Kok-Keong; Wong, Chee-Woon
2014-01-20
Optimization of the design of a nonimaging dish concentrator (NIDC) for a dense-array concentrator photovoltaic system is presented. A new algorithm has been developed to determine configuration of facet mirrors in a NIDC. Analytical formulas were derived to analyze the optical performance of a NIDC and then compared with a simulated result obtained from a numerical method. Comprehensive analysis of optical performance via analytical method has been carried out based on facet dimension and focal distance of the concentrator with a total reflective area of 120 m2. The result shows that a facet dimension of 49.8 cm, focal distance of 8 m, and solar concentration ratio of 411.8 suns is the most optimized design for the lowest cost-per-output power, which is US$1.93 per watt.
Evaluation of generalized degrees of freedom for sparse estimation by replica method
NASA Astrophysics Data System (ADS)
Sakata, A.
2016-12-01
We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.
Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas
2012-08-01
In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.
Landau-Zener extension of the Tavis-Cummings model: Structure of the solution
Sun, Chen; Sinitsyn, Nikolai A.
2016-09-07
We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of an arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well-known special functions. In this form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. Furthermore, we also reveal connection between DTCM and q-deformed binomial statistics.
Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators
NASA Astrophysics Data System (ADS)
Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T.
2011-04-01
We report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation.
Applications of δ-function perturbation to the pricing of derivative securities
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann; Goovaerts, Marc
2004-11-01
In the recent econophysics literature, the use of functional integrals is widespread for the calculation of option prices. In this paper, we extend this approach in several directions by means of δ-function perturbations. First, we show that results about infinitely repulsive δ-function are applicable to the pricing of barrier options. We also introduce functional integrals over skew paths that give rise to a new European option formula when combined with δ-function potential. We propose accurate closed-form approximations based on the theory of comonotonic risks in case the functional integrals are not analytically computable.
Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam
NASA Astrophysics Data System (ADS)
F, Boufalah; L, Dalil-Essakali; H, Nebdi; A, Belafhal
2016-06-01
The propagation characteristics of the Pearcey-Gaussian (PG) beam in turbulent atmosphere are investigated in this paper. The Pearcey beam is a new kind of paraxial beam, based on the Pearcey function of catastrophe theory, which describes diffraction about a cusp caustic. By using the extended Huygens-Fresnel integral formula in the paraxial approximation and the Rytov theory, an analytical expression of axial intensity for the considered beam family is derived. Some numerical results for PG beam propagating in atmospheric turbulence are given by studying the influences of some factors, including incident beam parameters and turbulence strengths.
NASA Technical Reports Server (NTRS)
Tanimoto, T.
1984-01-01
A simple modification of Gilbert's formula to account for slight lateral heterogeneity of the earth leads to a convenient formula to calculate synthetic long period seismograms. Partial derivatives are easily calculated, thus the formula is suitable for direct inversion of seismograms for lateral heterogeneity of the earth. Previously announced in STAR as N83-29893
Synthesis and preliminary biological evaluations of (+)-isocampholenic acid-derived amides.
Grošelj, Uroš; Golobič, Amalija; Knez, Damijan; Hrast, Martina; Gobec, Stanislav; Ričko, Sebastijan; Svete, Jurij
2016-08-01
The synthesis of two novel (+)-isocampholenic acid-derived amines has been realized starting from commercially available (1S)-(+)-10-camphorsulfonic acid. The novel amines as well as (+)-isocampholenic acid have been used as building blocks in the construction of a library of amides using various aliphatic, aromatic, and amino acid-derived coupling partners using BPC and CDI as activating agents. Amide derivatives have been assayed against several enzymes that hold potential for the development of new drugs to battle bacterial infections and Alzheimer's disease. Compounds 20c and 20e showed promising selective sub-micromolar inhibition of human butyrylcholinesterase [Formula: see text] ([Formula: see text] values [Formula: see text] and [Formula: see text], respectively).
Escape rate for nonequilibrium processes dominated by strong non-detailed balance force
NASA Astrophysics Data System (ADS)
Tang, Ying; Xu, Song; Ao, Ping
2018-02-01
Quantifying the escape rate from a meta-stable state is essential to understand a wide range of dynamical processes. Kramers' classical rate formula is the product of an exponential function of the potential barrier height and a pre-factor related to the friction coefficient. Although many applications of the rate formula focused on the exponential term, the prefactor can have a significant effect on the escape rate in certain parameter regions, such as the overdamped limit and the underdamped limit. There have been continuous interests to understand the effect of non-detailed balance on the escape rate; however, how the prefactor behaves under strong non-detailed balance force remains elusive. In this work, we find that the escape rate formula has a vanishing prefactor with decreasing friction strength under the strong non-detailed balance limit. We both obtain analytical solutions in specific examples and provide a derivation for more general cases. We further verify the result by simulations and propose a testable experimental system of a charged Brownian particle in electromagnetic field. Our study demonstrates that a special care is required to estimate the effect of prefactor on the escape rate when non-detailed balance force dominates.
Weight shifting operators and conformal blocks
NASA Astrophysics Data System (ADS)
Karateev, Denis; Kravchuk, Petr; Simmons-Duffin, David
2018-02-01
We introduce a large class of conformally-covariant differential operators and a crossing equation that they obey. Together, these tools dramatically simplify calculations involving operators with spin in conformal field theories. As an application, we derive a formula for a general conformal block (with arbitrary internal and external representations) in terms of derivatives of blocks for external scalars. In particular, our formula gives new expressions for "seed conformal blocks" in 3d and 4d CFTs. We also find simple derivations of identities between external-scalar blocks with different dimensions and internal spins. We comment on additional applications, including deriving recursion relations for general conformal blocks, reducing inversion formulae for spinning operators to inversion formulae for scalars, and deriving identities between general 6 j symbols (Racah-Wigner coefficients/"crossing kernels") of the conformal group.
Mathematical model of rod oscillations with account of material relaxation behaviour
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.; Eremin, A. V.; Zhukov, V. V.
2018-03-01
Taking into account the bounded velocity of strains and deformations propagation in the formula given in the Hooke’s law, the authors have obtained the differential equation of rod damped oscillations that includes the first and the third time derivatives of displacement as well as the mixed derivative (with respect to space and time variables). Study of its precise analytical solution found by means of separation of variables has shown that rod recovery after being disturbed is accompanied by low-amplitude damped oscillations that occur at the start time and only within the range of positive displacement values. The oscillations amplitude decreases with increase of relaxation factor. Rod is recovered virtually without an oscillating process both in the limit and with any high values of the relaxation factor.
Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma
Belli, Emily A.; Candy, Jefferey M.; Angioni, C.
2014-11-07
In this paper, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch-Schl¨uter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impuritymore » Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number.« less
The equivalent thermal properties of a single fracture
NASA Astrophysics Data System (ADS)
Sangaré, D.; Thovert, J.-F.; Adler, P. M.
2008-10-01
The normal resistance and the tangential conductivity of a single fracture with Gaussian or self-affine surfaces are systematically studied as functions of the nature of the materials in contact and of the geometrical parameters. Analytical formulas are provided in the lubrication limit for fractures with sinusoidal apertures; these formulas are used to substantiate empirical formulas for resistance and conductivity. Other approximations based on the combination of series and parallel formulas are tested.
Compounds, compositions, pharmaceutical compositions, and methods of use
Hammond, Gerald B.; Jin, Zhuang; Bates, Paula J.; Reyes-Reyes, Elsa Merit
2016-11-15
Certain embodiments of the invention include compositions comprising a compound of Formula (I), and salts, isomers, and derivatives thereof. Pharmaceutical compositions of some embodiments of the present invention comprise a compound of Formula (I), and salts, isomers, and derivatives thereof. Other embodiments of this invention include methods for treating disease (e.g., cancer) and methods for administering a compound of Formula (I), and salts, isomers, and derivatives thereof.
Alpha decay calculations with a new formula
NASA Astrophysics Data System (ADS)
Akrawy, D. T.; Poenaru, D. N.
2017-10-01
A new semi-empirical formula for calculations of α decay half-lives is presented. It was derived from the Royer relationship by introducing new parameters which are fixed by fit to a set of experimental data. We are using three sets: set A with 130 e-e (even-even), 119 e-o (even-odd), 109 o-e, and 96 o-o, set B with 188 e-e, 147 e-o, 131 o-e and 114 o-o, and set C with 136 e-e, 84 e-o, 76 o-e and 48 o-o alpha emitters. A comparison of results obtained with the new formula (newF) and the following well known relationships: semiempirical relationship based on fission theory (semFIS), analytical superasymmetric fission (ASAF) model and universal formula (UNIV) made in terms of rms standard deviation. We also introduced a weighted mean value of this quantity, allowing us to compare the global properties of a given model. For set B the order of the four models is the following: semFIS, UNIV, newF and ASAF. Nevertheless for even-even alpha emitters, UNIV gives the second best result after semFIS, and for odd-even parents the second is newF. Despite its simplicity in comparison with semFIS, newF, presented in this article, behaves quite well, competing with the other well known relationships.
Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter
2017-11-01
Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.
Recent {alpha} decay half-lives and analytic expression predictions including superheavy nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royer, G.; Zhang, H. F.
New recent experimental {alpha} decay half-lives have been compared with the results obtained from previously proposed formulas depending only on the mass and charge numbers of the {alpha} emitter and the Q{sub {alpha}} value. For the heaviest nuclei they are also compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The correct agreement allows us to make predictions for the {alpha} decay half-lives of other still unknown superheavy nuclei from these analytic formulas using the extrapolated Q{sub {alpha}} of G. Audi, A. H. Wapstra, and C. Thibault [Nucl. Phys. A729, 337 (2003)].
Asymptotics of bivariate generating functions with algebraic singularities
NASA Astrophysics Data System (ADS)
Greenwood, Torin
Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.
A Fast Method of Deriving the Kirchhoff Formula for Moving Surfaces
NASA Technical Reports Server (NTRS)
Farassat, F.; Posey, Joe W.
2007-01-01
The Kirchhoff formula for a moving surface is very useful in many wave propagation problems, particularly in the prediction of noise from rotating machinery. Several publications in the last two decades have presented derivations of the Kirchhoff formula for moving surfaces in both time and frequency domains. Here we present a method originally developed by Farassat and Myers in time domain that is both simple and direct. It is based on generalized function theory and the useful concept of imbedding the problem in the unbounded three-dimensional space. We derive an inhomogeneous wave equation with the source terms that involve Dirac delta functions with their supports on the moving data surface. This wave equation is then solved using the simple free space Green's function of the wave equation resulting in the Kirchhoff formula. The algebraic manipulations are minimal and simple. We do not need the Green's theorem in four dimensions and there is no ambiguity in the interpretation of any terms in the final formulas. Furthermore, this method also gives the simplest derivation of the classical Kirchhoff formula which has a fairly lengthy derivation in physics and applied mathematics books. The Farassat-Myers method can be used easily in frequency domain.
Delgado-Aparicio, L; Tritz, K; Kramer, T; Stutman, D; Finkenthal, M; Hill, K; Bitter, M
2010-10-01
A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
NASA Astrophysics Data System (ADS)
Izacard, Olivier
2016-08-01
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basis sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the Maxwell's demon by statistically describing non-isolated systems.
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izacard, Olivier, E-mail: izacard@llnl.gov
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. The latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less
Ma, Ka Wing; Chok, Kenneth S H; Chan, Albert C Y; Tam, Henry S C; Dai, Wing Chiu; Cheung, Tan To; Fung, James Y Y; Lo, Chung Mau
2017-09-01
The objective of this article is to derive a more accurate and easy-to-use formula for finding estimated standard liver volume (ESLV) using novel computed tomography (CT) measurement parameters. New formulas for ESLV have been emerging that aim to improve the accuracy of estimation. However, many of these formulas contain body surface area measurements and logarithms in the equations that lead to a more complicated calculation. In addition, substantial errors in ESLV using these old formulas have been shown. An improved version of the formula for ESLV is needed. This is a retrospective cohort of consecutive living donor liver transplantations from 2005 to 2016. Donors were randomly assigned to either the formula derivation or validation groups. Total liver volume (TLV) measured by CT was used as the reference for a linear regression analysis against various patient factors. The derived formula was compared with the existing formulas. There were 722 patients (197 from the derivation group, 164 from the validation group, and 361 from the recipient group) involved in the study. The donor's body weight (odds ratio [OR], 10.42; 95% confidence interval [CI], 7.25-13.60; P < 0.01) and body thickness (OR, 2.00; 95% CI, 0.36-3.65; P = 0.02) were found to be independent factors for the TLV calculation. A formula for TLV (cm 3 ) was derived: 2 × thickness (mm) + 10 × weight (kg) + 190 with R 2 0.48, which was the highest when compared with the 4 other most often cited formulas. This formula remained superior to other published formulas in the validation set analysis (R 2 , 5.37; interclass correlation coefficient, 0.74). Graft weight/ESLV values calculated by the new formula were shown to have the highest correlation with delayed graft function (C-statistic, 0.79; 95% CI, 0.69-0.90; P < 0.01). The new formula (2 × thickness + 10 × weight + 190) represents the first study proposing the use of CT-measured body thickness which is novel, easy to use, and the most accurate for ESLV. Liver Transplantation 23 1113-1122 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.
NASA Astrophysics Data System (ADS)
Forbes, Richard G.
2017-03-01
With a large-area field electron emitter, when an individual post-like emitter is sufficiently resistive, and current through it is sufficiently large, then voltage loss occurs along it. This letter provides a simple analytical and conceptual demonstration that this voltage loss is directly and inextricably linked to a reduction in the field enhancement factor (FEF) at the post apex. A formula relating apex-FEF reduction to this voltage loss was obtained in the paper by Minoux et al. [Nano Lett. 5, 2135 (2005)] by fitting to numerical results from a Laplace solver. This letter derives the same formula analytically, by using a "floating sphere" model. The analytical proof brings out the underlying physics more clearly and shows that the effect is a general phenomenon, related to reduction in the magnitude of the surface charge in the most protruding parts of an emitter. Voltage-dependent FEF-reduction is one cause of "saturation" in Fowler-Nordheim (FN) plots. Another is a voltage-divider effect, due to measurement-circuit resistance. An integrated theory of both effects is presented. Both together, or either by itself, can cause saturation. Experimentally, if saturation occurs but voltage loss is small (<20 V, say), then saturation is more probably due to FEF-reduction than voltage division. In this case, existing treatments of electrostatic interaction ("shielding") between closely spaced emitters may need modification. Other putative causes of saturation exist, so the present theory is a partial story. Its extension seems possible and could lead to a more general physical understanding of the causes of FN-plot saturation.
Study of the [Formula: see text] and [Formula: see text] decays with the ATLAS detector.
Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bruscino, N; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Cardillo, F; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloce, L M; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zwalinski, L
The decays [Formula: see text] and [Formula: see text] are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb[Formula: see text] of pp collisions collected at centre-of-mass energies [Formula: see text] TeV and 8 TeV, respectively. Signal candidates are identified through [Formula: see text] and [Formula: see text] decays. With a two-dimensional likelihood fit involving the [Formula: see text] reconstructed invariant mass and an angle between the [Formula: see text] and [Formula: see text] candidate momenta in the muon pair rest frame, the yields of [Formula: see text] and [Formula: see text], and the transverse polarisation fraction in [Formula: see text] decay are measured. The transverse polarisation fraction is determined to be [Formula: see text], and the derived ratio of the branching fractions of the two modes is [Formula: see text], where the first error is statistical and the second is systematic. Finally, a sample of [Formula: see text] decays is used to derive the ratios of branching fractions [Formula: see text] and [Formula: see text], where the third error corresponds to the uncertainty of the branching fraction of [Formula: see text] decay. The available theoretical predictions are generally consistent with the measurement.
On a boundary-localized Higgs boson in 5D theories.
Barceló, Roberto; Mitra, Subhadip; Moreau, Grégory
In the context of a simple five-dimensional (5D) model with bulk matter coupled to a brane-localized Higgs boson, we point out a non-commutativity in the 4D calculation of the mass spectrum for excited fermion towers: the obtained expression depends on the choice in ordering the limits, [Formula: see text] (infinite Kaluza-Klein tower) and [Formula: see text] ([Formula: see text] being the parameter introduced for regularizing the Higgs Dirac peak). This introduces the question of which one is the correct order; we then show that the two possible orders of regularization (called I and II) are experimentally equivalent, as both can typically reproduce the measured observables, but that the one with less degrees of freedom (I) could be uniquely excluded by future experimental constraints. This conclusion is based on the exact matching between the 4D and 5D analytical calculations of the mass spectrum - via regularizations of type I and II. Beyond a deeper insight into the Higgs peak regularizations, this matching brings another confirmation of the validity of the 5D mixed formalism. All the conclusions, deduced from regularizing the Higgs peak through a brane shift or a smoothed square profile, are expected to remain similar in realistic models with a warped extra-dimension. The complementary result of the study is that the non-commutativity disappears, both in the 4D and the 5D calculations, in the presence of higher order derivative operators. For clarity, the 4D and 5D analytical calculations, matching with each other, are presented in the first part of the paper, while the second part is devoted to the interpretation of the results.
Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature
NASA Astrophysics Data System (ADS)
Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila
2017-05-01
We present a detailed analytical derivation of the spin wave (SW) dispersion relation in magnetic nanotubes with magnetization along the azimuthal direction. The obtained formula can be used to calculate the dispersion relation for any longitudinal and azimuthal mode. The obtained dispersion is asymmetric for all azimuthal modes traveling along the axial direction. As reported in our recent publication [Phys. Rev. Lett. 117, 227203 (2016), 10.1103/PhysRevLett.117.227203], the asymmetry is a curvature-induced effect originating from the dipole-dipole interaction. Here, we discuss the asymmetry of the dispersion for azimuthal modes by analyzing the SW asymmetry Δ f (kz) =fn(kz) -fn(-kz) , where fn(kz) is the eigenfrequency of a magnon with a longitudinal and azimuthal wave vectors, kz and n , respectively; and the dependence of the maximum asymmetry with the nanotube radius R . The analytical results are in perfect agreement with micromagnetic simulations. Furthermore, we show that the dispersion relation simplifies to the thin-film dispersion relation with in-plane magnetization when analyzing the three limiting cases: (i) kz=0 , (ii) kz≫1 /R , and (iii) kz≪1 /R . In the first case, for the zeroth-order modes the thin-film Kittel formula is obtained. For modes with higher order the dispersion relation for the Backward-Volume geometry is recovered. In the second case, for the zeroth-order mode the exchange dominated dispersion relation for SW in Damon-Esbach configuration is obtained. For the case kz≪1 /R , we find that the dispersion relation can be reduced to a formula similar to the Kalinikos-Slavin [J. Phys. C: Sol. State Phys. 19, 7013 (1986), 10.1088/0022-3719/19/35/014] type.
A method of determining attitude from magnetometer data only
NASA Technical Reports Server (NTRS)
Natanson, G. A.; Mclaughlin, S. F.; Nicklas, R. C.
1990-01-01
Presented here is a new algorithm to determine attitude using only magnetometer data under the following conditions: (1) internal torques are known and (2) external torques are negligible. Torque-free rotation of a spacecraft in thruster firing acquisition phase and its magnetic despin in the B-dot mode give typical examples of such situations. A simple analytical formula has been derived in the limiting case of a spacecraft rotating with constant angular velocity. The formula has been tested using low-frequency telemetry data for the Earth Radiation Budget Satellite (ERBS) under normal conditions. Observed small oscillation of body-fixed components of the angular velocity vector near their mean values result in relatively minor errors of approximately 5 degrees. More significant errors come from processing digital magnetometer data. Higher resolution of digitized magnetometer measurements would significantly improve the accuracy of this deterministic scheme. Tests of the general version of the developed algorithm for a free-rotating spacecraft and for the B-dot mode are in progress.
Effect of finite particle number sampling on baryon number fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinheimer, Jan; Koch, Volker
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Effect of finite particle number sampling on baryon number fluctuations
Steinheimer, Jan; Koch, Volker
2017-09-28
The effects of finite particle number sampling on the net baryon number cumulants, extracted from fluid dynamical simulations, are studied. The commonly used finite particle number sampling procedure introduces an additional Poissonian (or multinomial if global baryon number conservation is enforced) contribution which increases the extracted moments of the baryon number distribution. If this procedure is applied to a fluctuating fluid dynamics framework, one severely overestimates the actual cumulants. We show that the sampling of so-called test particles suppresses the additional contribution to the moments by at least one power of the number of test particles. We demonstrate this methodmore » in a numerical fluid dynamics simulation that includes the effects of spinodal decomposition due to a first-order phase transition. Furthermore, in the limit where antibaryons can be ignored, we derive analytic formulas which capture exactly the effect of particle sampling on the baryon number cumulants. These formulas may be used to test the various numerical particle sampling algorithms.« less
Refracted arrival waves in a zone of silence from a finite thickness mixing layer.
Suzuki, Takao; Lele, Sanjiva K
2002-02-01
Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.
Cramer-Rao bound analysis of wideband source localization and DOA estimation
NASA Astrophysics Data System (ADS)
Yip, Lean; Chen, Joe C.; Hudson, Ralph E.; Yao, Kung
2002-12-01
In this paper, we derive the Cramér-Rao Bound (CRB) for wideband source localization and DOA estimation. The resulting CRB formula can be decomposed into two terms: one that depends on the signal characteristic and one that depends on the array geometry. For a uniformly spaced circular array (UCA), a concise analytical form of the CRB can be given by using some algebraic approximation. We further define a DOA beamwidth based on the resulting CRB formula. The DOA beamwidth can be used to design the sampling angular spacing for the Maximum-likelihood (ML) algorithm. For a randomly distributed array, we use an elliptical model to determine the largest and smallest effective beamwidth. The effective beamwidth and the CRB analysis of source localization allow us to design an efficient algorithm for the ML estimator. Finally, our simulation results of the Approximated Maximum Likelihood (AML) algorithm are demonstrated to match well to the CRB analysis at high SNR.
NASA Astrophysics Data System (ADS)
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
NASA Astrophysics Data System (ADS)
Patrone, Paul; Einstein, T. L.; Margetis, Dionisios
2011-03-01
We study a 1+1D, stochastic, Burton-Cabrera-Frank (BCF) model of interacting steps fluctuating on a vicinal crystal. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. Our goal is to formulate and validate a self-consistent mean-field (MF) formalism to approximately solve the system of coupled, nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. We derive formulas for the time-dependent terrace width distribution (TWD) and its steady-state limit. By comparison with kinetic Monte-Carlo simulations, we show that our MF formalism improves upon models in which step interactions are linearized. We also indicate how fitting parameters of our steady state MF TWD may be used to determine the mass transport regime and step interaction energy of certain experimental systems. PP and TLE supported by NSF MRSEC under Grant DMR 05-20471 at U. of Maryland; DM supported by NSF under Grant DMS 08-47587.
Thermodynamics of strong coupling superconductors including the effect of anisotropy
NASA Astrophysics Data System (ADS)
Daams, J. M.; Carbotte, J. P.
1981-05-01
The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.
Cell kill by megavoltage protons with high LET.
Kuperman, Vadim Y
2016-07-21
The aim of the current study is to develop a radiobiological model which describes the effect of linear energy transfer (LET) on cell survival and relative biological effectiveness (RBE) of megavoltage protons. By assuming the existence of critical sites within a cell, analytical expression for cell survival S as a function of LET is derived. The obtained results indicate that in cases where dose per fraction is small, [Formula: see text] is a linear-quadratic (LQ) function of dose while both alpha and beta radio-sensitivities are non-linearly dependent on LET. In particular, in the current model alpha increases with increasing LET while beta decreases. Conversely, in the case of large dose per fraction, the LQ dependence of [Formula: see text] on dose is invalid. The proposed radiobiological model predicts cell survival probability and RBE which, in general, deviate from the results obtained by using conventional LQ formalism. The differences between the LQ model and that described in the current study are reflected in the calculated RBE of protons.
Extended analytical solutions for effective elastic moduli of cracked porous media
NASA Astrophysics Data System (ADS)
Nguyen, Sy-Tuan; To, Quy Dong; Vu, Minh Ngoc
2017-05-01
Extended solutions are derived, on the basis of the micromechanical methods, for the effective elastic moduli of porous media containing stiff pores and both open and closed cracks. Analytical formulas of the overall bulk and shear moduli are obtained as functions of the elastic moduli of the solid skeleton, porosity and the densities of open and closed cracks families. We show that the obtained results are extensions of the classical widely used Walsh's (JGR, 1965) and Budiansky-O‧Connell's (JGR, 1974) solutions. Parametric sensitivity analysis clarifies the impact of the model parameters on the effective elastic properties. An inverse analysis, using sonic and density data, is considered to quantify the density of both open and closed cracks. It is observed that the density of closed cracks depends strongly on stress condition while the dependence of open cracks on the confining stress is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada; Palomares, A.
In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron–hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinementmore » holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.« less
Noisy swimming at low Reynolds numbers.
Dunkel, Jörn; Zaid, Irwin M
2009-08-01
Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equation, we derive formulas for the orientation correlation time, the mean velocity and the mean-square displacement in three space dimensions. The validity of the analytical results is illustrated through numerical simulations. Tuning the swimmer parameters to values that are typical of bacteria, we find three characteristic regimes: (i) Brownian motion at small times, (ii) quasiballistic behavior at intermediate time scales, and (iii) quasidiffusive behavior at large times due to noise-induced rotation. Our analytical results can be useful for a better quantitative understanding of optimal foraging strategies in bacterial systems, and they can help to construct more efficient artificial microswimmers in fluctuating fluids.
A simplified analytical random walk model for proton dose calculation
NASA Astrophysics Data System (ADS)
Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.
2016-10-01
We propose an analytical random walk model for proton dose calculation in a laterally homogeneous medium. A formula for the spatial fluence distribution of primary protons is derived. The variance of the spatial distribution is in the form of a distance-squared law of the angular distribution. To improve the accuracy of dose calculation in the Bragg peak region, the energy spectrum of the protons is used. The accuracy is validated against Monte Carlo simulation in water phantoms with either air gaps or a slab of bone inserted. The algorithm accurately reflects the dose dependence on the depth of the bone and can deal with small-field dosimetry. We further applied the algorithm to patients’ cases in the highly heterogeneous head and pelvis sites and used a gamma test to show the reasonable accuracy of the algorithm in these sites. Our algorithm is fast for clinical use.
An accurate analytic description of neutrino oscillations in matter
NASA Astrophysics Data System (ADS)
Akhmedov, E. Kh.; Niro, Viviana
2008-12-01
A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.
Alternative Derivations for the Poisson Integral Formula
ERIC Educational Resources Information Center
Chen, J. T.; Wu, C. S.
2006-01-01
Poisson integral formula is revisited. The kernel in the Poisson integral formula can be derived in a series form through the direct BEM free of the concept of image point by using the null-field integral equation in conjunction with the degenerate kernels. The degenerate kernels for the closed-form Green's function and the series form of Poisson…
An analytic formula for heating due to ozone absorption
NASA Technical Reports Server (NTRS)
Lindzen, R. S.; Will, D. I.
1972-01-01
An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.
Empirical and semi-analytical models for predicting peak outflows caused by embankment dam failures
NASA Astrophysics Data System (ADS)
Wang, Bo; Chen, Yunliang; Wu, Chao; Peng, Yong; Song, Jiajun; Liu, Wenjun; Liu, Xin
2018-07-01
Prediction of peak discharge of floods has attracted great attention for researchers and engineers. In present study, nine typical nonlinear mathematical models are established based on database of 40 historical dam failures. The first eight models that were developed with a series of regression analyses are purely empirical, while the last one is a semi-analytical approach that was derived from an analytical solution of dam-break floods in a trapezoidal channel. Water depth above breach invert (Hw), volume of water stored above breach invert (Vw), embankment length (El), and average embankment width (Ew) are used as independent variables to develop empirical formulas of estimating the peak outflow from breached embankment dams. It is indicated from the multiple regression analysis that a function using the former two variables (i.e., Hw and Vw) produce considerably more accurate results than that using latter two variables (i.e., El and Ew). It is shown that the semi-analytical approach works best in terms of both prediction accuracy and uncertainty, and the established empirical models produce considerably reasonable results except the model only using El. Moreover, present models have been compared with other models available in literature for estimating peak discharge.
Information Based Numerical Practice.
1987-02-01
characterization by comparative computational studies of various benchmark problems. See e.g. [MacNeal, Harder (1985)], [Robinson, Blackham (1981)] any...FOR NONADAPTIVE METHODS 2.1. THE QUADRATURE FORMULA The simplest example studied in detail in the literature is the problem of the optimal quadrature...formulae and the functional analytic prerequisites for the study of optimal formulae, we refer to the large monography (808 p) of [Sobolev (1974)]. Let us
NASA Astrophysics Data System (ADS)
Beneš, Michal; Pažanin, Igor
2018-03-01
This paper reports an analytical investigation of non-isothermal fluid flow in a thin (or long) vertical pipe filled with porous medium via asymptotic analysis. We assume that the fluid inside the pipe is cooled (or heated) by the surrounding medium and that the flow is governed by the prescribed pressure drop between pipe's ends. Starting from the dimensionless Darcy-Brinkman-Boussinesq system, we formally derive a macroscopic model describing the effective flow at small Brinkman-Darcy number. The asymptotic approximation is given by the explicit formulae for the velocity, pressure and temperature clearly acknowledging the effects of the cooling (heating) and porous structure. The theoretical error analysis is carried out to indicate the order of accuracy and to provide a rigorous justification of the effective model.
Light diffusion in N-layered turbid media: steady-state domain.
Liemert, André; Kienle, Alwin
2010-01-01
We deal with light diffusion in N-layered turbid media. The steady-state diffusion equation is solved for N-layered turbid media having a finite or an infinitely thick N'th layer. Different refractive indices are considered in the layers. The Fourier transform formalism is applied to derive analytical solutions of the fluence rate in Fourier space. The inverse Fourier transform is calculated using four different methods to test their performance and accuracy. Further, to avoid numerical errors, approximate formulas in Fourier space are derived. Fast solutions for calculation of the spatially resolved reflectance and transmittance from the N-layered turbid media ( approximately 10 ms) with small relative differences (<10(-7)) are found. Additionally, the solutions of the diffusion equation are compared to Monte Carlo simulations for turbid media having up to 20 layers.
NASA Astrophysics Data System (ADS)
Aymard, François; Gulminelli, Francesca; Margueron, Jérôme
2016-08-01
The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.
Gudimetla, V S Rao; Holmes, Richard B; Smith, Carey; Needham, Gregory
2012-05-01
The effect of anisotropic Kolmogorov turbulence on the log-amplitude correlation function for plane-wave fields is investigated using analysis, numerical integration, and simulation. A new analytical expression for the log-amplitude correlation function is derived for anisotropic Kolmogorov turbulence. The analytic results, based on the Rytov approximation, agree well with a more general wave-optics simulation based on the Fresnel approximation as well as with numerical evaluations, for low and moderate strengths of turbulence. The new expression reduces correctly to previously published analytic expressions for isotropic turbulence. The final results indicate that, as asymmetry becomes greater, the Rytov variance deviates from that given by the standard formula. This deviation becomes greater with stronger turbulence, up to moderate turbulence strengths. The anisotropic effects on the log-amplitude correlation function are dominant when the separation of the points is within the Fresnel length. In the direction of stronger turbulence, there is an enhanced dip in the correlation function at a separation close to the Fresnel length. The dip is diminished in the weak-turbulence axis, suggesting that energy redistribution via focusing and defocusing is dominated by the strong-turbulence axis. The new analytical expression is useful when anisotropy is observed in relevant experiments. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Ratnam, Challa; Lakshmana Rao, Vadlamudi; Lachaa Goud, Sivagouni
2006-10-01
In the present paper, and a series of papers to follow, the Fourier analytical properties of multiple annuli coded aperture (MACA) and complementary multiple annuli coded aperture (CMACA) systems are investigated. First, the transmission function for MACA and CMACA is derived using Fourier methods and, based on the Fresnel-Kirchoff diffraction theory, the formulae for the point spread function are formulated. The PSF maxima and minima are calculated for both the MACA and CMACA systems. The dependence of these properties on the number of zones is studied and reported in this paper.
An alternative theoretical model for an anomalous hollow beam.
Cai, Yangjian; Wang, Zhaoying; Lin, Qiang
2008-09-15
An alternative and convenient theoretical model is proposed to describe a flexible anomalous hollow beam of elliptical symmetry with an elliptical solid core, which was observed in experiment recently (Phys. Rev. Lett, 94 (2005) 134802). In this model, the electric field of anomalous hollow beam is expressed as a finite sum of elliptical Gaussian modes. Flattopped beams, dark hollow beams and Gaussian beams are special cases of our model. Analytical propagation formulae for coherent and partially coherent anomalous hollow beams passing through astigmatic ABCD optical systems are derived. Some numerical examples are calculated to show the propagation and focusing properties of coherent and partially coherent anomalous hollow beams.
Romans supergravity from five-dimensional holograms
NASA Astrophysics Data System (ADS)
Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan
2018-05-01
We study five-dimensional superconformal field theories and their holographic dual, matter-coupled Romans supergravity. On the one hand, some recently derived formulae allow us to extract the central charges from deformations of the supersymmetric five-sphere partition function, whose large N expansion can be computed using matrix model techniques. On the other hand, the conformal and flavor central charges can be extracted from the six-dimensional supergravity action, by carefully analyzing its embedding into type I' string theory. The results match on the two sides of the holographic duality. Our results also provide analytic evidence for the symmetry enhancement in five-dimensional superconformal field theories.
A Mathematical Account of the NEGF Formalism
NASA Astrophysics Data System (ADS)
Cornean, Horia D.; Moldoveanu, Valeriu; Pillet, Claude-Alain
2018-02-01
The main goal of this paper is to put on solid mathematical grounds the so-called Non-Equilibrium Green's Function (NEGF) transport formalism for open systems. In particular, we derive the Jauho-Meir-Wingreen formula for the time-dependent current through an interacting sample coupled to non-interacting leads. Our proof is non-perturbative and uses neither complex-time Keldysh contours, nor Langreth rules of 'analytic continuation'. We also discuss other technical identities (Langreth, Keldysh) involving various many body Green's functions. Finally, we study the Dyson equation for the advanced/retarded interacting Green's function and we rigorously construct its (irreducible) self-energy, using the theory of Volterra operators.
Entanglement of two blocks of spins in the critical Ising model
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.
2008-11-01
We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.
Propagation of partially coherent vector anomalous vortex beam in turbulent atmosphere
NASA Astrophysics Data System (ADS)
Zhang, Xu; Wang, Haiyan; Tang, Lei
2018-01-01
A theoretical model is proposed to describe a partially coherent vector anomalous vortex(AV) beam. Based on the extended Huygens-Fresnel principle, analytical propagation formula for the proposed beams in turbulent atmosphere is derived. The spectral properties of the partially coherent vector AV beam are explored by using the unified theory of coherence and polarization in detail. It is interesting to find that the turbulence of atmosphere and the source parameter of the partially coherent vector AV beam( order, topological charge, coherence length, beam waist size etc) have significantly impacted the propagation properties of the partially coherent vector AV beam in turbulent atmosphere.
Path-integral approach to the Wigner-Kirkwood expansion.
Jizba, Petr; Zatloukal, Václav
2014-01-01
We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.
Self-sustained peristaltic waves: Explicit asymptotic solutions
NASA Astrophysics Data System (ADS)
Dudchenko, O. A.; Guria, G. Th.
2012-02-01
A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.
Assay of the Martian Regolith with Neutrons
NASA Technical Reports Server (NTRS)
Drake, Darrell M.; Reedy, R.; Jakowsky, B.; Clark, B.; Squyres, S.
1998-01-01
Different aspects of assaying Martian regolith using neutrons have been investigated. The epithermal portion of moderated neutrons spectra is dramatically effected by the presence of hydrogen (usually in the form of water). A simple analytic formula has been derived to describe the amplitude of this portion of the neutron spectrum as a function of water concentration. Several demonstration experiments have been performed and modeled with a Monte Carlo code. Results of these experiments generally agreed with the calculations to within 20%. In addition to He-3 detectors, lithium-glass scintillators and U-238 fission ion chambers were investigated to determine their applicability to space experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izacard, Olivier
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. In conclusion, the latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less
Wu, Yongning; Zhang, Yu
2013-06-01
This review summarizes the most recent scientific literature and regulations regarding analytical chemistry, toxicology, epidemiology, exposure, and risk assessment of melamine in infant formula. For analyses, enzyme-linked immunosorbent assay, high-performance liquid chromatography, capillary electrophoresis, gas chromatography coupled with mass spectrometry and liquid chromatography coupled with tandem mass spectrometry have commonly been used. Organization of proficiency test programs provided good evidence to facilitate granting laboratories accreditation and to ascertain the measurement reliability of melamine methods. Metabolic studies demonstrated that melamine is predominantly restricted to blood or extracellular fluid and is not extensively distributed to organs and tissues. Studies of human renal histopathology and clinical diagnoses indicated that melamine-related obstructive nephropathy derives from melamine precipitation in the lower urinary tract, with stones that are thought to be melamine-uric acid complexes. Epidemiologic studies showed that the occurrence of melamine-related urolithiasis is related to both the concentration of melamine in ingested milk products and the duration of ingestion. Long-term follow-up cohort studies should be continued to further investigate the epidemic and chronic hazard of melamine-induced nephrotoxicity. The World Health Organization set a tolerable daily intake of 0.2 mg/kg bw/day to be applied to "the whole population including infants". Other authorities and research institutes have set/proposed lower values. Copyright © 2013 Elsevier Ltd. All rights reserved.
Entanglement transitions induced by large deviations
NASA Astrophysics Data System (ADS)
Bhosale, Udaysinh T.
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
Entanglement transitions induced by large deviations.
Bhosale, Udaysinh T
2017-12-01
The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.
NASA Astrophysics Data System (ADS)
Hod, Shahar
2017-12-01
It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R_{ {s}}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1-2M/R_{ {s}}<(ω /μ )^2<1. Interestingly, in the regime M/R_{ {s}}≪ 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω (M,R_{ {s}},μ )}^{n=∞}_{n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations.
NASA Astrophysics Data System (ADS)
Sulistyo, Bambang
2016-11-01
The research was aimed at studying the efect of choosing three different C factor formulae derived from NDVI on a fully raster-based erosion modelling of The USLE using remote sensing data and GIS technique. Methods applied was by analysing all factors affecting erosion such that all data were in the form of raster. Those data were R, K, LS, C and P factors. Monthly R factor was evaluated based on formula developed by Abdurachman. K factor was determined using modified formula used by Ministry of Forestry based on soil samples taken in the field. LS factor was derived from Digital Elevation Model. Three C factors used were all derived from NDVI and developed by Suriyaprasit (non-linear) and by Sulistyo (linear and non-linear). P factor was derived from the combination between slope data and landcover classification interpreted from Landsat 7 ETM+. Another analysis was the creation of map of Bulk Density used to convert erosion unit. To know the model accuracy, model validation was done by applying statistical analysis and by comparing Emodel with Eactual. A threshold value of ≥ 0.80 or ≥ 80% was chosen to justify. The research result showed that all Emodel using three formulae of C factors have coeeficient of correlation value of > 0.8. The results of analysis of variance showed that there was significantly difference between Emodel and Eactual when using C factor formula developed by Suriyaprasit and Sulistyo (non-linear). Among the three formulae, only Emodel using C factor formula developed by Sulistyo (linear) reached the accuracy of 81.13% while the other only 56.02% as developed by Sulistyo (nonlinear) and 4.70% as developed by Suriyaprasit, respectively.
Contamination of dried blood spots - an underestimated risk in newborn screening.
Winter, Theresa; Lange, Anja; Hannemann, Anke; Nauck, Matthias; Müller, Cornelia
2018-01-26
Newborn screening (NBS) is an established screening procedure in many countries worldwide, aiming at the early detection of inborn errors of metabolism. For decades, dried blood spots have been the standard specimen for NBS. The procedure of blood collection is well described and standardized and includes many critical pre-analytical steps. We examined the impact of contamination of some anticipated common substances on NBS results obtained from dry spot samples. This possible pre-analytical source of uncertainty has been poorly examined in the past. Capillary blood was obtained from 15 adult volunteers and applied to 10 screening filter papers per volunteer. Nine filter papers were contaminated without visible trace. The contaminants were baby diaper rash cream, baby wet wipes, disinfectant, liquid infant formula, liquid infant formula hypoallergenic (HA), ultrasonic gel, breast milk, feces, and urine. The differences between control and contaminated samples were evaluated for 45 NBS quantities. We estimated if the contaminations might lead to false-positive NBS results. Eight of nine investigated contaminants significantly altered NBS analyte concentrations and potentially caused false-positive screening outcomes. A contamination with feces was most influential, affecting 24 of 45 tested analytes followed by liquid infant formula (HA) and urine, affecting 19 and 13 of 45 analytes, respectively. A contamination of filter paper samples can have a substantial effect on the NBS results. Our results underline the importance of good pre-analytical training to make the staff aware of the threat and ensure reliable screening results.
Ground-state magnetization of the Ising spin glass: A recursive numerical method and Chen-Ma scaling
NASA Astrophysics Data System (ADS)
Sepehrinia, Reza; Chalangari, Fartash
2018-03-01
The ground-state properties of quasi-one-dimensional (Q1D) Ising spin glass are investigated using an exact numerical approach and analytical arguments. A set of coupled recursive equations for the ground-state energy are introduced and solved numerically. For various types of coupling distribution, we obtain accurate results for magnetization, particularly in the presence of a weak external magnetic field. We show that in the weak magnetic field limit, similar to the 1D model, magnetization exhibits a singular power-law behavior with divergent susceptibility. Remarkably, the spectrum of magnetic exponents is markedly different from that of the 1D system even in the case of two coupled chains. The magnetic exponent makes a crossover from being dependent on a distribution function to a constant value independent of distribution. We provide an analytic theory for these observations by extending the Chen-Ma argument to the Q1D case. We derive an analytical formula for the exponent which is in perfect agreement with the numerical results.
Asymptotic co- and post-seismic displacements in a homogeneous Maxwell sphere
NASA Astrophysics Data System (ADS)
Tang, He; Sun, Wenke
2018-07-01
The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, that is, via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.
NASA Astrophysics Data System (ADS)
Raymond Ooi, C. H.; Sun, Qingqing; Zubairy, M. Suhail; Scully, Marlan O.
2007-01-01
We present a largely analytical theory for two-photon correlations G(2) between Stokes (s) and anti-Stokes (a) photon pairs from an extended medium (amplifier) composed of double- Λ atoms in counterpropagating geometry. We generalize the parametric coupled equations with quantum Langevin noise given in a beautiful experimental paper of Balic [Phys. Rev. Lett. 94, 183601 (2005)] beyond adiabatic approximation and valid for arbitrary strength and detuning of laser fields. We derive an analytical formula for cross correlation Gas(2)=⟨Ês†(L)Êa†(0,τ)Êa(0,τ)Ês(L)⟩ and use it to obtain results that are in good quantitative agreement with the experimental data. Results for Gas(2) obtained using our coupled equations are in good quantitative agreement with the results using the equations of Balic , while perfect agreement is obtained for sufficiently large detuning. We also compute the reverse correlation Gsa(2) which turns out to be negligibly small and remains classical while the cross correlation violates the Cauchy-Schwartz inequality by a factor of more than a hundred.
Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor
2018-05-24
The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.
Asymptotic Co- and Post-seismic displacements in a homogeneous Maxwell sphere
NASA Astrophysics Data System (ADS)
Tang, He; Sun, Wenke
2018-05-01
The deformations of the Earth caused by internal and external forces are usually expressed through Green's functions or the superposition of normal modes, i.e. via numerical methods, which are applicable for computing both co- and post-seismic deformations. It is difficult to express these deformations in an analytical form, even for a uniform viscoelastic sphere. In this study, we present a set of asymptotic solutions for computing co- and post-seismic displacements; these solutions can be further applied to solving co- and post-seismic geoid, gravity, and strain changes. Expressions are derived for a uniform Maxwell Earth by combining the reciprocity theorem, which links earthquake, tidal, shear and loading deformations, with the asymptotic solutions of these three external forces (tidal, shear and loading) and analytical inverse Laplace transformation formulae. Since the asymptotic solutions are given in a purely analytical form without series summations or extra convergence skills, they can be practically applied in an efficient way, especially when computing post-seismic deformations and glacial isotactic adjustments of the Earth over long timescales.
Collective relaxation dynamics of small-world networks
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua
2015-04-15
The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less
Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng
2010-06-25
The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.
Collective relaxation dynamics of small-world networks.
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
NASA Astrophysics Data System (ADS)
Parise, M.
2018-01-01
A highly accurate analytical solution is derived to the electromagnetic problem of a short vertical wire antenna located on a stratified ground. The derivation consists of three steps. First, the integration path of the integrals describing the fields of the dipole is deformed and wrapped around the pole singularities and the two vertical branch cuts of the integrands located in the upper half of the complex plane. This allows to decompose the radiated field into its three contributions, namely the above-surface ground wave, the lateral wave, and the trapped surface waves. Next, the square root terms responsible for the branch cuts are extracted from the integrands of the branch-cut integrals. Finally, the extracted square roots are replaced with their rational representations according to Newton's square root algorithm, and residue theorem is applied to give explicit expressions, in series form, for the fields. The rigorous integration procedure and the convergence of square root algorithm ensure that the obtained formulas converge to the exact solution. Numerical simulations are performed to show the validity and robustness of the developed formulation, as well as its advantages in terms of time cost over standard numerical integration procedures.
Astashkin, Andrei V; Feng, Changjian
2015-11-12
The production of nitric oxide by the nitric oxide synthase (NOS) enzyme depends on the interdomain electron transfer (IET) between the flavin mononucleotide (FMN) and heme domains. Although the rate of this IET has been measured by laser flash photolysis (LFP) for various NOS proteins, no rigorous analysis of the relevant kinetic equations was performed so far. In this work, we provide an analytical solution of the kinetic equations underlying the LFP approach. The derived expressions reveal that the bulk IET rate is significantly affected by the conformational dynamics that determines the formation and dissociation rates of the docking complex between the FMN and heme domains. We show that in order to informatively study the electron transfer across the NOS enzyme, LFP should be used in combination with other spectroscopic methods that could directly probe the docking equilibrium and the conformational change rate constants. The implications of the obtained analytical expressions for the interpretation of the LFP results from various native and modified NOS proteins are discussed. The mathematical formulas derived in this work should also be applicable for interpreting the IET kinetics in other modular redox enzymes.
Rudd, Robert E; Cabot, William H; Caspersen, Kyle J; Greenough, Jeffrey A; Richards, David F; Streitz, Frederick H; Miller, Paul L
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
NASA Astrophysics Data System (ADS)
Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin
2009-05-01
We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae << a0), where the motion of stars is either dominated by internal accelerations (ai >> ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.
NASA Astrophysics Data System (ADS)
Rudd, Robert E.; Cabot, William H.; Caspersen, Kyle J.; Greenough, Jeffrey A.; Richards, David F.; Streitz, Frederick H.; Miller, Paul L.
2012-03-01
We use molecular dynamics (MD) to simulate diffusion in molten aluminum-copper (AlCu) alloys. The self-diffusivities and Maxwell-Stefan diffusivities are calculated for AlCu mixtures using the Green-Kubo formulas at temperatures from 1000 to 4000 K and pressures from 0 to 25 GPa, along with additional points at higher temperatures and pressures. The diffusivities are corrected for finite-size effects. The Maxwell-Stefan diffusivity is compared to the diffusivity calculated from the self-diffusivities using a generalization of the Darken equation. We find that the effects of cross-correlation are small. Using the calculated self-diffusivities, we have assessed whether dilute hard-sphere and dilute Lennard-Jones models apply to the molten mixture. Neither of the two dilute gas diffusivities describes the diffusivity in molten Al and Cu. We report generalized analytic models for the self-diffusivities and interdiffusivity (mutual diffusivity) that fit the MD results well. The MD-derived transport coefficients are in good agreement with the available experimental data. We also report MD calculations of the viscosity and an analytic fit to those results. The ionic thermal conductivity is discussed briefly.
Bulk diffusion in a kinetically constrained lattice gas
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
Phase derivative method for reconstruction of slightly off-axis digital holograms.
Guo, Cheng-Shan; Wang, Ben-Yi; Sha, Bei; Lu, Yu-Jie; Xu, Ming-Yuan
2014-12-15
A phase derivative (PD) method is proposed for reconstruction of off-axis holograms. In this method, a phase distribution of the tested object wave constrained within 0 to pi radian is firstly worked out by a simple analytical formula; then it is corrected to its right range from -pi to pi according to the sign characteristics of its first-order derivative. A theoretical analysis indicates that this PD method is particularly suitable for reconstruction of slightly off-axis holograms because it only requires the spatial frequency of the reference beam larger than spatial frequency of the tested object wave in principle. In addition, because the PD method belongs to a pure local method with no need of any integral operation or phase shifting algorithm in process of the phase retrieval, it could have some advantages in reducing computer load and memory requirements to the image processing system. Some experimental results are given to demonstrate the feasibility of the method.
NASA Astrophysics Data System (ADS)
Del Duca, V.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C. D.
2017-11-01
We consider the production of an arbitrary number of colour-singlet particles near partonic threshold, and show that next-to-leading order cross sections for this class of processes have a simple universal form at next-to-leading power (NLP) in the energy of the emitted gluon radiation. Our analysis relies on a recently derived factorisation formula for NLP threshold effects at amplitude level, and therefore applies both if the leading-order process is tree-level and if it is loop-induced. It holds for differential distributions as well. The results can furthermore be seen as applications of recently derived next-to-soft theorems for gauge theory amplitudes. We use our universal expression to re-derive known results for the production of up to three Higgs bosons at NLO in the large top mass limit, and for the hadro-production of a pair of electroweak gauge bosons. Finally, we present new analytic results for Higgs boson pair production at NLO and NLP, with exact top-mass dependence.
Generalized formula for electron emission taking account of the polaron effect
NASA Astrophysics Data System (ADS)
Barengolts, Yu A.; Beril, S. I.; Barengolts, S. A.
2018-01-01
A generalized formula is derived for the electron emission current as a function of temperature, field, and electron work function in a metal-dielectric system that takes account of the quantum nature of the image forces. In deriving the formula, the Fermi-Dirac distribution for electrons in a metal and the quantum potential of the image obtained in the context of electron polaron theory are used.
Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D
2010-05-07
Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.
Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D
2010-01-01
Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908
Magnetic fields for transporting charged beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parzen, G.
1976-01-01
The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include themore » fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries.« less
Kinetic corrections from analytic non-Maxwellian distribution functions in magnetized plasmas
Izacard, Olivier
2016-08-02
In magnetized plasma physics, almost all developed analytic theories assume a Maxwellian distribution function (MDF) and in some cases small deviations are described using the perturbation theory. The deviations with respect to the Maxwellian equilibrium, called kinetic effects, are required to be taken into account especially for fusion reactor plasmas. Generally, because the perturbation theory is not consistent with observed steady-state non-Maxwellians, these kinetic effects are numerically evaluated by very central processing unit (CPU)-expensive codes, avoiding the analytic complexity of velocity phase space integrals. We develop here a new method based on analytic non-Maxwellian distribution functions constructed from non-orthogonal basismore » sets in order to (i) use as few parameters as possible, (ii) increase the efficiency to model numerical and experimental non-Maxwellians, (iii) help to understand unsolved problems such as diagnostics discrepancies from the physical interpretation of the parameters, and (iv) obtain analytic corrections due to kinetic effects given by a small number of terms and removing the numerical error of the evaluation of velocity phase space integrals. This work does not attempt to derive new physical effects even if it could be possible to discover one from the better understandings of some unsolved problems, but here we focus on the analytic prediction of kinetic corrections from analytic non-Maxwellians. As applications, examples of analytic kinetic corrections are shown for the secondary electron emission, the Langmuir probe characteristic curve, and the entropy. This is done by using three analytic representations of the distribution function: the Kappa distribution function, the bi-modal or a new interpreted non-Maxwellian distribution function (INMDF). The existence of INMDFs is proved by new understandings of the experimental discrepancy of the measured electron temperature between two diagnostics in JET. As main results, it is shown that (i) the empirical formula for the secondary electron emission is not consistent with a MDF due to the presence of super-thermal particles, (ii) the super-thermal particles can replace a diffusion parameter in the Langmuir probe current formula, and (iii) the entropy can explicitly decrease in presence of sources only for the introduced INMDF without violating the second law of thermodynamics. Moreover, the first order entropy of an infinite number of super-thermal tails stays the same as the entropy of a MDF. In conclusion, the latter demystifies the Maxwell's demon by statistically describing non-isolated systems.« less
Accurate mass measurements and their appropriate use for reliable analyte identification.
Godfrey, A Ruth; Brenton, A Gareth
2012-09-01
Accurate mass instrumentation is becoming increasingly available to non-expert users. This data can be mis-used, particularly for analyte identification. Current best practice in assigning potential elemental formula for reliable analyte identification has been described with modern informatic approaches to analyte elucidation, including chemometric characterisation, data processing and searching using facilities such as the Chemical Abstracts Service (CAS) Registry and Chemspider.
1986-01-01
amplitude gain function G, based 189 on the theoretical formulas derived by Testud and Chong (1983). GI is the amplitude gain for n = I (first order...theoretical formulas derived by Testud and Chong (1983). Values of kt, and AL are 0.1584 km and 0.0251 km respectively. For comparison, values of D...from Barnes (1973) scheme (D’) with Y=0.3 and R=2.5 km and theo:etical formulas derived by Testud and Chong (1983) for n=l (GI) and n=2 (G2). Fig. BI
How the Klein–Nishina formula was derived: Based on the Sangokan Nishina Source Materials
YAZAKI, Yuji
2017-01-01
In 1928, Klein and Nishina investigated Compton scattering based on the Dirac equation just proposed in the same year, and derived the Klein–Nishina formula for the scattering cross section of a photon. At that time the Dirac equation had the following unsettled conceptual questions: the negative energy states, its four-component wave functions, and the spin states of an electron. Hence, during their investigation struggles, they encountered various difficulties. In this article, we describe their struggles to derive the formula using the “Sangokan Nishina Source Materials” retained in the the Nishina Memorial Foundation. PMID:28603211
Special relativity derived from spacetime magma.
Greensite, Fred
2014-01-01
We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.
Modeling direct interband tunneling. II. Lower-dimensional structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.
Statistical properties of fractures in damaged materials
NASA Astrophysics Data System (ADS)
Gabrielli, A.; Cafiero, R.; Caldarelli, G.
1999-01-01
We introduce a model for the dynamics of mud cracking in the limit of of extremely thin layers. In this model the growth of fracture proceeds by selecting the part of the material with the smallest (quenched) breaking threshold. In addition, weakening affects the area of the sample neighbour to the crack. Due to the simplicity of the model, it is possible to derive some analytical results. In particular, we find that the total time to break down the sample grows with the dimension L of the lattice as L2 even though the percolating cluster has a non-trivial fractal dimension. Furthermore, we obtain a formula for the mean weakening with time of the whole sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencze, G.; Chandler, C.
It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple analytical formulas, derived on the basis of {ital N}-particle scattering theory by means of the general two-potential formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor that differs from 1 by at most a few percent. As a result enhancement of ({ital d},{ital p})more » relative to ({ital d},{ital n}) reactions is not possible by the Oppenheimer-Phillips mechanism.« less
Raman Amplification and Tunable Pulse Delays in Silicon Waveguides
NASA Astrophysics Data System (ADS)
Rukhlenko, Ivan D.; Garanovich, Ivan L.; Premaratne, Malin; Sukhorukov, Andrey A.; Agrawal, Govind P.
2010-10-01
The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. However, generally employed numerical approaches provide very little insight into the contribution of different silicon Raman amplifier (SRA) parameters. In this paper, we solve the coupled pump-signal equations analytically and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.
Interface stability in a slowly rotating, low gravity tank Experiments
NASA Technical Reports Server (NTRS)
Leslie, F.; Gans, R. F.
1986-01-01
Analytical models of liquid in partially-filled rotating tanks predict both the shape of the interface between the liquid and its vapor, and the stability of that interface. The models are of necessity incomplete and experimental data are needed to assess the approximations made. Presented are preliminary experimental studies both in the laboratory and in the low-gravity environment of a free-falling aircraft. Emphasis is placed on bubbles which intersect the container boundaries. Measurements of rotating equilibrium bubble shapes are in agreement with theoretical profiles derived from Laplace's formula. The interface shape depends on the contact angle, the radius of intersection with container, and the ratio of centrifugal force to surface tension.
Cai, Yangjian; Lin, Qiang; Eyyuboğlu, Halil T; Baykal, Yahya
2008-05-26
Analytical formulas are derived for the average irradiance and the degree of polarization of a radially or azimuthally polarized doughnut beam (PDB) propagating in a turbulent atmosphere by adopting a beam coherence-polarization matrix. It is found that the radial or azimuthal polarization structure of a radially or azimuthally PDB will be destroyed (i.e., a radially or azimuthally PDB is depolarized and becomes a partially polarized beam) and the doughnut beam spot becomes a circularly Gaussian beam spot during propagation in a turbulent atmosphere. The propagation properties are closely related to the parameters of the beam and the structure constant of the atmospheric turbulence.
Spin-squeezing and Dicke-state preparation by heterodyne measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanderbruggen, T.; Bernon, S.; Bertoldi, A.
2011-01-15
We investigate the quantum nondemolition (QND) measurement of an atomic population based on a heterodyne detection and show that the induced back-action allows for the preparation of both spin-squeezed and Dicke states. We use a wave-vector formalism to describe the stochastic process of the measurement and the associated atomic evolution. Analytical formulas of the atomic distribution momenta are derived in the weak-coupling regime both for short- and long-time behavior, and they are in good agreement with those obtained by a Monte Carlo simulation. The experimental implementation of the proposed heterodyne detection scheme is discussed. The role played in the squeezingmore » process by the spontaneous emission is considered.« less
Bryan, Sean A; Montroy, Thomas E; Ruhl, John E
2010-11-10
We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.
Quantum steering and entanglement in three-mode triangle Bose-Hubbard system
NASA Astrophysics Data System (ADS)
Kalaga, J. K.; Leoński, W.; Szczȩśniak, R.
2017-11-01
We consider the possibility of generation steerable states in Bose-Hubbard system composed of three interacting wells in the form of a triangle. We show that although our system still fulfills the monogamy relations, the presence of additional coupling which transforms a chain of wells onto triangle gives a variety of new possibilities for the generation of steerable quantum states. Deriving analytical formulas for the parameters describing steering and bipartite entanglement, we show that interplay between two couplings influences quantum correlations of various types. We compare the time evolution of steering parameters to those describing bipartite entanglement and find the relations between the appearance of maximal entanglement and disappearance of steering effect.
Multidimensional Extension of the Generalized Chowla-Selberg Formula
NASA Astrophysics Data System (ADS)
Elizalde, E.
After recalling the precise existence conditions of the zeta function of a pseudodifferential operator, and the concept of reflection formula, an exponentially convergent expression for the analytic continuation of a multidimensional inhomogeneous Epstein-type zeta function of the general form
NASA Astrophysics Data System (ADS)
Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.
2007-01-01
On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.
Systematic study of α-decay half-lives using Royer and related formula
NASA Astrophysics Data System (ADS)
Akrawy, Dashty T.; Hassanabadi, H.; Hosseini, S. S.; Santhosh, K. P.
2018-03-01
The alpha decay half-lives of 356 isotopes were studied using the Royer and related Formula and are compared with experimental data. The study shows that the predicted half-lives match well with experimental data over a wide range for each (Z , N) parity of the parent nuclei. We have calculated the standard deviation of log10 Tα (s), for each formula and our study indicate that, for alpha decay studies, generally, analytical ℓ-dependent formula proposed by Royer, with σRB = 0.4373, is the best model followed by the formula proposed by Denisov and Khudenko (DK), σDK = 0.4743 for all 356 nuclei. We hope the present study is a clear indicator of the predictive power of Royer and related formula.
Poisson mixture model for measurements using counting.
Miller, Guthrie; Justus, Alan; Vostrotin, Vadim; Dry, Donald; Bertelli, Luiz
2010-03-01
Starting with the basic Poisson statistical model of a counting measurement process, 'extraPoisson' variance or 'overdispersion' are included by assuming that the Poisson parameter representing the mean number of counts itself comes from another distribution. The Poisson parameter is assumed to be given by the quantity of interest in the inference process multiplied by a lognormally distributed normalising coefficient plus an additional lognormal background that might be correlated with the normalising coefficient (shared uncertainty). The example of lognormal environmental background in uranium urine data is discussed. An additional uncorrelated background is also included. The uncorrelated background is estimated from a background count measurement using Bayesian arguments. The rather complex formulas are validated using Monte Carlo. An analytical expression is obtained for the probability distribution of gross counts coming from the uncorrelated background, which allows straightforward calculation of a classical decision level in the form of a gross-count alarm point with a desired false-positive rate. The main purpose of this paper is to derive formulas for exact likelihood calculations in the case of various kinds of backgrounds.
Two-component Jaffe models with a central black hole - I. The spherical case
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Ziaee Lorzad, Azadeh
2018-02-01
Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scalelengths and masses) are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, and a black hole (BH) is added at the centre of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monotonically decreasing dark matter halo density profile are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler W function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the centre and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presented in Ciotti, and can be useful as starting point for more advanced modelling, the dynamics and the mass distribution of elliptical galaxies.
Khan, Naeem; Jeong, In Seon; Hwang, In Min; Kim, Jae Sung; Choi, Sung Hwa; Nho, Eun Yeong; Choi, Ji Yeon; Kwak, Byung-Man; Ahn, Jang-Hyuk; Yoon, Taehyung; Kim, Kyong Su
2013-12-15
This study aimed to validate the analytical method for simultaneous determination of chromium (Cr), molybdenum (Mo), and selenium (Se) in infant formulas available in South Korea. Various digestion methods of dry-ashing, wet-digestion and microwave were evaluated for samples preparation and both inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were compared for analysis. The analytical techniques were validated by detection limits, precision, accuracy and recovery experiments. Results showed that wet-digestion and microwave methods were giving satisfactory results for sample preparation, while ICP-MS was found more sensitive and effective technique than ICP-OES. The recovery (%) of Se, Mo and Cr by ICP-OES were 40.9, 109.4 and 0, compared to 99.1, 98.7 and 98.4, respectively by ICP-MS. The contents of Cr, Mo and Se in infant formulas by ICP-MS were found in good nutritional values in accordance to nutrient standards for infant formulas CODEX values. Copyright © 2013 Elsevier Ltd. All rights reserved.
Emura, Takeshi; Nakatochi, Masahiro; Matsui, Shigeyuki; Michimae, Hirofumi; Rondeau, Virginie
2017-01-01
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data. To this end, we extend the existing joint frailty-copula model to a model allowing for high-dimensional genetic factors. In addition, we propose a dynamic prediction formula to predict death given tumour progression events possibly occurring after treatment or surgery. For clinical use, we implement the computation software of the prediction formula in the joint.Cox R package. We also develop a tool to validate the performance of the prediction formula by assessing the prediction error. We illustrate the method with the meta-analysis of individual patient data on ovarian cancer patients.
Radiation Force Caused by Scattering, Absorption, and Emission of Light by Nonspherical Particles
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)
2001-01-01
General formulas for computing the radiation force exerted on arbitrarily oriented and arbitrarily shaped nonspherical particles due to scattering, absorption, and emission of electromagnetic radiation are derived. For randomly oriented particles with a plane of symmetry, the formula for the average radiation force caused by the particle response to external illumination reduces to the standard Debye formula derived from the Lorenz-Mie theory, whereas the average radiation force caused by emission vanishes.
Partially ionized hydrogen plasma in strong magnetic fields.
Potekhin, A Y; Chabrier, G; Shibanov, Y A
1999-08-01
We study the thermodynamic properties of a partially ionized hydrogen plasma in strong magnetic fields, B approximately 10(12)-10(13) G, typical of neutron stars. The properties of the plasma depend significantly on the quantum-mechanical sizes and binding energies of the atoms, which are strongly modified by thermal motion across the field. We use new fitting formulas for the atomic binding energies and sizes, based on accurate numerical calculations and valid for any state of motion of the atom. In particular, we take into account decentered atomic states, neglected in previous studies of thermodynamics of magnetized plasmas. We also employ analytic fits for the thermodynamic functions of nonideal fully ionized electron-ion Coulomb plasmas. This enables us to construct an analytic model of the free energy. An ionization equilibrium equation is derived, taking into account the strong magnetic field effects and the nonideality effects. This equation is solved by an iteration technique. Ionization degrees, occupancies, and the equation of state are calculated.
High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams.
Alejo, A; Kar, S; Tebartz, A; Ahmed, H; Astbury, S; Carroll, D C; Ding, J; Doria, D; Higginson, A; McKenna, P; Neumann, N; Scott, G G; Wagner, F; Roth, M; Borghesi, M
2016-08-01
We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.
High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams
NASA Astrophysics Data System (ADS)
Alejo, A.; Kar, S.; Tebartz, A.; Ahmed, H.; Astbury, S.; Carroll, D. C.; Ding, J.; Doria, D.; Higginson, A.; McKenna, P.; Neumann, N.; Scott, G. G.; Wagner, F.; Roth, M.; Borghesi, M.
2016-08-01
We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.
NASA Astrophysics Data System (ADS)
van Horssen, Wim T.; Wang, Yandong; Cao, Guohua
2018-06-01
In this paper, it is shown how characteristic coordinates, or equivalently how the well-known formula of d'Alembert, can be used to solve initial-boundary value problems for wave equations on fixed, bounded intervals involving Robin type of boundary conditions with time-dependent coefficients. A Robin boundary condition is a condition that specifies a linear combination of the dependent variable and its first order space-derivative on a boundary of the interval. Analytical methods, such as the method of separation of variables (SOV) or the Laplace transform method, are not applicable to those types of problems. The obtained analytical results by applying the proposed method, are in complete agreement with those obtained by using the numerical, finite difference method. For problems with time-independent coefficients in the Robin boundary condition(s), the results of the proposed method also completely agree with those as for instance obtained by the method of separation of variables, or by the finite difference method.
Analysis of the extracts of Isatis tinctoria by new analytical approaches of HPLC, MS and NMR.
Zhou, Jue; Qu, Fan
2011-01-01
The methods of extraction, separation and analysis of alkaloids and indole glucosinolates (GLs) ofIsatis tinctoria were reviewed. Different analytical approaches such as High-pressure Liquid Chromatography (HPLC), Liquid Chromatography with Electrospray Ionization Mass Spectrometry (LC/ESI/MS), Electrospray Ionization Time-Of-Flight Mass Spectrometry (ESI-TOF-MS), and Nuclear Magnetic Resonance (NMR) were used to validate and identity of these constituents. These methods provide rapid separation, identification and quantitative measurements of alkaloids and GLs of Isatis tinctoria. By connection with different detectors to HPLC such as PDA, ELSD, ESI- and APCI-MS in positive and negative ion modes, complicated compounds could be detected with at least two independent detection modes. The molecular formula can be derived in a second step of ESI-TOF-MS data. But for some constituents, UV and MS cannot provide sufficient structure identification. After peak purification, NMR by semi-preparative HPLC can be used as a complementary method.
NASA Astrophysics Data System (ADS)
Heinrich, S. M.; Wenzel, M. J.; Josse, F.; Dufour, I.
2009-06-01
The problem governing the transient deformation of an elastic cantilever beam with viscoelastic coating, subjected to a time-dependent coating eigenstrain, is mathematically formulated. An analytical solution for an exponential eigenstrain history, exact within the context of beam theory, is obtained in terms of the coating and base layer thicknesses, the elastic modulus of the base material, the initial coating modulus, the coating relaxation percentage (0%-100%), and the time constants of the coating's relaxation process and its eigenstrain history. Approximate formulas, valid for thin coatings, are derived as special cases to provide insight into system behavior. Main results include (1) the time histories of the beam curvature and the coating stresses, (2) a criterion governing the response type (monotonic or "overshoot" response), and (3) simple expressions for the overshoot ratio, defined as the peak response scaled by the steady-state response, and the time at which the peak response occurs. Applications to polymer-coated microcantilever-based chemical sensors operating in the static mode are discussed.
High resolution Thomson Parabola Spectrometer for full spectral capture of multi-species ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alejo, A.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.
2016-08-15
We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species.more » Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.« less
Semiclassical Dynamicswith Exponentially Small Error Estimates
NASA Astrophysics Data System (ADS)
Hagedorn, George A.; Joye, Alain
We construct approximate solutions to the time-dependent Schrödingerequation
The Kirchhoff Formula for a Supersonically Moving Surface
NASA Technical Reports Server (NTRS)
Farassat, F.; Myers, M. K.
1996-01-01
The Kirchhoff formula for radiation from stationary surfaces first appeared in 1882, and it has since found many applications in wave propagation theory. In 1930, Morgans extended the formula to apply to surfaces moving at speeds below the wave propagation speed; we refer to Morgans formula as the subsonic formulation. A modern derivation of Morgans result was published by Farassat and Myers in 1988, and it has now been used extensively in acoustics, particularly for high speed helicopter rotor noise prediction. Under some common conditions in this application, however, the appropriate Kirchhoff surface must be chosen such that portions of it travel at supersonic speed. The available Kirchhoff formula for moving surfaces is not suitable for this situation. In the current paper we derive the Kirchhoff formula applicable to a supersonically moving surface using some results from generalized function theory. The new formula requires knowledge of the same surface data as in the subsonic case. Complications that arise from apparent singularities in the new formulation are discussed briefly in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, L.; Smeets, A.H.M.
1980-09-01
For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less
Explicit Formulae for the Continued Fraction Convergents of "Square Root of D"
ERIC Educational Resources Information Center
Braza, Peter A.
2010-01-01
The formulae for the convergents of continued fractions are always given recursively rather than in explicit form. This article derives explicit formulae for the convergents of the continued fraction expansions for square roots.
Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China.
Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li'an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling
2016-03-01
A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box-Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China.
Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China
Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li’an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling
2016-01-01
Abstract A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box–Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China. PMID:26945390
Jones, Edmund; Epstein, David; García-Mochón, Leticia
2017-10-01
For health-economic analyses that use multistate Markov models, it is often necessary to convert from transition rates to transition probabilities, and for probabilistic sensitivity analysis and other purposes it is useful to have explicit algebraic formulas for these conversions, to avoid having to resort to numerical methods. However, if there are four or more states then the formulas can be extremely complicated. These calculations can be made using packages such as R, but many analysts and other stakeholders still prefer to use spreadsheets for these decision models. We describe a procedure for deriving formulas that use intermediate variables so that each individual formula is reasonably simple. Once the formulas have been derived, the calculations can be performed in Excel or similar software. The procedure is illustrated by several examples and we discuss how to use a computer algebra system to assist with it. The procedure works in a wide variety of scenarios but cannot be employed when there are several backward transitions and the characteristic equation has no algebraic solution, or when the eigenvalues of the transition rate matrix are very close to each other.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the bridge formula. (c) The maximum gross weight upon any one axle, including any one axle of a group... following formula, referred to as the Bridge Gross Weight Formula: EC14OC91.012 except that two consecutive... derived from the Bridge Formula, up to a maximum of 80,000 pounds, including all enforcement tolerances...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the bridge formula. (c) The maximum gross weight upon any one axle, including any one axle of a group... following formula, referred to as the Bridge Gross Weight Formula: EC14OC91.012 except that two consecutive... derived from the Bridge Formula, up to a maximum of 80,000 pounds, including all enforcement tolerances...
Chang, W-K; Chao, Y-C; Mcclave, S-A; Yeh, M-K
2005-10-01
Gastric residual volumes are widely used to evaluate gastric emptying for patients receiving enteral feeding, but controversy exists about what constitutes gastric residual volume. We have developed a method by using refractometer and derived mathematical equations to calculate the formula concentration, total residual volume (TRV), and formula volume. In this study, we like to validate these mathematical equations before they can be implemented for clinical patient care. Four dietary formulas were evaluated in two consecutive validation experiments. Firstly, dietary formula volume of 50, 100, 200, and 400 ml were diluted with 50 ml water, and then the Brix value (BV) was measured by the refractometer. Secondly, 50 ml of water, then 100 ml of dietary formula were infused into a beaker, and followed by the BV measurement. After this, 50 ml of water was infused and followed by the second BV measurement. The entire procedure of infusing of dietary formula (100 ml) and waster (50 ml) was repeated twice and followed by the BV measurement. The formula contents (formula concentration, TRV, and formula volume) were calculated by mathematical equations. The calculated formula concentrations, TRVs, and formula volumes measured from mathematic equations were strongly close to the true values in the first and second validation experiments (R2>0.98, P<0.001). Refractometer and the derived mathematical equations may be used to accurately measure the formula concentration, TRV, and formula volume and served as a tool to monitor gastric emptying for patients receiving enteral feeding.
Analytic theory of high-order-harmonic generation by an intense few-cycle laser pulse
NASA Astrophysics Data System (ADS)
Frolov, M. V.; Manakov, N. L.; Popov, A. M.; Tikhonova, O. V.; Volkova, E. A.; Silaev, A. A.; Vvedenskii, N. V.; Starace, Anthony F.
2012-03-01
We present a theoretical model for describing the interaction of an electron, weakly bound in a short-range potential, with an intense, few-cycle laser pulse. General definitions for the differential probability of above-threshold ionization and for the yield of high-order-harmonic generation (HHG) are presented. For HHG we then derive detailed analytic expressions for the spectral density of generated radiation in terms of the key laser parameters, including the number N of optical cycles in the pulse and the carrier-envelope phase (CEP). In particular, in the tunneling approximation, we provide detailed derivations of the closed-form formulas presented briefly by M. V. Frolov [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.021405 83, 021405(R) (2011)], which were used to describe key features of HHG by both H and Xe atom targets in an intense, few-cycle laser pulse. We then provide a complete analysis of the dependence of the HHG spectrum on both N and the CEP φ of an N-cycle laser pulse. Most importantly, we show analytically that the structure of the HHG spectrum stems from interference between electron wave packets originating from electron ionization from neighboring half-cycles near the peak of the intensity envelope of the few-cycle laser pulse. Such interference is shown to be very sensitive to the CEP. The usual HHG spectrum for a monochromatic driving laser field (comprising harmonic peaks at odd multiples of the carrier frequency and spaced by twice the carrier frequency) is shown analytically to occur only in the limit of very large N, and begins to form, as N increases, in the energy region beyond the HHG plateau cutoff.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta-Schubert, N.; Reyes, M. A.; Tamez, V. A.
2009-04-20
Alpha decay is one of the two main decay modes of the heaviest nuclei, (SHE), and constitutes one of the dominant decay modes of highly neutron deficient medium mass nuclei ('exotics'). Thus identifying and characterizing the alpha decay chains form a crucial part of the identification of SHE. We report the extension of the previously developed method for the detailed and systematic investigation of the reliability of the three main extant analytical formulae of alpha decay half-lives: the generalized liquid drop model based formula of Royer et al. (FR), the Sobiczewski modified semi-empirical Viola-Seaborg formula (VSS) and the recent phenomenologicalmore » formula of Sobiczewski and Parkhomenko (SP)« less
Lu, Chen; Zhao, Xiaodan; Kawamura, Ryo
2017-01-01
Frictional drag force on an object in Stokes flow follows a linear relationship with the velocity of translation and a translational drag coefficient. This drag coefficient is related to the size, shape, and orientation of the object. For rod-like objects, analytical solutions of the drag coefficients have been proposed based on three rough approximations of the rod geometry, namely the bead model, ellipsoid model, and cylinder model. These theories all agree that translational drag coefficients of rod-like objects are functions of the rod length and aspect ratio, but differ among one another on the correction factor terms in the equations. By tracking the displacement of the particles through stationary fluids of calibrated viscosity in magnetic tweezers setup, we experimentally measured the drag coefficients of micron-sized beads and their bead-chain formations with chain length of 2 to 27. We verified our methodology with analytical solutions of dimers of two touching beads, and compared our measured drag coefficient values of rod-like objects with theoretical calculations. Our comparison reveals several analytical solutions that used more appropriate approximation and derived formulae that agree with our measurement better. PMID:29145447
Derivation of a formula for the resonance integral for a nonorthogonal basis set
Yim, Yung-Chang; Eyring, Henry
1981-01-01
In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009
Relations among pure-tone sound stimuli, neural activity, and the loudness sensation
NASA Technical Reports Server (NTRS)
Howes, W. L.
1972-01-01
Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.
Cooling of solar flares plasmas. 1: Theoretical considerations
NASA Technical Reports Server (NTRS)
Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.
1995-01-01
Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).
NASA Astrophysics Data System (ADS)
Marshall, J. S.
2016-12-01
We analytically construct solutions for the mean first-passage time and splitting probabilities for the escape problem of a particle moving with continuous Brownian motion in a confining planar disc with an arbitrary distribution (i.e., of any number, size and spacing) of exit holes/absorbing sections along its boundary. The governing equations for these quantities are Poisson's equation with a (non-zero) constant forcing term and Laplace's equation, respectively, and both are subject to a mixture of homogeneous Neumann and Dirichlet boundary conditions. Our solutions are expressed as explicit closed formulae written in terms of a parameterising variable via a conformal map, using special transcendental functions that are defined in terms of an associated Schottky group. They are derived by exploiting recent results for a related problem of fluid mechanics that describes a unidirectional flow over "no-slip/no-shear" surfaces, as well as results from potential theory, all of which were themselves derived using the same theory of Schottky groups. They are exact up to the determination of a finite set of mapping parameters, which is performed numerically. Their evaluation also requires the numerical inversion of the parameterising conformal map. Computations for a series of illustrative examples are also presented.
NASA Astrophysics Data System (ADS)
Majka, M.; Góra, P. F.
2016-10-01
While the origins of temporal correlations in Langevin dynamics have been thoroughly researched, the understanding of spatially correlated noise (SCN) is rather incomplete. In particular, very little is known about the relation between friction and SCN. In this article, starting from the microscopic, deterministic model, we derive the analytical formula for the spatial correlation function in the particle-bath interactions. This expression shows that SCN is the inherent component of binary mixtures, originating from the effective (entropic) interactions. Further, employing this spatial correlation function, we postulate the thermodynamically consistent Langevin equation driven by the Gaussian SCN and calculate the adequate fluctuation-dissipation relation. The thermodynamical consistency is achieved by introducing the spatially variant friction coefficient, which can be also derived analytically. This coefficient exhibits a number of intriguing properties, e.g., the singular behavior for certain types of interactions. Eventually, we apply this new theory to the system of two charged particles in the presence of counter-ions. Such particles interact via the screened-charge Yukawa potential and the inclusion of SCN leads to the emergence of the anomalous frictionless regime. In this regime the particles can experience active propulsion leading to the transient attraction effect. This effect suggests a nonequilibrium mechanism facilitating the molecular binding of the like-charged particles.
NASA Astrophysics Data System (ADS)
Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.
2017-12-01
The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.
Arbitrarily accurate twin composite π -pulse sequences
NASA Astrophysics Data System (ADS)
Torosov, Boyan T.; Vitanov, Nikolay V.
2018-04-01
We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .
Analytical pricing formulas for hybrid variance swaps with regime-switching
NASA Astrophysics Data System (ADS)
Roslan, Teh Raihana Nazirah; Cao, Jiling; Zhang, Wenjun
2017-11-01
The problem of pricing discretely-sampled variance swaps under stochastic volatility, stochastic interest rate and regime-switching is being considered in this paper. An extension of the Heston stochastic volatility model structure is done by adding the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. In addition, the parameters of the model are permitted to have transitions following a Markov chain process which is continuous and discoverable. This hybrid model can be used to illustrate certain macroeconomic conditions, for example the changing phases of business stages. The outcome of our regime-switching hybrid model is presented in terms of analytical pricing formulas for variance swaps.
Zhan, Jia; Zhong, Ying-ying; Yu, Xue-jun; Peng, Jin-feng; Chen, Shubing; Yin, Ju-yi; Zhang, Jia-Jie; Zhu, Yan
2013-06-01
A rapid, simple and generic analytical method which was able to simultaneously determine 220 undesirable chemical residues in infant formula had been developed. The method comprised of extraction with acetonitrile, clean-up by low temperature and water precipitation, and analysis by ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS-MS) using multiple reaction monitoring (MRM) mode. Most fat materials in acetonitrile extract were eliminated by low temperature clean-up. The water precipitation, providing a necessary and supplementary cleanup, could avoid losses of hydrophobic analytes (avermectins, ionophores). Average recoveries for spiked infant formula were in the range from 57% to 147% with associated RSD values between 1% and 28%. For over 80% of the analytes, the recoveries were between 70% and 120% with RSD values in the range of 1-15%. The limits of quantification (LOQs) were from 0.01 to 5 μg/kg, which were usually sufficient to verify the compliance of products with legal tolerances. Application of this method in routine monitoring programs would imply a drastic reduction of both effort and time. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Single-Expression Formula for Inverting Strain-Life and Stress-Strain Relationships
NASA Technical Reports Server (NTRS)
Manson, S. S.; Muralidharan, U.
1981-01-01
Starting with the basic fatigue lift formula, an inversion formula is derived. The inversion formula is valid over the entire life range of engineering interest for all materials examined. Conformity between the two equations is extremely close, suitable for all engineering problems. The approach used to invert the life relation is also suitable for the inversion of other formulas involving the sum of two power-law terms.
Coyle, Whitney L; Guillemain, Philippe; Kergomard, Jean; Dalmont, Jean-Pierre
2015-11-01
When designing a wind instrument such as a clarinet, it can be useful to be able to predict the playing frequencies. This paper presents an analytical method to deduce these playing frequencies using the input impedance curve. Specifically there are two control parameters that have a significant influence on the playing frequency, the blowing pressure and reed opening. Four effects are known to alter the playing frequency and are examined separately: the flow rate due to the reed motion, the reed dynamics, the inharmonicity of the resonator, and the temperature gradient within the clarinet. The resulting playing frequencies for the first register of a particular professional level clarinet are found using the analytical formulas presented in this paper. The analytical predictions are then compared to numerically simulated results to validate the prediction accuracy. The main conclusion is that in general the playing frequency decreases above the oscillation threshold because of inharmonicity, then increases above the beating reed regime threshold because of the decrease of the flow rate effect.
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
An Expansion Formula with Higher-Order Derivatives for Fractional Operators of Variable Order
Almeida, Ricardo
2013-01-01
We obtain approximation formulas for fractional integrals and derivatives of Riemann-Liouville and Marchaud types with a variable fractional order. The approximations involve integer-order derivatives only. An estimation for the error is given. The efficiency of the approximation method is illustrated with examples. As applications, we show how the obtained results are useful to solve differential equations, and problems of the calculus of variations that depend on fractional derivatives of Marchaud type. PMID:24319382
De Curtis, M; Senterre, J; Rigo, J; Putet, G
1986-09-01
Significant production of breath hydrogen has been shown in premature infants, suggesting limited intestinal capacity for digestion of carbohydrate. To evaluate net absorption of carbohydrate 24 three day balance studies were carried out in seven preterm infants fed pasteurised banked human milk and in 17 preterm infants fed a formula containing 75% lactose and 25% glucose polymers. Because carbohydrate reaching the colon may be converted to organic acids by bacterial flora, carbohydrate net absorption was determined by quantitating the faecal excretion of energy derived from carbohydrate. The carbohydrate derived energy content of milk and stools was calculated as the difference between the measured gross energy and the sum of energy related to nitrogen and fat. Faecal loss of carbohydrate derived energy was lower in the group fed formula (1.9 (SD 1.2) kcal/kg/day) than in the group fed human milk (4.0 (SD 1.8) kcal/kg/day). Net absorption of carbohydrate derived energy was 97.0 (SD 1.9)% as opposed to 92.6 (SD 3.9)%, respectively. Within each group there was no significant relation between carbohydrate energy absorption and fat, nitrogen, or gross energy absorption. Thus, although less complete with human milk than with formula, apparent absorption of energy derived from carbohydrate seemed quite satisfactory in these preterm infants.
A new age-based formula for estimating weight of Korean children.
Park, Jungho; Kwak, Young Ho; Kim, Do Kyun; Jung, Jae Yun; Lee, Jin Hee; Jang, Hye Young; Kim, Hahn Bom; Hong, Ki Jeong
2012-09-01
The objective of this study was to develop and validate a new age-based formula for estimating body weights of Korean children. We obtained body weight and age data from a survey conducted in 2005 by the Korean Pediatric Society that was performed to establish normative values for Korean children. Children aged 0-14 were enrolled, and they were divided into three groups according to age: infants (<12 months), preschool-aged (1-4 years) and school-aged children (5-14 years). Seventy-five percent of all subjects were randomly selected to make a derivation set. Regression analysis was performed in order to produce equations that predict the weight from the age for each group. The linear equations derived from this analysis were simplified to create a weight estimating formula for Korean children. This formula was then validated using the remaining 25% of the study subjects with mean percentage error and absolute error. To determine whether a new formula accurately predicts actual weights of Korean children, we also compared this new formula to other weight estimation methods (APLS, Shann formula, Leffler formula, Nelson formula and Broselow tape). A total of 124,095 children's data were enrolled, and 19,854 (16.0%), 40,612 (32.7%) and 63,629 (51.3%) were classified as infants, preschool-aged and school-aged groups, respectively. Three equations, (age in months+9)/2, 2×(age in years)+9 and 4×(age in years)-1 were derived for infants, pre-school and school-aged groups, respectively. When these equations were applied to the validation set, the actual average weight of those children was 0.4kg heavier than our estimated weight (95% CI=0.37-0.43, p<0.001). The mean percentage error of our model (+0.9%) was lower than APLS (-11.5%), Shann formula (-8.6%), Leffler formula (-1.7%), Nelson formula (-10.0%), Best Guess formula (+5.0%) and Broselow tape (-4.8%) for all age groups. We developed and validated a simple formula to estimate body weight from the age of Korean children and found that this new formula was more accurate than other weight estimating methods. However, care should be taken when applying this formula to older children because of a large standard deviation of estimated weight. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Exact recovery of sparse multiple measurement vectors by [Formula: see text]-minimization.
Wang, Changlong; Peng, Jigen
2018-01-01
The joint sparse recovery problem is a generalization of the single measurement vector problem widely studied in compressed sensing. It aims to recover a set of jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common location. Meanwhile [Formula: see text]-minimization subject to matrixes is widely used in a large number of algorithms designed for this problem, i.e., [Formula: see text]-minimization [Formula: see text] Therefore the main contribution in this paper is two theoretical results about this technique. The first one is proving that in every multiple system of linear equations there exists a constant [Formula: see text] such that the original unique sparse solution also can be recovered from a minimization in [Formula: see text] quasi-norm subject to matrixes whenever [Formula: see text]. The other one is showing an analytic expression of such [Formula: see text]. Finally, we display the results of one example to confirm the validity of our conclusions, and we use some numerical experiments to show that we increase the efficiency of these algorithms designed for [Formula: see text]-minimization by using our results.
Exact relations between homoclinic and periodic orbit actions in chaotic systems
NASA Astrophysics Data System (ADS)
Li, Jizhou; Tomsovic, Steven
2018-02-01
Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.
Performance of mixed RF/FSO systems in exponentiated Weibull distributed channels
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhao, Shang-Hong; Zhao, Wei-Hu; Liu, Yun; Li, Xuan
2017-12-01
This paper presented the performances of asymmetric mixed radio frequency (RF)/free-space optical (FSO) system with the amplify-and-forward relaying scheme. The RF channel undergoes Nakagami- m channel, and the Exponentiated Weibull distribution is adopted for the FSO component. The mathematical formulas for cumulative distribution function (CDF), probability density function (PDF) and moment generating function (MGF) of equivalent signal-to-noise ratio (SNR) are achieved. According to the end-to-end statistical characteristics, the new analytical expressions of outage probability are obtained. Under various modulation techniques, we derive the average bit-error-rate (BER) based on the Meijer's G function. The evaluation and simulation are provided for the system performance, and the aperture average effect is discussed as well.
Shaping the beam profile of a partially coherent beam by a phase aperture
NASA Astrophysics Data System (ADS)
Wu, Gaofeng; Cai, Yangjian; Chen, Jun
2011-08-01
By use of a tensor method, an analytical formula for a partially coherent Gaussian Schell-model (GSM) beam truncated by a circular phase aperture propagating through a paraxial ABCD optical system is derived. The propagation properties of a GSM beam truncated by a circular phase aperture in free space are studied numerically. It is found that the circular phase aperture can be used to shape the beam profile of a GSM beam and generate partially coherent dark hollow or flat-topped beam, which is useful in many applications, e.g., optical trapping, free-space optical communication, and material thermal processing. The propagation factor of a GSM beam truncated by a circular phase aperture is also analyzed.
Hollow Gaussian beams and their propagation properties
NASA Astrophysics Data System (ADS)
Cai, Yangjian; Lu, Xuanhui; Lin, Qiang
2003-07-01
A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre-Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.
Hollow Gaussian beams and their propagation properties.
Cai, Yangjian; Lu, Xuanhui; Lin, Qiang
2003-07-01
A new mathematical model, described as hollow Gaussian beams (HGBs), is proposed to describe a dark hollow laser beam (DHB). The area of the dark region across the HGBs can easily be controlled by proper choice of the beam parameters. Based on the Collins integral, an analytical propagation formula for the HGBs through a paraxial optical system is derived. The HGBs also can be expressed as a superposition of a series of Lagurerre-Gaussian modes by use of a polynomial expansion. As a numerical example, the propagation properties of a DHB in free space are illustrated graphically. The HGBs provide a convenient and powerful way to describe and treat the propagation of DHBs and can be used conveniently to analyze atoms manipulated with a DHB.
Asymptotic approximations to posterior distributions via conditional moment equations
Yee, J.L.; Johnson, W.O.; Samaniego, F.J.
2002-01-01
We consider asymptotic approximations to joint posterior distributions in situations where the full conditional distributions referred to in Gibbs sampling are asymptotically normal. Our development focuses on problems where data augmentation facilitates simpler calculations, but results hold more generally. Asymptotic mean vectors are obtained as simultaneous solutions to fixed point equations that arise naturally in the development. Asymptotic covariance matrices flow naturally from the work of Arnold & Press (1989) and involve the conditional asymptotic covariance matrices and first derivative matrices for conditional mean functions. When the fixed point equations admit an analytical solution, explicit formulae are subsequently obtained for the covariance structure of the joint limiting distribution, which may shed light on the use of the given statistical model. Two illustrations are given. ?? 2002 Biometrika Trust.
Pure-type superconducting permanent-magnet undulator.
Tanaka, Takashi; Tsuru, Rieko; Kitamura, Hideo
2005-07-01
A novel synchrotron radiation source is proposed that utilizes bulk-type high-temperature superconductors (HTSCs) as permanent magnets (PMs) by in situ magnetization. Arrays of HTSC blocks magnetized by external magnetic fields are placed below and above the electron path instead of conventional PMs, generating a periodic magnetic field with an offset. Two methods are presented to magnetize the HTSCs and eliminate the field offset, enabling the HTSC arrays to work as a synchrotron radiation source. An analytical formula to calculate the peak field achieved in a device based on this scheme is derived in a two-dimensional form for comparison with synchrotron radiation sources using conventional PMs. Experiments were performed to demonstrate the principle of the proposed scheme and the results have been found to be very promising.
Special solutions to Chazy equation
NASA Astrophysics Data System (ADS)
Varin, V. P.
2017-02-01
We consider the classical Chazy equation, which is known to be integrable in hypergeometric functions. But this solution has remained purely existential and was never used numerically. We give explicit formulas for hypergeometric solutions in terms of initial data. A special solution was found in the upper half plane H with the same tessellation of H as that of the modular group. This allowed us to derive some new identities for the Eisenstein series. We constructed a special solution in the unit disk and gave an explicit description of singularities on its natural boundary. A global solution to Chazy equation in elliptic and theta functions was found that allows parametrization of an arbitrary solution to Chazy equation. The results have applications to analytic number theory.
NASA Astrophysics Data System (ADS)
Sessoms, D. A.; Amon, A.; Courbin, L.; Panizza, P.
2010-10-01
The binary path selection of droplets reaching a T junction is regulated by time-delayed feedback and nonlinear couplings. Such mechanisms result in complex dynamics of droplet partitioning: numerous discrete bifurcations between periodic regimes are observed. We introduce a model based on an approximation that makes this problem tractable. This allows us to derive analytical formulae that predict the occurrence of the bifurcations between consecutive regimes, establish selection rules for the period of a regime, and describe the evolutions of the period and complexity of droplet pattern in a cycle with the key parameters of the system. We discuss the validity and limitations of our model which describes semiquantitatively both numerical simulations and microfluidic experiments.
An accurate boundary element method for the exterior elastic scattering problem in two dimensions
NASA Astrophysics Data System (ADS)
Bao, Gang; Xu, Liwei; Yin, Tao
2017-11-01
This paper is concerned with a Galerkin boundary element method solving the two dimensional exterior elastic wave scattering problem. The original problem is first reduced to the so-called Burton-Miller [1] boundary integral formulation, and essential mathematical features of its variational form are discussed. In numerical implementations, a newly-derived and analytically accurate regularization formula [2] is employed for the numerical evaluation of hyper-singular boundary integral operator. A new computational approach is employed based on the series expansions of Hankel functions for the computation of weakly-singular boundary integral operators during the reduction of corresponding Galerkin equations into a discrete linear system. The effectiveness of proposed numerical methods is demonstrated using several numerical examples.
Neutrino-electron scattering: general constraints on Z ' and dark photon models
NASA Astrophysics Data System (ADS)
Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Xu, Xun-Jie
2018-05-01
We study the framework of U(1) X models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas of fermion gauge interactions and the cross sections of neutrino-electron scattering in such models. Then we derive limits on a variety of U(1) X models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light Z ' models.
Curvilinear Squeeze Film Bearing with Porous Wall Lubricated by a Rabinowitsch Fluid
NASA Astrophysics Data System (ADS)
Walicka, A.; Walicki, E.; Jurczak, P.; Falicki, J.
2017-05-01
The present theoretical analysis is to investigate the effect of non-Newtonian lubricant modelled by a Rabinowitsch fluid on the performance of a curvilinear squeeze film bearing with one porous wall. The equations of motion of a Rabinowitsch fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and in a porous layer using the Morgan-Cameron approximation the modified Reynolds equation is obtained. The analytical solution of this equation for the case of a squeeze film bearing is presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. Thrust radial bearing and spherical bearing with a squeeze film are considered as numerical examples.
Intrinsic optical conductivity of a {{\\rm{C}}}_{2v} symmetric topological insulator
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Matsubara, Masahiko; Bellotti, Enrico; Shi, Junxia
2017-07-01
In this work we analytically investigate the longitudinal optical conductivity of the {{{C}}}2v symmetric topological insulator. The conductivity expressions at T = 0 are derived using the Kubo formula and expressed as a function of the ratio of the Dresselhaus and Rashba parameters that characterize the low-energy Hamiltonian. We find that the longitudinal inter-band conductivity vanishes when Dresselhaus and Rashba parameters are equal in strength, also called the persistent spin helix state. The calculations are extended to obtain the frequency-dependent real and imaginary components of the optical conductivity for the topological Kondo insulator SmB6 which exhibits {{{C}}}2v symmetric and anisotropic Dirac cones hosting topological states at \\overline{X} point on the surface Brillouin zone.
Controlling the light shift of the CPT resonance by modulation technique
NASA Astrophysics Data System (ADS)
Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.
2017-12-01
Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.
Another Intuitive Approach to Stirling's Formula. Classroom Notes
ERIC Educational Resources Information Center
Osler, Thomas J.
2004-01-01
An intuitive derivation of Stirling's formula is presented, together with a modification that greatly improves its accuracy. The derivation is based on the closed form evaluation of the gamma function at an integer plus one-half. The modification is easily implemented on a hand-held calculator and often triples the number of significant digits…
United Formula for the Friction Factor in the Turbulent Region of Pipe Flow.
Li, Shuolin; Huai, Wenxin
2016-01-01
Friction factor is an important element in both flow simulations and river engineering. In hydraulics, studies on the friction factor in turbulent regions have been based on the concept of three flow regimes, namely, the fully smooth regime, the fully rough regime, and the transitional regime, since the establishment of the Nikuradze's chart. However, this study further demonstrates that combining the friction factor with Reynolds number yields a united formula that can scale the entire turbulent region. This formula is derived by investigating the correlation between friction in turbulent pipe flow and its influencing factors, i.e., Reynolds number and relative roughness. In the present study, the formulae of Blasius and Stricklerare modified to rearrange the implicit model of Tao. In addition, we derive a united explicit formula that can compute the friction factor in the entire turbulent regimes based on the asymptotic behavior of the improved Tao's model. Compared with the reported formulae of Nikuradze, the present formula exhibits higher computational accuracy for the original pipe experiment data of Nikuradze.
Approximate Formula for the Vertical Asymptote of Projectile Motion in Midair
ERIC Educational Resources Information Center
Chudinov, Peter Sergey
2010-01-01
The classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. An analytical approach is used for the investigation. An approximate formula is obtained for one of the characteristics of the motion--the vertical…
McClure, Foster D; Lee, Jung-Keun
2003-01-01
The formula for the Horwitz ratio (HORRAT) as presented in the Study Director's Manual of AOAC INTERNATIONAL is applicable only when the concentration is in the unit/unit form (e.g., microg/microg, g/g, etc.). When the analyte concentration is a trace or mass fraction amount (e.g., microg/g), the formula generates incorrect HORRAT values. Alternative calculation procedures are presented to circumvent such problems.
Effect of train carbody's parameters on vertical bending stiffness performance
NASA Astrophysics Data System (ADS)
Yang, Guangwu; Wang, Changke; Xiang, Futeng; Xiao, Shoune
2016-10-01
Finite element analysis(FEA) and modal test are main methods to give the first-order vertical bending vibration frequency of train carbody at present, but they are inefficiency and waste plenty of time. Based on Timoshenko beam theory, the bending deformation, moment of inertia and shear deformation are considered. Carbody is divided into some parts with the same length, and it's stiffness is calculated with series principle, it's cross section area, moment of inertia and shear shape coefficient is equivalent by segment length, and the fimal corrected first-order vertical bending vibration frequency analytical formula is deduced. There are 6 simple carbodies and 1 real carbody as examples to test the formula, all analysis frequencies are very close to their FEA frequencies, and especially for the real carbody, the error between analysis and experiment frequency is 0.75%. Based on the analytic formula, sensitivity analysis of the real carbody's design parameters is done, and some main parameters are found. The series principle of carbody stiffness is introduced into Timoshenko beam theory to deduce a formula, which can estimate the first-order vertical bending vibration frequency of carbody quickly without traditional FEA method and provide a reference to design engineers.
A Simple Approach to the Landau-Zener Formula
ERIC Educational Resources Information Center
Vutha, Amar C.
2010-01-01
The Landau-Zener formula provides the probability of non-adiabatic transitions occurring when two energy levels are swept through an avoided crossing. The formula is derived here in a simple calculation that emphasizes the physics responsible for non-adiabatic population transfer. (Contains 2 figures.)
Theoretical and Numerical Investigations on Shallow Tunnelling in Unsaturated Soils
NASA Astrophysics Data System (ADS)
Soranzo, Enrico; Wu, Wei
2013-04-01
Excavation of shallow tunnels with the New Austrian Tunnelling Method (NATM) requires proper assessing of the tunnel face stability, to enable an open-face excavation, and the estimation of the correspondent surface settlements. Soils in a partially saturated condition exhibit a higher cohesion than in a fully saturated state, which can be taken into account when assessing the stability of the tunnel face. For the assessment of the face support pressure, different methods are used in engineering practice, varying from simple empirical and analytical formulations to advanced finite element analysis. Such procedures can be modified to account for the unsaturated state of soils. In this study a method is presented to incorporate the effect of partial saturation in the numerical analysis. The results are then compared with a simple analytical formulation derived from parametric studies. As to the numerical analysis, the variation of cohesion and of Young's modulus with saturation can be considered when the water table lies below the tunnel in a soil exhibiting a certain capillary rise, so that the tunnel is driven in a partially saturated layer. The linear elastic model with Mohr-Coulomb failure criterion can be extended to partially saturated states and calibrated with triaxial tests on unsaturated. In order to model both positive and negative pore water pressure (suction), Bishop's effective stress is incorporated into Mohr-Coulomb's failure criterion. The effective stress parameter in Bishop's formulation is related to the degree of saturation as suggested by Fredlund. If a linear suction distribution is assumed, the degree of saturation can be calculated from the Soil Water Characteristic Curve (SWCC). Expressions exist that relate the Young's modulus of unsaturated soils to the net mean stress and the matric suction. The results of the numerical computation can be compared to Vermeer & Ruse's closed-form formula that expresses the limit support pressure of the tunnel face. The expression is derived from parametric studies and predicts stability of the tunnel face when negative values are returned, suggesting that open-face tunnelling can be performed. The formula can be modified to account for the variation of cohesion along the tunnel face. The results obtained from both the numerical analysis and the analytical formulation are well in agreement and show that the stability of the tunnel face can greatly benefit from the enhanced cohesion of partially saturated soils.
Lyapunov dimension formula for the global attractor of the Lorenz system
NASA Astrophysics Data System (ADS)
Leonov, G. A.; Kuznetsov, N. V.; Korzhemanova, N. A.; Kusakin, D. V.
2016-12-01
The exact Lyapunov dimension formula for the Lorenz system for a positive measure set of parameters, including classical values, was analytically obtained first by G.A. Leonov in 2002. Leonov used the construction technique of special Lyapunov-type functions, which was developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters, of the system, such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values including all parameters, which satisfy the classical physical limitations.
Analytic halo approach to the bispectrum of galaxies in redshift space
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuhiro; Nan, Yue; Hikage, Chiaki
2017-02-01
We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the nonlinear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the low-redshift (LOWZ) sample of the Sloan Digital Sky Survey (SDSS) III baryon oscillation spectroscopic survey (BOSS) survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.
Homentcovschi, Dorel; Miles, Ronald N.
2010-01-01
A model of squeeze-film behavior is developed based on Stokes’ equations for viscous, compressible isothermal flows. The flow domain is an axisymmetrical, unit cell approximation of a planar, periodic, perforated microstructure. The model is developed for cases when the lubrication approximation cannot be applied. The complex force generated by vibrations of the diaphragm driving the flow has two components: the damping force and the spring force. While for large frequencies the spring force dominates, at low (acoustical) frequencies the damping force is the most important part. The analytical approach developed here yields an explicit formula for both forces. In addition, using a finite element software package, the damping force is also obtained numerically. A comparison is made between the analytic result, numerical solution, and some experimental data found in the literature, which validates the analytic formula and provides compelling arguments about its value in designing microelectomechanical devices. PMID:20329828
Glycation products in infant formulas: chemical, analytical and physiological aspects.
Pischetsrieder, Monika; Henle, Thomas
2012-04-01
Infant formulas are milk-based products, which are adapted to the composition of human milk. To ensure microbiological safety and long shelf life, infant formulas usually undergo rigid heat treatment. As a consequence of the special composition and the heat regimen, infant formulas are more prone to thermally induced degradation reactions than regular milk products. Degradation reactions observed during milk processing comprise lactosylation yielding the Amadori product lactulosyllysine, the formation of advanced glycation end products (AGEs), and protein-free sugar degradation products, as well as protein or lipid oxidation. Several methods have been developed to estimate the heat impact applied during the manufacturing of infant formulas, including indirect methods such as fluorescence analysis as well as the analysis of defined reaction products. Most studies confirm a higher degree of damage in infant formulas compared to regular milk products. Differences between various types of infant formulas, such as liquid, powdered or hypoallergenic formulas depend on the analyzed markers and brands. A considerable portion of protein degradation products in infant formulas can be avoided when process parameters and the quality of the ingredients are carefully controlled. The nutritional consequences of thermal degradation products in infant formulas are largely unknown.
Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number
NASA Astrophysics Data System (ADS)
Smith, W. R.; Wang, Q. X.
2017-08-01
The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.
The importance of excluded solvent volume effects in computing hydration free energies.
Yang, Pei-Kun; Lim, Carmay
2008-11-27
Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.
Correction coefficient for see-through labyrinth seal
NASA Astrophysics Data System (ADS)
Hasnedl, Dan; Epikaridis, Premysl; Slama, Vaclav
In a steam turbine design, the flow-part design and blade shapes are influenced by the design mass-flow through each turbine stage. If it would be possible to predict this mass-flow more precisely, it will result in optimized design and therefore an efficiency benefit. This article is concerned with improving the prediction of losses caused by the seal leakage. In the common simulation of the thermodynamic cycle of a steam turbine, analytical formulas are used in order to simulate the seal leakage. Therefore, this article describes an improvement of analytical formulas used in a turbine heat balance calculation. The results are verified by numerical simulations and experimental data from the steam test rig.
NASA Astrophysics Data System (ADS)
Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.
2017-03-01
In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.
Statistics Using Just One Formula
ERIC Educational Resources Information Center
Rosenthal, Jeffrey S.
2018-01-01
This article advocates that introductory statistics be taught by basing all calculations on a single simple margin-of-error formula and deriving all of the standard introductory statistical concepts (confidence intervals, significance tests, comparisons of means and proportions, etc) from that one formula. It is argued that this approach will…
A Generalization of the Formula for the Triangular Number of the Sum and Product of Natural Numbers
ERIC Educational Resources Information Center
Asiru, M. A.
2008-01-01
This note generalizes the formula for the triangular number of the sum and product of two natural numbers to similar results for the triangular number of the sum and product of "r" natural numbers. The formula is applied to derive formula for the sum of an odd and an even number of consecutive triangular numbers.
Ultimate Limit State Assessment of Timber Bolt Connection Subjected to Double Unequal Shears
NASA Astrophysics Data System (ADS)
Musilek, Josef; Plachy, Jan
2017-10-01
Nowadays the problems occur when a structure engineer need to assess the ultimate limit state of timber bolt connection which is subjected to double unequal shears. This assessment of ultimate limit state shows the reliability of these connections. In assessing the reliability of this connection in ultimate limit state is a problem, because the formulas and equations that are currently available in design standards and available literature, describing only connections loaded symmetrically - this mean that they describe the timber bolt connection subjected to double equal shears. This fact causes problems because structural engineers have no available support, according to which they could assess reliability of the connection in terms of the ultimate limit state. They must therefore often report following an asymmetrically loaded connections carry about using formulas, which are primarily designed for checking connections loaded symmetrically. This leads logically to the fact that it is not respected by the actual behaviour of the connection in the ultimate limit state. Formulas derived in this paper provide the possibility to assess the ultimate limit state for such connection. The formulas derived in this article allow to carry out a reliability assessment of the ultimate limit state of timber bolt connection subjected to double shear. The using of the formulas derived in this paper leads to better description of the behaviour of this type of connection and also to the more economic design. An example of using these derived formulas is shown. There is shown in this example, how to assess the reliability of timber bolt connection subjected to double unequal shears in terms of ultimate limit states.
Calculation of the lateral-dynamic stability of aircraft
NASA Technical Reports Server (NTRS)
Raikh, A
1952-01-01
Graphs and formulas are given with the aid of which all the aerodynamic coefficients required for computing the lateral dynamic stability can be determined. A number of numerical examples are given for obtaining the stability derivatives and solving the characteristic-stability equation. Approximate formulas are derived with the aid of which rapid preliminary computations may be made and the stability coefficients corrected for certain modifications of the airplane. A derivation of the lateral-dynamic-stability equations is included.
De Curtis, M; Senterre, J; Rigo, J; Putet, G
1986-01-01
Significant production of breath hydrogen has been shown in premature infants, suggesting limited intestinal capacity for digestion of carbohydrate. To evaluate net absorption of carbohydrate 24 three day balance studies were carried out in seven preterm infants fed pasteurised banked human milk and in 17 preterm infants fed a formula containing 75% lactose and 25% glucose polymers. Because carbohydrate reaching the colon may be converted to organic acids by bacterial flora, carbohydrate net absorption was determined by quantitating the faecal excretion of energy derived from carbohydrate. The carbohydrate derived energy content of milk and stools was calculated as the difference between the measured gross energy and the sum of energy related to nitrogen and fat. Faecal loss of carbohydrate derived energy was lower in the group fed formula (1.9 (SD 1.2) kcal/kg/day) than in the group fed human milk (4.0 (SD 1.8) kcal/kg/day). Net absorption of carbohydrate derived energy was 97.0 (SD 1.9)% as opposed to 92.6 (SD 3.9)%, respectively. Within each group there was no significant relation between carbohydrate energy absorption and fat, nitrogen, or gross energy absorption. Thus, although less complete with human milk than with formula, apparent absorption of energy derived from carbohydrate seemed quite satisfactory in these preterm infants. PMID:3639729
NASA Astrophysics Data System (ADS)
Goraj, R.
2015-12-01
In order to estimate the inductive power set in the armature of the high-speed solenoid valve (HSV) during the open loop control (OLC) using pulse width modulation (PWM) an analytical explicit formula has been derived. The simplifications taken both in the geometry and in the physical behavior of the HSV were described. The inductive power was calculated for different boundary conditions and shown as a function of the frequency of the coil current. The power set in the armature was used as an input to the thermal calculation. The thermal calculation had an objective to estimate the time dependent temperature distribution in the armature of the HSV. All the derivation steps were presented and the influence of different boundary conditions was shown and discussed. The increase of the temperature during the heating with inductive power has been evaluated both in the core and on the side surface of the HSV.
Wang, Lingling; Fu, Li
2018-01-01
In order to decrease the velocity sculling error under vibration environments, a new sculling error compensation algorithm for strapdown inertial navigation system (SINS) using angular rate and specific force measurements as inputs is proposed in this paper. First, the sculling error formula in incremental velocity update is analytically derived in terms of the angular rate and specific force. Next, two-time scale perturbation models of the angular rate and specific force are constructed. The new sculling correction term is derived and a gravitational search optimization method is used to determine the parameters in the two-time scale perturbation models. Finally, the performance of the proposed algorithm is evaluated in a stochastic real sculling environment, which is different from the conventional algorithms simulated in a pure sculling circumstance. A series of test results demonstrate that the new sculling compensation algorithm can achieve balanced real/pseudo sculling correction performance during velocity update with the advantage of less computation load compared with conventional algorithms. PMID:29346323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
The algebra of complex 2 × 2 matrices and a general closed Baker-Campbell-Hausdorff formula
NASA Astrophysics Data System (ADS)
Foulis, D. L.
2017-07-01
We derive a closed formula for the Baker-Campbell-Hausdorff series expansion in the case of complex 2×2 matrices. For arbitrary matrices A and B, and a matrix Z such that \\exp Z = \\exp A \\exp B , our result expresses Z as a linear combination of A and B, their commutator [A, B] , and the identity matrix I. The coefficients in this linear combination are functions of the traces and determinants of A and B, and the trace of their product. The derivation proceeds purely via algebraic manipulations of the given matrices and their products, making use of relations developed here, based on the Cayley-Hamilton theorem, as well as a characterization of the consequences of [A, B] and/or its determinant being zero or otherwise. As a corollary of our main result we also derive a closed formula for the Zassenhaus expansion. We apply our results to several special cases, most notably the parametrization of the product of two SU(2) matrices and a verification of the recent result of Van-Brunt and Visser (2015 J. Phys. A: Math. Theor. 48 225207) for complex 2×2 matrices, in this latter case deriving also the related Zassenhaus formula which turns out to be quite simple. We then show that this simple formula should be valid for all matrices and operators.
Qualitative evaluation of maternal milk and commercial infant formulas via LIBS.
Abdel-Salam, Z; Al Sharnoubi, J; Harith, M A
2013-10-15
This study focuses on the use of laser-induced breakdown spectroscopy (LIBS) for the evaluation of the nutrients in maternal milk and some commercially available infant formulas. The results of such evaluation are vital for adequate and healthy feeding for babies during lactation period. Laser-induced breakdown spectroscopy offers special advantages in comparison to the other conventional analytical techniques. Specifically, LIBS is a straightforward technique that can be used in situ to provide qualitative analytical information in few minutes for the samples under investigation without preparation processes. The samples studied in the current work were maternal milk samples collected during the first 3 months of lactation (not colostrum milk) and samples from six different types of commercially available infant formulas. The samples' elemental composition has been compared with respect to the relative abundance of the elements of nutrition importance, namely Mg, Ca, Na, and Fe using their spectral emission lines in the relevant LIBS spectra. In addition, CN and C2 molecular emission bands in the same spectra have been studied as indicators of proteins content in the samples. The obtained analytical results demonstrate the higher elemental contents of the maternal milk compared with the commercial formulas samples. Similar results have been obtained as for the proteins content. It has been also shown that calcium and proteins have similar relative concentration trends in the studied samples. This work demonstrates the feasibility of adopting LIBS as a fast, safe, less costly technique evaluating qualitatively the nutrients content of both maternal and commercial milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Power formula for open-channel flow resistance
Chen, Cheng-lung
1988-01-01
This paper evaluates various power formulas for flow resistance in open channels. Unlike the logarithmic resistance equation that can be theoretically derived either from Prandtl's mixing-length hypothesis or von Karman's similarity hypothesis, the power formula has long had an appearance of empiricism. Nevertheless, the simplicity in the form of the power formula has made it popular among the many possible forms of flow resistance formulas. This paper reexamines the concept and rationale of the power formulation, thereby addressing some critical issues in the modeling of flow resistance.
Light distribution in diffractive multifocal optics and its optimization.
Portney, Valdemar
2011-11-01
To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Global stability for epidemic models on multiplex networks.
Huang, Yu-Jhe; Juang, Jonq; Liang, Yu-Hao; Wang, Hsin-Yu
2018-05-01
In this work, we consider an epidemic model in a two-layer network in which the dynamics of susceptible-infected-susceptible process in the physical layer coexists with that of a cyclic process of unaware-aware-unaware in the virtual layer. For such multiplex network, we shall define the basic reproduction number [Formula: see text] in the virtual layer, which is similar to the basic reproduction number [Formula: see text] defined in the physical layer. We show analytically that if [Formula: see text] and [Formula: see text], then the disease and information free equilibrium is globally stable and if [Formula: see text] and [Formula: see text], then the disease free and information saturated equilibrium is globally stable for all initial conditions except at the origin. In the case of [Formula: see text], whether the disease dies out or not depends on the competition between how well the information is transmitted in the virtual layer and how contagious the disease is in the physical layer. In particular, it is numerically demonstrated that if the difference in [Formula: see text] and [Formula: see text] is greater than the product of [Formula: see text], the deviation of [Formula: see text] from 1 and the relative infection rate for an aware susceptible individual, then the disease dies out. Otherwise, the disease breaks out.
Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models
NASA Astrophysics Data System (ADS)
Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.
2002-10-01
This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.
ERIC Educational Resources Information Center
Douvropoulos, Theodosios G.
2012-01-01
An approximate formula for the period of pendulum motion beyond the small amplitude regime is obtained based on physical arguments. Two different schemes of different accuracy are developed: in the first less accurate scheme, emphasis is given on the non-quadratic form of the potential in connection to isochronism, and a specific form of a generic…
NASA Technical Reports Server (NTRS)
Fomin, V. V.
1979-01-01
The generalization spectral line contour concept and formulas for a two component mixture, as well as consequences of the general formula are discussed. The calculation procedure, initial information, calculation results and comparison of calculations with available experimental data, for radiation absorption in three CO2 bands are presented.
Koesukwiwat, Urairat; Vaclavik, Lukas; Mastovska, Katerina
2018-05-08
According to the European Commission directive 2006/141/EC, haloxyfop residue levels should not exceed 0.003 mg/kg in ready-to-feed infant formula, and the residue definition includes sum of haloxyfop, its esters, salts, and conjugates expressed as haloxyfop. A simple method for total haloxyfop analysis in infant formula and related ingredient matrices was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The sample preparation consisted of an alkaline hydrolysis with methanolic sodium hydroxide to release haloxyfop (parent acid) from its bound forms prior to the extraction with acetonitrile. A mixture of magnesium sulfate (MgSO 4 ) and sodium chloride (NaCl) (4:1, w/w) was added to the extract to induce phase separation and force the analyte into the upper acetonitrile-methanol layer and then a 1-mL aliquot was subsequently cleaned up by dispersive solid phase extraction with 150 mg of MgSO 4 and 50 mg of octadecyl (C 18 ) sorbent. The analytical procedure was developed and carefully optimized to enable low-level, total haloxyfop analysis in a variety of challenging matrices, including infant formulas and their important high-carbohydrate, high-protein, high-fat, and emulsifier ingredients. The final method was validated in two different laboratories by fortifying samples with haloxyfop and haloxyfop-methyl, which was used as a model compound simulating bound forms of the analyte. Mean recoveries of haloxyfop across all fortification levels and evaluated matrices ranged between 92.2 and 114% with repeatability, within-lab reproducibility, and reproducibility RSDs ≤ 14%. Based on the validation results, this method was capable to convert the haloxyfop ester into the parent acid in a wide range of sample types and to reliably identify and quantify total haloxyfop at the target 0.003 mg/kg level in infant formulas (both powdered and ready-to-feed liquid forms). Graphical abstract LC-MS/MS-based workflow for the determination of the total haloxyfop in infant formula and related ingredients.
Theory comparison and numerical benchmarking on neoclassical toroidal viscosity torque
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Liu, Yueqiang; Logan, Nikolas; Kim, Kimin; Menard, Jonathan E.
2014-04-01
Systematic comparison and numerical benchmarking have been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications [Park et al., Phys. Rev. Lett. 102, 065002 (2009)]; MARS-Q includes smoothly connected NTV formula [Shaing et al., Nucl. Fusion 50, 025022 (2010)] based on Shaing's analytic formulation in various collisionality regimes; MARS-K, originally computing the drift kinetic energy, is upgraded to compute the NTV torque based on the equivalence between drift kinetic energy and NTV torque [J.-K. Park, Phys. Plasma 18, 110702 (2011)]. The derivation and numerical results both indicate that the imaginary part of drift kinetic energy computed by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, the agreement and correlation between the connected NTV formula and the combined NTV theory in different collisionality regimes are shown for the first time. Additionally, both IPEC-PENT and MARS-K indicate the importance of the bounce harmonic resonance which can greatly enhance the NTV torque when E ×B drift frequency reaches the bounce resonance condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, Hajime, E-mail: divrot@gmail.com
We consider the effect of planetary spin on the planetary radial velocity (PRV) in dayside spectra of exoplanets. To understand the spin effect qualitatively, we derive an analytic formula of the intensity-weighted radial velocity from the planetary surface on the following assumptions: (1) constant and solid rotation without precession, (2) stable and uniform distribution of molecules/atoms, (3) emission models from the dayside hemisphere, and (4) a circular orbit. On these assumptions, we find that the curve of the PRV is distorted by the planetary spin and this anomaly is characterized by the spin radial velocity at the equator and amore » projected angle on a celestial plane between the spin axis and the axis of orbital motion {lambda}{sub p} in a manner analogous to the Rossiter-McLaughlin effect. The latter can constrain the planetary obliquity. Creating mock PRV data with 3 km s{sup -1} accuracy, we demonstrate how {lambda}{sub p} and the spin radial velocity at the equator are estimated. We find that the stringent constraint of eccentricity is crucial to detect the spin effect. Though our formula is still qualitative, we conclude that the PRV in the dayside spectra will be a powerful means for constraining the planetary spin.« less
NASA Astrophysics Data System (ADS)
Herrmann, M.; Velikovich, A. L.; Abarzhi, S. I.
2014-10-01
A study of incompressible two-dimensional Richtmyer-Meshkov instability by means of high-order Eulerian perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer's impulsive formula for the bubble and spike growth rates have been calculated analytically for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been derived. In our simulations we have solved 2D unsteady Navier-Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by, coupled to the level set based interface solver LIT,. The impact of small amounts of viscosity and surface tension on the RMI flow dynamics is studied numerically. Simulation results are compared to the theory to demonstrate successful code verification and highlight the influence of the theory's ideal inviscid flow assumption. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been favorably compared to simulation results, which converge to the theoretical predictions as the Reynolds and Weber numbers are increased. Work supported by the US DOE/NNSA.
Plasma Physics Approximations in Ares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Managan, R. A.
Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, F n( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for A α (ζmore » ),A β (ζ ), ζ, f(ζ ) = (1 + e -μ/θ)F 1/2(μ/θ), F 1/2'/F 1/2, F c α, and F c β. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.« less
Haldane, Waddington and recombinant inbred lines: extension of their work to any number of genes.
Samal, Areejit; Martin, Olivier C
2017-11-01
In the early 1930s, J. B. S. Haldane and C. H. Waddington collaborated on the consequences of genetic linkage and inbreeding. One elegant mathematical genetics problem solved by them concerns recombinant inbred lines (RILs) produced via repeated self or brother-sister mating. In this classic contribution, Haldane and Waddington derived an analytical formula for the probabilities of 2-locus and 3-locus RIL genotypes. Specifically, the Haldane-Waddington formula gives the recombination rate R in such lines as a simple function of the per generation recombination rate r. Interestingly, for more than 80 years, an extension of this result to four or more loci remained elusive. In 2015, we generalized the Haldane-Waddington self-mating result to any number of loci. Our solution used self-consistent equations of the multi-locus probabilities 'for an infinite number of generations' and solved these by simple algebraic operations. In practice, our approach provides a quantum leap in the systems that can be handled: the cases of up to six loci can be solved by hand while a computer program implementing our mathematical formalism tackles up to 20 loci on standard desktop computers.
NASA Astrophysics Data System (ADS)
Feng-Hua, Zhang; Gui-De, Zhou; Kun, Ma; Wen-Juan, Ma; Wen-Yuan, Cui; Bo, Zhang
2016-07-01
Previous studies have shown that, for the three main stages of the development and evolution of asymptotic giant branch (AGB) star s-process models, the neutron exposure distribution (DNE) in the nucleosynthesis region can always be considered as an exponential function, i.e., ρAGB(τ) = C/τ0 exp(-τ/τ0) in an effective range of the neutron exposure values. However, the specific expressions of the proportion factor C and the mean neutron exposure τ0 in the exponential distribution function for different models are not completely determined in the related literature. Through dissecting the basic method to obtain the exponential DNE, and systematically analyzing the solution procedures of neutron exposure distribution functions in different stellar models, the general formulae, as well as their auxiliary equations, for calculating C and τ0 are derived. Given the discrete neutron exposure distribution Pk, the relationships of C and τ0 with the model parameters can be determined. The result of this study has effectively solved the problem to analytically calculate the DNE in the current low-mass AGB star s-process nucleosynthesis model of 13C-pocket radiative burning.
Spontaneous emission in dielectric nanoparticles
NASA Astrophysics Data System (ADS)
Pukhov, K. K.; Basiev, T. T.; Orlovskii, Yu. V.
2008-09-01
An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/ A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/ A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/ A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross sections σnano for nanoparticles are derived. It is shown that the ratios σnano/σbulk and A nano/ A bulk are not equal in general, which can be used to improve the lasing parameters. The experimentally determined and theoretically evaluated decay times of metastable states of dopant rare-earth ions in crystalline YAG and Y2O3 nanoparticles are compared with the corresponding values for bulk crystals of the same structure.
Internal gravity, self-energy, and disruption of comets and asteroids
NASA Astrophysics Data System (ADS)
Dobrovolskis, Anthony R.; Korycansky, D. G.
2018-03-01
The internal gravity and self-gravitational energy of a comet, asteroid, or small moon have applications to their geophysics, including their formation, evolution, cratering, and disruption, the stresses and strains inside such objects, sample return, eventual asteroid mining, and planetary defense strategies for potentially hazardous objects. This paper describes the relation of an object's self-energy to its collisional disruption energy, and shows how to determine an object's self-energy from its internal gravitational potential. Any solid object can be approximated to any desired accuracy by a polyhedron of sufficient complexity. An analytic formula is known for the gravitational potential of any homogeneous polyhedron, but it is widely believed that this formula applies only on the surface or outside of the object. Here we show instead that this formula applies equally well inside the object. We have used these formulae to develop a numerical code which evaluates the self-energy of any homogeneous polyhedron, along with the gravitational potential and attraction both inside and outside of the object, as well as the slope of its surface. Then we use our code to find the internal, external, and surface gravitational fields of the Platonic solids, asteroid (216) Kleopatra, and comet 67P/Churyumov-Gerasimenko, as well as their surface slopes and their self-gravitational energies. We also present simple spherical, ellipsoidal, cuboidal, and duplex models of Kleopatra and comet 67P, and show how to generalize our methods to inhomogeneous objects and magnetic fields. At present, only the self-energies of spheres, ellipsoids, and cuboids (boxes) are known analytically (or semi-analytically). The Supplementary Material contours the central potential and self-energy of homogeneous ellipsoids and cuboids of all aspect ratios, and also analytically the self-gravitational energy of a "duplex" consisting of two coupled spheres. The duplex is a good model for "contact binary" comets and asteroids; in fact, most comets seem to be bilobate, and might be described better as "dirty snowmen" than as "dirty snowballs".
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
Yang, Yan; Liu, Yuxiu; Song, Hongjian; Li, Yongqiang; Wang, Qingmin
2016-11-01
Numerous compounds containing urea bridge and biurea moieties are used in a variety of fields, especially as drugs and pesticides. To search for novel, environmentally benign and ecologically safe pesticides with unique modes of action, four series of novel triazone analogues containing urea, thiourea, biurea, and thiobiurea bridge, respectively, were designed and synthesized, according to various calcium ion channel inhibitors which act on transient receptor potential protein. Their structures were characterized by [Formula: see text] NMR, [Formula: see text] NMR, and HRMS. The insecticidal activities of the new compounds were obtained. The bioassay results indicated that compounds containing a thiourea bridge and a thiobiurea bridge exhibited excellent insecticidal activities against bean aphid. Specifically, compounds [Formula: see text], [Formula: see text], and [Formula: see text] exhibited 85, 90, and 95 % activities, respectively, at 10 mg/kg. Compounds [Formula: see text] (30 %), [Formula: see text] (35 %), [Formula: see text] (30 %), and [Formula: see text] (40 %) exhibited the approximate aphicidal activity of pymetrozine (30 %) at 5 mg/kg. In addition, some target compounds exhibited insecticidal activities against lepidopteran pests. From a molecular design standpoint, the information obtained in this study could help in the further design of new derivatives with improved insecticidal activities.
NASA Astrophysics Data System (ADS)
Breton, S.; Casson, F. J.; Bourdelle, C.; Angioni, C.; Belli, E.; Camenen, Y.; Citrin, J.; Garbet, X.; Sarazin, Y.; Sertoli, M.; JET Contributors
2018-01-01
Heavy impurities, such as tungsten (W), can exhibit strongly poloidally asymmetric density profiles in rotating or radio frequency heated plasmas. In the metallic environment of JET, the poloidal asymmetry of tungsten enhances its neoclassical transport up to an order of magnitude, so that neoclassical convection dominates over turbulent transport in the core. Accounting for asymmetries in neoclassical transport is hence necessary in the integrated modeling framework. The neoclassical drift kinetic code, NEO [E. Belli and J. Candy, Plasma Phys. Controlled Fusion P50, 095010 (2008)], includes the impact of poloidal asymmetries on W transport. However, the computational cost required to run NEO slows down significantly integrated modeling. A previous analytical formulation to describe heavy impurity neoclassical transport in the presence of poloidal asymmetries in specific collisional regimes [C. Angioni and P. Helander, Plasma Phys. Controlled Fusion 56, 124001 (2014)] is compared in this work to numerical results from NEO. Within the domain of validity of the formula, the factor for reducing the temperature screening due to poloidal asymmetries had to be empirically adjusted. After adjustment, the modified formula can reproduce NEO results outside of its definition domain, with some limitations: When main ions are in the banana regime, the formula reproduces NEO results whatever the collisionality regime of impurities, provided that the poloidal asymmetry is not too large. However, for very strong poloidal asymmetries, agreement requires impurities in the Pfirsch-Schlüter regime. Within the JETTO integrated transport code, the analytical formula combined with the poloidally symmetric neoclassical code NCLASS [W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)] predicts the same tungsten profile as NEO in certain cases, while saving a factor of one thousand in computer time, which can be useful in scoping studies. The parametric dependencies of the temperature screening reduction due to poloidal asymmetries would need to be better characterised for this faster model to be extended to a more general applicability.
Analytical research on impacting load of aircraft crashing upon moveable concrete target
NASA Astrophysics Data System (ADS)
Zhu, Tong; Ou, Zhuocheng; Duan, Zhuoping; Huang, Fenglei
2018-03-01
The impact load of an aircraft impact upon moveable concrete target was analyzed in this paper by both theoretical and numerical methods. The aircraft was simplified as a one dimensional pole and stress-wave theory was used to deduce the new formula. Furthermore, aiming to compare with previous experimental data, a numerical calculation based on the new formula had been carried out which showed good agreement with the experimental data. The approach, a new formula with particular numerical method, can predict not only the impact load but also the deviation between moveable and static concrete target.
Stream Lifetimes Against Planetary Encounters
NASA Technical Reports Server (NTRS)
Valsecchi, G. B.; Lega, E.; Froeschle, Cl.
2011-01-01
We study, both analytically and numerically, the perturbation induced by an encounter with a planet on a meteoroid stream. Our analytical tool is the extension of pik s theory of close encounters, that we apply to streams described by geocentric variables. The resulting formulae are used to compute the rate at which a stream is dispersed by planetary encounters into the sporadic background. We have verified the accuracy of the analytical model using a numerical test.
Radiation reaction and pitch-angle changes for a charge undergoing synchrotron losses
NASA Astrophysics Data System (ADS)
Singal, Ashok K.
2016-05-01
In the derivation of synchrotron radiation formulae, it has been assumed that the pitch angle of a charge remains constant during the radiation process. However, from the radiation reaction formula, while the component of the velocity vector perpendicular to the magnetic field reduces in magnitude due to radiative losses, the parallel component does not undergo any change during radiation. Therefore, there is a change in the ratio of the two components, implying a change in the pitch angle. We derive the exact formula for the change in energy of radiating electrons by taking into account the change of the pitch angle due to radiative losses. From this, we derive the characteristic decay time of synchrotron electrons over which they turn from highly relativistic into mildly relativistic ones.
Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain
NASA Astrophysics Data System (ADS)
Löwe, H.; Helbig, N.
2012-04-01
We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.