Sample records for derive global maps

  1. High-Resolution Global Geologic Map of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Buczkowski, D. L.; Crown, D. A.; Frigeri, A.; Hughson, K.; Kneissl, T.; Krohn, K.; Mest, S. C.; Pasckert, J. H.; Platz, T.; Ruesch, O.; Schulzeck, F.; Scully, J. E. C.; Sizemore, H. G.; Nass, A.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-06-01

    This presentation will discuss the completed 1:4,000,000 global geologic map of dwarf planet Ceres derived from Dawn Framing Camera Low Altitude Mapping Orbit (LAMo) images, combining 15 quadrangle maps.

  2. Compiling and Mapping Global Permeability of the Unconsolidated and Consolidated Earth: GLobal HYdrogeology MaPS 2.0 (GLHYMPS 2.0)

    NASA Astrophysics Data System (ADS)

    Huscroft, Jordan; Gleeson, Tom; Hartmann, Jens; Börker, Janine

    2018-02-01

    The spatial distribution of subsurface parameters such as permeability are increasingly relevant for regional to global climate, land surface, and hydrologic models that are integrating groundwater dynamics and interactions. Despite the large fraction of unconsolidated sediments on Earth's surface with a wide range of permeability values, current global, high-resolution permeability maps distinguish solely fine-grained and coarse-grained unconsolidated sediments. Representative permeability values are derived for a wide variety of unconsolidated sediments and applied to a new global map of unconsolidated sediments to produce the first geologically constrained, two-layer global map of shallower and deeper permeability. The new mean logarithmic permeability of the Earth's surface is -12.7 ± 1.7 m2 being 1 order of magnitude higher than that derived from previous maps, which is consistent with the dominance of the coarser sediments. The new data set will benefit a variety of scientific applications including the next generation of climate, land surface, and hydrology models at regional to global scales.

  3. New features of global climatology revealed by satellite-derived oceanic rainfall maps

    NASA Technical Reports Server (NTRS)

    Rao, M. S. V.; Theon, J. S.

    1977-01-01

    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.

  4. Towards a Global Land Subsidence Map

    NASA Astrophysics Data System (ADS)

    Erkens, G.; Kooi, H.; Sutanudjaja, E.

    2017-12-01

    Land subsidence is a global problem, but a global land subsidence map is not available yet. Such map is crucial to raise global awareness of land subsidence, as land subsidence causes extensive damage (probably in the order of billions of dollars annually). Insights in the rates of subsidence are particularly relevant for low lying deltas and coastal zones, for which any further loss in elevation is unwanted. With the global land subsidence map relative sea level rise predictions may be improved, contributing to global flood risk calculations. In this contribution, we discuss the approach and progress we have made so far in making a global land subsidence map. The first results will be presented and discussed, and we give an outlook on the work needed to derive a global land subsidence map.

  5. Global Forest Canopy Height Maps Validation and Calibration for The Potential of Forest Biomass Estimation in The Southern United States

    NASA Astrophysics Data System (ADS)

    Ku, N. W.; Popescu, S. C.

    2015-12-01

    In the past few years, three global forest canopy height maps have been released. Lefsky (2010) first utilized the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (ICESat) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate a global forest canopy height map in 2010. Simard et al. (2011) integrated GLAS data and other ancillary variables, such as MODIS, Shuttle Radar Topography Mission (STRM), and climatic data, to generate another global forest canopy height map in 2011. Los et al. (2012) also used GLAS data to create a vegetation height map in 2012.Several studies attempted to compare these global height maps to other sources of data., Bolton et al. (2013) concluded that Simard's forest canopy height map has strong agreement with airborne lidar derived heights. Los map is a coarse spatial resolution vegetation height map with a 0.5 decimal degrees horizontal resolution, around 50 km in the US, which is not feasible for the purpose of our research. Thus, Simard's global forest canopy height map is the primary map for this research study. The main objectives of this research were to validate and calibrate Simard's map with airborne lidar data and other ancillary variables in the southern United States. The airborne lidar data was collected between 2010 and 2012 from: (1) NASA LiDAR, Hyperspectral & Thermal Image (G-LiHT) program; (2) National Ecological Observatory Network's (NEON) prototype data sharing program; (3) NSF Open Topography Facility; and (4) the Department of Ecosystem Science and Management at Texas A&M University. The airborne lidar study areas also cover a wide variety of vegetation types across the southern US. The airborne lidar data is post-processed to generate lidar-derived metrics and assigned to four different classes of point cloud data. The four classes of point cloud data are the data with ground points, above 1 m, above 3 m, and above 5 m. The root mean square error (RMSE) and coefficient of determination (R2) are used for examining the discrepancies of the canopy heights between the airborne lidar-derived metrics and global forest canopy height map, and the regression and random forest approaches are used to calibrate the global forest canopy height map. In summary, the research shows a calibrated forest canopy height map of the southern US.

  6. A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Kretke, K. A.; Smith, M. D.; Pelkey, S. M.

    2002-01-01

    TES (thermal emission spectrometry) has obtained high spatial resolution surface temperature observations from which thermal inertia has been derived. Seasonal coverage of these data now provides a nearly global view of Mars, including the polar regions, at high resolution. Additional information is contained in the original extended abstract.

  7. Validation of Satellite Snow Cover Maps in North America and Norway

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Solberg, Rune; Riggs, George A.

    2002-01-01

    Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.

  8. USGS ShakeMap Developments, Implementation, and Derivative Tools

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Lin, K.; Quitoriano, V.; Worden, B.

    2007-12-01

    We discuss ongoing development and enhancements of ShakeMap, a system for automatically generating maps of ground shaking and intensity in the minutes following an earthquake. The rapid availability of these maps is of particular value to emergency response organizations, utilities, insurance companies, government decision- makers, the media, and the general public. ShakeMap Version 3.2 was released in March, 2007, on a download site which allows ShakeMap developers to track operators' updates and provide follow-up information; V3.2 has now been downloaded in 15 countries. The V3.2 release supports LINUX in addition to other UNIX operating systems and adds enhancements to XML, KML, metadata, and other products. We have also added an uncertainty measure, quantified as a function of spatial location. Uncertainty is essential for evaluating the range of possible losses. Though not released in V3.2, we will describe a new quantitative uncertainty letter grading for each ShakeMap produced, allowing users to gauge the appropriate level of confidence when using rapidly produced ShakeMaps as part of their post-earthquake critical decision-making process. Since the V3.2 release, several new ground motion predictions equations have also been added to the prediction equation modules. ShakeMap is implemented in several new regions as reported in this Session. Within the U.S., robust systems serve California, Nevada, Utah, Washington and Oregon, Hawaii, and Anchorage. Additional systems are in development and efforts to provide backup capabilities for all Advanced National Seismic System (ANSS) regions at the National Earthquake Information Center are underway. Outside the U.S., this Session has descriptions of ShakeMap systems in Italy, Switzerland, Romania, and Turkey, among other countries. We also describe our predictive global ShakeMap system for the rapid evaluation of significant earthquakes globally for the Prompt Assessment of Global Earthquakes for Response (PAGER) system. These global ShakeMaps are constrained by rapidly gathered intensity data via the Internet and by finite fault and aftershock analyses for portraying fault rupture dimensions. As part of the PAGER loss calibration process we have produced an Atlas of ShakeMaps for significant earthquakes around the globe since 1973 (Allen and others, this Session); these Atlas events have additional constraints provided by archival strong motion, faulting dimensions, and macroseismic intensity data. We also describe derivative tools for further utilizing ShakeMap including ShakeCast, a fully automated system for delivering specific ShakeMap products to critical users and triggering established post-earthquake response protocols. We have released ShakeCast Version 2.0 (Lin and others, this Session), which allows RSS feeds for automatically receiving ShakeMap files, auto-launching of post-download processing scripts, and delivering notifications based on users' likely facility damage states derived from ShakeMap shaking parameters. As part of our efforts to produce estimated ShakeMaps globally, we have developed a procedure for deriving Vs30 estimates from correlations with topographic slope, and we have now implemented a global Vs30 Server, allowing users to generate Vs30 maps for custom user-selected regions around the globe (Allen and Wald, this Session). Finally, as a further derivative product of the ShakeMap Atlas project, we will present a shaking hazard Map for the past 30 years based on approximately 3,900 earthquake ShakeMaps of historic earthquakes.

  9. Identifying grain-size dependent errors on global forest area estimates and carbon studies

    Treesearch

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    Satellite-derived coarse-resolution data are typically used for conducting global analyses. But the forest areas estimated from coarse-resolution maps (e.g., 1 km) inevitably differ from a corresponding fine-resolution map (such as a 30-m map) that would be closer to ground truth. A better understanding of changes in grain size on area estimation will improve our...

  10. Geologic map of Kundelan ore deposits and prospects, Zabul Province, Afghanistan; modified from the 1971 original map compilations of K.I. Litvinenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2015-10-26

    Elevations on the cross sections are derived from the original Soviet topography and may not match the Global Digital Elevation Model (GDEM) topography used on the redrafted map of this report. Most hydrography derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has not been included on our redrafted version of the map because of a poor fit with alluvial deposits from the unmodified original Soviet map (graphical supplement no. 18; Litvinenko and others, 1971).

  11. New global hydrography derived from spaceborne elevation data

    USGS Publications Warehouse

    Lehner, B.; Verdin, K.; Jarvis, A.

    2008-01-01

    In response to these limitations, a team of scientists has developed data and created maps of the world's rivers that provide the research community with more reliable information about where streams and watersheds occur on the Earth's surface and how water drains the landscape. The new product, known as HydroSHEDS (Hydrological Data and Maps Based on Shuttle Elevation Derivatives at Multiple Scales), provides this information at a resolution and quality unachieved by previous global data sets, such as HYDRO1k [U.S. Geological Survey (USGS), 2000].

  12. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products

    USGS Publications Warehouse

    Hansen, M.C.; Reed, B.

    2000-01-01

    Two global 1 km land cover data sets derived from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data are currently available, the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) DISCover and the University of Maryland (UMd) 1 km land cover maps. This paper makes a preliminary comparison of the methodologies and results of the two products. The DISCover methodology employed an unsupervised clustering classification scheme on a per-continent basis using 12 monthly maximum NDVI composites as inputs. The UMd approach employed a supervised classification tree method in which temporal metrics derived from all AVHRR bands and the NDVI were used to predict class membership across the entire globe. The DISCover map uses the IGBP classification scheme, while the UMd map employs a modified IGBP scheme minus the classes of permanent wetlands, cropland/natural vegetation mosaic and ice and snow. Global area totals of aggregated vegetation types are very similar and have a per-pixel agreement of 74%. For tall versus short/no vegetation, the per-pixel agreement is 84%. For broad vegetation types, core areas map similarly, while transition zones around core areas differ significantly. This results in high regional variability between the maps. Individual class agreement between the two 1 km maps is 49%. Comparison of the maps at a nominal 0.5 resolution with two global ground-based maps shows an improvement of thematic concurrency of 46% when viewing average class agreement. The absence of the cropland mosaic class creates a difficulty in comparing the maps, due to its significant extent in the DISCover map. The DISCover map, in general, has more forest, while the UMd map has considerably more area in the intermediate tree cover classes of woody savanna/ woodland and savanna/wooded grassland.

  13. A Geophysical Atlas for Interpretation of Satellite-derived Data

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr. (Editor); Frey, H. V. (Editor); Davis, W. M.; Greenberg, A. P.; Hutchinson, M. K.; Langel, R. A.; Lowrey, B. E.; Marsh, J. G.; Mead, G. D.; Okeefe, J. A.

    1979-01-01

    A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included.

  14. Towards a Quasi-global precipitation-induced Landslide Detection System using Remote Sensing Information

    NASA Astrophysics Data System (ADS)

    Adler, B.; Hong, Y.; Huffman, G.; Negri, A.; Pando, M.

    2006-05-01

    Landslides and debris flows are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage per year. Currently, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides. In this study, global landslide susceptibility is mapped using USGS GTOPO30 Digital Elevation, hydrological derivatives (slopes and wetness index etc.) from HYDRO1k data, soil type information downscaled from Digital Soil Map of the World (Sand, Loam, Silt, or Clay etc.), and MODIS land cover/use classification data. These variables are then combined with empirical landslide inventory data, if available, to derive a global landslide susceptibility map at elemental resolution of 1 x 1 km. This map can then be overlain with the driving force, namely rainfall estimates from the TRMM-based Multiple-satellite Precipitation Analysis to identify when areas with significant landslide potential receive heavy rainfall. The relations between rainfall intensity and rainstorm duration are regionally specific and often take the form of a power-law relation. Several empirical landslide-triggering Rainfall Intensity-Duration thresholds are implemented regionally using the 8-year TRMM-based precipitation with or without the global landslide susceptibility map at continuous space and time domain. Finally, the effectiveness of this system is validated by studying several recent deadly landslide/mudslide events. This study aims to build up a prototype quasi-global potential landslide warning system. Spatially-distributed landslide susceptibility maps and regional empirical rainfall intensity-duration thresholds, in combination with real-time rainfall measurements from space and rainfall forecasts from models, will be the basis for this experimental system.

  15. A global magnetic anomaly map. [obtained from POGO satellite data

    NASA Technical Reports Server (NTRS)

    Regan, R. D.; Davis, W. M.; Cain, J. C.

    1974-01-01

    A subset of POGO satellite magnetometer data has been formed that is suitable for analysis of crustal magnetic anomalies. Using a thirteenth order field model, fit to these data, magnetic residuals have been calculated over the world to latitude limits of plus 50 deg. These residuals averaged over one degree latitude-longitude blocks represent a detailed global magnetic anomaly map derived solely from satellite data. Preliminary analysis of the map indicates that the anomalies are real and of geological origin.

  16. The stratigraphy of Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.

    1986-01-01

    A global stratigraphy of Mars was developed from a global geologic map series derived from Viking images; the stratigraphy is composed of three maps. A new chronostratigraphic classification system which consists of lower, middle, and upper Noachian, Hesperian, and Amazonian systems is described. The crater-density boundaries of the chronostratigraphic units and the absolute ages of the Martian epochs aer estimated. The relative ages of major geologic units and featues are calculated and analyzed. The geologic history of Mars is summarized on the maps in terms of epochs.

  17. Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, D. E.; Ray, R. D.; Sanchez, B. V.

    1991-01-01

    Maps and tables for the global ocean tides, 69 degree N to 68 degree S, derived from two years of Geosat altimetry are presented. Global maps of local and Greenwich admittance of the (altimetric) ocean tide, and maps of amplitude and Greenwich phase lag of the ocean tide are shown for M(sub 2), S(sub 2), N(sub 2), O(sub 1), and K(sub 1). Larger scale maps of amplitude and phases are also shown for regional areas of special interest. Spherical harmonic coefficients of the ocean tide through degree and order 8 are tabulated for the six major constituents.

  18. Global Survey of Anthropogenic Neighborhood Threats to Conservation of Grass-Shrub and Forest Vegetation

    EPA Science Inventory

    The ecological functions of natural vegetation are threatened when it is subsumed in anthropogenic landscapes. We report the first comparative global survey of anthropogenic landscape threats to forest and grass-shrub vegetation. Using a global land-cover map derived from remote...

  19. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies.

    PubMed

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1-98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting.

  20. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    PubMed Central

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (<0.5%). Increasing levels of post classification filtering led to a decrease in estimated forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  1. First Results of the Performance of the Global Forest/Non-Forest Map derived from TanDEM-X Interferometric Data

    NASA Astrophysics Data System (ADS)

    Gonzalez, Carolina; Rizzoli, Paola; Martone, Michele; Wecklich, Christopher; Bueso Bello, Jose Luis; Krieger, Gerhard; Zink, Manfred

    2017-04-01

    The globally acquired interferometric synthetic aperture radar (SAR) data set, used for the recently completed primary goal of the TanDEM-X mission, enables a big opportunity for scientific geo-applications. Of great importance for land characterization, classification, and monitoring is that the data set is globally acquired without gaps and includes multiple acquisitions of every region, with comparable parameters. One of the most valuable maps that can be derived from interferometric SAR data for land classification describes the presence/absence of vegetation. In particular, here we report about the deployment of the Global Forest/Non-Forest Map, derived from TanDEM-X interferometric SAR quick-look data, at a ground resolution of 50 m by 50 m. Presence of structures and in particular vegetation produces multiple scattering known as volume decorrelation. Its contribution can be directly estimated from the assessment of coherence loss in the interferometric bistatic pair, by compensating for all other decorrelation sources, such as poor signal-to-noise ratio or quantization noise. Three different forest types have been characterized based on the estimated volume decorrelation: tropical, temperate, and boreal forest. This characterization was then used in a fuzzy clustering approach for the discrimination of vegetated areas on a global scale. Water and cities are filtered out from the generated maps in order to distinguish volume decorrelation from other decorrelation sources. The validation and performance comparison of the delivered product is also presented, and represents a fundamental tool for optimizing the whole algorithm at all different stages. Furtheremore, as the time interval of the acquisitions is almost 4 years, change detection can be performed as well and examples of deforestation are also going to be included in the final paper.

  2. Global Maps of Lunar Neutron Fluxes from the LEND Instrument

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A.; Malakhov, A.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Golovin, D. V.; hide

    2012-01-01

    The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range < 0.015 eV) and fast neutrons (>0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.

  3. Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.

    2004-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.

  4. Small-scale features in the Earth's magnetic field observed by Magsat.

    USGS Publications Warehouse

    Cain, J.C.; Schmitz, D.R.; Muth, L.

    1984-01-01

    A spherical harmonic expansion to degree and order 29 is derived using a selected magnetically quiet sample of Magsat data. Global maps representing the contribution due to terms of the expansion above n = 13 at 400 km altitude are compared with previously published residual anomaly maps and shown to be similar, even in polar regions. An expansion with such a high degree and order displays all but the sharpest features seen by the satellite and gives a more consistent picture of the high-order field structure at a constant altitude than do component maps derived independently. -Authors

  5. Global forest cover mapping for the United Nations Food and Agriculture Organization forest resources assessment 2000 program

    USGS Publications Warehouse

    Zhu, Z.; Waller, E.

    2003-01-01

    Many countries periodically produce national reports on the status and changes of forest resources, using statistical surveys and spatial mapping of remotely sensed data. At the global level, the Food and Agriculture Organization (FAO) of the United Nations has conducted a Forest Resources Assessment (FRA) program every 10 yr since 1980, producing statistics and analysis that give a global synopsis of forest resources in the world. For the year 2000 of the FRA program (FRA2000), a global forest cover map was produced to provide spatial context to the extensive survey. The forest cover map, produced at the U.S. Geological Survey (USGS) EROS Data Center (EDC), has five classes: closed forest, open or fragmented forest, other wooded land, other land cover, and water. The first two forested classes at the global scale were delineated using combinations of temporal compositing, modified mixture analysis, geographic stratification, and other classification techniques. The remaining three FAO classes were derived primarily from the USGS global land cover characteristics database (Loveland et al. 1999). Validated on the basis of existing reference data sets, the map is estimated to be 77% accurate for the first four classes (no reference data were available for water), and 86% accurate for the forest and nonforest classification. The final map will be published as an insert to the FAO FRA2000 report.

  6. Crater-based dating of geological units on Mars: methods and application for the new global geological map

    USGS Publications Warehouse

    Platz, Thomas; Michael, Gregory; Tanaka, Kenneth L.; Skinner, James A.; Fortezzo, Corey M.

    2013-01-01

    The new, post-Viking generation of Mars orbital imaging and topographical data provide significant higher-resolution details of surface morphologies, which induced a new effort to photo-geologically map the surface of Mars at 1:20,000,000 scale. Although from unit superposition relations a relative stratigraphical framework can be compiled, it was the ambition of this mapping project to provide absolute unit age constraints through crater statistics. In this study, the crater counting method is described in detail, starting with the selection of image data, type locations (both from the mapper’s and crater counter’s perspectives) and the identification of impact craters. We describe the criteria used to validate and analyse measured crater populations, and to derive and interpret crater model ages. We provide examples of how geological information about the unit’s resurfacing history can be retrieved from crater size–frequency distributions. Three cases illustrate short-, intermediate, and long-term resurfacing histories. In addition, we introduce an interpretation-independent visualisation of the crater resurfacing history that uses the reduction of the crater population in a given size range relative to the expected population given the observed crater density at larger sizes. From a set of potential type locations, 48 areas from 22 globally mapped units were deemed suitable for crater counting. Because resurfacing ages were derived from crater statistics, these secondary ages were used to define the unit age rather than the base age. Using the methods described herein, we modelled ages that are consistent with the interpreted stratigraphy. Our derived model ages allow age assignments to be included in unit names. We discuss the limitations of using the crater dating technique for global-scale geological mapping. Finally, we present recommendations for the documentation and presentation of crater statistics in publications.

  7. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  8. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  9. New version of 1 km global river flood hazard maps for the next generation of Aqueduct Global Flood Analyzer

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; van Beek, Rens; Winsemius, Hessel; Ward, Philip; Bierkens, Marc

    2017-04-01

    The Aqueduct Global Flood Analyzer, launched in 2015, is an open-access and free-of-charge web-based interactive platform which assesses and visualises current and future projections of river flood impacts across the globe. One of the key components in the Analyzer is a set of river flood inundation hazard maps derived from the global hydrological model simulation of PCR-GLOBWB. For the current version of the Analyzer, accessible on http://floods.wri.org/#/, the early generation of PCR-GLOBWB 1.0 was used and simulated at 30 arc-minute ( 50 km at the equator) resolution. In this presentation, we will show the new version of these hazard maps. This new version is based on the latest version of PCR-GLOBWB 2.0 (https://github.com/UU-Hydro/PCR-GLOBWB_model, Sutanudjaja et al., 2016, doi:10.5281/zenodo.60764) simulated at 5 arc-minute ( 10 km at the equator) resolution. The model simulates daily hydrological and water resource fluxes and storages, including the simulation of overbank volume that ends up on the floodplain (if flooding occurs). The simulation was performed for the present day situation (from 1960) and future climate projections (until 2099) using the climate forcing created in the ISI-MIP project. From the simulated flood inundation volume time series, we then extract annual maxima for each cell, and fit these maxima to a Gumbel extreme value distribution. This allows us to derive flood volume maps of any hazard magnitude (ranging from 2-year to 1000-year flood events) and for any time period (e.g. 1960-1999, 2010-2049, 2030-2069, and 2060-2099). The derived flood volumes (at 5 arc-minute resolution) are then spread over the high resolution terrain model using an updated GLOFRIS downscaling module (Winsemius et al., 2013, doi:10.5194/hess-17-1871-2013). The updated version performs a volume spreading sequentially from more upstream basins to downstream basins, hence enabling a better inclusion of smaller streams, and takes into account spreading of water over diverging deltaic regions. This results in a set of high resolution hazard maps of flood inundation depth at 30 arc-second ( 1 km at the equator) resolution. Together with many other updates and new features, the resulting flood hazard maps will be used in the next generation of the Aqueduct Global Flood Analyzer.

  10. Impact of the Combination of GNSS and Altimetry Data on the Derived Global Ionosphere Maps

    NASA Astrophysics Data System (ADS)

    Todorova, S.; Schuh, H.; Hobiger, T.; Hernandez-Pajares, M.

    2007-05-01

    The classical input data for development of Global Ionosphere Maps (GIM) of the Total Electron Content (TEC) is the so called "geometry free linear combination", obtained from the dual-frequency Global Navigation Satellite System (GNSS) observations. Such maps in general achieve good quality of the ionosphere representation. However, the GNSS stations are inhomogeneously distributed, with large gaps particularly over the sea surface, which lowers the precision of the GIM over these areas. On the other hand, the dual-frequency satellite altimetry missions such as Jason-1 and TOPEX/Poseidon provide information about the parameter of the ionosphere precisely above the sea surface, where the altimetry observations are preformed. Due to the limited spread of the measurements and some open issues related to systematic errors, the ionospheric data from satellite altimetry is used only for cross-validation of the GNSS GIM. It can be anticipated however, that some specifics of the ionosphere parameter derived by satellite altimetry will partly balance the inhomogeneity of the GNSS data. Such important features are complementing in the global resolution, different biasing and the absence of additional mapping, as it is the case in GNSS. In this study we create two-hourly GIM from GNSS data and additionally introduce satellite altimetry observations, which help to compensate the insufficient GNSS coverage of the oceans. The combination of the data from around 180 GNSS stations and the satellite altimetry mission Jason-1 is performed on the normal equation level. The comparison between the integrated ionosphere models and the GNSS-only maps shows a higher accuracy of the combined GIM over the seas. A further effect of the combination is that the method allows the independent estimation of daily values of the Differential Code Biases (DCB) for all GNSS satellites and receivers, and of the systematic errors affecting the altimetry measurements. Such errors should include a hardware delay similar to the GNSS DCB as well as the impact of the topside ionosphere, which is not sampled by Jason-1. At this stage, for testing purposes we estimate a constant daily value, which will be further investigated. The final aim of the study is the development of improved combined global TEC maps, which make best use of the advantages of each particular type of data and have higher accuracy and reliability than the results derived by the two methods if treated individually.

  11. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    NASA Astrophysics Data System (ADS)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, p<0.001) with a 250-m resolution static global water map (MOD44W) aggregated at the same spatial scale, while capturing significant inundation variations worldwide. The monthly fwLBand averages also showed seasonal inundation changes consistent with river discharge records within six major US river basins. An uncertainty analysis indicated generally reliable fwLBand performance for major land cover areas and under low to moderate vegetation cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer resolution (30-m) fwLBand results were obtained for three sub-regions in North America using an empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived from the historical Landsat record. The resulting 30-m fwLBand retrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.

  12. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Satellite remote sensing data has significant potential use in analysis of natural hazards such as landslides. Relying on the recent advances in satellite remote sensing and geographic information system (GIS) techniques, this paper aims to map landslide susceptibility over most of the globe using a GIs-based weighted linear combination method. First , six relevant landslide-controlling factors are derived from geospatial remote sensing data and coded into a GIS system. Next, continuous susceptibility values from low to high are assigned to each of the six factors. Second, a continuous scale of a global landslide susceptibility index is derived using GIS weighted linear combination based on each factor's relative significance to the process of landslide occurrence (e.g., slope is the most important factor, soil types and soil texture are also primary-level parameters, while elevation, land cover types, and drainage density are secondary in importance). Finally, the continuous index map is further classified into six susceptibility categories. Results show the hot spots of landslide-prone regions include the Pacific Rim, the Himalayas and South Asia, Rocky Mountains, Appalachian Mountains, Alps, and parts of the Middle East and Africa. India, China, Nepal, Japan, the USA, and Peru are shown to have landslide-prone areas. This first-cut global landslide susceptibility map forms a starting point to provide a global view of landslide risks and may be used in conjunction with satellite-based precipitation information to potentially detect areas with significant landslide potential due to heavy rainfall. 1

  13. Combining XCO2 Measurements Derived from SCIAMACHY and GOSAT for Potentially Generating Global CO2 Maps with High Spatiotemporal Resolution

    PubMed Central

    Wang, Tianxing; Shi, Jiancheng; Jing, Yingying; Zhao, Tianjie; Ji, Dabin; Xiong, Chuan

    2014-01-01

    Global warming induced by atmospheric CO2 has attracted increasing attention of researchers all over the world. Although space-based technology provides the ability to map atmospheric CO2 globally, the number of valid CO2 measurements is generally limited for certain instruments owing to the presence of clouds, which in turn constrain the studies of global CO2 sources and sinks. Thus, it is a potentially promising work to combine the currently available CO2 measurements. In this study, a strategy for fusing SCIAMACHY and GOSAT CO2 measurements is proposed by fully considering the CO2 global bias, averaging kernel, and spatiotemporal variations as well as the CO2 retrieval errors. Based on this method, a global CO2 map with certain UTC time can also be generated by employing the pattern of the CO2 daily cycle reflected by Carbon Tracker (CT) data. The results reveal that relative to GOSAT, the global spatial coverage of the combined CO2 map increased by 41.3% and 47.7% on a daily and monthly scale, respectively, and even higher when compared with that relative to SCIAMACHY. The findings in this paper prove the effectiveness of the combination method in supporting the generation of global full-coverage XCO2 maps with higher temporal and spatial sampling by jointly using these two space-based XCO2 datasets. PMID:25119468

  14. Genetic mapping with an inbred line-derived F2 population in potato

    USDA-ARS?s Scientific Manuscript database

    Potato (Solanum tuberosum L.) is an important global food crop, for which tetrasomic inheritance and self-incompatibility have limited both genetic discovery and breeding gains. We report here on the creation of the first diploid inbred line-derived F2 population in potato, and demonstrate its utili...

  15. An Atlas of ShakeMaps and population exposure catalog for earthquake loss modeling

    USGS Publications Warehouse

    Allen, T.I.; Wald, D.J.; Earle, P.S.; Marano, K.D.; Hotovec, A.J.; Lin, K.; Hearne, M.G.

    2009-01-01

    We present an Atlas of ShakeMaps and a catalog of human population exposures to moderate-to-strong ground shaking (EXPO-CAT) for recent historical earthquakes (1973-2007). The common purpose of the Atlas and exposure catalog is to calibrate earthquake loss models to be used in the US Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER). The full ShakeMap Atlas currently comprises over 5,600 earthquakes from January 1973 through December 2007, with almost 500 of these maps constrained-to varying degrees-by instrumental ground motions, macroseismic intensity data, community internet intensity observations, and published earthquake rupture models. The catalog of human exposures is derived using current PAGER methodologies. Exposure to discrete levels of shaking intensity is obtained by correlating Atlas ShakeMaps with a global population database. Combining this population exposure dataset with historical earthquake loss data, such as PAGER-CAT, provides a useful resource for calibrating loss methodologies against a systematically-derived set of ShakeMap hazard outputs. We illustrate two example uses for EXPO-CAT; (1) simple objective ranking of country vulnerability to earthquakes, and; (2) the influence of time-of-day on earthquake mortality. In general, we observe that countries in similar geographic regions with similar construction practices tend to cluster spatially in terms of relative vulnerability. We also find little quantitative evidence to suggest that time-of-day is a significant factor in earthquake mortality. Moreover, earthquake mortality appears to be more systematically linked to the population exposed to severe ground shaking (Modified Mercalli Intensity VIII+). Finally, equipped with the full Atlas of ShakeMaps, we merge each of these maps and find the maximum estimated peak ground acceleration at any grid point in the world for the past 35 years. We subsequently compare this "composite ShakeMap" with existing global hazard models, calculating the spatial area of the existing hazard maps exceeded by the combined ShakeMap ground motions. In general, these analyses suggest that existing global, and regional, hazard maps tend to overestimate hazard. Both the Atlas of ShakeMaps and EXPO-CAT have many potential uses for examining earthquake risk and epidemiology. All of the datasets discussed herein are available for download on the PAGER Web page ( http://earthquake.usgs.gov/ eqcenter/pager/prodandref/ ). ?? 2009 Springer Science+Business Media B.V.

  16. Assessing water resources in Azerbaijan using a local distributed model forced and constrained with global data

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Hegnauer, Mark; Schellekens, Jaap; Sperna Weiland, Frederiek; ten Velden, Corine

    2017-04-01

    In many countries, data is scarce, incomplete and often not easily shared. In these cases, global satellite and reanalysis data provide an alternative to assess water resources. To assess water resources in Azerbaijan, a completely distributed and physically based hydrological wflow-sbm model was set-up for the entire Kura basin. We used SRTM elevation data, a locally available river map and one from OpenStreetMap to derive the drainage direction network at the model resolution of approximately 1x1 km. OpenStreetMap data was also used to derive the fraction of paved area per cell to account for the reduced infiltration capacity (c.f. Schellekens et al. 2014). We used the results of a global study to derive root zone capacity based on climate data (Wang-Erlandsson et al., 2016). To account for the variation in vegetation cover over the year, monthly averages of Leaf Area Index, based on MODIS data, were used. For the soil-related parameters, we used global estimates as provided by Dai et al. (2013). This enabled the rapid derivation of a first estimate of parameter values for our hydrological model. Digitized local meteorological observations were scarce and available only for limited time period. Therefore several sources of global meteorological data were evaluated: (1) EU-WATCH global precipitation, temperature and derived potential evaporation for the period 1958-2001 (Harding et al., 2011), (2) WFDEI precipitation, temperature and derived potential evaporation for the period 1979-2014 (by Weedon et al., 2014), (3) MSWEP precipitation (Beck et al., 2016) and (4) local precipitation data from more than 200 stations in the Kura basin were available from the NOAA website for a period up to 1991. The latter, together with data archives from Azerbaijan, were used as a benchmark to evaluate the global precipitation datasets for the overlapping period 1958-1991. By comparing the datasets, we found that monthly mean precipitation of EU-WATCH and WFDEI coincided well with NOAA stations and that MSWEP slightly overestimated precipitation amounts. On a daily basis, there were discrepancies in the peak timing and magnitude between measured precipitation and the global products. A bias between EU-WATCH and WFDEI temperature and potential evaporation was observed and to model the water balance correctly, it was needed to correct EU-WATCH to WFDEI mean monthly values. Overall, the available sources enabled rapid set-up of a hydrological model including the forcing of the model with a relatively good performance to assess water resources in Azerbaijan with a limited calibration effort and allow for a similar set-up anywhere in the world. Timing and quantification of peak volume remains a weakness in global data, making it difficult to be used for some applications (flooding) and for detailed calibration. Selecting and comparing different sources of global meteorological data is important to have a reliable set which improves model performance. - Beck et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2014) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. Discuss. - Dai Y. et al. ,2013. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface Modeling. Journal of Hydrometeorology - Harding, R. et al., 2011., WATCH: Current knowledge of the Terrestrial global water cycle, J. Hydrometeorol. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Wang-Erlandsson L. et al., 2016. Global Root Zone Storage Capacity from Satellite-Based Evaporation. Hydrology and Earth System Sciences - Weedon, G. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data, Water Resources Research.

  17. Global Boreal Forest Mapping with JERS-1: North America

    NASA Technical Reports Server (NTRS)

    Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce

    2000-01-01

    Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.

  18. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 6 Earth radiation budget data set, July 1975 to June 1978

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1987-01-01

    An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 36 months of continuous data from July 1975 to June 1978. The data were derived from the first Earth radiation budget experiment, which was flown on the Nimbus-6 Sun-synchronous satellite in 1975. Only the wide-field-of-view longwave measurements are cataloged in this atlas. The contour maps along with the associated sets of spherical harmonic coefficients form a valuable data set for studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain, and over regional, zonal, and global scales in the spatial domain.

  19. 15 maps merged in one data structure - GIS-based template for Dawn at Ceres

    NASA Astrophysics Data System (ADS)

    Naß, A.; Dawn Mapping Team

    2017-09-01

    Derive regional and global valid statements out of the map (quadrangles) is already a very time intensive task. However, another challenge is how individual mappers can generate one homogenous GIS-based project (w.r.t. geometrical and visual character) representing one geologically-consistent final map. Within this contribution a template will be presented which was generated for the process of the interpretative mapping project of Ceres to accomplish the requirement of unifying and merging individual quadrangle.

  20. a Free and Open Source Tool to Assess the Accuracy of Land Cover Maps: Implementation and Application to Lombardy Region (italy)

    NASA Astrophysics Data System (ADS)

    Bratic, G.; Brovelli, M. A.; Molinari, M. E.

    2018-04-01

    The availability of thematic maps has significantly increased over the last few years. Validation of these maps is a key factor in assessing their suitability for different applications. The evaluation of the accuracy of classified data is carried out through a comparison with a reference dataset and the generation of a confusion matrix from which many quality indexes can be derived. In this work, an ad hoc free and open source Python tool was implemented to automatically compute all the matrix confusion-derived accuracy indexes proposed by literature. The tool was integrated into GRASS GIS environment and successfully applied to evaluate the quality of three high-resolution global datasets (GlobeLand30, Global Urban Footprint, Global Human Settlement Layer Built-Up Grid) in the Lombardy Region area (Italy). In addition to the most commonly used accuracy measures, e.g. overall accuracy and Kappa, the tool allowed to compute and investigate less known indexes such as the Ground Truth and the Classification Success Index. The promising tool will be further extended with spatial autocorrelation analysis functions and made available to researcher and user community.

  1. User's guide for SBUV/TOMS ozone derivative products

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Wellemeyer, C.; Oslik, N.; Lee, D.; Miller, J.; Magatani, R.

    1984-01-01

    A series of products are available derived from the total-ozone and ozone vertical profile results for the Solar Backscattered Ultraviolet/Total-Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus-7 operation. Products available are (1) orbital height-latitude cross sections of the SBUV profile data, (2) daily global total ozone contours in polar coordinates, (3) daily averages of total ozone in global 5x5 degree latitude-longitude grid, (4) daily, monthly and quarterly averages of total ozone and profile data in 10 degree latitude zones, (5) tabular presentation of zonal means, (6) daily global total ozone and profile contours in polar coordinates. The ""Derivative Products User's Guide'' describes each of these products in detail, including their derivation and presentation format. Information is provided on how to order the tapes and microfilm from the National Space Science Data Center.

  2. Thermal and albedo mapping of the north and south polar regions of Mars

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Keegan, K. D.

    1991-01-01

    The first maps of the thermal properties of the north and south polar region of Mars are presented. The maps complete the mapping of the entire planet. The maps for the north polar region were derived from Viking Infrared Thermal Mapper (IRTM) observations obtained from 10 Jun. to 30 Sep. 1978. This period corresponds to the early summer season in the north, when the north residual water ice cap was exposed, and the polar surface temperatures were near their maximum. The maps in the south were derived from observations obtained between 24 Aug. to 23 Sep. 1977. This period corresponds to the late summer season in the south, when the seasonal polar cap had retreated to close to its residual configuration, and the second global dust storm of 1977 had largely subsided. The major results concerning the following topics are summarized: (1) surface water ice; (2) polar dune material; and (3) dust deposits.

  3. Chimera states in Gaussian coupled map lattices

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  4. GIM-TEC adaptive ionospheric weather assessment and forecast system

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.

    2013-09-01

    The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.

  5. Theoretical Accuracy of Global Snow-Cover Mapping Using Satellite Data in the Earth Observing System (EOS) Era

    NASA Technical Reports Server (NTRS)

    Hall, D. K.; Foster, J. L.; Salomonson, V. V.; Klein, A. G.; Chien, J. Y. L.

    1998-01-01

    Following the launch of the Earth Observing System first morning (EOS-AM1) satellite, daily, global snow-cover mapping will be performed automatically at a spatial resolution of 500 m, cloud-cover permitting, using Moderate Resolution Imaging Spectroradiometer (MODIS) data. A technique to calculate theoretical accuracy of the MODIS-derived snow maps is presented. Field studies demonstrate that under cloud-free conditions when snow cover is complete, snow-mapping errors are small (less than 1%) in all land covers studied except forests where errors are greater and more variable. The theoretical accuracy of MODIS snow-cover maps is largely determined by percent forest cover north of the snowline. Using the 17-class International Geosphere-Biosphere Program (IGBP) land-cover maps of North America and Eurasia, the Northern Hemisphere is classified into seven land-cover classes and water. Snow-mapping errors estimated for each of the seven land-cover classes are extrapolated to the entire Northern Hemisphere for areas north of the average continental snowline for each month. Average monthly errors for the Northern Hemisphere are expected to range from 5 - 10%, and the theoretical accuracy of the future global snow-cover maps is 92% or higher. Error estimates will be refined after the first full year that MODIS data are available.

  6. Moon Crustal Thickness

    NASA Image and Video Library

    2013-11-08

    Global map of crustal thickness of the moon derived from gravity data obtained by NASA GRAIL spacecraft. The lunar near side is represented on the left hemisphere. The far side is represented in the right hemisphere.

  7. A strategy for mineral and energy resource independence

    USGS Publications Warehouse

    Carter, W.D.

    1983-01-01

    Data acquired by Landsats 1, 2, and 3, are beginning to provide the information on which an improved mineral and energy resource exploration strategy can be based. Landsat 4 is expected to augment this capability with its higher resolution (30 m) and additional spectral bands in the Thematic Mapper (TM) designed specifically to discriminate clay minerals associated with mineral alteration. In addition, a new global magnetic anomaly map, derived from the recent Magsat mission, has recently been compiled by the National Aeronautics and Space Administration (NASA), the U.S. Geological Survey (USGS), and others. Preliminary, extremely small-scale renditions of this map indicate that global coverage is nearly complete and that the map will improve upon a previous one derived from Polar Orbiting Geophysical Observatory (POGO) data. Digital processing of the Landsat image data and Magsat geophysical data can be used to create three-dimensional stereoscopic models for which Landsat images provide surface reference to deep structural anomalies. Comparative studies of national Landsat lineament maps, Magsat stereoscopic models, and metallogenic information derived from the Computerized Resources Information Bank (CRIB) inventory of U.S. mineral resources, provide a way of identifying and selecting exploration areas that have mineral resource potential. Landsat images and computer-compatible tapes can provide new and better mosaics and also provide the capability for a closer look at promising sites. ?? 1983.

  8. Land cover in Upper Egypt assessed using regional and global land cover products derived from MODIS imagery.

    PubMed

    Fuller, Douglas O; Parenti, Michael S; Gad, Adel M; Beier, John C

    2012-01-01

    Irrigation along the Nile River has resulted in dramatic changes in the biophysical environment of Upper Egypt. In this study we used a combination of MODIS 250 m NDVI data and Landsat imagery to identify areas that changed from 2001-2008 as a result of irrigation and water-level fluctuations in the Nile River and nearby water bodies. We used two different methods of time series analysis -- principal components (PCA) and harmonic decomposition (HD), applied to the MODIS 250 m NDVI images to derive simple three-class land cover maps and then assessed their accuracy using a set of reference polygons derived from 30 m Landsat 5 and 7 imagery. We analyzed our MODIS 250 m maps against a new MODIS global land cover product (MOD12Q1 collection 5) to assess whether regionally specific mapping approaches are superior to a standard global product. Results showed that the accuracy of the PCA-based product was greater than the accuracy of either the HD or MOD12Q1 products for the years 2001, 2003, and 2008. However, the accuracy of the PCA product was only slightly better than the MOD12Q1 for 2001 and 2003. Overall, the results suggest that our PCA-based approach produces a high level of user and producer accuracies, although the MOD12Q1 product also showed consistently high accuracy. Overlay of 2001-2008 PCA-based maps showed a net increase of 12 129 ha of irrigated vegetation, with the largest increase found from 2006-2008 around the Districts of Edfu and Kom Ombo. This result was unexpected in light of ambitious government plans to develop 336 000 ha of irrigated agriculture around the Toshka Lakes.

  9.  A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012

    Treesearch

    Kurt Riitters; James Wickham; Jennifer K. Costanza; Peter Vogt

    2016-01-01

    Context Published maps of global tree cover derived from Landsat data have indicated substantial changes in forest area from 2000 to 2012. The changes can be arranged in different patterns, with different consequences for forest fragmentation. Thus, the changes in forest area do not necessarily equate to changes in...

  10. Global maps of the magnetic thickness and magnetization of the Earth's lithosphere

    NASA Astrophysics Data System (ADS)

    Vervelidou, Foteini; Thébault, Erwan

    2015-10-01

    We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.

  11. Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Shi, Chuang; Zhang, Hongping

    2017-04-01

    Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future.

  12. Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere.

    PubMed

    Wang, Cheng; Shi, Chuang; Zhang, Hongping

    2017-04-06

    Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future.

  13. Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere

    PubMed Central

    Wang, Cheng; Shi, Chuang; Zhang, Hongping

    2017-01-01

    Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future. PMID:28383058

  14. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R.

    2000-01-01

    High-resolution thermal inertia mapping results are presented, derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) observations of the surface temperature of Mars obtained during the early portion of the MGS mapping mission. Thermal inertia is the key property controlling the diurnal surface temperature variations, and is dependent on the physical character of the top few centimeters of the surface. It represents a complex combination of particle size, rock abundance, exposures of bedrock, and degree of induration. In this work we describe the derivation of thermal inertia from TES data, present global scale analysis, and place these results into context with earlier work. A global map of nighttime thermal-bolometer-based thermal inertia is presented at 14?? per pixel resolution, with approximately 63% coverage between 50??S and 70??N latitude. Global analysis shows a similar pattern of high and low thermal inertia as seen in previous Viking low-resolution mapping. Significantly more detail is present in the high-resolution TES thermal inertia. This detail represents horizontal small-scale variability in the nature of the surface. Correlation with albedo indicates the presence of a previously undiscovered surface unit of moderate-to-high thermal inertia and intermediate albedo. This new unit has a modal peak thermal inertia of 180-250 J m-2 K-1 s-12 and a narrow range of albedo near 0.24. The unit, covering a significant fraction of the surface, typically surrounds the low thermal inertia regions and may comprise a deposit of indurated fine material. Local 3-km-resolution maps are also presented as examples of eolian, fluvial, and volcanic geology. Some impact crater rims and intracrater dunes show higher thermal inertias than the surrounding terrain; thermal inertia of aeolian deposits such as intracrater dunes may be related to average particle size. Outflow channels and valleys consistently show higher thermal inertias than the surrounding terrain. Generally, correlations between spatial variations in thermal inertia and geologic features suggest a relationship between the hundred-meter-scale morphology and the centimeter-scale surface layer. ?? 2000 Academic Press.

  15. Global Surface Dust Distribution Changes on Mars (MY24-33)

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Hayne, P. O.; Kleinboehl, A.; Edwards, C. S.; Elder, C. M.; Heavens, N. G.; Kass, D. M.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Smith, M. D.

    2016-12-01

    Telescopic and spacecraft observations document inter-annual and inter-seasonal changes of the Martian albedo that are interpreted to result from the redistribution of surface dust in response to atmospheric events such as global or regional dust storms, dust devil activity, or seasonal winds. Based on these observations and general circulation modeling, several authors have hypothesized that a necessary condition for global dust storm initiation and growth is the presence of strategically located surface dust reservoirs replenished during inter-storm periods. If this hypothesis is valid, the cyclical accumulation and removal of thermally thick (>50 μm) layers of dust at specific locations ought to produce a distinct temperature signature, since Martian dust exhibits extremely low thermal conductivity and thermal inertia values compared to sand, gravel, rocks, and bedrock. Characterizing dust movement using temperature data presents a major advantage over mapping relying solely on albedo changes: it yields dust layer thicknesses, whose spatial and temporal integration enables the derivation of surface dust fluxes. In this work, we use global (1° per pixel resolution) seasonal (10° Ls resolution, from MY24 to 33) maps of the Martian surface albedo, atmospheric dust opacity, and ground temperature (derived from TES, THEMIS, and MCS observations) to derive apparent variations of the thermal inertia, and thereby characterize surface changes consistent with the deposition or removal of dust. We show that changes in thermal inertia for some regions are consistent with dust accumulation; whereas others seem to lose dust. We compare these maps with published GCM dust lifting predictions, and with observations of past dust storm occurrence, thereby constraining the role of surface dust availability.

  16. Measurement of global oceanic winds from Seasat-SMMR and its comparison with Seasat-SASS and ALT derived winds

    NASA Technical Reports Server (NTRS)

    Pandey, Prem C.

    1987-01-01

    The retrieval of ocean-surface wind speed from different channel combinations of Seasat SMMR measurements is demonstrated. Wind speeds derived using the best two channel subsets (10.6 H and 18.0 V) were compared with in situ data collected during the Joint Air-Sea Interaction (JASIN) experiment and an rms difference of 1.5 m/s was found. Global maps of wind speed generated with the present algorithm show that the averaged winds are arranged in well-ordered belts.

  17. Geodesy and cartography of the Martian satellites

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Edwards, Kathleen; Duxbury, T. C.

    1992-01-01

    The difficulties connected with conventional maps of Phobos and Deimos are largely overcome by producing maps in digital forms, i.e., by projecting Viking Orbiter images onto a global topographic model made from collections of radii derived by photogrammetry. The resulting digital mosaics are then formatted as arrays of body-centered latitudes, longitudes, radii, and brightness values of Viking Orbiter images. The Phobos mapping described was done with Viking Orbiter data. Significant new coverage was obtained by the Soviet Phobos mission. The mapping of Deimos is in progress, using the techniques developed for Phobos.

  18. Current trends in satellite based emergency mapping - the need for harmonisation

    NASA Astrophysics Data System (ADS)

    Voigt, Stefan

    2013-04-01

    During the past years, the availability and use of satellite image data to support disaster management and humanitarian relief organisations has largely increased. The automation and data processing techniques are greatly improving as well as the capacity in accessing and processing satellite imagery in getting better globally. More and more global activities via the internet and through global organisations like the United Nations or the International Charter Space and Major Disaster engage in the topic, while at the same time, more and more national or local centres engage rapid mapping operations and activities. In order to make even more effective use of this very positive increase of capacity, for the sake of operational provision of analysis results, for fast validation of satellite derived damage assessments, for better cooperation in the joint inter agency generation of rapid mapping products and for general scientific use, rapid mapping results in general need to be better harmonized, if not even standardized. In this presentation, experiences from various years of rapid mapping gained by the DLR Center for satellite based Crisis Information (ZKI) within the context of the national activities, the International Charter Space and Major Disasters, GMES/Copernicus etc. are reported. Furthermore, an overview on how automation, quality assurance and optimization can be achieved through standard operation procedures within a rapid mapping workflow is given. Building on this long term rapid mapping experience, and building on the DLR initiative to set in pace an "International Working Group on Satellite Based Emergency Mapping" current trends in rapid mapping are discussed and thoughts on how the sharing of rapid mapping information can be optimized by harmonizing analysis results and data structures are presented. Such an harmonization of analysis procedures, nomenclatures and representations of data as well as meta data are the basis to better cooperate within the global rapid mapping community throughout local/national, regional/supranational and global scales

  19. Towards a High-Resolution Global Inundation Delineation Dataset

    NASA Astrophysics Data System (ADS)

    Fluet-Chouinard, E.; Lehner, B.

    2011-12-01

    Although their importance for biodiversity, flow regulation and ecosystem service provision is widely recognized, wetlands and temporarily inundated landscapes remain poorly mapped globally because of their inherent elusive nature. Inventorying of wetland resources has been identified in international agreements as an essential component of appropriate conservation efforts and management initiatives of these threatened ecosystems. However, despite recent advances in remote sensing surface water monitoring, current inventories of surface water variations remain incomplete at the regional-to-global scale due to methodological limitations restricting truly global application. Remote sensing wetland applications such as SAR L-band are particularly constrained by image availability and heterogeneity of acquisition dates, while coarse resolution passive microwave and multi-sensor methods cannot discriminate distinct surface water bodies. As a result, the most popular global wetland dataset remains to this day the Global Lake & Wetland Database (Lehner and Doll, 2004) a spatially inconsistent database assembled from various existing data sources. The approach taken in this project circumvents the limitations of current global wetland monitoring methods by combining globally available topographic and hydrographic data to downscale coarse resolution global inundation data (Prigent et al., 2007) and thus create a superior inundation delineation map product. The developed procedure downscales inundation data from the coarse resolution (~27km) of current passive microwave sensors to the finer spatial resolution (~500m) of the topographic and hydrographic layers of HydroSHEDS' data suite (Lehner et al., 2006), while retaining the high temporal resolution of the multi-sensor inundation dataset. From the downscaling process emerges new information on the specific location of inundation, but also on its frequency and duration. The downscaling algorithm employs a decision tree classifier trained on regional remote sensing wetland maps, to derive inundation probability followed by a seeded region growing segmentation process to redistribute the inundated area at the finer resolution. Assessment of the algorithm's performance is accomplished by evaluating the level of agreement between its outputted downscaled inundation maps and existing regional remote sensing inundation delineation. Upon completion, this project's will offer a dynamic globally seamless inundation map at an unprecedented spatial and temporal scale, which will provide the baseline inventory long requested by the research community, and will open the door to a wide array of possible conservation and hydrological modeling applications which were until now data-restricted. Literature Lehner, B., K. Verdin, and A. Jarvis. 2008. New global hydrography derived from spaceborne elevation data. Eos 89, no. 10. Lehner, B, and P Doll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, no. 1-4: 1-22. Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews. 2007. Global inundation dynamics inferred from multiple satellite observations, 1993-2000. Journal of Geophysical Research 112, no. D12: 1-13.

  20. MODIS land cover and LAI collection 4 product quality across nine states in the western hemisphere.

    Treesearch

    Warren B. Cohen; Thomas K. Maiersperger; David P. Turner; William D. Ritts; Dirk Pflugmacher; Robert E. Kennedy; Alan Kirschbaum; Steven W. Running; Marcos Costa; Stith T. Gower

    2006-01-01

    Global maps of land cover and leaf area index (LAI) derived from the Moderate Resolution Imaging Spectrometer (MODIS) reflectance data are an important resource in studies of global change, but errors in these must be characterized and well understood. Product validation requires careful scaling from ground and related measurements to a grain commensurate with MODIS...

  1. MOLA-Based Landing Site Characterization

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Ivanov, A. B.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) data provide the basis for site characterization and selection never before possible. The basic MOLA information includes absolute radii, elevation and 1 micrometer albedo with derived datasets including digital image models (DIM's illuminated elevation data), slopes maps and slope statistics and small scale surface roughness maps and statistics. These quantities are useful in downsizing potential sites from descent engineering constraints and landing/roving hazard and mobility assessments. Slope baselines at the few hundred meter level and surface roughness at the 10 meter level are possible. Additionally, the MOLA-derived Mars surface offers the possibility to precisely register and map project other instrument datasets (images, ultraviolet, infrared, radar, etc.) taken at different resolution, viewing and lighting geometry, building multiple layers of an information cube for site characterization and selection. Examples of direct MOLA data, data derived from MOLA and other instruments data registered to MOLA arc given for the Hematite area.

  2. New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins

    NASA Technical Reports Server (NTRS)

    Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.

    1993-01-01

    Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.

  3. A new map of global ecological land units—An ecophysiographic stratification approach

    USGS Publications Warehouse

    Sayre, Roger; Dangermond, Jack; Frye, Charlie; Vaughan, Randy; Aniello, Peter; Breyer, Sean P.; Cribbs, Douglas; Hopkins, Dabney; Nauman, Richard; Derrenbacher, William; Wright, Dawn J.; Brown, Clint; Convis, Charles; Smith, Jonathan H.; Benson, Laurence; Van Sistine, Darren; Warner, Harumi; Cress, Jill Janene; Danielson, Jeffrey J.; Hamann, Sharon L.; Cecere, Thomas; Reddy, Ashwan D.; Burton, Devon; Grosse, Andrea; True, Diane; Metzger, Marc; Hartmann, Jens; Moosdorf, Nils; Durr, Hans; Paganini, Marc; Defourny, Pierre; Arino, Olivier; Maynard, Simone; Anderson, Mark; Comer, Patrick

    2014-01-01

    In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterized in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs. This subdivision of the Earth’s surface into relatively fine, ecological land areas is designed to be useful for various types of ecosystem research and management applications, including assessments of climate change impacts to ecosystems, economic and non-economic valuation of ecosystem services, and conservation planning.

  4. Studying the Global Bifurcation Involving Wada Boundary Metamorphosis by a Method of Generalized Cell Mapping with Sampling-Adaptive Interpolation

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Ming; Jiang, Jun; Hong, Ling; Tang, Dafeng

    In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.

  5. Texture descriptions of lunar surface derived from LOLA data: Kilometer-scale roughness and entropy maps

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Wu, Zhongchen; Ni, Yuheng; Zhao, Haowei

    2015-11-01

    The lunar global texture maps of roughness and entropy are derived at kilometer scales from Digital Elevation Models (DEMs) data obtained by Lunar Orbiter Laser Altimeter (LOLA) aboard on Lunar Reconnaissance Orbiter (LRO) spacecraft. We use statistical moments of a gray-level histogram of elevations in a neighborhood to compute the roughness and entropy value. Our texture descriptors measurements are shown in global maps at multi-sized square neighborhoods, whose length of side is 3, 5, 10, 20, 40 and 80 pixels, respectively. We found that large-scale topographical changes can only be displayed in maps with longer side of neighborhood, but the small scale global texture maps are more disorderly and unsystematic because of more complicated textures' details. Then, the frequency curves of texture maps are made out, whose shapes and distributions are changing as the spatial scales increases. Entropy frequency curve with minimum 3-pixel scale has large fluctuations and six peaks. According to this entropy curve we can classify lunar surface into maria, highlands, different parts of craters preliminarily. The most obvious textures in the middle-scale roughness and entropy maps are the two typical morphological units, smooth maria and rough highlands. For the impact crater, its roughness and entropy value are characterized by a multiple-ring structure obviously, and its different parts have different texture results. In the last, we made a 2D scatter plot between the two texture results of typical lunar maria and highlands. There are two clusters with largest dot density which are corresponded to the lunar highlands and maria separately. In the lunar mare regions (cluster A), there is a high correlation between roughness and entropy, but in the highlands (Cluster B), the entropy shows little change. This could be subjected to different geological processes of maria and highlands forming different landforms.

  6. A global map of urban extent from nightlights

    DOE PAGES

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang; ...

    2015-05-13

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  7. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    NASA Astrophysics Data System (ADS)

    Madani, Nima; Kimball, John S.; Running, Steven W.

    2017-11-01

    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.

  8. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  9. High-Resolution Enceladus Atlas and Compositional Maps derived from Cassini ISS and VIMS

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Wählisch, Marita; Hoffmeister, Angelika; Stephan, Katrin; Jaumann, Ralf

    2010-05-01

    The first version of the high-resolution Enceladus atlas was released in 2006 [1]. The Cassini Imaging Science Sub-system (ISS) acquired more high-resolution images (< 1 km/pixel) during five close flybys of Enceladus in 2008 and 2009. We combined these images with lower-resolution coverage taken between 2007 and 2009 to improve the high-resolution global mosaic of Enceladus. The whole mosaic was shifted by 3.5° to the West to be consistent with the IAU definition of the prime meridian location. This new global mosaic is the baseline for the second release of the high-resolution Enceladus atlas that consists again of 15 tiles mapped at a scale of 1:500,000. We proposed 29 additional names for features which will be used as nomenclature in the atlas. We are awaiting validation of the new nomenclature by the IAU. The new release of the atlas will be made available to the public through CICLOPS (http://ciclops.org) and PDS (http://pds.jpl.nasa.gov). The Cassini Visual and Infrared Imaging Spectrometer (VIMS) observed Enceladus during a couple of flybys between 2005 and 2009. This gave us the possibility to combine these data into a global VIMS mosaic. Based on this mosaic maps of Enceladus' spectral properties could be derived. Thus, global maps illustrating the spatial variations of the absorption band depth of water ice were calculated, which are indicative of varying sizes of the water ice particles [2]. The authors gratefully acknowledge the planning and operation work of their colleagues from the Cassini-ISS team lead by Carolyn Porco and from the Cassini-VIMS team lead by Robert Brown. [1] Roatsch, Th. et al., High-resolution Enceladus atlas derived from Cassini-ISS images. Planetary Space Sciences 56, 109-116, 2008. [2] Jaumann, R., Stephan, K., Hansen, G.B., Clark, R.N., Buratti, B.J., Brown, R.H., Baines, K.H., Newman, S.F., Bellucci, G., Filacchione, G., Coradini, A., Cruikshank, D.P., Griffith, C.A., Hibbitts, C.A., McCord, T.B., Nelson, R.M., Nicholson, P.D., Sotin, C., and Wagner, R., 2008: Distribution of icy particles across Enceladus' surface as derived from Cassini-VIMS measurements. Icarus 193.

  10. Analysis and validation of different global ionospheric maps (GIMs) over China

    NASA Astrophysics Data System (ADS)

    Xiang, Yan; Yuan, Yunbin; Li, Zishen; Wang, Ningbo

    2015-01-01

    We assess four different global ionospheric maps (GIMs) over the area of China based on internal consistency (W.r.t.GNSS-derived total electron content (TEC)) and external accuracy (W.r.t.Topex/Poseidon-derived TEC). The results of relevance would serve as references for single-frequency GNSS Positioning, Navigation and Timing (PNT) users to flexibly determine which GIM is to be based on to get the more efficient ionospheric delay corrections service. Performance of these four GIMs sources are validated during high level (2003) as well as low level (2009) solar activity and even 10 years data is tested against GNSS-derived TEC over China and its neighborhood. Results show that UPC GIMs outperform all the rest of GIMs when ionospheric gradients are large, and there is marginally difference in low solar activity or middle latitude among these GIMs since 2006. Hence, we suggest that the UPC GIMs should be used in solar maximum and low latitude. It is also reasonable to apply any GIMs in low solar activity and middle latitude.

  11. Derivation of a northern-hemispheric biomass map for use in global carbon cycle models

    NASA Astrophysics Data System (ADS)

    Thurner, Martin; Beer, Christian; Santoro, Maurizio; Carvalhais, Nuno; Wutzler, Thomas; Schepaschenko, Dmitry; Shvidenko, Anatoly; Kompter, Elisabeth; Levick, Shaun; Schmullius, Christiane

    2013-04-01

    Quantifying the state and the change of the World's forests is crucial because of their ecological, social and economic value. Concerning their ecological importance, forests provide important feedbacks on the global carbon, energy and water cycles. In addition to their influence on albedo and evapotranspiration, they have the potential to sequester atmospheric carbon dioxide and thus to mitigate global warming. The current state and inter-annual variability of forest carbon stocks remain relatively unexplored, but remote sensing can serve to overcome this shortcoming. While for the tropics wall-to-wall estimates of above-ground biomass have been recently published, up to now there was a lack of similar products covering boreal and temperate forests. Recently, estimates of forest growing stock volume (GSV) were derived from ENVISAT ASAR C-band data for latitudes above 30° N. Utilizing a wood density and a biomass compartment database, a forest carbon density map covering North-America, Europe and Asia with 0.01° resolution could be derived out of this dataset. Allometric functions between stem, branches, root and foliage biomass were fitted and applied for different leaf types (broadleaf, needleleaf deciduous, needleleaf evergreen forest). Additionally, this method enabled uncertainty estimation of the resulting carbon density map. Intercomparisons with inventory-based biomass products in Russia, Europe and the USA proved the high accuracy of this approach at a regional scale (r2 = 0.70 - 0.90). Based on the final biomass map, the forest carbon stocks and densities (excluding understorey vegetation) for three biomes were estimated across three continents. While 40.7 ± 15.7 Gt of carbon were found to be stored in boreal forests, temperate broadleaf/mixed forests and temperate conifer forests contain 24.5 ± 9.4 Gt(C) and 14.5 ± 4.8 Gt(C), respectively. In terms of carbon density, most of the carbon per area is stored in temperate conifer (62.1 ± 20.7 Mg(C)/ha(Forest)) and broadleaf/mixed forests (58.0 ± 22.1 Mg(C)/ha(Forest)), whereas boreal forests have a carbon density of only 40.0 ± 15.4 Mg(C)/ha(Forest). While European forest carbon stocks are relatively small, the carbon density is higher compared to the other continents. The derived biomass map substantially improves the knowledge on the current carbon stocks of the northern-hemispheric boreal and temperate forests, serving as a new benchmark for spatially explicit and consistent biomass mapping with moderate spatial resolution. This product can be of great value for global carbon cycle models as well as national carbon monitoring systems. Further investigations concentrate on improving biomass parameterizations and representations in such kind of models. The presented map will help to improve the simulation of biomass spatial patterns and variability and enables identifying the dominant influential factors like climatic conditions and disturbances.

  12. MODIS Snow and Ice Production

    NASA Technical Reports Server (NTRS)

    Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)

    2002-01-01

    Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.

  13. A global dataset of crowdsourced land cover and land use reference data.

    PubMed

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-06-13

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

  14. A global dataset of crowdsourced land cover and land use reference data

    PubMed Central

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-01-01

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851

  15. Mapping Brazilian savanna vegetation gradients with Landsat time series

    NASA Astrophysics Data System (ADS)

    Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick

    2016-10-01

    Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important phenological parameters for monitoring habitats or ecosystem responses to climate change. The open Landsat and Sentinel-2 archives provide the satellite data needed for improved analyses of savanna ecosystems globally.

  16. Dynamic Flood Vulnerability Mapping with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Kuhn, C.; Max, S. A.; Sullivan, J.

    2015-12-01

    Satellites capture the rate and character of environmental change from local to global levels, yet integrating these changes into flood exposure models can be cost or time prohibitive. We explore an approach to global flood modeling by leveraging satellite data with computing power in Google Earth Engine to dynamically map flood hazards. Our research harnesses satellite imagery in two main ways: first to generate a globally consistent flood inundation layer and second to dynamically model flood vulnerability. Accurate and relevant hazard maps rely on high quality observation data. Advances in publicly available spatial, spectral, and radar data together with cloud computing allow us to improve existing efforts to develop a comprehensive flood extent database to support model training and calibration. This talk will demonstrate the classification results of algorithms developed in Earth Engine designed to detect flood events by combining observations from MODIS, Landsat 8, and Sentinel-1. Our method to derive flood footprints increases the number, resolution, and precision of spatial observations for flood events both in the US, recorded in the NCDC (National Climatic Data Center) storm events database, and globally, as recorded events from the Colorado Flood Observatory database. This improved dataset can then be used to train machine learning models that relate spatial temporal flood observations to satellite derived spatial temporal predictor variables such as precipitation, antecedent soil moisture, and impervious surface. This modeling approach allows us to rapidly update models with each new flood observation, providing near real time vulnerability maps. We will share the water detection algorithms used with each satellite and discuss flood detection results with examples from Bihar, India and the state of New York. We will also demonstrate how these flood observations are used to train machine learning models and estimate flood exposure. The final stage of our comprehensive approach to flood vulnerability couples inundation extent with social data to determine which flood exposed communities have the greatest propensity for loss. Specifically, by linking model outputs to census derived social vulnerability estimates (Indian and US, respectively) to predict how many people are at risk.

  17. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  18. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  19. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    USGS Publications Warehouse

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  20. A global atlas of GEOS-3 significant waveheight data and comparison of the data with national buoy data

    NASA Technical Reports Server (NTRS)

    Mcmillan, J. D.

    1981-01-01

    The accuracy of the GEOS-3 significant waveheight estimates compared with buoy measurements of significant waveheight were determined. A global atlas of the GEOS-3 significant waveheight estimates gathered is presented. The GEOS-3 significant waveheight estimation algorithm is derived by analyzing the return waveform characteristics of the altimeter. Convergence considerations are examined, the rationale for a smoothing technique is presented and the convergence characteristics of the smoothed estimate are discussed. The GEOS-3 data are selected for comparison with buoy measurements. The GEOS-3 significant waveheight estimates are assembled in the form of a global atlas of contour maps. Both high and low sea state contour maps are presented, and the data are displayed both by seasons and for the entire duration of the GEOS-3 mission.

  1. Study on generation and sharing of on-demand global seamless data—Taking MODIS NDVI as an example

    NASA Astrophysics Data System (ADS)

    Shen, Dayong; Deng, Meixia; Di, Liping; Han, Weiguo; Peng, Chunming; Yagci, Ali Levent; Yu, Genong; Chen, Zeqiang

    2013-04-01

    By applying advanced Geospatial Data Abstraction Library (GDAL) and BigTIFF technology in a Geographical Information System (GIS) with Service Oriented Architecture (SOA), this study has derived global datasets using tile-based input data and implemented Virtual Web Map Service (VWMS) and Virtual Web Coverage Service (VWCS) to provide software tools for visualization and acquisition of global data. Taking MODIS Normalized Difference Vegetation Index (NDVI) as an example, this study proves the feasibility, efficiency and features of the proposed approach.

  2. Combined Landsat-8 and Sentinel-2 Burned Area Mapping

    NASA Astrophysics Data System (ADS)

    Huang, H.; Roy, D. P.; Zhang, H.; Boschetti, L.; Yan, L.; Li, Z.

    2017-12-01

    Fire products derived from coarse spatial resolution satellite data have become an important source of information for the multiple user communities involved in fire science and applications. The advent of the MODIS on NASA's Terra and Aqua satellites enabled systematic production of 500m global burned area maps. There is, however, an unequivocal demand for systematically generated higher spatial resolution burned area products, in particular to examine the role of small-fires for various applications. Moderate spatial resolution contemporaneous satellite data from Landsat-8 and the Sentinel-2A and -2B sensors provide the opportunity for detailed spatial mapping of burned areas. Combined, these polar-orbiting systems provide 10m to 30m multi-spectral global coverage more than once every three days. This NASA funded research presents results to prototype a combined Landsat-8 Sentinel-2 burned area product. The Landsat-8 and Sentinel-2 pre-processing, the time-series burned area mapping algorithm, and preliminary results and validation using high spatial resolution commercial satellite data over Africa are presented.

  3. Global 30m 2000-2014 Surface Water Dynamics Map Derived from All Landsat 5, 7, and 8

    NASA Astrophysics Data System (ADS)

    Hudson, A.; Hansen, M.

    2015-12-01

    Water is critical for human life, agriculture, and ecosystems. A better understanding of where it is and how it is changing will enable better management of this valuable resource and guide protection of sensitive ecological areas. Global water maps have typically been representations of surface water at one given time. However, there is both seasonal and interannual variability: rivers meander, lakes disappear, floods arise. To address this ephemeral nature of water, in this study University of Maryland has developed a method that analyzes every Landsat 5, 7, and 8 scene from 1999-2015 to produce global seasonal maps (Winter, Spring, Summer, Fall) of surface water dynamics from 2000-2014. Each Landsat scene is automatically classified into land, water, cloud, haze, shadow, and snow via a decision tree algorithm. The land and water observations are aggregated per pixel into percent occurrence of water in a 3 year moving window for each meteorological season. These annual water percentages form a curve for each season that is discretized into a continuous 3 band RGB map. Frequency of water observation and type of surface water change (loss, gain, peak, or dip) is clearly seen through brightness and hue respectively. Additional data layers include: the year the change began, peak year, minimum year, and the year the change process ended. Currently these maps have been created for 18 1°x1° test tiles scattered around the world, and a portion of the September-November map over Bangladesh is shown below. The entire Landsat archive from 1999-2015 will be processed through a partnership with Google Earth Engine to complete the global product in the coming months. In areas where there is sufficient satellite data density (e.g. the United States), this project could be expanded to 1984-2015. This study provides both scientific researchers and the public an understandable, temporally rich, and globally consistent map showing surface water changes over time.

  4. Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, L. A.; Blanco, P. D.; del Valle, H. F.; Metternicht, G. I.; Sione, W. F.

    2015-04-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Standard satellite burned area and active fire products derived from the 500-m MODIS and SPOT are avail - able to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applica - tions. Consequently, we propose a novel algorithm for automated identification and mapping of burned areas at regional scale in semi-arid shrublands. The algorithm uses a set of the Normalized Burned Ratio Index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. The correlation between the size of burnt areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01 - 0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  5. VMF3/GPT3: refined discrete and empirical troposphere mapping functions

    NASA Astrophysics Data System (ADS)

    Landskron, Daniel; Böhm, Johannes

    2018-04-01

    Incorrect modeling of troposphere delays is one of the major error sources for space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). Over the years, many approaches have been devised which aim at mapping the delay of radio waves from zenith direction down to the observed elevation angle, so-called mapping functions. This paper contains a new approach intended to refine the currently most important discrete mapping function, the Vienna Mapping Functions 1 (VMF1), which is successively referred to as Vienna Mapping Functions 3 (VMF3). It is designed in such a way as to eliminate shortcomings in the empirical coefficients b and c and in the tuning for the specific elevation angle of 3°. Ray-traced delays of the ray-tracer RADIATE serve as the basis for the calculation of new mapping function coefficients. Comparisons of modeled slant delays demonstrate the ability of VMF3 to approximate the underlying ray-traced delays more accurately than VMF1 does, in particular at low elevation angles. In other words, when requiring highest precision, VMF3 is to be preferable to VMF1. Aside from revising the discrete form of mapping functions, we also present a new empirical model named Global Pressure and Temperature 3 (GPT3) on a 5°× 5° as well as a 1°× 1° global grid, which is generally based on the same data. Its main components are hydrostatic and wet empirical mapping function coefficients derived from special averaging techniques of the respective (discrete) VMF3 data. In addition, GPT3 also contains a set of meteorological quantities which are adopted as they stand from their predecessor, Global Pressure and Temperature 2 wet. Thus, GPT3 represents a very comprehensive troposphere model which can be used for a series of geodetic as well as meteorological and climatological purposes and is fully consistent with VMF3.

  6. LARGE AREA LAND COVER MAPPING THROUGH SCENE-BASED CLASSIFICATION COMPOSITING

    EPA Science Inventory

    Over the past decade, a number of initiatives have been undertaken to create definitive national and global data sets consisting of precision corrected Landsat MSS and TM scenes. One important application of these data is the derivation of large area land cover products spanning ...

  7. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  8. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  9. Hurricanes Harvey and Irma - High-Resolution Flood Mapping and Monitoring from Sentinel SAR with the Depolarization Reduction Algorithm for Global Observations of InundatioN (DRAGON)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Brakenridge, G. R.; Nguyen, D. T.

    2017-12-01

    Hurricane Harvey inflicted historical catastrophic flooding across extensive regions around Houston and southeast Texas after making landfall on 25 August 2017. The Federal Emergency Management Agency (FEMA) requested urgent supports for flood mapping and monitoring in an emergency response to the extreme flood situation. An innovative satellite remote sensing method, called the Depolarization Reduction Algorithm for Global Observations of inundatioN (DRAGON), has been developed and implemented for use with Sentinel synthetic aperture radar (SAR) satellite data at a resolution of 10 meters to identify, map, and monitor inundation including pre-existing water bodies and newly flooded areas. Results from this new method are hydrologically consistent and have been verified with known surface waters (e.g., coastal ocean, rivers, lakes, reservoirs, etc.), with clear-sky high-resolution WorldView images (where waves can be seen on surface water in inundated areas within a small spatial coverage), and with other flood maps from the consortium of Global Flood Partnership derived from multiple satellite datasets (including clear-sky Landsat and MODIS at lower resolutions). Figure 1 is a high-resolution (4K UHD) image of a composite inundation map for the region around Rosharon (in Brazoria County, south of Houston, Texas). This composite inundation map reveals extensive flooding on 29 August 2017 (four days after Hurricane Harvey made landfall), and the inundation was still persistent in most of the west and south of Rosharon one week later (5 September 2017) while flooding was reduced in the east of Rosharon. Hurricane Irma brought flooding to a number of areas in Florida. As of 10 September 2017, Sentinel SAR flood maps reveal inundation in the Florida Panhandle and over lowland surfaces on several islands in the Florida Keys. However, Sentinel SAR results indicate that flooding along the Florida coast was not extreme despite Irma was a Category-5 hurricane that might have inflicted a potentially strong storm surge. DRAGON flood mapping products over various regions in Texas and in Florida were provided to FEMA. Figure 1. Composite inundation map derived from Sentinel SAR data for the region around Rosharon on 9/5/2017 (orange), inundation on 8/29/2017 (yellow), and pre-existing surface waters on 8/5/2017 (blue).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  11. Evidence for dust transport in Viking IR thermal mapper opacity data

    NASA Technical Reports Server (NTRS)

    Martin, Terry Z.

    1993-01-01

    Global maps of 9-micron dust opacity derived from radiometric observations made by the Viking Orbiter IR Thermal Mapper instruments have revealed a wealth of new information about the distribution of airborne dust over 1.36 Mars years from 1976-1979. In particular, the changing dust distribution during major dust storms is of interest since the data provide a point of contact with both Earth-based observations of storm growth and with global circulation models.

  12. Progress Towards Deriving an Improved Long-Term Global Solar Resource

    NASA Technical Reports Server (NTRS)

    Cox, Stephen J.; Mikovitz, J. Colleen; Zhang, Taiping; Sorlie, Susan; Stackhouse, Paul W., Jr.; Perez, Richard; Hemker, Karl, Jr.; Schlemmer, James; Kivalov, Sergey; Renne, David; hide

    2013-01-01

    This paper describes an ongoing project to provide the National Renewable Energy Laboratory (NREL) with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and to provide a mechanism for continual updates. This new production system is made possible by the efforts of NASA and NOAA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 10 km, 3-hourly basis beginning July 1983. We provide a general overview of this project, samples of the new solar irradiance mapped data products, and comparisons to surface measurements. Samples of the use of the SUNY-Albany solar irradiance algorithm applied to the ISCCP data show very good agreement with high quality surface measurements. We identify the next steps in the production of the data set.

  13. Lunar and Planetary Science XXXV: Lunar Remote Sensing: Seeing the Big Picture

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Lunar Remote Sensing: Seeing the Big Picture" contained the following reports:Approaches for Approximating Topography in High Resolution, Multispectral Data; Verification of Quality and Compatibility for the Newly Calibrated Clementine NIR Data Set; Near Infrared Spectral Properties of Selected Nearside and Farside Sites ; Global Comparisons of Mare Volcanism from Clementine Near-Infrared Data; Testing the Relation Between UVVIS Color and TiO2 Composition in the Lunar Maria; Color Reflectance Trends in the Mare: Implications for Mapping Iron with Multispectral Images ; The Composition of the Lunar Megaregolith: Some Initial Results from Global Mapping; Global Images of Mg-Number Derived from Clementine Data; The Origin of Lunar Crater Rays; Properties of Lunar Crater Ejecta from New 70-cm Radar Observations ; Permanent Sunlight at the Lunar North Pole; and ESA s SMART-1 Mission to the Moon: Goals, Status and First Results.

  14. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).

  15. Large Impact Features on Saturn's Middle-sized Icy Satellites: Global Image Mosaics and Topography

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Moore, J. M.; McKinnon, W. B.

    2003-03-01

    New topographic maps of Saturn's middle-sized icy satellites derived from stereo imaging and 2D photoclinometry provide a sneak peak at the surprises in store when Cassini arrives at Saturn. We reexamine the morphology of large impact craters and describe their relaxation state.

  16. Mapping products of Titan's surface

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre

    2009-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  17. Theory and design of interferometric synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Martin, J. M.

    1992-01-01

    A derivation of the signal statistics, an optimal estimator of the interferometric phase, and the expression necessary to calculate the height-error budget are presented. These expressions are used to derive methods of optimizing the parameters of the interferometric synthetic aperture radar system (InSAR), and are then employed in a specific design example for a system to perform high-resolution global topographic mapping with a one-year mission lifetime, subject to current technological constraints. A Monte Carlo simulation of this InSAR system is performed to evaluate its performance for realistic topography. The results indicate that this system has the potential to satisfy the stringent accuracy and resolution requirements for geophysical use of global topographic data.

  18. Forest biomass mapping from fusion of GEDI Lidar data and TanDEM-X InSAR data

    NASA Astrophysics Data System (ADS)

    Qi, W.; Hancock, S.; Armston, J.; Marselis, S.; Dubayah, R.

    2017-12-01

    Mapping forest above-ground biomass (hereafter biomass) can significantly improve our ability to assess the role of forest in terrestrial carbon budget and to analyze the ecosystem productivity. Global Ecosystem Dynamic Investigation (GEDI) mission will provide the most complete lidar observations of forest vertical structure and has the potential to provide global-scale forest biomass data at 1-km resolution. However, GEDI is intrinsically a sampling mission and will have a between-track spacing of 600 m. An increase in adjacent-swath distance and the presence of cloud cover may also lead to larger gaps between GEDI tracks. In order to provide wall-to-wall forest biomass maps, fusion algorithms of GEDI lidar data and TanDEM-X InSAR data were explored in this study. Relationship between biomass and lidar RH metrics was firstly developed and used to derive biomass values over GEDI tracks which were simulated using airborne lidar data. These GEDI biomass values were then averaged in each 1-km cell to represent the biomass density within that cell. Whereas for cells without any GEDI observations, regression models developed between GEDI-derived biomass and TDX InSAR variables were applied to predict biomass over those places. Based on these procedures, contiguous biomass maps were finally generated at 1-km resolution over three representative forest types. Uncertainties for these biomass maps were also estimated at 1 km following methods developed in Saarela et al. (2016). Our results indicated great potential of GEDI/TDX fusion for large-scale biomass mapping. Saarela, S., Holm, S., Grafstrom, A., Schnell, S., Naesset, E., Gregoire, T.G., Nelson, R.F., & Stahl, G. (2016). Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of Forest Science, 73, 895-910

  19. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-03-12

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed.

  20. Development of Mobile Mapping System for 3D Road Asset Inventory

    PubMed Central

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  1. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  2. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  3. Toward Building a New Seismic Hazard Model for Mainland China

    NASA Astrophysics Data System (ADS)

    Rong, Y.; Xu, X.; Chen, G.; Cheng, J.; Magistrale, H.; Shen, Z.

    2015-12-01

    At present, the only publicly available seismic hazard model for mainland China was generated by Global Seismic Hazard Assessment Program in 1999. We are building a new seismic hazard model by integrating historical earthquake catalogs, geological faults, geodetic GPS data, and geology maps. To build the model, we construct an Mw-based homogeneous historical earthquake catalog spanning from 780 B.C. to present, create fault models from active fault data using the methodology recommended by Global Earthquake Model (GEM), and derive a strain rate map based on the most complete GPS measurements and a new strain derivation algorithm. We divide China and the surrounding regions into about 20 large seismic source zones based on seismotectonics. For each zone, we use the tapered Gutenberg-Richter (TGR) relationship to model the seismicity rates. We estimate the TGR a- and b-values from the historical earthquake data, and constrain corner magnitude using the seismic moment rate derived from the strain rate. From the TGR distributions, 10,000 to 100,000 years of synthetic earthquakes are simulated. Then, we distribute small and medium earthquakes according to locations and magnitudes of historical earthquakes. Some large earthquakes are distributed on active faults based on characteristics of the faults, including slip rate, fault length and width, and paleoseismic data, and the rest to the background based on the distributions of historical earthquakes and strain rate. We evaluate available ground motion prediction equations (GMPE) by comparison to observed ground motions. To apply appropriate GMPEs, we divide the region into active and stable tectonics. The seismic hazard will be calculated using the OpenQuake software developed by GEM. To account for site amplifications, we construct a site condition map based on geology maps. The resulting new seismic hazard map can be used for seismic risk analysis and management, and business and land-use planning.

  4. Snow Cover Mapping at the Continental to Global Scale Using Combined Visible and Passive Microwave Satellite Data

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M.; Savoie, M. H.

    2007-12-01

    Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.

  5. Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra

    2013-01-01

    In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.

  6. Mapping wood density globally using remote sensing and climatological data

    NASA Astrophysics Data System (ADS)

    Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.

    2017-12-01

    Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.

  7. Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis

    NASA Astrophysics Data System (ADS)

    Townsend, P. A.; Singh, A.; Wang, Z.

    2016-12-01

    One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.

  8. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  9. Global solution branches for a nonlocal Allen-Cahn equation

    NASA Astrophysics Data System (ADS)

    Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji

    2018-05-01

    We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.

  10. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake

    NASA Technical Reports Server (NTRS)

    Zebker, Howard A.; Rosen, Paul A.; Goldstein, Richard M.; Gabriel, Andrew; Werner, Charles L.

    1994-01-01

    We present a map of the coseimic displacement field resulting from the Landers, California, June 28, 1992, earthquake derived using data acquired from an orbiting high-resolution radar system. We achieve results more accurate than previous space studies and similar in accuracy to those obtained by conventional field survey techniques. Data from the ERS 1 synthetic aperture radar instrument acquired in April, July, and August 1992 are used to generate a high-resolution, wide area map of the displacements. The data represent the motion in the direction of the radar line of sight to centimeter level precision of each 30-m resolution element in a 113 km by 90 km image. Our coseismic displacement contour map gives a lobed pattern consistent with theoretical models of the displacement field from the earthquake. Fine structure observed as displacement tiling in regions several kilometers from the fault appears to be the result of local surface fracturing. Comparison of these data with Global Positioning System and electronic distance measurement survey data yield a correlation of 0.96; thus the radar measurements are a means to extend the point measurements acquired by traditional techniques to an area map format. The technique we use is (1) more automatic, (2) more precise, and (3) better validated than previous similar applications of differential radar interferometry. Since we require only remotely sensed satellite data with no additioanl requirements for ancillary information. the technique is well suited for global seismic monitoring and analysis.

  11. a Near-Global Bare-Earth dem from Srtm

    NASA Astrophysics Data System (ADS)

    Gallant, J. C.; Read, A. M.

    2016-06-01

    The near-global elevation product from NASA's Shuttle Radar Topographic Mission (SRTM) has been widely used since its release in 2005 at 3 arcsecond resolution and the release of the 1 arcsecond version in late 2014 means that the full potential of the SRTM DEM can now be realised. However the routine use of SRTM for analytical purposes such as catchment hydrology, flood inundation, habitat mapping and soil mapping is still seriously impeded by the presence of artefacts in the data, primarily the offsets due to tree cover and the random noise. This paper describes the algorithms being developed to remove those offsets, based on the methods developed to produce the Australian national elevation model from SRTM data. The offsets due to trees are estimated using the GlobeLand30 (National Geomatics Center of China) and Global Forest Change (University of Maryland) products derived from Landsat, along with the ALOS PALSAR radar image data (JAXA) and the global forest canopy height map (NASA). The offsets are estimated using several processes and combined to produce a single continuous tree offset layer that is subtracted from the SRTM data. The DEM products will be made freely available on completion of the first draft product, and the assessment of that product is expected to drive further improvements to the methods.

  12. MAGSAT anomaly field data of the crustal properties of Australia

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Progress is reported in producing maps of Australia showing; crustal magnetic anomalies at constant elevation; bulk surface magnetization; and the geomagnetic field intensity, inclination and declination for the Australian region from global models of the geomagnetic field derived from MAGSAT data. The development of a data base management system is also considered.

  13. Global Mapping Project - Applications and Development of Version 2 Dataset

    NASA Astrophysics Data System (ADS)

    Ubukawa, T.; Nakamura, T.; Otsuka, T.; Iimura, T.; Kishimoto, N.; Nakaminami, K.; Motojima, Y.; Suga, M.; Yatabe, Y.; Koarai, M.; Okatani, T.

    2012-07-01

    The Global Mapping Project aims to develop basic geospatial information of the whole land area of the globe, named Global Map, through the cooperation of National Mapping Organizations (NMOs) around the world. The Global Map data can be a base of global geospatial infrastructure and is composed of eight layers: Boundaries, Drainage, Transportation, Population Centers, Elevation, Land Use, Land Cover and Vegetation. The Global Map Version 1 was released in 2008, and the Version 2 will be released in 2013 as the data are to be updated every five years. In 2009, the International Steering Committee for Global Mapping (ISCGM) adopted new Specifications to develop the Global Map Version 2 with a change of its format so that it is compatible with the international standards, namely ISO 19136 and ISO 19115. With the support of the secretariat of ISCGM, the project participating countries are accelerating their data development toward the completion of the global coverage in 2013, while some countries have already released their Global Map version 2 datasets since 2010. Global Map data are available from the Internet free of charge for non-commercial purposes, which can be used to predict, assess, prepare for and cope with global issues by combining with other spatial data. There are a lot of Global Map applications in various fields, and further utilization of Global Map is expected. This paper summarises the activities toward the development of the Global Map Version 2 as well as some examples of the Global Map applications in various fields.

  14. Dynamics of total electron content distribution during strong geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Astafyeva, E. I.; Afraimovich, E. L.; Kosogorov, E. A.

    We worked out a new method of mapping of total electron content TEC equal lines displacement velocity The method is based on the technique of global absolute vertical TEC value mapping Global Ionospheric Maps technique GIM GIM with 2-hours time resolution are available from Internet underline ftp cddisa gsfc nasa gov in standard IONEX-files format We determine the displacement velocity absolute value as well as its wave vector orientation from increments of TEC x y derivatives and TEC time derivative for each standard GIM cell 5 in longitude to 2 5 in latitude Thus we observe global traveling of TEC equal lines but we also can estimate the velocity of these line traveling Using the new method we observed anomalous rapid accumulation of the ionosphere plasma at some confined area due to the depletion of the ionization at the other spacious territories During the main phase of the geomagnetic storm on 29-30 October 2003 very large TEC enhancements appeared in the southwest of North America TEC value in that area reached up to 200 TECU 1 TECU 10 16 m -2 It was found that maximal velocity of TEC equal lines motion exceeded 1500 m s and the mean value of the velocity was about 400 m s Azimuth of wave vectors of TEC equal lines were orientated toward the center of region with anomaly high values of TEC the southwest of North America It should be noted that maximal TEC values during geomagnetically quiet conditions is about 60-80 TECU the value of TEC equal lines

  15. From Low Altitude to High Altitude: Assimilating SAMPEX Data in Global Radiation Belt Models by Quantifying Precipitation and Loss

    NASA Astrophysics Data System (ADS)

    Tu, W.; Reeves, G. D.; Cunningham, G.; Selesnick, R. S.; Li, X.; Looper, M. D.

    2012-12-01

    Since its launch in 1992, SAMPEX has been continuously providing measurements of radiation belt electrons at low altitude, which are not only ideal for the direct quantification of the electron precipitation loss in the radiation belt, but also provide data coverage in a critical region for global radiation belt data assimilation models. However, quantitatively combining high-altitude and low-earth-orbit (LEO) measurements on the same L-shell is challenging because LEO measurements typically contain a dynamic mixture of trapped and precipitating populations. Specifically, the electrons measured by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). To simulate the low-altitude electron distribution observed by SAMPEX/PET, a drift-diffusion model has been developed that includes the effects of azimuthal drift and pitch angle diffusion. The simulation provides direct quantification of the rates and variations of electron loss to the atmosphere, a direct input to our Dynamic Radiation Environment Assimilation Model (DREAM) as the electron loss lifetimes. The current DREAM uses data assimilation to combine a 1D radial diffusion model with observational data of radiation belt electrons. In order to implement the mixed electron measurements from SAMPEX into DREAM, we need to map the SAMPEX data from low altitude to high altitudes. To perform the mapping, we will first examine the well-known 'global coherence' of radiation belt electrons by comparing SAMPEX electron fluxes with the energetic electron data from LANL GEO and GPS spacecraft. If the correlation is good, we can directly map the SAMPEX fluxes to high altitudes based on the global coherence; if not, we will use the derived pitch angle distribution from the drift-diffusion model to map up the field and test the mapping by comparing to the high-altitude flux measurements. Then the globally mapped electron fluxes can be assimilated into DREAM. This new implementation of SAMPEX data will greatly augment the data coverage of DREAM and contribute to the global specification of the radiation belt environment.

  16. HydroSHEDS: A global comprehensive hydrographic dataset

    NASA Astrophysics Data System (ADS)

    Wickel, B. A.; Lehner, B.; Sindorf, N.

    2007-12-01

    The Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) is an innovative product that, for the first time, provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. The original SRTM data have been hydrologically conditioned using a sequence of automated procedures. Existing methods of data improvement and newly developed algorithms have been applied, including void filling, filtering, stream burning, and upscaling techniques. Manual corrections were made where necessary. Preliminary quality assessments indicate that the accuracy of HydroSHEDS significantly exceeds that of existing global watershed and river maps. HydroSHEDS was developed by the Conservation Science Program of the World Wildlife Fund (WWF) in partnership with the U.S. Geological Survey (USGS), the International Centre for Tropical Agriculture (CIAT), The Nature Conservancy (TNC), and the Center for Environmental Systems Research (CESR) of the University of Kassel, Germany.

  17. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    PubMed

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or <1.0) because of the low seasonal variation in soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    PubMed

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  19. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data

    PubMed Central

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales. PMID:26390037

  20. Global rates of habitat loss and implications for amphibian conservation

    USGS Publications Warehouse

    Gallant, Alisa L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the earth supporting the richest assemblages of amphibians are currently undergoing the highest rates of landscape modification.

  1. Improving global paleogeography since the late Paleozoic using paleobiology

    NASA Astrophysics Data System (ADS)

    Cao, Wenchao; Zahirovic, Sabin; Flament, Nicolas; Williams, Simon; Golonka, Jan; Dietmar Müller, R.

    2017-12-01

    Paleogeographic reconstructions are important to understand Earth's tectonic evolution, past eustatic and regional sea level change, paleoclimate and ocean circulation, deep Earth resources and to constrain and interpret the dynamic topography predicted by mantle convection models. Global paleogeographic maps have been compiled and published, but they are generally presented as static maps with varying map projections, different time intervals represented by the maps and different plate motion models that underlie the paleogeographic reconstructions. This makes it difficult to convert the maps into a digital form and link them to alternative digital plate tectonic reconstructions. To address this limitation, we develop a workflow to restore global paleogeographic maps to their present-day coordinates and enable them to be linked to a different tectonic reconstruction. We use marine fossil collections from the Paleobiology Database to identify inconsistencies between their indicative paleoenvironments and published paleogeographic maps, and revise the locations of inferred paleo-coastlines that represent the estimated maximum transgression surfaces by resolving these inconsistencies. As a result, the consistency ratio between the paleogeography and the paleoenvironments indicated by the marine fossil collections is increased from an average of 75 % to nearly full consistency (100 %). The paleogeography in the main regions of North America, South America, Europe and Africa is significantly revised, especially in the Late Carboniferous, Middle Permian, Triassic, Jurassic, Late Cretaceous and most of the Cenozoic. The global flooded continental areas since the Early Devonian calculated from the revised paleogeography in this study are generally consistent with results derived from other paleoenvironment and paleo-lithofacies data and with the strontium isotope record in marine carbonates. We also estimate the terrestrial areal change over time associated with transferring reconstruction, filling gaps and modifying the paleogeographic geometries based on the paleobiology test. This indicates that the variation of the underlying plate reconstruction is the main factor that contributes to the terrestrial areal change, and the effect of revising paleogeographic geometries based on paleobiology is secondary.

  2. Evaluation of Existing Image Matching Methods for Deriving Glacier Surface Displacements Globally from Optical Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Heid, T.; Kääb, A.

    2011-12-01

    Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly global repeat coverage of the Earth's surface by optical satellite sensors now opens the possibility for global-scale mapping and monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics: Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15 m for images after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about 16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of glacier flow.

  3. The Southern Hemisphere lower stratosphere during August and September 1987 - Analyses based on the United Kingdom Meteorological Office Global Model

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Buckland, A. T.; Austin, J.; Tuck, A. F.; Winkler, R. H.; Chan, K. R.

    1989-01-01

    This paper presents a series of meteorological analyses used to aid the interpretation of the in situ Airborne Antarctic Ozone Experiment (AAOE) observations obtained aboard the ER-2 and DC-8 aircraft and examines the basis and accuracy of the analytical procedure. Maps and sections of meteorological variables derived from the UK Meteorological Office Global Model are presented for ER-2 and DC-8 flight days. It is found that analyzed temperatures and winds are generally in good agreement with AAOE observations at all levels; minor discrepancies were evident only at DC-8 altitudes. Maps of potential vorticity presented on the 428-K potential temperature surface show that the vortex is essentially circumpolar, although there are periods when major distortions are apparent.

  4. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

    2015-06-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  5. Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III (Editor); Tanaka, Kenneth L. (Editor); Kelley, Michael S. (Editor)

    2010-01-01

    Topics covered include: Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury; The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2); Geologic Map of the Snegurochka Planitia Quadrangle (V-1): Implications for the Volcanic History of the North Polar Region of Venus; Geological Map of the Fredegonade (V-57) Quadrangle, Venus: Status Report; Geologic Mapping of V-19; Geology of the Lachesis Tessera Quadrangle (V-18), Venus; Comparison of Mapping Tessera Terrain in the Phoebe Regio (V-41) and Tellus Tessera (V-10) Quadrangles; Geologic Mapping of the Devana Chasma (V-29) Quadrangle, Venus; Geologic Mapping of the Aristarchus Plateau Region on the Moon; Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30); The Pilot Lunar Geologic Mapping Project: Summary Results and Recommendations from the Copernicus Quadrangle; Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282; Geologic Mapping of the Mawrth Vallis Region, Mars: MTM Quadrangles 25022, 25017, 25012, 20022, 20017, and 20012; Evidence for an Ancient Buried Landscape on the NW Rim of Hellas Basin, Mars; New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data; Geologic Mapping in the Hesperia Planum Region of Mars; Geologic Mapping of the Meridiani Region of Mars; Geologic Mapping in Southern Margaritifer Terra; Geology of -30247, -35247, and -40247 Quadrangles, Southern Hesperia Planum, Mars; The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars; Geologic Map of the Olympia Cavi Region of Mars (MTM 85200): A Summary of Tactical Approaches; Geology of the Terra Cimmeria-Utopia Planitia Highland Lowland Transitional Zone: Final Technical Approach and Scientific Results; Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan; Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming; Progress in the Scandia Region Geologic Map of Mars; Geomorphic Mapping of MTMS -20022 and -20017; Geologic Mapping of the Medusae Fossae Formation, Mars, and the Northern Lowland Plains, Venus; Volcanism on Io: Results from Global Geologic Mapping; Employing Geodatabases for Planetary Mapping Conduct - Requirements, Concepts and Solutions; and Planetary Geologic Mapping Handbook - 2010.

  6. The magnetic map sense and its use in fine-tuning the migration programme of birds.

    PubMed

    Heyers, D; Elbers, D; Bulte, M; Bairlein, F; Mouritsen, H

    2017-07-01

    The Earth's magnetic field is one of several natural cues, which migratory birds can use to derive directional ("compass") information for orientation on their biannual migratory journeys. Moreover, magnetic field effects on prominent aspects of the migratory programme of birds, such as migratory restlessness behaviour, fuel deposition and directional orientation, implicate that geomagnetic information can also be used to derive positional ("map") information. While the magnetic "compass" in migratory birds is likely to be based on radical pair-forming molecules embedded in their visual system, the sensory correlates underlying a magnetic "map" sense currently remain elusive. Behavioural, physiological and neurobiological findings indicate that the sensor is most likely innervated by the ophthalmic branch of the trigeminal nerve and based on magnetic iron particles. Information from this unknown sensor is neither necessary nor sufficient for a functional magnetic compass, but instead could contribute important components of a multifactorial "map" for global positioning. Positional information could allow migratory birds to make vitally important dynamic adaptations of their migratory programme at any relevant point during their journeys.

  7. Mapping products of Titan's surface: Chapter 19

    USGS Publications Warehouse

    Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter

    2010-01-01

    Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.

  8. Towards an purely data driven view on the global carbon cycle and its spatiotemporal variability

    NASA Astrophysics Data System (ADS)

    Zscheischler, Jakob; Mahecha, Miguel; Reichstein, Markus; Avitabile, Valerio; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Jung, Martin; Landschützer, Peter; Laruelle, Goulven; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Regnier, Pierre; Rödenbeck, Christian; Cuesta, Rosa Maria Roman; Valentini, Ricardo

    2015-04-01

    Constraining carbon (C) fluxes between the Earth's surface and the atmosphere at regional scale via observations is essential for understanding the Earth's carbon budget and predicting future atmospheric C concentrations. Carbon budgets have often been derived based on merging observations, statistical models and process-based models, for example in the Global Carbon Project (GCP). However, it would be helpful to derive global C budgets and fluxes at global scale as independent as possible from model assumptions to obtain an independent reference. Long-term in-situ measurements of land and ocean C stocks and fluxes have enabled the derivation of a new generation of data driven upscaled data products. Here, we combine a wide range of in-situ derived estimates of terrestrial and aquatic C fluxes for one decade. The data were produced and/or collected during the FP7 project GEOCARBON and include surface-atmosphere C fluxes from the terrestrial biosphere, fossil fuels, fires, land use change, rivers, lakes, estuaries and open ocean. By including spatially explicit uncertainties in each dataset we are able to identify regions that are well constrained by observations and areas where more measurements are required. Although the budget cannot be closed at the global scale, we provide, for the first time, global time-varying maps of the most important C fluxes, which are all directly derived from observations. The resulting spatiotemporal patterns of C fluxes and their uncertainties inform us about the needs for intensifying global C observation activities. Likewise, we provide priors for inversion exercises or to identify regions of high (and low) uncertainty of integrated C fluxes. We discuss the reasons for regions of high observational uncertainties, and for biases in the budget. Our data synthesis might also be used as empirical reference for other local and global C budgeting exercises.

  9. Using Gravity and Topography to Map Mars' Crustal Thickness

    NASA Image and Video Library

    2016-03-21

    Newly detailed mapping of local variations in Mars' gravitational pull on orbiters (center), combined with topographical mapping of the planet's mountains and valleys (left) yields the best-yet mapping of Mars' crustal thickness (right). These three views of global mapping are centered at 90 degrees west longitude, showing portions of the planet that include tall volcanoes on the left and the deep Valles Marineris canyon system just right of center. Additional views of these global maps are available at http://svs.gsfc.nasa.gov/goto?4436. The new map of Mars' gravity (center) results from analysis of the planet's gravitational effects on orbiters passing over each location on the globe. The data come from many years of using NASA's Deep Space Network to track positions and velocities of NASA's Mars Global Surveyor, Mars Odyssey and Mars Reconnaissance Orbiter. If Mars were a perfectly smooth sphere of uniform density, the gravity experienced by the spacecraft would be exactly the same everywhere. But like other rocky bodies in the solar system, including Earth, Mars has both a bumpy surface and a lumpy interior. As the spacecraft fly in their orbits, they experience slight variations in gravity caused by both of these irregularities, variations which show up as small changes in the velocity and altitude of the three spacecraft. The "free-air" gravity map presents the results without any adjustment for the known bumpiness of Mars' surface. Local gravitational variations in acceleration are expressed in units called gals or galileos. The color-coding key beneath the center map indicates how colors on the map correspond to mGal (milligal) values. The map on the left shows the known bumpiness, or topography, of the Martian surface, using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on Mars Global Surveyor. Mars has no actual "sea level," but does have a defined zero elevation level. The color-coding key beneath this map indicates how the colors correspond to elevations above or below zero, in kilometers. Analysis that subtracts effects of the surface topography from the free-air gravity mapping, combined with an assumption that crust material has a uniform density, leads to the derived mapping of crustal thickness -- or subsurface "lumpiness" -- on the right. Highs in gravity indicate places where the denser mantle material beneath the crust is closer to the surface, and hence where the crust is thinner. The color-coding key for this map indicates how the colors on the map correspond to the thickness of the crust, in kilometers. http://photojournal.jpl.nasa.gov/catalog/PIA20277

  10. Global Mapping of Underwater UV Irradiances and DNA-Weighted Exposures using TOMS and SeaWiFS Data Products

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne

    1999-01-01

    The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.

  11. Biodiversity Mapping via Natura 2000 Conservation Status and Ebv Assessment Using Airborne Laser Scanning in Alkali Grasslands

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Deák, B.; Kania, A.; Schroiff, A.; Pfeifer, N.

    2016-06-01

    Biodiversity is an ecological concept, which essentially involves a complex sum of several indicators. One widely accepted such set of indicators is prescribed for habitat conservation status assessment within Natura 2000, a continental-scale conservation programme of the European Union. Essential Biodiversity Variables are a set of indicators designed to be relevant for biodiversity and suitable for global-scale operational monitoring. Here we revisit a study of Natura 2000 conservation status mapping via airbone LIDAR that develops individual remote sensing-derived proxies for every parameter required by the Natura 2000 manual, from the perspective of developing regional-scale Essential Biodiversity Variables. Based on leaf-on and leaf-off point clouds (10 pt/m2) collected in an alkali grassland area, a set of data products were calculated at 0.5 ×0.5 m resolution. These represent various aspects of radiometric and geometric texture. A Random Forest machine learning classifier was developed to create fuzzy vegetation maps of classes of interest based on these data products. In the next step, either classification results or LIDAR data products were selected as proxies for individual Natura 2000 conservation status variables, and fine-tuned based on field references. These proxies showed adequate performance and were summarized to deliver Natura 2000 conservation status with 80% overall accuracy compared to field references. This study draws attention to the potential of LIDAR for regional-scale Essential Biodiversity variables, and also holds implications for global-scale mapping. These are (i) the use of sensor data products together with habitat-level classification, (ii) the utility of seasonal data, including for non-seasonal variables such as grassland canopy structure, and (iii) the potential of fuzzy mapping-derived class probabilities as proxies for species presence and absence.

  12. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  13. A Tamarisk Habitat Suitability Map for the Continental US

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey T.; Jernevich, Catherine S.; Ullah, Asad; Cai, Weijie; Pedelty, Jeffrey A.; Gentle, Jim; Stohlgren, Thomas J.; Schnase, John L.

    2005-01-01

    This paper presents a national-scale map of habitat suitability for a high-priority invasive species, Tamarisk (Tamarisk spp., salt cedar). We successfully integrate satellite data and tens of thousands of field sampling points through logistic regression modeling to create a habitat suitability map that is 90% accurate. This interagency effort uses field data collected and coordinated through the US Geological Survey and nation-wide environmental data layers derived from NASA s MODerate Resolution Imaging Spectroradiometer (MODIS). We demonstrate the utilization of the map by ranking the lower 48 US states (and the District of Columbia) based upon their absolute, as well as proportional, areas of highly likely and moderately likely habitat for Tamarisk. The interagency effort and modeling approach presented here could be applied to map other harmful species in the US and globally.

  14. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error." International Journal of Digital Earth: 1-22. Shimada, M., et al. (2014). "New global forest/non-forest maps from ALOS PALSAR data (2007-2010)." Remote Sensing of Environment 155: 13-31.

  15. Baseline map of carbon emissions from deforestation in tropical regions.

    PubMed

    Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander

    2012-06-22

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  16. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions

    NASA Astrophysics Data System (ADS)

    Harris, Nancy L.; Brown, Sandra; Hagen, Stephen C.; Saatchi, Sassan S.; Petrova, Silvia; Salas, William; Hansen, Matthew C.; Potapov, Peter V.; Lotsch, Alexander

    2012-06-01

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  17. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    NASA Astrophysics Data System (ADS)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the performance of carbon fluxes and biomass simulations with them. An experiment was performed with a widely used model, Biome-BGC, and effects of disturbance and forest age were considered in the model run. As for disturbance, human influence index map derived by CIESIN was used. A global forest age map was prepared with model inversion method using CIESIN human influence index, GFED fire burnt area, and IIASA global forest biomass maps. To validate model GPP and RE, we prepared the global GPP map estimated with support vector machine and the global RE map derived by downscaling the carbon budget product (L4A) of Greenhouse gases Observing SATellite (GOSAT) in conjunction with IIASA biomass and soil carbon products. Through a process of testing the simultaneous reproducibility of the Biome-BGC model, it will be determined whether the current terrestrial ecosystem model is sophisticated enough for clarifying the mechanism of carbon cycle.

  18. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    USGS Publications Warehouse

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, Kevin; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  19. Global CO2 Distributions over Land from the Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; O'Dell, Christopher; Kawa, Randolph S.

    2012-01-01

    January 2009 saw the successful launch of the first space-based mission specifically designed for measuring greenhouse gases, the Japanese Greenhouse gases Observing SATellite (GOSAT). We present global land maps (Level 3 data) of column-averaged CO2 concentrations (X(sub CO2)) derived using observations from the GOSAT ACOS retrieval algorithm, for July through December 2009. The applied geostatistical mapping approach makes it possible to generate maps at high spatial and temporal resolutions that include uncertainty measures and that are derived directly from the Level 2 observations, without invoking an atmospheric transport model or estimates of CO2 uptake and emissions. As such, they are particularly well suited for comparison studies. Results show that the Level 3 maps for July to December 2009 on a lO x 1.250 grid, at six-day resolution capture much of the synoptic scale and regional variability of X(sub CO2), in addition to its overall seasonality. The uncertainty estimates, which reflect local data coverage, X(sub CO2) variability, and retrieval errors, indicate that the Southern latitudes are relatively well-constrained, while the Sahara Desert and the high Northern latitudes are weakly-constrained. A probabilistic comparison to the PCTM/GEOS-5/CASA-GFED model reveals that the most statistically significant discrepancies occur in South America in July and August, and central Asia in September to December. While still preliminary, these results illustrate the usefulness of a high spatiotemporal resolution, data-driven Level 3 data product for direct interpretation and comparison of satellite observations of highly dynamic parameters such as atmospheric CO2.

  20. Photometric Modeling and VIS-IR Albedo Maps of Dione From Cassini-VIMS

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Ciarniello, M.; D'Aversa, E.; Capaccioni, F.; Cerroni, P.; Buratti, B. J.; Clark, R. N.; Stephan, K.; Plainaki, C.

    2018-03-01

    We report about visible and infrared albedo maps and spectral indicators of Dione's surface derived from the complete Visual and Infrared Mapping Spectrometer (VIMS) data set acquired between 2004 and 2017 during the Cassini tour in Saturn's system. Maps are derived by applying a photometric correction necessary to disentangle the intrinsic albedo of the surface from illumination and viewing geometry occurring at the time of the observation. The photometric correction is based on the Shkuratov et al. (2011, https://doi.org/10.1016/j.pss.2011.06.011) method which yields values of the surface equigonal albedo. Dione's surface albedo maps are rendered at five visible (VIS: 0.35, 0.44, 0.55, 0.7, and 0.95 μm) and five infrared (IR: 1.046, 1.540, 1.822, 2.050, and 2.200 μm) wavelengths in cylindrical projection with a 0.5° × 0.5° angular resolution in latitude and longitude, corresponding to a spatial resolution of 4.5 km/bin. Apart from visible and infrared albedo maps, we report about the distribution of the two visible spectral slopes (0.35-0.55 and 0.55-0.95 μm) and water ice 2.050 μm band depth computed after having applied the photometric correction. The derived spectral indicators are employed to trace Dione's composition variability on both global and local scales allowing to study the dichotomy between the bright-leading and dark-trailing hemispheres, the distribution of fresh material on the impact craters and surrounding ejecta, and the resurfacing of the bright material within the chasmata caused by tectonism.

  1. New Release of the High-Resolution Mimas Atlas derived from Cassini-ISS Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.-D.; Porco, C. C.

    2017-09-01

    The Cassini Imaging Science Subsystem (ISS) acquired 128 high-resolution images (< 1 km/pixel) of Mimas during its tour through the Saturnian system since 2004. We combined new images from orbit 249 (Nov. 2016) and orbit 259 (Jan. 2017) with the high-resolution global semi-controlled mosaic of Mimas from 2012. This global mosaic is the baseline for the new high-resolution Mimas atlas that still consists of three tiles mapped at a scale of 1:1,000,000 [1]. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The entire atlas will become available to the public through the Imaging Team's website [http://ciclops.org/maps] and the Planetary Data System (PDS) [https://pds- imaging.jpl.nasa.gov/volumes/carto.html].

  2. On the interpretation of satellite-derived gravity and magnetic data for studies of crustal geology and metallogenesis

    NASA Technical Reports Server (NTRS)

    Hastings, D. A.

    1985-01-01

    Satellite-derived global gravity and magnetic maps have been shown to be useful in large-scale studies of the Earth's crust, despite the relative infancy of such studies. Numerous authors have made spatial associations of gravity or magnetic anomalies with geological provinces. Gravimetric interpretations are often made in terms of isostasy, regional variations of density, or of geodesy in general. Interpretations of satellite magnetic anomalies often base assumptions of overall crustal magnetism on concepts of the vertical and horizontal distribution of magnetic susceptibility, then make models of these assumed distributions. The opportunity of improving our satellite gravity and magnetic data through the proposed Geopotential Research Mission should considerably improve the scientific community's ability to analyze and interpret global magnetic and gravity data.

  3. The Atlases of Vesta derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-12-01

    The Dawn Framing Camera acquired during its two HAMO (High Altitude Mapping Orbit) phases in 2011 and 2012 about 6,000 clear filter images with a resolution of about 60 m/pixel. We combined these images in a global ortho-rectified mosaic of Vesta (60 m/pixel resolution). Only very small areas near the northern pole were still in darkness and are missing in the mosaic. The Dawn Framing Camera also acquired about 10,000 high-resolution clear filter images (about 20 m/pixel) of Vesta during its Low Altitude Mapping Orbit (LAMO). Unfortunately, the northern part of Vesta was still in darkness during this phase, good illumination (incidence angle < 70°) was only available for 66.8 % of the surface [1]. We used the LAMO images to calculate another global mosaic of Vesta, this time with 20 m/pixel resolution. Both global mosaics were used to produce atlases of Vesta: a HAMO atlas with 15 tiles at a scale of 1:500,000 and a LAMO atlas with 30 tiles at a scale between 1:200,000 and 1:225,180. The nomenclature used in these atlases is based on names and places historically associated with the Roman goddess Vesta, and is compliant with the rules of the IAU. 65 names for geological features were already approved by the IAU, 39 additional names are currently under review. Selected examples of both atlases will be shown in this presentation. Reference: [1]Roatsch, Th., etal., High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science (2013), http://dx.doi.org/10.1016/j.pss.2013.06.024i

  4. a Climatology of Global Precipitation.

    NASA Astrophysics Data System (ADS)

    Legates, David Russell

    A global climatology of mean monthly precipitation has been developed using traditional land-based gage measurements as well as derived oceanic data. These data have been screened for coding errors and redundant entries have been removed. Oceanic precipitation estimates are most often extrapolated from coastal and island observations because few gage estimates of oceanic precipitation exist. One such procedure, developed by Dorman and Bourke and used here, employs a derived relationship between observed rainfall totals and the "current weather" at coastal stations. The combined data base contains 24,635 independent terrestial station records and 2223 oceanic grid-point records. Raingage catches are known to underestimate actual precipitation. Errors in the gage catch result from wind -field deformation, wetting losses, and evaporation from the gage and can amount to nearly 8, 2, and 1 percent of the global catch, respectively. A procedure has been developed to correct many of these errors and has been used to adjust the gage estimates of global precipitation. Space-time variations in gage type, air temperature, wind speed, and natural vegetation were incorporated into the correction procedure. Corrected data were then interpolated to the nodes of a 0.5^circ of latitude by 0.5^circ of longitude lattice using a spherically-based interpolation algorithm. Interpolation errors are largest in areas of low station density, rugged topography, and heavy precipitation. Interpolated estimates also were compared with a digital filtering technique to access the aliasing of high-frequency "noise" into the lower frequency signals. Isohyetal maps displaying the mean annual, seasonal, and monthly precipitation are presented. Gage corrections and the standard error of the corrected estimates also are mapped. Results indicate that mean annual global precipitation is 1123 mm with 1251 mm falling over the oceans and 820 mm over land. Spatial distributions of monthly precipitation generally are consistent with existing precipitation climatologies.

  5. Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations

    NASA Astrophysics Data System (ADS)

    Boehm, J.; Kouba, J.; Schuh, H.

    2009-05-01

    The Vienna Mapping Functions 1 (VMF1) as provided by the Institute of Geodesy and Geophysics (IGG) at the Vienna University of Technology are the most accurate mapping functions for the troposphere delays that are available globally and for the entire history of space geodetic observations. So far, the VMF1 coefficients have been released with a time delay of almost two days; however, many scientific applications require their availability in near real-time, e.g. the Ultra Rapid solutions of the International GNSS Service (IGS) or the analysis of the Intensive sessions of the International VLBI Service (IVS). Here we present coefficients of the VMF1 as well as the hydrostatic and wet zenith delays that have been determined from forecasting data of the European Centre for Medium-Range Weather Forecasts (ECMWF) and provided on global grids. The comparison with parameters derived from ECMWF analysis data shows that the agreement is at the 1 mm level in terms of station height, and that the differences are larger for the wet mapping functions than for the hydrostatic mapping functions and the hydrostatic zenith delays. These new products (VMF1-FC and hydrostatic zenith delays from forecast data) can be used in real-time analysis of geodetic data without significant loss of accuracy.

  6. Breaking new ground in mapping human settlements from space - The Global Urban Footprint

    NASA Astrophysics Data System (ADS)

    Esch, Thomas; Heldens, Wieke; Hirner, Andreas; Keil, Manfred; Marconcini, Mattia; Roth, Achim; Zeidler, Julian; Dech, Stefan; Strano, Emanuele

    2017-12-01

    Today, approximately 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70% will be living in cities. The population growth and the related global urbanization pose one of the major challenges to a sustainable future. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4″ (∼ 12m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3 m ground resolution collected in 2011-2012. The UFP consists of five main technical modules for data management, feature extraction, unsupervised classification, mosaicking and post-editing. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. The Kappa coefficient of agreement compared to absolute ground truth data, for instance, shows GUF accuracies which are frequently twice as high as those of established low resolution maps. Generally, the GUF layer achieves an overall absolute accuracy of about 85%, with observed minima around 65% and maxima around 98%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8″ (∼ 84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation, vulnerability assessment, or the modeling of diseases and phenomena of global change in general.

  7. Topographic mapping of the Moon

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Contour maps of the Moon have been compiled by photogrammetric methods that use stereoscopic combinations of all available metric photographs from the Apollo 15, 16, and 17 missions. The maps utilize the same format as the existing NASA shaded-relief Lunar Planning Charts (LOC-1, -2, -3, and -4), which have a scale of 1:2 750 000. The map contour interval is 500m. A control net derived from Apollo photographs by Doyle and others was used for the compilation. Contour lines and elevations are referred to the new topographic datum of the Moon, which is defined in terms of spherical harmonics from the lunar gravity field. Compilation of all four LOC charts was completed on analytical plotters from 566 stereo models of Apollo metric photographs that cover approximately 20% of the Moon. This is the first step toward compiling a global topographic map of the Moon at a scale of 1:5 000 000. ?? 1985 D. Reidel Publishing Company.

  8. Large Scale Crop Mapping in Ukraine Using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Shelestov, A.; Lavreniuk, M. S.; Kussul, N.

    2016-12-01

    There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13-18 July 2014, Quebec City, Canada. F.J. Gallego, N. Kussul, S. Skakun, O. Kravchenko, A. Shelestov, O. Kussul, "Efficiency assessment of using satellite data for crop area estimation in Ukraine," International Journal of Applied Earth Observation and Geoinformation vol. 29, pp. 22-30, 2014.

  9. Global Maps of Temporal Streamflow Characteristics Based on Observations from Many Small Catchments

    NASA Astrophysics Data System (ADS)

    Beck, H.; van Dijk, A.; de Roo, A.

    2014-12-01

    Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. We used observed Q from approximately 7500 small catchments (<10,000 km2) around the globe to train neural network ensembles to estimate temporal Q distribution characteristics from climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Training coefficients of determination for the estimation of the Q characteristics ranged from 0.56 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were the least important, perhaps due to data quality. The trained neural network ensembles were subsequently applied spatially over the ice-free land surface including ungauged regions, resulting in global maps of the Q characteristics (0.125° spatial resolution). These maps possess several unique features: 1) they represent purely observation-driven estimates; 2) are based on an unprecedentedly large set of catchments; and 3) have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of five macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available for download.

  10. Global maps of streamflow characteristics based on observations from several thousand catchments

    NASA Astrophysics Data System (ADS)

    Beck, Hylke; van Dijk, Albert; de Roo, Ad

    2015-04-01

    Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from three to four thousand small-to-medium sized catchments (10-10000 km2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps due to their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (0.125° resolution). These maps possess several unique features: they represent observation-driven estimates; are based on an unprecedentedly large set of catchments; and have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available via http://water.jrc.ec.europa.eu.

  11. Mapping the Urban Side of the Earth- the new GUF+ Layer

    NASA Astrophysics Data System (ADS)

    Gorelick, N.; Marconcini, M.; Üreyen, S.; Zeidler, J.; Svaton, V.; Esch, T.

    2017-12-01

    From the beginning of the years 2000, it is estimated that more than half of the global population is living in cities and the dynamic trend of urbanization is growing at an unprecedented speed. In such framework, how does expanding population affect the surrounding landscape? Are urban areas making good use of limited space or is rapid urbanization threatening the planet's sustainability? What is the impact of urbanization on vulnerability to natural disasters? To try answering these and other challenging questions, a key information is to reliably know the location and characteristics (e.g. shape, extent, greenness) of human settlements worldwide. In this context, yet from the last decade different global maps outlining urban areas have started being produced. Here, DLR's Global Urban Footprint (GUF) layer, generated on the basis of very high resolution radar imagery, represents one of the most accurate and largely employed datasets. However, in order to overcome still existing limitations of the GUF layer, often originating from specifics of the underlying radar imagery, DLR developed a novel methodology that for the first time exploits mass multitemporal collections of optical and radar satellite imagery. The new approach has been employed for generating the GUF+ 2015 layer, a global map of settlement areas derived at 10m spatial resolution based overall on a joint analysis of hundreds of thousands of Landsat and Sentinel-1 scenes (processed with the support of Google Earth Engine) collected in the years 2014-2015. The GUF+2015 outperforms all other existing global human settlements maps and allows - among others - to considerably improve the detection of very small settlements in rural regions and better outline scattered peri-urban areas. Nevertheless, this is not an arrival but rather a starting point for generating a suite of additional products (GUF+ suite) supposed to support a 360° analysis of global urbanization - e.g. with data on the imperviousness/greenness and the spatiotemporal development of the built-up area over the last decades.

  12. Global Urban Mapping and Modeling for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Li, X.; Asrar, G.; Yu, S.; Smith, S.; Eom, J.; Imhoff, M. L.

    2016-12-01

    In the past several decades, the world has experienced fast urbanization, and this trend is expected to continue for decades to come. Urbanization, one of the major land cover and land use changes (LCLUC), is becoming increasingly important in global environmental changes, such as urban heat island (UHI) growth and vegetation phenology change. Better scientific insights and effective decision-making unarguably require reliable science-based information on spatiotemporal changes in urban extent and their environmental impacts. In this study, we developed a globally consistent 20-year urban map series to evaluate the time-reactive nature of global urbanization from the nighttime lights remote sensing data, and projected future urban expansion in the 21st century by employing an integrated modeling framework (Zhou et al. 2014, Zhou et al. 2015). We then evaluated the impacts of urbanization on building energy use and vegetation phenology that affect both ecosystem services and human health. We extended the modeling capability of building energy use in the Global Change Assessment Model (GCAM) with consideration of UHI effects by coupling the remote sensing based urbanization modeling and explored the impact of UHI on building energy use. We also investigated the impact of urbanization on vegetation phenology by using an improved phenology detection algorithm. The derived spatiotemporal information on historical and potential future urbanization and its implications in building energy use and vegetation phenology will be of great value in sustainable urban design and development for building energy use and human health (e.g., pollen allergy), especially when considered together with other factors such as climate variability and change. Zhou, Y., S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson & M. Imhoff (2014) A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sensing of Environment, 147, 173-185. Zhou, Y., S. J. Smith, K. Zhao, M. Imhoff, A. Thomson, B. Bond-Lamberty, G. R. Asrar, X. Zhang, C. He & C. D. Elvidge (2015) A global map of urban extent from nightlights. Environmental Research Letters, 10, 054011.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvidge, Christopher D.; Sutton, Paul S.; Ghosh, Tilottama

    A global poverty map has been produced at 30 arc sec resolution using a poverty index calculated by dividing population count (LandScan2004) by the brightness of satellite observed lighting (DMSP nighttimelights). Inputs to the LandScan product include satellite-derived landcover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that shouldmore » improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.« less

  14. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners.

    PubMed

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this "Atlas-T1w-DUTE" approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the "silver standard"; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally.

  15. Re-evaluation of a novel approach for quantitative myocardial oedema detection by analysing tissue inhomogeneity in acute myocarditis using T2-mapping.

    PubMed

    Baeßler, Bettina; Schaarschmidt, Frank; Treutlein, Melanie; Stehning, Christian; Schnackenburg, Bernhard; Michels, Guido; Maintz, David; Bunck, Alexander C

    2017-12-01

    To re-evaluate a recently suggested approach of quantifying myocardial oedema and increased tissue inhomogeneity in myocarditis by T2-mapping. Cardiac magnetic resonance data of 99 patients with myocarditis were retrospectively analysed. Thirthy healthy volunteers served as controls. T2-mapping data were acquired at 1.5 T using a gradient-spin-echo T2-mapping sequence. T2-maps were segmented according to the 16-segments AHA-model. Segmental T2-values, segmental pixel-standard deviation (SD) and the derived parameters maxT2, maxSD and madSD were analysed and compared to the established Lake Louise criteria (LLC). A re-estimation of logistic regression models revealed that all models containing an SD-parameter were superior to any model containing global myocardial T2. Using a combined cut-off of 1.8 ms for madSD + 68 ms for maxT2 resulted in a diagnostic sensitivity of 75% and specificity of 80% and showed a similar diagnostic performance compared to LLC in receiver-operating-curve analyses. Combining madSD, maxT2 and late gadolinium enhancement (LGE) in a model resulted in a superior diagnostic performance compared to LLC (sensitivity 93%, specificity 83%). The results show that the novel T2-mapping-derived parameters exhibit an additional diagnostic value over LGE with the inherent potential to overcome the current limitations of T2-mapping. • A novel quantitative approach to myocardial oedema imaging in myocarditis was re-evaluated. • The T2-mapping-derived parameters maxT2 and madSD were compared to traditional Lake-Louise criteria. • Using maxT2 and madSD with dedicated cut-offs performs similarly to Lake-Louise criteria. • Adding maxT2 and madSD to LGE results in further increased diagnostic performance. • This novel approach has the potential to overcome the limitations of T2-mapping.

  16. Mapping the global depth to bedrock for land surface modelling

    NASA Astrophysics Data System (ADS)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  17. Mapping the global depth to bedrock for land surface modeling

    NASA Astrophysics Data System (ADS)

    Shangguan, Wei; Hengl, Tomislav; Mendes de Jesus, Jorge; Yuan, Hua; Dai, Yongjiu

    2017-03-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 1,30,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surface reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forest and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250 m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  18. Thermal inertia and surface heterogeneity on Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.

    Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer

  19. Setting the scene for SWOT: global maps of river reach hydrodynamic variables

    NASA Astrophysics Data System (ADS)

    Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George

    2017-04-01

    Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.

  20. A Global Landslide Nowcasting System using Remotely Sensed Information

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Dalia; Stanely, Thomas

    2017-04-01

    A global Landslide Hazard Assessment model for Situational Awareness (LHASA) has been developed that combines susceptibility information with satellite-based precipitation to provide an indication of potential landslide activity at the global scale every 30 minutes. This model utilizes a 1-km global susceptibility map derived from information on slope, geology, road networks, fault zones, and forest loss. A multi-satellite dataset from the Global Precipitation Measurement (GPM) mission is used to identify the current and antecedent rainfall conditions from the past 7 days. When both rainfall and susceptibility are high, a "nowcast" is issued to indicate areas where a landslide may be likely. The global LHASA model is currently being run in near real-time every 30 minutes and the outputs are available in several different formats at https://pmm.nasa.gov/precip-apps. This talk outlines the LHASA system, discusses the performance metrics and potential applications of the LHASA system.

  1. Topological mappings of video and audio data.

    PubMed

    Fyfe, Colin; Barbakh, Wesam; Ooi, Wei Chuan; Ko, Hanseok

    2008-12-01

    We review a new form of self-organizing map which is based on a nonlinear projection of latent points into data space, identical to that performed in the Generative Topographic Mapping (GTM).(1) But whereas the GTM is an extension of a mixture of experts, this model is an extension of a product of experts.(2) We show visualisation and clustering results on a data set composed of video data of lips uttering 5 Korean vowels. Finally we note that we may dispense with the probabilistic underpinnings of the product of experts and derive the same algorithm as a minimisation of mean squared error between the prototypes and the data. This leads us to suggest a new algorithm which incorporates local and global information in the clustering. Both ot the new algorithms achieve better results than the standard Self-Organizing Map.

  2. High-resolution forest mapping for behavioural studies in the Nature Reserve ‘Les Nouragues’, French Guiana

    PubMed Central

    Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva

    2015-01-01

    For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943

  3. History of greenness mapping at the EROS data center

    USGS Publications Warehouse

    Van Beek, Carolyn; Vandersnick, Richard

    1993-01-01

    In 1987, the U.S. Geological Survey's EROS Data Center (EDC)installed a system to acquire, process, and distribute advanced very high resolution radiometer (AVHRR) satellite image data collected over North America. Using this system, the EDC began an experimental greenness mapping program as part of the U.S. Agency for the International Development Famine Early Warning System. The program used the greenness information derived from AVHRR data to identify potential outbreaks of locusts and grasshoppers in the Sahelian region of Africa. In 1988, the EDC began greenness mapping projects in Africa and the northern Great Plains of the United States. In 1989, the system was augmented to acquire AVHRR information for the rest of the world. As a result, the greenness mapping program was able to collect data for fire danger assessment, agricultural assessment, and land characterization. Illustrations of each of the mapping projects trace the chronology of the greenness mapping program at the EDC. Displays represent the initial activity in Africa and the transition of the north Great Plains project to the current conterminous U.S. project. The program's expansion to include Alaska, Eurasia, a prototype North America data set, and ultimately, an experimental global land 1-km product is also shown. The poster describes major technical advances in data processing, the development of derivative products, the magnitude of the data volume of each level, and major applications.

  4. Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.

    2016-12-01

    Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.

  5. A Computer-Based Atlas of Global Instrumental Climate Data (DB1003)

    DOE Data Explorer

    Bradley, Raymond S.; Ahern, Linda G.; Keimig, Frank T.

    1994-01-01

    Color-shaded and contoured images of global, gridded instrumental data have been produced as a computer-based atlas. Each image simultaneously depicts anomaly maps of surface temperature, sea-level pressure, 500-mbar geopotential heights, and percentages of reference-period precipitation. Monthly, seasonal, and annual composites are available in either cylindrical equidistant or northern and southern hemisphere polar projections. Temperature maps are available from 1854 to 1991, precipitation from 1851 to 1989, sea-level pressure from 1899 to 1991, and 500-mbar heights from 1946 to 1991. The source of data for the temperature images is Jones et al.'s global gridded temperature anomalies. The precipitation images were derived from Eischeid et al.'s global gridded precipitation percentages. Grids from the Data Support Section, National Center for Atmospheric Research (NCAR) were the sources for the sea-level-pressure and 500-mbar geopotential-height images. All images are in GIF files (1024 × 822 pixels, 256 colors) and can be displayed on many different computer platforms. Each annual subdirectory contains 141 images, each seasonal subdirectory contains 563 images, and each monthly subdirectory contains 1656 images. The entire atlas requires approximately 340 MB of disk space, but users may retrieve any number of images at one time.

  6. The global distribution of ecosystems in a world without fire.

    PubMed

    Bond, W J; Woodward, F I; Midgley, G F

    2005-02-01

    This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.

  7. Globally optimal superconducting magnets part II: symmetric MSE coil arrangement.

    PubMed

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2009-01-01

    A globally optimal superconducting magnet coil design procedure based on the Minimum Stored Energy (MSE) current density map is outlined. The method has the ability to arrange coils in a manner that generates a strong and homogeneous axial magnetic field over a predefined region, and ensures the stray field external to the assembly and peak magnetic field at the wires are in acceptable ranges. The outlined strategy of allocating coils within a given domain suggests that coils should be placed around the perimeter of the domain with adjacent coils possessing alternating winding directions for optimum performance. The underlying current density maps from which the coils themselves are derived are unique, and optimized to possess minimal stored energy. Therefore, the method produces magnet designs with the lowest possible overall stored energy. Optimal coil layouts are provided for unshielded and shielded short bore symmetric superconducting magnets.

  8. A new strategy for developing Vs30 maps

    USGS Publications Warehouse

    Wald, David J.; McWhirter, Leslie; Thompson, Eric; Hering, Amanda S.

    2011-01-01

    Despite obvious limitations as a proxy for site amplification, the use of time-averaged shear-wave velocity over the top 30m (Vs30) is useful and widely practiced, most notably through its use as an explanatory variable in ground motion prediction equations (and thus hazard maps and ShakeMaps, among other applications). Local, regional, and global Vs30 maps thus have diverse and fundamental uses in earthquake and engineering seismology. As such, we are developing an improved strategy for producing Vs30 maps given the common observational constraints available in any region for various spatial scales. We investigate a hierarchical approach to mapping Vs30, where the baseline model is derived from topographic slope because it is available globally, but geological maps and Vs30 observations contribute, where available. Using the abundant measured Vs30 values in Taiwan as an example, we analyze Vs30 versus slope per geologic unit and observe minor trends that indicate potential interaction of geologic and slope terms. We then regress Vs30 for the geologic Vs30 medians, topographic-slope, and cross-term coefficients for a hybrid model. The residuals of this hybrid model still exhibit a strong spatial correlation structure, so we use the kriging-with-a-trend method (the trend is the hybrid model) to further refine the Vs30 map so as to honor the Vs30 observations. Unlike the geology or slope models alone, this strategytakes advantage of the predictive capabilities of the two models, yet effectively defaults to ordinary kriging in the vicinity of the observed data, thereby achieving consistency with the observed data.

  9. Near-Real Time Monitoring of TEC Over Japan at NICT (RWC Tokyo OF ISES)

    NASA Astrophysics Data System (ADS)

    Miyake, W.; Jin, H.

    2010-05-01

    The world wide use of global navigation satellite systems such as GPS offers unique opportunities for a permanent monitoring of the total electron content (TEC) of the ionosphere. We have developed a system of the rapid derivation of TEC from GEONET (a dense GPS receiver network in Japan). In addition to a previous plot of TEC temporal variation over Japan, we have recently developed a near-real-time two-dimensional TEC map and have used it for the daily operation of Space Weather Forecast Center at NICT (Regional Warning Center Tokyo of International Space Environment Service). The TEC map can be used to continuously monitor the ionospheric disturbances over Japan, including spatial and temporal development of ionospheric storms, large-amplitude traveling ionospheric disturbances, and plasma bubbles intruding over Japan, with high time resolution. The development of the real-time monitoring system of TEC enables us to monitor large ionospheric disturbances, ranging from global- to small-scale disturbances, expected in the next solar maximum. The plot and maps are open to the public and are available on http://wdc.nict.go.jp/IONO/index_E.html.

  10. Validation of "AW3D" Global Dsm Generated from Alos Prism

    NASA Astrophysics Data System (ADS)

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi

    2016-06-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  11. Application of thin plate splines for accurate regional ionosphere modeling with multi-GNSS data

    NASA Astrophysics Data System (ADS)

    Krypiak-Gregorczyk, Anna; Wielgosz, Pawel; Borkowski, Andrzej

    2016-04-01

    GNSS-derived regional ionosphere models are widely used in both precise positioning, ionosphere and space weather studies. However, their accuracy is often not sufficient to support precise positioning, RTK in particular. In this paper, we presented new approach that uses solely carrier phase multi-GNSS observables and thin plate splines (TPS) for accurate ionospheric TEC modeling. TPS is a closed solution of a variational problem minimizing both the sum of squared second derivatives of a smoothing function and the deviation between data points and this function. This approach is used in UWM-rt1 regional ionosphere model developed at UWM in Olsztyn. The model allows for providing ionospheric TEC maps with high spatial and temporal resolutions - 0.2x0.2 degrees and 2.5 minutes, respectively. For TEC estimation, EPN and EUPOS reference station data is used. The maps are available with delay of 15-60 minutes. In this paper we compare the performance of UWM-rt1 model with IGS global and CODE regional ionosphere maps during ionospheric storm that took place on March 17th, 2015. During this storm, the TEC level over Europe doubled comparing to earlier quiet days. The performance of the UWM-rt1 model was validated by (a) comparison to reference double-differenced ionospheric corrections over selected baselines, and (b) analysis of post-fit residuals to calibrated carrier phase geometry-free observational arcs at selected test stations. The results show a very good performance of UWM-rt1 model. The obtained post-fit residuals in case of UWM maps are lower by one order of magnitude comparing to IGS maps. The accuracy of UWM-rt1 -derived TEC maps is estimated at 0.5 TECU. This may be directly translated to the user positioning domain.

  12. A Comparison of Satellite-Derived Snow Maps with a Focus on Ephemeral Snow in North Carolina

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Fuhrmann, Christopher M.; Perry, L. Baker; Riggs, George A.; Robinson, David A.; Foster, James L.

    2010-01-01

    In this paper, we focus on the attributes and limitations of four commonly-used daily snowcover products with respect to their ability to map ephemeral snow in central and eastern North Carolina. We show that the Moderate-Resolution Imaging Spectroradiometer (MODIS) fractional snow-cover maps can delineate the snow-covered area very well through the use of a fully-automated algorithm, but suffer from the limitation that cloud cover precludes mapping some ephemeral snow. The semi-automated Interactive Multi-sensor Snow and ice mapping system (IMS) and Rutgers Global Snow Lab (GSL) snow maps are often able to capture ephemeral snow cover because ground-station data are employed to develop the snow maps, The Rutgers GSL maps are based on the IMS maps. Finally, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provides some good detail of snow-water equivalent especially in deeper snow, but may miss ephemeral snow cover because it is often very thin or wet; the AMSR-E maps also suffer from coarse spatial resolution. We conclude that the southeastern United States represents a good test region for validating the ability of satellite snow-cover maps to capture ephemeral snow cover,

  13. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 7 Earth radiation budget data set - November 1978 to October 1985

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1987-01-01

    An atlas of monthly mean outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 84 months of continuous data from November 1978 to October 1985. The data were derived from the second Earth radiation budget experiment, which was flown on the Nimbus 7 Sun-synchronous satellite in 1978. This data set is a companion set and extension to a similar report of the Nimbus 6 satellite. Together these two reports give a data set covering a 10 year time period and will be very valuable in studying different aspects of our changing climate over monthly, annual, and interannual scales in the time domain and over regional, zonal, and global scales in the spatial domain.

  14. Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss

    USGS Publications Warehouse

    Potapov, P.; Hansen, Matthew C.; Stehman, S.V.; Loveland, Thomas R.; Pittman, K.

    2008-01-01

    Estimation of forest cover change is important for boreal forests, one of the most extensive forested biomes, due to its unique role in global timber stock, carbon sequestration and deposition, and high vulnerability to the effects of global climate change. We used time-series data from the MODerate Resolution Imaging Spectroradiometer (MODIS) to produce annual forest cover loss hotspot maps. These maps were used to assign all blocks (18.5 by 18.5 km) partitioning the boreal biome into strata of high, medium and low likelihood of forest cover loss. A stratified random sample of 118 blocks was interpreted for forest cover and forest cover loss using high spatial resolution Landsat imagery from 2000 and 2005. Area of forest cover gross loss from 2000 to 2005 within the boreal biome is estimated to be 1.63% (standard error 0.10%) of the total biome area, and represents a 4.02% reduction in year 2000 forest cover. The proportion of identified forest cover loss relative to regional forest area is much higher in North America than in Eurasia (5.63% to 3.00%). Of the total forest cover loss identified, 58.9% is attributable to wildfires. The MODIS pan-boreal change hotspot estimates reveal significant increases in forest cover loss due to wildfires in 2002 and 2003, with 2003 being the peak year of loss within the 5-year study period. Overall, the precision of the aggregate forest cover loss estimates derived from the Landsat data and the value of the MODIS-derived map displaying the spatial and temporal patterns of forest loss demonstrate the efficacy of this protocol for operational, cost-effective, and timely biome-wide monitoring of gross forest cover loss.

  15. An assessment of the Height Above Nearest Drainage terrain descriptor for the thematic enhancement of automatic SAR-based flood monitoring services

    NASA Astrophysics Data System (ADS)

    Chow, Candace; Twele, André; Martinis, Sandro

    2016-10-01

    Flood extent maps derived from Synthetic Aperture Radar (SAR) data can communicate spatially-explicit information in a timely and cost-effective manner to support disaster management. Automated processing chains for SAR-based flood mapping have the potential to substantially reduce the critical time delay between the delivery of post-event satellite data and the subsequent provision of satellite derived crisis information to emergency management authorities. However, the accuracy of SAR-based flood mapping can vary drastically due to the prevalent land cover and topography of a given scene. While expert-based image interpretation with the consideration of contextual information can effectively isolate flood surface features, a fully-automated feature differentiation algorithm mainly based on the grey levels of a given pixel is comparatively more limited for features with similar SAR-backscattering characteristics. The inclusion of ancillary data in the automatic classification procedure can effectively reduce instances of misclassification. In this work, a near-global `Height Above Nearest Drainage' (HAND) index [10] was calculated with digital elevation data and drainage directions from the HydroSHEDS mapping project [2]. The index can be used to separate flood-prone regions from areas with a low probability of flood occurrence. Based on the HAND-index, an exclusion mask was computed to reduce water look-alikes with respect to the hydrologictopographic setting. The applicability of this near-global ancillary data set for the thematic improvement of Sentinel-1 and TerraSAR-X based services for flood and surface water monitoring has been validated both qualitatively and quantitatively. Application of a HAND-based exclusion mask resulted in improvements to the classification accuracy of SAR scenes with high amounts of water look-alikes and considerable elevation differences.

  16. Topographic Science

    USGS Publications Warehouse

    Poppenga, Sandra K.; Evans, Gayla; Gesch, Dean; Stoker, Jason M.; Queija, Vivian R.; Worstell, Bruce; Tyler, Dean J.; Danielson, Jeff; Bliss, Norman; Greenlee, Susan

    2010-01-01

    The mission of U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Topographic Science is to establish partnerships and conduct research and applications that facilitate the development and use of integrated national and global topographic datasets. Topographic Science includes a wide range of research and applications that result in improved seamless topographic datasets, advanced elevation technology, data integration and terrain visualization, new and improved elevation derivatives, and development of Web-based tools. In cooperation with our partners, Topographic Science is developing integrated-science applications for mapping, national natural resource initiatives, hazards, and global change science. http://topotools.cr.usgs.gov/.

  17. Bimodal TiO2 Contents of Mare Basalts at Apollo and Luna Sites and Implications for TiO2 Derived from Clementine Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Gillis, J. J.; Jolliff, B. L.

    2001-01-01

    A revised algorithm to estimate Ti contents of mare regions centered on Apollo and Luna sites shows a bimodal distribution, consistent with mare-basalt sample data. A global TiO2 map shows abundant intermediate TiO2 basalts in western Procellarum. Additional information is contained in the original extended abstract.

  18. You are lost without a map: Navigating the sea of protein structures.

    PubMed

    Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R

    2015-04-01

    X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Global Rapid Flood Mapping System with Spaceborne SAR Data

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from ground, air, and space will provide reliable snapshot extent of many flooding events. SAR missions with easy data access, such as the Sentinel-1 and NASA's upcoming NISAR mission, combined with the ARIA system, will enable forming a library of flood extent maps, which can soon support flood modeling community, by providing observation-based constraints.

  20. A harmonic analysis of lunar topography

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ferrari, A. J.

    1977-01-01

    A global lunar topographic map has been derived from existing earth-based and orbital observations supplemented in areas without data by a linear autocovariance predictor. Of 2592 bins, each 5 deg square, 1380 (64.7% by area) contain at least one measurement. A spherical harmonic analysis to degree 12 yields a mean radius of 1737.53 plus or minus 0.03 km (formal standard error) and an offset of the center of figure of 1.98 plus or minus 0.06 km toward (19 plus or minus 2) deg S, (194 plus or minus 1) deg E. A Bouguer gravity map, derived from a 12-degree free-air gravity model and the present topography data, is presented for an elevation of 100 km above the mean surface. It is confirmed that the low-degree gravity harmonics are determined primarily by surface height variations and only secondarily by lateral density variations.

  1. Bathymetric survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data.

    PubMed

    Zhang, Shuping; Foerster, Saskia; Medeiros, Pedro; de Araújo, José Carlos; Motagh, Mahdi; Waske, Bjoern

    2016-11-15

    Water scarcity in the dry season is a vital problem in dryland regions such as northeastern Brazil. Water supplies in these areas often come from numerous reservoirs of various sizes. However, inventory data for these reservoirs is often limited due to the expense and time required for their acquisition via field surveys, particularly in remote areas. Remote sensing techniques provide a valuable alternative to conventional reservoir bathymetric surveys for water resource management. In this study single pass TanDEM-X data acquired in bistatic mode were used to generate digital elevation models (DEMs) in the Madalena catchment, northeastern Brazil. Validation with differential global positioning system (DGPS) data from field measurements indicated an absolute elevation accuracy of approximately 1m for the TanDEM-X derived DEMs (TDX DEMs). The DEMs derived from TanDEM-X data acquired at low water levels show significant advantages over bathymetric maps derived from field survey, particularly with regard to coverage, evenly distributed measurements and replication of reservoir shape. Furthermore, by mapping the dry reservoir bottoms with TanDEM-X data, TDX DEMs are free of emergent and submerged macrophytes, independent of water depth (e.g. >10m), water quality and even weather conditions. Thus, the method is superior to other existing bathymetric mapping approaches, particularly for inland water bodies. The proposed approach relies on (nearly) dry reservoir conditions at times of image acquisition and is thus restricted to areas that show considerable water levels variations. However, comparisons between TDX DEM and the bathymetric map derived from field surveys show that the amount of water retained during the dry phase has only marginal impact on the total water volume derivation from TDX DEM. Overall, DEMs generated from bistatic TanDEM-X data acquired in low water periods constitute a useful and efficient data source for deriving reservoir bathymetry and show great potential in large scale application. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Total Ozone Mapping Spectrometer (TOMS) Level-3 Data Products User's Guide

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Bhartia, P. K.; Krueger, Arlin J.; Herman, Jay R.; Wellemeyer, Charles G.; Seftor, Colin J.; Byerly, William; Celarier, Edward A.

    2000-01-01

    Data from the TOMS series of instruments span the time period from November 1978, through the present with about a one and a-half year gap from January 1994 through July 1996. A set of four parameters derived from the TOMS measurements have been archived in the form of daily global maps or Level-3 data products. These products are total column ozone, effective surface reflectivity, aerosol index, and erythermal ultraviolet estimated at the Earth surface. A common fixed grid of I degree latitude by 1.25 degree longitude cells over the entire globe is provided daily for each parameter. These data are archived at the Goddard Space Flight Center Distributed Active Archive Center (DAAQ in Hierarchical Data Format (HDF). They are also available in a character format through the TOMS web site at http://toms.gsfc.nasa.gov. The derivations of the parameters, the mapping algorithm, and the data formats are described. The trend uncertainty for individual TOMS instruments is about 1% decade, but additional uncertainty exists in the combined data record due to uncertainty in the relative calibrations of the various TOMS.

  3. Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Avitabile, Valerio; Heuvelink, Gerard B. M.; Wang, Jianghao; Herold, Martin

    2014-09-01

    Biomass is a key environmental variable that influences many biosphere-atmosphere interactions. Recently, a number of biomass maps at national, regional and global scales have been produced using different approaches with a variety of input data, such as from field observations, remotely sensed imagery and other spatial datasets. However, the accuracy of these maps varies regionally and is largely unknown. This research proposes a fusion method to increase the accuracy of regional biomass estimates by using higher-quality calibration data. In this fusion method, the biases in the source maps were first adjusted to correct for over- and underestimation by comparison with the calibration data. Next, the biomass maps were combined linearly using weights derived from the variance-covariance matrix associated with the accuracies of the source maps. Because each map may have different biases and accuracies for different land use types, the biases and fusion weights were computed for each of the main land cover types separately. The conceptual arguments are substantiated by a case study conducted in East Africa. Evaluation analysis shows that fusing multiple source biomass maps may produce a more accurate map than when only one biomass map or unweighted averaging is used.

  4. Composition and physical properties of Enceladus' surface

    USGS Publications Warehouse

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  5. Global maps of streamflow characteristics based on observations from several thousand catchments

    NASA Astrophysics Data System (ADS)

    Beck, Hylke; de Roo, Ad; van Dijk, Albert

    2016-04-01

    Streamflow (Q) estimation in ungauged catchments is one of the greatest challenges facing hydrologists. Observed Q from three to four thousand small-to-medium sized catchments (10--10 000~km^2) around the globe were used to train neural network ensembles to estimate Q characteristics based on climate and physiographic characteristics of the catchments. In total 17 Q characteristics were selected, including mean annual Q, baseflow index, and a number of flow percentiles. Testing coefficients of determination for the estimation of the Q characteristics ranged from 0.55 for the baseflow recession constant to 0.93 for the Q timing. Overall, climate indices dominated among the predictors. Predictors related to soils and geology were relatively unimportant, perhaps due to their data quality. The trained neural network ensembles were subsequently applied spatially over the entire ice-free land surface, resulting in global maps of the Q characteristics (0.125° resolution). These maps possess several unique features: they represent observation-driven estimates; are based on an unprecedentedly large set of catchments; and have associated uncertainty estimates. The maps can be used for various hydrological applications, including the diagnosis of macro-scale hydrological models. To demonstrate this, the produced maps were compared to equivalent maps derived from the simulated daily Q of four macro-scale hydrological models, highlighting various opportunities for improvement in model Q behavior. The produced dataset is available via http://water.jrc.ec.europa.eu.

  6. Mapping soil texture targeting predefined depth range or synthetizing from standard layers?

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Dezső Kaposi, András; Szatmári, Gábor; Takács, Katalin; Pásztor, László

    2017-04-01

    There are increasing demands nowadays on spatial soil information in order to support environmental related and land use management decisions. Physical soil properties, especially particle size distribution play important role in this context. A few of the requirements can be satisfied by the sand-, silt-, and clay content maps compiled according to global standards such as GlobalSoilMap (GSM) or Soil Grids. Soil texture classes (e. g. according to USDA classification) can be derived from these three fraction data, in this way texture map can be compiled based on the proper separate maps. Soil texture class as well as fraction information represent direct input of crop-, meteorological- and hydrological models. The model inputs frequently require maps representing soil features of 0-30 cm depth, which is covered by three consecutive depth intervals according to standard specifications: 0-5 cm, 5-15 cm, 15-30 cm. Becoming GSM and SoilGrids the most detailed freely available spatial soil data sources, the common model users (e. g. meteorologists, agronomists, or hydrologists) would produce input map from (the weighted mean of) these three layers. However, if the basic soil data and proper knowledge is obtainable, a soil texture map targeting directly the 0-30 cm layer could be independently compiled. In our work we compared Hungary's soil texture maps compiled using the same reference and auxiliary data and inference methods but for differing layer distribution. We produced the 0-30 cm clay, silt and sand map as well as the maps for the three standard layers (0-5 cm, 5-15 cm, 15-30 cm). Maps of sand, silt and clay percentage were computed through regression kriging (RK) applying Additive Log-Ratio (alr) transformation. In addition to the Hungarian Soil Information and Monitoring System as reference soil data, digital elevation model and its derived components, soil physical property maps, remotely sensed images, land use -, geological-, as well as meteorological data were applied as auxiliary variables. We compared the directly compiled and the synthetized clay-, sand content, and texture class maps by different tools. In addition to pairwise comparison of basic statistical features (histograms, scatter plots), we examined the spatial distribution of the differences. We quantified the taxonomical distances of the textural classes, in order to investigate the differences of the map-pairs. We concluded that the directly computed and the synthetized maps show various differences. In the case of clay-, and sand content maps, the map-pairs have to be considered statistically different. On the other hand, the differences of the texture class maps are not significant. However, in all cases, the differences rather concern the extreme ranges and categories. Using of synthetized maps can intensify extremities by error propagation in models and scenarios. Based on our results, we suggest the usage of the directly composed maps.

  7. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    NASA Technical Reports Server (NTRS)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  8. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    NASA Astrophysics Data System (ADS)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  9. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  10. Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model

    NASA Technical Reports Server (NTRS)

    Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.

    2016-01-01

    Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.

  11. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    USGS Publications Warehouse

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  12. MOLA: The Future of Mars Global Cartography

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.; Smith, D. E.; Zuber, M. T.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Muhleman, D. O.; Pettengill, G. H.; Phillips, R. J.; Solomon, S. C.

    1999-01-01

    The MGS Orbiter is carrying the high-precision Mars Orbiter Laser Altimeter (MOLA) which, when combined with precision reconstructed orbital data and telemetered attitude data, provides a tie between inertial space and Mars-fixed coordinates to an accuracy of 100 m in latitude / longitude and 10 m in radius (1 sigma), orders of magnitude more accurate than previous global geodetic/ cartographic control data. Over the 2 year MGS mission lifetime, it is expected that over 30,000 MOLA Global Cartographic Control Points will be produced to form the basis for new and re-derived map and geodetic products, key to the analysis of existing and evolving MGS data as well as future Mars exploration. Additional information is contained in the original extended abstract.

  13. Satellite Remote Sensing of Cropland Characteristics in 30m Resolution: The First North American Continental-Scale Classification on High Performance Computing Platforms

    NASA Astrophysics Data System (ADS)

    Massey, Richard

    Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a producer's accuracy for crop class at 85.4% and user's accuracy of 74.5% across the continent. The sub-country statistics including state-wise and county-wise cropland statistics derived from this map compared well in regression models resulting in R2 > 0.84. Secondly, an automated phenological pattern matching (PPM) method to efficiently map cropping intensity was also developed in this study. This study presents a continental-scale cropping intensity map for the North American continent at 250m spatial resolution for 2010. In this map, the total areas for single crop, double crop, continuous crop, and fallow were estimated to be 123.5 Mha, 11.1 Mha, 64.0 Mha, and 83.4 Mha, respectively. This map was assessed using limited country-level reference datasets derived from United States Department of Agriculture cropland data layer and Agriculture and Agri-Food Canada annual crop inventory with overall accuracies of 79.8% and 80.2%, respectively. Third, two novel and automated decision tree classification approaches to map crop types across the conterminous United States (U.S.) using MODIS 250 m resolution data: 1) generalized, and 2) year-specific classification were developed. The classification approaches use similarities and dissimilarities in crop type phenology derived from NDVI time-series data for the two approaches. Annual crop type maps were produced for 8 major crop types in the United States using the generalized classification approach for 2001-2014 and the year-specific approach for 2008, 2010, 2011 and 2012. The year-specific classification had overall accuracies greater than 78%, while the generalized classifier had accuracies greater than 75% for the conterminous U.S. for 2008, 2010, 2011, and 2012. The generalized classifier enables automated and routine crop type mapping without repeated and expensive ground sample collection year after year with overall accuracies > 70% across all independent years. Taken together, these cropland products of extent, cropping intensity, and crop types, are significantly beneficial in agricultural and water use planning and monitoring to formulate policies towards global and North American food security issues.

  14. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  15. Multiscale site-response mapping: A case study of Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  16. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; hide

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  17. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  18. Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Galantowicz, J. F.; Picton, J.; Root, B.

    2017-12-01

    Passive microwave remote sensing can provided a distinct perspective on flood events by virtue of wide sensor fields of view, frequent observations from multiple satellites, and sensitivity through clouds and vegetation. During Hurricanes Harvey and Irma, we used AMSR2 (Advanced Microwave Scanning Radiometer 2, JAXA) data to map flood extents starting from the first post-storm rain-free sensor passes. Our standard flood mapping algorithm (FloodScan) derives flooded fraction from 22-km microwave data (AMSR2 or NASA's GMI) in near real time and downscales it to 90-m resolution using a database built from topography, hydrology, and Global Surface Water Explorer data and normalized to microwave data footprint shapes. During Harvey and Irma we tested experimental versions of the algorithm designed to map the maximum post-storm flood extent rapidly and made a variety of map products available immediately for use in storm monitoring and response. The maps have several unique features including spanning the entire storm-affected area and providing multiple post-storm updates as flood water shifted and receded. From the daily maps we derived secondary products such as flood duration, maximum flood extent (Figure 1), and flood depth. In this presentation, we describe flood extent evolution, maximum extent, and local details as detected by the FloodScan algorithm in the wake of Harvey and Irma. We compare FloodScan results to other available flood mapping resources, note observed shortcomings, and describe improvements made in response. We also discuss how best-estimate maps could be updated in near real time by merging FloodScan products and data from other remote sensing systems and hydrological models.

  19. Combining Livestock Production Information in a Process-Based Vegetation Model to Reconstruct the History of Grassland Management

    NASA Technical Reports Server (NTRS)

    Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui; hide

    2016-01-01

    Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.

  20. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).

  1. A DBMS architecture for global change research

    NASA Astrophysics Data System (ADS)

    Hachem, Nabil I.; Gennert, Michael A.; Ward, Matthew O.

    1993-08-01

    The goal of this research is the design and development of an integrated system for the management of very large scientific databases, cartographic/geographic information processing, and exploratory scientific data analysis for global change research. The system will represent both spatial and temporal knowledge about natural and man-made entities on the eath's surface, following an object-oriented paradigm. A user will be able to derive, modify, and apply, procedures to perform operations on the data, including comparison, derivation, prediction, validation, and visualization. This work represents an effort to extend the database technology with an intrinsic class of operators, which is extensible and responds to the growing needs of scientific research. Of significance is the integration of many diverse forms of data into the database, including cartography, geography, hydrography, hypsography, images, and urban planning data. Equally important is the maintenance of metadata, that is, data about the data, such as coordinate transformation parameters, map scales, and audit trails of previous processing operations. This project will impact the fields of geographical information systems and global change research as well as the database community. It will provide an integrated database management testbed for scientific research, and a testbed for the development of analysis tools to understand and predict global change.

  2. Ionosphere-related products for communication and navigation

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.

    2011-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects communication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) is developing and producing commercial space weather applications. A key system-level component for providing timely information about the effects of space weather is the Global Assimilation of Ionospheric Measurements (GAIM) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. The global, CONUS, Europe, Asia, South America, and other regional sectors are run with a 15-minute cadence. These operational runs enable SWC to calculate and report the global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders, especially during the Japan Great Earthquake and tsunami recovery period. SWC has established its first fully commercial enterprise called Q-up as a result of this activity. GPS uncertainty maps are produced by SWC to improve single-frequency GPS applications. SWC also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe upcoming improvements for moving space weather information through automated systems into final derivative products.

  3. How relevant is heterogeneous chemistry on Mars? Strong tests via global mapping of water and ozone (sampled via O2 dayglow)

    NASA Astrophysics Data System (ADS)

    Villanueva, Geronimo Luis; Mumma, Michael J.; Novak, Robert E.

    2015-11-01

    Ozone and water are powerful tracers of photochemical processes on Mars. Considering that water is a condensable with a multifaceted hydrological cycle and ozone is continuously being produced / destroyed on short-time scales, their maps can test the validity of current 3D photochemical and dynamical models. Comparisons of modern GCM models (e.g., Lefèvre et al. 2004) with certain datasets (e.g., Clancy et al. 2012; Bertaux et al. 2012) point to significant disagreement, which in some cases have been related to heterogeneous (gas-dust) chemistry beyond the classical gas-gas homogeneous reactions.We address these concerns by acquiring full 2D maps of water and ozone (via O2 dayglow) on Mars, employing high spectral infrared spectrometers at ground-based telescopes (CRIRES/VLT and CSHELL/NASA-IRTF). By performing a rotational analysis on the O2 lines, we derive molecular temperature maps that we use to derive the vertical level of the emission (e.g., Novak et al. 2002). Our maps sample the full observable disk of Mars on March/25/2008 (Ls=50°, northern winter) and on Jan/29/2014 (Ls=83°, northern spring). The maps reveal a strong dependence of the O2 emission and water burden on local orography, while the temperature maps are in strong disagreement with current models. Could this be the signature of heterogeneous chemistry? We will present the global maps and will discuss possible scenarios to explain the observations.This work was partially funded by grants from NASA's Planetary Astronomy Program (344-32-51-96), NASA’s Mars Fundamental Research Program (203959.02.02.20.29), NASA’s Astrobiology Program (344-53-51), and the NSF-RUI Program (AST-805540). We thank the administration and staff of the European Southern Observatory/VLT and NASA-IRTF for awarding observing time and coordinating our observations.Bertaux, J.-L., Gondet, B., Lefèvre, F., et al. 2012. J. Geophys. Res. Pl. 117. pp. 1-9.Clancy, R.T., Sandor, B.J., Wolff, M.J., et al. 2012. J. Geophys. Res. Pl. 117. p. E00J10.Lefèvre, F., Lebonnois, S., Montmessin, F. & Forget, F. 2004. J. Geophys. Res. Pl. 109. pp. 1-20.Novak, R.E., Mumma, M.J., Disanti, M.A., et al. 2002. Icarus. 158 (1). pp. 14-23.

  4. Downscaling NASA Climatological Data to Produce Detailed Climate Zone Maps

    NASA Technical Reports Server (NTRS)

    Chandler, William S.; Hoell, James M.; Westberg, David J.; Whitlock, Charles H.; Zhang, Taiping; Stackhouse, P. W.

    2011-01-01

    The design of energy efficient sustainable buildings is heavily dependent on accurate long-term and near real-time local weather data. To varying degrees the current meteorological networks over the globe have been used to provide these data albeit often from sites far removed from the desired location. The national need is for access to weather and solar resource data accurate enough to use to develop preliminary building designs within a short proposal time limit, usually within 60 days. The NASA Prediction Of Worldwide Energy Resource (POWER) project was established by NASA to provide industry friendly access to globally distributed solar and meteorological data. As a result, the POWER web site (power.larc.nasa.gov) now provides global information on many renewable energy parameters and several buildings-related items but at a relatively coarse resolution. This paper describes a method of downscaling NASA atmospheric assimilation model results to higher resolution and maps those parameters to produce building climate zone maps using estimates of temperature and precipitation. The distribution of climate zones for North America with an emphasis on the Pacific Northwest for just one year shows very good correspondence to the currently defined distribution. The method has the potential to provide a consistent procedure for deriving climate zone information on a global basis that can be assessed for variability and updated more regularly.

  5. Prediction of global ionospheric VTEC maps using an adaptive autoregressive model

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Xin, Shaoming; Liu, Xiaolu; Shi, Chuang; Fan, Lei

    2018-02-01

    In this contribution, an adaptive autoregressive model is proposed and developed to predict global ionospheric vertical total electron content maps (VTEC). Specifically, the spherical harmonic (SH) coefficients are predicted based on the autoregressive model, and the order of the autoregressive model is determined adaptively using the F-test method. To test our method, final CODE and IGS global ionospheric map (GIM) products, as well as altimeter TEC data during low and mid-to-high solar activity period collected by JASON, are used to evaluate the precision of our forecasting products. Results indicate that the predicted products derived from the model proposed in this paper have good consistency with the final GIMs in low solar activity, where the annual mean of the root-mean-square value is approximately 1.5 TECU. However, the performance of predicted vertical TEC in periods of mid-to-high solar activity has less accuracy than that during low solar activity periods, especially in the equatorial ionization anomaly region and the Southern Hemisphere. Additionally, in comparison with forecasting products, the final IGS GIMs have the best consistency with altimeter TEC data. Future work is needed to investigate the performance of forecasting products using the proposed method in an operational environment, rather than using the SH coefficients from the final CODE products, to understand the real-time applicability of the method.

  6. Topographic Slope as a Proxy for Seismic Site-Conditions (VS30) and Amplification Around the Globe

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.

    2007-01-01

    Executive Summary It is well-known that large global earthquakes can have a dramatic effect on local communities and the built environment. Moreover, ground motions amplified by surficial materials can exacerbate the situation, often making the difference between minor and major damage. For a real-time earthquake impact alert system, such as Prompt Assessment of Global Earthquakes for Response (PAGER) (Wald and others, 2006), we seek to rapidly evaluate potential ground shaking in the source region and subsequently provide an estimate of the population exposure to potentially fatal levels of ground shaking in any region of the world. The contribution of surficial geology (particularly soft sediments) to the amplification of ground shaking is an important component in predicting the levels of ground motion observed at any site. Unfortunately, the availability of information regarding seismic siteconditions is only available at a few sites around the globe. Herein, we describe a methodology for deriving maps of seismic site-conditions anywhere in the world using topographic slope as a proxy. Average shear-velocity down to 30 m (or VS30) measurements are correlated against topographic slope to develop two sets of coefficients for predicting VS30: one for active tectonic regions that possess dynamic topographic relief, and one for stable continental regions where changes in topography are more subdued. These coefficients have been applied to the continental United States, in addition to other regions around the world. They are subsequently compared to existing site-condition maps based on geology and observed VS30 measurements, where available. The application of the topographic slope method in regions with abundant VS30 measurements (for example California, Memphis, and Taiwan) indicates that this method provides site condition-maps of similar quality, or in some cases, maps superior to those developed from more traditional techniques. Having a first-order assessment of seismic site-conditions anywhere in the world provides a valuable tool to rapidly estimate ground motions following any global earthquake, the primary motivation for this research. These VS30 maps will enable us to better quantify possible ground shaking and rapidly deliver these predictions to emergency managers and responders. In addition, the VS30 maps for the globe will also have practical applications for numerous related probabilistic- and scenario-based studies. To date, several researchers have requested maps or have used the approach outlined herein for their own applications (for example Cagnan and Kariptas, written commun., 2007; Harmandar and others, 2007). Given that we anticipate a significant demand for these products, we have developed an internet delivery service so that users can download maps and grids of seismic site-conditions for specified regions. To some extent, these grids can also be customized by the user if they disagree with the predefined correlations derived using the methodologies described within this report. Finally, this report represents a more comprehensive account of this technique and provides a more fully illustrated global description of results than that given in Wald and Allen (2007), which has been accepted for publication in the Bulletin of the Seismological Society of America.

  7. CryoSat-2 altimetry derived Arctic bathymetry map: first results and validation

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Abulaitijiang, A.; Cancet, M.; Knudsen, P.

    2017-12-01

    The Technical University of Denmark (DTU), DTU Space has been developing high quality high resolution gravity fields including the new highly accurate CryoSat-2 radar altimetry satellite data which extends the global coverage of altimetry data up to latitude 88°. With its exceptional Synthetic Aperture Radar (SAR) mode being operating throughout the Arctic Ocean, leads, i.e., the ocean surface heights, is used to retrieve the sea surface height with centimeter-level range precision. Combined with the long repeat cycle ( 369 days), i.e., dense cross-track coverage, the high-resolution Arctic marine gravity can be modelled using the CryoSat-2 altimetry. Further, the polar gap can be filled by the available ArcGP product, thus yielding the complete map of the Arctic bathymetry map. In this presentation, we will make use of the most recent DTU17 marine gravity, to derive the arctic bathymetry map using inversion based on best available hydrographic maps. Through the support of ESA a recent evaluation of existing hydrographic models of the Arctic Ocean Bathymetry models (RTOPO, GEBCO, IBCAO etc) and various inconsistencies have been identified and means to rectify these inconsistencies have been taken prior to perform the inversion using altimetry. Simultaneously DTU Space has been placing great effort on the Arctic data screening, filtering, and de-noising using various altimetry retracking solutions and classifications. All the pre-processing contributed to the fine modelling of Actic gravity map. Thereafter, the arctic marine gravity grids will eventually be translated (downward continuation operation) to a new altimetry enhanced Arctic bathymetry map using appropriate band-pass filtering.

  8. The Role of Atmospheric Pressure on Surface Thermal Inertia for Early Mars Climate Modeling

    NASA Astrophysics Data System (ADS)

    Mischna, M.; Piqueux, S.

    2017-12-01

    On rocky bodies such as Mars, diurnal surface temperatures are controlled by the surface thermal inertia, which is a measure of the ability of the surface to store heat during the day and re-radiate it at night. Thermal inertia is a compound function of the near-surface regolith thermal conductivity, density and specific heat, with the regolith thermal conductivity being strongly controlled by the atmospheric pressure. For Mars, current best maps of global thermal inertia are derived from the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) spacecraft using bolometric brightness temperatures of the surface. Thermal inertia is widely used in the atmospheric modeling community to determine surface temperatures and to establish lower boundary conditions for the atmosphere. Infrared radiation emitted from the surface is key in regulating lower atmospheric temperatures and driving overall global circulation. An accurate map of surface thermal inertia is thus required to produce reasonable results of the present-day atmosphere using numerical Mars climate models. Not surprisingly, thermal inertia is also a necessary input into climate models of early Mars, which assume a thicker atmosphere, by as much as one to two orders of magnitude above the present-day 6 mb mean value. Early Mars climate models broadly, but incorrectly, assume the present day thermal inertia surface distribution. Here, we demonstrate that, on early Mars, when pressures were larger than today's, the surface layer thermal inertia was globally higher because of the increased thermal conductivity driven by the higher gas pressure in interstitial pore spaces within the soil. Larger thermal inertia reduces the diurnal range of surface temperature and will affect the size and timing of the modeled seasonal polar ice caps. Additionally, it will globally alter the frequency of when surface temperatures are modeled to exceed the liquid water melting point, and so results may need to be reassessed in light of lower `peak' global temperatures. We shall demonstrate the consequences of using properly calibrated thermal inertia maps for early Mars climate simulations, and propose simplified thermal inertia maps for use in such climate models.

  9. Discovery and introgression of the wild sunflower-derived novel downy mildew resistance gene Pl 19 in confection sunflower (Helianthus annuus L.).

    PubMed

    Zhang, Z W; Ma, G J; Zhao, J; Markell, S G; Qi, L L

    2017-01-01

    A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome. Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC 1 F 2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC 1 F 2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC 1 F 2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC 2 F 3 progeny provides a novel gene for use in confection sunflower breeding programs.

  10. Carbon Dioxide Evasion from Boreal Lakes: Drivers, Variability and Revised Global Estimate

    NASA Astrophysics Data System (ADS)

    Hastie, A. T.; Lauerwald, R.; Weyhenmeyer, G. A.; Sobek, S.; Verpoorter, C.; Regnier, P. A. G.

    2016-12-01

    Carbon dioxide evasion (FCO2) from lakes and reservoirs is established as an important component of the global carbon (C) cycle, a fact reflected by the inclusion of these waterbodies in the most recent IPCC assessment report. In this study we developed a statistical model driven by environmental geodata, to predict CO2 partial pressure (pCO2) in boreal lakes, and to create the first high resolution map (0.5°) of boreal (50°- 70°) lake pCO2. The resulting map of pCO2 was combined with lake area (lakes >0.01km2) from the recently developed GLOWABO database (Verpoorter et al., 2014) and estimates of gas transfer velocity k, to produce the first high resolution map of boreal lake FCO2. Before training our model, the geodata as well as approximately 27,000 samples of `open water' (excluding periods of ice cover) pCO2 from the boreal region, were gridded at 0.5° resolution and log transformed where necessary. A multilinear regression was used to derive a prediction equation for log10 pCO2 as a function of log10 lake area, net primary productivity (NPP), precipitation, wind speed and soil pH (r2= 0.66), and then applied in ArcGIS to build the map of pCO2. After validation, the map of boreal lake pCO2 was used to derive a map of boreal lake FCO2. For the boreal region we estimate an average, lake area weighted, pCO2 of 930 μatm and FCO2 of 170 (121-243) Tg C yr-1. Our estimate of FCO2 will soon be updated with the incorporation of the smallest lakes (<0.01km2). Despite the current exclusion of the smallest lakes, our estimate is higher than the highest previous estimate of approximately 110 Tg C yr-1 (Aufdenkampe et al, 2011). Moreover, our empirical approach driven by environmental geodata can be used as the basis for estimating future FCO2 from boreal lakes, and their sensitivity to climate change.

  11. Fusion of multi-source remote sensing data for agriculture monitoring tasks

    NASA Astrophysics Data System (ADS)

    Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.

    2016-12-01

    Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.

  12. An atlas of ShakeMaps for selected global earthquakes

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.; Hotovec, Alicia J.; Lin, Kuo-Wan; Earle, Paul S.; Marano, Kristin D.

    2008-01-01

    An atlas of maps of peak ground motions and intensity 'ShakeMaps' has been developed for almost 5,000 recent and historical global earthquakes. These maps are produced using established ShakeMap methodology (Wald and others, 1999c; Wald and others, 2005) and constraints from macroseismic intensity data, instrumental ground motions, regional topographically-based site amplifications, and published earthquake-rupture models. Applying the ShakeMap methodology allows a consistent approach to combine point observations with ground-motion predictions to produce descriptions of peak ground motions and intensity for each event. We also calculate an estimated ground-motion uncertainty grid for each earthquake. The Atlas of ShakeMaps provides a consistent and quantitative description of the distribution and intensity of shaking for recent global earthquakes (1973-2007) as well as selected historic events. As such, the Atlas was developed specifically for calibrating global earthquake loss estimation methodologies to be used in the U.S. Geological Survey Prompt Assessment of Global Earthquakes for Response (PAGER) Project. PAGER will employ these loss models to rapidly estimate the impact of global earthquakes as part of the USGS National Earthquake Information Center's earthquake-response protocol. The development of the Atlas of ShakeMaps has also led to several key improvements to the Global ShakeMap system. The key upgrades include: addition of uncertainties in the ground motion mapping, introduction of modern ground-motion prediction equations, improved estimates of global seismic-site conditions (VS30), and improved definition of stable continental region polygons. Finally, we have merged all of the ShakeMaps in the Atlas to provide a global perspective of earthquake ground shaking for the past 35 years, allowing comparison with probabilistic hazard maps. The online Atlas and supporting databases can be found at http://earthquake.usgs.gov/eqcenter/shakemap/atlas.php/.

  13. Linear retrieval and global measurements of wind speed from the Seasat SMMR

    NASA Technical Reports Server (NTRS)

    Pandey, P. C.

    1983-01-01

    Retrievals of wind speed (WS) from Seasat Scanning Multichannel Microwave Radiometer (SMMR) were performed using a two-step statistical technique. Nine subsets of two to five SMMR channels were examined for wind speed retrieval. These subsets were derived by using a leaps and bound procedure based on the coefficient of determination selection criteria to a statistical data base of brightness temperatures and geophysical parameters. Analysis of Monsoon Experiment and ocean station PAPA data showed a strong correlation between sea surface temperature and water vapor. This relation was used in generating the statistical data base. Global maps of WS were produced for one and three month periods.

  14. A global planktic foraminifer census data set for the Pliocene ocean

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.

    2016-01-01

    This article presents data derived by the USGS Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project. PRISM has generated planktic foraminifer census data from core sites and outcrops around the globe since 1988. These data form the basis of a number of paleoceanographic reconstructions focused on the mid-Piacenzian Warm Period (3.264 to 3.025 million years ago). Data are presented as counts of individuals within 64 taxonomic categories for each locality. We describe sample acquisition and processing, age dating, taxonomy and archival storage of material. These data provide a unique, stratigraphically focused opportunity to assess the effects of global warming on marine plankton.

  15. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would enable global comparisons of plate boundary structures and processes and could facilitate a more coordinated approach to optimizing the future acquisition of these high-value data by the global research community.

  16. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  17. Achieving Accuracy Requirements for Forest Biomass Mapping: A Data Fusion Method for Estimating Forest Biomass and LiDAR Sampling Error with Spaceborne Data

    NASA Technical Reports Server (NTRS)

    Montesano, P. M.; Cook, B. D.; Sun, G.; Simard, M.; Zhang, Z.; Nelson, R. F.; Ranson, K. J.; Lutchke, S.; Blair, J. B.

    2012-01-01

    The synergistic use of active and passive remote sensing (i.e., data fusion) demonstrates the ability of spaceborne light detection and ranging (LiDAR), synthetic aperture radar (SAR) and multispectral imagery for achieving the accuracy requirements of a global forest biomass mapping mission. This data fusion approach also provides a means to extend 3D information from discrete spaceborne LiDAR measurements of forest structure across scales much larger than that of the LiDAR footprint. For estimating biomass, these measurements mix a number of errors including those associated with LiDAR footprint sampling over regional - global extents. A general framework for mapping above ground live forest biomass (AGB) with a data fusion approach is presented and verified using data from NASA field campaigns near Howland, ME, USA, to assess AGB and LiDAR sampling errors across a regionally representative landscape. We combined SAR and Landsat-derived optical (passive optical) image data to identify forest patches, and used image and simulated spaceborne LiDAR data to compute AGB and estimate LiDAR sampling error for forest patches and 100m, 250m, 500m, and 1km grid cells. Forest patches were delineated with Landsat-derived data and airborne SAR imagery, and simulated spaceborne LiDAR (SSL) data were derived from orbit and cloud cover simulations and airborne data from NASA's Laser Vegetation Imaging Sensor (L VIS). At both the patch and grid scales, we evaluated differences in AGB estimation and sampling error from the combined use of LiDAR with both SAR and passive optical and with either SAR or passive optical alone. This data fusion approach demonstrates that incorporating forest patches into the AGB mapping framework can provide sub-grid forest information for coarser grid-level AGB reporting, and that combining simulated spaceborne LiDAR with SAR and passive optical data are most useful for estimating AGB when measurements from LiDAR are limited because they minimized forest AGB sampling errors by 15 - 38%. Furthermore, spaceborne global scale accuracy requirements were achieved. At least 80% of the grid cells at 100m, 250m, 500m, and 1km grid levels met AGB density accuracy requirements using a combination of passive optical and SAR along with machine learning methods to predict vegetation structure metrics for forested areas without LiDAR samples. Finally, using either passive optical or SAR, accuracy requirements were met at the 500m and 250m grid level, respectively.

  18. Measuring phenological variability from satellite imagery

    USGS Publications Warehouse

    Reed, Bradley C.; Brown, Jesslyn F.; Vanderzee, D.; Loveland, Thomas R.; Merchant, James W.; Ohlen, Donald O.

    1994-01-01

    Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time-series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite-derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large- area land cover mapping and monitoring. The utility of re- motely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.

  19. Probabilistic atlas-based segmentation of combined T1-weighted and DUTE MRI for calculation of head attenuation maps in integrated PET/MRI scanners

    PubMed Central

    Poynton, Clare B; Chen, Kevin T; Chonde, Daniel B; Izquierdo-Garcia, David; Gollub, Randy L; Gerstner, Elizabeth R; Batchelor, Tracy T; Catana, Ciprian

    2014-01-01

    We present a new MRI-based attenuation correction (AC) approach for integrated PET/MRI systems that combines both segmentation- and atlas-based methods by incorporating dual-echo ultra-short echo-time (DUTE) and T1-weighted (T1w) MRI data and a probabilistic atlas. Segmented atlases were constructed from CT training data using a leave-one-out framework and combined with T1w, DUTE, and CT data to train a classifier that computes the probability of air/soft tissue/bone at each voxel. This classifier was applied to segment the MRI of the subject of interest and attenuation maps (μ-maps) were generated by assigning specific linear attenuation coefficients (LACs) to each tissue class. The μ-maps generated with this “Atlas-T1w-DUTE” approach were compared to those obtained from DUTE data using a previously proposed method. For validation of the segmentation results, segmented CT μ-maps were considered to the “silver standard”; the segmentation accuracy was assessed qualitatively and quantitatively through calculation of the Dice similarity coefficient (DSC). Relative change (RC) maps between the CT and MRI-based attenuation corrected PET volumes were also calculated for a global voxel-wise assessment of the reconstruction results. The μ-maps obtained using the Atlas-T1w-DUTE classifier agreed well with those derived from CT; the mean DSCs for the Atlas-T1w-DUTE-based μ-maps across all subjects were higher than those for DUTE-based μ-maps; the atlas-based μ-maps also showed a lower percentage of misclassified voxels across all subjects. RC maps from the atlas-based technique also demonstrated improvement in the PET data compared to the DUTE method, both globally as well as regionally. PMID:24753982

  20. CRISM Multispectral and Hyperspectral Mapping Data - A Global Data Set for Hydrated Mineral Mapping

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Hash, C. D.; Murchie, S. L.; Lim, H.

    2017-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a visible through short-wave infrared hyperspectral imaging spectrometer (VNIR S-detector: 364-1055 nm; IR L-detector: 1001-3936 nm; 6.55 nm sampling) that has been in operation on the Mars Reconnaissance Orbiter (MRO) since 2006. Over the course of the MRO mission, CRISM has acquired 290,000 individual mapping observation segments (mapping strips) with a variety of observing modes and data characteristics (VNIR/IR; 100/200 m/pxl; multi-/hyper-spectral band selection) over a wide range of observing conditions (atmospheric state, observation geometry, instrument state). CRISM mapping data coverage density varies primarily with latitude and secondarily due to seasonal and operational considerations. The aggregate global IR mapping data coverage currently stands at 85% ( 80% at the equator with 40% repeat sampling), which is sufficient spatial sampling density to support the assembly of empirically optimized radiometrically consistent mapping mosaic products. The CRISM project has defined a number of mapping mosaic data products (e.g. Multispectral Reduced Data Record (MRDR) map tiles) with varying degrees of observation-specific processing and correction applied prior to mosaic assembly. A commonality among the mosaic products is the presence of inter-observation radiometric discrepancies which are traceable to variable observation circumstances or associated atmospheric/photometric correction residuals. The empirical approach to radiometric reconciliation leverages inter-observation spatial overlaps and proximal relationships to construct a graph that encodes the mosaic structure and radiometric discrepancies. The graph theory abstraction allows the underling structure of the msaic to be evaluated and the corresponding optimization problem configured so it is well-posed. Linear and non-linear least squares optimization is then employed to derive a set of observation- and wavelength- specific model parameters for a series of transform functions that minimize the total radiometric discrepancy across the mosaic. This empirical approach to CRISM data radiometric reconciliation and the utility of the resulting mapping data mosaic products for hydrated mineral mapping will be presented.

  1. MARSTHERM: A Web-based System Providing Thermophysical Analysis Tools for Mars Research

    NASA Astrophysics Data System (ADS)

    Putzig, N. E.; Barratt, E. M.; Mellon, M. T.; Michaels, T. I.

    2013-12-01

    We introduce MARSTHERM, a web-based system that will allow researchers access to a standard numerical thermal model of the Martian near-surface and atmosphere. In addition, the system will provide tools for the derivation, mapping, and analysis of apparent thermal inertia from temperature observations by the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Odyssey Thermal Emission Imaging System (THEMIS). Adjustable parameters for the thermal model include thermal inertia, albedo, surface pressure, surface emissivity, atmospheric dust opacity, latitude, surface slope angle and azimuth, season (solar longitude), and time steps for calculations and output. The model computes diurnal surface and brightness temperatures for either a single day or a full Mars year. Output options include text files and plots of seasonal and diurnal surface, brightness, and atmospheric temperatures. The tools for the derivation and mapping of apparent thermal inertia from spacecraft data are project-based, wherein the user provides an area of interest (AOI) by specifying latitude and longitude ranges. The system will then extract results within the AOI from prior global mapping of elevation (from the Mars Orbiter Laser Altimeter, for calculating surface pressure), TES annual albedo, and TES seasonal and annual-mean 2AM and 2PM apparent thermal inertia (Putzig and Mellon, 2007, Icarus 191, 68-94). In addition, a history of TES dust opacity within the AOI is computed. For each project, users may then provide a list of THEMIS images to process for apparent thermal inertia, optionally overriding the TES-derived dust opacity with a fixed value. Output from the THEMIS derivation process includes thumbnail and context images, GeoTIFF raster data, and HDF5 files containing arrays of input and output data (radiance, brightness temperature, apparent thermal inertia, elevation, quality flag, latitude, and longitude) and ancillary information. As a demonstration of capabilities, we will present results from a thermophysical study of Gale Crater (Barratt and Putzig, 2013, EPSC abstract 613), for which TES and THEMIS mapping has been carried out during system development. Public access to the MARSTHERM system will be provided in conjunction with the 2013 AGU Fall Meeting and will feature the numerical thermal model and thermal-inertia derivation algorithm developed by Mellon et al. (2000, Icarus 148, 437-455) as modified by Putzig and Mellon (2007, Icarus 191, 68-94). Updates to the thermal model and derivation algorithm that include a more sophisticated representation of the atmosphere and a layered subsurface are presently in development, and these will be incorporated into the system when they are available. Other planned enhancements include tools for modeling temperatures from horizontal mixtures of materials and slope facets, for comparing heterogeneity modeling results to TES and THEMIS results, and for mosaicking THEMIS images.

  2. Global Distribution of Aerosols Over the Open Ocean as Derived from the Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Tindale, N. W.

    1999-01-01

    Climatological maps of monthly mean aerosol radiance levels derived from the coastal zone color scanner (CZCS) were constructed for the world's ocean basins. This is the first study to use the 7.5.-year CZCS data set to examine the distribution and seasonality of aerosols over the open ocean on a global scale. Examination of our satellite images found the most prominent large-scale patch of elevated aerosol radiances in each month off the coast of northwest Africa. The well-known, large-scale plumes of elevated aerosol levels in the Arabian Sea, the northwest Pacific, and off the east coast of North America were also successfully captured. Radiance data were extracted from 13 major open-ocean zones, ranging from the subpolar to equatorial regions. Results from these extractions revealed the aerosol load in both subpolar and subtropical zones to be higher in the Northern Hemisphere than in the Southern Hemisphere. Aerosol radiances in the subtropics of both hemispheres were about 2 times higher in summer than in winter. In subpolar regions, aerosol radiances in late spring/early summer were almost 3 times that observed in winter. In general, the aerosol signal was higher during the warmer months and lower during the cooler months, irrespective of location. A comparison between our mean monthly aerosol radiance maps with mean monthly chlorophyll maps (also from CZCS) showed similar seasonality between aerosol and chlorophyll levels in the subpolar zones of both hemispheres, i.e., high levels in summer, low levels in winter. In the subtropics of both hemispheres, however, chlorophyll levels were higher in winter months which coincided with a depressed aerosol signal. Our results indicate that the near-IR channel on ocean color sensors can be used to successfully capture well-known, large-scale aerosol plumes on a global scale and that future ocean color sensors may provide a platform for long-term synoptic studies of combined aerosol-phytoplankton productivity interactions.

  3. Assessment and Applications of NASA Ozone Data Products Derived from Aura OMI-MLS Satellite Measurements in Context of the GMI Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Olsen, M. A.; Witte, J. C.; Douglass, A. R.; Strahan, S. E.; Wargan, K.; Liu, X.; Schoeberl, M. R.; Yang, K.; Kaplan, T. B.; hide

    2013-01-01

    Measurements from the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both onboard the Aura spacecraft, have been used to produce daily global maps of column and profile ozone since August 2004. Here we compare and evaluate three strategies to obtain daily maps of tropospheric and stratospheric ozone from OMI and MLS measurements: trajectory mapping, direct profile retrieval, and data assimilation. Evaluation is based upon an assessment that includes validation using ozonesondes and comparisons with the Global Modeling Initiative (GMI) chemical transport model (CTM). We investigate applications of the three ozone data products from near-decadal and inter-annual timescales to day-to-day case studies. Zonally averaged inter-annual changes in tropospheric ozone from all of the products in any latitude range are of the order 1-2 Dobson Units while changes (increases) over the 8-year Aura record investigated http://eospso.gsfc.nasa.gov/atbd-category/49 vary approximately 2-4 Dobson Units. It is demonstrated that all of the ozone products can measure and monitor exceptional tropospheric ozone events including major forest fire and pollution transport events. Stratospheric ozone during the Aura record has several anomalous inter-annual events including stratospheric warming split events in the Northern Hemisphere extra-tropics that are well captured using the data assimilation ozone profile product. Data assimilation with continuous daily global coverage and vertical ozone profile information is the best of the three strategies at generating a global tropospheric and stratospheric ozone product for science applications.

  4. Mapping global cropland and field size.

    PubMed

    Fritz, Steffen; See, Linda; McCallum, Ian; You, Liangzhi; Bun, Andriy; Moltchanova, Elena; Duerauer, Martina; Albrecht, Fransizka; Schill, Christian; Perger, Christoph; Havlik, Petr; Mosnier, Aline; Thornton, Philip; Wood-Sichra, Ulrike; Herrero, Mario; Becker-Reshef, Inbal; Justice, Chris; Hansen, Matthew; Gong, Peng; Abdel Aziz, Sheta; Cipriani, Anna; Cumani, Renato; Cecchi, Giuliano; Conchedda, Giulia; Ferreira, Stefanus; Gomez, Adriana; Haffani, Myriam; Kayitakire, Francois; Malanding, Jaiteh; Mueller, Rick; Newby, Terence; Nonguierma, Andre; Olusegun, Adeaga; Ortner, Simone; Rajak, D Ram; Rocha, Jansle; Schepaschenko, Dmitry; Schepaschenko, Maria; Terekhov, Alexey; Tiangwa, Alex; Vancutsem, Christelle; Vintrou, Elodie; Wenbin, Wu; van der Velde, Marijn; Dunwoody, Antonia; Kraxner, Florian; Obersteiner, Michael

    2015-05-01

    A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website. © 2015 John Wiley & Sons Ltd.

  5. Comparing WSA coronal and solar wind model predictions driven by line-of-sight and vector HMI ADAPT maps

    NASA Astrophysics Data System (ADS)

    Arge, C. N.; Henney, C. J.; Shurkin, K.; Wallace, S.

    2017-12-01

    As the primary input to nearly all coronal models, reliable estimates of the global solar photospheric magnetic field distribution are critical for accurate modeling and understanding of solar and heliospheric magnetic fields. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model generates synchronic (i.e., globally instantaneous) maps by evolving observed solar magnetic flux using relatively well understood transport processes when measurements are not available and then updating modeled flux with new observations (available from both the Earth and the far-side of the Sun) using data assimilation methods that rigorously take into account model and observational uncertainties. ADAPT is capable of assimilating line-of-sight and vector magnetic field data from all observatory sources including the expected photospheric vector magnetograms from the Polarimetric and Helioseismic Imager (PHI) on the Solar Orbiter, as well as those generated using helioseismic methods. This paper compares Wang-Sheeley-Arge (WSA) coronal and solar wind modeling results at Earth and STEREO A & B using ADAPT input model maps derived from both line-of-site and vector SDO/HMI magnetograms that include methods for incorporating observations of a large, newly emerged (July 2010) far-side active region (AR11087).

  6. Developing a Carbon Monitoring System For Pinyon-juniper Forests and Woodlands

    NASA Astrophysics Data System (ADS)

    Falkowski, M. J.; Hudak, A. T.; Fekety, P.; Filippelli, S.

    2017-12-01

    Pinyon-juniper (PJ) forests and woodlands are the third largest vegetation type in the United States. They cover over 40 million hectares across the western US, representing 40% of the total forest and woodland area in the Intermountain West. Although the density of carbon stored in these ecosystems is relatively low compared to other forest types, the vast area of short stature forests and woodlands (both nationally and globally) make them critical components of regional, national, and global carbon budgets. The overarching goal of this research is to prototype a carbon monitoring, reporting, and verification (MRV) system for characterizing total aboveground biomass stocks and flux across the PJ vegetation gradient in the western United States. We achieve this by combining in situ forest measurements and novel allometric equations with tree measurements derived from high resolution airborne imagery to map aboveground biomass across 500,000 km2 in the Western US. These high-resolution maps of aboveground biomass are then leveraged as training data to predict biomass flux through time from Landsat time-series data. The results from this research highlight the potential in mapping biomass stocks and flux in open forests and woodlands, and could be easily adopted into an MRV framework.

  7. High-resolution gravity field modeling using GRAIL mission data

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.

  8. DeepMoon: Convolutional neural network trainer to identify moon craters

    NASA Astrophysics Data System (ADS)

    Silburt, Ari; Zhu, Chenchong; Ali-Dib, Mohamad; Menou, Kristen; Jackson, Alan

    2018-05-01

    DeepMoon trains a convolutional neural net using data derived from a global digital elevation map (DEM) and catalog of craters to recognize craters on the Moon. The TensorFlow-based pipeline code is divided into three parts. The first generates a set images of the Moon randomly cropped from the DEM, with corresponding crater positions and radii. The second trains a convnet using this data, and the third validates the convnet's predictions.

  9. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  10. An updated geospatial liquefaction model for global application

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.

    2017-01-01

    We present an updated geospatial approach to estimation of earthquake-induced liquefaction from globally available geospatial proxies. Our previous iteration of the geospatial liquefaction model was based on mapped liquefaction surface effects from four earthquakes in Christchurch, New Zealand, and Kobe, Japan, paired with geospatial explanatory variables including slope-derived VS30, compound topographic index, and magnitude-adjusted peak ground acceleration from ShakeMap. The updated geospatial liquefaction model presented herein improves the performance and the generality of the model. The updates include (1) expanding the liquefaction database to 27 earthquake events across 6 countries, (2) addressing the sampling of nonliquefaction for incomplete liquefaction inventories, (3) testing interaction effects between explanatory variables, and (4) overall improving model performance. While we test 14 geospatial proxies for soil density and soil saturation, the most promising geospatial parameters are slope-derived VS30, modeled water table depth, distance to coast, distance to river, distance to closest water body, and precipitation. We found that peak ground velocity (PGV) performs better than peak ground acceleration (PGA) as the shaking intensity parameter. We present two models which offer improved performance over prior models. We evaluate model performance using the area under the curve under the Receiver Operating Characteristic (ROC) curve (AUC) and the Brier score. The best-performing model in a coastal setting uses distance to coast but is problematic for regions away from the coast. The second best model, using PGV, VS30, water table depth, distance to closest water body, and precipitation, performs better in noncoastal regions and thus is the model we recommend for global implementation.

  11. Genome-Wide Linkage and Association Mapping of Halo Blight Resistance in Common Bean to Race 6 of the Globally Important Bacterial Pathogen

    PubMed Central

    Tock, Andrew J.; Fourie, Deidré; Walley, Peter G.; Holub, Eric B.; Soler, Alvaro; Cichy, Karen A.; Pastor-Corrales, Marcial A.; Song, Qijian; Porch, Timothy G.; Hart, John P.; Vasconcellos, Renato C. C.; Vicente, Joana G.; Barker, Guy C.; Miklas, Phillip N.

    2017-01-01

    Pseudomonas syringae pv. phaseolicola (Psph) Race 6 is a globally prevalent and broadly virulent bacterial pathogen with devastating impact causing halo blight of common bean (Phaseolus vulgaris L.). Common bean lines PI 150414 and CAL 143 are known sources of resistance against this pathogen. We constructed high-resolution linkage maps for three recombinant inbred populations to map resistance to Psph Race 6 derived from the two common bean lines. This was complemented with a genome-wide association study (GWAS) of Race 6 resistance in an Andean Diversity Panel of common bean. Race 6 resistance from PI 150414 maps to a single major-effect quantitative trait locus (QTL; HB4.2) on chromosome Pv04 and confers broad-spectrum resistance to eight other races of the pathogen. Resistance segregating in a Rojo × CAL 143 population maps to five chromosome arms and includes HB4.2. GWAS detected one QTL (HB5.1) on chromosome Pv05 for resistance to Race 6 with significant influence on seed yield. The same HB5.1 QTL, found in both Canadian Wonder × PI 150414 and Rojo × CAL 143 populations, was effective against Race 6 but lacks broad resistance. This study provides evidence for marker-assisted breeding for more durable halo blight control in common bean by combining alleles of race-nonspecific resistance (HB4.2 from PI 150414) and race-specific resistance (HB5.1 from cv. Rojo). PMID:28736566

  12. Solar wind interaction effects on the magnetic fields around Mars: Consequences for interplanetary and crustal field measurements

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.

    2015-11-01

    The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.

  13. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  14. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    NASA Technical Reports Server (NTRS)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  15. TOGA COARE Satellite data summaries available on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Chen, S. S.; Houze, R. A., Jr.; Mapes, B. E.; Brodzick, S. R.; Yutler, S. E.

    1995-01-01

    Satellite data summary images and analysis plots from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), which were initially prepared in the field at the Honiara Operations Center, are now available on the Internet via World Wide Web browsers such as Mosaic. These satellite data summaries consist of products derived from the Japanese Geosynchronous Meteorological Satellite IR data: a time-size series of the distribution of contiguous cold cloudiness areas, weekly percent high cloudiness (PHC) maps, and a five-month time-longitudinal diagram illustrating the zonal motion of large areas of cold cloudiness. The weekly PHC maps are overlaid with weekly mean 850-hPa wind calculated from the European Centre for Medium-Range Weather Forecasts (ECMWF) global analysis field and can be viewed as an animation loop. These satellite summaries provide an overview of spatial and temporal variabilities of the cloud population and a large-scale context for studies concerning specific processes of various components of TOGA COARE.

  16. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.

    PubMed

    Chen, Boshan; Chen, Jiejie

    2015-08-01

    We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. SoilGrids250m: Global gridded soil information based on machine learning

    PubMed Central

    Mendes de Jesus, Jorge; Heuvelink, Gerard B. M.; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N.; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A.; Batjes, Niels H.; Leenaars, Johan G. B.; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas

    2017-01-01

    This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods—random forest and gradient boosting and/or multinomial logistic regression—as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10–fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. PMID:28207752

  18. SoilGrids250m: Global gridded soil information based on machine learning.

    PubMed

    Hengl, Tomislav; Mendes de Jesus, Jorge; Heuvelink, Gerard B M; Ruiperez Gonzalez, Maria; Kilibarda, Milan; Blagotić, Aleksandar; Shangguan, Wei; Wright, Marvin N; Geng, Xiaoyuan; Bauer-Marschallinger, Bernhard; Guevara, Mario Antonio; Vargas, Rodrigo; MacMillan, Robert A; Batjes, Niels H; Leenaars, Johan G B; Ribeiro, Eloi; Wheeler, Ichsani; Mantel, Stephan; Kempen, Bas

    2017-01-01

    This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.

  19. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  20. Improving Global Mass Flux Solutions from Gravity Recovery and Climate Experiment (GRACE) Through Forward Modeling and Continuous Time Correlation

    NASA Technical Reports Server (NTRS)

    Sabaka, T. J.; Rowlands, D. D.; Luthcke, S. B.; Boy, J.-P.

    2010-01-01

    We describe Earth's mass flux from April 2003 through November 2008 by deriving a time series of mas cons on a global 2deg x 2deg equal-area grid at 10 day intervals. We estimate the mass flux directly from K band range rate (KBRR) data provided by the Gravity Recovery and Climate Experiment (GRACE) mission. Using regularized least squares, we take into account the underlying process dynamics through continuous space and time-correlated constraints. In addition, we place the mascon approach in the context of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric filtering, least squares collocation, and Kalman smoothing. We produce mascon time series from KBRR data that have and have not been corrected (forward modeled) for hydrological processes and fmd that the former produce superior results in oceanic areas by minimizing signal leakage from strong sources on land. By exploiting the structure of the spatiotemporal constraints, we are able to use a much more efficient (in storage and computation) inversion algorithm based upon the conjugate gradient method. This allows us to apply continuous rather than piecewise continuous time-correlated constraints, which we show via global maps and comparisons with ocean-bottom pressure gauges, to produce time series with reduced random variance and full systematic signal. Finally, we present a preferred global model, a hybrid whose oceanic portions are derived using forward modeling of hydrology but whose land portions are not, and thus represent a pure GRACE-derived signal.

  1. A new world natural vegetation map for global change studies.

    PubMed

    Lapola, David M; Oyama, Marcos D; Nobre, Carlos A; Sampaio, Gilvan

    2008-06-01

    We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).

  2. Evaluation of Bio-optical Algorithms for Chlorophyll Mapping in the Southwestern Atlantic

    NASA Astrophysics Data System (ADS)

    Garcia, V. M.; Garcia, C. A.; Signorini, S.; McClain, C. R.

    2005-05-01

    Efforts have been made over the past decade to study bio-optical properties of seawater in the Southwestern Atlantic for mapping chlorophyll concentration from space. Coastal regions deserve a greater attention due to the optical complexity from continental influence. Here we present an attempt to derive reliable bio-optical chlorophyll algorithms in the shelf region 25-40o S and 60-45o W. This area is subject to large optical interference by continental runoffs from La Plata River and Patos Lagoon. Spectral upwelling radiance and surface chlorophyll concentration data have been collected in the past years and have been used to generate a regional version of the NASA's OC2v4 model. The regional 2-band algorithm (termed OC2-LP), reduces chlorophyll positive bias to 11% as compared to the global SeaWiFS OC4v4 algorithm (bias = 27%). However, OC2-LP remains with an overall inaccuracy of over 40% in chlorophyll concentration, as calculated by the absolute percentage difference between in-situ and model-derived values. In-situ chlorophyll data from two cruises to the study region (La Plata I - winter of 2003 and La Plata II - summer of 2004) have been used to test the accuracy of the derived algorithm as well as the global version. A marked seasonal difference was found, where both OC4v4 and OC2-LP overestimate chlorophyll in summer at a higher magnitude than in the winter. These results indicate the need for other approaches rather than use of empirical band-ratio models in coastal waters of this region.

  3. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas

    2012-03-01

    Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.

  4. Global Estimates of Ambient Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development and Application

    PubMed Central

    van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Kahn, Ralph; Levy, Robert; Verduzco, Carolyn; Villeneuve, Paul J.

    2010-01-01

    Background Epidemiologic and health impact studies of fine particulate matter with diameter < 2.5 μm (PM2.5) are limited by the lack of monitoring data, especially in developing countries. Satellite observations offer valuable global information about PM2.5 concentrations. Objective In this study, we developed a technique for estimating surface PM2.5 concentrations from satellite observations. Methods We mapped global ground-level PM2.5 concentrations using total column aerosol optical depth (AOD) from the MODIS (Moderate Resolution Imaging Spectroradiometer) and MISR (Multiangle Imaging Spectroradiometer) satellite instruments and coincident aerosol vertical profiles from the GEOS-Chem global chemical transport model. Results We determined that global estimates of long-term average (1 January 2001 to 31 December 2006) PM2.5 concentrations at approximately 10 km × 10 km resolution indicate a global population-weighted geometric mean PM2.5 concentration of 20 μg/m3. The World Health Organization Air Quality PM2.5 Interim Target-1 (35 μg/m3 annual average) is exceeded over central and eastern Asia for 38% and for 50% of the population, respectively. Annual mean PM2.5 concentrations exceed 80 μg/m3 over eastern China. Our evaluation of the satellite-derived estimate with ground-based in situ measurements indicates significant spatial agreement with North American measurements (r = 0.77; slope = 1.07; n = 1057) and with noncoincident measurements elsewhere (r = 0.83; slope = 0.86; n = 244). The 1 SD of uncertainty in the satellite-derived PM2.5 is 25%, which is inferred from the AOD retrieval and from aerosol vertical profile errors and sampling. The global population-weighted mean uncertainty is 6.7 μg/m3. Conclusions Satellite-derived total-column AOD, when combined with a chemical transport model, provides estimates of global long-term average PM2.5 concentrations. PMID:20519161

  5. Analysis of smoke and cloud impact on seasonal and interannual variations in normalized difference vegetation index in Amazon

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Dye, D. G.

    2004-12-01

    Normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) is a unique measurement of long-term variations in global vegetation dynamics. The NDVI data have been used for the detection of the seasonal and interannual variations in vegetation. However, as reported in several studies, NDVI decreases with the increase in clouds and/or smoke aerosol contaminated in the pixels. This study assesses the smoke and clouds effect on long-term Global Inventory Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) NDVI data in Amazon. This knowledge will help developing the correction method in the tropics in the future. To assess the smoke and cloud effects on GIMMS and PAL, we used another satellite-derived data sets; NDVI derived from SPOT/VEGETATION (VGT) data and Aerosol Index (AI) derived from Total Ozone Mapping Spectrometer (TOMS). Since April 1998, VGT has measured the earth surface globally including in Amazon. The advantage of the VGT is that it has blue channel where the smoke and cloud can be easily detected. By analyzing the VGT NDVI and comparing with the AVHRR-based NDVI, we inferred smoke and cloud effect on the AVHRR-based NDVI. From the results of the VGT analysis, we found the large NDVI seasonality in South and Southeastern Amazon. In these areas, the NDVI gradually increased from April to July and decreased from August to October. However the sufficient NDVI data were not existed from August to November when the smoke and cloud pixels were masked using blue reflectance. Thus it is said that the smoke and clouds mainly cause the large decreases in NDVI between August and November and NDVI has little vegetation signature in these months. Also we examined the interannual variations in NDVI and smoke aerosol. Then the decrease in NDVI is well consistent with the increase in the increase in AI. Our results suggest that the months between April and July are the most reliable season to monitor the vegetation.

  6. Global High Resolution Mineral Maps Of The Moon Using Data From the Kaguya Multiband Imager and LRO Diviner Lunar Radiometer

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.; Lemelin, M.; Ohtake, M.; Gaddis, L. R.; Greenhagen, B. T.; Yamamoto, S.; Hare, T. M.; Taylor, J.; Martel, L.; Norman, J.

    2016-12-01

    We combine visible and near-IR multispectral data from the Kaguya Multiband Imager (MI) with thermal infrared multispectral data from the LRO Diviner Lunar Radiometer Experiment to produce global mineral abundance data at 60-m resolution. The base data set applies a radiative transfer mixing model to the Kaguya MI data to produce global maps of plagioclase, low-Ca pyroxene, high-Ca pyroxene and olivine. Diviner thermal multispectral data are highly sensitive to the ratio of plagioclase to mafic minerals and provide independent data to both validate and improve confidence in the derived mineral abundances. The data set is validated using a new set of mineral abundances derived for lunar soils from all lunar sampling sites resolvable using MI data. Modal abundances are derived using X-ray diffraction patterns analyzed with quantitative Rietveldt analysis. Modal abundances were derived from 124 soils from 47 individual Apollo sampling stations. Some individual soil locations within sampling stations can be resolved increasing the total number of resolved locations to 56. With quantitative mineral abundances we can examine the distribution of classically defined lunar rock types in unprecedented detail. In the Feldspathic Highlands Terrane (FHT) the crust is dominated in surface area by noritic anorthosite consistent with a highly mixed composition. Classically defined anorthosite is widespread in the FHT, but much less abundant than the mafic anorthosites. The Procellarum KREEP Terrane and the South Pole Aitken Basin are more noritic than the FHT as previously recognized with abundant norite exposed. While dunite is not found, varieties of troctolitic rocks are widespread in basin rings, especially Crisium, Humorum and Moscoviense, and also occur in the core of the FHT. Only troctolites and anorthosites appear consistently concentrated in basin rings. We have barely scratched the surface of the full resolution data, but have completed an inventory of rock types on basin rings and find in most cases they are dominated by mixed anorthositic rocks similar to the rest of the crust suggesting the rings may be partly mantled by background noritic anorthosite. The major exception is Orientale with its highly anorthositic inner ring.

  7. Radar image and data fusion for natural hazards characterisation

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  8. Moving toward a Biomass Map of Boreal Eurasia based on ICESat GLAS, ASTER GDEM, and field measurements: Amount, Spatial distribution, and Statistical Uncertainties

    NASA Astrophysics Data System (ADS)

    Neigh, C. S.; Nelson, R. F.; Sun, G.; Ranson, J.; Montesano, P. M.; Margolis, H. A.

    2011-12-01

    The Eurasian boreal forest is the largest continuous forest in the world and contains a vast quantity of carbon stock that is currently vulnerable to loss from climate change. We develop and present an approach to map the spatial distribution of above ground biomass throughout this region. Our method combines satellite measurements from the Geoscience Laser Altimeter System (GLAS) that is carried on the Ice, Cloud and land Elevation Satellite ( ICESat), with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM), and biomass field measurements collected from surveys from a number of different biomes throughout Boreal Eurasia. A slope model derived from the GDEM with quality control flags, and Moderate-resolution Imaging Spectroradiometer (MODIS) water mask was implemented to exclude poor quality GLAS shots and stratify measurements by MODIS International Geosphere Biosphere (IGBP) and World Wildlife Fund (WWF) ecozones. We derive equations from regional field measurements to estimate the spatial distribution of above ground biomass by land cover type within biome and present a map with uncertainties and limitations of this approach which can be used as a baseline for future studies.

  9. A long-term Northern Hemisphere snow cover extent product (JASMES) deriving from satellite-borne optical sensors using consistent objective criteria

    NASA Astrophysics Data System (ADS)

    Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Niwano, M.; Enomoto, H.

    2017-12-01

    A long-term Northern Hemisphere (NH) snow cover extent (SCE) product (JASMES SCE) was developed from the application of a consistent objective snow cover mapping algorithm to satellite-borne optical sensors (NOAA/AVHRR and NASA's optical sensor MODIS) from 1982 to the present. We estimated NH SCE from weekly composited snow cover maps and evaluated the accuracies of snow cover detection using in-situ snow data. As benchmark SCE product, we also evaluated the accuracy of SCE maps from the National Oceanic and Atmospheric Administration Climate Data Record (NOAA-CDR) product. The evaluation showed that JASMES SCE has more temporally stable accuracies. Seasonally averaged SCE derived from JASMES exhibited negative slopes in all seasons which is opposite to those of NOAA-CDR SCE in the fall and winter seasons. The spatial pattern of annual snow cover duration (SCD) trends exhibited noticeable asymmetric pattern between continents with the largest negative trends seen over western Eurasia. The NH SCE product will be connected to the data of the Japanese Earth Observing satellite named "Global Change Observation Mission for Climate (GCOM-C)" to be launched in late 2017.

  10. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  11. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  12. Generation of real-time global ionospheric map based on the global GNSS stations with only a sparse distribution

    NASA Astrophysics Data System (ADS)

    Li, Zishen; Wang, Ningbo; Li, Min; Zhou, Kai; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    The Earth's ionosphere is part of the atmosphere stretching from an altitude of about 50 km to more than 1000 km. When the Global Navigation Satellite System (GNSS) signal emitted from a satellite travels through the ionosphere before reaches a receiver on or near the Earth surface, the GNSS signal is significantly delayed by the ionosphere and this delay bas been considered as one of the major errors in the GNSS measurement. The real-time global ionospheric map calculated from the real-time data obtained by global stations is an essential method for mitigating the ionospheric delay for real-time positioning. The generation of an accurate global ionospheric map generally depends on the global stations with dense distribution; however, the number of global stations that can produce the real-time data is very limited at present, which results that the generation of global ionospheric map with a high accuracy is very different when only using the current stations with real-time data. In view of this, a new approach is proposed for calculating the real-time global ionospheric map only based on the current stations with real-time data. This new approach is developed on the basis of the post-processing and the one-day predicted global ionospheric map from our research group. The performance of the proposed approach is tested by the current global stations with the real-time data and the test results are also compared with the IGS-released final global ionospheric map products.

  13. A global comparability approach for biosimilar monoclonal antibodies using LC-tandem MS based proteomics.

    PubMed

    Chen, Shun-Li; Wu, Shiaw-Lin; Huang, Li-Juan; Huang, Jia-Bao; Chen, Shu-Hui

    2013-06-01

    Liquid chromatography-tandem mass spectrometry-based proteomics for peptide mapping and sequencing was used to characterize the marketed monoclonal antibody trastuzumab and compare it with two biosimilar products, mAb A containing D359E and L361M variations at the Fc site and mAb B without variants. Complete sequence coverage (100%) including disulfide linkages, glycosylations and other commonly occurring modifications (i.e., deamidation, oxidation, dehydration and K-clipping) were identified using maps generated from multi-enzyme digestions. In addition to the targeted comparison for the relative populations of targeted modification forms, a non-targeted approach was used to globally compare ion intensities in tryptic maps. The non-targeted comparison provided an extra-dimensional view to examine any possible differences related to variants or modifications. A peptide containing the two variants in mAb A, D359E and L361M, was revealed using the non-targeted comparison of the tryptic maps. In contrast, no significant differences were observed when trastuzumab was self-compared or compared with mAb B. These results were consistent with the data derived from peptide sequencing via collision induced dissociation/electron transfer dissociation. Thus, combined targeted and non-targeted approaches using powerful mass spectrometry-based proteomic tools hold great promise for the structural characterization of biosimilar products. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    NASA Astrophysics Data System (ADS)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics, and in climate models to simulate land-cover change feedbacks on climate. The annual ESA CCI land cover products can be downloaded from http://maps.elie.ucl.ac.be/CCI/viewer/download.php (Land Cover Maps - v2.0.7; see details in Sect. 5). The PFT map translation protocol and an example in 2000 can be downloaded from https://doi.org/10.5281/zenodo.834229. The annual ESA CCI PFT maps from 1992 to 2015 at 0.5° × 0.5° resolution can also be downloaded from https://doi.org/10.5281/zenodo.1048163.

  15. Accurate Mobile Urban Mapping via Digital Map-Based SLAM †

    PubMed Central

    Roh, Hyunchul; Jeong, Jinyong; Cho, Younggun; Kim, Ayoung

    2016-01-01

    This paper presents accurate urban map generation using digital map-based Simultaneous Localization and Mapping (SLAM). Throughout this work, our main objective is generating a 3D and lane map aiming for sub-meter accuracy. In conventional mapping approaches, achieving extremely high accuracy was performed by either (i) exploiting costly airborne sensors or (ii) surveying with a static mapping system in a stationary platform. Mobile scanning systems recently have gathered popularity but are mostly limited by the availability of the Global Positioning System (GPS). We focus on the fact that the availability of GPS and urban structures are both sporadic but complementary. By modeling both GPS and digital map data as measurements and integrating them with other sensor measurements, we leverage SLAM for an accurate mobile mapping system. Our proposed algorithm generates an efficient graph SLAM and achieves a framework running in real-time and targeting sub-meter accuracy with a mobile platform. Integrated with the SLAM framework, we implement a motion-adaptive model for the Inverse Perspective Mapping (IPM). Using motion estimation derived from SLAM, the experimental results show that the proposed approaches provide stable bird’s-eye view images, even with significant motion during the drive. Our real-time map generation framework is validated via a long-distance urban test and evaluated at randomly sampled points using Real-Time Kinematic (RTK)-GPS. PMID:27548175

  16. A New Synthetic Global Biomass Carbon Map for the year 2010

    NASA Astrophysics Data System (ADS)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  17. Global multiresolution models of surface wave propagation: comparing equivalently regularized Born and ray theoretical solutions

    NASA Astrophysics Data System (ADS)

    Boschi, Lapo

    2006-10-01

    I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-frequency effects through scattering theory, in the far-field approximation and neglecting mode coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels. The parametrization is finer over North America, a region particularly well covered by the data. For each surface-wave mode where phase-anomaly observations are available, I derive a wide spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and select as optimal solution model the one associated with the point of maximum curvature on the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only slightly in amplitude.

  18. An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario

    NASA Astrophysics Data System (ADS)

    Robinson, Alexandra R.

    An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.

  19. Global Dynamic Exposure and the OpenBuildingMap - Communicating Risk and Involving Communities

    NASA Astrophysics Data System (ADS)

    Schorlemmer, Danijel; Beutin, Thomas; Hirata, Naoshi; Hao, Ken; Wyss, Max; Cotton, Fabrice; Prehn, Karsten

    2017-04-01

    Detailed understanding of local risk factors regarding natural catastrophes requires in-depth characterization of the local exposure. Current exposure capture techniques have to find the balance between resolution and coverage. We aim at bridging this gap by employing a crowd-sourced approach to exposure capturing, focusing on risk related to earthquake hazard. OpenStreetMap (OSM), the rich and constantly growing geographical database, is an ideal foundation for this task. More than 3.5 billion geographical nodes, more than 200 million building footprints (growing by 100'000 per day), and a plethora of information about school, hospital, and other critical facilities allows us to exploit this dataset for risk-related computations. We are combining the strengths of crowd-sourced data collection with the knowledge of experts in extracting the most information from these data. Besides relying on the very active OpenStreetMap community and the Humanitarian OpenStreetMap Team, which are collecting building information at high pace, we are providing a tailored building capture tool for mobile devices. This tool is facilitating simple and fast building property capturing for OpenStreetMap by any person or interested community. With our OpenBuildingMap system, we are harvesting this dataset by processing every building in near-realtime. We are collecting exposure and vulnerability indicators from explicitly provided data (e.g. hospital locations), implicitly provided data (e.g. building shapes and positions), and semantically derived data, i.e. interpretation applying expert knowledge. The expert knowledge is needed to translate the simple building properties as captured by OpenStreetMap users into vulnerability and exposure indicators and subsequently into building classifications as defined in the Building Taxonomy 2.0 developed by the Global Earthquake Model (GEM) and the European Macroseismic Scale (EMS98). With this approach, we increase the resolution of existing exposure models from aggregated exposure information to building-by-building vulnerability. We report on our method, on the software development for the mobile application and the server-side analysis system, and on the OpenBuildingMap (www.openbuildingmap.org), our global Tile Map Service focusing on building properties. The free/open framework we provide can be used on commodity hardware for local to regional exposure capturing, for stakeholders in disaster management and mitigation for communicating risk, and for communities to understand their risk.

  20. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  1. Global and local magnetic mapping using CrowdMag data

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Nair, M. C.

    2016-12-01

    NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's CIRES develop magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to map and model the Earth's magnetic field. However, the available measurements leave gaps in coverage, particularly for short-wavelength anomalies associated with man-made infrastructure ("urban noise"). In 2014, we started a project to address these gaps through the collection of vector magnetic data from digital magnetometers in smartphones. In October 2014, we released the "CrowdMag" Android and iOS apps for harvesting data from phones. Currently, the CrowdMag project has more than 10,000 enthusiastic users contributing more than 12 million magnetic data measurements from around the world. We present the first analysis results from the crowdsourced magnetic data. A global magnetic model derived solely from CrowdMag data is consistent to degree and order 4 with satellite-derived models such as World Magnetic Model. A unique contribution of CrowdMag project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. To demonstrate, we generated a magnetic map (by binning the data collected in 200x200m cells) of central Boulder, Colorado using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the potential reliability of crowdsourced magnetic maps and their applications to navigation and other applications.

  2. Improved Digitization of Lunar Mare Ridges with LROC Derived Products

    NASA Astrophysics Data System (ADS)

    Crowell, J. M.; Robinson, M. S.; Watters, T. R.; Bowman-Cisneros, E.; Enns, A. C.; Lawrence, S.

    2011-12-01

    Lunar wrinkle ridges (mare ridges) are positive-relief structures formed from compressional stress in basin-filling flood basalt deposits [1]. Previous workers have measured wrinkle ridge orientations and lengths to investigate their spatial distribution and infer basin-localized stress fields [2,3]. Although these plots include the most prominent mare ridges and their general trends, they may not have fully captured all of the ridges, particularly the smaller-scale ridges. Using Lunar Reconnaissance Orbiter Wide Angle Camera (WAC) global mosaics and derived topography (100m pixel scale) [4], we systematically remapped wrinkle ridges in Mare Serenitatis. By comparing two WAC mosaics with different lighting geometry, and shaded relief maps made from a WAC digital elevation model (DEM) [5], we observed that some ridge segments and some smaller ridges are not visible in previous structure maps [2,3]. In the past, mapping efforts were limited by a fixed Sun direction [6,7]. For systematic mapping we created three shaded relief maps from the WAC DEM with solar azimuth angles of 0°, 45°, and 90°, and a fourth map was created by combining the three shaded reliefs into one, using a simple averaging scheme. Along with the original WAC mosaic and the WAC DEM, these four datasets were imported into ArcGIS, and the mare ridges of Imbrium, Serenitatis, and Tranquillitatis were digitized from each of the six maps. Since the mare ridges are often divided into many ridge segments [8], each major component was digitized separately, as opposed to the ridge as a whole. This strategy enhanced our ability to analyze the lengths, orientations, and abundances of these ridges. After the initial mapping was completed, the six products were viewed together to identify and resolve discrepancies in order to produce a final wrinkle ridge map. Comparing this new mare ridge map with past lunar tectonic maps, we found that many mare ridges were not recorded in the previous works. It was noted in some cases, the lengths and orientations of previously digitized ridges were different than those of the ridges digitized in this study. This method of multi-map digitizing allows for a greater accuracy in spatial characterization of mare ridges than previous methods. We intend to map mare ridges on a global scale, creating a more comprehensive ridge map due to higher resolution. References Cited: [1] Schultz P.H. (1976) Moon Morphology, 308. [2] Wilhelms D.E. (1987) USGS Prof. Paper 1348, 5A-B. [3] Carr, M.H. (1966) USGS Geologic Atlas of the Moon, I-498. [4] Robinson M.S. (2010) Space Sci. Rev., 150:82. [5] Scholten F. et al. (2011) LPSC XLII, 2046. [6] Fielder G. and Kiang T. (1962) The Observatory: No. 926, 8. [7] Watters T.R. and Konopliv A.S. (2001) Planetary and Space Sci. 49. 743-748. [8] Aubele J.C. (1988) LPSC XIX, 19.

  3. Global maps of Jupiter's ionosphere/thermosphere via H3+: ground-based observations from 2012 and 2015

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Melin, H.; Stallard, T.

    2015-10-01

    We present observations from two observing campaigns using the 3-metre NASA infrared telescope facility (IRTF) telescope and SpeX instrument; three full nights of observations were performed in Dec. 2012, and 4 nights in Feb. 2015. Both observations obtained near complete 360 degrees system III longitude and ±90 degrees planetocentric latitude maps of ionospheric H3+ molecular ion emissions. This ion is considered in local thermodynamic equilibrium with its surroundings and as such the properties derived from it - e.g. temperature - are inferred to represent that of the ionosphere and co-located thermosphere. Therefore, these maps display global energy distribution over the ionosphere in the different years. This work is highly complementary to data set to be taken by the Juno spacecraft, which arrives in the Jovian system in 2016.Preliminary results within the 2012 data indicate (amongst many other things) a global pattern in mid-low latitude ionospheric emissions whereby one half of planetary longitudes are more emissive than the other (see Figure 1). The cause for this may be tied to asymmetries in planetary magnetic field, as a larger magnetic field strength could inhibit particle precipitation and therefore emissions. The observations from 2015 were taken at a time of exceptional output from the volcanic moon Io and we examine the impact this may have had on the aurora and Io footprint at the time. Further results include cross-comparisons of data taken in 1997, 2012 and 2015 to explore long term behaviours.

  4. The GRAM-3 model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1987-01-01

    The Global Reference Atmosphere Model (GRAM) is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data. An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer then 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model.

  5. Experiment of Rain Retrieval over Land Using Surface Emissivity Map Derived from TRMM TMI and JRA25

    NASA Astrophysics Data System (ADS)

    Furuzawa, Fumie; Masunaga, Hirohiko; Nakamura, Kenji

    2010-05-01

    We are developing a data-set of global land surface emissivity calculated from TRMM TMI brightness temperature (TB) and atmospheric profile data of Japanese 25-year Reanalysis Project (JRA-25) for the region identified as no-rain by TRMM PR, assuming zero cloud liquid water beyond 0-C level. For the evaluation, some characteristics of global monthly emissivity maps, for example, dependency of emissivity on each TMI frequency or each local time or seasonal/annual variation are checked. Moreover, these data are classified based on JRA25 land type or soilwetness and compared. Histogram of polarization difference of emissivity is similar to that of TB and mostly reflects the variability of land type or soil wetness, while histogram of vertical emissivity show a small difference. Next, by interpolating this instantaneous dataset with Gaussian function weighting, we derive an emissivity over neighboring rainy region and assess the interpolated emissivity by running radiative transfer model using PR rain profile and comparing with observed TB. Preliminary rain retrieval from the emissivities for some frequencies and TBs is evaluated based on PR rain profile and TMI rain rate. Moreover, another method is tested to estimate surface temperature from two emissivities, based on their statistical relation for each land type. We will show the results for vertical and horizontal emissivities of each frequency.

  6. What is the optimal way to prepare a Bell state using measurement and feedback?

    NASA Astrophysics Data System (ADS)

    Martin, Leigh; Sayrafi, Mahrud; Whaley, K. Birgitta

    2017-12-01

    Recent work has shown that the use of quantum feedback can significantly enhance both the speed and success rate of measurement-based remote entanglement generation, but it is generally unknown what feedback protocols are optimal for these tasks. Here we consider two common measurements that are capable of projecting into pairwise entangled states, namely half- and full-parity measurements of two qubits, and determine in each case a globally optimal protocol for generation of entanglement. For the half-parity measurement, we rederive a previously described protocol using more general methods and prove that it is globally optimal for several figures of merit, including maximal concurrence or fidelity and minimal time to reach a specified concurrence or fidelity. For the full-parity measurement, we derive a protocol for rapid entanglement generation related to that of (Hill, Ralph, Phys. Rev. A 77, 014305), and then map the dynamics of the concurrence of the state to the Bloch vector length of an effective qubit. This mapping allows us to prove several optimality results for feedback protocols with full-parity measurements. We further show that our full-parity protocol transfers entanglement optimally from one qubit to the other amongst all measurement-based schemes. The methods developed here will be useful for deriving feedback protocols and determining their optimality properties in many other quantum systems subject to measurement and unitary operations.

  7. Remote sensing-based characterization, 2-m, Plant Functional Type Distributions, Barrow Environmental Observatory, 2010

    DOE Data Explorer

    Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest

    2014-01-01

    Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).

  8. Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data

    NASA Astrophysics Data System (ADS)

    Bibring, Jean-Pierre; Langevin, Yves; Mustard, John F.; Poulet, François; Arvidson, Raymond; Gendrin, Aline; Gondet, Brigitte; Mangold, Nicolas; Pinet, P.; Forget, F.; OMEGA Team; Berthé, Michel; Gomez, Cécile; Jouglet, Denis; Soufflot, Alain; Vincendon, Mathieu; Combes, Michel; Drossart, Pierre; Encrenaz, Thérèse; Fouchet, Thierry; Merchiorri, Riccardo; Belluci, GianCarlo; Altieri, Francesca; Formisano, Vittorio; Capaccioni, Fabricio; Cerroni, Pricilla; Coradini, Angioletta; Fonti, Sergio; Korablev, Oleg; Kottsov, Volodia; Ignatiev, Nikolai; Moroz, Vassilli; Titov, Dimitri; Zasova, Ludmilla; Loiseau, Damien; Pinet, Patrick; Doute, Sylvain; Schmitt, Bernard; Sotin, Christophe; Hauber, Ernst; Hoffmann, Harald; Jaumann, Ralf; Keller, Uwe; Arvidson, Ray; Duxbury, Tom; Neukum, G.

    2006-04-01

    Global mineralogical mapping of Mars by the Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) instrument on the European Space Agency's Mars Express spacecraft provides new information on Mars' geological and climatic history. Phyllosilicates formed by aqueous alteration very early in the planet's history (the ``phyllocian'' era) are found in the oldest terrains; sulfates were formed in a second era (the ``theiikian'' era) in an acidic environment. Beginning about 3.5 billion years ago, the last era (the ``siderikian'') is dominated by the formation of anhydrous ferric oxides in a slow superficial weathering, without liquid water playing a major role across the planet.

  9. Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties.

    PubMed

    Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E

    2018-07-01

    In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Towards SWOT data assimilation for hydrology : automatic calibration of global flow routing model parameters in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Biancamaria, S.; Boone, A.; Mognard, N. M.; Rogel, P.

    2011-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that will provide global measurements of water surface elevation (WSE). The revisit time depends upon latitude and varies from two (low latitudes) to ten (high latitudes) per 22-day orbit repeat period. The high resolution and the global coverage of the SWOT data open the way for new hydrology studies. Here, the aim is to investigate the use of virtually generated SWOT data to improve discharge simulation using data assimilation techniques. In the framework of the SWOT virtual mission (VM), this study presents the first results of the automatic calibration of a global flow routing (GFR) scheme using SWOT VM measurements for the Amazon basin. The Hydrological Modeling and Analysis Platform (HyMAP) is used along with the MOCOM-UA multi-criteria global optimization algorithm. HyMAP has a 0.25-degree spatial resolution and runs at the daily time step to simulate discharge, water levels and floodplains. The surface runoff and baseflow drainage derived from the Interactions Sol-Biosphère-Atmosphère (ISBA) model are used as inputs for HyMAP. Previous works showed that the use of ENVISAT data enables the reduction of the uncertainty on some of the hydrological model parameters, such as river width and depth, Manning roughness coefficient and groundwater time delay. In the framework of the SWOT preparation work, the automatic calibration procedure was applied using SWOT VM measurements. For this Observing System Experiment (OSE), the synthetical data were obtained applying an instrument simulator (representing realistic SWOT errors) for one hydrological year to HYMAP simulated WSE using a "true" set of parameters. Only pixels representing rivers larger than 100 meters within the Amazon basin are considered to produce SWOT VM measurements. The automatic calibration procedure leads to the estimation of optimal parametersminimizing objective functions that formulate the difference between SWOT observations and modeled WSE using a perturbed set of parameters. Different formulations of the objective function were used, especially to account for SWOT observation errors, as well as various sets of calibration parameters.

  11. The logic of selecting an appropriate map projection in a Decision Support System (DSS)

    USGS Publications Warehouse

    Finn, Michael P.; Usery, E. Lynn; Woodard, Laura N.; Yamamoto, Kristina H.

    2017-01-01

    There are undeniable practical consequences to consider when choosing an appropriate map projection for a specific region. The surface of a globe covered by global, continental, and regional maps are so singular that each type distinctively affects the amount of distortion incurred during a projection transformation because of the an assortment of effects caused by distance, direction, scale , and area. A Decision Support System (DSS) for Map Projections of Small Scale Data was previously developed to help select an appropriate projection. This paper reports on a tutorial to accompany that DSS. The DSS poses questions interactively, allowing the user to decide on the parameters, which in turn determines the logic path to a solution. The objective of including a tutorial to accompany the DSS is achieved by visually representing the path of logic that is taken to a recommended map projection derived from the parameters the user selects. The tutorial informs the DSS user about the pedigree of the projection and provides a basic explanation of the specific projection design. This information is provided by informational pop-ups and other aids.

  12. Developing the Second Generation CMORPH: A Prototype

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert

    2014-05-01

    A prototype system of the second generation CMORPH is being developed at NOAA Climate Prediction Center (CPC) to produce global analyses of 30-min precipitation on a 0.05deg lat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. First, precipitation estimation / retrievals from various sources are mapped onto a global grid of 0.05deg lat/lon and calibrated against a common reference field to ensure consistency in their precipitation rate PDF structures. The motion vectors for the precipitating cloud systems are then defined using information from both satellite IR observations and precipitation fields generated by the NCEP Climate Forecast System Reanalysis (CFSR). To this end, motion vectors are first computed from CFSR hourly precipitation fields through cross-correlation analysis of consecutive hourly precipitation fields on the global T382 (~35 km) grid. In a similar manner, separate processing is also performed on satellite IR-based precipitation estimates to derive motion vectors from observations. A blended analysis of precipitating cloud motion vectors is then constructed through the combination of CFSR and satellite-derived vectors with an objective analysis technique. Fine resolution mapped PMW precipitation retrievals are then separately propagated along the motion vectors from their respective observation times to the target analysis time from both forward and backward directions. The CMORPH high resolution precipitation analyses are finally constructed through the combination of propagated PMW retrievals with the IR based estimates for the target analysis time. This Kalman Filter based CMORPH processing is performed for rainfall and snowfall fields separately with the same motion vectors. Experiments have been conducted for two periods of two months each, July - August 2009, and January - February 2010, to explore the development of an optimal algorithm that generates global precipitation for summer and winter situations. Preliminary results demonstrated technical feasibility to construct global rainfall and snowfall analyses through the integration of information from multiple sources. More work is underway to refine various technical components of the system for operational applications of the system. Detailed results will be reported at the EGU meeting.

  13. Uncertainty Assessment and Weight Map Generation for Efficient Fusion of Tandem-X and CARTOSAT-1 Dems

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Schmitt, M.; Zhu, X. X.

    2017-05-01

    Recently, with InSAR data provided by the German TanDEM-X mission, a new global, high-resolution Digital Elevation Model (DEM) has been produced by the German Aerospace Center (DLR) with unprecedented height accuracy. However, due to SAR-inherent sensor specifics, its quality decreases over urban areas, making additional improvement necessary. On the other hand, DEMs derived from optical remote sensing imagery, such as Cartosat-1 data, have an apparently greater resolution in urban areas, making their fusion with TanDEM-X elevation data a promising perspective. The objective of this paper is two-fold: First, the height accuracies of TanDEM-X and Cartosat-1 elevation data over different land types are empirically evaluated in order to analyze the potential of TanDEM-XCartosat- 1 DEM data fusion. After the quality assessment, urban DEM fusion using weighted averaging is investigated. In this experiment, both weight maps derived from the height error maps delivered with the DEM data, as well as more sophisticated weight maps predicted by a procedure based on artificial neural networks (ANNs) are compared. The ANN framework employs several features that can describe the height residual performance to predict the weights used in the subsequent fusion step. The results demonstrate that especially the ANN-based framework is able to improve the quality of the final DEM through data fusion.

  14. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Metzger, C. A.

    2013-12-01

    Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.

  15. An Assessment of Differences in Tree Cover Measurements between Landsat and Lidar-derived Products

    NASA Astrophysics Data System (ADS)

    Tang, H.; Song, X. P.; Armston, J.; Hancock, S.; Duncanson, L.; Zhao, F. A.; Schaaf, C.; Strahler, A. H.; Huang, C.; Hansen, M.; Goetz, S. J.; Dubayah, R.

    2016-12-01

    Tree cover is one of the most important canopy structural variables describe interactions between atmosphere and biosphere, and is also linked to the function and quality of ecosystem services. Large-area tree cover measurements are traditionally based on multispectral satellite imagery, and there are several global products available at high to medium spatial resolution (30m-1km). Recent developments in lidar remote sensing, including the upcoming Global Ecosystem Dynamics Investigation (GEDI) lidar, offers an alternative means to map tree cover over broad geographical extents. However, differences in the definition of tree cover and the retrieval method can result in large discrepancies between products derived from multispectral imagery and lidar data, and can potentially impact their further use in ecosystem modelling and above-ground biomass mapping. To separate the effects of cover definition and retrieval method, we first conducted a meta-analysis of several tree cover data sets across different biogeographic regions using three publicly available Landsat-based tree cover products (GLCF, NLCD and GLAD), and two waveform and discrete return airborne lidar products. We found that, whereas Landsat products had low-moderate agreements (up to 40% mean difference) on tree cover estimates particularly at the high end (e.g. >80%), airborne lidar can provide more accurate and consistent measurements (mean difference < 5%) when compared with field data. The differences among Landsat products were mainly due to low measurement accuracy and those among lidar products were caused by different definitions of tree cover (e.g. crown cover vs. fractional cover). We further recommended the use of lidar data as a complement or alternative to ultra-fine resolution images in training/validating Landsat-class images for large-area tree cover mapping.

  16. Mars Global Geologic Mapping Progress and Suggested Geographic-Based Hierarchal Systems for Unit Grouping and Naming

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    We are in the fourth year of a fiveyear effort to map the global geology of Mars at 1:20M scale using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey image and altimetry datasets. Previously, we reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. Last year, we described mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map [3].

  17. A climatically-derived global soil moisture data set for use in the GLAS atmospheric circulation model seasonal cycle experiment

    NASA Technical Reports Server (NTRS)

    Willmott, C. J.; Field, R. T.

    1984-01-01

    Algorithms for point interpolation and contouring on the surface of the sphere and in Cartesian two-space are developed from Shepard's (1968) well-known, local search method. These mapping procedures then are used to investigate the errors which appear on small-scale climate maps as a result of the all-too-common practice of of interpolating, from irregularly spaced data points to the nodes of a regular lattice, and contouring Cartesian two-space. Using mean annual air temperatures field over the western half of the northern hemisphere is estimated both on the sphere, assumed to be correct, and in Cartesian two-space. When the spherically- and Cartesian-approximted air temperature fields are mapped and compared, the magnitudes (as large as 5 C to 10 C) and distribution of the errors associated with the latter approach become apparent.

  18. Mapping internal connectivity through human migration in malaria endemic countries.

    PubMed

    Sorichetta, Alessandro; Bird, Tom J; Ruktanonchai, Nick W; Zu Erbach-Schoenberg, Elisabeth; Pezzulo, Carla; Tejedor, Natalia; Waldock, Ian C; Sadler, Jason D; Garcia, Andres J; Sedda, Luigi; Tatem, Andrew J

    2016-08-16

    Human mobility continues to increase in terms of volumes and reach, producing growing global connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through reintroductions of pathogens, and thus accounting for it becomes important in designing global, continental, regional, and national strategies. Recent works have shown that census-derived migration data provides a good proxy for internal connectivity, in terms of relative strengths of movement between administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we describe the construction of an open access archive of estimated internal migration flows in endemic countries built through pooling of census microdata. These connectivity datasets, described here along with the approaches and methods used to create and validate them, are available both through the WorldPop website and the WorldPop Dataverse Repository.

  19. Mapping internal connectivity through human migration in malaria endemic countries

    PubMed Central

    Sorichetta, Alessandro; Bird, Tom J.; Ruktanonchai, Nick W.; zu Erbach-Schoenberg, Elisabeth; Pezzulo, Carla; Tejedor, Natalia; Waldock, Ian C.; Sadler, Jason D.; Garcia, Andres J.; Sedda, Luigi; Tatem, Andrew J.

    2016-01-01

    Human mobility continues to increase in terms of volumes and reach, producing growing global connectivity. This connectivity hampers efforts to eliminate infectious diseases such as malaria through reintroductions of pathogens, and thus accounting for it becomes important in designing global, continental, regional, and national strategies. Recent works have shown that census-derived migration data provides a good proxy for internal connectivity, in terms of relative strengths of movement between administrative units, across temporal scales. To support global malaria eradication strategy efforts, here we describe the construction of an open access archive of estimated internal migration flows in endemic countries built through pooling of census microdata. These connectivity datasets, described here along with the approaches and methods used to create and validate them, are available both through the WorldPop website and the WorldPop Dataverse Repository. PMID:27529469

  20. Global Map of Pluto

    NASA Image and Video Library

    2015-07-27

    The science team of NASA's New Horizons mission has produced an updated global map of the dwarf planet Pluto. The map includes all resolved images of the surface acquired between July 7-14, 2015, at pixel resolutions ranging from 40 kilometers (24 miles) on the Charon-facing hemisphere (left and right sides of the map) to 400 meters (1,250 feet) on the anti-Charon facing hemisphere (map center). Many additional images are expected in fall of 2015 and these will be used to complete the global map. http://photojournal.jpl.nasa.gov/catalog/PIA19858

  1. Assessment of Provisional MODIS-derived Surfaces Related to the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Cohen, W. B.; Maiersperger, T. K.; Turner, D. P.; Gower, S. T.; Kennedy, R. E.; Running, S. W.

    2002-12-01

    The global carbon cycle is one of the most important foci of an emerging global biosphere monitoring system. A key component of such a system is the MODIS sensor, onboard the Terra satellite platform. Biosphere monitoring requires an integrated program of satellite observations, Earth-system models, and in situ data. Related to the carbon cycle, MODIS science teams routinely develop a variety of global surfaces such as land cover, leaf area index, and net primary production using MODIS data and functional algorithms. The quality of these surfaces must be evaluated to determine their effectiveness for global biosphere monitoring. A project called BigFoot (http://www.fsl.orst.edu/larse/bigfoot/) is an organized effort across nine biomes to assess the quality of the abovementioned surfaces: (1) Arctic tundra; (2) boreal evergreen needle-leaved forest; temperate (3) cropland, (4) grassland, (5) evergreen needle-leaved forest, and (6) deciduous broad-leaved forest; desert (7) grassland and (8) shrubland; and (9) tropical evergreen broad-leaved forest. Each biome is represented by a site that has an eddy-covariance flux tower that measures water vapor and CO2 fluxes. Flux tower footprints are relatively small-approximately 1 km2. BigFoot characterizes 25 km2 around each tower, using field data, Landsat ETM+ image data, and ecosystem process models. Our innovative field sampling design incorporates a nested spatial series to facilitate geostatistical analyses, samples the ecological variability at a site, and is logistically efficient. Field data are used both to develop site-specific algorithms for mapping/modeling the variables of interest and to characterize the errors in derived BigFoot surfaces. Direct comparisons of BigFoot- and MODIS-derived surfaces are made to help understand the sources of error in MODIS-derived surfaces and to facilitate improvements to MODIS algorithms. Results from four BigFoot sites will be presented.

  2. Using DORIS measurements for modeling the vertical total electron content of the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Dettmering, Denise; Limberger, Marco; Schmidt, Michael

    2014-12-01

    The Doppler orbitography and radiopositioning integrated by satellite (DORIS) system was originally developed for precise orbit determination of low Earth orbiting (LEO) satellites. Beyond that, it is highly qualified for modeling the distribution of electrons within the Earth's ionosphere. It measures with two frequencies in L-band with a relative frequency ratio close to 5. Since the terrestrial ground beacons are distributed quite homogeneously and several LEOs are equipped with modern receivers, a good applicability for global vertical total electron content (VTEC) modeling can be expected. This paper investigates the capability of DORIS dual-frequency phase observations for deriving VTEC and the contribution of these data to global VTEC modeling. The DORIS preprocessing is performed similar to commonly used global navigation satellite systems (GNSS) preprocessing. However, the absolute DORIS VTEC level is taken from global ionospheric maps (GIM) provided by the International GNSS Service (IGS) as the DORIS data contain no absolute information. DORIS-derived VTEC values show good consistency with IGS GIMs with a RMS between 2 and 3 total electron content units (TECU) depending on solar activity which can be reduced to less than 2 TECU when using only observations with elevation angles higher than . The combination of DORIS VTEC with data from other space-geodetic measurement techniques improves the accuracy of global VTEC models significantly. If DORIS VTEC data is used to update IGS GIMs, an improvement of up to 12 % can be achieved. The accuracy directly beneath the DORIS satellites' ground-tracks ranges between 1.5 and 3.5 TECU assuming a precision of 2.5 TECU for altimeter-derived VTEC values which have been used for validation purposes.

  3. Time series evapotranspiration maps at a regional scale: A methodology, evaluation, and their use in water resources management

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.

    2016-12-01

    Evapotranspiration (ET) is an important process in ecosystems' water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. There are efforts to develop such datasets on a regional to global scale but often faced with the limitations of spatial-temporal resolution tradeoffs in satellite remote sensing technology. In this study, we developed frameworks for generating high and medium resolution daily ET maps from Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data, respectively. For developing high resolution (30-m) daily time series ET maps with Landsat TM data, the series version of Two Source Energy Balance (TSEB) model was used to compute sensible and latent heat fluxes of soil and canopy separately. Landsat 5 (2000-2011) and Landsat 8 (2013-2014) imageries for row 28/35 and 27/36 covering central Oklahoma was used. MODIS data (2001-2014) covering Oklahoma and Texas Panhandle was used to develop medium resolution (250-m), time series daily ET maps with SEBS (Surface Energy Balance System) model. An extensive network of weather stations managed by Texas High Plains ET Network and Oklahoma Mesonet was used to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. A linear interpolation sub-model was used to estimate the daily ET between the image acquisition days. Accuracy assessment of daily ET maps were done against eddy covariance data from two grassland sites at El Reno, OK. Statistical results indicated good performance by modeling frameworks developed for deriving time series ET maps. Results indicated that the proposed ET mapping framework is suitable for deriving daily time series ET maps at regional scale with Landsat and MODIS data.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Smith, Steven J.; Elvidge, Christopher

    Accurate information of urban areas at regional and global scales is important for both the science and policy-making communities. The Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable light data (NTL) provide a potential way to map urban area and its dynamics economically and timely. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the DMSP/OLS NTL data in five major steps, including data preprocessing, urban cluster segmentation, logistic model development, threshold estimation, and urban extent delineation. Different from previous fixed threshold method with over- and under-estimation issues, in ourmore » method the optimal thresholds are estimated based on cluster size and overall nightlight magnitude in the cluster, and they vary with clusters. Two large countries of United States and China with different urbanization patterns were selected to map urban extents using the proposed method. The result indicates that the urbanized area occupies about 2% of total land area in the US ranging from lower than 0.5% to higher than 10% at the state level, and less than 1% in China, ranging from lower than 0.1% to about 5% at the province level with some municipalities as high as 10%. The derived thresholds and urban extents were evaluated using high-resolution land cover data at the cluster and regional levels. It was found that our method can map urban area in both countries efficiently and accurately. Compared to previous threshold techniques, our method reduces the over- and under-estimation issues, when mapping urban extent over a large area. More important, our method shows its potential to map global urban extents and temporal dynamics using the DMSP/OLS NTL data in a timely, cost-effective way.« less

  5. Cadastral Positioning Accuracy Improvement: a Case Study in Malaysia

    NASA Astrophysics Data System (ADS)

    Hashim, N. M.; Omar, A. H.; Omar, K. M.; Abdullah, N. M.; Yatim, M. H. M.

    2016-09-01

    Cadastral map is a parcel-based information which is specifically designed to define the limitation of boundaries. In Malaysia, the cadastral map is under authority of the Department of Surveying and Mapping Malaysia (DSMM). With the growth of spatial based technology especially Geographical Information System (GIS), DSMM decided to modernize and reform its cadastral legacy datasets by generating an accurate digital based representation of cadastral parcels. These legacy databases usually are derived from paper parcel maps known as certified plan. The cadastral modernization will result in the new cadastral database no longer being based on single and static parcel paper maps, but on a global digital map. Despite the strict process of the cadastral modernization, this reform has raised unexpected queries that remain essential to be addressed. The main focus of this study is to review the issues that have been generated by this transition. The transformed cadastral database should be additionally treated to minimize inherent errors and to fit them to the new satellite based coordinate system with high positional accuracy. This review result will be applied as a foundation for investigation to study the systematic and effectiveness method for Positional Accuracy Improvement (PAI) in cadastral database modernization.

  6. A graph-based watershed merging using fuzzy C-means and simulated annealing for image segmentation

    NASA Astrophysics Data System (ADS)

    Vadiveloo, Mogana; Abdullah, Rosni; Rajeswari, Mandava

    2015-12-01

    In this paper, we have addressed the issue of over-segmented regions produced in watershed by merging the regions using global feature. The global feature information is obtained from clustering the image in its feature space using Fuzzy C-Means (FCM) clustering. The over-segmented regions produced by performing watershed on the gradient of the image are then mapped to this global information in the feature space. Further to this, the global feature information is optimized using Simulated Annealing (SA). The optimal global feature information is used to derive the similarity criterion to merge the over-segmented watershed regions which are represented by the region adjacency graph (RAG). The proposed method has been tested on digital brain phantom simulated dataset to segment white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) soft tissues regions. The experiments showed that the proposed method performs statistically better, with average of 95.242% regions are merged, than the immersion watershed and average accuracy improvement of 8.850% in comparison with RAG-based immersion watershed merging using global and local features.

  7. The search for crustal resources - MAGSAT and beyond

    NASA Technical Reports Server (NTRS)

    Taylor, P. T.; Hinze, W. J.; Ravat, D. N.

    1992-01-01

    In the decade since global satellite magnetic field data have been available from MAGSAT, notable progress has been made in processing these data for purposes of mapping crustal anomalies. Several regional magnetic anomaly maps compiled using these new techniques (e.g. Kursk region, U.S.S.R.; central Africa; Kiruna, Sweden; and the U.S.A. midcontinent) provide insight into the nature and tectonic evolution of the crust that contribute to conceptual crustal models useful in regional resource exploration. A recent mail survey of geopotential-field specialists involved in resource exploration indicates interest in MAGSAT data and future satellite missions with improved resolution. It is apparent that magnetic anomalies derived from satellite observations can aid in the search for crustal resources.

  8. Mapping Regional Impervious Surface Distribution from Night Time Light: The Variability across Global Cities

    NASA Astrophysics Data System (ADS)

    Lin, M.; Yang, Z.; Park, H.; Qian, S.; Chen, J.; Fan, P.

    2017-12-01

    Impervious surface area (ISA) has become an important indicator for studying urban environments, but mapping ISA at the regional or global scale is still challenging due to the complexity of impervious surface features. The Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) nighttime light data is (NTL) and Resolution Imaging Spectroradiometer (MODIS) are the major remote sensing data source for regional ISA mapping. A single regression relationship between fractional ISA and NTL or various index derived based on NTL and MODIS vegetation index (NDVI) data was established in many previous studies for regional ISA mapping. However, due to the varying geographical, climatic, and socio-economic characteristics of different cities, the same regression relationship may vary significantly across different cities in the same region in terms of both fitting performance (i.e. R2) and the rate of change (Slope). In this study, we examined the regression relationship between fractional ISA and Vegetation Adjusted Nighttime light Urban Index (VANUI) for 120 randomly selected cities around the world with a multilevel regression model. We found that indeed there is substantial variability of both the R2 (0.68±0.29) and slopes (0.64±0.40) among individual regressions, which suggests that multilevel/hierarchical models are needed for accuracy improvement of future regional ISA mapping .Further analysis also let us find the this substantial variability are affected by climate conditions, socio-economic status, and urban spatial structures. However, all these effects are nonlinear rather than linear, thus could not modeled explicitly in multilevel linear regression models.

  9. Mapping topographic plant location properties using a dense matching approach

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela

    2017-04-01

    Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.

  10. Utilizing NASA Earth Observations to Assess Landslide Characteristics and Devlelop Susceptibility and Exposure Maps in Malawi

    NASA Astrophysics Data System (ADS)

    Klug, M.; Cissell, J.; Grossman, M.

    2017-12-01

    Malawi has become increasingly prone to landslides in the past few decades. This can be attributed to the terrain, types of soil and vegetation, increased human interference, and heavy flooding after long periods of drought. In addition to the floods and droughts, landslides cause extra stress to farmlands, thus exacerbating the current food security crisis in the country. It can be difficult to pinpoint just how many people are affected by landslides in Malawi because landslides often occur in rural areas or are grouped with other disasters, such as floods or earthquakes. This project created a Landslide Susceptibility Map to assess landslide-prone areas in Malawi using variables such as slope, distance to roads, distance to streams, soil type, and precipitation. These variables were derived using imagery from Landsat 8 Operational Land Imager (OLI), Shuttle Radar Topography Mission Version 3 (SRTM-v3), Global Precipitation Measurement (GPM), and Tropical Rainfall Measuring Mission (TRMM) satellites. Furthermore, this project created a Landslide Exposure Map to estimate how much of the local population lives in susceptible areas by intersecting population data with the Landslide Susceptibility Map. Additionally, an assessment of GPM and TRMM precipitation measurements was generated to better understand the reliability of both measurements for landslide monitoring. Finally, this project updated NASA SERVIR's Global Landslide Catalog (GLC) for Malawi by using WorldView data from Google Earth and Landsat 8 OLI. These end products were used by NASA SERVIR and the Regional Centre for Mapping of Resources for Development (RCMRD) for aiding in disaster management throughout Malawi.

  11. The New Era in Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Schunk, R. W.; Sojka, J. J.; Carlson, H. C.; Gardner, L. C.; Scherliess, L.; Zhu, L.; Eccles, J. V.; Rice, D. D.; Bouwer, D.; Bailey, J. J.; Knipp, D. J.; Blake, J. B.; Rex, J.; Fuschino, R.; Mertens, C. J.; Gersey, B.; Wilkins, R.; Atwell, W.

    2012-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere, thermosphere, and even troposphere are key regions that are affected. The Utah State University (USU) Space Weather Center (SWC) and Space Environment Technologies (SET) are developing and producing commercial space weather applications. Key systems for providing timely information about the effects of space weather are SWC's Global Assimilation of Ionospheric Measurements (GAIM) system, SET's Magnetosphere Alert and Prediction System (MAPS), and SET's Automated Radiation Measurements for Aviation Safety (ARMAS) system. GAIM, operated by SWC, improves real-time communication and navigation systems by continuously ingesting up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations. Ionosonde data from several dozen global stations is ingested every 15 minutes to improve the vertical profiles within GAIM. These operational runs enable the reporting of global radio high frequency (HF) signal strengths and near vertical incidence skywave (NVIS) maps used by amateur radio operators and emergency responders via the http://q-upnow.com website. MAPS provides a forecast Dst index out to 6 days through the data-driven Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. ARMAS is demonstrating a prototype flight of microdosimeters on aircraft to capture the "weather" of the radiation environment for air-crew and passenger safety. It assimilates real-time radiation dose and dose rate data into the global NAIRAS radiation system to correct the global climatology for more accurate radiation fields along flight tracks. This team also provides the space weather smartphone app called SpaceWx for iPhone, iPad, iPod, and Android for professional users and public space weather education. SpaceWx displays the real-time solar, heliosphere, magnetosphere, thermosphere, and ionosphere drivers to changes in the total electron content, for example, as well as global NVIS maps. We describe recent forecasting advances for moving space weather information through automated systems into operational, derivative products for communications, aviation, and satellite operations uses.

  12. Biogeography, Cloud Base Heights and Cloud Immersion in Tropical Montane Cloud Forests

    NASA Astrophysics Data System (ADS)

    Welch, R. M.; Asefi, S.; Zeng, J.; Nair, U. S.; Lawton, R. O.; Ray, D. K.; Han, Q.; Manoharan, V. S.

    2007-05-01

    Tropical Montane Cloud Forests (TMCFs) are ecosystems characterized by frequent and prolonged immersion within orographic clouds. TMCFs often lie at the core of the biological hotspots, areas of high biodiversity, whose conservation is necessary to ensure the preservation of a significant amount of the plant and animal species in the world. TMCFs support islands of endemism dependent on cloud water interception that are extremely susceptible to environmental and climatic changes at regional or global scales. Due to the ecological and hydrological importance of TMCFs it is important to understand the biogeographical distribution of these ecosystems. The best current list of TMCFs is a global atlas compiled by the United Nations Environmental Program (UNEP). However, this list is incomplete, and it does not provide information on cloud immersion, which is the defining characteristic of TMCFs and sorely needed for ecological and hydrological studies. The present study utilizes MODIS satellite data both to determine orographic cloud base heights and then to quantify cloud immersion statistics over TMCFs. Results are validated from surface measurements over Northern Costa Rica for the month of March 2003. Cloud base heights are retrieved with approximately 80m accuracy, as determined at Monteverde, Costa Rica. Cloud immersion derived from MODIS data is also compared to an independent cloud immersion dataset created using a combination of GOES satellite data and RAMS model simulations. Comparison against known locations of cloud forests in Northern Costa Rica shows that the MODIS-derived cloud immersion maps successfully identify these cloud forest locations, including those not included in the UNEP data set. Results also will be shown for cloud immersion in Hawaii. The procedure appears to be ready for global mapping.

  13. A new global 1-km dataset of percentage tree cover derived from remote sensing

    USGS Publications Warehouse

    DeFries, R.S.; Hansen, M.C.; Townshend, J.R.G.; Janetos, A.C.; Loveland, Thomas R.

    2000-01-01

    Accurate assessment of the spatial extent of forest cover is a crucial requirement for quantifying the sources and sinks of carbon from the terrestrial biosphere. In the more immediate context of the United Nations Framework Convention on Climate Change, implementation of the Kyoto Protocol calls for estimates of carbon stocks for a baseline year as well as for subsequent years. Data sources from country level statistics and other ground-based information are based on varying definitions of 'forest' and are consequently problematic for obtaining spatially and temporally consistent carbon stock estimates. By combining two datasets previously derived from the Advanced Very High Resolution Radiometer (AVHRR) at 1 km spatial resolution, we have generated a prototype global map depicting percentage tree cover and associated proportions of trees with different leaf longevity (evergreen and deciduous) and leaf type (broadleaf and needleleaf). The product is intended for use in terrestrial carbon cycle models, in conjunction with other spatial datasets such as climate and soil type, to obtain more consistent and reliable estimates of carbon stocks. The percentage tree cover dataset is available through the Global Land Cover Facility at the University of Maryland at http://glcf.umiacs.umd.edu.

  14. High-resolution land cover classification using low resolution global data

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark J.

    2013-05-01

    A fusion approach is described that combines texture features from high-resolution panchromatic imagery with land cover statistics derived from co-registered low-resolution global databases to obtain high-resolution land cover maps. The method does not require training data or any human intervention. We use an MxN Gabor filter bank consisting of M=16 oriented bandpass filters (0-180°) at N resolutions (3-24 meters/pixel). The size range of these spatial filters is consistent with the typical scale of manmade objects and patterns of cultural activity in imagery. Clustering reduces the complexity of the data by combining pixels that have similar texture into clusters (regions). Texture classification assigns a vector of class likelihoods to each cluster based on its textural properties. Classification is unsupervised and accomplished using a bank of texture anomaly detectors. Class likelihoods are modulated by land cover statistics derived from lower resolution global data over the scene. Preliminary results from a number of Quickbird scenes show our approach is able to classify general land cover features such as roads, built up area, forests, open areas, and bodies of water over a wide range of scenes.

  15. CPC - Monitoring & Data: Regional Climate Maps

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Site Map News Information CPC Web Team HOME > Monitoring and Data > Global Climate Data & Maps > Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are usually

  16. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, inmore » contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.« less

  17. Vision 20/20: Magnetic resonance imaging-guided attenuation correction in PET/MRI: Challenges, solutions, and opportunities.

    PubMed

    Mehranian, Abolfazl; Arabi, Hossein; Zaidi, Habib

    2016-03-01

    Attenuation correction is an essential component of the long chain of data correction techniques required to achieve the full potential of quantitative positron emission tomography (PET) imaging. The development of combined PET/magnetic resonance imaging (MRI) systems mandated the widespread interest in developing novel strategies for deriving accurate attenuation maps with the aim to improve the quantitative accuracy of these emerging hybrid imaging systems. The attenuation map in PET/MRI should ideally be derived from anatomical MR images; however, MRI intensities reflect proton density and relaxation time properties of biological tissues rather than their electron density and photon attenuation properties. Therefore, in contrast to PET/computed tomography, there is a lack of standardized global mapping between the intensities of MRI signal and linear attenuation coefficients at 511 keV. Moreover, in standard MRI sequences, bones and lung tissues do not produce measurable signals owing to their low proton density and short transverse relaxation times. MR images are also inevitably subject to artifacts that degrade their quality, thus compromising their applicability for the task of attenuation correction in PET/MRI. MRI-guided attenuation correction strategies can be classified in three broad categories: (i) segmentation-based approaches, (ii) atlas-registration and machine learning methods, and (iii) emission/transmission-based approaches. This paper summarizes past and current state-of-the-art developments and latest advances in PET/MRI attenuation correction. The advantages and drawbacks of each approach for addressing the challenges of MR-based attenuation correction are comprehensively described. The opportunities brought by both MRI and PET imaging modalities for deriving accurate attenuation maps and improving PET quantification will be elaborated. Future prospects and potential clinical applications of these techniques and their integration in commercial systems will also be discussed.

  18. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  19. Observations of high manganese layers by the Curiosity rover at the Kimberley, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Lanza, N.; Wiens, R. C.; Fischer, W. W.; Grotzinger, J. P.; Cousin, A.; Rice, M. S.; Clark, B. C.; Arvidson, R. E.; Hurowitz, J.; Gellert, R.; McLennan, S. M.; Maurice, S.; Mangold, N.; Le Mouelic, S.; Anderson, R. B.; Nachon, M.; Ollila, A.; Schmidt, M. E.; Berger, J. A.; Blank, J. G.; Clegg, S. M.; Forni, O.; Hardgrove, C. J.; Hardy, K.; Johnson, J. R.; Melikechi, N.; Newsom, H. E.; Sautter, V.; Martín-Torres, J.; Zorzano, M. P.

    2014-12-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.

  20. Mapping International Cancer Activities – Global Cancer Project Map Launch

    Cancer.gov

    CGH’s Dr. Sudha Sivaram, Dr. Makeda Williams, and Ms. Kalina Duncan have partnered with Drs. Ami Bhatt and Franklin Huang at Global Oncology, Inc. (GO) to develop the Global Cancer Project Map - a web-based tool designed to facilitate cancer research and control activity planning.

  1. Integration of Heterogenous Digital Surface Models

    NASA Astrophysics Data System (ADS)

    Boesch, R.; Ginzler, C.

    2011-08-01

    The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI), two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM) with 1m resolution covering whole switzerland (approx. 41000 km2). The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM). Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET) generates the image based surface model (ADS-DSM) and delivers also a map with figures of merit (FOM) of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point distribution can be used to derive a local accuracy measure. For the calculation of a robust point distribution measure, a constrained triangulation of local points (within an area of 100m2) has been implemented using the Open Source project CGAL. The area of each triangle is a measure for the spatial distribution of raw points in this local area. Combining the FOM-map with the local evaluation of LiDAR points allows an appropriate local accuracy evaluation of both surface models. The currently implemented strategy ("partial replacement") uses the hypothesis, that the ADS-DSM is superior due to its better global accuracy of 1m. If the local analysis of the FOM-map within the 100m2 area shows significant matching errors, the corresponding area of the triangulated LiDAR points is analyzed. If the point density and distribution is sufficient, the LiDAR-DSM will be used in favor of the ADS-DSM at this location. If the local triangulation reflects low point density or the variance of triangle areas exceeds a threshold, the investigated location will be marked as NODATA area. In a future implementation ("anisotropic fusion") an anisotropic inverse distance weighting (IDW) will be used, which merges both surface models in the point data space by using FOM-map and local triangulation to derive a quality weight for each of the interpolation points. The "partial replacement" implementation and the "fusion" prototype for the anisotropic IDW make use of the Open Source projects CGAL (Computational Geometry Algorithms Library), GDAL (Geospatial Data Abstraction Library) and OpenCV (Open Source Computer Vision).

  2. Hubble’s Global View of Jupiter During the Juno Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Cosentino, Richard; Tollefson, Joshua; Johnson, Perianne

    2017-10-01

    With two observing programs designed for mapping clouds and hazes in Jupiter's atmosphere during the Juno mission, the Hubble Space Telescope is acquiring an unprecedented set of global maps for study. The Outer Planet Atmospheres Legacy program (OPAL, PI: Simon) and the Wide Field Coverage for Juno program (WFCJ, PI: Wong) are designed to enable frequent multi-wavelength global mapping of Jupiter, with many maps timed specifically for Juno’s perijove passes. Filters span wavelengths from 212 to 894 nm. Besides offering global views for Juno observation context, they also reveal a wealth of information about interesting atmospheric dynamical features. We will summarize the latest findings from these global mapping programs, including changes in the Great Red Spot, zonal wind profile analysis, and persistent cyclone-generated waves in the North Equatorial Belt.

  3. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  4. Comparison of plasmaspheric electron content over sea and land using Jason-2 observations

    NASA Astrophysics Data System (ADS)

    Gulyaeva, Tamara; Cherniak, Iurii; Zakharenkova, Irina

    2016-07-01

    The Global Ionospheric Maps of Total Electron Content, GIM-TEC, may suffer from model assumptions, in particular, over the oceans where relatively few measurements are available due to a scarcity of ground-based GPS receivers network only on seashores and islands which involve more assumptions or interpolations imposed on GIM mapping techniques. The GPS-derived TEC represents the total electron content integrated through the ionosphere, iTEC, and the plasmasphere, pTEC. The sea/land differences in the F2 layer peak electron density, NmF2, and the peak height, hmF2, gathered with topside sounding data exhibit tilted ionosphere along the seashores with denser electron population at greater peak heights over the sea. Derivation of a sea/land proportion of total electron content from the new source of the satellite-based measurements would allow improve the mapping GIM-TEC products and their assimilation by the ionosphere-plasmasphere IRI-Plas model. In this context the data of Jason-2 mission provided through the NOAA CLASS Website (http://www.nsof.class.noaa.gov/saa/products/catSearch) present a unique database of pTEC measured through the plasmasphere over the Jason-2 orbit (1335 km) to GPS orbit (20,200 km) which become possible from GPS receivers placed onboard of Jason-2 with a zenith looking antenna that can be used not only for precise orbit determination (POD), but can also provide new data on the plasma density distribution in the plasmasphere. Special interest represents possibility of the potential increase of the data volume in two times due to the successful launch of the Jason-3 mission on 17 January 2016. The present study is focused on a comparison of plasmasphere electron content, pTEC, over the sea and land with a unique data base of the plasmasphere electron content, pTEC, using measurements onboard Jason-2 satellite during the solar minimum (2009) and solar maximum (2014). Slant TEC values were scaled to estimate vertical pTEC using a geometric factor derived by assuming the plasma occupies a spherical thin shell at 1400 km. The elevation angle cut-off was selected as 40 deg. Global distribution of POD TEC values has been presented in the form of pTEC maps, that were made by projecting the pTEC values on the Earth from the ionosphere pierce point at the shell altitude. Along the satellite pass for each epoch we have pTEC values for several linked LEO-GPS simultaneously, that can be binned and averaged into map cells. Results of pTEC maps analysis in terms of local time, season and solar activity are presented in the paper.

  5. Simulation of the mineral dust emission over Northern Africa and Middle East using an aerodynamic roughness length map derived from the ASCAT/PARASOL

    NASA Astrophysics Data System (ADS)

    Basart, Sara; Jorba, Oriol; Pérez García-Pando, Carlos; Prigent, Catherine; Baldasano, Jose M.

    2014-05-01

    Aeolian aerodynamic roughness length in arid regions is a key parameter to predict the vulnerability of the surface to wind erosion, and, as a consequence, the related production of mineral aerosol (e.g. Laurent et al., 2008). Recently, satellite-derived roughness length at the global scale have emerged and provide the opportunity to use them in advanced emission schemes in global and regional models (i.e. Menut et al., 2013). A global map of the aeolian aerodynamic roughness length at high resolution (6 km) is derived, for arid and semi-arid regions merging PARASOL and ASCAT data to estimate aeolian roughness length. It shows very good consistency with the existing information on the properties of these surfaces. The dataset is available to the community, for use in atmospheric dust transport models. The present contribution analyses the behaviour of the NMMB/BSC-Dust model (Pérez et al., 2011) when the ASCAT/PARASOL satellite-derived global roughness length (Prigent et al, 2012) and the State Soil Geographic database Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) is used. We explore the sensitivity of the drag partition scheme (a critical component of the dust emission scheme) and the dust vertical fluxes (intensity and spatial patterns) to the roughness length. An annual evaluation of NMMB/BSC-Dust (for the year 2011) over Northern Africa and the Middle East using observed aerosol optical depths (AODs) from Aerosol Robotic Network sites and aerosol satellite products (MODIS and MISR) will be discussed. Laurent, B., Marticorena, B., Bergametti, G., Leon, J. F., and Mahowald, N. M.: Modeling mineral dust emissions from the Sahara desert using new surface properties and soil database, J. Geophys. Res., 113, D14218, doi:10.1029/2007JD009484, 2008. Menut, L., C. Pérez, K. Haustein, B. Bessagnet, C. Prigent, and S. Alfaro, Impact of surface roughness and soil texture on mineral dust emission fluxes modeling, J. Geophys. Res. Atmos., 118, 6505-6520, doi:10.1002/jgrd.50313, 2013. Pérez, C., Haustein, K., Janjic, Z., Jorba, O., Huneeus, N., Baldasano, J. M. and Thomson, M. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model-Part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics, 11(24), 13001-13027, 2011. Prigent, C., Jiménez, C., and Catherinot, J.: Comparison of satellite microwave backscattering (ASCAT) and visible/near-infrared reflectances (PARASOL) for the estimation of aeolian aerodynamic roughness length in arid and semi-arid regions, Atmos. Meas. Tech., 5, 2703-2712, doi:10.5194/amt-5-2703-2012, 2012.

  6. Maps of Structured Aerosol Activity During the MY 25 Planet-encircling Dust Storm on Mars

    NASA Astrophysics Data System (ADS)

    Noble, J.; Wilson, R. J.; Cantor, B. A.; Kahre, M. A.; Hollingsworth, J. L.; Bridger, A. F. C.; Haberle, R. M.; Barnes, J.

    2016-12-01

    We have produced a sequence of 42 global maps from Ls=165.1-187.7° that delimit the areal extent of structured aerosol activity based on a synthesis of Mars Global Surveyor (MGS) data, including Mars Orbiter Camera (MOC) daily global maps (DGMs) and wide angle imagery, Thermal Emission Spectrometer (TES) dust and H2O ice opacity, and Mars general circulation model (MGCM) derived dust opacity. The primary motivation of this work is to examine the temporal and spatial relationship between dust storms observed by MOC and baroclinic eddies inferred from Fast Fourier Synoptic Mapping (FFSM) of TES temperatures in order to study the initiation and evolution of Mars year (MY) 25 planet-encircling dust storm (PDS) precursor phase dust storms. A secondary motivation is to provide improved input to MGCM simulations. Assuming that structured dust storms indicate active dust lifting, these maps allow us to define potential dust lifting regions. This work has two implications for martian atmospheric science. First, integration of MGS data has enabled us to develop improved quantitative and qualitative descriptions of storm evolution that may be used to constrain estimates of dust lifting regions, horizontal dust distribution, and to infer associated circulations. Second, we believe that these maps provide better bases and constraints for modeling storm initiation. Based on our analysis of these MGS data, we propose the following working hypothesis to explain the dynamical processes responsible for PDS initiation and expansion. Six eastward-traveling transient baroclinic eddies triggered the MY 25 precursor storms in Hellas during Ls=176.2-184.6° due to the enhanced dust lifting associated with their low-level wind and stress fields. This was followed by a seventh eddy that contributed to expansion on Ls=186.3°. Increased opacity and temperatures from dust lifting associated with the first three eddies enhanced thermal tides which supported further storm initiation and expansion out of Hellas. Constructive interference of eddies and other circulation components including sublimation flow, anabatic winds (daytime upslope), and diurnal tides may have contributed to storm onset in, and expansion out of Hellas.

  7. Polar Views of Titan Global Topography

    NASA Image and Video Library

    2013-05-15

    These polar maps show the first global, topographic mapping of Saturn moon Titan, using data from NASA Cassini mission. To create these maps, scientists employed a mathematical process called splining.

  8. Terrestrial Ecosystems-Surficial Lithology of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill; Soller, David; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2010-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey (USGS) has generated a new classification of the lithology of surficial materials to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States. The ecosystems classification used in this effort was developed by NatureServe. A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. This ecosystem mapping methodology is transparent, replicable, and rigorous. Surficial lithology strongly influences the differentiation and distribution of terrestrial ecosystems, and is one of the key input layers in this biophysical stratification. These surficial lithology classes were derived from the USGS map 'Surficial Materials in the Conterminous United States,' which was based on texture, internal structure, thickness, and environment of deposition or formation of materials. This original map was produced from a compilation of regional surficial and bedrock geology source maps using broadly defined common map units for the purpose of providing an overview of the existing data and knowledge. For the terrestrial ecosystem effort, the 28 lithology classes of Soller and Reheis (2004) were generalized and then reclassified into a set of 17 lithologies that typically control or influence the distribution of vegetation types.

  9. Mapping Global Citizenship

    ERIC Educational Resources Information Center

    Stein, Sharon

    2015-01-01

    The demand to cultivate global citizenship is frequently invoked as central to colleges' and universities' internationalization efforts. However, the term "global citizenship" remains undertheorized in the context of U.S. higher education. This article maps and engages three common global citizenship positions--entrepreneurial, liberal…

  10. Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2010-11-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.

  11. Mapping Alpine Vegetation Location Properties by Dense Matching

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Steinbauer, Klaus; Winkler, Manuela; Pauli, Harald

    2016-06-01

    Highly accurate 3D micro topographic mapping in mountain research demands for light equipment and low cost solutions. Recent developments in structure from motion and dense matching techniques provide promising tools for such applications. In the following, the feasibility of terrestrial photogrammetry for mapping topographic location properties of sparsely vegetated areas in selected European mountain regions is investigated. Changes in species composition at alpine vegetation locations are indicators of climate change consequences, such as the pronounced rise of average temperatures in mountains compared to the global average. Better understanding of climate change effects on plants demand for investigations on a micro-topographic scale. We use professional and consumer grade digital single-lens reflex cameras mapping 288 plots each 3 x 3 m on 18 summits in the Alps and Mediterranean Mountains within the GLORIA (GLobal Observation Research Initiative in Alpine environments) network. Image matching tests result in accuracies that are in the order of millimetres in the XY-plane and below 0.5 mm in Z-direction at the second image pyramid level. Reconstructing vegetation proves to be a challenge due to its fine and small structured architecture and its permanent movement by wind during image acquisition, which is omnipresent on mountain summits. The produced 3D point clouds are gridded to 6 mm resolution from which topographic parameters such as slope, aspect and roughness are derived. At a later project stage these parameters will be statistically linked to botanical reference data in order to conclude on relations between specific location properties and species compositions.

  12. Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions - A case study in an intensively-used Mediterranean catchment.

    PubMed

    Herrmann, Frank; Baghdadi, Nicolas; Blaschek, Michael; Deidda, Roberto; Duttmann, Rainer; La Jeunesse, Isabelle; Sellami, Haykel; Vereecken, Harry; Wendland, Frank

    2016-02-01

    We used observed climate data, an ensemble of four GCM-RCM combinations (global and regional climate models) and the water balance model mGROWA to estimate present and future groundwater recharge for the intensively-used Thau lagoon catchment in southern France. In addition to a highly resolved soil map, soil moisture distributions obtained from SAR-images (Synthetic Aperture Radar) were used to derive the spatial distribution of soil parameters covering the full simulation domain. Doing so helped us to assess the impact of different soil parameter sources on the modelled groundwater recharge levels. Groundwater recharge was simulated in monthly time steps using the ensemble approach and analysed in its spatial and temporal variability. The soil parameters originating from both sources led to very similar groundwater recharge rates, proving that soil parameters derived from SAR images may replace traditionally used soil maps in regions where soil maps are sparse or missing. Additionally, we showed that the variance in different GCM-RCMs influences the projected magnitude of future groundwater recharge change significantly more than the variance in the soil parameter distributions derived from the two different sources. For the period between 1950 and 2100, climate change impacts based on the climate model ensemble indicated that overall groundwater recharge will possibly show a low to moderate decrease in the Thau catchment. However, as no clear trend resulted from the ensemble simulations, reliable recommendations for adapting the regional groundwater management to changed available groundwater volumes could not be derived. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A method to derive vegetation distribution maps for pollen dispersion models using birch as an example

    NASA Astrophysics Data System (ADS)

    Pauling, A.; Rotach, M. W.; Gehrig, R.; Clot, B.

    2012-09-01

    Detailed knowledge of the spatial distribution of sources is a crucial prerequisite for the application of pollen dispersion models such as, for example, COSMO-ART (COnsortium for Small-scale MOdeling - Aerosols and Reactive Trace gases). However, this input is not available for the allergy-relevant species such as hazel, alder, birch, grass or ragweed. Hence, plant distribution datasets need to be derived from suitable sources. We present an approach to produce such a dataset from existing sources using birch as an example. The basic idea is to construct a birch dataset using a region with good data coverage for calibration and then to extrapolate this relationship to a larger area by using land use classes. We use the Swiss forest inventory (1 km resolution) in combination with a 74-category land use dataset that covers the non-forested areas of Switzerland as well (resolution 100 m). Then we assign birch density categories of 0%, 0.1%, 0.5% and 2.5% to each of the 74 land use categories. The combination of this derived dataset with the birch distribution from the forest inventory yields a fairly accurate birch distribution encompassing entire Switzerland. The land use categories of the Global Land Cover 2000 (GLC2000; Global Land Cover 2000 database, 2003, European Commission, Joint Research Centre; resolution 1 km) are then calibrated with the Swiss dataset in order to derive a Europe-wide birch distribution dataset and aggregated onto the 7 km COSMO-ART grid. This procedure thus assumes that a certain GLC2000 land use category has the same birch density wherever it may occur in Europe. In order to reduce the strict application of this crucial assumption, the birch density distribution as obtained from the previous steps is weighted using the mean Seasonal Pollen Index (SPI; yearly sums of daily pollen concentrations). For future improvement, region-specific birch densities for the GLC2000 categories could be integrated into the mapping procedure.

  14. Enhanced-Resolution Satellite Microwave Brightness Temperature Records for Mapping Boreal-Arctic Landscape Freeze-Thaw Heterogeneity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Du, J.; Kimball, J. S.

    2017-12-01

    The landscape freeze-thaw (FT) status derived from satellite microwave remote sensing is closely linked to vegetation phenology and productivity, surface energy exchange, evapotranspiration, snow/ice melt dynamics, and trace gas fluxes over land areas affected by seasonally frozen temperatures. A long-term global satellite microwave Earth System Data Record of daily landscape freeze-thaw status (FT-ESDR) was developed using similar calibrated 37GHz, vertically-polarized (V-pol) brightness temperatures (Tb) from SMMR, SSM/I, and SSMIS sensors. The FT-ESDR shows mean annual spatial classification accuracies of 90.3 and 84.3 % for PM and AM overpass retrievals relative surface air temperature (SAT) measurement based FT estimates from global weather stations. However, the coarse FT-ESDR gridding (25-km) is insufficient to distinguish finer scale FT heterogeneity. In this study, we tested alternative finer scale FT estimates derived from two enhanced polar-grid (3.125-km and 6-km resolution), 36.5 GHz V-pol Tb records derived from calibrated AMSR-E and AMSR2 sensor observations. The daily FT estimates are derived using a modified seasonal threshold algorithm that classifies daily Tb variations in relation to grid cell-wise FT thresholds calibrated using ERA-Interim reanalysis based SAT, downscaled using a digital terrain map and estimated temperature lapse rates. The resulting polar-grid FT records for a selected study year (2004) show mean annual spatial classification accuracies of 90.1% (84.2%) and 93.1% (85.8%) for respective PM (AM) 3.125km and 6-km Tb retrievals relative to in situ SAT measurement based FT estimates from regional weather stations. Areas with enhanced FT accuracy include water-land boundaries and mountainous terrain. Differences in FT patterns and relative accuracy obtained from the enhanced grid Tb records were attributed to several factors, including different noise contributions from underlying Tb processing and spatial mismatches between Tb retrievals and SAT calibrated FT thresholds.

  15. The First Global Geological Map of Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.

    2015-12-01

    Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).

  16. Comparison of the New LEAF Area INDEX (LAI 3G) with the Kazahstan-Wide LEAF Area INDEX DATA SET (GGRS-LAI) over Central ASIA

    NASA Astrophysics Data System (ADS)

    Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.

    2014-12-01

    Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927-948; doi:10.3390/rs5020927

  17. The uncertainty cascade in flood risk assessment under changing climatic conditions - the Biala Tarnowska case study

    NASA Astrophysics Data System (ADS)

    Doroszkiewicz, Joanna; Romanowicz, Renata

    2016-04-01

    Uncertainty in the results of the hydraulic model is not only associated with the limitations of that model and the shortcomings of data. An important factor that has a major impact on the uncertainty of the flood risk assessment in a changing climate conditions is associated with the uncertainty of future climate scenarios (IPCC WG I, 2013). Future climate projections provided by global climate models are used to generate future runoff required as an input to hydraulic models applied in the derivation of flood risk maps. Biala Tarnowska catchment, situated in southern Poland is used as a case study. Future discharges at the input to a hydraulic model are obtained using the HBV model and climate projections obtained from the EUROCORDEX project. The study describes a cascade of uncertainty related to different stages of the process of derivation of flood risk maps under changing climate conditions. In this context it takes into account the uncertainty of future climate projections, an uncertainty of flow routing model, the propagation of that uncertainty through the hydraulic model, and finally, the uncertainty related to the derivation of flood risk maps. One of the aims of this study is an assessment of a relative impact of different sources of uncertainty on the uncertainty of flood risk maps. Due to the complexity of the process, an assessment of total uncertainty of maps of inundation probability might be very computer time consuming. As a way forward we present an application of a hydraulic model simulator based on a nonlinear transfer function model for the chosen locations along the river reach. The transfer function model parameters are estimated based on the simulations of the hydraulic model at each of the model cross-section. The study shows that the application of the simulator substantially reduces the computer requirements related to the derivation of flood risk maps under future climatic conditions. Acknowledgements: This work was supported by the project CHIHE (Climate Change Impact on Hydrological Extremes), carried out in the Institute of Geophysics Polish Academy of Sciences, funded by Norway Grants (contract No. Pol-Nor/196243/80/2013). The hydro-meteorological observations were provided by the Institute of Meteorology and Water Management (IMGW), Poland.

  18. Using global maps to predict the risk of dengue in Europe.

    PubMed

    Rogers, David J; Suk, Jonathan E; Semenza, Jan C

    2014-01-01

    This article attempts to quantify the risk to Europe of dengue, following the arrival and spread there of one of dengue's vector species Aedes (Stegomyia) albopictus. A global risk map for dengue is presented, based on a global database of the occurrence of this disease, derived from electronic literature searches. Remotely sensed satellite data (from NASA's MODIS series), interpolated meteorological data, predicted distribution maps of dengue's two main vector species, Aedes aegypti and Aedes albopictus, a digital elevation surface and human population density data were all used as potential predictor variables in a non-linear discriminant analysis modelling framework. One hundred bootstrap models were produced by randomly sub-sampling three different training sets for dengue fever, severe dengue (i.e. dengue haemorrhagic fever, DHF) and all-dengue, and output predictions were averaged to produce a single global risk map for each type of dengue. This paper concentrates on the all-dengue models. Key predictor variables were various thermal data layers, including both day- and night-time Land Surface Temperature, human population density, and a variety of rainfall variables. The relative importance of each may be shown visually using rainbow files and quantitatively using a ranking system. Vegetation Index variables (a common proxy for humidity or saturation deficit) were rarely chosen in the models. The kappa index of agreement indicated an excellent (dengue haemorrhagic fever, Cohen's kappa=0.79 ± 0.028, AUC=0.96 ± 0.007) or good fit of the top ten models in each series to the data (Cohen's kappa=0.73 ± 0.018, AUC=0.94 ± 0.007 for dengue fever and 0.74 ± 0.017, AUC=0.95 ± 0.005 for all dengue). The global risk map predicts widespread dengue risk in SE Asia and India, in Central America and parts of coastal South America, but in relatively few regions of Africa. In many cases these are less extensive predictions than those of other published dengue risk maps and arise because of the key importance of high human population density for the all-dengue risk maps produced here. Three published dengue risk maps are compared using the Fleiss kappa index, and are shown to have only fair agreement globally (Fleiss kappa=0.377). Regionally the maps show greater (but still only moderate) agreement in SE Asia (Fleiss kappa=0.566), fair agreement in the Americas (Fleiss kappa=0.325) and only slight agreement in Africa (Fleiss kappa=0.095). The global dengue risk maps show that very few areas of rural Europe are presently suitable for dengue, but several major cities appear to be at some degree of risk, probably due to a combination of thermal conditions and high human population density, the top two variables in many models. Mahalanobis distance images were produced of Europe and the southern United States showing the distance in environmental rather than geographical space of each site from any site where dengue currently occurs. Parts of Europe are quite similar in Mahalanobis distance terms to parts of the southern United States, where dengue occurred in the recent past and which remain environmentally suitable for it. High standards of living rather than a changed environmental suitability keep dengue out of the USA. The threat of dengue to Europe at present is considered to be low but sufficiently uncertain to warrant monitoring in those areas of greatest predicted environmental suitability, especially in northern Italy and parts of Austria, Slovenia and Croatia, Bosnia and Herzegovina, Serbia and Montenegro, Albania, Greece, south-eastern France, Germany and Switzerland, and in smaller regions elsewhere. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. The TES Hematite-Rich Region in Sinus Meridiani: A Proposed Landing Site for the 2003 Rover

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.; Bandfield, Joshua; Hamilton, Victoria; Ruff, Steven; Morris, Richard; Lane, Melissa; Malin, Michael

    2001-01-01

    The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has identified an accumulation of crystalline hematite (alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 750 km in size centered near 2 S latitude between 0 and 8 W longitude (Sinus Meridiani). The depth and shape of the hematite fundamental bands in the TES spectra show that the hematite is relatively coarse grained (greater than 5-10 micrometers). The spectrally-derived areal abundance of hematite varies with particle size from approximately 10% for particles greater than 30 micrometers in diameter to 40-60% for unpacked 10 micrometer powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter less than 5-10 micrometers), red, crystalline hematite considered, on the basis of visible and near-IR data, to be a minor spectral component in Martian bright regions. A global map of the hematite abundance has been constructed using TES data from the MGS mapping mission.

  20. Towards the Development and Validation of a Global Field Size and Irrigation Map using Crowdsourcing, Mobile Apps and Google Earth Engine in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.

    2014-12-01

    The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the field size map. The app can also cache map data so that high resolution satellite imagery and reference data from the users can be viewed in the field without the need for an internet connection. This app will be used for calibration and validation of the data products in SIGMA, e.g. data collection at JECAM (Joint Experiment of Crop Assessment and Monitoring) sites.

  1. A fully traits-based approach to modeling global vegetation distribution.

    PubMed

    van Bodegom, Peter M; Douma, Jacob C; Verheijen, Lieneke M

    2014-09-23

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist. Here, we present such analysis as proof of principle. We run regressions of trait observations for leaf mass per area, stem-specific density, and seed mass from a global database against multiple environmental drivers, making use of findings of global trait convergence. This analysis explained up to 52% of the global variation of traits. Global trait maps, generated by coupling the regression equations to gridded soil and climate maps, showed up to orders of magnitude variation in trait values. Subsequently, nine vegetation types were characterized by the trait combinations that they possess using Gaussian mixture density functions. The trait maps were input to these functions to determine global occurrence probabilities for each vegetation type. We prepared vegetation maps, assuming that the most probable (and thus, most suited) vegetation type at each location will be realized. This fully traits-based vegetation map predicted 42% of the observed vegetation distribution correctly. Our results indicate that a major proportion of the predictive ability of DGVMs with respect to vegetation distribution can be attained by three traits alone if traits like stem-specific density and seed mass are included. We envision that our traits-based approach, our observation-driven trait maps, and our vegetation maps may inspire a new generation of powerful traits-based DGVMs.

  2. MISR L3 Global Products

    Atmospheric Science Data Center

    2016-10-31

    Global Products The MISR Level 3 Products are global or regional maps of select parameters from the Level 2 products and ... from multiple orbits are combined to make complete Level 3 global maps at daily (D), monthly (M), quarterly (Q), and yearly (Y) time ...

  3. Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies

    NASA Astrophysics Data System (ADS)

    Graham, S. T.; Famiglietti, J. S.; Maidment, D. R.

    1999-02-01

    A major shortcoming of the land surface component in climate models is the absence of a river transport algorithm. This issue becomes particularly important in fully coupled climate system models (CSMs), where river transport is required to close and realistically represent the global water cycle. The development of a river transport algorithm requires knowledge of watersheds and river networks at a scale that is appropriate for use in CSMs. These data must be derived largely from global digital topographic information. The purpose of this paper is to describe a new data set of watersheds and river networks, which is derived primarily from the TerrainBase 5' Global DTM (digital terrain model) and the CIA World Data Bank II. These data serve as a base map for routing continental runoff to the appropriate coast and therefore into the appropriate ocean or inland sea. Using this data set, the runoff produced in any grid cell, when coupled with a routing algorithm, can easily be transported to the appropriate water body and distributed across that water body as desired. The data set includes watershed and flow direction information, as well as supporting hydrologic data at 5', 1/2°, and 1° resolutions globally. It will be useful in fully coupled land-ocean-atmosphere models, in terrestrial ecosystem models, or in stand-alone macroscale hydrologic-modeling studies.

  4. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  5. Global equivalent magnetization of the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  6. A new method to generate a high-resolution global distribution map of lake chlorophyll

    USGS Publications Warehouse

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  7. The Europa Global Geologic Map

    NASA Astrophysics Data System (ADS)

    Leonard, E. J.; Patthoff, D. A.; Senske, D. A.; Collins, G. C.

    2018-06-01

    The Europa Global Geologic Map reveals three periods in Europa's surface history as well as an interesting distribution of microchaos. We will discuss the mapping and the interesting implications of our analysis of Europa's surface.

  8. Map projections for global and continental data sets and an analysis of pixel distortion caused by reprojection

    USGS Publications Warehouse

    Steinwand, Daniel R.; Hutchinson, John A.; Snyder, J.P.

    1995-01-01

    In global change studies the effects of map projection properties on data quality are apparent, and the choice of projection is significant. To aid compilers of global and continental data sets, six equal-area projections were chosen: the interrupted Goode Homolosine, the interrupted Mollweide, the Wagner IV, and the Wagner VII for global maps; the Lambert Azimuthal Equal-Area for hemisphere maps; and the Oblated Equal-Area and the Lambert Azimuthal Equal-Area for continental maps. Distortions in small-scale maps caused by reprojection, and the additional distortions incurred when reprojecting raster images, were quantified and graphically depicted. For raster images, the errors caused by the usual resampling methods (pixel brightness level interpolation) were responsible for much of the additional error where the local resolution and scale change were the greatest.

  9. Global coastal flood hazard mapping

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; Winsemius, Hessel; Ward, Philip; Diaz Loaiza, Andres; Haag, Arjen; Verlaan, Martin; Luo, Tianyi

    2017-04-01

    Over 10% of the world's population lives in low-lying coastal areas (up to 10m elevation). Many of these areas are prone to flooding from tropical storm surges or extra-tropical high sea levels in combination with high tides. A 1 in 100 year extreme sea level is estimated to expose 270 million people and 13 trillion USD worth of assets to flooding. Coastal flood risk is expected to increase due to drivers such as ground subsidence, intensification of tropical and extra-tropical storms, sea level rise and socio-economic development. For better understanding of the hazard and drivers to global coastal flood risk, a globally consistent analysis of coastal flooding is required. In this contribution we present a comprehensive global coastal flood hazard mapping study. Coastal flooding is estimated using a modular inundation routine, based on a vegetation corrected SRTM elevation model and forced by extreme sea levels. Per tile, either a simple GIS inundation routine or a hydrodynamic model can be selected. The GIS inundation method projects extreme sea levels to land, taking into account physical obstructions and dampening of the surge level land inwards. For coastlines with steep slopes or where local dynamics play a minor role in flood behavior, this fast GIS method can be applied. Extreme sea levels are derived from the Global Tide and Surge Reanalysis (GTSR) dataset. Future sea level projections are based on probabilistic sea level rise for RCP 4.5 and RCP 8.5 scenarios. The approach is validated against observed flood extents from ground and satellite observations. The results will be made available through the online Aqueduct Global Flood Risk Analyzer of the World Resources Institute.

  10. Development of a global Agricultural Stress Index System (ASIS) based on remote sensing data

    NASA Astrophysics Data System (ADS)

    Van Hoolst, R.

    2016-12-01

    According to the 2012 IPCC SREX report, extreme drought events are projected to become more frequent and intense in several regions of the world. Wide and timely monitoring systems are required to mitigate the impact of agricultural drought. Therefore, FAO's Global Information and Early Warning System (GIEWS) and the Climate, Energy and Tenure Division (NRC) have established the `Agricultural Stress Index System' (ASIS). The ASIS is a remote sensing application that provides early warnings of agricultural drought at a global scale. The ASIS has first been designed and described by Rojas et al. (2011). This study focused on the African continent and was based on the back processing of low resolution data of the NOAA-satellites. In the current setup, developed by VITO (Flemish Institute for Technological Research), the system operates in Near Real Time using data from the METOP-AVHRR sensor. The Agricultural Stress Index (ASI) is the percentage of agricultural area affected by drought in the course of the growing season within a given administrative unit. The start and end of the growing season are derived per pixel from the long term NDVI average of SPOT-VEGETATION. The Global Administrative Unit Layer (GAUL) defines the administrative boundaries at level 0, 1 and 2. A global cropland and grassland map eliminates non-agricultural areas. Temperature and NDVI anomalies are used as drought indicators and calculated at a per pixel base. The ASIS aggregates this information and produces every dekad global maps to highlight hotspots of drought stress. New developments are ongoing to strengthen the ASIS to produce country specific outputs, improve existing drought indicators and estimate production deficits using a probabilistic approach.

  11. Advances in Landslide Nowcasting: Evaluation of a Global and Regional Modeling Approach

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia Bach; Peters-Lidard, Christa; Adler, Robert; Hong, Yang; Kumar, Sujay; Lerner-Lam, Arthur

    2011-01-01

    The increasing availability of remotely sensed data offers a new opportunity to address landslide hazard assessment at larger spatial scales. A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that may experience landslide activity. This system combines a calculation of static landslide susceptibility with satellite-derived rainfall estimates and uses a threshold approach to generate a set of nowcasts that classify potentially hazardous areas. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale near real-time landslide hazard assessment efforts, it requires several modifications before it can be fully realized as an operational tool. This study draws upon a prior work s recommendations to develop a new approach for considering landslide susceptibility and hazard at the regional scale. This case study calculates a regional susceptibility map using remotely sensed and in situ information and a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America. The susceptibility map is evaluated with a regional rainfall intensity duration triggering threshold and results are compared with the global algorithm framework for the same event. Evaluation of this regional system suggests that this empirically based approach provides one plausible way to approach some of the data and resolution issues identified in the global assessment. The presented methodology is straightforward to implement, improves upon the global approach, and allows for results to be transferable between regions. The results also highlight several remaining challenges, including the empirical nature of the algorithm framework and adequate information for algorithm validation. Conclusions suggest that integrating additional triggering factors such as soil moisture may help to improve algorithm performance accuracy. The regional algorithm scenario represents an important step forward in advancing regional and global-scale landslide hazard assessment.

  12. A Comparative Study of the Ionospheric TEC Measurements Using Global Ionospheric Maps of GPS, TOPEX Radar and the Bent Model

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wilson, B.; Mannucci, A.; Lindqwister, U.; Yuan, D.

    1997-01-01

    Global ionospheric mapping (GIM) is a new, emerging technique for determining global ionospheric TEC (total electron content) based on measurements from a worldwide network of Global Positioning System (GPS) receivers.

  13. Symplectic Propagation of the Map, Tangent Map and Tangent Map Derivative through Quadrupole and Combined-Function Dipole Magnets without Truncation

    NASA Astrophysics Data System (ADS)

    Bruhwiler, D. L.; Cary, J. R.; Shasharina, S.

    1998-04-01

    The MAPA accelerator modeling code symplectically advances the full nonlinear map, tangent map and tangent map derivative through all accelerator elements. The tangent map and its derivative are nonlinear generalizations of Browns first- and second-order matrices(K. Brown, SLAC-75, Rev. 4 (1982), pp. 107-118.), and they are valid even near the edges of the dynamic aperture, which may be beyond the radius of convergence for a truncated Taylor series. In order to avoid truncation of the map and its derivatives, the Hamiltonian is split into pieces for which the map can be obtained analytically. Yoshidas method(H. Yoshida, Phys. Lett. A 150 (1990), pp. 262-268.) is then used to obtain a symplectic approximation to the map, while the tangent map and its derivative are appropriately composed at each step to obtain them with equal accuracy. We discuss our splitting of the quadrupole and combined-function dipole Hamiltonians and show that typically few steps are required for a high-energy accelerator.

  14. Global marine bacterial diversity peaks at high latitudes in winter

    PubMed Central

    Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S

    2013-01-01

    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781

  15. Integration of magnetic field and electron reflection data to improve Mars internal magnetic field model definition at 185 km altitude

    NASA Astrophysics Data System (ADS)

    Mozzoni, D. T.; Cain, J. C.; Lillis, R. J.

    2012-12-01

    Because no further projects are planned to better define the global magnetic field about Mars, it is important to utilize present the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER) data to its fullest. Challenges in deriving an accurate model include the fact that the mapping orbit of MGS was limited to two local times, and also had a narrow distribution of data ranging from only southern latitudes below 350 km to only northern latitudes over 400 km. The aerobraking and science phasing orbit data below 350 km down to near 100 km was nearly all on the sunlit side with its strong distortions from the solar wind and embedded ionospheric currents. The improvement reported herein is from the addition of the projected total field evaluated at 185 km above the areoid. These data are derived from extrapolation of the pitch angle distributions of ER data to the reflection altitudes and adjustment to a common data altitude. Crucial to this analysis is the angular distribution of the magnetic field itself below MGS. Thus it was an iterative process whereby the 185 km data sets were recalculated based on the last iterative solutions from the magnetic field models derived including these data. The statistical improvements at the ER mapped altitudes after 5 iterations was to reduce the initial 2.0 nT sigma differences with a Gaussian spread of 20 nT to 0.5 nT and a spread of 12 nT. Unfortunately, many areas of very high field especially provided no data as they were on closed field lines. However, the iterative solutions also improved the 185 km scalar maps significantly from the original based on linear field line estimates, up to several hundred nT. The next step planned is to utilize the concept suggested by Connerney to use along-track gradients, especially those at lowest altitudes on the dayside, to input to the model sets. Preliminary tests indicate the possibility of added improvements in the missing ER data areas once this technique is perfected.

  16. Assessment of Global Wind Energy Resource Utilization Potential

    NASA Astrophysics Data System (ADS)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  17. Impacts of ENSO on global hydrology

    NASA Astrophysics Data System (ADS)

    Ward, P. J.; Eisner, S.; Flörke, M.; Kummu, M.

    2012-04-01

    The economic consequences of flooding are huge, as exemplified by recent major floods in Thailand, Pakistan, and Australia. Moreover, research shows that economic losses due to flooding have increased dramatically in recent decades. Whilst much research is being carried out to assess how this may be related to socioeconomic development (increased exposure to floods) or climate change (increased hazard), the role of interannual climate variability is poorly understood at the global scale. We provide the first global assessment of the sensitivity of extreme global river discharge to the El Niño Southern Oscillation (ENSO). Past studies have either: (a) assessed this at the local scale; or (b) assessed only global correlations between ENSO and mean river discharge. Firstly, we used a daily observed discharge dataset for 622 gauging stations (from the GRDC database), and assessed and mapped correlations and sensitivities between these time-series and several indices of ENSO. We found that, on average, for the stations studied ENSO has a greater impact on annual high-flow events than on mean annual discharge, especially in the extra-tropics. However, the geographical coverage of the dataset is poor in some regions, and is highly skewed towards certain areas (e.g. North America, Europe, and eastern Australia). This renders a truly global assessment of ENSO impacts impossible based on these observed time-series. Hence, we are also using a modelling approach to estimate correlations and sensitivities in all basins, gauged and ungauged. For this, we are using a gridded time-series of modelled daily discharge from the EU-WATCH project, and analysing relationships between these time-series (per grid-cell) and indices of ENSO. This allows for the first truly global assessment of the impact of ENSO variability on river discharge; these analyses are ongoing. Of course, this approach entails its own problems; the use of global hydrological models to derive daily discharge time-series introduces its own uncertainties. Hence, the results derived from the modelling exercise will be validated against the results derived from the observed data. The quantification of ENSO impacts provides relevant information for water management, allowing the identification of problem areas and providing a basis for risk assessments.

  18. Generating High-Resolution Lake Bathymetry over Lake Mead using the ICESat-2 Airborne Simulator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gao, H.; Jasinski, M. F.; Zhang, S.; Stoll, J.

    2017-12-01

    Precise lake bathymetry (i.e., elevation/contour) mapping is essential for optimal decision making in water resources management. Although the advancement of remote sensing has made it possible to monitor global reservoirs from space, most of the existing studies focus on estimating the elevation, area, and storage of reservoirs—and not on estimating the bathymetry. This limitation is attributed to the low spatial resolution of satellite altimeters. With the significant enhancement of ICESat-2—the Ice, Cloud & Land Elevation Satellite #2, which is scheduled to launch in 2018—producing satellite-based bathymetry becomes feasible. Here we present a pilot study for deriving the bathymetry of Lake Mead by combining Landsat area estimations with airborne elevation data using the prototype of ICESat-2—the Multiple Altimeter Beam Experimental Lidar (MABEL). First, an ISODATA classifier was adopted to extract the lake area from Landsat images during the period from 1982 to 2017. Then the lake area classifications were paired with MABEL elevations to establish an Area-Elevation (AE) relationship, which in turn was applied to the classification contour map to obtain the bathymetry. Finally, the Lake Mead bathymetry image was embedded onto the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), to replace the existing constant values. Validation against sediment survey data indicates that the bathymetry derived from this study is reliable. This algorithm has the potential for generating global lake bathymetry when ICESat-2 data become available after next year's launch.

  19. Bulk hydrogen abundances in the lunar highlands: Measurements from orbital neutron data

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Peplowski, Patrick N.; Plescia, Jeffrey B.; Greenhagen, Benjamin T.; Maurice, Sylvestre; Prettyman, Thomas H.

    2015-07-01

    The first map of bulk hydrogen concentrations in the lunar highlands region is reported. This map is derived using data from the Lunar Prospector Neutron Spectrometer (LP-NS). We resolve prior ambiguities in the interpretation of LP-NS data with respect to non-polar hydrogen concentrations by comparing the LP-NS data with maps of the 750 nm albedo reflectance, optical maturity, and the wavelength position of the thermal infrared Christiansen Feature. The best explanation for the variations of LP-NS epithermal neutron data in the lunar highlands is variable amounts of solar-wind-implanted hydrogen. The average hydrogen concentration across the lunar highlands and away from the lunar poles is 65 ppm. The highest hydrogen values range from 120 ppm to just over 150 ppm. These values are consistent with the range of hydrogen concentrations from soils and regolith breccias at the Apollo 16 highlands landing site. Based on a moderate-to-strong correlation of epithermal neutrons and orbit-based measures of surface maturity, the map of highlands hydrogen concentration represents a new global maturity index that can be used for studies of the lunar soil maturation process. We interpret these hydrogen concentrations to represent a bulk soil property related to the long-term impact of the space environment on the lunar surface. Consequently, the derived hydrogen concentrations are not likely related to the surficial enhancements (top tens to hundreds of microns) or local time variations of OH/H2O measured with spectral reflectance data.

  20. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Griffiths, Natalie A.; DeRolph, Christopher R.

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelitymore » of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.« less

  1. Assessment of tropospheric delay mapping function models in Egypt: Using PTD database model

    NASA Astrophysics Data System (ADS)

    Abdelfatah, M. A.; Mousa, Ashraf E.; El-Fiky, Gamal S.

    2018-06-01

    For space geodetic measurements, estimates of tropospheric delays are highly correlated with site coordinates and receiver clock biases. Thus, it is important to use the most accurate models for the tropospheric delay to reduce errors in the estimates of the other parameters. Both the zenith delay value and mapping function should be assigned correctly to reduce such errors. Several mapping function models can treat the troposphere slant delay. The recent models were not evaluated for the Egyptian local climate conditions. An assessment of these models is needed to choose the most suitable one. The goal of this paper is to test the quality of global mapping function which provides high consistency with precise troposphere delay (PTD) mapping functions. The PTD model is derived from radiosonde data using ray tracing, which consider in this paper as true value. The PTD mapping functions were compared, with three recent total mapping functions model and another three separate dry and wet mapping function model. The results of the research indicate that models are very close up to zenith angle 80°. Saastamoinen and 1/cos z model are behind accuracy. Niell model is better than VMF model. The model of Black and Eisner is a good model. The results also indicate that the geometric range error has insignificant effect on slant delay and the fluctuation of azimuth anti-symmetric is about 1%.

  2. Navigating 3D electron microscopy maps with EM-SURFER.

    PubMed

    Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke

    2015-05-30

    The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.

  3. Global trends in satellite-based emergency mapping

    USGS Publications Warehouse

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  4. fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli.

    PubMed

    Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus

    2013-01-01

    The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of global form.

  5. A digital spatial predictive model of land-use change using economic and environmental inputs and a statistical tree classification approach: Thailand, 1970s--1990s

    NASA Astrophysics Data System (ADS)

    Felkner, John Sames

    The scale and extent of global land use change is massive, and has potentially powerful effects on the global climate and global atmospheric composition (Turner & Meyer, 1994). Because of this tremendous change and impact, there is an urgent need for quantitative, empirical models of land use change, especially predictive models with an ability to capture the trajectories of change (Agarwal, Green, Grove, Evans, & Schweik, 2000; Lambin et al., 1999). For this research, a spatial statistical predictive model of land use change was created and run in two provinces of Thailand. The model utilized an extensive spatial database, and used a classification tree approach for explanatory model creation and future land use (Breiman, Friedman, Olshen, & Stone, 1984). Eight input variables were used, and the trees were run on a dependent variable of land use change measured from 1979 to 1989 using classified satellite imagery. The derived tree models were used to create probability of change surfaces, and these were then used to create predicted land cover maps for 1999. These predicted 1999 maps were compared with actual 1999 landcover derived from 1999 Landsat 7 imagery. The primary research hypothesis was that an explanatory model using both economic and environmental input variables would better predict future land use change than would either a model using only economic variables or a model using only environmental. Thus, the eight input variables included four economic and four environmental variables. The results indicated a very slight superiority of the full models to predict future agricultural change and future deforestation, but a slight superiority of the economic models to predict future built change. However, the margins of superiority were too small to be statistically significant. The resulting tree structures were used, however, to derive a series of principles or "rules" governing land use change in both provinces. The model was able to predict future land use, given a series of assumptions, with 90 percent overall accuracies. The model can be used in other developing or developed country locations for future land use prediction, determination of future threatened areas, or to derive "rules" or principles driving land use change.

  6. Landsat-Derived, Time-Series Remote Sensing Analysis of Fire Regime, Microclimate, and Urbanization's Influence on Biodiversity in the Santa Monica Mountain Coastal Range

    NASA Astrophysics Data System (ADS)

    Ma, J.; Dmochowski, J. E.

    2016-12-01

    Southern California's Santa Monica Mountain coastal range hosts chaparral and coastal sage scrub ecosystems with distinct, local variations in their fire regime, microclimate, and proximity to urbanization. The high biodiversity combined with ongoing human impact make monitoring the ecological and land cover changes crucial. Due to their extensive, continuous temporal coverage and high spatial resolution, Landsat data are well suited to this purpose. Landsat-derived time-series NDVI data and classification maps have been compiled to identify regions most sensitive to change in order to determine the effects of fire regime, geography, and urbanization on vegetative changes; and assess the encroachment of non-native grasses. Spatial analysis of the classification maps identified the factors more conducive to land-cover changes as native shrubs were replaced with non-native grasses. Understanding the dynamics that govern semi-arid resilience, overall greening, and fire regime is important to predicting and managing large scale ecosystem changes as pressures from global climate change and urbanization intensify.

  7. Bathymetric map of the south part of Great Salt Lake, Utah, 2005

    USGS Publications Warehouse

    Baskin, Robert L.; Allen, David V.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Wildlife Resources, collected bathymetric data for the south part of Great Salt Lake during 2002–04 using a single beam, high-definition fathometer and real-time differential global positioning system. Approximately 7.6 million depth readings were collected along more than 1,050 miles of survey transects for construction of this map. Sound velocities were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping. Because of the shallow nature of the lake and the limitations of the instrumentation, contours above an altitude of 4,193 feet were digitized from existing USGS 1:24,000 source-scale digital line graph data.For additional information on methods used to derive the bathymetric contours for this map, please see Baskin, Robert L., 2005, Calculation of area and volume for the south part of Great Salt Lake, Utah, U.S. Geological Survey Open-File Report OFR–2005–1327.

  8. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach.

    PubMed

    Zhang, Kaiming; Keane, Sarah C; Su, Zhaoming; Irobalieva, Rossitza N; Chen, Muyuan; Van, Verna; Sciandra, Carly A; Marchant, Jan; Heng, Xiao; Schmid, Michael F; Case, David A; Ludtke, Steven J; Summers, Michael F; Chiu, Wah

    2018-03-06

    Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS] 2 ; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2 H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Digital map databases in support of avionic display systems

    NASA Astrophysics Data System (ADS)

    Trenchard, Michael E.; Lohrenz, Maura C.; Rosche, Henry, III; Wischow, Perry B.

    1991-08-01

    The emergence of computerized mission planning systems (MPS) and airborne digital moving map systems (DMS) has necessitated the development of a global database of raster aeronautical chart data specifically designed for input to these systems. The Naval Oceanographic and Atmospheric Research Laboratory''s (NOARL) Map Data Formatting Facility (MDFF) is presently dedicated to supporting these avionic display systems with the development of the Compressed Aeronautical Chart (CAC) database on Compact Disk Read Only Memory (CDROM) optical discs. The MDFF is also developing a series of aircraft-specific Write-Once Read Many (WORM) optical discs. NOARL has initiated a comprehensive research program aimed at improving the pilots'' moving map displays current research efforts include the development of an alternate image compression technique and generation of a standard set of color palettes. The CAC database will provide digital aeronautical chart data in six different scales. CAC is derived from the Defense Mapping Agency''s (DMA) Equal Arc-second (ARC) Digitized Raster Graphics (ADRG) a series of scanned aeronautical charts. NOARL processes ADRG to tailor the chart image resolution to that of the DMS display while reducing storage requirements through image compression techniques. CAC is being distributed by DMA as a library of CDROMs.

  10. Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons*

    PubMed Central

    Jimenez, Nicolas D.; Mihalas, Stefan; Brown, Richard; Niebur, Ernst; Rubin, Jonathan

    2013-01-01

    Integrate-and-fire models of biological neurons combine differential equations with discrete spike events. In the simplest case, the reset of the neuronal voltage to its resting value is the only spike event. The response of such a model to constant input injection is limited to tonic spiking. We here study a generalized model in which two simple spike-induced currents are added. We show that this neuron exhibits not only tonic spiking at various frequencies but also the commonly observed neuronal bursting. Using analytical and numerical approaches, we show that this model can be reduced to a one-dimensional map of the adaptation variable and that this map is locally contractive over a broad set of parameter values. We derive a sufficient analytical condition on the parameters for the map to be globally contractive, in which case all orbits tend to a tonic spiking state determined by the fixed point of the return map. We then show that bursting is caused by a discontinuity in the return map, in which case the map is piecewise contractive. We perform a detailed analysis of a class of piecewise contractive maps that we call bursting maps and show that they robustly generate stable bursting behavior. To the best of our knowledge, this work is the first to point out the intimate connection between bursting dynamics and piecewise contractive maps. Finally, we discuss bifurcations in this return map, which cause transitions between spiking patterns. PMID:24489486

  11. Developing Automated Spectral Analysis Tools for Interstellar Features Extractionto Support Construction of the 3D ISM Map

    NASA Astrophysics Data System (ADS)

    Puspitarini, L.; Lallement, R.; Monreal-Ibero, A.; Chen, H.-C.; Malasan, H. L.; Aprilia; Arifyanto, M. I.; Irfan, M.

    2018-04-01

    One of the ways to obtain a detailed 3D ISM map is by gathering interstellar (IS) absorption data toward widely distributed background target stars at known distances (line-of-sight/LOS data). The radial and angular evolution of the LOS measurements allow the inference of the ISM spatial distribution. For a better spatial resolution, one needs a large number of the LOS data. It requires building fast tools to measure IS absorption. One of the tools is a global analysis that fit two different diffuse interstellar bands (DIBs) simultaneously. We derived the equivalent width (EW) ratio of the two DIBs recorded in each spectrum of target stars. The ratio variability can be used to study IS environmental conditions or to detect DIB family.

  12. Application of Landsat imagery to problems of petroleum exploration in Qaidam Basin, China

    USGS Publications Warehouse

    Bailey, G.B.; Anderson, P.D.

    1982-01-01

    Tertiary and Quaternary nonmarine, petroleum-bearing sedimentary rocks have been extensively deformed by compressive forces. These forces created many folds which are current targets of Chinese exploration programs. Image-derived interpretations of folds, strike-slip faults, thrust faults, normal or reverse faults, and fractures compared very favorably, in terms of locations and numbers mapped, with Chinese data compiled from years of extensive field mapping. Many potential hydrocarbon trapping structures were precisely located. Orientations of major structural trends defined from Landsat imagery correlate well with those predicted for the area based on global tectonic theory. These correlations suggest that similar orientations exist in the eastern half of the basin where folded rocks are mostly obscured by unconsolidated surface sediments and where limited exploration has occurred.--Modified journal abstract.

  13. Developing a high resolution groundwater model for Indonesia

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, E.; de Graaf, I. E.; Alberti, K.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity, as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large-extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution of steady-state groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). Here we adopted the approach of Sutanudjaja et al. (2011) in order to make a MODFLOW (McDonald and Harbaugh, 1988) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological map (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorf, 2012). We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. Results are promising. The MODFLOW model can converge with realistic aquifer properties (i.e. transmissivities) and produce reasonable groundwater head spatial distribution that reflects the positions of major groundwater bodies and surface water bodies in the country. For this session, we aim to demonstrate and discuss the results and the prospects of this modeling study. References: Dürr, H. H., Meybeck, M., & Dürr, S. H.: Lithologic composition of the Earth's continental surfaces derived from a new digital map emphasizing riverine material transfer, Global Biogeochem. Cycles, 19, GB4S10, http://dx.doi.org/10.1029/2005GB002515, 2005. Gleeson, T., Smith, L., Moosdorf, N., Hartmann, J., Dürr, H. H., Manning, A. H., van Beek, L. P. H., & Jellinek, A. M.: Mapping permeability over the surface of the earth. Geophys. Res. Lett. 38 (2), L02401, http://dx.doi.org/10.1029/2010GL045565, 2011. Hartmann, J., & Moosdorf, N.: The new global lithological map database GLiM: A representation of rock properties at the Earth surface, Geochem. Geophys. Geosyst., 13, Q12004, http://dx.doi.org/10.1029/2012GC004370, 2012. McDonald, M. & Harbaugh, A.: A modular three-dimensional finite-difference ground-water flow model, US Geological Survey, http://pubs.water.usgs.gov/twri6a1, 1988. Sutanudjaja, E. H., van Beek, L. P. H., de Jong, S. M., van Geer, F. C., & Bierkens, M. F. P.: Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin, Hydrol. Earth Syst. Sci., 15, 2913-2935, http://dx.doi.org/10.5194/hess-15-2913-2011, 2011. van Beek, L. P. H., Wada, Y., & Bierkens, M. F. P.: Global monthly water stress: 1. Water balance and water availability. Water Resources Research 47 (7), W07517, http://dx.doi.org/10.1029/2010WR009791, 2011

  14. Volcanism on Io: Results from Global Geologic Mapping

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2010-01-01

    We have completed a new 1:15,000,000 global geologic map of Jupiter's volcanic moon, Io, based on a set of 1 km/pixel combined Galileo- Voyager mosaics produced by the U.S. Geological Survey. The map was produced over the last three years using ArcGIS(TM) software, and has undergone peer-review. Here we report some of the key results from our global mapping efforts, and how these results relate to questions regarding the volcano-tectonic evolution of Io.

  15. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project

    USGS Publications Warehouse

    Raup, B.; Kääb, Andreas; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S.; Beedle, M.; Helm, C.

    2007-01-01

    Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyze them for glacier extent and changes, and to assess these change data in terms of forcings. The consortium is organized into a system of Regional Centers, each of which is responsible for glaciers in their region of expertise. Specialized needs for mapping glaciers in a distributed analysis environment require considerable work developing software tools: terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; change detection and analysis; visualization of images and derived data; interpretation and archival of derived data; and analysis to ensure consistency of results from different Regional Centers. A global glacier database has been designed and implemented at the National Snow and Ice Data Center (Boulder, CO); parameters have been expanded from those of the World Glacier Inventory (WGI), and the database has been structured to be compatible with (and to incorporate) WGI data. The project as a whole was originated, and has been coordinated by, the US Geological Survey (Flagstaff, AZ), which has also led the development of an interactive tool for automated analysis and manual editing of glacier images and derived data (GLIMSView). This article addresses remote sensing and Geographic Information Science techniques developed within the framework of GLIMS in order to fulfill the goals of this distributed project. Sample applications illustrating the developed techniques are also shown. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Mars Weather Map, 2008

    NASA Image and Video Library

    2012-08-04

    This global map of Mars was acquired on Oct. 28, 2008, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  17. Global Land Survey Impervious Mapping Project Web Site

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Phillips, Jacqueline

    2014-01-01

    The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.

  18. An Analysis on the TEC Variability and Ionospheric Scintillation at Los Alamos, New Mexico Derived from FORTE-Received LAPP Signals

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Roussel-Dupre, R.

    2003-12-01

    The total electron content (TEC) of ionosphere and its electron density irregularities (scintillation) have effects of degradation and disruption on radio signals passed between ground stations and orbiting man-made satellites. With the rapid increase in operational reliance on UHF/VHF satellite communication, it is desirable to obtain understandings of ionosphere TEC variability and scintillation characteristics to improve our ability of predicting satellite communication outages. In this work, data collected from FORTE satellite received LAPP (Los Alamos Portable Pulser) signals during 1998-2002 are used to derive TEC and ionospheric scintillation index at Los Alamos, New Mexico. To characterize in-situ TEC variability at Los Alamos, the FORTE-LAPP derived TECs are analyzed against diurnal, seasonal, solar activity, magnetic storm, and stratospheric warming. The results are also compared with the TEC estimates from the Los Alamos ionospheric transfer function (ITF) implemented with the global ionospheric models (IRI, PIM), and GPS -derived TEC maps. The FORTE-LAPP signals are also analyzed against two important measures of the effect of scintillation on broadband signals, the mean time delay and the time delay jitter. The results are used to examine coherence frequency bandwidth and compared with the predictions from a global scintillation model (WBMOD). The FORTE-LAPP analyzed and WBMOD predicted scintillation characteristics are used to investigate temporal and seasonal behavior of scintillation at Los Alamos.

  19. Performance Assessment of Integrated Sensor Orientation with a Low-Cost Gnss Receiver

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2017-08-01

    Mapping with Micro Aerial Vehicles (MAVs whose weight does not exceed 5 kg) is gaining importance in applications such as corridor mapping, road and pipeline inspections, or mapping of large areas with homogeneous surface structure, e.g. forest or agricultural fields. In these challenging scenarios, integrated sensor orientation (ISO) improves effectiveness and accuracy. Furthermore, in block geometry configurations, this mode of operation allows mapping without ground control points (GCPs). Accurate camera positions are traditionally determined by carrier-phase GNSS (Global Navigation Satellite System) positioning. However, such mode of positioning has strong requirements on receiver's and antenna's performance. In this article, we present a mapping project in which we employ a single-frequency, low-cost (< 100) GNSS receiver on a MAV. The performance of the low-cost receiver is assessed by comparing its trajectory with a reference trajectory obtained by a survey-grade, multi-frequency GNSS receiver. In addition, the camera positions derived from these two trajectories are used as observations in bundle adjustment (BA) projects and mapping accuracy is evaluated at check points (ChP). Several BA scenarios are considered with absolute and relative aerial position control. Additionally, the presented experiments show the possibility of BA to determine a camera-antenna spatial offset, so-called lever-arm.

  20. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Technical Reports Server (NTRS)

    Kumar, Uttam; Nemani, Ramakrishna R.; Ganguly, Sangram; Kalia, Subodh; Michaelis, Andrew

    2017-01-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS-national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91 percent was achieved, which is a 6 percent improvement in unmixing based classification relative to per-pixel-based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  1. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  2. Evaluating the Effectiveness of Flood Control Strategies in Contrasting Urban Watersheds and Implications for Houston's Future Flood Vulnerability

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2016-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  3. Global Geologic Map of Europa

    NASA Technical Reports Server (NTRS)

    Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.

    2008-01-01

    Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.

  4. Climate Prediction Center - Expert Assessments Index

    Science.gov Websites

    Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News Web resources and services. HOME > Monitoring and Data > Global Climate Data & Maps > ; Global Regional Climate Maps Regional Climate Maps Banner The Monthly regional analyses products are

  5. Seafloor 2030 - Building a Global Ocean Map through International Collaboration

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Wigley, R. A.; Falconer, R. K. H.; Jakobsson, M.; Allen, G.; Mayer, L. A.; Schmitt, T.; Rovere, M.; Weatherall, P.; Marks, K. M.

    2016-12-01

    With more than 85% of the ocean floor unmapped, a huge proportion of our planet remains unexplored. Creating a comprehensive map of seafloor bathymetry remains a true global challenge that can only be accomplished through collaboration and partnership between governments, industry, academia, research organizations and non-government organizations. The objective of Seafloor 2030 is to comprehensively map the global ocean floor to resolutions that enable exploration and improved understanding of ocean processes, while informing maritime policy and supporting the management of natural marine resources for a sustainable Blue Economy. Seafloor 2030 is the outcome of the Forum for Future of Ocean Floor Mapping held in Monaco in June 2016, which was held under the auspices of GEBCO and the Nippon Foundation of Japan. GEBCO is the only international organization mandated to map the global ocean floor and is guided by the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission of UNESCO. The task of completely mapping the ocean floor will require new global coordination to ensure that both existing data are identified and that new mapping efforts are coordinated to help efficiently "map the gaps." Fundamental to achieving Seafloor 2030 will be greater access to data, tools and technology, particularly for developing and coastal nations. This includes bathymetric post-processing and analysis software, database technology, computing infrastructure and gridding techniques as well as the latest developments in seafloor mapping methods and emerging crowd-sourced bathymetry initiatives. The key to achieving this global bathymetric map is capacity building and education - including greater coordination between scientific research and industry and the effective engagement of international organizations such as the United Nations.

  6. Using Web Maps to Analyze the Construction of Global Scale Cognitive Maps

    ERIC Educational Resources Information Center

    Pingel, Thomas J.

    2018-01-01

    Game-based Web sites and applications are changing the ways in which students learn the world map. In this study, a Web map-based digital learning tool was used as a study aid for a university-level geography course in order to examine the way in which global scale cognitive maps are constructed. A network analysis revealed that clicks were…

  7. Mars Weather Map, Aug. 5

    NASA Image and Video Library

    2012-08-10

    This global map of Mars was acquired on Aug. 5, 2012, by the Mars Color Imager instrument on NASA MRO. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity rover.

  8. Macrostrat: A Platform for Geological Data Integration and Deep-Time Earth Crust Research

    NASA Astrophysics Data System (ADS)

    Peters, Shanan E.; Husson, Jon M.; Czaplewski, John

    2018-04-01

    Characterizing the lithology, age, and physical-chemical properties of rocks and sediments in the Earth's upper crust is necessary to fully assess energy, water, and mineral resources and to address many fundamental questions. Although a large number of geological maps, regional geological syntheses, and sample-based measurements have been produced, there is no openly available database that integrates rock record-derived data, while also facilitating large-scale, quantitative characterization of the volume, age, and material properties of the upper crust. Here we describe Macrostrat, a relational geospatial database and supporting cyberinfrastructure that is designed to enable quantitative spatial and geochronological analyses of the entire assemblage of surface and subsurface sedimentary, igneous, and metamorphic rocks. Macrostrat contains general, comprehensive summaries of the age and properties of 33,903 lithologically and chronologically defined geological units distributed across 1,474 regions in North and South America, the Caribbean, New Zealand, and the deep sea. Sample-derived data, including fossil occurrences in the Paleobiology Database, more than 180,000 geochemical and outcrop-derived measurements, and more than 2.3 million bedrock geologic map units from over 200 map sources, are linked to specific Macrostrat units and/or lithologies. Macrostrat has generated numerous quantitative results and its infrastructure is used as a data platform in several independently developed mobile applications. It is necessary to expand geographic coverage and to refine age models and material properties to arrive at a more precise characterization of the upper crust globally and test fundamental hypotheses about the long-term evolution of Earth systems.

  9. Global trends in satellite-based emergency mapping.

    PubMed

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective. Copyright © 2016, American Association for the Advancement of Science.

  10. Local and global evaluation for remote sensing image segmentation

    NASA Astrophysics Data System (ADS)

    Su, Tengfei; Zhang, Shengwei

    2017-08-01

    In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.

  11. VESsel GENeration Analysis (VESGEN): Innovative Vascular Mappings for Astronaut Exploration Health Risks and Human Terrestrial Medicine

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia; Kao, David; Valizadegan, Hamed; Martin, Rodney; Murray, Matthew C.; Ramesh, Sneha; Sekaran, Srinivaas

    2017-01-01

    Currently, astronauts face significant health risks in future long-duration exploration missions such as colonizing the Moon and traveling to Mars. Numerous risks include greatly increased radiation exposures beyond the low earth orbit (LEO) of the ISS, and visual and ocular impairments in response to microgravity environments. The cardiovascular system is a key mediator in human physiological responses to radiation and microgravity. Moreover, blood vessels are necessarily involved in the progression and treatment of vascular-dependent terrestrial diseases such as cancer, coronary vessel disease, wound-healing, reproductive disorders, and diabetes. NASA developed an innovative, globally requested beta-level software, VESsel GENeration Analysis (VESGEN) to map and quantify vascular remodeling for application to astronaut and terrestrial health challenges. VESGEN mappings of branching vascular trees and networks are based on a weighted multi-parametric analysis derived from vascular physiological branching rules. Complex vascular branching patterns are determined by biological signaling mechanisms together with the fluid mechanics of multi-phase laminar blood flow.

  12. A Heuristic Approach to Global Landslide Susceptibility Mapping

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Kirschbaum, Dalia B.

    2017-01-01

    Landslides can have significant and pervasive impacts to life and property around the world. Several attempts have been made to predict the geographic distribution of landslide activity at continental and global scales. These efforts shared common traits such as resolution, modeling approach, and explanatory variables. The lessons learned from prior research have been applied to build a new global susceptibility map from existing and previously unavailable data. Data on slope, faults, geology, forest loss, and road networks were combined using a heuristic fuzzy approach. The map was evaluated with a Global Landslide Catalog developed at the National Aeronautics and Space Administration, as well as several local landslide inventories. Comparisons to similar susceptibility maps suggest that the subjective methods commonly used at this scale are, for the most part, reproducible. However, comparisons of landslide susceptibility across spatial scales must take into account the susceptibility of the local subset relative to the larger study area. The new global landslide susceptibility map is intended for use in disaster planning, situational awareness, and for incorporation into global decision support systems.

  13. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  14. Stream Flow Prediction and Flood Mapping in the Hindu Kush-Himalaya with the ICIMOD Water Resources App Portal (IWRAP)

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Ames, D. P.; Jones, N.; Souffront, M.

    2016-12-01

    Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts that are increasingly available in native as well as other derived products. The European Centre for Medium Range Weather Forecasts (ECMWF) have developed such products for global flood awareness which can be downscaled to smaller regions and used for stream flow prediction in underserved areas such as the Hindu Kush-Himalaya. Combined with digital elevation data, now available at 30 meters through the Shuttle Radar Topography Mission (SRTM) reconnaissance-level flood maps can be generated across wide regions that would otherwise not be possible and where increased information to drive higher resolution models are available the same forecasts can be used to provide forcing inflows for improved flood maps. Advances in cloud computing offer a unique opportunity to facilitate deployment of water resources models as decision-making tools in the cloud-based ICIMOD Water Resources App Portal or IWRAP. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated in the Hindu Kush-Himalaya where both financial and technical capacity are limited. All that is needed to use the system is an Internet connection and a web browser. We will take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization will make results intuitive and information derived actionable. We will also take advantage of the emerging standards for sharing water information across the web using the OGC and WMO approved WaterML standards. This will make our tools interoperable and we will help train those we work with so that tools and data from other projects can both consume and share with the tools developed in our project.

  15. Mars Weather Map, Aug. 2, 2012

    NASA Image and Video Library

    2012-08-04

    This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA Mars Reconnaissance Orbiter. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA Curiosity.

  16. The Tectonics of Mercury: The View from Orbit

    NASA Astrophysics Data System (ADS)

    Watters, T. R.; Byrne, P. K.; Klimczak, C.; Enns, A. C.; Banks, M. E.; Walsh, L. S.; Ernst, C. M.; Robinson, M. S.; Gillis-Davis, J. J.; Solomon, S. C.; Strom, R. G.; Gwinner, K.

    2011-12-01

    Flybys of Mercury by the Mariner 10 and MESSENGER spacecraft revealed a broad distribution of contractional tectonic landforms, including lobate scarps, high-relief ridges, and wrinkle ridges. Among these, lobate scarps were seen as the dominant features and have been interpreted as having formed as a result of global contraction in response to interior cooling. Extensional troughs and graben, where identified, were generally confined to intermediate- to large-scale impact basins. However, the true global spatial distribution of tectonic landforms remained poorly defined because the flyby observations were limited in coverage and spatial resolution, and many flyby images were obtained under lighting geometries far from ideal for the detection and identification of morphologic features. With the successful insertion of MESSENGER into orbit in March 2011, we are exploiting the opportunity to characterize the tectonics of Mercury in unprecedented detail using images at high resolution and optimum lighting, together with topographic data obtained from Mercury Laser Altimeter (MLA) profiles and stereo imaging. We are digitizing all of Mercury's major tectonic landforms in a standard geographic information system format from controlled global monochrome mosaics (mean resolution 250 m/px), complemented by high-resolution targeted images (up to ~10 m/px), obtained by the Mercury Dual Imaging System (MDIS) cameras. On the basis of an explicit set of diagnostic criteria, we are mapping wrinkle ridges, high-relief ridges, lobate scarps, and extensional troughs and graben in separate shapefiles and cataloguing the segment endpoint positions, length, and orientation for each landform. The versatility of digital mapping facilitates the merging of this tectonic information with other MESSENGER-derived map products, e.g., volcanic units, surface color, geochemical variations, topography, and gravity. Results of this mapping work to date include the identification of extensional features in the northern plains and elsewhere on Mercury in the form of troughs, which commonly form polygonal patterns, in some two dozen volcanically flooded impact craters and basins.

  17. Mapping the Rainforest of the Sea: Global Coral Reef Maps for Global Conservation

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2006-01-01

    Coral reefs are the center of marine biodiversity, yet are under threat with an estimated 60% of coral reef habitats considered at risk by the World Resources Institute. The location and extent of coral reefs in the world are the basic information required for resource management and as a baseline for monitoring change. A NASA sponsored partnership between remote sensing scientists, international agencies and NGOs, has developed a new generation of global reef maps based on data collected by satellites. The effort, dubbed the Millennium Coral Reef Map aims to develop new methods for wide distribution of voluminous satellite data of use to the conservation and management communities. We discuss the tradeoffs between remote sensing data sources, mapping objectives, and the needs for conservation and resource management. SeaWiFS data were used to produce a composite global shallow bathymetry map at 1 km resolution. Landsat 7/ETM+ data acquisition plans were modified to collect global reefs and new operational methods were designed to generate the firstever global coral reef geomorphology map. We discuss the challenges encountered to build these databases and in implementing the geospatial data distribution strategies. Conservation applications include a new assessment of the distribution of the world s marine protected areas (UNEPWCMC), improved spatial resolution in the Reefs at Risk analysis for the Caribbean (WRI), and a global basemap for the Census of Marine Life's OBIS database. The Millennium Coral Reef map and digital image archive will pay significant dividends for local and regional conservation projects around the globe. Complete details of the project are available at http://eol.jsc.nasa.gov/reefs.

  18. One hundred and six years of population and community dynamics of Sonoran Desert Laboratory perennials

    USGS Publications Warehouse

    Rodriguez-Buritica, Susana; Raichle, Helen; Webb, Robert H.; Turner, Raymond M.; Venable, Larry

    2013-01-01

    This data set constitutes all information associated with the Spalding-Shreve permanent vegetation plots from 1906 through 2012, which is the longest-running plant monitoring program in the world. The program consists of detailed maps of all Sonoran Desert perennial plants in 30 permanent plots located on Tumamoc Hill, near Tucson, Arizona, USA. Most of these plots are 10 m × 10 m quadrats that were established by Volney Spalding and Forrest Shreve between 1906 and 1928. Analyses derived from these data have been pivotal in testing early theories on plant community succession, plant life history traits, plant longevity, and population dynamics. One of the major contributions of this data set is the species-specific demographic traits that derived from estimating individual plant trajectories for more than 106 years. Further use of these data might shed light on spatially explicit population and community dynamics, as well as long-term changes attributable to global change. Data presented here consist of digital versions of original maps created between 1906 and 1984 and digital data from recent censuses between 1993 and 2012. Attributes associated with these maps include location and coverage of all shrubs, and in some cases, plant height. In addition, we present plot-specific summaries of plant cover and density for each census year and all other information collected, including seedling counts, grass coverage, and annual species enumerations. We reference the repeat photography of these plots, which began in 1906; these images are stored at the Desert Laboratory Collection of Repeat Photography in Tucson. Initial data collection consisted of grid-mapping the plots manually on graph paper; starting in 1993, Total Stations (which allow a direct digitalization, and more accurate mapping) were used to survey root crowns and canopies.

  19. Ganymede’s stratigraphy and crater distributions in Voyager and Galileo SSI images: results from the anti-jovian hemisphere

    NASA Astrophysics Data System (ADS)

    Wagner, Roland Josef; Schmedemann, Nico; Stephan, Katrin; Werner, Stephanie; Ivanov, Boris A.; Roatsch, Thomas; Jaumann, Ralf; Palumbo, Pasquale

    2017-10-01

    Crater size distributions are a valuable tool in planetary stratigraphy to derive the sequence of geologic events. In this study, we extend our previous work [1] in Ganymede’s sub-jovian hemisphere to the anti-jovian hemisphere. For geologic mapping, the map by [2] is used as a reference. Our study provides groundwork for the upcoming imaging by the JANUS camera aboard ESA’s JUICE mission [3]. Voyager-2 images are reprocessed using a map scale of 700 m/pxl achieved for parts of the anti-jovian hemisphere. To obtain relative ages from crater frequencies, we apply an updated crater scaling law for cratering into icy targets in order to derive a crater production function for Ganymede [1]. Also, we adopt the Poisson timing analysis method discussed and implemented recently [4] to obtain relative (and absolute model) ages. Results are compared to those from the sub-jovian hemisphere [1] as well as to support and/or refine the global stratigraphic system by [2]. Further emphasis is placed on local target areas in the anti-jovian hemisphere imaged by Galileo SSI at regional map scales of 100 to 300 m/pxl in order to study local geologic effects and processes. These areas incorporate (1) dark and (2) light tectonized materials, and (3) impact crater materials including an area with numerous secondaries from ray crater Osiris. References: [1] Wagner R. et al. (2014), DPS meeting #46, abstract 418.09. [2] Collins G. et al. (2013), U.S.G.S. Sci. Inv. Map 3237. [3] Della Corte V. et al. (2014), Proc. SPIE 9143, doi:10.1117/12.2056353. [4] Michael G. et al. (2016), Icarus 277, 279-285.

  20. Imaging Small-scale Seafloor and Sub-seafloor Tectonic Fabric Using Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Müller, D.; Matthews, K. J.; Smith, W. H. F.

    2017-12-01

    Marine gravity anomalies derived from satellite radar altimetry now provide an unprecedented resolution of about 7 km for mapping small-scale seafloor and sub-seafloor tectonic fabric. These gravity maps are improving rapidly because three satellite altimeters are currently collecting data with dense track coverage: (1) CryoSat-2 has routinely collected altimetry data over ice, land, and ocean since July 2010. The satellite has a long 369-day repeat cycle resulting in an average ground track spacing of 3.5 km at the equator. To date it has completed more than 7 geodetic mappings of the ocean surface. (2) The SARAL AltiKa altimeter began a non-repeat orbit phase in July 2016. AltiKa has a new Ka-band instrument with a factor of 2 better range precision than all previous altimeters. (3) Jason-2 was placed in a geodetic orbit starting July 2017. It has lower inclination coverage to provide improved gravity recovery for N-S trending anomalies. These data combined with sparse soundings will provide a dramatic improvement in predicted bathymetry and thus help guide future deep ocean surveys. The most recent global marine gravity anomaly map based on these geodetic mission data with 2-pass retracking for optimal range precision has an accuracy that is 2-4 times better than the maps derived from Geosat and ERS-1. The new data reveal the detailed fabric of fracture zones, previously unmapped, now extinct oceanic microplates in the central Pacific, and fault networks buried beneath thick sediments along continental margins. By combining satellite altimetry with marine magnetic anomalies and seafloor age dates from rock samples we are able to pinpoint the geometry and age of major plate reorganizations, particularly the enigmatic 100 Ma event, which occurred during the Cretaceous Magnetic Superchron.

  1. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    PubMed

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  2. Calculating Lyapunov Exponents: Applying Products and Evaluating Integrals

    ERIC Educational Resources Information Center

    McCartney, Mark

    2010-01-01

    Two common examples of one-dimensional maps (the tent map and the logistic map) are generalized to cases where they have more than one control parameter. In the case of the tent map, this still allows the global Lyapunov exponent to be found analytically, and permits various properties of the resulting global Lyapunov exponents to be investigated…

  3. Topographical Hill Shading Map Production Based Tianditu (map World)

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zha, Z.; Tang, D.; Yang, J.

    2018-04-01

    TIANDITU (Map World) is the public version of National Platform for Common Geospatial Information Service, and the terrain service is an important channel for users on the platform. With the development of TIANDITU, topographical hill shading map production for providing and updating global terrain map on line becomes necessary for the characters of strong intuition, three-dimensional sense and aesthetic effect. As such, the terrain service of TIANDITU focuses on displaying the different scales of topographical data globally. And this paper mainly aims to research the method of topographical hill shading map production globally using DEM (Digital Elevation Model) data between the displaying scales about 1 : 140,000,000 to 1 : 4,000,000, corresponded the display level from 2 to 7 on TIANDITU website.

  4. Diverse landscapes beneath Pine Island Glacier influence ice flow.

    PubMed

    Bingham, Robert G; Vaughan, David G; King, Edward C; Davies, Damon; Cornford, Stephen L; Smith, Andrew M; Arthern, Robert J; Brisbourne, Alex M; De Rydt, Jan; Graham, Alastair G C; Spagnolo, Matteo; Marsh, Oliver J; Shean, David E

    2017-11-20

    The retreating Pine Island Glacier (PIG), West Antarctica, presently contributes ~5-10% of global sea-level rise. PIG's retreat rate has increased in recent decades with associated thinning migrating upstream into tributaries feeding the main glacier trunk. To project future change requires modelling that includes robust parameterisation of basal traction, the resistance to ice flow at the bed. However, most ice-sheet models estimate basal traction from satellite-derived surface velocity, without a priori knowledge of the key processes from which it is derived, namely friction at the ice-bed interface and form drag, and the resistance to ice flow that arises as ice deforms to negotiate bed topography. Here, we present high-resolution maps, acquired using ice-penetrating radar, of the bed topography across parts of PIG. Contrary to lower-resolution data currently used for ice-sheet models, these data show a contrasting topography across the ice-bed interface. We show that these diverse subglacial landscapes have an impact on ice flow, and present a challenge for modelling ice-sheet evolution and projecting global sea-level rise from ice-sheet loss.

  5. The Use of Multiple Data Sources in the Process of Topographic Maps Updating

    NASA Astrophysics Data System (ADS)

    Cantemir, A.; Visan, A.; Parvulescu, N.; Dogaru, M.

    2016-06-01

    The methods used in the process of updating maps have evolved and become more complex, especially upon the development of the digital technology. At the same time, the development of technology has led to an abundance of available data that can be used in the updating process. The data sources came in a great variety of forms and formats from different acquisition sensors. Satellite images provided by certain satellite missions are now available on space agencies portals. Images stored in archives of satellite missions such us Sentinel, Landsat and other can be downloaded free of charge.The main advantages are represented by the large coverage area and rather good spatial resolution that enables the use of these images for the map updating at an appropriate scale. In our study we focused our research of these images on 1: 50.000 scale map. DEM that are globally available could represent an appropriate input for watershed delineation and stream network generation, that can be used as support for hydrography thematic layer update. If, in addition to remote sensing aerial photogrametry and LiDAR data are ussed, the accuracy of data sources is enhanced. Ortophotoimages and Digital Terrain Models are the main products that can be used for feature extraction and update. On the other side, the use of georeferenced analogical basemaps represent a significant addition to the process. Concerning the thematic maps, the classic representation of the terrain by contour lines derived from DTM, remains the best method of surfacing the earth on a map, nevertheless the correlation with other layers such as Hidrography are mandatory. In the context of the current national coverage of the Digital Terrain Model, one of the main concerns of the National Center of Cartography, through the Cartography and Photogrammetry Department, is represented by the exploitation of the available data in order to update the layers of the Topographic Reference Map 1:5000, known as TOPRO5 and at the same time, through the generalization and additional data sources of the Romanian 1:50 000 scale map. This paper also investigates the general perspective of DTM automatic use derived products in the process of updating the topographic maps.

  6. Processing of A New Digital Orthoimage Map of The Martian Western Hemisphere Using Data Obtained From The Mars Orbiter Camera At A Resolution of 256 Pixel/deg

    NASA Astrophysics Data System (ADS)

    Wählisch, M.; Niedermaier, G.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.

    We present a new digital orthoimage map of Mars using data obtained from the CCD line scanner Mars Orbiter Camera (MOC) of the Mars Global Surveyor Mis- sion (MGS) [1,2]. The map covers the Mars surface from 0 to 180 West and from 60 South to 60 North with the MDIM2 resolution of 256 pixel/degree and size. Image data processing has been performed using multiple programs, developed by DLR, Technical University of Berlin [3], JPL, and the USGS. 4,339 Context and 183 Geodesy images [2] were included. After radiometric corrections, the images were Mars referenced [4], geometrically corrected [5] and orthoprojected using a global Martian Digital Terrain Model (DTM) with a resolution of 64 pixel/degree, developed at DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) data [6]. To elim- inate major differences in brightness between the individual images of the mosaics, high- and low-pass filter processing techniques were applied for each image. After filtering, the images were mosaicked without registering or using block adjustment techniques in order to improve the geometric quality. It turns out that the accuracy of the navigation data has such a good quality that the orthoimages fit very well to each other. When merging the MOC mosaic with the MOLA data using IHS- trans- formation, we recognized very good correspondence between these two datasets. We create a topographic image map of the Coprates region (MC­18) adding contour lines derived from the global DTM to the mosaic. These maps are used for geological and morphological interpretations in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.mssss.com, [2] Caplinger, M. and M. Malin, "The Mars Or- biter Camera Geodesy Campaign, JGR, in press, [3] Scholten, F., Vol XXXI, Part B2, Wien 1996, p.351-356, [4] naïf.jpl.nasa.gov, [5] R.L.Kirk. et al. (2001), "Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter", LPSC XXXII, [6] wufs.wustl.edu

  7. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    USGS Publications Warehouse

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub-tropical Asia, and it delivers reasonable thematic detail and quantitative estimates of the main land-cover proportions. The map may therefore serve for regional stratification or modelling of vegetation cover, but could also support the implementation of forest policies, watershed management or conservation strategies at regional scales.

  8. Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years.

    PubMed

    Hirose, Katsumi

    2016-06-01

    The Fukushima Daiichi Nuclear Plant (FDNPP) accident resulted in huge environmental and socioeconomic impacts to Japan. To document the actual environmental and socioeconomic effects of the FDNPP accident, we describe here atmospheric and marine contamination due to radionuclides released from the FDNPP accident using papers published during past five years, in which temporal and spatial variations of FDNPP-derived radionuclides in air, deposition and seawater and their mapping are recorded by local, regional and global monitoring activities. High radioactivity-contaminated area in land were formed by the dispersion of the radioactive cloud and precipitation, depending on land topography and local meteorological conditions, whereas extremely high concentrations of (131)I and radiocesium in seawater occurred due to direct release of radioactivity-contaminated stagnant water in addition to atmospheric deposition. For both of atmosphere and ocean, numerical model simulations, including local, regional and global-scale modeling, were extensively employed to evaluate source terms of the FDNPP-derived radionuclides from the monitoring data. These models also provided predictions of the dispersion and high deposition areas of the FDNPP-derived radionuclides. However, there are significant differences between the observed and simulated values. Then, the monitoring data would give a good opportunity to improve numerical modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Martian Lobate Debris Aprons: Compilation of a New GIS-Based Global Map

    NASA Astrophysics Data System (ADS)

    Chuang, F. C.; Crown, D. A.; Berman, D. C.; Skinner, J. A.; Tanaka, K. L.

    2011-03-01

    Compilation of a new GIS-based global map of lobate debris aprons is underway to better understand the global inventory of these relict ice-rich features. We welcome contributions of GIS-based data from other investigators.

  10. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.

    PubMed

    Warren, Matthew; Hergoualc'h, Kristell; Kauffman, J Boone; Murdiyarso, Daniel; Kolka, Randall

    2017-12-01

    A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks. Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia's total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia's peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62-71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are <300 cm thick and thus vulnerable to conversion outside of protected areas according to environmental regulations. The carbon contained in these shallower peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia's total peat carbon and about 12 years of global emissions from land use change at current rates. Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia's peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and greatly benefit carbon cycle research, land use management and spatial planning.

  11. Improving the Accuracy of the AFWA-NASA (ANSA) Blended Snow-Cover Product over the Lower Great Lakes Region

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Foster, James L.; Kumar, Sujay; Chien, Janety Y. L.; Riggs, George A.

    2012-01-01

    The Air Force Weather Agency (AFWA) -- NASA blended snow-cover product, called ANSA, utilizes Earth Observing System standard snow products from the Moderate- Resolution Imaging Spectroradiometer (MODIS) and the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) to map daily snow cover and snow-water equivalent (SWE) globally. We have compared ANSA-derived SWE with SWE values calculated from snow depths reported at 1500 National Climatic Data Center (NCDC) co-op stations in the Lower Great Lakes Basin. Compared to station data, the ANSA significantly underestimates SWE in densely-forested areas. We use two methods to remove some of the bias observed in forested areas to reduce the root-mean-square error (RMSE) between the ANSA- and station-derived SWE. First, we calculated a 5- year mean ANSA-derived SWE for the winters of 2005-06 through 2009-10, and developed a five-year mean bias-corrected SWE map for each month. For most of the months studied during the five-year period, the 5-year bias correction improved the agreement between the ANSA-derived and station-derived SWE. However, anomalous months such as when there was very little snow on the ground compared to the 5-year mean, or months in which the snow was much greater than the 5-year mean, showed poorer results (as expected). We also used a 7-day running mean (7DRM) bias correction method using days just prior to the day in question to correct the ANSA data. This method was more effective in reducing the RMSE between the ANSA- and co-op-derived SWE values, and in capturing the effects of anomalous snow conditions.

  12. Regional TEC model under quiet geomagnetic conditions and low-to-moderate solar activity based on CODE GIMs

    NASA Astrophysics Data System (ADS)

    Feng, Jiandi; Jiang, Weiping; Wang, Zhengtao; Zhao, Zhenzhen; Nie, Linjuan

    2017-08-01

    Global empirical total electron content (TEC) models based on TEC maps effectively describe the average behavior of the ionosphere. However, the accuracy of these global models for a certain region may not be ideal. Due to the number and distribution of the International GNSS Service (IGS) stations, the accuracy of TEC maps is geographically different. The modeling database derived from the global TEC maps with different accuracy is likely one of the main reasons that limits the accuracy of the new models. Moreover, many anomalies in the ionosphere are geographic or geomagnetic dependent, and as such the accuracy of global models can deteriorate if these anomalies are not fully incorporated into the modeling approach. For regional models built in small areas, these influences on modeling are immensely weakened. Thus, the regional TEC models may better reflect the temporal and spatial variations of TEC. In our previous work (Feng et al., 2016), a regional TEC model TECM-NEC is proposed for northeast China. However, this model is only directed against the typical region of Mid-latitude Summer Nighttime Anomaly (MSNA) occurrence, which is meaningless in other regions without MSNA. Following the technique of TECM-NEC model, this study proposes another regional empirical TEC model for other regions in mid-latitudes. Taking a small area BeiJing-TianJin-Tangshan (JJT) region (37.5°-42.5° N, 115°-120° E) in China as an example, a regional empirical TEC model (TECM-JJT) is proposed using the TEC grid data from January 1, 1999 to June 30, 2015 provided by the Center for Orbit Determination in Europe (CODE) under quiet geomagnetic conditions. The TECM-JJT model fits the input CODE TEC data with a bias of 0.11TECU and a root mean square error of 3.26TECU. Result shows that the regional model TECM-JJT is consistent with CODE TEC data and GPS-TEC data.

  13. Estimation of the Total Electron Content of the Martian Ionosphere using Radar Sounder Surface Echoes

    NASA Technical Reports Server (NTRS)

    Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni

    2007-01-01

    The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.

  14. Web Map Services (WMS) Global Mosaic

    NASA Technical Reports Server (NTRS)

    Percivall, George; Plesea, Lucian

    2003-01-01

    The WMS Global Mosaic provides access to imagery of the global landmass using an open standard for web mapping. The seamless image is a mosaic of Landsat 7 scenes; geographically-accurate with 30 and 15 meter resolutions. By using the OpenGIS Web Map Service (WMS) interface, any organization can use the global mosaic as a layer in their geospatial applications. Based on a trade study, an implementation approach was chosen that extends a previously developed WMS hosting a Landsat 5 CONUS mosaic developed by JPL. The WMS Global Mosaic supports the NASA Geospatial Interoperability Office goal of providing an integrated digital representation of the Earth, widely accessible for humanity's critical decisions.

  15. Model Parameter Estimation Using Ensemble Data Assimilation: A Case with the Nonhydrostatic Icosahedral Atmospheric Model NICAM and the Global Satellite Mapping of Precipitation Data

    NASA Astrophysics Data System (ADS)

    Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa

    2017-04-01

    This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.

  16. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    NASA Astrophysics Data System (ADS)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  17. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    NASA Astrophysics Data System (ADS)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  18. A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data

    NASA Astrophysics Data System (ADS)

    Shan, T.

    2017-12-01

    Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.

  19. Kinematics, turbulence, and star formation of z ˜ 1 strongly lensed galaxies seen with MUSE

    NASA Astrophysics Data System (ADS)

    Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.

    2018-06-01

    We analyse a sample of eight highly magnified galaxies at redshift 0.6 < z < 1.5 observed with MUSE, exploring the resolved properties of these galaxies at sub-kiloparsec scales. Combining multiband HST photometry and MUSE spectra, we derive the stellar mass, global star formation rates (SFRs), extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜ 1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 and 80 km s-1 and Gini coefficient of {≲ }0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected SFRs from emission lines for two objects in the sample. We use this information to study the relation between resolved SFR and velocity dispersion. We find that these quantities are not correlated, and the high-velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.

  20. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS) versus C-/X-band (AMSR2) observations. The soil moisture products analyzed here were derived using the Land Parameter Retrieval Model.

  1. Global terrestrial water storage connectivity revealed using complex climate network analyses

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Chen, J.; Donges, J.

    2015-07-01

    Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, but also provide new insights and model calibration constraints for improving the current land surface models. This work is the first attempt to quantify the spatial connectivity of TWS using the complex network theory, which has received broad attention in the climate modeling community in recent years. Complex networks of TWS anomalies are built using two global TWS data sets, a remote sensing product that is obtained from the Gravity Recovery and Climate Experiment (GRACE) satellite mission, and a model-generated data set from the global land data assimilation system's NOAH model (GLDAS-NOAH). Both data sets have 1° × 1° grid resolutions and cover most global land areas except for permafrost regions. TWS networks are built by first quantifying pairwise correlation among all valid TWS anomaly time series, and then applying a cutoff threshold derived from the edge-density function to retain only the most important features in the network. Basinwise network connectivity maps are used to illuminate connectivity of individual river basins with other regions. The constructed network degree centrality maps show the TWS anomaly hotspots around the globe and the patterns are consistent with recent GRACE studies. Parallel analyses of networks constructed using the two data sets reveal that the GLDAS-NOAH model captures many of the spatial patterns shown by GRACE, although significant discrepancies exist in some regions. Thus, our results provide further measures for constraining the current land surface models, especially in data sparse regions.

  2. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  3. Satellite Snow-Cover Mapping: A Brief Review

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.

    1995-01-01

    Satellite snow mapping has been accomplished since 1966, initially using data from the reflective part of the electromagnetic spectrum, and now also employing data from the microwave part of the spectrum. Visible and near-infrared sensors can provide excellent spatial resolution from space enabling detailed snow mapping. When digital elevation models are also used, snow mapping can provide realistic measurements of snow extent even in mountainous areas. Passive-microwave satellite data permit global snow cover to be mapped on a near-daily basis and estimates of snow depth to be made, but with relatively poor spatial resolution (approximately 25 km). Dense forest cover limits both techniques and optical remote sensing is limited further by cloudcover conditions. Satellite remote sensing of snow cover with imaging radars is still in the early stages of research, but shows promise at least for mapping wet or melting snow using C-band (5.3 GHz) synthetic aperture radar (SAR) data. Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) data beginning with the launch of the first EOS platform in 1998. Digital maps will be produced that will provide daily, and maximum weekly global snow, sea ice and lake ice cover at 1-km spatial resolution. Statistics will be generated on the extent and persistence of snow or ice cover in each pixel for each weekly map, cloudcover permitting. It will also be possible to generate snow- and ice-cover maps using MODIS data at 250- and 500-m resolution, and to study and map snow and ice characteristics such as albedo. been under development. Passive-microwave data offer the potential for determining not only snow cover, but snow water equivalent, depth and wetness under all sky conditions. A number of algorithms have been developed to utilize passive-microwave brightness temperatures to provide information on snow cover and water equivalent. The variability of vegetative Algorithms are being developed to map global snow and ice cover using Earth Algorithms to map global snow cover using passive-microwave data have also cover and of snow grain size, globally, limits the utility of a single algorithm to map global snow cover.

  4. High-resolution Ceres LAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C.

    2016-12-01

    Introduction: NASA's Dawn spacecraft has been orbiting the dwarf planet Ceres since December 2015 in LAMO (High Altitude Mapping Orbit) with an altitude of about 400 km to characterize for instance the geology, topography, and shape of Ceres. One of the major goals of this mission phase is the global high-resolution mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera took until the time of writing about 27,500 clear filter images in LAMO with a resolution of about 30 m/pixel and dif-ferent viewing angles and different illumination condi-tions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. A high-resolution shape model was provided by stereo processing of the HAMO dataset, orbit and attitude data are available as reconstructed SPICE data. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself was done onto a reference sphere of Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:250,000 and will consist of 62 tiles that conforms to the quadrangle schema for Venus at 1:5,000,000. A map scale of 1:250,000 is a compro-mise between the very high resolution in LAMO and a proper map sheet size of the single tiles. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters and to use names of agricultural festivals of the world for other geological features. This proposal was ac-cepted by the IAU and the team proposed 92 names for geological features to the IAU based on the LAMO mosaic. These feature names will be applied to the map tiles.

  5. High-resolution Ceres HAMO Atlas derived from Dawn FC Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Introduction: NASA's Dawn spacecraft will orbit the dwarf planet Ceres in August and September 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize for instance the geology, topography, and shape of Ceres before it will be transferred to the lowest orbit. One of the major goals of this mission phase is the global mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera will take about 2600 clear filter images with a resolution of about 120 m/pixel and different viewing angles and different illumination conditions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. Both, improved orientation and high-resolution shape models, are provided by stereo processing of the HAMO dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself will be done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:750,000 and will consist of 15 tiles that conform to the quadrangle schema for small planets and medium size Icy satellites. A map scale of 1:750,000 guarantees a mapping at the highest availa-ble Dawn resolution in HAMO. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters. This proposal was accepted by the IAU and the team proposed names for geological features to the IAU based on the HAMO mosaic. These feature names will be applied to the map tiles.

  6. What's exposed? Mapping elements at risk from space

    NASA Astrophysics Data System (ADS)

    Taubenböck, Hannes; Klotz, Martin; Geiß, Christian

    2014-05-01

    The world has suffered from severe natural disasters over the last decennium. The earthquake in Haiti in 2010 or the typhoon "Haiyan" hitting the Philippines in 2013 are among the most prominent examples in recent years. Especially in developing countries, knowledge on amount, location or type of the exposed elements or people is often not given. (Geo)-data are mostly inaccurate, generalized, not up-to-date or even not available at all. Thus, fast and effective disaster management is often delayed until necessary geo-data allow an assessment of effected people, buildings, infrastructure and their respective locations. In the last decade, Earth observation data and methods have developed a product portfolio from low resolution land cover datasets to high resolution spatially accurate building inventories to classify elements at risk or even assess indirectly population densities. This presentation will give an overview on the current available products and EO-based capabilities from global to local scale. On global to regional scale, remote sensing derived geo-products help to approximate the inventory of elements at risk in their spatial extent and abundance by mapping and modelling approaches of land cover or related spatial attributes such as night-time illumination or fractions of impervious surfaces. The capabilities and limitations for mapping physical exposure will be discussed in detail using the example of DLR's 'Global Urban Footprint' initiative. On local scale, the potential of remote sensing particularly lies in the generation of spatially and thematically accurate building inventories for the detailed analysis of the building stock's physical exposure. Even vulnerability-related indicators can be derived. Indicators such as building footprint, height, shape characteristics, roof materials, location, and construction age and structure type have already been combined with civil engineering approaches to assess building stability for large areas. Especially last generation optical sensors - often in combination with digital surface models - featuring very high geometric resolutions are perceived as advantageous for operational applications, especially for small to medium scale urban areas. With regard to user-oriented product generation in the FP-7project SENSUM, a multi-scale and multi-source reference database has been set up to systematically screen available products - global to local ones - with regard to data availability in data-rich and data-poor countries. Thus, the higher ranking goal in this presentation is to provide a systematic overview on EO-based data sets and their individual capabilities and limitations with respect to spatial, temporal and thematic details to support decision-making in before, during and after natural disasters.

  7. Multispectral imaging contributions to global land ice measurements from space

    USGS Publications Warehouse

    Kargel, J.S.; Abrams, M.J.; Bishop, M.P.; Bush, A.; Hamilton, G.; Jiskoot, H.; Kääb, Andreas; Kieffer, H.H.; Lee, E.M.; Paul, F.; Rau, F.; Raup, B.; Shroder, J.F.; Soltesz, D.; Stainforth, D.; Stearns, L.; Wessels, R.

    2005-01-01

    Global Land Ice Measurements from Space (GLIMS) is an international consortium established to acquire satellite images of the world's glaciers, analyse them for glacier extent and changes, and assess change data for causes and implications for people and the environment. Although GLIMS is making use of multiple remote-sensing systems, ASTER (Advanced Spaceborne Thermal Emission and reflection Radiometer) is optimized for many needed observations, including mapping of glacier boundaries and material facies, and tracking of surface dynamics, such as flow vector fields and supraglacial lake development. Software development by GLIMS is geared toward mapping clean-ice and debris-covered glaciers; terrain classification emphasizing snow, ice, water, and admixtures of ice with rock debris; multitemporal change analysis; visualization of images and derived data; and interpretation and archiving of derived data. A global glacier database has been designed at the National Snow and Ice Data Center (NSIDC, Boulder, Colorado); parameters are compatible with and expanded from those of the World Glacier Inventory (WGI). These technology efforts are summarized here, but will be presented in detail elsewhere. Our presentation here pertains to one broad question: How can ASTER and other satellite multispectral data be used to map, monitor, and characterize the state and dynamics of glaciers and to understand their responses to 20th and 21st century climate change? Our sampled results are not yet glaciologically or climatically representative. Our early results, while indicating complexity, are generally consistent with the glaciology community's conclusion that climate change is spurring glacier responses around the world (mainly retreat). Whether individual glaciers are advancing or retreating, the aggregate average of glacier change must be climatic in origin, as nonclimatic variations average out. We have discerned regional spatial patterns in glaciological response behavior; these patterns are best attributed to climate-change variability and to regional differences in glacier size and response times. In many cases, glacier length changes under-represent the magnitude of glacier ablation, because thinning (sometimes without immediate length changes) is also important. An expanded systematic, uniform analysis of many more glaciers is needed to isolate the glacier response components due to climatic and nonclimatic perturbations, to produce quantitative measures of regional variation in glacier changes, and to predict future regional glacier trends relevant to water resources, glaciological hazards, and global sea level. This comprehensive assessment (to be completed in stages) is expected to lend a critically needed filter to identify successful climate models that explain recent glacier changes and change patterns (and hence, are apt to describe future changes) and to eliminate unsuccessful models. ?? 2005 Elsevier Inc. All rights reserved.

  8. Towards Seamless Validation of Land Cover Data

    NASA Astrophysics Data System (ADS)

    Chuprikova, Ekaterina; Liebel, Lukas; Meng, Liqiu

    2018-05-01

    This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.

  9. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  10. Annual Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (1950-2013) (V. 2016)

    DOE Data Explorer

    Andres, R. J. [CDIAC; Boden, T. A. [CDIAC

    2016-01-01

    The annual, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  11. Monthly Fossil-Fuel CO2 Emissions: Uncertainty of Emissions Gridded by On Degree Latitude by One Degree Longitude (Uncertainties, V.2016)

    DOE Data Explorer

    Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.

  12. Earth radiation budget measurements from satellites and their interpretation for climate modeling and studies

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.

    1980-01-01

    The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.

  13. Advances in Landslide Hazard Forecasting: Evaluation of Global and Regional Modeling Approach

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia B.; Adler, Robert; Hone, Yang; Kumar, Sujay; Peters-Lidard, Christa; Lerner-Lam, Arthur

    2010-01-01

    A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that exhibit a high potential for landslide activity by combining a calculation of landslide susceptibility with satellite-derived rainfall estimates. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale landslide forecasting efforts, it requires several modifications before it can be fully realized as an operational tool. The evaluation finds that the landslide forecasting may be more feasible at a regional scale. This study draws upon a prior work's recommendations to develop a new approach for considering landslide susceptibility and forecasting at the regional scale. This case study uses a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America: Guatemala, Honduras, EI Salvador and Nicaragua. A regional susceptibility map is calculated from satellite and surface datasets using a statistical methodology. The susceptibility map is tested with a regional rainfall intensity-duration triggering relationship and results are compared to global algorithm framework for the Hurricane Mitch event. The statistical results suggest that this regional investigation provides one plausible way to approach some of the data and resolution issues identified in the global assessment, providing more realistic landslide forecasts for this case study. Evaluation of landslide hazards for this extreme event helps to identify several potential improvements of the algorithm framework, but also highlights several remaining challenges for the algorithm assessment, transferability and performance accuracy. Evaluation challenges include representation errors from comparing susceptibility maps of different spatial resolutions, biases in event-based landslide inventory data, and limited nonlandslide event data for more comprehensive evaluation. Additional factors that may improve algorithm performance accuracy include incorporating additional triggering factors such as tectonic activity, anthropogenic impacts and soil moisture into the algorithm calculation. Despite these limitations, the methodology presented in this regional evaluation is both straightforward to calculate and easy to interpret, making results transferable between regions and allowing findings to be placed within an inter-comparison framework. The regional algorithm scenario represents an important step in advancing regional and global-scale landslide hazard assessment and forecasting.

  14. Magsat to CHAMP: Magnetic Satellite Explorations of Lithospheric Anomalies over Kursk, Bangui and the Antarctic

    NASA Technical Reports Server (NTRS)

    Kim, H.; Taylor, Patrick T.; vonFrese, R. R.; Kim, J. W.

    2004-01-01

    We compare crustal magnetic anomaly maps over the Kursk (Russia) and Bangui (Central African Republic) isolated anomalies and the Antarctic derived from the Magsat, \\Orsted and CHAMP satellite fields. We wish to demonstrate how progress in satellite magnetic missions has improved the recovery of the crustal magnetic field. The 6-month long Magsat mission of 25 years ago generated two major methods of processing satellite magnetic anomaly data for lithospheric studies. The first was a global perspective using spherical harmonics that emphasize the more regional and global lithospheric fields. However, these fields commonly do not resolve local anomaly features in any detail. Therefore a second procedure involved the use of the individual satellite orbit or track data to recover small-scale anomalies on a regional scale. We present results over prominent magnetic anomalies such as Kursk, Bangui and the large Antarctic continent that demonstrate how the various analysis methods affect the recovery of crustal anomalies. The more recent \\Orsted and CHAMP missions are successfully recording data with an improved accuracy and with full spatial and temporal coverage. We show and interpret the total magnetic intensity anomaly maps over these areas from all three satellite magnetometer data sets.

  15. The Global Genome Biodiversity Network (GGBN) Data Standard specification

    PubMed Central

    Droege, G.; Barker, K.; Seberg, O.; Coddington, J.; Benson, E.; Berendsohn, W. G.; Bunk, B.; Butler, C.; Cawsey, E. M.; Deck, J.; Döring, M.; Flemons, P.; Gemeinholzer, B.; Güntsch, A.; Hollowell, T.; Kelbert, P.; Kostadinov, I.; Kottmann, R.; Lawlor, R. T.; Lyal, C.; Mackenzie-Dodds, J.; Meyer, C.; Mulcahy, D.; Nussbeck, S. Y.; O'Tuama, É.; Orrell, T.; Petersen, G.; Robertson, T.; Söhngen, C.; Whitacre, J.; Wieczorek, J.; Yilmaz, P.; Zetzsche, H.; Zhang, Y.; Zhou, X.

    2016-01-01

    Genomic samples of non-model organisms are becoming increasingly important in a broad range of studies from developmental biology, biodiversity analyses, to conservation. Genomic sample definition, description, quality, voucher information and metadata all need to be digitized and disseminated across scientific communities. This information needs to be concise and consistent in today’s ever-increasing bioinformatic era, for complementary data aggregators to easily map databases to one another. In order to facilitate exchange of information on genomic samples and their derived data, the Global Genome Biodiversity Network (GGBN) Data Standard is intended to provide a platform based on a documented agreement to promote the efficient sharing and usage of genomic sample material and associated specimen information in a consistent way. The new data standard presented here build upon existing standards commonly used within the community extending them with the capability to exchange data on tissue, environmental and DNA sample as well as sequences. The GGBN Data Standard will reveal and democratize the hidden contents of biodiversity biobanks, for the convenience of everyone in the wider biobanking community. Technical tools exist for data providers to easily map their databases to the standard. Database URL: http://terms.tdwg.org/wiki/GGBN_Data_Standard PMID:27694206

  16. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  17. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  18. Energetics of global ocean tides from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  19. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and SRTM data is well suited for vegetation 3-D mapping on a continental scale.

  20. High resolution Ceres HAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international agreement, craters must be named after gods and goddesses of agriculture and vegetation from world mythology, whereas other geological features must be named after agricultural festivals of the world. The nomenclature proposed by the Dawn team was approved by the IAU [http://planetarynames.wr.usgs.gov/] and is shown in Fig. 1. The entire Ceres HAMO atlas will be available to the public through the Dawn GIS web page [http://dawngis.dlr.de/atlas]. References: [1] Russell, C.T. and Raymond, C.A., Space Sci. Rev., 163, DOI 10.1007/s11214-011-9836-2; [2] Sierks, et al., 2011, Space Sci. Rev., 163, DOI 10.1007/s11214-011-9745-4; [3] Preusker, F. et al., this session; [4] Greeley, R. and Batson, G., 1990, Planetary Mapping, Cambridge University Press.

  1. National-scale crop type mapping and area estimation using multi-resolution remote sensing and field survey

    NASA Astrophysics Data System (ADS)

    Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.

    2016-12-01

    Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in other regions, such as winter wheat in Pakistan, soybean in Argentina and soybean in the entire South America. Similar levels of accuracy and timeliness were achieved as in the US.

  2. The CrowdMag App - turning your smartphone into a travelling magnetic observatory

    NASA Astrophysics Data System (ADS)

    Saltus, Richard; Nair, Manoj

    2017-04-01

    In 2014, we started the "CrowdMag" Project to collect vector magnetic data from digital magnetometers in smartphones. In October 2014, we released our first-generation Android and iOS apps. Currently, the CrowdMag Project has more than 15,000 enthusiastic users contributing more than 12 million magnetic data points from around the world. NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's Cooperative Institute for Research in the Environmental Sciences (CIRES) develops magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to measure the magnetic data. However, the measurements leave gaps in coverage, particularly for short-wavelength urban noise. Our ultimate goal is to use data from the CrowdMag Project to improve global magnetic data coverage. Here we present some early results from the analysis of the crowdsourced magnetic data. A global magnetic model derived solely based on CrowdMag data is generally consistent with satellite-derived models such as World Magnetic Model. A unique contribution of the CrowdMag Project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. For example, we show a magnetic map (by binning the data collected into 100x100m cells) of central Boulder using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median magnetic field value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the reliability of crowdsourced magnetic maps and their applications to navigation, global models, and local geologic or environmental investigations.

  3. Landsat phenological metrics and their relation to aboveground carbon in the Brazilian Savanna.

    PubMed

    Schwieder, M; Leitão, P J; Pinto, J R R; Teixeira, A M C; Pedroni, F; Sanchez, M; Bustamante, M M; Hostert, P

    2018-05-15

    The quantification and spatially explicit mapping of carbon stocks in terrestrial ecosystems is important to better understand the global carbon cycle and to monitor and report change processes, especially in the context of international policy mechanisms such as REDD+ or the implementation of Nationally Determined Contributions (NDCs) and the UN Sustainable Development Goals (SDGs). Especially in heterogeneous ecosystems, such as Savannas, accurate carbon quantifications are still lacking, where highly variable vegetation densities occur and a strong seasonality hinders consistent data acquisition. In order to account for these challenges we analyzed the potential of land surface phenological metrics derived from gap-filled 8-day Landsat time series for carbon mapping. We selected three areas located in different subregions in the central Brazil region, which is a prominent example of a Savanna with significant carbon stocks that has been undergoing extensive land cover conversions. Here phenological metrics from the season 2014/2015 were combined with aboveground carbon field samples of cerrado sensu stricto vegetation using Random Forest regression models to map the regional carbon distribution and to analyze the relation between phenological metrics and aboveground carbon. The gap filling approach enabled to accurately approximate the original Landsat ETM+ and OLI EVI values and the subsequent derivation of annual phenological metrics. Random Forest model performances varied between the three study areas with RMSE values of 1.64 t/ha (mean relative RMSE 30%), 2.35 t/ha (46%) and 2.18 t/ha (45%). Comparable relationships between remote sensing based land surface phenological metrics and aboveground carbon were observed in all study areas. Aboveground carbon distributions could be mapped and revealed comprehensible spatial patterns. Phenological metrics were derived from 8-day Landsat time series with a spatial resolution that is sufficient to capture gradual changes in carbon stocks of heterogeneous Savanna ecosystems. These metrics revealed the relationship between aboveground carbon and the phenology of the observed vegetation. Our results suggest that metrics relating to the seasonal minimum and maximum values were the most influential variables and bear potential to improve spatially explicit mapping approaches in heterogeneous ecosystems, where both spatial and temporal resolutions are critical.

  4. Inferring biome-scale net primary productivity from tree-ring isotopes

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.

    2017-12-01

    Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.

  5. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  6. MGDS: Free, on-line, cutting-edge tools to enable the democratisation of geoscience data

    NASA Astrophysics Data System (ADS)

    Goodwillie, A. M.; Ryan, W. B.; O'Hara, S.; Ferrini, V.; Arko, R. A.; Coplan, J.; Chan, S.; Carbotte, S. M.; Nitsche, F. O.; Bonczkowski, J.; Morton, J. J.; Weissel, R.; Leung, A.

    2010-12-01

    The availability of user-friendly, effective cyber-information resources for accessing and manipulating geoscience data has grown rapidly in recent years. Based at Lamont-Doherty Earth Observatory the MGDS group has developed a number of free tools that have wide application across the geosciences for both educators and researchers. A simple web page (http://www.marine-geo.org/) allows users to search for and download many types of data by key word, geographical region, or published citation. The popular Create Maps and Grids function and the downloadable Google Earth-compatible KML files appeal to a wide user base. MGDS MediaBank galleries (http://media.marine-geo.org/) enable users to view and download compelling images that are purposefully selected for their educational value from NSF-funded field programs. GeoMapApp (http://www.geomapapp.org), a free map-based interactive tool that works on any machine, is increasingly being adopted across a broad suite of users from middle school students to university researchers. GeoMapApp allows users to plot, manipulate and present data in an intuitive geographical reference frame. GeoMapApp offers a convenient way to explore the wide range of built-in data sets, to quickly generate maps and images that aid visualisation and, when importing their own gridded and tabular data sets, to access the same rich built-in functionality. A user guide, short multi-media tutorials, and webinar are available on-line. The regularly-updated Global Multi-Resolution Topography (GMRT) Synthesis is used as the default GeoMapApp base map and is an increasingly popular means to rapidly create location maps. Additionally, the layer manager offers a fast way to overlay and compare multiple data sets and is augmented by the ability to alter layer transparency so that underlying layers become visible. Examples of GeoMapApp built-in data sets include high-resolution land topography and ocean floor bathymetry derived from satellite and multi-beam swath mapping systems - these can be profiled, shaded, and contoured; geo-registered geochemical sample analyses from the EarthChem database; plate boundary, earthquake and volcano catalogues; physical oceanography global and water column data; seafloor photos and Alvin dive video images; geological maps at various scales; and, high-quality coastline, lakes and rivers data. Customised data portals offer enhanced functionality for multi-channel seismic profiles, drill core logs, and earthquake animations. GeoMapApp is used in many MARGINS undergraduate-level off-the-shelf interactive learning activities called mini-lessons (http://serc.carleton.edu/margins/collection.html). Examples of educational applicability will be shown.

  7. A statistical light use efficiency model explains 85% variations in global GPP

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ryu, Y.

    2016-12-01

    Photosynthesis is a complicated process whose modeling requires different levels of assumptions, simplification, and parameterization. Among models, light use efficiency (LUE) model is highly compact but powerful in monitoring gross primary production (GPP) from satellite data. Most of LUE models adopt a multiplicative from of maximum LUE, absorbed photosynthetically active radiation (APAR), and temperature and water stress functions. However, maximum LUE is a fitting parameter with large spatial variations, but most studies only use several biome dependent constants. In addition, stress functions are empirical and arbitrary in literatures. Moreover, meteorological data used are usually coarse-resolution, e.g., 1°, which could cause large errors. Finally, sunlit and shade canopy have completely different light responses but little considered. Targeting these issues, we derived a new statistical LUE model from a process-based and satellite-driven model, the Breathing Earth System Simulator (BESS). We have already derived a set of global radiation (5-km resolution), carbon and water fluxes (1-km resolution) products from 2000 to 2015 from BESS. By exploring these datasets, we found strong correlation between APAR and GPP for sunlit (R2=0.84) and shade (R2=0.96) canopy, respectively. A simple model, only driven by sunlit and shade APAR, was thus built based on linear relationships. The slopes of the linear function act as effective LUE of global ecosystem, with values of 0.0232 and 0.0128 umol C/umol quanta for sunlit and shade canopy, respectively. When compared with MPI-BGC GPP products, a global proxy of FLUXNET data, BESS-LUE achieved an overall accuracy of R2 = 0.85, whereas original BESS was R2 = 0.83 and MODIS GPP product was R2 = 0.76. We investigated spatiotemporal variations of the effective LUE. Spatially, the ratio of sunlit to shade values ranged from 0.1 (wet tropic) to 4.5 (dry inland). By using maps of sunlit and shade effective LUE the accuracy of BESS-LUE further reached R2 = 0.88. Temporally, both sunlit and shade effective LUE had seasonal peak values in NH summer, and both showed significant increasing trends. Overall, BESS-LUE exhibited promising potential in global GPP mapping. We are going to evaluate it using FLUXNET2015 database and satellite solar Induced Fluorescence (SIF) data.

  8. Determinations of ionosphere and plasmasphere electron content for an African chain of GPS stations

    NASA Astrophysics Data System (ADS)

    Mazzella, Andrew J., Jr.; Bosco Habarulema, John; Yizengaw, Endawoke

    2017-05-01

    The confluence of recent instrumentation deployments in Africa with developments for the determination of plasmasphere electron content using Global Positioning System (GPS) receivers has provided new opportunities for investigations in that region. This investigation, using a selected chain of GPS stations, extends the method (SCORPION) previously applied to a chain of GPS stations in North America in order to separate the ionosphere and plasmasphere contributions to the total electron content (TEC) during a day (24 July) in 2011. The results span latitudes from the southern tip of Africa, across the Equator, to the southern Arabian Peninsula, providing a continuous latitudinal profile for both the ionosphere and plasmasphere during this day.The peak diurnal vertical ionosphere electron content (IEC) increases from about 14 TEC units (1 TEC unit = 1016 electrons m-2) at the southernmost station to about 32 TEC units near the geographic equator, then decreases to about 28 TEC units at the Arabian Peninsula. The peak diurnal slant plasmasphere electron content (PEC) varies between about 4 and 7 TEC units among the stations, with a local latitudinal profile that is significantly influenced by the viewing geometry at the station location, relative to the magnetic field configuration. In contrast, the peak vertical PEC varies between about 1 and 6 TEC units among the stations, with a more uniform latitudinal variation.Comparisons to other GPS data analyses are also presented for TEC, indicating the influence of the PEC on the determination of latitudinal TEC variations and also on the absolute TEC levels, by inducing an overestimate of the receiver bias. The derived TEC latitudinal profiles, in comparison to global map profiles, tend to differ from the map results only about as much as the map results differ among themselves. A combination of ionosonde IEC and alternative GPS TEC measurements, which in principle permits a PEC determination through their difference, was compared to the composite and separate ionosphere and plasmasphere contributions derived solely by the SCORPION method for one station. Although there is considerably more scatter in the PEC values derived from the difference of the GPS TEC and ionosonde IEC measurements compared to the PEC values derived by the SCORPION method, the average overhead values for this day are comparable for the two methods, near 2 TEC units, at the South African site examined.This initial investigation provides a basis for day-to-day TEC monitoring for Africa, with separate ionosphere and plasmasphere electron content determinations.

  9. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry

    PubMed Central

    Gleason, Colin J.; Smith, Laurence C.

    2014-01-01

    Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river’s at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20–30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics. PMID:24639551

  10. Mapping the Similarities of Spectra: Global and Locally-biased Approaches to SDSS Galaxies

    NASA Astrophysics Data System (ADS)

    Lawlor, David; Budavári, Tamás; Mahoney, Michael W.

    2016-12-01

    We present a novel approach to studying the diversity of galaxies. It is based on a novel spectral graph technique, that of locally-biased semi-supervised eigenvectors. Our method introduces new coordinates that summarize an entire spectrum, similar to but going well beyond the widely used Principal Component Analysis (PCA). Unlike PCA, however, this technique does not assume that the Euclidean distance between galaxy spectra is a good global measure of similarity. Instead, we relax that condition to only the most similar spectra, and we show that doing so yields more reliable results for many astronomical questions of interest. The global variant of our approach can identify very finely numerous astronomical phenomena of interest. The locally-biased variants of our basic approach enable us to explore subtle trends around a set of chosen objects. The power of the method is demonstrated in the Sloan Digital Sky Survey Main Galaxy Sample, by illustrating that the derived spectral coordinates carry an unprecedented amount of information.

  11. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry.

    PubMed

    Gleason, Colin J; Smith, Laurence C

    2014-04-01

    Rivers provide critical water supply for many human societies and ecosystems, yet global knowledge of their flow rates is poor. We show that useful estimates of absolute river discharge (in cubic meters per second) may be derived solely from satellite images, with no ground-based or a priori information whatsoever. The approach works owing to discovery of a characteristic scaling law uniquely fundamental to natural rivers, here termed a river's at-many-stations hydraulic geometry. A first demonstration using Landsat Thematic Mapper images over three rivers in the United States, Canada, and China yields absolute discharges agreeing to within 20-30% of traditional in situ gauging station measurements and good tracking of flow changes over time. Within such accuracies, the door appears open for quantifying river resources globally with repeat imaging, both retroactively and henceforth into the future, with strong implications for water resource management, food security, ecosystem studies, flood forecasting, and geopolitics.

  12. St. Patrick's Day 2015 geomagnetic storm analysis based on Real Time Ionosphere Monitoring

    NASA Astrophysics Data System (ADS)

    García-Rigo, Alberto

    2017-04-01

    Alberto García-Rigo (1), David Roma-Dollase (2), Manuel Hernández-Pajares (1), Zishen Li (3), Michael Terkildsen (4), German Olivares (4), Reza Ghoddousi-Fard (5), Denise Dettmering (6), Eren Erdogan (6), Haris Haralambous (7), Yannick Béniguel (8), Jens Berdermann (9), Martin Kriegel (9), Anna Krypiak-Gregorczyk (10), Tamara Gulyaeva (11), Attila Komjathy (12), Panagiotis Vergados (12), Joachim Feltens (13,19), René Zandbergen (13), Tim Fuller-Rowell (14), David Altadill (15), Nicolas Bergeot (16), Andrzej Krankowski (17), Loukis Agrotis (18), Ivan Galkin (20), Raul Orus-Perez (21) 1. UPC-IonSAT research group, Technical University of Catalonia, Spain 2. Department of Engineering: Electronics, University of Barcelona (UB), Spain 3. Academy of Opto-Electronics, Chinese Academy of Sciences (CAS), China 4. Bureau of Meteorology, Space Weather Services, Australia 5. Canadian Geodetic Survey, Natural Resources Canada (NRCan) / Government of Canada, Canada 6. Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Germany 7. Frederick University Cyprus, Cyprus 8. IEEA, France 9. Institute of Communications and Navigation, DLR, Germany 10. Institute of Geodesy, UWM, Poland 11. Institute of Terrestrial Magnetism, ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Russia 12. NASA - Jet Propulsion Laboratory (JPL), California Institute of Technology, USA 13. Navigation Support Office, ESA-ESOC, Germany 14. NOAA affiliate, USA 15. Observatori de l'Ebre (OE), CSIC - Universitat Ramon Llull, 43520 Roquetes, Spain 16. Planetology and Reference Systems, Royal Observatory of Belgium (ROB), Belgium 17. Space Radio-Diagnostics Research Centre, UWM (SRRC/UWM), Poland 18. SYMBAN Limited, ESA-ESOC, Germany 19. Telespazio VEGA Deutschland GmbH c/o ESA-ESOC, Germany 20. University of Massachusetts Lowell, Space Science Lab, USA 21. Wave Interaction and Propagation Section (TEC-EEP), ESA-ESTEC, The Netherlands IAG's Real Time Ionosphere Monitoring (RTIM) is a new Working Group within the International Association of Geodesy (IAG) Sub-Commission 4.3 "Atmosphere Remote Sensing". The complementary expertise of the participating research groups allows to analyse the ionospheric behaviour from a broad perspective, taking benefit of comparing multiple independent real time and near real time ionospheric approaches. In this context, a detailed analysis will be presented for the days in March, 2015 surrounding St. Patrick's Day 2015 geomagnetic storm, based on the existing ionospheric models (global or regional) within the group, which are mainly based on Global Navigation Satellite Systems (GNSS) and ionosonde data. For this purpose, a variety of ionospheric parameters will be considered, including Total Electron Content (TEC), F2 layer critical frequency (foF2), F2 layer peak (hmF2), bottomside half-thickness (B0) and ionospheric disturbance W-index. Also, ionospheric high-frequency perturbations such as Travelling Ionospheric Disturbances (TIDs), scintillations and the impact of solar flares facing the Earth will be presented to derive a clear picture of the ionospheric dynamics. Among other sources of information to take part in the comparisons, there will be (1) scintillation results -from MONITOR ESA/ESTEC-funded project- derived by means of S4 index and Sigma Phi (IEEA), specially significant in the African sector and European high latitudes, (2) dynamics of the global maps of W-index with 1h resolution derived from JPL Global Ionospheric Maps (GIMs; IZMIRAN), (3) deviations from expected quiet-time behavior analysed in terms of foF2, hmF2, B0 and B1 based on IRTAM and GIRO network of digisondes (Lowell), showing F2 layer peculiar changes due to the storm, (4) statistics based on the median of the VTEC for the 15 previous days considering VTEC european regional maps (ROB), (5) time series of VTEC data that are derived by running the NRT ionosphere model of DGFI-TUM in offline mode, which show clear variations for both global and European scales associated to the event, (6) global maps of inter-frequency phase rate variations as proxy phase scintillation index from 1Hz real-time IGS network (NRCan), (7) manually scaled ionospheric peak parameters from European ionosondes (FUC), (8) NOAA US-Total Electron Content Product (NOAA-USTEC) operational product, which shows the passage of the storm-enhanced density, (9) as well as other products -also from MONITOR ESA/ESTEC-funded project-, such as the Rate of TEC index (ROTI), Single Receiver Medium Scale TIDs index (SRMTID), GNSS Solar Flare Detector (GSFLAD), which is a EUV rate proxy, the Sunlit Ionosphere Sudden TEC Enhancement Detector (SISTED) and the Global Electron Content (GEC) generated from UQRG GIMs (UPC-IonSAT).

  13. 1831: the map that launched the idea of global health.

    PubMed

    Koch, Tom

    2014-08-01

    Today we take for granted the idea of global health, of disease as an international event. Increasingly, we assume as well that the international spread of disease can be traced to human travel patterns as well as to recurring environmental conditions. Perversely, the idea of ‘global health’ and its inverse, global disease, owes little to the three-dimensional imaging of the planet and almost everything to the two-dimensional plane of the map. Here the idea of global disease is traced from its beginnings in the 18th century to its 19th-century introduction in maps of the first cholera pandemic. This global perspective, and the responsibilities it promoted among civil officials, can be seen in modern studies of cancer, influenza and other conditions with both environmental foundations and international presence.

  14. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  15. Bathymetric map of the north part of Great Salt Lake, Utah, 2006

    USGS Publications Warehouse

    Baskin, Robert L.; Turner, Jane

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single beam, high-definition fathometer and real-time differential global positioning system. Approximately 5.2 million depth readings were collected along more than 765 miles of survey transects for construction of this map. Sound velocities were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed using commercial hydrographic software and exported into a geographic information system (GIS) software for mapping. Due to the shallow nature of the lake and the limitations of the instrumentation, contours above an altitude of 4,194 feet were digitized from existing USGS 1:24,000 source-scale digital line graph data. The Behrens Trench is approximately located.For additional information on methods used to derive the bathymetric contours for this map, please see Baskin, Robert L., 2006, Calculation of area and volume for the North Part of Great Salt Lake, Utah, U.S. Geological Survey Open-File Report OFR–2006–1359

  16. Spectral Generation from the Ames Mars GCM for the Study of Martian Clouds

    NASA Astrophysics Data System (ADS)

    Klassen, David R.; Kahre, Melinda A.; Wolff, Michael J.; Haberle, Robert; Hollingsworth, Jeffery L.

    2017-10-01

    Studies of martian clouds come from two distinct groups of researchers: those modeling the martian system from first principles and those observing Mars from ground-based and orbital platforms. The model-view begins with global circulation models (GCMs) or mesoscale models to track a multitude of state variables over a prescribed set of spatial and temporal resolutions. The state variables can then be processed into distinct maps of derived product variables, such as integrated optical depth of aerosol (e.g., water ice cloud, dust) or column integrated water vapor for comparison to observational results. The observer view begins, typically, with spectral images or imaging spectra, calibrated to some form of absolute units then run through some form of radiative transfer model to also produce distinct maps of derived product variables. Both groups of researchers work to adjust model parameters and assumptions until some level of agreement in derived product variables is achieved. While this system appears to work well, it is in some sense only an implicit confirmation of the model assumptions that attribute to the work from both sides. We have begun a project of testing the NASA Ames Mars GCM and key aerosol model assumptions more directly by taking the model output and creating synthetic TES-spectra from them for comparison to actual raw-reduced TES spectra. We will present some preliminary generated GCM spectra and TES comparisons.

  17. NCEP SST Analysis

    Science.gov Websites

    Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC , state and local government Web resources and services. Real-time, global, sea surface temperature (RTG_SST_HR) analysis For a regional map, click the desired area in the global SST analysis and anomaly maps

  18. Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Li, Linlin; Vrieling, Anton; Skidmore, Andrew; Wang, Tiejun; Turak, Eren

    2018-04-01

    Detailed spatial information of changes in surface water extent is needed for water management and biodiversity conservation, particularly in drier parts of the globe where small, temporally-variant wetlands prevail. Although global surface water histories are now generated from 30 m Landsat data, for many locations they contain large temporal gaps particularly for longer periods (>10 years) due to revisit intervals and cloud cover. Daily Moderate Resolution Imaging Spectrometer (MODIS) imagery has potential to fill such gaps, but its relatively coarse spatial resolution may not detect small water bodies, which can be of great ecological importance. To address this problem, this study proposes and tests options for estimating the surface water fraction from MODIS 16-day 500 m Bidirectional Reflectance Distribution Function (BRDF) corrected surface reflectance image composites. The spatial extent of two Landsat tiles over Spain were selected as test areas. We obtained a 500 m reference dataset on surface water fraction by spatially aggregating 30 m binary water masks obtained from the Landsat-derived C-version of Function of Mask (CFmask), which themselves were evaluated against high-resolution Google Earth imagery. Twelve regression tree models were developed with two approaches, Random Forest and Cubist, using spectral metrics derived from MODIS data and topographic parameters generated from a 30 m spatial resolution digital elevation model. Results showed that accuracies were higher when we included annual summary statistics of the spectral metrics as predictor variables. Models trained on a single Landsat tile were ineffective in mapping surface water in the other tile, but global models trained with environmental conditions from both tiles can provide accurate results for both study areas. We achieved the highest accuracy with Cubist global model (R2 = 0.91, RMSE = 11.05%, MAE = 7.67%). Our method was not only effective for mapping permanent water fraction, but also in accurately capturing temporal fluctuations of surface water. Based on this good performance, we produced surface water fraction maps at 16-day interval for the 2000-2015 MODIS archive. Our approach is promising for monitoring surface water fraction at high frequency time intervals over much larger regions provided that training data are collected across the spatial domain for which the model will be applied.

  19. Bridging scales of crustal stress patterns using the new World Stress Map

    NASA Astrophysics Data System (ADS)

    Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K. W.; Mueller, B.; Reinecker, J.; Reiter, K.; Tingay, M. R. P.; Wenzel, F.; Xie, F.; Ziegler, M.; Zoback, M. D.; Zoback, M. L.

    2017-12-01

    Knowledge of the contemporary crustal stress field is a key parameter for the understanding of geodynamic processes such as global plate tectonics and the earthquake cycle. It is also an essential parameter for our sustainable and safe usage of Earth's resources, which is a major challenge for energy security in the 21st century. Since 1986, the World Stress Map (WSM) project has systematically compiled present-day stress information and provides a unique public domain global database. It is a long-term project based on an international network of partners from academia and industry. All data are public and available on the project website at world-stress-map.org. For the 30th anniversary of the project a new database has been compiled, containing double the amount of data records (n=42,870) including new data records from almost 4,000 deep boreholes. The new compilation focused on areas with previously sparse data coverage in order to resolve the stress pattern on different spatial scales. The significantly higher data density can now be used to resolve stress pattern heterogeneities on regional and local scales, as well as with depth in some regions. We present three results derived from the new WSM compilation: 1.) The global comparison between absolute plate motion and the mean of the orientation of maximum horizontal stress SHmax on a regular grid shows that there is still a correlation for the North and South America plate, but deviations from this general trend are now also clearly resolved. 2.) The variability of the crustal stress pattern changes when zooming in from plate-wide scale down to basin scale at 100 km. We show examples for Eastern Australia, Oklahoma and Central Europe. This regional and local variability of the stress pattern can be used as a proxy to identify and quantify regional and local stress sources by means of geomechanical-numerical models of the 3D stress tensor. 3.) Finally we present briefly the general concept of a multi-stage 3D geomechanical-numerical model workflow based on the WSM data to describe the in situ stress tensor. 3D Geomechanical-numerical modelling of the in situ stress state is essential to derive a continuous description of the stress tensor e.g. in order to estimate the distance to a critical stress state.

  20. Global multi-resolution terrain elevation data 2010 (GMTED2010)

    USGS Publications Warehouse

    Danielson, Jeffrey J.; Gesch, Dean B.

    2011-01-01

    In 1996, the U.S. Geological Survey (USGS) developed a global topographic elevation model designated as GTOPO30 at a horizontal resolution of 30 arc-seconds for the entire Earth. Because no single source of topographic information covered the entire land surface, GTOPO30 was derived from eight raster and vector sources that included a substantial amount of U.S. Defense Mapping Agency data. The quality of the elevation data in GTOPO30 varies widely; there are no spatially-referenced metadata, and the major topographic features such as ridgelines and valleys are not well represented. Despite its coarse resolution and limited attributes, GTOPO30 has been widely used for a variety of hydrological, climatological, and geomorphological applications as well as military applications, where a regional, continental, or global scale topographic model is required. These applications have ranged from delineating drainage networks and watersheds to using digital elevation data for the extraction of topographic structure and three-dimensional (3D) visualization exercises (Jenson and Domingue, 1988; Verdin and Greenlee, 1996; Lehner and others, 2008). Many of the fundamental geophysical processes active at the Earth's surface are controlled or strongly influenced by topography, thus the critical need for high-quality terrain data (Gesch, 1994). U.S. Department of Defense requirements for mission planning, geographic registration of remotely sensed imagery, terrain visualization, and map production are similarly dependent on global topographic data. Since the time GTOPO30 was completed, the availability of higher-quality elevation data over large geographic areas has improved markedly. New data sources include global Digital Terrain Elevation Data (DTEDRegistered) from the Shuttle Radar Topography Mission (SRTM), Canadian elevation data, and data from the Ice, Cloud, and land Elevation Satellite (ICESat). Given the widespread use of GTOPO30 and the equivalent 30-arc-second DTEDRegistered level 0, the USGS and the National Geospatial-Intelligence Agency (NGA) have collaborated to produce an enhanced replacement for GTOPO30, the Global Land One-km Base Elevation (GLOBE) model and other comparable 30-arc-second-resolution global models, using the best available data. The new model is called the Global Multi-resolution Terrain Elevation Data 2010, or GMTED2010 for short. This suite of products at three different resolutions (approximately 1,000, 500, and 250 meters) is designed to support many applications directly by providing users with generic products (for example, maximum, minimum, and median elevations) that have been derived directly from the raw input data that would not be available to the general user or would be very costly and time-consuming to produce for individual applications. The source of all the elevation data is captured in metadata for reference purposes. It is also hoped that as better data become available in the future, the GMTED2010 model will be updated.

  1. Derivation of an observation-based map of North African dust emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visiblemore » and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.« less

  2. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    NASA Astrophysics Data System (ADS)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  3. Lithology-derived structure classification from the joint interpretation of magnetotelluric and seismic models

    USGS Publications Warehouse

    Bedrosian, P.A.; Maercklin, N.; Weckmann, U.; Bartov, Y.; Ryberg, T.; Ritter, O.

    2007-01-01

    Magnetotelluric and seismic methods provide complementary information about the resistivity and velocity structure of the subsurface on similar scales and resolutions. No global relation, however, exists between these parameters, and correlations are often valid for only a limited target area. Independently derived inverse models from these methods can be combined using a classification approach to map geologic structure. The method employed is based solely on the statistical correlation of physical properties in a joint parameter space and is independent of theoretical or empirical relations linking electrical and seismic parameters. Regions of high correlation (classes) between resistivity and velocity can in turn be mapped back and re-examined in depth section. The spatial distribution of these classes, and the boundaries between them, provide structural information not evident in the individual models. This method is applied to a 10 km long profile crossing the Dead Sea Transform in Jordan. Several prominent classes are identified with specific lithologies in accordance with local geology. An abrupt change in lithology across the fault, together with vertical uplift of the basement suggest the fault is sub-vertical within the upper crust. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  4. The History of the M31 Disk from Resolved Stellar Populations as Seen by PHAT

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Williams, B. F.; PHAT Collaboration

    2014-03-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that is mapping the resolved stellar populations of ˜1/3 of M31 from the UV through the near-IR. These data provide color and luminosity information for more than 150 million stars in the M31 disk. We use stellar evolution models to fit the luminous main sequence to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 50-100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. We use the gridded SFHs to create movies of star formation activity to study the evolution of individual star-forming events across the disk. Outside of the star-forming regions, we use our resolved stellar photometry to derive the full SFHs of larger regions. These allow us to probe spatial and temporal trends in age and metallicity across a large radial baseline, providing constraints on the global formation and evolution of the disk over a Hubble time. M31 is the only large disk galaxy that is close enough to obtain the photometry necessary for this type of spatially-resolved SFH mapping.

  5. Pluto: A Global Perspective

    NASA Image and Video Library

    2016-05-02

    NASA New Horizons mission science team has produced this updated panchromatic black-and-white global map of Pluto. The map includes all resolved images of Pluto surface acquired between July 7-14, 2015.

  6. Using Remotely Sensed Information for Near Real-Time Landslide Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Adler, Robert; Peters-Lidard, Christa

    2013-01-01

    The increasing availability of remotely sensed precipitation and surface products provides a unique opportunity to explore how landslide susceptibility and hazard assessment may be approached at larger spatial scales with higher resolution remote sensing products. A prototype global landslide hazard assessment framework has been developed to evaluate how landslide susceptibility and satellite-derived precipitation estimates can be used to identify potential landslide conditions in near-real time. Preliminary analysis of this algorithm suggests that forecasting errors are geographically variable due to the resolution and accuracy of the current susceptibility map and the application of satellite-based rainfall estimates. This research is currently working to improve the algorithm through considering higher spatial and temporal resolution landslide susceptibility information and testing different rainfall triggering thresholds, antecedent rainfall scenarios, and various surface products at regional and global scales.

  7. Global sensitivity analysis of multiscale properties of porous materials

    NASA Astrophysics Data System (ADS)

    Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.

    2018-02-01

    Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.

  8. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    PubMed

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  9. Spatial assessment of land degradation through key ecosystem services: The role of globally available data.

    PubMed

    Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Yakob, Getahun; Boke, Shiferaw; Habte, Mulugeta; Coull, Malcolm; Peressotti, Alessandro; Black, Helaina

    2018-07-01

    Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making. Copyright © 2018. Published by Elsevier B.V.

  10. Can next-generation soil data products improve soil moisture modelling at the continental scale? An assessment using a new microclimate package for the R programming environment

    NASA Astrophysics Data System (ADS)

    Kearney, Michael R.; Maino, James L.

    2018-06-01

    Accurate models of soil moisture are vital for solving core problems in meteorology, hydrology, agriculture and ecology. The capacity for soil moisture modelling is growing rapidly with the development of high-resolution, continent-scale gridded weather and soil data together with advances in modelling methods. In particular, the GlobalSoilMap.net initiative represents next-generation, depth-specific gridded soil products that may substantially increase soil moisture modelling capacity. Here we present an implementation of Campbell's infiltration and redistribution model within the NicheMapR microclimate modelling package for the R environment, and use it to assess the predictive power provided by the GlobalSoilMap.net product Soil and Landscape Grid of Australia (SLGA, ∼100 m) as well as the coarser resolution global product SoilGrids (SG, ∼250 m). Predictions were tested in detail against 3 years of root-zone (3-75 cm) soil moisture observation data from 35 monitoring sites within the OzNet project in Australia, with additional tests of the finalised modelling approach against cosmic-ray neutron (CosmOz, 0-50 cm, 9 sites from 2011 to 2017) and satellite (ASCAT, 0-2 cm, continent-wide from 2007 to 2009) observations. The model was forced by daily 0.05° (∼5 km) gridded meteorological data. The NicheMapR system predicted soil moisture to within experimental error for all data sets. Using the SLGA or the SG soil database, the OzNet soil moisture could be predicted with a root mean square error (rmse) of ∼0.075 m3 m-3 and a correlation coefficient (r) of 0.65 consistently through the soil profile without any parameter tuning. Soil moisture predictions based on the SLGA and SG datasets were ≈ 17% closer to the observations than when using a chloropleth-derived soil data set (Digital Atlas of Australian Soils), with the greatest improvements occurring for deeper layers. The CosmOz observations were predicted with similar accuracy (r = 0.76 and rmse of ∼0.085 m3 m-3). Comparisons at the continental scale to 0-2 cm satellite data (ASCAT) showed that the SLGA/SG datasets increased model fit over simulations using the DAAS soil properties (r ∼ 0.63 &rmse 15% vs. r 0.48 &rmse 18%, respectively). Overall, our results demonstrate the advantages of using GlobalSoilMap.net products in combination with gridded weather data for modelling soil moisture at fine spatial and temporal resolution at the continental scale.

  11. Ecosystem Service Valuation Assessments for Protected Area Management: A Case Study Comparing Methods Using Different Land Cover Classification and Valuation Approaches

    PubMed Central

    Whitham, Charlotte E. L.

    2015-01-01

    Accurate and spatially-appropriate ecosystem service valuations are vital for decision-makers and land managers. Many approaches for estimating ecosystem service value (ESV) exist, but their appropriateness under specific conditions or logistical limitations is not uniform. The most accurate techniques are therefore not always adopted. Six different assessment approaches were used to estimate ESV for a National Nature Reserve in southwest China, across different management zones. These approaches incorporated two different land-use land cover (LULC) maps and development of three economic valuation techniques, using globally or locally-derived data. The differences in ESV across management zones for the six approaches were largely influenced by the classifications of forest and farmland and how they corresponded with valuation coefficients. With realistic limits on access to time, data, skills and resources, and using acquired estimates from globally-relevant sources, the Buffer zone was estimated as the most valuable (2.494 million ± 1.371 million CNY yr-1 km-2) and the Non-protected zone as the least valuable (770,000 ± 4,600 CNY yr-1 km-2). However, for both LULC maps, when using the locally-based and more time and skill-intensive valuation approaches, this pattern was generally reversed. This paper provides a detailed practical example of how ESV can differ widely depending on the availability and appropriateness of LULC maps and valuation approaches used, highlighting pitfalls for the managers of protected areas. PMID:26086191

  12. Predicting Near Real-Time Inundation Occurrence from Complimentary Satellite Microwave Brightness Temperature Observations

    NASA Astrophysics Data System (ADS)

    Fisher, C. K.; Pan, M.; Wood, E. F.

    2017-12-01

    Throughout the world, there is an increasing need for new methods and data that can aid decision makers, emergency responders and scientists in the monitoring of flood events as they happen. In many regions, it is possible to examine the extent of historical and real-time inundation occurrence from visible and infrared imagery provided by sensors such as MODIS or the Landsat TM; however, this is not possible in regions that are densely vegetated or are under persistent cloud cover. In addition, there is often a temporal mismatch between the sampling of a particular sensor and a given flood event, leading to limited observations in near real-time. As a result, there is a need for alternative methods that take full advantage of complimentary remotely sensed data sources, such as available microwave brightness temperature observations (e.g., SMAP, SMOS, AMSR2, AMSR-E, and GMI), to aid in the estimation of global flooding. The objective of this work was to develop a high-resolution mapping of inundated areas derived from multiple satellite microwave sensor observations with a daily temporal resolution. This system consists of first retrieving water fractions from complimentary microwave sensors (AMSR-2 and SMAP) which may spatially and temporally overlap in the region of interest. Using additional information in a Random Forest classifier, including high resolution topography and multiple datasets of inundated area (both historical and empirical), the resulting retrievals are spatially downscaled to derive estimates of the extent of inundation at a scale relevant to management and flood response activities ( 90m or better) instead of the relatively coarse resolution water fractions, which are limited by the microwave sensor footprints ( 5-50km). Here we present the training and validation of this method for the 2015 floods that occurred in Houston, Texas. Comparing the predicted inundation against historical occurrence maps derived from the Landsat TM record and MODIS imagery, we find good agreement for most areas and are able to provide a daily mapping given the increased temporal coverage. These results illustrate the feasibility of a near real-time inundation prediction system driven by multi-sensor satellite microwave observations, which can be extended to provide a daily estimate of global flooding.

  13. An algorithm for converting a virtual-bond chain into a complete polypeptide backbone chain

    NASA Technical Reports Server (NTRS)

    Luo, N.; Shibata, M.; Rein, R.

    1991-01-01

    A systematic analysis is presented of the algorithm for converting a virtual-bond chain, defined by the coordinates of the alpha-carbons of a given protein, into a complete polypeptide backbone. An alternative algorithm, based upon the same set of geometric parameters used in the Purisima-Scheraga algorithm but with a different "linkage map" of the algorithmic procedures, is proposed. The global virtual-bond chain geometric constraints are more easily separable from the loal peptide geometric and energetic constraints derived from, for example, the Ramachandran criterion, within the framework of this approach.

  14. Apparent thermal inertia and the surface heterogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Putzig, Nathaniel E.; Mellon, Michael T.

    2007-11-01

    Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.

  15. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  16. A Flexible Socioeconomic Scenarios Framework for the Study of Plausible Arctic Futures

    NASA Astrophysics Data System (ADS)

    Reissell, A. K.; Peters, G. P.; Riahi, K.; Kroglund, M.; Lovecraft, A. L.; Nilsson, A. E.; Preston, B. L.; van Ruijven, B. J.

    2016-12-01

    Future developments of the Arctic region are associated with different drivers of change - climate, environmental, and socio-economic - and their interactions, and are highly uncertain. The uncertainty poses challenges for decision-making, calling for development of new analytical frameworks. Scenarios - coherent narratives describing potential futures, pathways to futures, and drivers of change along the way - can be used to explore the consequences of the key uncertainties, particularly in the long-term. In a participatory scenarios workshop, we used both top-down and bottom-up approaches for the development of a flexible socioeconomic scenarios framework. The top-down approach was linked to the global Integrated Assessment Modeling framework and its Shared Socio-Economic Pathways (SSPs), developing an Arctic extension of the set of five storylines on the main socioeconomic uncertainties in global climate change research. The bottom-up approach included participatory development of narratives originating from within the Arctic region. For extension of global SSPs to the regional level, we compared the key elements in the global SSPs (Population, Human Development, Economy & Lifestyle, Policies & Institutions, Technology, and Environment & Natural Resources) and key elements in the Arctic. Additional key elements for the Arctic scenarios include, for example, seasonal migration, the large role of traditional knowledge and culture, mixed economy, nested governance structure, human and environmental security, quality of infrastructure. The bottom-up derived results suggested that the scenarios developed independent of the SSPs could be mapped back to the SSPs to demonstrate consistency with respect to representing similar boundary conditions. The two approaches are complimentary, as the top-down approach can be used to set the global socio-economic and climate boundary conditions, and the bottom-up approach providing the regional context. One key uncertainty and driving force is the demand for resources (global or regional) that was mapped against the role of governance as well as adaptive and transformative capacity among actors within the Arctic. Resources demand has significant influence on the society, culture, economy and environment of the Arctic.

  17. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-10-01

    The launch of the French/US mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large-scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near-real-time high-resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. At the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near-real-time at high resolution and the development of Argo were essential for the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.

  18. From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography

    NASA Astrophysics Data System (ADS)

    Le Traon, P. Y.

    2013-07-01

    The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. Together with my CLS colleagues, we demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 yr. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. Altimetry needs to be complemented with global in situ observations. In the end of the 90s, a major international initiative was launched to develop Argo, the global array of profiling floats. This has been an outstanding success. Argo floats now provide the most important in situ observations to monitor and understand the role of the ocean on the earth climate and for operational oceanography. This is a second revolution in oceanography. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution and the development of Argo were essential to the development of global operational oceanography, the third revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) was instrumental in the development of the required capabilities. This paper provides an historical perspective on the development of these three revolutions in oceanography which are very much interlinked. This is not an exhaustive review and I will mainly focus on the contributions we made together with many colleagues and friends.

  19. Global Wind Map

    ERIC Educational Resources Information Center

    Journal of College Science Teaching, 2005

    2005-01-01

    This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…

  20. A program for handling map projections of small-scale geospatial raster data

    USGS Publications Warehouse

    Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.

    2012-01-01

    Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.

  1. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.

  2. Anthropogenic Transformation of the Biomes, 1700 to 2000

    NASA Astrophysics Data System (ADS)

    Ellis, E. C.; Lightman, D.; Klein Goldewijk, K.; Ramankutty, N.

    2008-12-01

    Current global patterns of terrestrial ecosystem form and process are now predominantly anthropogenic as a result of land use and other direct human interactions with ecosystems. This study investigates anthropogenic transformation of the terrestrial biosphere over the course of the industrial revolution by mapping and characterizing global transitions between wild and anthropogenic biomes between 1700 and 2000. A global map of potential natural vegetation was used to represent wild biomes. Anthropogenic biomes were mapped for 1700, 1800, 1900 and 2000 using rule-based classification of current and historical global data for human population density, urban area and percent land cover by cultivated crops (rainfed, irrigated, and rice) and pastures. By assuming that wild, climate-driven, biome patterns have been relatively constant since 1700, transitions between wild and anthropogenic biomes were characterized between 1700 and 2000 at century intervals. Historical analysis of wild to anthropogenic biome transitions reveal the global transition from a primarily wild to a primarily anthropogenic terrestrial biosphere. Moreover, by mapping and examining global transitions between wild and anthropogenic biome classes, we provide a simple framework for assessing and modeling both past and future global biotic and ecological patterns in the light of the extent, intensity and duration of their modification by humans.

  3. Combat Stories Map: A Historical Repository and After Action Tool for Capturing, Storing, and Analyzing Georeferenced Individual Combat Narratives

    DTIC Science & Technology

    2016-06-01

    of technology and near-global Internet accessibility, a web -based program incorporating interactive maps to record personal combat experiences does...not exist. The Combat Stories Map addresses this deficiency. The Combat Stories Map is a web -based Geographic Information System specifically designed...iv THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT Despite the proliferation of technology and near-global Internet accessibility, a web

  4. Global transport in a nonautonomous periodic standard map

    DOE PAGES

    Calleja, Renato C.; del-Castillo-Negrete, D.; Martinez-del-Rio, D.; ...

    2017-04-14

    A non-autonomous version of the standard map with a periodic variation of the perturbation parameter is introduced and studied via an autonomous map obtained from the iteration of the nonautonomous map over a period. Symmetry properties in the variables and parameters of the map are found and used to find relations between rotation numbers of invariant sets. The role of the nonautonomous dynamics on period-one orbits, stability and bifurcation is studied. The critical boundaries for the global transport and for the destruction of invariant circles with fixed rotation number are studied in detail using direct computation and a continuation method.more » In the case of global transport, the critical boundary has a particular symmetrical horn shape. Here, the results are contrasted with similar calculations found in the literature.« less

  5. Global transport in a nonautonomous periodic standard map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calleja, Renato C.; del-Castillo-Negrete, D.; Martinez-del-Rio, D.

    A non-autonomous version of the standard map with a periodic variation of the perturbation parameter is introduced and studied via an autonomous map obtained from the iteration of the nonautonomous map over a period. Symmetry properties in the variables and parameters of the map are found and used to find relations between rotation numbers of invariant sets. The role of the nonautonomous dynamics on period-one orbits, stability and bifurcation is studied. The critical boundaries for the global transport and for the destruction of invariant circles with fixed rotation number are studied in detail using direct computation and a continuation method.more » In the case of global transport, the critical boundary has a particular symmetrical horn shape. Here, the results are contrasted with similar calculations found in the literature.« less

  6. Spectral signature selection for mapping unvegetated soils

    NASA Technical Reports Server (NTRS)

    May, G. A.; Petersen, G. W.

    1975-01-01

    Airborne multispectral scanner data covering the wavelength interval from 0.40-2.60 microns were collected at an altitude of 1000 m above the terrain in southeastern Pennsylvania. Uniform training areas were selected within three sites from this flightline. Soil samples were collected from each site and a procedure developed to allow assignment of scan line and element number from the multispectral scanner data to each sampling location. These soil samples were analyzed on a spectrophotometer and laboratory spectral signatures were derived. After correcting for solar radiation and atmospheric attenuation, the laboratory signatures were compared to the spectral signatures derived from these same soils using multispectral scanner data. Both signatures were used in supervised and unsupervised classification routines. Computer-generated maps using the laboratory and multispectral scanner derived signatures resulted in maps that were similar to maps resulting from field surveys. Approximately 90% agreement was obtained between classification maps produced using multispectral scanner derived signatures and laboratory derived signatures.

  7. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This new map can be utilized as input data to global model studies and bring new insights for the assessment of historical terrestrial N cycling changes. Datasets available at doi:10.1594/PANGAEA.861203.

  8. SAR For REDD+ in the Mai Ndombe District (DRC)

    NASA Astrophysics Data System (ADS)

    Haarpaintner, Jorg

    2016-08-01

    The overall goal of the project "SAR for REDD" is to provide cloud-penetrating satellite synthetic aperture radar (SAR) pre-processing and analysing capabilities and tools to support operational tropical forest monitoring in REDD countries and primarily in Africa. The project's end-user is the Observatoir Satellitale des Forêts d'Afrique Centrale (OSFAC).This paper presents an overall summary of the project and shows first results of the satellite products, that will be delivered to the user in addition to software tools to enhance the user's own technical capacity.The products shown here are SAR mosaics and derived forest-land cover maps based on C-band Sentinel-1A data for 2015, ALOS-PALSAR data for the period 2007-2010 and ALOS-2 PALSAR-2 for 2015. In addition, a forest cover change map from 2007 to 2010 based on ALOS PALSAR has been produced and is compared to results from the Global Forest Cover project [1].

  9. GNSS VTEC calibration using satellite altimetry and LEO data

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. Mahdi; Schuh, Harald

    2015-04-01

    Among different systems remote sensing the ionosphere, space geodetic techniques have turned into a promising tool for monitoring and modeling the ionospheric parameters. Due to the fact that ionosphere is a dispersive medium, the signals travelling through this medium provide information about the parameters of the ionosphere in terms of Total Electron Content (TEC) or electron density along the ray path. The classical input data for development of Global Ionosphere Maps (GIM) of the Vertical Total Electron Content (VTEC) is obtained from the dual-frequency Global Navigation Satellite Systems (GNSS) ground-based observations. Nevertheless due to the fact that GNSS ground stations are in-homogeneously distributed with poor coverage over the oceans (namely southern Pacific and southern Atlantic) and also parts of Africa, the precision of VTEC maps are rather low in these areas. From long term analyses it is believed that the International GNSS Service (IGS) VTEC maps have an accuracy of 1-2 TECU in areas well covered with GNSS receivers; conversely, in areas with poor coverage the accuracy can be degraded by a factor of up to five. On the other hand dual-frequency satellite altimetry missions (such as Jason-1&2) provide direct VTEC values exactly over the oceans, and furthermore the Low Earth Orbiting (LEO) satellites such as the Formosat-3/COSMIC (F/C) provide about a great number of globally distributed occultation measurements per day, which can be used to obtain VTEC values. Combining these data with the ground-based data improves the accuracy and reliability of the VTEC maps by closing of observation gaps that arise when using ground-based data only. In this approach an essential step is the evaluation and calibration of the different data sources used for the combination procedure. This study investigates the compatibility of calibrated TEC observables derived from GNSS dual-frequency data, recorded at global ground-based station networks, with space-based TEC values from satellite altimetry and F/C observations. In the current procedure the ground-based GNSS observations have been used to develop a GNSS-only GIM, using the parameter estimation technique. The VTEC values extracted from these models have been quantified and calibrated with the raw altimetry and LEO measurements. The calibrated values have been consequently used for developing the combined GIMs of the VTEC.

  10. The Soil Atlas of Africa: raising awareness and educate to the importance of soil

    NASA Astrophysics Data System (ADS)

    Dewitte, Olivier; Jones, Arwyn; Bosco, Claudio; Spaargaren, Otto; Montanarella, Luca

    2010-05-01

    The richness of African soil resources need to be protected for future generations. A number of threats are affecting the functioning of African soils, not only for the purpose of agricultural production, but also for other important environmental services that soil delivers to all of us. This is of particular importance once we know that many health-related problems in Africa are indirectly related to the services of soils. To raise the awareness of the general public, policy makers and other scientists to the importance of soil in Africa, the Joint Research Centre of the European Commission is to produce the first ever Soil Atlas of Africa. This is in collaboration with the African Union Commission, the Food and Agriculture Organization of the United Nations (FAO), the Africa Soil Science Society, ISRIC - World Soil Information and scientists from both Europe and Africa. The Atlas compiles existing information on different soil types as easily understandable maps (both at regional and continental scale) covering the African continent. The Soil Atlas of Africa intends to produce derived maps at continental scale with descriptive text (e.g. vulnerability to desertification, soil nutrient status, carbon stocks and sequestration potential, irrigable areas and water resources) as well as specific maps to illustrate threats such as soil erosion for instance. For each regional overview, large scale examples of soil maps and derived products are presented too. The Atlas will be published as a hardcover book containing 174 A3 pages, which will allow soils maps to be displayed at the A2 scale. Both French and English versions of the Atlas will be edited. The Atlas will be sold at a low cost and will be for free for educational purpose (Schools and Universities). A digital version on CD and eventually freely downloadable on internet will also be available. Together with the publication of the Atlas, associated datasets on soil characteristics for Africa will be made available. These datasets will be useful for making broad distinction among soil types and provide general trends at the global and regional scales. The datasets will be made accessible for free downloading from the portals of the SOIL Action (http://eusoils.jrc.ec.europa.eu/) and the ACP Observatory for Sustainable Development (http://acpobservatory.jrc.ec.europa.eu). The Atlas links the theme of soil with rural development and, at the same time, supports the goals of the EU Thematic Strategy for Soil Protection in conserving a threatened natural resource that is vital to human existence. Not only climate change, but also desertification and loss of biodiversity are strongly affecting soils globally, making the "Soil Atlas of Africa" relevant to a much larger community of stakeholders involved in the implementation of the three "Rio-Conventions" and allowing to explore possible synergies among international multilateral agreements towards global soil protection.

  11. High-Resolution Global Soil Moisture Map

    NASA Image and Video Library

    2015-05-19

    High-resolution global soil moisture map from NASA SMAP combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. http://photojournal.jpl.nasa.gov/catalog/PIA19337

  12. Comparison and assessment of coarse resolution land cover maps for Northern Eurasia

    Treesearch

    Dirk Pflugmacher; Olga N. Krankina; Warren B. Cohen; Mark A. Friedl; Damien Sulla-Menashe; Robert E. Kennedy; Peder Nelson; Tatiana V. Loboda; Tobias Kuemmerle; Egor Dyukarev; Vladimir Elsadov; Viacheslav I. Kharuk

    2011-01-01

    Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse...

  13. China's Mission in Surveying, Mapping and Geographic Information during Global Governance

    NASA Astrophysics Data System (ADS)

    Jia, D.; Xue, C.; Chen, X.

    2018-04-01

    In the new era, it is proposed that China should be transformed from a participant and a cooperator into a designer, an impeller and a leader, continue taking an effect of responsible great power, increase public product supply, perfect a global governance system and contribute to China's wisdom and China's schemes during global governance, thus surveying and mapping geographic information takes on great mission. On the one hand, we have to timely grasp global geographic information data resources to provide an important scientific data support for China's wisdom and China's schemes. On the other hand, we have to provide surveying and mapping geographic information infrastructure construction and public products for developing countries, support location services within a global territorial scope, and realize the smoothness of talent flow, material flow and information flow between China and countries in the world. Meanwhile, external assistance and international communication and cooperation of surveying and mapping geographic information are also enhanced, and popularization and application of a geographic information technology in underdeveloped countries and regions are promoted.

  14. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  15. Atlas of wide-field-of-view outgoing longwave radiation derived from Nimbus 7 Earth radiation budget data set, November 1985 to October 1987

    NASA Technical Reports Server (NTRS)

    Bess, T. Dale; Smith, G. Louis

    1991-01-01

    An atlas of monthly outgoing longwave radiation global contour maps and associated spherical harmonic coefficients is presented. The atlas contains 23 months of data from November 1985 to October 1987 . The data were derived from the second Earth Radiation Budget (ERB) package, which was flown on the Nimbus 7 Sun-synchronous satellite in 1987. This data set is a companion set and extension to similar atlases that documented 10 years of outgoing longwave radiation results from Nimbus 6 and Nimbus 7 satellites. This atlas and the companion atlases give a data set covering a 12-year time period and will be very useful in studying different aspects of our changing climate. The data set also provides a 3-year overlap with the current Earth Radiation Budget Experiment (ERBE).

  16. Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe - A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treitz, P.M.; Howarth, P.J.; Gong, Peng

    1992-04-01

    SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A matrix-overlay analysis was then performed within the geographic information system (GIS) to combine the land-cover and land-use classes generated from the SPOT digital classification with zoning information for the area. The map that was produced has an estimated interpretation accuracymore » of 78 percent. Global Positioning System (GPS) data provided a positional reference for new road networks. These networks, in addition to the new land-cover and land-use map derived from the SPOT HRV data, provide an up-to-date synthesis of change conditions in the area. 51 refs.« less

  17. Improving the frequency of high spatial resolution leaf area index maps using Landsat OLI and Sentinel-2 MSI

    NASA Astrophysics Data System (ADS)

    Li, S.; Ganguly, S.; Dungan, J. L.; Zhang, G.; Ju, J.; Claverie, M.

    2015-12-01

    The European Space Agency's Sentinel-2 mission successfully launched the first of two satellites in June, 2015. Sentinel 2A's MSI instrument is now providing optical data similar to Landsat 8's OLI imagery and, with its global repeat of 10 days, has the potential to increase the availability of 30m resolution high level products such as leaf area index (LAI). Prior to the launch of S-2A, we simulated MSI imagery using EO-1 Hyperion data and estimated green LAI using an algorithm based on canopy spectral invariants theory. Comparison of the resulting LAI maps resulting from the simulated MSI and corresponding maps derived from OLI data showed a RMSE of 0.1875. Uncertainty bounds on actual MSI data promise to be narrower because of the superior signal-to-noise ratio of MSI. A workflow for the production of LAI and other high level products including data ingest, BRDF correction, cloud masking and atmospheric correction is being developed using the NASA Earth Exchange (NEX) and will improve the capability to examine seasonal changes in canopy LAI.

  18. The Ecological Marine Units Project as a Framework for Collaborative Data Exploration, Distribution, and Knowledge Building

    NASA Astrophysics Data System (ADS)

    Wright, Dawn; Sayre, Roger; Breyer, Sean; Butler, Kevin; VanGraafeiland, Keith; Goodin, Kathy; Kavanaugh, Maria; Costello, Mark; Cressie, Noel; Basher, Zeenatul; Harris, Peter; Guinotte, John

    2017-04-01

    A data-derived, ecological stratification-based ecosystem mapping approach was recently demonstrated by Sayre et al. for terrestrial ecosystems, resulting in a standardized map of nearly 4000 global ecological land units (ELUs) at a base spatial resolution of 250 m. The map was commissioned by the Group on Earth Observations for eventual use by the Global Earth Observation System of Systems (GEOSS), and was also a contribution to the Climate Data Initiative of US President Barack Obama. We now present a similar environmental stratification approach for extending a global ecosystems map into the oceans through the delineation of analog global ecological marine units (EMUs). EMUs are comprised of a global point mesh framework, created from over 52 million points from NOAA's World Ocean Atlas with a spatial resolution of ¼ by ¼ degree ( 27 x 27 km at the equator) at varying depths and a temporal resolution that is currently decadal. Each point carries attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many marine ecosystem responses. We used a k-means statistical clustering algorithm to identify physically distinct, relatively homogenous, volumetric regions within the water column (the EMUs). Backwards stepwise discriminant analysis determined if all of six variables contributed significantly to the clustering, and a pseudo F-statistic gave us an optimum number of clusters worldwide at 37. Canonical discriminant analysis verified that all 37 clusters were significantly different from one another. A major intent of the EMUs is to support marine biodiversity conservation assessments, economic valuation studies of marine ecosystem goods and services, and studies of ocean acidification and other impacts (e.g., pollution, resource exploitation, etc.). As such, they represent a rich geospatial accounting framework for these types of studies, as well as for scientific research on species distributions and their relationships to the marine physical environment. To further benefit the community and facilitate collaborate knowledge building, data products are shared openly and interoperably via www.esri.com/ecological-marine-units. This includes provision of 3D point mesh and EMU clusters at the surface, bottom, and within the water column in varying formats via download, web services or web apps, as well as generic algorithms and GIS workflows that scale from global to regional and local. A major aim is for the community members to may move the research forward with higher-resolution data from their own field studies or areas of interest, with the original EMU project team assisting with GIS implementation (especially via a new online discussion forum), or hosting of additional data products as needed.

  19. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  20. Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx

    NASA Astrophysics Data System (ADS)

    Ody, A.; Poulet, F.; Langevin, Y.; Bibring, J.-P.; Bellucci, G.; Altieri, F.; Gondet, B.; Vincendon, M.; Carter, J.; Manaud, N.

    2012-09-01

    We here reassess the global distribution of several key mineral species using the entire OMEGA/Mars Express VIS-NIR imaging spectrometer data set, acquired from orbit insertion in January 2004 to August 2010. Thirty-two pixels per degree global maps of ferric oxides, pyroxenes and olivines have been derived. A significant filtering process was applied in order to exclude data acquired with unfavorable observation geometries or partial surface coverage with water and CO2 frosts. Because of strong atmospheric variations over the 3.6 Martian years of observations primarily due to the interannual variability of the aerosol opacity, a new filter based on the atmospheric dust opacity calibrated by the Mars Exploration Rovers measurements has also been implemented. The Fe3+ absorption features are present everywhere on the surface, with a variety of intensities indicating distinct formation processes. The pyroxene-bearing regions are localized in low albedo regions, while the bright regions are spectrally comparable to anhydrous nanophase ferric oxides. The expanded data set increases by a factor of about 2, the number of olivine detections reported in previous OMEGA-based studies. Olivine is mainly detected in three types of areas over the Martian surface: discontinuous patches on the terraces of the three main basins; smooth inter-crater plains and smooth crater floors throughout the southern highlands; and crater sand dunes, crater ejectas and extended bedrock exposures in the northern plains. Olivine is also detected in the low albedo pyroxene-bearing dunes surrounding the northern polar cap.

  1. Optimization and performance of bifacial solar modules: A global perspective

    DOE PAGES

    Sun, Xingshu; Khan, Mohammad Ryyan; Deline, Chris; ...

    2018-02-06

    With the rapidly growing interest in bifacial photovoltaics (PV), a worldwide map of their potential performance can help assess and accelerate the global deployment of this emerging technology. However, the existing literature only highlights optimized bifacial PV for a few geographic locations or develops worldwide performance maps for very specific configurations, such as the vertical installation. It is still difficult to translate these location- and configuration-specific conclusions to a general optimized performance of this technology. In this paper, we present a global study and optimization of bifacial solar modules using a rigorous and comprehensive modeling framework. Our results demonstrate thatmore » with a low albedo of 0.25, the bifacial gain of ground-mounted bifacial modules is less than 10% worldwide. However, increasing the albedo to 0.5 and elevating modules 1 m above the ground can boost the bifacial gain to 30%. Moreover, we derive a set of empirical design rules, which optimize bifacial solar modules across the world and provide the groundwork for rapid assessment of the location-specific performance. We find that ground-mounted, vertical, east-west-facing bifacial modules will outperform their south-north-facing, optimally tilted counterparts by up to 15% below the latitude of 30 degrees, for an albedo of 0.5. The relative energy output is reversed in latitudes above 30 degrees. A detailed and systematic comparison with data from Asia, Africa, Europe, and North America validates the model presented in this paper.« less

  2. Simulated GOLD Observations of Atmospheric Waves

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.

    2016-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.

  3. Optimization and performance of bifacial solar modules: A global perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Khan, Mohammad Ryyan; Deline, Chris

    With the rapidly growing interest in bifacial photovoltaics (PV), a worldwide map of their potential performance can help assess and accelerate the global deployment of this emerging technology. However, the existing literature only highlights optimized bifacial PV for a few geographic locations or develops worldwide performance maps for very specific configurations, such as the vertical installation. It is still difficult to translate these location- and configuration-specific conclusions to a general optimized performance of this technology. In this paper, we present a global study and optimization of bifacial solar modules using a rigorous and comprehensive modeling framework. Our results demonstrate thatmore » with a low albedo of 0.25, the bifacial gain of ground-mounted bifacial modules is less than 10% worldwide. However, increasing the albedo to 0.5 and elevating modules 1 m above the ground can boost the bifacial gain to 30%. Moreover, we derive a set of empirical design rules, which optimize bifacial solar modules across the world and provide the groundwork for rapid assessment of the location-specific performance. We find that ground-mounted, vertical, east-west-facing bifacial modules will outperform their south-north-facing, optimally tilted counterparts by up to 15% below the latitude of 30 degrees, for an albedo of 0.5. The relative energy output is reversed in latitudes above 30 degrees. A detailed and systematic comparison with data from Asia, Africa, Europe, and North America validates the model presented in this paper.« less

  4. Global Biomass Variation and its Geodynamic Effects, 1982-1998

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.

    2005-01-01

    Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.

  5. High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.

    2006-01-01

    Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.

  6. Land cover mapping of North and Central America—Global Land Cover 2000

    USGS Publications Warehouse

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  7. Planck 2015 results. X. Diffuse component separation: Foreground maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  8. Planck 2015 results: X. Diffuse component separation: Foreground maps

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-09-20

    We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less

  9. Integration of satellite gravity data with ground-based geophysical data for a better understanding of the structural control of groundwater flow in the Nubian Sandstone Aquifer System

    NASA Astrophysics Data System (ADS)

    Fathy, K.; Sultan, M.; Bettadpur, S. V.; Save, H.; Ahmed, M.; Zahran, K. H.; Emil, M. K.; Helaly, A.; Abotalib, A. Z.; Ismaiel, A.

    2016-12-01

    The Nubian Sandstone Aquifer System (NSAS) extends beyond Egypt's political boundaries to cover eastern Libya, northern and central Sudan and northeast Chad. The optimum utilization of this resource requires a better understanding of the connectivity of the NSAS sub-basins and the structural control on groundwater flow throughout the system. We provide an integrated (geophysics, remote sensing and field) approach to address these issues. Firstly, we evaluated GOCE-based global Geopotential models (GGMs) compared to the terrestrial gravity anomalies for 21262 sites to select the optimum model for deriving Bouguer gravity datasets. The Eigen-6C4 was found to have the lowest deviation from the terrestrial gravity anomalies. Secondly, structures and uplifts were mapped on the surface and in the sub-surface. Extensive N-S to NW-SE trending grabens were delineated in areas proximal to the Nile Valley using Palsar-derived DEMs, and hill shade maps; these depressions are here interpreted as basement structures that were reactivated during the opening of the Red Sea and the Gulf of Suez. The sinistral E-W trending faults and shear zones of the Syrian Arc were mapped in northern Egypt from Sinai and across the Eastern and Western Deserts. These structures were mapped on the surface using hill shade images and their extension in the subsurface was successfully detected from Eigen-6C4 model-derived Bouguer and TDR maps. The E-W trending basement uplift (Uweinat-Aswan uplift) was mapped in southern Egypt and the N-S trending Uweinat-Howar uplift was delineated in western Sudan and eastern Chad using TDR maps. Thirdly, hydrological analysis was conducted using GRACE spherical harmonic solutions (RL05), and CSR 0.5° X 0.5°, and JPL Mascon solutions. These showed: (1) pronounced TWS depletion over the Dakhla basin (average of three solutions: -3.03 mm/yr); (2) the south to north groundwater flow from Sudan to Egypt is impeded by the E-W trending Uweinat-Aswan basement uplift, yet the southwest to northeast flow from Chad into Sudan is not obstructed by the Uweinat-Howar uplift, (3) the E-W trending faults and shear zones impede groundwater flow to the north and act as conduits for deep-seated groundwater discharge on the surface in natural depressions (e.g., Qattara) and in the overlying layers.

  10. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins

    NASA Astrophysics Data System (ADS)

    Bhatt, Jay P.; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K.

    2016-05-01

    Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.

  11. Assessing Potential Conservation and Restoration Areas of Freshwater Fish Fauna in the Indian River Basins.

    PubMed

    Bhatt, Jay P; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K

    2016-05-01

    Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.

  12. EarthObserver: Bringing the world to your fingertips

    NASA Astrophysics Data System (ADS)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for mainland USA and 30m globally, and detailed oceanic depths derived from numerous sources including multibeam echo-soundings data.

  13. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  14. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    PubMed

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  15. Analysis of global oceanic rainfall from microwave data

    NASA Technical Reports Server (NTRS)

    Rao, M.

    1978-01-01

    A Global Rainfall Atlas was prepared from Nimbus 5 ESMR data. The Atlas includes global oceanic rainfall maps based on weekly, monthly and seasonal averages, complete through the end of 1975. Similar maps for 1973 and 1974 were studied. They reveal several previously unknown areas of enhanced rainfall and preliminary data on interannual variability of oceanic rainfall.

  16. Complexity in Climatic Controls on Plant Species Distribution: Satellite Data Reveal Unique Climate for Giant Sequoia in the California Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Waller, Eric Kindseth

    A better understanding of the environmental controls on current plant species distribution is essential if the impacts of such diverse challenges as invasive species, changing fire regimes, and global climate change are to be predicted and important diversity conserved. Climate, soil, hydrology, various biotic factors fire, history, and chance can all play a role, but disentangling these factors is a daunting task. Increasingly sophisticated statistical models relying on existing distributions and mapped climatic variables, among others, have been developed to try to answer these questions. Any failure to explain pattern with existing mapped climatic variables is often taken as a referendum on climate as a whole, rather than on the limitations of the particular maps or models. Every location has a unique and constantly changing climate so that any distribution could be explained by some aspect of climate. Chapter 1 of this dissertation reviews some of the major flaws in species distribution modeling and addresses concerns that climate may therefore not be predictive of, or even relevant to, species distributions. Despite problems with climate-based models, climate and climate-derived variables still have substantial merit for explaining species distribution patterns. Additional generation of relevant climate variables and improvements in other climate and climate-derived variables are still needed to demonstrate this more effectively. Satellite data have a long history of being used for vegetation mapping and even species distribution mapping. They have great potential for being used for additional climatic information, and for improved mapping of other climate and climate-derived variables. Improving the characterization of cloud cover frequency with satellite data is one way in which the mapping of important climate and climate-derived variables can be improved. An important input to water balance models, solar radiation maps could be vastly improved with a better mapping of spatial and temporal patterns in cloud cover. Chapter 2 of this dissertation describes the generation of custom daily cloud cover maps from Advanced Very High Resolution Radiometer (AVHRR) satellite data from 1981-1999 at ~5 km resolution and Moderate Resolution Imagine Spectroradiomter (MODIS) satellite reflectance data at ~500 meter resolution for much of the western U.S., from 2000 to 2012. Intensive comparisons of reflectance spectra from a variety of cloud and snow-covered scenes from the southwestern United States allowed the generation of new rules for the classification of clouds and snow in both the AVHRR and MODIS data. The resulting products avoid many of the problems that plague other cloud mapping efforts, such as the tendency for snow cover and bright desert soils to be mapped as cloud. This consistency in classification across cover types is critically important for any distribution modeling of a plant species that might be dependent on cloud cover. In Chapter 3, monthly cloud frequencies derived from the daily classifications were used directly in species distribution models for giant sequoia and were found to be the strongest predictors of giant sequoia distribution. A high frequency of cloud cover, especially in the spring, differentiated the climate of the west slope of the southern Sierra Nevada, where giant sequoia are prolific, from central and northern parts of the range, where the tree is rare and generally absent. Other mapped cloud products, contaminated by confusion with high elevation snow, would likely not have found this important result. The result illustrates the importance of accuracy in mapping as well as the importance of previously overlooked aspects of climate for species distribution modeling. But it also raises new questions about why the clouds form where they do and whether they might be associated with other aspects of climate important to giant sequoia distribution. What are the exact climatic mechanisms governing the distribution? Detailed aspects of the local climate warranted more investigation. Chapter 4 investigates the climate associated with the frequent cloud formation over the western slopes of the southern Sierra Nevada: the "sequoia belt". This region is climatically distinct in a number of ways, all of which could be factors in influencing the distribution of giant sequoia and other species. Satellite and micrometeorological flux tower data reveal characteristics of the sequoia belt that were not evident with surface climate measurements and maps derived from them. Results have implications for species distributions everywhere, but especially in rugged mountains, where climates are complex and poorly mapped. Chapter 5 summarizes some of the main conclusions from the work and suggests directions for related future research. (Abstract shortened by UMI.).

  17. Validation of ET maps derived from MODIS imagery

    NASA Astrophysics Data System (ADS)

    Hong, S.; Hendrickx, J. M.; Borchers, B.

    2005-12-01

    In previous work we have used the New Mexico Tech implementation of the Surface Energy Balance Algorithm for Land (SEBAL-NMT) for the generation of ET maps from LandSat imagery. Comparison of these SEBAL ET estimates versus ET ground measurements using eddy covariance showed satisfactory agreement between the two methods in the heterogeneous arid landscape of the Middle Rio Grande Basin. The objective of this study is to validate SEBAL ET estimates obtained from MODIS imagery. The use of MODIS imagery is attractive since MODIS images are available at a much higher frequency than LandSat images at no cost to the user. MODIS images have a pixel size in the thermal band of 1000x1000 m which is much coarser than the 60x60 m pixel size of LandSat 7. This large pixel size precludes the use of eddy covariance measurements for validation of ET maps derived from MODIS imagery since the eddy covariance measurement is not representative of a 1000x1000 m MODIS pixel. In our experience, a typical foot print of an ET rate measured by eddy covariance on a clear day in New Mexico around 11 am is less than then thousand square meters or two orders of magnitude smaller than a MODIS thermal pixel. Therefore, we have validated ET maps derived from MODIS imagery by comparison with up-scaled ET maps derived from LandSat imagery. The results of our study demonstrate: (1) There is good agreement between ET maps derived from LandSat and MODIS images; (2) Up-scaling of LandSat ET maps over the Middle Rio Grande Basin produces ET maps that are very similar to ET maps directly derived from MODIS images; (3) ET maps derived from free MODIS imagery using SEBAL-NMT can provide reliable regional ET information for water resource managers.

  18. Mapping local and global variability in plant trait distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc

    2017-12-01

    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusingmore » on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m) and phosphorus (P m), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.« less

  19. Mapping local and global variability in plant trait distributions.

    PubMed

    Butler, Ethan E; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph M; Craven, Dylan; de Vries, Franciska T; Díaz, Sandra; Domingues, Tomas F; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J B; Kurokawa, Hiroko; Laughlin, Daniel C; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A; Spasojevic, Marko J; Sosinski, Enio; Thornton, Peter E; Valladares, Fernando; van Bodegom, Peter M; Williams, Mathew; Wirth, Christian; Reich, Peter B

    2017-12-19

    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.

  20. Building a high resolution national elevation model from SRTM: The Australian experience

    NASA Astrophysics Data System (ADS)

    Gallant, J. C.; Read, A.; Dowling, T. I.

    2011-12-01

    The global SRTM DEM is a valuable global data set that, for many countries including Australia, provides the best basis for a fine resolution national DEM. But the SRTM data suffers from a variety of artefacts and errors that prevent its routine application with familiar terrain analysis tools. The most important of these are stripes, voids, random noise and offsets due to trees. The tree offsets are particularly disruptive in riparian areas where they make rivers appear as ridge lines. This paper describes how a suite of tools was applied to the 1 second SRTM data for Australia to treat each of these artefacts. An FFT-based tool was developed to detect and remove regular striping. Voids were filled using a modification of the delta surface fill method. Offsets due to trees were modelled and removed using a vegetation mask derived from remotely sensed imagery and a statistical estimate of the offset at vegetation patch boundaries. Random noise was removed using an adaptive smoothing method that responds to variations in both local relief and noise magnitude. Finally, mapped channel networks were imposed using a modified version of the ANUDEM software to enforce hydrological connectivity. The resulting products are being distributed by Geoscience Australia and the smoothed and drainage enforced products in particular are suitable for use in routine terrain analysis tasks. With some adaptation, the same processes could be applied to the global SRTM to derive a product that, in combination with an improved ASTER G-DEM, would provide a high quality comprehensive global elevation model suitable for most purposes.

Top