Method for hyperspectral imagery exploitation and pixel spectral unmixing
NASA Technical Reports Server (NTRS)
Lin, Ching-Fang (Inventor)
2003-01-01
An efficiently hybrid approach to exploit hyperspectral imagery and unmix spectral pixels. This hybrid approach uses a genetic algorithm to solve the abundance vector for the first pixel of a hyperspectral image cube. This abundance vector is used as initial state in a robust filter to derive the abundance estimate for the next pixel. By using Kalman filter, the abundance estimate for a pixel can be obtained in one iteration procedure which is much fast than genetic algorithm. The output of the robust filter is fed to genetic algorithm again to derive accurate abundance estimate for the current pixel. The using of robust filter solution as starting point of the genetic algorithm speeds up the evolution of the genetic algorithm. After obtaining the accurate abundance estimate, the procedure goes to next pixel, and uses the output of genetic algorithm as the previous state estimate to derive abundance estimate for this pixel using robust filter. And again use the genetic algorithm to derive accurate abundance estimate efficiently based on the robust filter solution. This iteration continues until pixels in a hyperspectral image cube end.
Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Marvis, Dimitri N.
2014-01-01
The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
Robust Modal Filtering and Control of the X-56A Model with Simulated Fiber Optic Sensor Failures
NASA Technical Reports Server (NTRS)
Suh, Peter M.; Chin, Alexander W.; Mavris, Dimitri N.
2016-01-01
The X-56A aircraft is a remotely-piloted aircraft with flutter modes intentionally designed into the flight envelope. The X-56A program must demonstrate flight control while suppressing all unstable modes. A previous X-56A model study demonstrated a distributed-sensing-based active shape and active flutter suppression controller. The controller relies on an estimator which is sensitive to bias. This estimator is improved herein, and a real-time robust estimator is derived and demonstrated on 1530 fiber optic sensors. It is shown in simulation that the estimator can simultaneously reject 230 worst-case fiber optic sensor failures automatically. These sensor failures include locations with high leverage (or importance). To reduce the impact of leverage outliers, concentration based on a Mahalanobis trim criterion is introduced. A redescending M-estimator with Tukey bisquare weights is used to improve location and dispersion estimates within each concentration step in the presence of asymmetry (or leverage). A dynamic simulation is used to compare the concentrated robust estimator to a state-of-the-art real-time robust multivariate estimator. The estimators support a previously-derived mu-optimal shape controller. It is found that during the failure scenario, the concentrated modal estimator keeps the system stable.
Magis, David
2014-11-01
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large-sample) standard errors (ASE) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood (ML) and the robust estimators, together with their estimated ASEs, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process. © 2013 The British Psychological Society.
Aeroservoelastic Uncertainty Model Identification from Flight Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2001-01-01
Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.
New robust statistical procedures for the polytomous logistic regression models.
Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro
2018-05-17
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Vadivel, P.; Sakthivel, R.; Mathiyalagan, K.; Arunkumar, A.
2013-09-01
This paper addresses the issue of robust state estimation for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying delays and parameter uncertainties. By constructing the Lyapunov-Krasovskii functional, which contains the triple-integral term and using the free-weighting matrix technique, a set of sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to estimate the neuron states through available output measurements such that the dynamics of the estimation error system is robustly asymptotically stable. In particular, we consider a generalized activation function in which the traditional assumptions on the boundedness, monotony and differentiability of the activation functions are removed. More precisely, the design of the state estimator for such BAM neural networks can be obtained by solving some LMIs, which are dependent on the size of the time derivative of the time-varying delays. Finally, a numerical example with simulation result is given to illustrate the obtained theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Edward T.
Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when comparedmore » the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.« less
Bayesian Inference and Application of Robust Growth Curve Models Using Student's "t" Distribution
ERIC Educational Resources Information Center
Zhang, Zhiyong; Lai, Keke; Lu, Zhenqiu; Tong, Xin
2013-01-01
Despite the widespread popularity of growth curve analysis, few studies have investigated robust growth curve models. In this article, the "t" distribution is applied to model heavy-tailed data and contaminated normal data with outliers for growth curve analysis. The derived robust growth curve models are estimated through Bayesian…
Robust estimation for ordinary differential equation models.
Cao, J; Wang, L; Xu, J
2011-12-01
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.
On robust parameter estimation in brain-computer interfacing
NASA Astrophysics Data System (ADS)
Samek, Wojciech; Nakajima, Shinichi; Kawanabe, Motoaki; Müller, Klaus-Robert
2017-12-01
Objective. The reliable estimation of parameters such as mean or covariance matrix from noisy and high-dimensional observations is a prerequisite for successful application of signal processing and machine learning algorithms in brain-computer interfacing (BCI). This challenging task becomes significantly more difficult if the data set contains outliers, e.g. due to subject movements, eye blinks or loose electrodes, as they may heavily bias the estimation and the subsequent statistical analysis. Although various robust estimators have been developed to tackle the outlier problem, they ignore important structural information in the data and thus may not be optimal. Typical structural elements in BCI data are the trials consisting of a few hundred EEG samples and indicating the start and end of a task. Approach. This work discusses the parameter estimation problem in BCI and introduces a novel hierarchical view on robustness which naturally comprises different types of outlierness occurring in structured data. Furthermore, the class of minimum divergence estimators is reviewed and a robust mean and covariance estimator for structured data is derived and evaluated with simulations and on a benchmark data set. Main results. The results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters. Significance. Since parameter estimation is an integral part of various machine learning algorithms, the presented techniques are applicable to many problems beyond BCI.
NASA Astrophysics Data System (ADS)
Tamhane, Bhagyashri; Kurode, Shailaja
2018-05-01
In this paper, simultaneous state and disturbance estimation of a drive system composed of motor connected to a load is proposed. Such a system is represented by a two mass model realising in a fourth-order plant. Backlash is introduced as the nonlinear disturbance in gears which is proposed to be estimated and in turn compensated. For this motion control system, a two-stage higher order sliding-mode observer is proposed for state and backlash estimation. The novelty lies in the fact that for this fourth-order system, output is considered from the motor end only, i.e. its angular displacement. The unmeasured states consisting of output derivative, load-side angular displacement and its derivative along with backlash are estimated in finite time. This disturbance due to backlash is unmatched in nature. The estimated states and disturbance are used to devise a robust sliding-mode control. This proposed scheme is validated in simulation and experimentation.
Self-Critical, and Robust, Procedures for the Analysis of Multivariate Normal Data.
1982-06-01
Influence Functions The influence function is the most important tt of qual- itative zobustness since many other robustness characteristics of an estimator...may be derived from it. The influence function characterizes the (asymptotic) response of an estimator to an additional observation as a function of...the influence function be bounded. It is also advantageous, in our opinion, if the influence functions are re-descending to zero. The influence function for
Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins
NASA Technical Reports Server (NTRS)
Brenner, Marty; Lind, Rick
1998-01-01
Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.
Deng, Zhimin; Tian, Tianhai
2014-07-29
The advances of systems biology have raised a large number of sophisticated mathematical models for describing the dynamic property of complex biological systems. One of the major steps in developing mathematical models is to estimate unknown parameters of the model based on experimentally measured quantities. However, experimental conditions limit the amount of data that is available for mathematical modelling. The number of unknown parameters in mathematical models may be larger than the number of observation data. The imbalance between the number of experimental data and number of unknown parameters makes reverse-engineering problems particularly challenging. To address the issue of inadequate experimental data, we propose a continuous optimization approach for making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both function and high order derivatives generate estimates with better accuracy. This result is also supported by the second and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also study the robustness property of these three models to examine the reliability of estimates. Simulation results show that the models with estimated parameters using continuous fitness functions have better robustness properties than those using the corresponding discrete fitness functions. The inference studies and robustness analysis suggest that the proposed continuous optimization criteria are effective and robust for estimating unknown parameters in mathematical models.
Survival estimation and the effects of dependency among animals
Schmutz, Joel A.; Ward, David H.; Sedinger, James S.; Rexstad, Eric A.
1995-01-01
Survival models assume that fates of individuals are independent, yet the robustness of this assumption has been poorly quantified. We examine how empirically derived estimates of the variance of survival rates are affected by dependency in survival probability among individuals. We used Monte Carlo simulations to generate known amounts of dependency among pairs of individuals and analyzed these data with Kaplan-Meier and Cormack-Jolly-Seber models. Dependency significantly increased these empirical variances as compared to theoretically derived estimates of variance from the same populations. Using resighting data from 168 pairs of black brant, we used a resampling procedure and program RELEASE to estimate empirical and mean theoretical variances. We estimated that the relationship between paired individuals caused the empirical variance of the survival rate to be 155% larger than the empirical variance for unpaired individuals. Monte Carlo simulations and use of this resampling strategy can provide investigators with information on how robust their data are to this common assumption of independent survival probabilities.
Robust efficient estimation of heart rate pulse from video.
Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde
2014-04-01
We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity.
Robust efficient estimation of heart rate pulse from video
Xu, Shuchang; Sun, Lingyun; Rohde, Gustavo Kunde
2014-01-01
We describe a simple but robust algorithm for estimating the heart rate pulse from video sequences containing human skin in real time. Based on a model of light interaction with human skin, we define the change of blood concentration due to arterial pulsation as a pixel quotient in log space, and successfully use the derived signal for computing the pulse heart rate. Various experiments with different cameras, different illumination condition, and different skin locations were conducted to demonstrate the effectiveness and robustness of the proposed algorithm. Examples computed with normal illumination show the algorithm is comparable with pulse oximeter devices both in accuracy and sensitivity. PMID:24761294
An accurate computational method for the diffusion regime verification
NASA Astrophysics Data System (ADS)
Zhokh, Alexey A.; Strizhak, Peter E.
2018-04-01
The diffusion regime (sub-diffusive, standard, or super-diffusive) is defined by the order of the derivative in the corresponding transport equation. We develop an accurate computational method for the direct estimation of the diffusion regime. The method is based on the derivative order estimation using the asymptotic analytic solutions of the diffusion equation with the integer order and the time-fractional derivatives. The robustness and the computational cheapness of the proposed method are verified using the experimental methane and methyl alcohol transport kinetics through the catalyst pellet.
Robust versus consistent variance estimators in marginal structural Cox models.
Enders, Dirk; Engel, Susanne; Linder, Roland; Pigeot, Iris
2018-06-11
In survival analyses, inverse-probability-of-treatment (IPT) and inverse-probability-of-censoring (IPC) weighted estimators of parameters in marginal structural Cox models are often used to estimate treatment effects in the presence of time-dependent confounding and censoring. In most applications, a robust variance estimator of the IPT and IPC weighted estimator is calculated leading to conservative confidence intervals. This estimator assumes that the weights are known rather than estimated from the data. Although a consistent estimator of the asymptotic variance of the IPT and IPC weighted estimator is generally available, applications and thus information on the performance of the consistent estimator are lacking. Reasons might be a cumbersome implementation in statistical software, which is further complicated by missing details on the variance formula. In this paper, we therefore provide a detailed derivation of the variance of the asymptotic distribution of the IPT and IPC weighted estimator and explicitly state the necessary terms to calculate a consistent estimator of this variance. We compare the performance of the robust and consistent variance estimators in an application based on routine health care data and in a simulation study. The simulation reveals no substantial differences between the 2 estimators in medium and large data sets with no unmeasured confounding, but the consistent variance estimator performs poorly in small samples or under unmeasured confounding, if the number of confounders is large. We thus conclude that the robust estimator is more appropriate for all practical purposes. Copyright © 2018 John Wiley & Sons, Ltd.
Robustness of Value-Added Analysis of School Effectiveness. Research Report. ETS RR-08-22
ERIC Educational Resources Information Center
Braun, Henry; Qu, Yanxuan
2008-01-01
This paper reports on a study conducted to investigate the consistency of the results between 2 approaches to estimating school effectiveness through value-added modeling. Estimates of school effects from the layered model employing item response theory (IRT) scaled data are compared to estimates derived from a discrete growth model based on the…
Aqil, Muhammad; Jeong, Myung Yung
2018-04-24
The robust characterization of real-time brain activity carries potential for many applications. However, the contamination of measured signals by various instrumental, environmental, and physiological sources of noise introduces a substantial amount of signal variance and, consequently, challenges real-time estimation of contributions from underlying neuronal sources. Functional near infra-red spectroscopy (fNIRS) is an emerging imaging modality whose real-time potential is yet to be fully explored. The objectives of the current study are to (i) validate a time-dependent linear model of hemodynamic responses in fNIRS, and (ii) test the robustness of this approach against measurement noise (instrumental and physiological) and mis-specification of the hemodynamic response basis functions (amplitude, latency, and duration). We propose a linear hemodynamic model with time-varying parameters, which are estimated (adapted and tracked) using a dynamic recursive least square algorithm. Owing to the linear nature of the activation model, the problem of achieving robust convergence to an accurate estimation of the model parameters is recast as a problem of parameter error stability around the origin. We show that robust convergence of the proposed method is guaranteed in the presence of an acceptable degree of model misspecification and we derive an upper bound on noise under which reliable parameters can still be inferred. We also derived a lower bound on signal-to-noise-ratio over which the reliable parameters can still be inferred from a channel/voxel. Whilst here applied to fNIRS, the proposed methodology is applicable to other hemodynamic-based imaging technologies such as functional magnetic resonance imaging. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lombaerts, Thomas; Schuet, Stefan R.; Wheeler, Kevin; Acosta, Diana; Kaneshige, John
2013-01-01
This paper discusses an algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. Starting with an optimal control formulation, the optimization problem can be rewritten as a Hamilton- Jacobi-Bellman equation. This equation can be solved by level set methods. This approach has been applied on an aircraft example involving structural airframe damage. Monte Carlo validation tests have confirmed that this approach is successful in estimating the safe maneuvering envelope for damaged aircraft.
Vector autoregressive models: A Gini approach
NASA Astrophysics Data System (ADS)
Mussard, Stéphane; Ndiaye, Oumar Hamady
2018-02-01
In this paper, it is proven that the usual VAR models may be performed in the Gini sense, that is, on a ℓ1 metric space. The Gini regression is robust to outliers. As a consequence, when data are contaminated by extreme values, we show that semi-parametric VAR-Gini regressions may be used to obtain robust estimators. The inference about the estimators is made with the ℓ1 norm. Also, impulse response functions and Gini decompositions for prevision errors are introduced. Finally, Granger's causality tests are properly derived based on U-statistics.
Minimizing field time to get reasonable greenhouse gas flux estimates from many chambers
USDA-ARS?s Scientific Manuscript database
Greenhouse gas measurements from soil are typically derived from static chambers placed in several replicate field plots and in multiple locations within a plot. Inherent variability in emissions is due to a number of known and unknown factors. Getting robust emission estimates from numerous chamber...
NASA Astrophysics Data System (ADS)
Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2016-07-01
This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.
Lim, Changwon
2015-03-30
Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. Copyright © 2014 John Wiley & Sons, Ltd.
Morales, Rafael; Rincón, Fernando; Gazzano, Julio Dondo; López, Juan Carlos
2014-01-01
Time derivative estimation of signals plays a very important role in several fields, such as signal processing and control engineering, just to name a few of them. For that purpose, a non-asymptotic algebraic procedure for the approximate estimation of the system states is used in this work. The method is based on results from differential algebra and furnishes some general formulae for the time derivatives of a measurable signal in which two algebraic derivative estimators run simultaneously, but in an overlapping fashion. The algebraic derivative algorithm presented in this paper is computed online and in real-time, offering high robustness properties with regard to corrupting noises, versatility and ease of implementation. Besides, in this work, we introduce a novel architecture to accelerate this algebraic derivative estimator using reconfigurable logic. The core of the algorithm is implemented in an FPGA, improving the speed of the system and achieving real-time performance. Finally, this work proposes a low-cost platform for the integration of hardware in the loop in MATLAB. PMID:24859033
Nonparametric methods for doubly robust estimation of continuous treatment effects.
Kennedy, Edward H; Ma, Zongming; McHugh, Matthew D; Small, Dylan S
2017-09-01
Continuous treatments (e.g., doses) arise often in practice, but many available causal effect estimators are limited by either requiring parametric models for the effect curve, or by not allowing doubly robust covariate adjustment. We develop a novel kernel smoothing approach that requires only mild smoothness assumptions on the effect curve, and still allows for misspecification of either the treatment density or outcome regression. We derive asymptotic properties and give a procedure for data-driven bandwidth selection. The methods are illustrated via simulation and in a study of the effect of nurse staffing on hospital readmissions penalties.
On-Line Robust Modal Stability Prediction using Wavelet Processing
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Lind, Rick
1998-01-01
Wavelet analysis for filtering and system identification has been used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins is reduced with parametric and nonparametric time- frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data is used to reduce the effects of external disturbances and unmodeled dynamics. Parametric estimates of modal stability are also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. The F-18 High Alpha Research Vehicle aeroservoelastic flight test data demonstrates improved robust stability prediction by extension of the stability boundary beyond the flight regime. Guidelines and computation times are presented to show the efficiency and practical aspects of these procedures for on-line implementation. Feasibility of the method is shown for processing flight data from time- varying nonstationary test points.
Lin, Faa-Jeng; Lee, Shih-Yang; Chou, Po-Huan
2012-12-01
The objective of this study is to develop an intelligent nonsingular terminal sliding-mode control (INTSMC) system using an Elman neural network (ENN) for the threedimensional motion control of a piezo-flexural nanopositioning stage (PFNS). First, the dynamic model of the PFNS is derived in detail. Then, to achieve robust, accurate trajectory-tracking performance, a nonsingular terminal sliding-mode control (NTSMC) system is proposed for the tracking of the reference contours. The steady-state response of the control system can be improved effectively because of the addition of the nonsingularity in the NTSMC. Moreover, to relax the requirements of the bounds and discard the switching function in NTSMC, an INTSMC system using a multi-input-multioutput (MIMO) ENN estimator is proposed to improve the control performance and robustness of the PFNS. The ENN estimator is proposed to estimate the hysteresis phenomenon and lumped uncertainty, including the system parameters and external disturbance of the PFNS online. Furthermore, the adaptive learning algorithms for the training of the parameters of the ENN online are derived using the Lyapunov stability theorem. In addition, two robust compensators are proposed to confront the minimum reconstructed errors in INTSMC. Finally, some experimental results for the tracking of various contours are given to demonstrate the validity of the proposed INTSMC system for PFNS.
The use of resighting data to estimate the rate of population growth of the snail kite in Florida
Dreitz, V.J.; Nichols, J.D.; Hines, J.E.; Bennetts, R.E.; Kitchens, W.M.; DeAngelis, D.L.
2002-01-01
The rate of population growth (lambda) is an important demographic parameter used to assess the viability of a population and to develop management and conservation agendas. We examined the use of resighting data to estimate lambda for the snail kite population in Florida from 1997-2000. The analyses consisted of (1) a robust design approach that derives an estimate of lambda from estimates of population size and (2) the Pradel (1996) temporal symmetry (TSM) approach that directly estimates lambda using an open-population capture-recapture model. Besides resighting data, both approaches required information on the number of unmarked individuals that were sighted during the sampling periods. The point estimates of lambda differed between the robust design and TSM approaches, but the 95% confidence intervals overlapped substantially. We believe the differences may be the result of sparse data and do not indicate the inappropriateness of either modelling technique. We focused on the results of the robust design because this approach provided estimates for all study years. Variation among these estimates was smaller than levels of variation among ad hoc estimates based on previously reported index statistics. We recommend that lambda of snail kites be estimated using capture-resighting methods rather than ad hoc counts.
Friesen, Melissa C; Bassig, Bryan A; Vermeulen, Roel; Shu, Xiao-Ou; Purdue, Mark P; Stewart, Patricia A; Xiang, Yong-Bing; Chow, Wong-Ho; Ji, Bu-Tian; Yang, Gong; Linet, Martha S; Hu, Wei; Gao, Yu-Tang; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2017-01-01
To provide insight into the contributions of exposure measurements to job exposure matrices (JEMs), we examined the robustness of an association between occupational benzene exposure and non-Hodgkin lymphoma (NHL) to varying exposure assessment methods. NHL risk was examined in a prospective population-based cohort of 73087 women in Shanghai. A mixed-effects model that combined a benzene JEM with >60000 short-term, area benzene inspection measurements was used to derive two sets of measurement-based benzene estimates: 'job/industry-specific' estimates (our presumed best approach) were derived from the model's fixed effects (year, JEM intensity rating) and random effects (occupation, industry); 'calibrated JEM' estimates were derived using only the fixed effects. 'Uncalibrated JEM' (using the ordinal JEM ratings) and exposure duration estimates were also calculated. Cumulative exposure for each subject was calculated for each approach based on varying exposure definitions defined using the JEM's probability ratings. We examined the agreement between the cumulative metrics and evaluated changes in the benzene-NHL associations. For our primary exposure definition, the job/industry-specific estimates were moderately to highly correlated with all other approaches (Pearson correlation 0.61-0.89; Spearman correlation > 0.99). All these metrics resulted in statistically significant exposure-response associations for NHL, with negligible gain in model fit from using measurement-based estimates. Using more sensitive or specific exposure definitions resulted in elevated but non-significant associations. The robust associations observed here with varying benzene assessment methods provide support for a benzene-NHL association. While incorporating exposure measurements did not improve model fit, the measurements allowed us to derive quantitative exposure-response curves. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Verdin, Andrew; Funk, Christopher C.; Rajagopalan, Balaji; Kleiber, William
2016-01-01
Robust estimates of precipitation in space and time are important for efficient natural resource management and for mitigating natural hazards. This is particularly true in regions with developing infrastructure and regions that are frequently exposed to extreme events. Gauge observations of rainfall are sparse but capture the precipitation process with high fidelity. Due to its high resolution and complete spatial coverage, satellite-derived rainfall data are an attractive alternative in data-sparse regions and are often used to support hydrometeorological early warning systems. Satellite-derived precipitation data, however, tend to underrepresent extreme precipitation events. Thus, it is often desirable to blend spatially extensive satellite-derived rainfall estimates with high-fidelity rain gauge observations to obtain more accurate precipitation estimates. In this research, we use two different methods, namely, ordinary kriging and κ-nearest neighbor local polynomials, to blend rain gauge observations with the Climate Hazards Group Infrared Precipitation satellite-derived precipitation estimates in data-sparse Central America and Colombia. The utility of these methods in producing blended precipitation estimates at pentadal (five-day) and monthly time scales is demonstrated. We find that these blending methods significantly improve the satellite-derived estimates and are competitive in their ability to capture extreme precipitation.
Robust inference under the beta regression model with application to health care studies.
Ghosh, Abhik
2017-01-01
Data on rates, percentages, or proportions arise frequently in many different applied disciplines like medical biology, health care, psychology, and several others. In this paper, we develop a robust inference procedure for the beta regression model, which is used to describe such response variables taking values in (0, 1) through some related explanatory variables. In relation to the beta regression model, the issue of robustness has been largely ignored in the literature so far. The existing maximum likelihood-based inference has serious lack of robustness against outliers in data and generate drastically different (erroneous) inference in the presence of data contamination. Here, we develop the robust minimum density power divergence estimator and a class of robust Wald-type tests for the beta regression model along with several applications. We derive their asymptotic properties and describe their robustness theoretically through the influence function analyses. Finite sample performances of the proposed estimators and tests are examined through suitable simulation studies and real data applications in the context of health care and psychology. Although we primarily focus on the beta regression models with a fixed dispersion parameter, some indications are also provided for extension to the variable dispersion beta regression models with an application.
Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.
Wu, Dongjin; Xia, Linyuan; Geng, Jijun
2018-06-19
Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.
Robust gaze-steering of an active vision system against errors in the estimated parameters
NASA Astrophysics Data System (ADS)
Han, Youngmo
2015-01-01
Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.
Doubly robust matching estimators for high dimensional confounding adjustment.
Antonelli, Joseph; Cefalu, Matthew; Palmer, Nathan; Agniel, Denis
2018-05-11
Valid estimation of treatment effects from observational data requires proper control of confounding. If the number of covariates is large relative to the number of observations, then controlling for all available covariates is infeasible. In cases where a sparsity condition holds, variable selection or penalization can reduce the dimension of the covariate space in a manner that allows for valid estimation of treatment effects. In this article, we propose matching on both the estimated propensity score and the estimated prognostic scores when the number of covariates is large relative to the number of observations. We derive asymptotic results for the matching estimator and show that it is doubly robust in the sense that only one of the two score models need be correct to obtain a consistent estimator. We show via simulation its effectiveness in controlling for confounding and highlight its potential to address nonlinear confounding. Finally, we apply the proposed procedure to analyze the effect of gender on prescription opioid use using insurance claims data. © 2018, The International Biometric Society.
A robust approach for ECG-based analysis of cardiopulmonary coupling.
Zheng, Jiewen; Wang, Weidong; Zhang, Zhengbo; Wu, Dalei; Wu, Hao; Peng, Chung-Kang
2016-07-01
Deriving respiratory signal from a surface electrocardiogram (ECG) measurement has advantage of simultaneously monitoring of cardiac and respiratory activities. ECG-based cardiopulmonary coupling (CPC) analysis estimated by heart period variability and ECG-derived respiration (EDR) shows promising applications in medical field. The aim of this paper is to provide a quantitative analysis of the ECG-based CPC, and further improve its performance. Two conventional strategies were tested to obtain EDR signal: R-S wave amplitude and area of the QRS complex. An adaptive filter was utilized to extract the common component of inter-beat interval (RRI) and EDR, generating enhanced versions of EDR signal. CPC is assessed through probing the nonlinear phase interactions between RRI series and respiratory signal. Respiratory oscillations presented in both RRI series and respiratory signals were extracted by ensemble empirical mode decomposition for coupling analysis via phase synchronization index. The results demonstrated that CPC estimated from conventional EDR series exhibits constant and proportional biases, while that estimated from enhanced EDR series is more reliable. Adaptive filtering can improve the accuracy of the ECG-based CPC estimation significantly and achieve robust CPC analysis. The improved ECG-based CPC estimation may provide additional prognostic information for both sleep medicine and autonomic function analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Gao, Wei; Liu, Yalong; Xu, Bo
2014-12-19
A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated measurements with outliers are inherent. By integrating both merits of iterated divided difference filtering (IDDF) and Huber's M-estimation methodology, the new filtering method could not only achieve more accurate estimation and faster convergence contrast to standard divided difference filtering (DDF) in conditions of weak observability and large initial error, but also exhibit robustness with respect to outlier measurements, for which the standard IDDF would exhibit severe degradation in estimation accuracy. The correctness as well as validity of the algorithm is demonstrated through experiment results.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors.
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-12-22
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight.
Robust double gain unscented Kalman filter for small satellite attitude estimation
NASA Astrophysics Data System (ADS)
Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun
2017-08-01
Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).
May, Peter; Garrido, Melissa M; Cassel, J Brian; Morrison, R Sean; Normand, Charles
2016-10-01
To evaluate the sensitivity of treatment effect estimates when length of stay (LOS) is used to control for unobserved heterogeneity when estimating treatment effect on cost of hospital admission with observational data. We used data from a prospective cohort study on the impact of palliative care consultation teams (PCCTs) on direct cost of hospital care. Adult patients with an advanced cancer diagnosis admitted to five large medical and cancer centers in the United States between 2007 and 2011 were eligible for this study. Costs were modeled using generalized linear models with a gamma distribution and a log link. We compared variability in estimates of PCCT impact on hospitalization costs when LOS was used as a covariate, as a sample parameter, and as an outcome denominator. We used propensity scores to account for patient characteristics associated with both PCCT use and total direct hospitalization costs. We analyzed data from hospital cost databases, medical records, and questionnaires. Our propensity score weighted sample included 969 patients who were discharged alive. In analyses of hospitalization costs, treatment effect estimates are highly sensitive to methods that control for LOS, complicating interpretation. Both the magnitude and significance of results varied widely with the method of controlling for LOS. When we incorporated intervention timing into our analyses, results were robust to LOS-controls. Treatment effect estimates using LOS-controls are not only suboptimal in terms of reliability (given concerns over endogeneity and bias) and usefulness (given the need to validate the cost-effectiveness of an intervention using overall resource use for a sample defined at baseline) but also in terms of robustness (results depend on the approach taken, and there is little evidence to guide this choice). To derive results that minimize endogeneity concerns and maximize external validity, investigators should match and analyze treatment and comparison arms on baseline factors only. Incorporating intervention timing may deliver results that are more reliable, more robust, and more useful than those derived using LOS-controls. © Health Research and Educational Trust.
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
Using Empirical Mode Decomposition to process Marine Magnetotelluric Data
NASA Astrophysics Data System (ADS)
Chen, J.; Jegen, M. D.; Heincke, B. H.; Moorkamp, M.
2014-12-01
The magnetotelluric (MT) data always exhibits nonstationarities due to variations of source mechanisms causing MT variations on different time and spatial scales. An additional non-stationary component is introduced through noise, which is particularly pronounced in marine MT data through motion induced noise caused by time-varying wave motion and currents. We present a new heuristic method for dealing with the non-stationarity of MT time series based on Empirical Mode Decomposition (EMD). The EMD method is used in combination with the derived instantaneous spectra to determine impedance estimates. The procedure is tested on synthetic and field MT data. In synthetic tests the reliability of impedance estimates from EMD-based method is compared to the synthetic responses of a 1D layered model. To examine how estimates are affected by noise, stochastic stationary and non-stationary noise are added on the time series. Comparisons reveal that estimates by the EMD-based method are generally more stable than those by simple Fourier analysis. Furthermore, the results are compared to those derived by a commonly used Fourier-based MT data processing software (BIRRP), which incorporates additional sophisticated robust estimations to deal with noise issues. It is revealed that the results from both methods are already comparable, even though no robust estimate procedures are implemented in the EMD approach at present stage. The processing scheme is then applied to marine MT field data. Testing is performed on short, relatively quiet segments of several data sets, as well as on long segments of data with many non-stationary noise packages. Compared to BIRRP, the new method gives comparable or better impedance estimates, furthermore, the estimates are extended to lower frequencies and less noise biased estimates with smaller error bars are obtained at high frequencies. The new processing methodology represents an important step towards deriving a better resolved Earth model to greater depth underneath the seafloor.
Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator.
Jiang, Wenwen; Ong, Frank; Johnson, Kevin M; Nagle, Scott K; Hope, Thomas A; Lustig, Michael; Larson, Peder E Z
2018-06-01
To achieve motion robust high resolution 3D free-breathing pulmonary MRI utilizing a novel dynamic 3D image navigator derived directly from imaging data. Five-minute free-breathing scans were acquired with a 3D ultrashort echo time (UTE) sequence with 1.25 mm isotropic resolution. From this data, dynamic 3D self-navigating images were reconstructed under locally low rank (LLR) constraints and used for motion compensation with one of two methods: a soft-gating technique to penalize the respiratory motion induced data inconsistency, and a respiratory motion-resolved technique to provide images of all respiratory motion states. Respiratory motion estimation derived from the proposed dynamic 3D self-navigator of 7.5 mm isotropic reconstruction resolution and a temporal resolution of 300 ms was successful for estimating complex respiratory motion patterns. This estimation improved image quality compared to respiratory belt and DC-based navigators. Respiratory motion compensation with soft-gating and respiratory motion-resolved techniques provided good image quality from highly undersampled data in volunteers and clinical patients. An optimized 3D UTE sequence combined with the proposed reconstruction methods can provide high-resolution motion robust pulmonary MRI. Feasibility was shown in patients who had irregular breathing patterns in which our approach could depict clinically relevant pulmonary pathologies. Magn Reson Med 79:2954-2967, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Tissue dispersion measurement techniques using optical coherence tomography
NASA Astrophysics Data System (ADS)
Photiou, Christos; Pitris, Costas
2017-02-01
Dispersion, a result of wavelength-dependent index of refraction variations, causes pulse-width broadening with detrimental effects in many pulsed-laser applications. It is also considered to be one of the major causes of resolution degradation in Optical Coherence Tomography (OCT). However, dispersion is material dependent and, in tissue, Group Velocity Dispersion (GVD) could be used, for example, to detect changes associated with early cancer and result in more accurate disease diagnosis. In this summary we compare different techniques for estimating the GVD from OCT images, in order to evaluate their accuracy and applicability in highly scattering samples such as muscle and adipose tissue. The methods investigated included estimation of the GVD from (i) the point spread function (PSF) degradation, (ii) the shift (walk-off) between images taken at different center wavelengths and (iii) the second derivative of the spectral phase. The measurements were degraded by the presence of strong Mie scattering and speckle noise with the most robust being the PSF degradation and the least robust the phase derivative method. If the GVD is to be used to provide sensitive diagnostic information from highly scattering human tissues, it would be preferable to use the resolution degradation as an estimator of GVD.
A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
Miao, Fen; Fu, Nan; Zhang, Yuan-Ting; Ding, Xiao-Rong; Hong, Xi; He, Qingyun; Li, Ye
2017-11-01
Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.
Satellite Angular Rate Estimation From Vector Measurements
NASA Technical Reports Server (NTRS)
Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.
1996-01-01
This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.
A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors
Song, Yu; Nuske, Stephen; Scherer, Sebastian
2016-01-01
State estimation is the most critical capability for MAV (Micro-Aerial Vehicle) localization, autonomous obstacle avoidance, robust flight control and 3D environmental mapping. There are three main challenges for MAV state estimation: (1) it can deal with aggressive 6 DOF (Degree Of Freedom) motion; (2) it should be robust to intermittent GPS (Global Positioning System) (even GPS-denied) situations; (3) it should work well both for low- and high-altitude flight. In this paper, we present a state estimation technique by fusing long-range stereo visual odometry, GPS, barometric and IMU (Inertial Measurement Unit) measurements. The new estimation system has two main parts, a stochastic cloning EKF (Extended Kalman Filter) estimator that loosely fuses both absolute state measurements (GPS, barometer) and the relative state measurements (IMU, visual odometry), and is derived and discussed in detail. A long-range stereo visual odometry is proposed for high-altitude MAV odometry calculation by using both multi-view stereo triangulation and a multi-view stereo inverse depth filter. The odometry takes the EKF information (IMU integral) for robust camera pose tracking and image feature matching, and the stereo odometry output serves as the relative measurements for the update of the state estimation. Experimental results on a benchmark dataset and our real flight dataset show the effectiveness of the proposed state estimation system, especially for the aggressive, intermittent GPS and high-altitude MAV flight. PMID:28025524
Kendall, W.L.; Nichols, J.D.; Hines, J.E.
1997-01-01
Statistical inference for capture-recapture studies of open animal populations typically relies on the assumption that all emigration from the studied population is permanent. However, there are many instances in which this assumption is unlikely to be met. We define two general models for the process of temporary emigration, completely random and Markovian. We then consider effects of these two types of temporary emigration on Jolly-Seber (Seber 1982) estimators and on estimators arising from the full-likelihood approach of Kendall et al. (1995) to robust design data. Capture-recapture data arising from Pollock's (1982) robust design provide the basis for obtaining unbiased estimates of demographic parameters in the presence of temporary emigration and for estimating the probability of temporary emigration. We present a likelihood-based approach to dealing with temporary emigration that permits estimation under different models of temporary emigration and yields tests for completely random and Markovian emigration. In addition, we use the relationship between capture probability estimates based on closed and open models under completely random temporary emigration to derive three ad hoc estimators for the probability of temporary emigration, two of which should be especially useful in situations where capture probabilities are heterogeneous among individual animals. Ad hoc and full-likelihood estimators are illustrated for small mammal capture-recapture data sets. We believe that these models and estimators will be useful for testing hypotheses about the process of temporary emigration, for estimating demographic parameters in the presence of temporary emigration, and for estimating probabilities of temporary emigration. These latter estimates are frequently of ecological interest as indicators of animal movement and, in some sampling situations, as direct estimates of breeding probabilities and proportions.
Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations
NASA Astrophysics Data System (ADS)
Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.
2015-08-01
This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using borehole recordings had the smallest standard deviation among the estimated magnitudes and produced more stable and robust magnitude estimates. This suggests that incorporating borehole strong ground-motion records immediately available after the occurrence of large earthquakes can provide robust and accurate magnitude estimation.
Robust Estimation Based on Walsh Averages for the General Linear Model.
1983-11-01
estimate of I minimizing Ip(Z ) has an influence function proportional to p(y) and its asymptotic 2 2-1 variance-covariance matrix is E(* )/(E...in particular, on the influence function h(y) and quantities appearing in the asymptotic vari- ance. Some cno-ents are made on the one- and two...for signed rank estimates. The function P2 (t) of (1.4) has derivative 2(t) = - if t < -c 0 if It < c + I if t > c. *Then the influence function is h(t
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation
Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.
2015-01-01
Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245
New Approaches to Robust Confidence Intervals for Location: A Simulation Study.
1984-06-01
obtain a denominator for the test statistic. Those statistics based on location estimates derived from Hampel’s redescending influence function or v...defined an influence function for a test in terms of the behavior of its P-values when the data are sampled from a model distribution modified by point...proposal could be used for interval estimation as well as hypothesis testing, the extension is immediate. Once an influence function has been defined
Modeling heading and path perception from optic flow in the case of independently moving objects
Raudies, Florian; Neumann, Heiko
2013-01-01
Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589
Katoh, Chietsugu; Yoshinaga, Keiichiro; Klein, Ran; Kasai, Katsuhiko; Tomiyama, Yuuki; Manabe, Osamu; Naya, Masanao; Sakakibara, Mamoru; Tsutsui, Hiroyuki; deKemp, Robert A; Tamaki, Nagara
2012-08-01
Myocardial blood flow (MBF) estimation with (82)Rubidium ((82)Rb) positron emission tomography (PET) is technically difficult because of the high spillover between regions of interest, especially due to the long positron range. We sought to develop a new algorithm to reduce the spillover in image-derived blood activity curves, using non-uniform weighted least-squares fitting. Fourteen volunteers underwent imaging with both 3-dimensional (3D) (82)Rb and (15)O-water PET at rest and during pharmacological stress. Whole left ventricular (LV) (82)Rb MBF was estimated using a one-compartment model, including a myocardium-to-blood spillover correction to estimate the corresponding blood input function Ca(t)(whole). Regional K1 values were calculated using this uniform global input function, which simplifies equations and enables robust estimation of MBF. To assess the robustness of the modified algorithm, inter-operator repeatability of 3D (82)Rb MBF was compared with a previously established method. Whole LV correlation of (82)Rb MBF with (15)O-water MBF was better (P < .01) with the modified spillover correction method (r = 0.92 vs r = 0.60). The modified method also yielded significantly improved inter-operator repeatability of regional MBF quantification (r = 0.89) versus the established method (r = 0.82) (P < .01). A uniform global input function can suppress LV spillover into the image-derived blood input function, resulting in improved precision for MBF quantification with 3D (82)Rb PET.
NASA Astrophysics Data System (ADS)
Ombadi, Mohammed; Nguyen, Phu; Sorooshian, Soroosh
2017-12-01
Intensity Duration Frequency (IDF) curves are essential for the resilient design of infrastructures. Since their earlier development, IDF relationships have been derived using precipitation records from rainfall gauge stations. However, with the recent advancement in satellite observation of precipitation which provides near global coverage and high spatiotemporal resolution, it is worthy of attention to investigate the validity of utilizing the relatively short record length of satellite rainfall to generate robust IDF relationships. These satellite-based IDF can address the paucity of such information in the developing countries. Few studies have used satellite precipitation data in IDF development but mainly focused on merging satellite and gauge precipitation. In this study, however, IDF have been derived solely from satellite observations using PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). The unique PERSIANN-CDR attributes of high spatial resolution (0.25°×0.25°), daily temporal resolution and a record dating back to 1983 allow for the investigation at fine resolution. The results are compared over most of the contiguous United States against NOAA Atlas 14. The impact of using different methods of sampling, distribution estimators and regionalization in the resulting relationships is investigated. Main challenges to estimate robust and accurate IDF from satellite observations are also highlighted.
A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals
Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik
2014-01-01
Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel. PMID:25264951
A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals.
Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik
2014-09-26
Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.
A model to assess the Mars Telecommunications Network relay robustness
NASA Technical Reports Server (NTRS)
Girerd, Andre R.; Meshkat, Leila; Edwards, Charles D., Jr.; Lee, Charles H.
2005-01-01
The relatively long mission durations and compatible radio protocols of current and projected Mars orbiters have enabled the gradual development of a heterogeneous constellation providing proximity communication services for surface assets. The current and forecasted capability of this evolving network has reached the point that designers of future surface missions consider complete dependence on it. Such designers, along with those architecting network requirements, have a need to understand the robustness of projected communication service. A model has been created to identify the robustness of the Mars Network as a function of surface location and time. Due to the decade-plus time horizon considered, the network will evolve, with emerging productive nodes and nodes that cease or fail to contribute. The model is a flexible framework to holistically process node information into measures of capability robustness that can be visualized for maximum understanding. Outputs from JPL's Telecom Orbit Analysis Simulation Tool (TOAST) provide global telecom performance parameters for current and projected orbiters. Probabilistic estimates of orbiter fuel life are derived from orbit keeping burn rates, forecasted maneuver tasking, and anomaly resolution budgets. Orbiter reliability is estimated probabilistically. A flexible scheduling framework accommodates the projected mission queue as well as potential alterations.
Robust Regression Procedures for Predictor Variable Outliers.
1982-03-01
space of probability dis- tributions. Then the influence function of the estimator is defined to be the derivative of the functional evaluated at the...measure of the impact of an outlier x0 on the estimator . . . . . .0 10 T(F) is the " influence function " which is defined to be T(F) - lirT(F")-T(F...positive and negative directions. An em- pirical influence function can be defined in a similar fashion simply by replacing F with F in eqn. (3.4).n
Safe Maneuvering Envelope Estimation Based on a Physical Approach
NASA Technical Reports Server (NTRS)
Lombaerts, Thomas J. J.; Schuet, Stefan R.; Wheeler, Kevin R.; Acosta, Diana; Kaneshige, John T.
2013-01-01
This paper discusses a computationally efficient algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. This approach differs from others since it is physically inspired. This more transparent approach allows interpreting data in each step, and it is assumed that these physical models based upon flight dynamics theory will therefore facilitate certification for future real life applications.
NASA Astrophysics Data System (ADS)
Cordero-Llana, L.; Selmes, N.; Murray, T.; Scharrer, K.; Booth, A. D.
2012-12-01
Large volumes of water are necessary to propagate cracks to the glacial bed via hydrofractures. Hydrological models have shown that lakes above a critical volume can supply the necessary water for this process, so the ability to measure water depth in lakes remotely is important to study these processes. Previously, water depth has been derived from the optical properties of water using data from high resolution optical satellite images, as such ASTER, (Advanced Spaceborne Thermal Emission and Reflection Radiometer), IKONOS and LANDSAT. These studies used water-reflectance models based on the Bouguer-Lambert-Beer law and lack any estimation of model uncertainties. We propose an optimized model based on Sneed and Hamilton's (2007) approach to estimate water depths in supraglacial lakes and undertake a robust analysis of the errors for the first time. We used atmospherically-corrected data from ASTER and MODIS data as an input to the water-reflectance model. Three physical parameters are needed: namely bed albedo, water attenuation coefficient and reflectance of optically-deep water. These parameters were derived for each wavelength using standard calibrations. As a reference dataset, we obtained lake geometries using ICESat measurements over empty lakes. Differences between modeled and reference depths are used in a minimization model to obtain parameters for the water-reflectance model, yielding optimized lake depth estimates. Our key contribution is the development of a Monte Carlo simulation to run the water-reflectance model, which allows us to quantify the uncertainties in water depth and hence water volume. This robust statistical analysis provides better understanding of the sensitivity of the water-reflectance model to the choice of input parameters, which should contribute to the understanding of the influence of surface-derived melt-water on ice sheet dynamics. Sneed, W.A. and Hamilton, G.S., 2007: Evolution of melt pond volume on the surface of the Greenland Ice Sheet. Geophysical Research Letters, 34, 1-4.
Robust and accurate vectorization of line drawings.
Hilaire, Xavier; Tombre, Karl
2006-06-01
This paper presents a method for vectorizing the graphical parts of paper-based line drawings. The method consists of separating the input binary image into layers of homogeneous thickness, skeletonizing each layer, segmenting the skeleton by a method based on random sampling, and simplifying the result. The segmentation method is robust with a best bound of 50 percent noise reached for indefinitely long primitives. Accurate estimation of the recognized vector's parameters is enabled by explicitly computing their feasibility domains. Theoretical performance analysis and expression of the complexity of the segmentation method are derived. Experimental results and comparisons with other vectorization systems are also provided.
NASA Astrophysics Data System (ADS)
Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A. D.
2009-12-01
The FLUXNET database provides measurements of the net ecosystem exchange (NEE) of carbon across vegetation types and climate regions. To simplify the interpretation in terms of processes the net exchange is frequently split up into the two main components: gross primary production (GPP) and ecosystem respiration (Reco). A strong relation between these two fluxes related derived from eddy covariance data was found across temporal scales and is to be expected as variation in recent photosynthesis is known to be correlated with root respiration; plants use energy from photosynthesis to drive the metabolism. At long time scales, substrate availability (constrained by past productivity) limits the whole-ecosystem respiration. Previous studies exploring this relationship relied on GPP and Reco estimates derived from the same data, this may lead to spurious correlation that must not be interpreted ecologically. In this study we use two estimates derived from disjunct datasets, one based on daytime data, the other on nighttime data and explore the reliability and robustness of this relationship. We find distinct relationship between the two, varying between vegetation types but also across temporal and spatial scales. We also infer that spatial and temporal variability of net ecosystem exchange is driven by GPP in many cases. Exceptions to this rule include for example disturbed sites. We advocate that for model calibration and evaluation not only the fluxes itself but also robust patterns between fluxes that can be extracted from the database, for instance between the flux components, should be considered.
Honti, Mark; Fenner, Kathrin
2015-05-19
The OECD guideline 308 describes a laboratory test method to assess aerobic and anaerobic transformation of organic chemicals in aquatic sediment systems and is an integral part of tiered testing strategies in different legislative frameworks for the environmental risk assessment of chemicals. The results from experiments carried out according to OECD 308 are generally used to derive persistence indicators for hazard assessment or half-lives for exposure assessment. We used Bayesian parameter estimation and system representations of various complexities to systematically assess opportunities and limitations for estimating these indicators from existing data generated according to OECD 308 for 23 pesticides and pharmaceuticals. We found that there is a disparity between the uncertainty and the conceptual robustness of persistence indicators. Disappearance half-lives are directly extractable with limited uncertainty, but they lump degradation and phase transfer information and are not robust against changes in system geometry. Transformation half-lives are less system-specific but require inverse modeling to extract, resulting in considerable uncertainty. Available data were thus insufficient to derive indicators that had both acceptable robustness and uncertainty, which further supports previously voiced concerns about the usability and efficiency of these costly experiments. Despite the limitations of existing data, we suggest the time until 50% of the parent compound has been transformed in the entire system (DegT(50,system)) could still be a useful indicator of persistence in the upper, partially aerobic sediment layer in the context of PBT assessment. This should, however, be accompanied by a mandatory reporting or full standardization of the geometry of the experimental system. We recommend transformation half-lives determined by inverse modeling to be used as input parameters into fate models for exposure assessment, if due consideration is given to their uncertainty.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2015-05-15
The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bu, Xiangwei; Wu, Xiaoyan; Huang, Jiaqi; Wei, Daozhi
2016-11-01
This paper investigates the design of a novel estimation-free prescribed performance non-affine control strategy for the longitudinal dynamics of an air-breathing hypersonic vehicle (AHV) via back-stepping. The proposed control scheme is capable of guaranteeing tracking errors of velocity, altitude, flight-path angle, pitch angle and pitch rate with prescribed performance. By prescribed performance, we mean that the tracking error is limited to a predefined arbitrarily small residual set, with convergence rate no less than a certain constant, exhibiting maximum overshoot less than a given value. Unlike traditional back-stepping designs, there is no need of an affine model in this paper. Moreover, both the tedious analytic and numerical computations of time derivatives of virtual control laws are completely avoided. In contrast to estimation-based strategies, the presented estimation-free controller possesses much lower computational costs, while successfully eliminating the potential problem of parameter drifting. Owing to its independence on an accurate AHV model, the studied methodology exhibits excellent robustness against system uncertainties. Finally, simulation results from a fully nonlinear model clarify and verify the design.
Zheng, Wenjing; van der Laan, Mark
2017-01-01
In this paper, we study the effect of a time-varying exposure mediated by a time-varying intermediate variable. We consider general longitudinal settings, including survival outcomes. At a given time point, the exposure and mediator of interest are influenced by past covariates, mediators and exposures, and affect future covariates, mediators and exposures. Right censoring, if present, occurs in response to past history. To address the challenges in mediation analysis that are unique to these settings, we propose a formulation in terms of random interventions based on conditional distributions for the mediator. This formulation, in particular, allows for well-defined natural direct and indirect effects in the survival setting, and natural decomposition of the standard total effect. Upon establishing identifiability and the corresponding statistical estimands, we derive the efficient influence curves and establish their robustness properties. Applying Targeted Maximum Likelihood Estimation, we use these efficient influence curves to construct multiply robust and efficient estimators. We also present an inverse probability weighted estimator and a nested non-targeted substitution estimator for these parameters. PMID:29387520
Optimal designs based on the maximum quasi-likelihood estimator
Shen, Gang; Hyun, Seung Won; Wong, Weng Kee
2016-01-01
We use optimal design theory and construct locally optimal designs based on the maximum quasi-likelihood estimator (MqLE), which is derived under less stringent conditions than those required for the MLE method. We show that the proposed locally optimal designs are asymptotically as efficient as those based on the MLE when the error distribution is from an exponential family, and they perform just as well or better than optimal designs based on any other asymptotically linear unbiased estimators such as the least square estimator (LSE). In addition, we show current algorithms for finding optimal designs can be directly used to find optimal designs based on the MqLE. As an illustrative application, we construct a variety of locally optimal designs based on the MqLE for the 4-parameter logistic (4PL) model and study their robustness properties to misspecifications in the model using asymptotic relative efficiency. The results suggest that optimal designs based on the MqLE can be easily generated and they are quite robust to mis-specification in the probability distribution of the responses. PMID:28163359
Zhou, Zhanmin; Zhang, Bao; Mao, Dapeng
2018-01-01
Torque ripples caused by cogging torque, flux harmonics, and current measurement error seriously restrict the application of a permanent magnet synchronous motor (PMSM), which has been paid more and more attention for the use in inertial stabilized platforms. Sliding mode control (SMC), in parallel with the classical proportional integral (PI) controller, has a high advantage to suppress the torque ripples as its invariance to disturbances. However, since the high switching gain tends to cause chattering and it requires derivative of signals which is not readily obtainable without an acceleration signal sensor. Therefore, this paper proposes a robust SMC scheme based on a rapid nonlinear tracking differentiator (NTD) and a disturbance observer (DOB) to further improve the performance of the SMC. The NTD is employed to providing the derivative of the signal, and the DOB is utilized to estimate the system lumped disturbances, including parameter variations and external disturbances. On the one hand, DOB can compensate the robust SMC speed controller, it can reduce the chattering of SMC on the other hand. Experiments were carried out on an ARM and DSP-based platform. The obtained experimental results demonstrate that the robust SMC scheme has an improved performance with inertia stability and it exhibits a satisfactory anti-disturbance performance compared to the traditional methods. PMID:29596387
Zhou, Zhanmin; Zhang, Bao; Mao, Dapeng
2018-03-29
Torque ripples caused by cogging torque, flux harmonics, and current measurement error seriously restrict the application of a permanent magnet synchronous motor (PMSM), which has been paid more and more attention for the use in inertial stabilized platforms. Sliding mode control (SMC), in parallel with the classical proportional integral (PI) controller, has a high advantage to suppress the torque ripples as its invariance to disturbances. However, since the high switching gain tends to cause chattering and it requires derivative of signals which is not readily obtainable without an acceleration signal sensor. Therefore, this paper proposes a robust SMC scheme based on a rapid nonlinear tracking differentiator (NTD) and a disturbance observer (DOB) to further improve the performance of the SMC. The NTD is employed to providing the derivative of the signal, and the DOB is utilized to estimate the system lumped disturbances, including parameter variations and external disturbances. On the one hand, DOB can compensate the robust SMC speed controller, it can reduce the chattering of SMC on the other hand. Experiments were carried out on an ARM and DSP-based platform. The obtained experimental results demonstrate that the robust SMC scheme has an improved performance with inertia stability and it exhibits a satisfactory anti-disturbance performance compared to the traditional methods.
Deductive Derivation and Turing-Computerization of Semiparametric Efficient Estimation
Frangakis, Constantine E.; Qian, Tianchen; Wu, Zhenke; Diaz, Ivan
2015-01-01
Summary Researchers often seek robust inference for a parameter through semiparametric estimation. Efficient semiparametric estimation currently requires theoretical derivation of the efficient influence function (EIF), which can be a challenging and time-consuming task. If this task can be computerized, it can save dramatic human effort, which can be transferred, for example, to the design of new studies. Although the EIF is, in principle, a derivative, simple numerical differentiation to calculate the EIF by a computer masks the EIF’s functional dependence on the parameter of interest. For this reason, the standard approach to obtaining the EIF relies on the theoretical construction of the space of scores under all possible parametric submodels. This process currently depends on the correctness of conjectures about these spaces, and the correct verification of such conjectures. The correct guessing of such conjectures, though successful in some problems, is a nondeductive process, i.e., is not guaranteed to succeed (e.g., is not computerizable), and the verification of conjectures is generally susceptible to mistakes. We propose a method that can deductively produce semiparametric locally efficient estimators. The proposed method is computerizable, meaning that it does not need either conjecturing, or otherwise theoretically deriving the functional form of the EIF, and is guaranteed to produce the desired estimates even for complex parameters. The method is demonstrated through an example. PMID:26237182
Deductive derivation and turing-computerization of semiparametric efficient estimation.
Frangakis, Constantine E; Qian, Tianchen; Wu, Zhenke; Diaz, Ivan
2015-12-01
Researchers often seek robust inference for a parameter through semiparametric estimation. Efficient semiparametric estimation currently requires theoretical derivation of the efficient influence function (EIF), which can be a challenging and time-consuming task. If this task can be computerized, it can save dramatic human effort, which can be transferred, for example, to the design of new studies. Although the EIF is, in principle, a derivative, simple numerical differentiation to calculate the EIF by a computer masks the EIF's functional dependence on the parameter of interest. For this reason, the standard approach to obtaining the EIF relies on the theoretical construction of the space of scores under all possible parametric submodels. This process currently depends on the correctness of conjectures about these spaces, and the correct verification of such conjectures. The correct guessing of such conjectures, though successful in some problems, is a nondeductive process, i.e., is not guaranteed to succeed (e.g., is not computerizable), and the verification of conjectures is generally susceptible to mistakes. We propose a method that can deductively produce semiparametric locally efficient estimators. The proposed method is computerizable, meaning that it does not need either conjecturing, or otherwise theoretically deriving the functional form of the EIF, and is guaranteed to produce the desired estimates even for complex parameters. The method is demonstrated through an example. © 2015, The International Biometric Society.
Lee, Chris P; Chertow, Glenn M; Zenios, Stefanos A
2006-01-01
Patients with end-stage renal disease (ESRD) require dialysis to maintain survival. The optimal timing of dialysis initiation in terms of cost-effectiveness has not been established. We developed a simulation model of individuals progressing towards ESRD and requiring dialysis. It can be used to analyze dialysis strategies and scenarios. It was embedded in an optimization frame worked to derive improved strategies. Actual (historical) and simulated survival curves and hospitalization rates were virtually indistinguishable. The model overestimated transplantation costs (10%) but it was related to confounding by Medicare coverage. To assess the model's robustness, we examined several dialysis strategies while input parameters were perturbed. Under all 38 scenarios, relative rankings remained unchanged. An improved policy for a hypothetical patient was derived using an optimization algorithm. The model produces reliable results and is robust. It enables the cost-effectiveness analysis of dialysis strategies.
A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan
A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopesmore » of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.« less
Stochastic Integration H∞ Filter for Rapid Transfer Alignment of INS.
Zhou, Dapeng; Guo, Lei
2017-11-18
The performance of an inertial navigation system (INS) operated on a moving base greatly depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of large initial attitude errors and uncertain observation noise statistics poses a great challenge for the estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear filter, namely the stochastic integration H ∞ filter (SIH ∞ F) for improving both the accuracy and robustness of RTA. In this new nonlinear H ∞ filter, the stochastic spherical-radial integration rule is incorporated with the framework of the derivative-free H ∞ filter for the first time, and the resulting SIH ∞ F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity and large uncertainty. Comparisons between the SIH ∞ F and previously well-known methodologies are carried out by means of numerical simulation and a van test. The results demonstrate that the newly-proposed method outperforms the cubature H ∞ filter. Moreover, the SIH ∞ F inherits the benefit of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.
Two-dimensional phase unwrapping using robust derivative estimation and adaptive integration.
Strand, Jarle; Taxt, Torfinn
2002-01-01
The adaptive integration (ADI) method for two-dimensional (2-D) phase unwrapping is presented. The method uses an algorithm for noise robust estimation of partial derivatives, followed by a noise robust adaptive integration process. The ADI method can easily unwrap phase images with moderate noise levels, and the resulting images are congruent modulo 2pi with the observed, wrapped, input images. In a quantitative evaluation, both the ADI and the BLS methods (Strand et al.) were better than the least-squares methods of Ghiglia and Romero (GR), and of Marroquin and Rivera (MRM). In a qualitative evaluation, the ADI, the BLS, and a conjugate gradient version of the MRM method (MRMCG), were all compared using a synthetic image with shear, using 115 magnetic resonance images, and using 22 fiber-optic interferometry images. For the synthetic image and the interferometry images, the ADI method gave consistently visually better results than the other methods. For the MR images, the MRMCG method was best, and the ADI method second best. The ADI method was less sensitive to the mask definition and the block size than the BLS method, and successfully unwrapped images with shears that were not marked in the masks. The computational requirements of the ADI method for images of nonrectangular objects were comparable to only two iterations of many least-squares-based methods (e.g., GR). We believe the ADI method provides a powerful addition to the ensemble of tools available for 2-D phase unwrapping.
NASA Technical Reports Server (NTRS)
Baxa, Ernest G., Jr.; Lee, Jonggil
1991-01-01
The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.
Transfer Alignment Error Compensator Design Based on Robust State Estimation
NASA Astrophysics Data System (ADS)
Lyou, Joon; Lim, You-Chol
This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.
Deriving Leaf Area Index (LAI) from multiple lidar remote sensing systems
NASA Astrophysics Data System (ADS)
Tang, H.; Dubayah, R.; Zhao, F.
2012-12-01
LAI is an important biophysical variable linking biogeochemical cycles of earth systems. Observations with passive optical remote sensing are plagued by saturation and results from different passive and active sensors are often inconsistent. Recently lidar remote sensing has been applied to derive vertical canopy structure including LAI and its vertical profile. In this research we compare LAI retrievals from three different types of lidar sensors. The study areas include the La Selva Biological Station in Costa Rica and Sierra Nevada Forest in California. We first obtain independent LAI estimates from different lidar systems including airborne lidar (LVIS), spaceborne lidar (GLAS) and ground lidar (Echidna). LAI retrievals are then evaluated between sensors as a function of scale, land cover type and sensor characteristics. We also assess the accuracy of these LAI products against ground measurements. By providing a link between ground observations, ground lidar, aircraft and space-based lidar we hope to demonstrate a path for deriving more accurate estimates of LAI on a global basis, and to provide a more robust means of validating passive optical estimates of this important variable.
Lamont, Margaret M.; Fujisaki, Ikuko; Carthy, Raymond R.
2014-01-01
Because subpopulations can differ geographically, genetically and/or phenotypically, using data from one subpopulation to derive vital rates for another, while often unavoidable, is not optimal. We used a two-state open robust design model to analyze a 14-year dataset (1998–2011) from the St. Joseph Peninsula, Florida (USA; 29.748°, −85.400°) which is the densest loggerhead (Caretta caretta) nesting beach in the Northern Gulf of Mexico subpopulation. For these analyses, 433 individuals were marked of which only 7.2 % were observed re-nesting in the study area in subsequent years during the study period. Survival was estimated at 0.86 and is among the highest estimates for all subpopulations in the Northwest Atlantic population. The robust model estimated a nesting assemblage size that ranged from 32 to 230 individuals each year with an annual average of 110. The model estimates indicated an overall population decline of 17 %. The results presented here for this nesting group represent the first estimates for this subpopulation. These data provide managers with information specific to this subpopulation that can be used to develop recovery plans and conduct subpopulation-specific modeling exercises explicit to the challenges faced by turtles nesting in this region.
Incorporation of MRI-AIF Information For Improved Kinetic Modelling of Dynamic PET Data
NASA Astrophysics Data System (ADS)
Sari, Hasan; Erlandsson, Kjell; Thielemans, Kris; Atkinson, David; Ourselin, Sebastien; Arridge, Simon; Hutton, Brian F.
2015-06-01
In the analysis of dynamic PET data, compartmental kinetic analysis methods require an accurate knowledge of the arterial input function (AIF). Although arterial blood sampling is the gold standard of the methods used to measure the AIF, it is usually not preferred as it is an invasive method. An alternative method is the simultaneous estimation method (SIME), where physiological parameters and the AIF are estimated together, using information from different anatomical regions. Due to the large number of parameters to estimate in its optimisation, SIME is a computationally complex method and may sometimes fail to give accurate estimates. In this work, we try to improve SIME by utilising an input function derived from a simultaneously obtained DSC-MRI scan. With the assumption that the true value of one of the six parameter PET-AIF model can be derived from an MRI-AIF, the method is tested using simulated data. The results indicate that SIME can yield more robust results when the MRI information is included with a significant reduction in absolute bias of Ki estimates.
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Vermeulen, Karel; Vansteelandt, Stijn
2016-05-01
Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.
Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai
2015-07-01
The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.
NASA Astrophysics Data System (ADS)
Vandergoes, Marcus J.; Howarth, Jamie D.; Dunbar, Gavin B.; Turnbull, Jocelyn C.; Roop, Heidi A.; Levy, Richard H.; Li, Xun; Prior, Christine; Norris, Margaret; Keller, Liz D.; Baisden, W. Troy; Ditchburn, Robert; Fitzsimons, Sean J.; Bronk Ramsey, Christopher
2018-05-01
Annually resolved (varved) lake sequences are important palaeoenvironmental archives as they offer a direct incremental dating technique for high-frequency reconstruction of environmental and climate change. Despite the importance of these records, establishing a robust chronology and quantifying its precision and accuracy (estimations of error) remains an essential but challenging component of their development. We outline an approach for building reliable independent chronologies, testing the accuracy of layer counts and integrating all chronological uncertainties to provide quantitative age and error estimates for varved lake sequences. The approach incorporates (1) layer counts and estimates of counting precision; (2) radiometric and biostratigrapic dating techniques to derive independent chronology; and (3) the application of Bayesian age modelling to produce an integrated age model. This approach is applied to a case study of an annually resolved sediment record from Lake Ohau, New Zealand. The most robust age model provides an average error of 72 years across the whole depth range. This represents a fractional uncertainty of ∼5%, higher than the <3% quoted for most published varve records. However, the age model and reported uncertainty represent the best fit between layer counts and independent chronology and the uncertainties account for both layer counting precision and the chronological accuracy of the layer counts. This integrated approach provides a more representative estimate of age uncertainty and therefore represents a statistically more robust chronology.
Re-assessment of the mass balance of the Abbot and Getz sectors of West Antarctica
NASA Astrophysics Data System (ADS)
Chuter, S.; Bamber, J. L.
2016-12-01
Large discrepancies exist in mass balance estimates for the Getz and Abbot drainage basins, primarily due to previous poor knowledge of ice thickness at the grounding line, poor coverage by previous altimetry missions and signal leakage issues for GRACE. Large errors arise when using ice thickness measurements derived from ERS-1 and/or ICESat altimetry data due to poor track spacing, `loss of lock' issues near the grounding line and the complex morphology of these shelves, requiring fine resolution to derive robust and accurate elevations close to the grounding line. However, the advent of CryoSat-2 with its unique orbit and SARIn mode of operation has overcome these issues and enabled the determination of ice shelf thickness at a much higher accuracy than possible from previous satellites, particularly within the grounding zone. Here we present a contemporary estimate of ice sheet mass balance for the both the Getz and Abbot drainage basins. This is achieved through the use of contemporary velocity data derived from Landsat feature tracking and the use of CryoSat-2 derived ice thickness measurements. Additionally, we use this new ice thickness dataset to reassess mass balance estimates from 2008/2009, where there were large disparities between results from radar altimetry and Input-Output methodologies over the Abbot region in particular. These contemporary results are compared with other present day estimates from gravimetry and altimetry elevation changes.
Influence function based variance estimation and missing data issues in case-cohort studies.
Mark, S D; Katki, H
2001-12-01
Recognizing that the efficiency in relative risk estimation for the Cox proportional hazards model is largely constrained by the total number of cases, Prentice (1986) proposed the case-cohort design in which covariates are measured on all cases and on a random sample of the cohort. Subsequent to Prentice, other methods of estimation and sampling have been proposed for these designs. We formalize an approach to variance estimation suggested by Barlow (1994), and derive a robust variance estimator based on the influence function. We consider the applicability of the variance estimator to all the proposed case-cohort estimators, and derive the influence function when known sampling probabilities in the estimators are replaced by observed sampling fractions. We discuss the modifications required when cases are missing covariate information. The missingness may occur by chance, and be completely at random; or may occur as part of the sampling design, and depend upon other observed covariates. We provide an adaptation of S-plus code that allows estimating influence function variances in the presence of such missing covariates. Using examples from our current case-cohort studies on esophageal and gastric cancer, we illustrate how our results our useful in solving design and analytic issues that arise in practice.
Robust Magnetotelluric Impedance Estimation
NASA Astrophysics Data System (ADS)
Sutarno, D.
2010-12-01
Robust magnetotelluric (MT) response function estimators are now in standard use by the induction community. Properly devised and applied, these have ability to reduce the influence of unusual data (outliers). The estimators always yield impedance estimates which are better than the conventional least square (LS) estimation because the `real' MT data almost never satisfy the statistical assumptions of Gaussian distribution and stationary upon which normal spectral analysis is based. This paper discuses the development and application of robust estimation procedures which can be classified as M-estimators to MT data. Starting with the description of the estimators, special attention is addressed to the recent development of a bounded-influence robust estimation, including utilization of the Hilbert Transform (HT) operation on causal MT impedance functions. The resulting robust performances are illustrated using synthetic as well as real MT data.
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
NASA Astrophysics Data System (ADS)
Vollant, A.; Balarac, G.; Corre, C.
2017-09-01
New procedures are explored for the development of models in the context of large eddy simulation (LES) of a passive scalar. They rely on the combination of the optimal estimator theory with machine-learning algorithms. The concept of optimal estimator allows to identify the most accurate set of parameters to be used when deriving a model. The model itself can then be defined by training an artificial neural network (ANN) on a database derived from the filtering of direct numerical simulation (DNS) results. This procedure leads to a subgrid scale model displaying good structural performance, which allows to perform LESs very close to the filtered DNS results. However, this first procedure does not control the functional performance so that the model can fail when the flow configuration differs from the training database. Another procedure is then proposed, where the model functional form is imposed and the ANN used only to define the model coefficients. The training step is a bi-objective optimisation in order to control both structural and functional performances. The model derived from this second procedure proves to be more robust. It also provides stable LESs for a turbulent plane jet flow configuration very far from the training database but over-estimates the mixing process in that case.
NASA Astrophysics Data System (ADS)
Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas
2018-04-01
Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.
NASA Astrophysics Data System (ADS)
Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.
2011-12-01
Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.
Progress in navigation filter estimate fusion and its application to spacecraft rendezvous
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
1994-01-01
A new derivation of an algorithm which fuses the outputs of two Kalman filters is presented within the context of previous research in this field. Unlike other works, this derivation clearly shows the combination of estimates to be optimal, minimizing the trace of the fused covariance matrix. The algorithm assumes that the filters use identical models, and are stable and operating optimally with respect to their own local measurements. Evidence is presented which indicates that the error ellipsoid derived from the covariance of the optimally fused estimate is contained within the intersections of the error ellipsoids of the two filters being fused. Modifications which reduce the algorithm's data transmission requirements are also presented, including a scalar gain approximation, a cross-covariance update formula which employs only the two contributing filters' autocovariances, and a form of the algorithm which can be used to reinitialize the two Kalman filters. A sufficient condition for using the optimally fused estimates to periodically reinitialize the Kalman filters in this fashion is presented and proved as a theorem. When these results are applied to an optimal spacecraft rendezvous problem, simulated performance results indicate that the use of optimally fused data leads to significantly improved robustness to initial target vehicle state errors. The following applications of estimate fusion methods to spacecraft rendezvous are also described: state vector differencing, and redundancy management.
On the contributions of topological features to transcriptional regulatory network robustness
2012-01-01
Background Because biological networks exhibit a high-degree of robustness, a systemic understanding of their architecture and function requires an appraisal of the network design principles that confer robustness. In this project, we conduct a computational study of the contribution of three degree-based topological properties (transcription factor-target ratio, degree distribution, cross-talk suppression) and their combinations on the robustness of transcriptional regulatory networks. We seek to quantify the relative degree of robustness conferred by each property (and combination) and also to determine the extent to which these properties alone can explain the robustness observed in transcriptional networks. Results To study individual properties and their combinations, we generated synthetic, random networks that retained one or more of the three properties with values derived from either the yeast or E. coli gene regulatory networks. Robustness of these networks were estimated through simulation. Our results indicate that the combination of the three properties we considered explains the majority of the structural robustness observed in the real transcriptional networks. Surprisingly, scale-free degree distribution is, overall, a minor contributor to robustness. Instead, most robustness is gained through topological features that limit the complexity of the overall network and increase the transcription factor subnetwork sparsity. Conclusions Our work demonstrates that (i) different types of robustness are implemented by different topological aspects of the network and (ii) size and sparsity of the transcription factor subnetwork play an important role for robustness induction. Our results are conserved across yeast and E Coli, which suggests that the design principles examined are present within an array of living systems. PMID:23194062
M-estimator for the 3D symmetric Helmert coordinate transformation
NASA Astrophysics Data System (ADS)
Chang, Guobin; Xu, Tianhe; Wang, Qianxin
2018-01-01
The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.
NASA Astrophysics Data System (ADS)
Liffner, Joel W.; Hewa, Guna A.; Peel, Murray C.
2018-05-01
Derivation of the hypsometric curve of a catchment, and properties relating to that curve, requires both use of topographical data (commonly in the form of a Digital Elevation Model - DEM), and the estimation of a functional representation of that curve. An early investigation into catchment hypsometry concluded 3rd order polynomials sufficiently describe the hypsometric curve, without the consideration of higher order polynomials, or the sensitivity of hypsometric properties relating to the curve. Another study concluded the hypsometric integral (HI) is robust against changes in DEM resolution, a conclusion drawn from a very limited sample size. Conclusions from these earlier studies have resulted in the adoption of methods deemed to be "sufficient" in subsequent studies, in addition to assumptions that the robustness of the HI extends to other hypsometric properties. This study investigates and demonstrates the sensitivity of hypsometric properties to DEM resolution, DEM type and polynomial order through assessing differences in hypsometric properties derived from 417 catchments and sub-catchments within South Australia. The sensitivity of hypsometric properties across DEM types and polynomial orders is found to be significant, which suggests careful consideration of the methods chosen to derive catchment hypsometric information is required.
Li, Qiao; Mark, Roger G; Clifford, Gari D
2009-01-01
Background Within the intensive care unit (ICU), arterial blood pressure (ABP) is typically recorded at different (and sometimes uneven) sampling frequencies, and from different sensors, and is often corrupted by different artifacts and noise which are often non-Gaussian, nonlinear and nonstationary. Extracting robust parameters from such signals, and providing confidences in the estimates is therefore difficult and requires an adaptive filtering approach which accounts for artifact types. Methods Using a large ICU database, and over 6000 hours of simultaneously acquired electrocardiogram (ECG) and ABP waveforms sampled at 125 Hz from a 437 patient subset, we documented six general types of ABP artifact. We describe a new ABP signal quality index (SQI), based upon the combination of two previously reported signal quality measures weighted together. One index measures morphological normality, and the other degradation due to noise. After extracting a 6084-hour subset of clean data using our SQI, we evaluated a new robust tracking algorithm for estimating blood pressure and heart rate (HR) based upon a Kalman Filter (KF) with an update sequence modified by the KF innovation sequence and the value of the SQI. In order to do this, we have created six novel models of different categories of artifacts that we have identified in our ABP waveform data. These artifact models were then injected into clean ABP waveforms in a controlled manner. Clinical blood pressure (systolic, mean and diastolic) estimates were then made from the ABP waveforms for both clean and corrupted data. The mean absolute error for systolic, mean and diastolic blood pressure was then calculated for different levels of artifact pollution to provide estimates of expected errors given a single value of the SQI. Results Our artifact models demonstrate that artifact types have differing effects on systolic, diastolic and mean ABP estimates. We show that, for most artifact types, diastolic ABP estimates are less noise-sensitive than mean ABP estimates, which in turn are more robust than systolic ABP estimates. We also show that our SQI can provide error bounds for both HR and ABP estimates. Conclusion The KF/SQI-fusion method described in this article was shown to provide an accurate estimate of blood pressure and HR derived from the ABP waveform even in the presence of high levels of persistent noise and artifact, and during extreme bradycardia and tachycardia. Differences in error between artifact types, measurement sensors and the quality of the source signal can be factored into physiological estimation using an unbiased adaptive filter, signal innovation and signal quality measures. PMID:19586547
NASA Astrophysics Data System (ADS)
Lange, Benjamin A.; Katlein, Christian; Nicolaus, Marcel; Peeken, Ilka; Flores, Hauke
2016-12-01
Multiscale sea ice algae observations are fundamentally important for projecting changes to sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon previously established methodologies for deriving sea ice-algal chlorophyll a concentrations (chl a) from spectral radiation measurements, and applied these to larger-scale spectral surveys. We conducted four different under-ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and multi-NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance (N = 49) and radiance/transflectance (N = 50) measurements conducted during two cruises to the central Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robustness R2 and true prediction error estimates. For estimating the biomass of a large-scale data set, the EOF approach performed better than the NDI, due to its ability to account for the high variability of environmental properties experienced over large areas. Based on robustness and true prediction error, the three most reliable models, EOF-transmittance, EOF-transflectance, and NDI-transmittance, were applied to two remotely operated vehicle (ROV) and two Surface and Under-Ice Trawl (SUIT) spectral radiation surveys. In these larger-scale chl a estimates, EOF-transmittance showed the best fit to ice core chl a. Application of our most reliable model, EOF-transmittance, to an 85 m horizontal ROV transect revealed large differences compared to published biomass estimates from the same site with important implications for projections of Arctic-wide ice-algal biomass and primary production.
Robust estimation for partially linear models with large-dimensional covariates
Zhu, LiPing; Li, RunZe; Cui, HengJian
2014-01-01
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures. PMID:24955087
Robust estimation for partially linear models with large-dimensional covariates.
Zhu, LiPing; Li, RunZe; Cui, HengJian
2013-10-01
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon-cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of [Formula: see text], where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.
Acute toxicity prediction to threatened and endangered ...
Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA’s Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species. Reporting on the development and optimization of ICE models for listed species toxicity estimation
Willming, Morgan M; Lilavois, Crystal R; Barron, Mace G; Raimondo, Sandy
2016-10-04
Evaluating contaminant sensitivity of threatened and endangered (listed) species and protectiveness of chemical regulations often depends on toxicity data for commonly tested surrogate species. The U.S. EPA's Internet application Web-ICE is a suite of Interspecies Correlation Estimation (ICE) models that can extrapolate species sensitivity to listed taxa using least-squares regressions of the sensitivity of a surrogate species and a predicted taxon (species, genus, or family). Web-ICE was expanded with new models that can predict toxicity to over 250 listed species. A case study was used to assess protectiveness of genus and family model estimates derived from either geometric mean or minimum taxa toxicity values for listed species. Models developed from the most sensitive value for each chemical were generally protective of the most sensitive species within predicted taxa, including listed species, and were more protective than geometric means models. ICE model estimates were compared to HC5 values derived from Species Sensitivity Distributions for the case study chemicals to assess protectiveness of the two approaches. ICE models provide robust toxicity predictions and can generate protective toxicity estimates for assessing contaminant risk to listed species.
A weak Galerkin least-squares finite element method for div-curl systems
NASA Astrophysics Data System (ADS)
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
Robust time and frequency domain estimation methods in adaptive control
NASA Technical Reports Server (NTRS)
Lamaire, Richard Orville
1987-01-01
A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.
A robust adaptive observer for a class of singular nonlinear uncertain systems
NASA Astrophysics Data System (ADS)
Arefinia, Elaheh; Talebi, Heidar Ali; Doustmohammadi, Ali
2017-05-01
This paper proposes a robust adaptive observer for a class of singular nonlinear non-autonomous uncertain systems with unstructured unknown system and derivative matrices, and unknown bounded nonlinearities. Unlike many existing observers, no strong assumption such as Lipschitz condition is imposed on the recommended system. An augmented system is constructed, and the unknown bounds are calculated online using adaptive bounding technique. Considering the continuous nonlinear gain removes the chattering which may appear in practical applications such as analysis of electrical circuits and estimation of interaction force in beating heart robotic-assisted surgery. Moreover, a simple yet precise structure is attained which is easy to implement in many systems with significant uncertainties. The existence conditions of the standard form observer are obtained in terms of linear matrix inequality and the constrained generalised Sylvester's equations, and global stability is ensured. Finally, simulation results are obtained to evaluate the performance of the proposed estimator and demonstrate the effectiveness of the developed scheme.
Fundamental Properties of Co-moving Stars Observed by Gaia
NASA Astrophysics Data System (ADS)
Bochanski, John J.; Faherty, Jacqueline K.; Gagné, Jonathan; Nelson, Olivia; Coker, Kristina; Smithka, Iliya; Desir, Deion; Vasquez, Chelsea
2018-04-01
We have estimated fundamental parameters for a sample of co-moving stars observed by Gaia and identified by Oh et al. We matched the Gaia observations to the 2MASS and Wide-Field Infrared Survey Explorer catalogs and fit MIST isochrones to the data, deriving estimates of the mass, radius, [Fe/H], age, distance, and extinction to 9754 stars in the original sample of 10606 stars. We verify these estimates by comparing our new results to previous analyses of nearby stars, examining fiducial cluster properties, and estimating the power-law slope of the local present-day mass function. A comparison to previous studies suggests that our mass estimates are robust, while metallicity and age estimates are increasingly uncertain. We use our calculated masses to examine the properties of binaries in the sample and show that separation of the pairs dominates the observed binding energies and expected lifetimes.
Doubly robust nonparametric inference on the average treatment effect.
Benkeser, D; Carone, M; Laan, M J Van Der; Gilbert, P B
2017-12-01
Doubly robust estimators are widely used to draw inference about the average effect of a treatment. Such estimators are consistent for the effect of interest if either one of two nuisance parameters is consistently estimated. However, if flexible, data-adaptive estimators of these nuisance parameters are used, double robustness does not readily extend to inference. We present a general theoretical study of the behaviour of doubly robust estimators of an average treatment effect when one of the nuisance parameters is inconsistently estimated. We contrast different methods for constructing such estimators and investigate the extent to which they may be modified to also allow doubly robust inference. We find that while targeted minimum loss-based estimation can be used to solve this problem very naturally, common alternative frameworks appear to be inappropriate for this purpose. We provide a theoretical study and a numerical evaluation of the alternatives considered. Our simulations highlight the need for and usefulness of these approaches in practice, while our theoretical developments have broad implications for the construction of estimators that permit doubly robust inference in other problems.
Robust reinforcement learning.
Morimoto, Jun; Doya, Kenji
2005-02-01
This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, Andreas; Künsch, Hans Rudolf; Schwierz, Cornelia; Stahel, Werner A.
2013-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outliers affect the modelling of the large-scale spatial trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation (Welsh and Richardson, 1997). Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and non-sampled locations and kriging variances. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis a data set on heavy metal contamination of the soil in the vicinity of a metal smelter. Marchant, B.P. and Lark, R.M. 2007. Robust estimation of the variogram by residual maximum likelihood. Geoderma 140: 62-72. Richardson, A.M. and Welsh, A.H. 1995. Robust restricted maximum likelihood in mixed linear models. Biometrics 51: 1429-1439. Welsh, A.H. and Richardson, A.M. 1997. Approaches to the robust estimation of mixed models. In: Handbook of Statistics Vol. 15, Elsevier, pp. 343-384.
Measuring coral reef decline through meta-analyses
Côté, I.M; Gill, J.A; Gardner, T.A; Watkinson, A.R
2005-01-01
Coral reef ecosystems are in decline worldwide, owing to a variety of anthropogenic and natural causes. One of the most obvious signals of reef degradation is a reduction in live coral cover. Past and current rates of loss of coral are known for many individual reefs; however, until recently, no large-scale estimate was available. In this paper, we show how meta-analysis can be used to integrate existing small-scale estimates of change in coral and macroalgal cover, derived from in situ surveys of reefs, to generate a robust assessment of long-term patterns of large-scale ecological change. Using a large dataset from Caribbean reefs, we examine the possible biases inherent in meta-analytical studies and the sensitivity of the method to patchiness in data availability. Despite the fact that our meta-analysis included studies that used a variety of sampling methods, the regional estimate of change in coral cover we obtained is similar to that generated by a standardized survey programme that was implemented in 1991 in the Caribbean. We argue that for habitat types that are regularly and reasonably well surveyed in the course of ecological or conservation research, meta-analysis offers a cost-effective and rapid method for generating robust estimates of past and current states. PMID:15814352
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Harbater, Osnat; Gannot, Israel
2014-07-01
The diffusion approximation is useful for many optical diagnostics modalities, such as near-infrared spectroscopy. However, the simple normal incidence, semi-infinite layer model may prove lacking in estimation of deep-tissue optical properties such as required for monitoring cerebral hemodynamics, especially in neonates. To answer this need, we present an analytical multilayered, oblique incidence diffusion model. Initially, the model equations are derived in vector-matrix form to facilitate fast and simple computation. Then, the spatiotemporal reflectance predicted by the model for a complex neonate head is compared with time-resolved Monte Carlo (TRMC) simulations under a wide range of physiologically feasible parameters. The high accuracy of the multilayer model is demonstrated in that the deviation from TRMC simulations is only a few percent even under the toughest conditions. We then turn to solve the inverse problem and estimate the oxygen saturation of deep brain tissues based on the temporal and spatial behaviors of the reflectance. Results indicate that temporal features of the reflectance are more sensitive to deep-layer optical parameters. The accuracy of estimation is shown to be more accurate and robust than the commonly used single-layer diffusion model. Finally, the limitations of such approaches are discussed thoroughly.
Fitting a function to time-dependent ensemble averaged data.
Fogelmark, Karl; Lomholt, Michael A; Irbäck, Anders; Ambjörnsson, Tobias
2018-05-03
Time-dependent ensemble averages, i.e., trajectory-based averages of some observable, are of importance in many fields of science. A crucial objective when interpreting such data is to fit these averages (for instance, squared displacements) with a function and extract parameters (such as diffusion constants). A commonly overlooked challenge in such function fitting procedures is that fluctuations around mean values, by construction, exhibit temporal correlations. We show that the only available general purpose function fitting methods, correlated chi-square method and the weighted least squares method (which neglects correlation), fail at either robust parameter estimation or accurate error estimation. We remedy this by deriving a new closed-form error estimation formula for weighted least square fitting. The new formula uses the full covariance matrix, i.e., rigorously includes temporal correlations, but is free of the robustness issues, inherent to the correlated chi-square method. We demonstrate its accuracy in four examples of importance in many fields: Brownian motion, damped harmonic oscillation, fractional Brownian motion and continuous time random walks. We also successfully apply our method, weighted least squares including correlation in error estimation (WLS-ICE), to particle tracking data. The WLS-ICE method is applicable to arbitrary fit functions, and we provide a publically available WLS-ICE software.
Schwacke, Lori H; Hall, Ailsa J; Townsend, Forrest I; Wells, Randall S; Hansen, Larry J; Hohn, Aleta A; Bossart, Gregory D; Fair, Patricia A; Rowles, Teresa K
2009-08-01
To develop robust reference intervals for hematologic and serum biochemical variables by use of data derived from free-ranging bottlenose dolphins (Tursiops truncatus) and examine potential variation in distributions of clinicopathologic values related to sampling sites' geographic locations. 255 free-ranging bottlenose dolphins. Data from samples collected during multiple bottlenose dolphin capture-release projects conducted at 4 southeastern US coastal locations in 2000 through 2006 were combined to determine reference intervals for 52 clinicopathologic variables. A nonparametric bootstrap approach was applied to estimate 95th percentiles and associated 90% confidence intervals; the need for partitioning by length and sex classes was determined by testing for differences in estimated thresholds with a bootstrap method. When appropriate, quantile regression was used to determine continuous functions for 95th percentiles dependent on length. The proportion of out-of-range samples for all clinicopathologic measurements was examined for each geographic site, and multivariate ANOVA was applied to further explore variation in leukocyte subgroups. A need for partitioning by length and sex classes was indicated for many clinicopathologic variables. For each geographic site, few significant deviations from expected number of out-of-range samples were detected. Although mean leukocyte counts did not vary among sites, differences in the mean counts for leukocyte subgroups were identified. Although differences in the centrality of distributions for some variables were detected, the 95th percentiles estimated from the pooled data were robust and applicable across geographic sites. The derived reference intervals provide critical information for conducting bottlenose dolphin population health studies.
Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.
2002-01-01
An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Tanner-Smith, Emily E; Tipton, Elizabeth
2014-03-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and spss (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding the practical application and implementation of those macros. This paper provides a brief tutorial on the implementation of the Stata and spss macros and discusses practical issues meta-analysts should consider when estimating meta-regression models with robust variance estimates. Two example databases are used in the tutorial to illustrate the use of meta-analysis with robust variance estimates. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kargoll, Boris; Omidalizarandi, Mohammad; Loth, Ina; Paffenholz, Jens-André; Alkhatib, Hamza
2018-03-01
In this paper, we investigate a linear regression time series model of possibly outlier-afflicted observations and autocorrelated random deviations. This colored noise is represented by a covariance-stationary autoregressive (AR) process, in which the independent error components follow a scaled (Student's) t-distribution. This error model allows for the stochastic modeling of multiple outliers and for an adaptive robust maximum likelihood (ML) estimation of the unknown regression and AR coefficients, the scale parameter, and the degree of freedom of the t-distribution. This approach is meant to be an extension of known estimators, which tend to focus only on the regression model, or on the AR error model, or on normally distributed errors. For the purpose of ML estimation, we derive an expectation conditional maximization either algorithm, which leads to an easy-to-implement version of iteratively reweighted least squares. The estimation performance of the algorithm is evaluated via Monte Carlo simulations for a Fourier as well as a spline model in connection with AR colored noise models of different orders and with three different sampling distributions generating the white noise components. We apply the algorithm to a vibration dataset recorded by a high-accuracy, single-axis accelerometer, focusing on the evaluation of the estimated AR colored noise model.
Robust k-mer frequency estimation using gapped k-mers
Ghandi, Mahmoud; Mohammad-Noori, Morteza
2013-01-01
Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome. PMID:23861010
Robust k-mer frequency estimation using gapped k-mers.
Ghandi, Mahmoud; Mohammad-Noori, Morteza; Beer, Michael A
2014-08-01
Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome.
Uncertainty Estimation in Tsunami Initial Condition From Rapid Bayesian Finite Fault Modeling
NASA Astrophysics Data System (ADS)
Benavente, R. F.; Dettmer, J.; Cummins, P. R.; Urrutia, A.; Cienfuegos, R.
2017-12-01
It is well known that kinematic rupture models for a given earthquake can present discrepancies even when similar datasets are employed in the inversion process. While quantifying this variability can be critical when making early estimates of the earthquake and triggered tsunami impact, "most likely models" are normally used for this purpose. In this work, we quantify the uncertainty of the tsunami initial condition for the great Illapel earthquake (Mw = 8.3, 2015, Chile). We focus on utilizing data and inversion methods that are suitable to rapid source characterization yet provide meaningful and robust results. Rupture models from teleseismic body and surface waves as well as W-phase are derived and accompanied by Bayesian uncertainty estimates from linearized inversion under positivity constraints. We show that robust and consistent features about the rupture kinematics appear when working within this probabilistic framework. Moreover, by using static dislocation theory, we translate the probabilistic slip distributions into seafloor deformation which we interpret as a tsunami initial condition. After considering uncertainty, our probabilistic seafloor deformation models obtained from different data types appear consistent with each other providing meaningful results. We also show that selecting just a single "representative" solution from the ensemble of initial conditions for tsunami propagation may lead to overestimating information content in the data. Our results suggest that rapid, probabilistic rupture models can play a significant role during emergency response by providing robust information about the extent of the disaster.
Estimating Eulerian spectra from pairs of drifters
NASA Astrophysics Data System (ADS)
LaCasce, Joe
2017-04-01
GPS-tracked surface drifters offer the possibility of sampling energetic variations at the ocean surface on scales of only 10s of meters, much less than that resolved by satellite. Here we investigate whether velocity differences between pairs of drifters can be used to estimate kinetic energy spectra. Theoretical relations between the spectrum and the second-order longitudinal structure function for 2D non-divergent flow are derived. The structure function is a natural statistic for particle pairs and is easily calculated. However it integrates contributions across wavenumber, and this tends to obscure the spectral dependencies when turbulent inertial ranges are of finite extent. Nevertheless, the transform from spectrum to structure function is robust, as illustrated with Eulerian data collected from aircraft. The inverse transform, from structure function to spectrum, is much less robust, yielding poor results in particular at large wavenumbers. This occurs because the transform involves a filter function which magnifies contributions from large pair separations, which tend to be noisy. Fitting the structure function to a polynomial improves the spectral estimate, but not sufficiently to distinguish correct inertial range dependencies. Thus with Lagrangian data, it is appears preferable to focus on structure functions, despite their shortcomings.
NASA Astrophysics Data System (ADS)
Davis, Tyler W.; Prentice, I. Colin; Stocker, Benjamin D.; Thomas, Rebecca T.; Whitley, Rhys J.; Wang, Han; Evans, Bradley J.; Gallego-Sala, Angela V.; Sykes, Martin T.; Cramer, Wolfgang
2017-02-01
Bioclimatic indices for use in studies of ecosystem function, species distribution, and vegetation dynamics under changing climate scenarios depend on estimates of surface fluxes and other quantities, such as radiation, evapotranspiration and soil moisture, for which direct observations are sparse. These quantities can be derived indirectly from meteorological variables, such as near-surface air temperature, precipitation and cloudiness. Here we present a consolidated set of simple process-led algorithms for simulating habitats (SPLASH) allowing robust approximations of key quantities at ecologically relevant timescales. We specify equations, derivations, simplifications, and assumptions for the estimation of daily and monthly quantities of top-of-the-atmosphere solar radiation, net surface radiation, photosynthetic photon flux density, evapotranspiration (potential, equilibrium, and actual), condensation, soil moisture, and runoff, based on analysis of their relationship to fundamental climatic drivers. The climatic drivers include a minimum of three meteorological inputs: precipitation, air temperature, and fraction of bright sunshine hours. Indices, such as the moisture index, the climatic water deficit, and the Priestley-Taylor coefficient, are also defined. The SPLASH code is transcribed in C++, FORTRAN, Python, and R. A total of 1 year of results are presented at the local and global scales to exemplify the spatiotemporal patterns of daily and monthly model outputs along with comparisons to other model results.
Channel Training for Analog FDD Repeaters: Optimal Estimators and Cramér-Rao Bounds
NASA Astrophysics Data System (ADS)
Wesemann, Stefan; Marzetta, Thomas L.
2017-12-01
For frequency division duplex channels, a simple pilot loop-back procedure has been proposed that allows the estimation of the UL & DL channels at an antenna array without relying on any digital signal processing at the terminal side. For this scheme, we derive the maximum likelihood (ML) estimators for the UL & DL channel subspaces, formulate the corresponding Cram\\'er-Rao bounds and show the asymptotic efficiency of both (SVD-based) estimators by means of Monte Carlo simulations. In addition, we illustrate how to compute the underlying (rank-1) SVD with quadratic time complexity by employing the power iteration method. To enable power control for the data transmission, knowledge of the channel gains is needed. Assuming that the UL & DL channels have on average the same gain, we formulate the ML estimator for the channel norm, and illustrate its robustness against strong noise by means of simulations.
Robust estimation approach for blind denoising.
Rabie, Tamer
2005-11-01
This work develops a new robust statistical framework for blind image denoising. Robust statistics addresses the problem of estimation when the idealized assumptions about a system are occasionally violated. The contaminating noise in an image is considered as a violation of the assumption of spatial coherence of the image intensities and is treated as an outlier random variable. A denoised image is estimated by fitting a spatially coherent stationary image model to the available noisy data using a robust estimator-based regression method within an optimal-size adaptive window. The robust formulation aims at eliminating the noise outliers while preserving the edge structures in the restored image. Several examples demonstrating the effectiveness of this robust denoising technique are reported and a comparison with other standard denoising filters is presented.
NASA Astrophysics Data System (ADS)
Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato
2017-12-01
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.
Can Occupancy–Abundance Models Be Used to Monitor Wolf Abundance?
Latham, M. Cecilia; Latham, A. David M.; Webb, Nathan F.; Mccutchen, Nicole A.; Boutin, Stan
2014-01-01
Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from occupancy–abundance curves derived from “virtual” surveys of simulated wolf track networks. Although potentially more cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the sensitivity of the occupancy–abundance approach to four assumptions: variation in wolf movement rates, changes in pack cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack abundances were biased high if track surveys were conducted when wolves made long compared to short movements, wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2) were more robust to changes in these factors than smaller survey units (36 and 144 km2). However, occupancy rates derived from large survey units rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with moderate to high wolf densities (>15 wolves/1,000 km2). Virtually-derived occupancy–abundance relationships can be a useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest that the applicability of this method could be extended by directly incorporating some of its assumptions into the modelling framework. PMID:25054199
NASA Astrophysics Data System (ADS)
Zahari, Siti Meriam; Ramli, Norazan Mohamed; Moktar, Balkiah; Zainol, Mohammad Said
2014-09-01
In the presence of multicollinearity and multiple outliers, statistical inference of linear regression model using ordinary least squares (OLS) estimators would be severely affected and produces misleading results. To overcome this, many approaches have been investigated. These include robust methods which were reported to be less sensitive to the presence of outliers. In addition, ridge regression technique was employed to tackle multicollinearity problem. In order to mitigate both problems, a combination of ridge regression and robust methods was discussed in this study. The superiority of this approach was examined when simultaneous presence of multicollinearity and multiple outliers occurred in multiple linear regression. This study aimed to look at the performance of several well-known robust estimators; M, MM, RIDGE and robust ridge regression estimators, namely Weighted Ridge M-estimator (WRM), Weighted Ridge MM (WRMM), Ridge MM (RMM), in such a situation. Results of the study showed that in the presence of simultaneous multicollinearity and multiple outliers (in both x and y-direction), the RMM and RIDGE are more or less similar in terms of superiority over the other estimators, regardless of the number of observation, level of collinearity and percentage of outliers used. However, when outliers occurred in only single direction (y-direction), the WRMM estimator is the most superior among the robust ridge regression estimators, by producing the least variance. In conclusion, the robust ridge regression is the best alternative as compared to robust and conventional least squares estimators when dealing with simultaneous presence of multicollinearity and outliers.
Global Radius of Curvature Estimation and Control for the Hobby-Eberly Telescope
NASA Technical Reports Server (NTRS)
Rakoczy, John; Hall, Drew; Howard, Ricky; Ly, William; Weir, John; Montgomery, Edward; Brantley, Lott W. (Technical Monitor)
2002-01-01
A system, which estimates the global radius of curvature (GroC) and corrects for changes in GroC on a segmented primary mirror has been developed for and verified on McDonald Observatory's Hobby Eberly Telescope (HET). The GroC estimation and control system utilizes HET's primary mirror control (PMC) system and the Segment Alignment Maintenance System (SAMS), an inductive edge sensor system. A special set of boundary conditions is applied to the derivation of the optimal edge match control. The special boundary conditions allow the further derivation of an observer, which enables estimation and control of the Groc mode to within HET's specification. The magnitude of the GroC mode can then be controlled despite the inability of the SAMS edge sensor system, by itself, to observe or control the GroC mode. The observer can be extended to any segmented mirror telescope. It will be shown that the observer improves with accuracy as the number of segments increases. This paper presents the mathematical theory of the observer. Simulation results will demonstrate the inherent accuracy and robustness of the system. Performance verification data from the HET will be presented.
A frequency-domain estimator for use in adaptive control systems
NASA Technical Reports Server (NTRS)
Lamaire, Richard O.; Valavani, Lena; Athans, Michael; Stein, Gunter
1991-01-01
This paper presents a frequency-domain estimator that can identify both a parametrized nominal model of a plant as well as a frequency-domain bounding function on the modeling error associated with this nominal model. This estimator, which we call a robust estimator, can be used in conjunction with a robust control-law redesign algorithm to form a robust adaptive controller.
Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; ...
2018-04-03
Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less
Ebenstein, Avraham; Fan, Maoyong; Greenstone, Michael; He, Guojun; Zhou, Maigeng
2017-01-01
This paper finds that a 10-μg/m3 increase in airborne particulate matter [particulate matter smaller than 10 μm (PM10)] reduces life expectancy by 0.64 years (95% confidence interval = 0.21–1.07). This estimate is derived from quasiexperimental variation in PM10 generated by China’s Huai River Policy, which provides free or heavily subsidized coal for indoor heating during the winter to cities north of the Huai River but not to those to the south. The findings are derived from a regression discontinuity design based on distance from the Huai River, and they are robust to using parametric and nonparametric estimation methods, different kernel types and bandwidth sizes, and adjustment for a rich set of demographic and behavioral covariates. Furthermore, the shorter lifespans are almost entirely caused by elevated rates of cardiorespiratory mortality, suggesting that PM10 is the causal factor. The estimates imply that bringing all of China into compliance with its Class I standards for PM10 would save 3.7 billion life-years. PMID:28893980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian
Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less
Guan, Yongtao; Li, Yehua; Sinha, Rajita
2011-01-01
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854
Robust Hinfinity position control synthesis of an electro-hydraulic servo system.
Milić, Vladimir; Situm, Zeljko; Essert, Mario
2010-10-01
This paper focuses on the use of the techniques based on linear matrix inequalities for robust H(infinity) position control synthesis of an electro-hydraulic servo system. A nonlinear dynamic model of the hydraulic cylindrical actuator with a proportional valve has been developed. For the purpose of the feedback control an uncertain linearized mathematical model of the system has been derived. The structured (parametric) perturbations in the electro-hydraulic coefficients are taken into account. H(infinity) controller extended with an integral action is proposed. To estimate internal states of the electro-hydraulic servo system an observer is designed. Developed control algorithms have been tested experimentally in the laboratory model of an electro-hydraulic servo system. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Laser-Interferometric Broadband Seismometer for Epicenter Location Estimation
Lee, Kyunghyun; Kwon, Hyungkwan; You, Kwanho
2017-01-01
In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal (Iy) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results. PMID:29065515
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
NASA Astrophysics Data System (ADS)
Jensen, Jens H.; Helpern, Joseph A.
2011-06-01
Hardware constraints typically require the use of extended gradient pulse durations for clinical applications of diffusion-weighted magnetic resonance imaging (DW-MRI), which can potentially influence the estimation of diffusion metrics. Prior studies have examined this effect for the apparent diffusion coefficient. This study employs a two-compartment exchange model in order to assess the gradient pulse duration sensitivity of the apparent diffusional kurtosis (ADK), a quantitative index of diffusional non-Gaussianity. An analytic expression is derived and numerically evaluated for parameter ranges relevant to DW-MRI of brain. It is found that the ADK differs from the true diffusional kurtosis by at most a few percent. This suggests that ADK estimates for brain may be robust with respect to changes in pulse gradient duration.
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
NASA Technical Reports Server (NTRS)
Putko, Michele M.; Newman, Perry A.; Taylor, Arthur C., III; Green, Lawrence L.
2001-01-01
This paper presents an implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for a quasi 1-D Euler CFD (computational fluid dynamics) code. Given uncertainties in statistically independent, random, normally distributed input variables, a first- and second-order statistical moment matching procedure is performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, the moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Robust linear discriminant models to solve financial crisis in banking sectors
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni
2014-12-01
Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
Variational optical flow estimation based on stick tensor voting.
Rashwan, Hatem A; Garcia, Miguel A; Puig, Domenec
2013-07-01
Variational optical flow techniques allow the estimation of flow fields from spatio-temporal derivatives. They are based on minimizing a functional that contains a data term and a regularization term. Recently, numerous approaches have been presented for improving the accuracy of the estimated flow fields. Among them, tensor voting has been shown to be particularly effective in the preservation of flow discontinuities. This paper presents an adaptation of the data term by using anisotropic stick tensor voting in order to gain robustness against noise and outliers with significantly lower computational cost than (full) tensor voting. In addition, an anisotropic complementary smoothness term depending on directional information estimated through stick tensor voting is utilized in order to preserve discontinuity capabilities of the estimated flow fields. Finally, a weighted non-local term that depends on both the estimated directional information and the occlusion state of pixels is integrated during the optimization process in order to denoise the final flow field. The proposed approach yields state-of-the-art results on the Middlebury benchmark.
Robust Alternatives to the Standard Deviation in Processing of Physics Experimental Data
NASA Astrophysics Data System (ADS)
Shulenin, V. P.
2016-10-01
Properties of robust estimations of the scale parameter are studied. It is noted that the median of absolute deviations and the modified estimation of the average Gini differences have asymptotically normal distributions and bounded influence functions, are B-robust estimations, and hence, unlike the estimation of the standard deviation, are protected from the presence of outliers in the sample. Results of comparison of estimations of the scale parameter are given for a Gaussian model with contamination. An adaptive variant of the modified estimation of the average Gini differences is considered.
Statistical inference involving binomial and negative binomial parameters.
García-Pérez, Miguel A; Núñez-Antón, Vicente
2009-05-01
Statistical inference about two binomial parameters implies that they are both estimated by binomial sampling. There are occasions in which one aims at testing the equality of two binomial parameters before and after the occurrence of the first success along a sequence of Bernoulli trials. In these cases, the binomial parameter before the first success is estimated by negative binomial sampling whereas that after the first success is estimated by binomial sampling, and both estimates are related. This paper derives statistical tools to test two hypotheses, namely, that both binomial parameters equal some specified value and that both parameters are equal though unknown. Simulation studies are used to show that in small samples both tests are accurate in keeping the nominal Type-I error rates, and also to determine sample size requirements to detect large, medium, and small effects with adequate power. Additional simulations also show that the tests are sufficiently robust to certain violations of their assumptions.
Estimating index of refraction from polarimetric hyperspectral imaging measurements.
Martin, Jacob A; Gross, Kevin C
2016-08-08
Current material identification techniques rely on estimating reflectivity or emissivity which vary with viewing angle. As off-nadir remote sensing platforms become increasingly prevalent, techniques robust to changing viewing geometries are desired. A technique leveraging polarimetric hyperspectral imaging (P-HSI), to estimate complex index of refraction, N̂(ν̃), an inherent material property, is presented. The imaginary component of N̂(ν̃) is modeled using a small number of "knot" points and interpolation at in-between frequencies ν̃. The real component is derived via the Kramers-Kronig relationship. P-HSI measurements of blackbody radiation scattered off of a smooth quartz window show that N̂(ν̃) can be retrieved to within 0.08 RMS error between 875 cm-1 ≤ ν̃ ≤ 1250 cm-1. P-HSI emission measurements of a heated smooth Pyrex beaker also enable successful N̂(ν̃) estimates, which are also invariant to object temperature.
2dFLenS and KiDS: determining source redshift distributions with cross-correlations
NASA Astrophysics Data System (ADS)
Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian
2017-03-01
We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.
NASA Astrophysics Data System (ADS)
Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen
2017-11-01
Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.
Robust Characterization of Loss Rates
NASA Astrophysics Data System (ADS)
Wallman, Joel J.; Barnhill, Marie; Emerson, Joseph
2015-08-01
Many physical implementations of qubits—including ion traps, optical lattices and linear optics—suffer from loss. A nonzero probability of irretrievably losing a qubit can be a substantial obstacle to fault-tolerant methods of processing quantum information, requiring new techniques to safeguard against loss that introduce an additional overhead that depends upon the loss rate. Here we present a scalable and platform-independent protocol for estimating the average loss rate (averaged over all input states) resulting from an arbitrary Markovian noise process, as well as an independent estimate of detector efficiency. Moreover, we show that our protocol gives an additional constraint on estimated parameters from randomized benchmarking that improves the reliability of the estimated error rate and provides a new indicator for non-Markovian signatures in the experimental data. We also derive a bound for the state-dependent loss rate in terms of the average loss rate.
Engel, Aaron J; Bashford, Gregory R
2015-08-01
Ultrasound based shear wave elastography (SWE) is a technique used for non-invasive characterization and imaging of soft tissue mechanical properties. Robust estimation of shear wave propagation speed is essential for imaging of soft tissue mechanical properties. In this study we propose to estimate shear wave speed by inversion of the first-order wave equation following directional filtering. This approach relies on estimation of first-order derivatives which allows for accurate estimations using smaller smoothing filters than when estimating second-order derivatives. The performance was compared to three current methods used to estimate shear wave propagation speed: direct inversion of the wave equation (DIWE), time-to-peak (TTP) and cross-correlation (CC). The shear wave speed of three homogeneous phantoms of different elastic moduli (gelatin by weight of 5%, 7%, and 9%) were measured with each method. The proposed method was shown to produce shear speed estimates comparable to the conventional methods (standard deviation of measurements being 0.13 m/s, 0.05 m/s, and 0.12 m/s), but with simpler processing and usually less time (by a factor of 1, 13, and 20 for DIWE, CC, and TTP respectively). The proposed method was able to produce a 2-D speed estimate from a single direction of wave propagation in about four seconds using an off-the-shelf PC, showing the feasibility of performing real-time or near real-time elasticity imaging with dedicated hardware.
Robust location and spread measures for nonparametric probability density function estimation.
López-Rubio, Ezequiel
2009-10-01
Robustness against outliers is a desirable property of any unsupervised learning scheme. In particular, probability density estimators benefit from incorporating this feature. A possible strategy to achieve this goal is to substitute the sample mean and the sample covariance matrix by more robust location and spread estimators. Here we use the L1-median to develop a nonparametric probability density function (PDF) estimator. We prove its most relevant properties, and we show its performance in density estimation and classification applications.
Robust adaptive sliding mode control for uncertain systems with unknown time-varying delay input.
Benamor, Anouar; Messaoud, Hassani
2018-05-02
This article focuses on robust adaptive sliding mode control law for uncertain discrete systems with unknown time-varying delay input, where the uncertainty is assumed unknown. The main results of this paper are divided into three phases. In the first phase, we propose a new sliding surface is derived within the Linear Matrix Inequalities (LMIs). In the second phase, using the new sliding surface, the novel Robust Sliding Mode Control (RSMC) is proposed where the upper bound of uncertainty is supposed known. Finally, the novel approach of Robust Adaptive Sliding ModeControl (RASMC) has been defined for this type of systems, where the upper limit of uncertainty which is assumed unknown. In this new approach, we have estimate the upper limit of uncertainties and we have determined the control law based on a sliding surface that will converge to zero. This novel control laws are been validated in simulation on an uncertain numerical system with good results and comparative study. This efficiency is emphasized through the application of the new controls on the two physical systems which are the process trainer PT326 and hydraulic system two tanks. Published by Elsevier Ltd.
Chen, Wansu; Shi, Jiaxiao; Qian, Lei; Azen, Stanley P
2014-06-26
To estimate relative risks or risk ratios for common binary outcomes, the most popular model-based methods are the robust (also known as modified) Poisson and the log-binomial regression. Of the two methods, it is believed that the log-binomial regression yields more efficient estimators because it is maximum likelihood based, while the robust Poisson model may be less affected by outliers. Evidence to support the robustness of robust Poisson models in comparison with log-binomial models is very limited. In this study a simulation was conducted to evaluate the performance of the two methods in several scenarios where outliers existed. The findings indicate that for data coming from a population where the relationship between the outcome and the covariate was in a simple form (e.g. log-linear), the two models yielded comparable biases and mean square errors. However, if the true relationship contained a higher order term, the robust Poisson models consistently outperformed the log-binomial models even when the level of contamination is low. The robust Poisson models are more robust (or less sensitive) to outliers compared to the log-binomial models when estimating relative risks or risk ratios for common binary outcomes. Users should be aware of the limitations when choosing appropriate models to estimate relative risks or risk ratios.
Robust Portfolio Optimization Using Pseudodistances.
Toma, Aida; Leoni-Aubin, Samuela
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature.
Robust Portfolio Optimization Using Pseudodistances
2015-01-01
The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature. PMID:26468948
NASA Astrophysics Data System (ADS)
Toomey, M.; Vierling, L.
2004-12-01
Landsat TM and ASTER satellite data can be used to make physically-based estimates of equivalent water thickness (EWT) in a Pinus ponderosa ecosystem. EWT is a measure of ecosystem water status and is an important parameter for studying ecosystem dynamics, fire potential, and biological responses to climate change. Near infrared (NIR) and shortwave infrared (SWIR) reflectances were simulated using the LIBERTY and GeoSAIL leaf and canopy reflectance models; the results were used to calculate a NIR/SWIR ratio and a normalized NIR/SWIR index. Index-EWT relationships were modeled and inverted for EWT derivation. Landsat and ASTER were used to make reasonably accurate estimates of EWT (± 17.3% and 19.4% mean error, respectively); TM band 5 and ASTER band 4 produced the best results. Exclusion of plots with dense understory vegetation reduced point scatter substantially, especially with Landsat (r2 = 0.847, ±13%), indicating that this method can provide robust EWT quantification in homogeneous conifer ecosystems.
Bacciu, Davide; Starita, Antonina
2008-11-01
Determining a compact neural coding for a set of input stimuli is an issue that encompasses several biological memory mechanisms as well as various artificial neural network models. In particular, establishing the optimal network structure is still an open problem when dealing with unsupervised learning models. In this paper, we introduce a novel learning algorithm, named competitive repetition-suppression (CoRe) learning, inspired by a cortical memory mechanism called repetition suppression (RS). We show how such a mechanism is used, at various levels of the cerebral cortex, to generate compact neural representations of the visual stimuli. From the general CoRe learning model, we derive a clustering algorithm, named CoRe clustering, that can automatically estimate the unknown cluster number from the data without using a priori information concerning the input distribution. We illustrate how CoRe clustering, besides its biological plausibility, posses strong theoretical properties in terms of robustness to noise and outliers, and we provide an error function describing CoRe learning dynamics. Such a description is used to analyze CoRe relationships with the state-of-the art clustering models and to highlight CoRe similitude with rival penalized competitive learning (RPCL), showing how CoRe extends such a model by strengthening the rival penalization estimation by means of loss functions from robust statistics.
Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization
Zair, Salim; Le Hégarat-Mascle, Sylvie; Seignez, Emmanuel
2016-01-01
In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS) data is hindered by Non-Line Of Sight (NLOS) and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR) and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF) or a Rao-Blackwellization (RB) approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the ‘outliers’ in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation. PMID:27110796
Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization.
Zair, Salim; Le Hégarat-Mascle, Sylvie; Seignez, Emmanuel
2016-04-22
In urban areas or space-constrained environments with obstacles, vehicle localization using Global Navigation Satellite System (GNSS) data is hindered by Non-Line Of Sight (NLOS) and multipath receptions. These phenomena induce faulty data that disrupt the precise localization of the GNSS receiver. In this study, we detect the outliers among the observations, Pseudo-Range (PR) and/or Doppler measurements, and we evaluate how discarding them improves the localization. We specify a contrario modeling for GNSS raw data to derive an algorithm that partitions the dataset between inliers and outliers. Then, only the inlier data are considered in the localization process performed either through a classical Particle Filter (PF) or a Rao-Blackwellization (RB) approach. Both localization algorithms exclusively use GNSS data, but they differ by the way Doppler measurements are processed. An experiment has been performed with a GPS receiver aboard a vehicle. Results show that the proposed algorithms are able to detect the 'outliers' in the raw data while being robust to non-Gaussian noise and to intermittent satellite blockage. We compare the performance results achieved either estimating only PR outliers or estimating both PR and Doppler outliers. The best localization is achieved using the RB approach coupled with PR-Doppler outlier estimation.
Luque-Fernandez, Miguel Angel; Belot, Aurélien; Quaresma, Manuela; Maringe, Camille; Coleman, Michel P; Rachet, Bernard
2016-10-01
In population-based cancer research, piecewise exponential regression models are used to derive adjusted estimates of excess mortality due to cancer using the Poisson generalized linear modelling framework. However, the assumption that the conditional mean and variance of the rate parameter given the set of covariates x i are equal is strong and may fail to account for overdispersion given the variability of the rate parameter (the variance exceeds the mean). Using an empirical example, we aimed to describe simple methods to test and correct for overdispersion. We used a regression-based score test for overdispersion under the relative survival framework and proposed different approaches to correct for overdispersion including a quasi-likelihood, robust standard errors estimation, negative binomial regression and flexible piecewise modelling. All piecewise exponential regression models showed the presence of significant inherent overdispersion (p-value <0.001). However, the flexible piecewise exponential model showed the smallest overdispersion parameter (3.2 versus 21.3) for non-flexible piecewise exponential models. We showed that there were no major differences between methods. However, using a flexible piecewise regression modelling, with either a quasi-likelihood or robust standard errors, was the best approach as it deals with both, overdispersion due to model misspecification and true or inherent overdispersion.
Linkage disequilibrium interval mapping of quantitative trait loci.
Boitard, Simon; Abdallah, Jihad; de Rochambeau, Hubert; Cierco-Ayrolles, Christine; Mangin, Brigitte
2006-03-16
For many years gene mapping studies have been performed through linkage analyses based on pedigree data. Recently, linkage disequilibrium methods based on unrelated individuals have been advocated as powerful tools to refine estimates of gene location. Many strategies have been proposed to deal with simply inherited disease traits. However, locating quantitative trait loci is statistically more challenging and considerable research is needed to provide robust and computationally efficient methods. Under a three-locus Wright-Fisher model, we derived approximate expressions for the expected haplotype frequencies in a population. We considered haplotypes comprising one trait locus and two flanking markers. Using these theoretical expressions, we built a likelihood-maximization method, called HAPim, for estimating the location of a quantitative trait locus. For each postulated position, the method only requires information from the two flanking markers. Over a wide range of simulation scenarios it was found to be more accurate than a two-marker composite likelihood method. It also performed as well as identity by descent methods, whilst being valuable in a wider range of populations. Our method makes efficient use of marker information, and can be valuable for fine mapping purposes. Its performance is increased if multiallelic markers are available. Several improvements can be developed to account for more complex evolution scenarios or provide robust confidence intervals for the location estimates.
Population genetics of autopolyploids under a mixed mating model and the estimation of selfing rate.
Hardy, Olivier J
2016-01-01
Nowadays, the population genetics analysis of autopolyploid species faces many difficulties due to (i) limited development of population genetics tools under polysomic inheritance, (ii) difficulties to assess allelic dosage when genotyping individuals and (iii) a form of inbreeding resulting from the mechanism of 'double reduction'. Consequently, few data analysis computer programs are applicable to autopolyploids. To contribute bridging this gap, this article first derives theoretical expectations for the inbreeding and identity disequilibrium coefficients under polysomic inheritance in a mixed mating model. Moment estimators of these coefficients are proposed when exact genotypes or just markers phenotypes (i.e. allelic dosage unknown) are available. This led to the development of estimators of the selfing rate based on adult genotypes or phenotypes and applicable to any even-ploidy level. Their statistical performances and robustness were assessed by numerical simulations. Contrary to inbreeding-based estimators, the identity disequilibrium-based estimator using phenotypes is robust (absolute bias generally < 0.05), even in the presence of double reduction, null alleles or biparental inbreeding due to isolation by distance. A fairly good precision of the selfing rate estimates (root mean squared error < 0.1) is already achievable using a sample of 30-50 individuals phenotyped at 10 loci bearing 5-10 alleles each, conditions reachable using microsatellite markers. Diallelic markers (e.g. SNP) can also perform satisfactorily in diploids and tetraploids but more polymorphic markers are necessary for higher ploidy levels. The method is implemented in the software SPAGeDi and should contribute to reduce the lack of population genetics tools applicable to autopolyploids. © 2015 John Wiley & Sons Ltd.
Use of allele scores as instrumental variables for Mendelian randomization
Burgess, Stephen; Thompson, Simon G
2013-01-01
Background An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis to estimate the causal effect of the risk factor on an outcome. Methods Data were simulated to investigate the use of allele scores in Mendelian randomization where conventional instrumental variable techniques using multiple genetic variants demonstrate ‘weak instrument’ bias. The robustness of estimates using the allele score to misspecification (for example non-linearity, effect modification) and to violations of the instrumental variable assumptions was assessed. Results Causal estimates using a correctly specified allele score were unbiased with appropriate coverage levels. The estimates were generally robust to misspecification of the allele score, but not to instrumental variable violations, even if the majority of variants in the allele score were valid instruments. Using a weighted rather than an unweighted allele score increased power, but the increase was small when genetic variants had similar effect sizes. Naive use of the data under analysis to choose which variants to include in an allele score, or for deriving weights, resulted in substantial biases. Conclusions Allele scores enable valid causal estimates with large numbers of genetic variants. The stringency of criteria for genetic variants in Mendelian randomization should be maintained for all variants in an allele score. PMID:24062299
Reliability Assessment of a Robust Design Under Uncertainty for a 3-D Flexible Wing
NASA Technical Reports Server (NTRS)
Gumbert, Clyde R.; Hou, Gene J. -W.; Newman, Perry A.
2003-01-01
The paper presents reliability assessment results for the robust designs under uncertainty of a 3-D flexible wing previously reported by the authors. Reliability assessments (additional optimization problems) of the active constraints at the various probabilistic robust design points are obtained and compared with the constraint values or target constraint probabilities specified in the robust design. In addition, reliability-based sensitivity derivatives with respect to design variable mean values are also obtained and shown to agree with finite difference values. These derivatives allow one to perform reliability based design without having to obtain second-order sensitivity derivatives. However, an inner-loop optimization problem must be solved for each active constraint to find the most probable point on that constraint failure surface.
NASA Astrophysics Data System (ADS)
Chadha, R.; Bali, A.
2016-05-01
Rapid, sensitive, cost effective and reproducible stability-indicating derivative spectrophotometric methods have been developed for the estimation of dronedarone HCl employing peak-zero (P-0) and peak-peak (P-P) techniques, and their stability-indicating potential assessed in forced degraded solutions of the drug. The methods were validated with respect to linearity, accuracy, precision and robustness. Excellent linearity was observed in concentrations 2-40 μg/ml ( r 2 = 0.9986). LOD and LOQ values for the proposed methods ranged from 0.42-0.46 μg/ml and 1.21-1.27 μg/ml, respectively, and excellent recovery of the drug was obtained in the tablet samples (99.70 ± 0.84%).
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
NASA Astrophysics Data System (ADS)
Chang, Insu
The objective of the thesis is to introduce a relatively general nonlinear controller/estimator synthesis framework using a special type of the state-dependent Riccati equation technique. The continuous time state-dependent Riccati equation (SDRE) technique is extended to discrete-time under input and state constraints, yielding constrained (C) discrete-time (D) SDRE, referred to as CD-SDRE. For the latter, stability analysis and calculation of a region of attraction are carried out. The derivation of the D-SDRE under state-dependent weights is provided. Stability of the D-SDRE feedback system is established using Lyapunov stability approach. Receding horizon strategy is used to take into account the constraints on D-SDRE controller. Stability condition of the CD-SDRE controller is analyzed by using a switched system. The use of CD-SDRE scheme in the presence of constraints is then systematically demonstrated by applying this scheme to problems of spacecraft formation orbit reconfiguration under limited performance on thrusters. Simulation results demonstrate the efficacy and reliability of the proposed CD-SDRE. The CD-SDRE technique is further investigated in a case where there are uncertainties in nonlinear systems to be controlled. First, the system stability under each of the controllers in the robust CD-SDRE technique is separately established. The stability of the closed-loop system under the robust CD-SDRE controller is then proven based on the stability of each control system comprising switching configuration. A high fidelity dynamical model of spacecraft attitude motion in 3-dimensional space is derived with a partially filled fuel tank, assumed to have the first fuel slosh mode. The proposed robust CD-SDRE controller is then applied to the spacecraft attitude control system to stabilize its motion in the presence of uncertainties characterized by the first fuel slosh mode. The performance of the robust CD-SDRE technique is discussed. Subsequently, filtering techniques are investigated by using the D-SDRE technique. Detailed derivation of the D-SDRE-based filter (D-SDREF) is provided under the assumption of Gaussian noises and the stability condition of the error signal between the measured signal and the estimated signals is proven to be input-to-state stable. For the non-Gaussian distributed noises, we propose a filter by combining the D-SDREF and the particle filter (PF), named the combined D-SDRE/PF. Two algorithms for the filtering techniques are provided. Several filtering techniques are compared with challenging numerical examples to show the reliability and efficacy of the proposed D-SDREF and the combined D-SDRE/PF.
ERIC Educational Resources Information Center
Tanner-Smith, Emily E.; Tipton, Elizabeth
2014-01-01
Methodologists have recently proposed robust variance estimation as one way to handle dependent effect sizes in meta-analysis. Software macros for robust variance estimation in meta-analysis are currently available for Stata (StataCorp LP, College Station, TX, USA) and SPSS (IBM, Armonk, NY, USA), yet there is little guidance for authors regarding…
Covariate selection with group lasso and doubly robust estimation of causal effects
Koch, Brandon; Vock, David M.; Wolfson, Julian
2017-01-01
Summary The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this paper, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. PMID:28636276
Covariate selection with group lasso and doubly robust estimation of causal effects.
Koch, Brandon; Vock, David M; Wolfson, Julian
2018-03-01
The efficiency of doubly robust estimators of the average causal effect (ACE) of a treatment can be improved by including in the treatment and outcome models only those covariates which are related to both treatment and outcome (i.e., confounders) or related only to the outcome. However, it is often challenging to identify such covariates among the large number that may be measured in a given study. In this article, we propose GLiDeR (Group Lasso and Doubly Robust Estimation), a novel variable selection technique for identifying confounders and predictors of outcome using an adaptive group lasso approach that simultaneously performs coefficient selection, regularization, and estimation across the treatment and outcome models. The selected variables and corresponding coefficient estimates are used in a standard doubly robust ACE estimator. We provide asymptotic results showing that, for a broad class of data generating mechanisms, GLiDeR yields a consistent estimator of the ACE when either the outcome or treatment model is correctly specified. A comprehensive simulation study shows that GLiDeR is more efficient than doubly robust methods using standard variable selection techniques and has substantial computational advantages over a recently proposed doubly robust Bayesian model averaging method. We illustrate our method by estimating the causal treatment effect of bilateral versus single-lung transplant on forced expiratory volume in one year after transplant using an observational registry. © 2017, The International Biometric Society.
Using Robust Variance Estimation to Combine Multiple Regression Estimates with Meta-Analysis
ERIC Educational Resources Information Center
Williams, Ryan
2013-01-01
The purpose of this study was to explore the use of robust variance estimation for combining commonly specified multiple regression models and for combining sample-dependent focal slope estimates from diversely specified models. The proposed estimator obviates traditionally required information about the covariance structure of the dependent…
Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments
Erkoc, Ali; Emiroglu, Esra
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set. PMID:25202738
Graphical evaluation of the ridge-type robust regression estimators in mixture experiments.
Erkoc, Ali; Emiroglu, Esra; Akay, Kadri Ulas
2014-01-01
In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.
A spatially explicit capture-recapture estimator for single-catch traps.
Distiller, Greg; Borchers, David L
2015-11-01
Single-catch traps are frequently used in live-trapping studies of small mammals. Thus far, a likelihood for single-catch traps has proven elusive and usually the likelihood for multicatch traps is used for spatially explicit capture-recapture (SECR) analyses of such data. Previous work found the multicatch likelihood to provide a robust estimator of average density. We build on a recently developed continuous-time model for SECR to derive a likelihood for single-catch traps. We use this to develop an estimator based on observed capture times and compare its performance by simulation to that of the multicatch estimator for various scenarios with nonconstant density surfaces. While the multicatch estimator is found to be a surprisingly robust estimator of average density, its performance deteriorates with high trap saturation and increasing density gradients. Moreover, it is found to be a poor estimator of the height of the detection function. By contrast, the single-catch estimators of density, distribution, and detection function parameters are found to be unbiased or nearly unbiased in all scenarios considered. This gain comes at the cost of higher variance. If there is no interest in interpreting the detection function parameters themselves, and if density is expected to be fairly constant over the survey region, then the multicatch estimator performs well with single-catch traps. However if accurate estimation of the detection function is of interest, or if density is expected to vary substantially in space, then there is merit in using the single-catch estimator when trap saturation is above about 60%. The estimator's performance is improved if care is taken to place traps so as to span the range of variables that affect animal distribution. As a single-catch likelihood with unknown capture times remains intractable for now, researchers using single-catch traps should aim to incorporate timing devices with their traps.
Estimating forest and woodland aboveground biomass using active and passive remote sensing
Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.
2016-01-01
Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.
Estimating population diversity with CatchAll
Bunge, John; Woodard, Linda; Böhning, Dankmar; Foster, James A.; Connolly, Sean; Allen, Heather K.
2012-01-01
Motivation: The massive data produced by next-generation sequencing require advanced statistical tools. We address estimating the total diversity or species richness in a population. To date, only relatively simple methods have been implemented in available software. There is a need for software employing modern, computationally intensive statistical analyses including error, goodness-of-fit and robustness assessments. Results: We present CatchAll, a fast, easy-to-use, platform-independent program that computes maximum likelihood estimates for finite-mixture models, weighted linear regression-based analyses and coverage-based non-parametric methods, along with outlier diagnostics. Given sample ‘frequency count’ data, CatchAll computes 12 different diversity estimates and applies a model-selection algorithm. CatchAll also derives discounted diversity estimates to adjust for possibly uncertain low-frequency counts. It is accompanied by an Excel-based graphics program. Availability: Free executable downloads for Linux, Windows and Mac OS, with manual and source code, at www.northeastern.edu/catchall. Contact: jab18@cornell.edu PMID:22333246
Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura
2017-01-01
Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.
NASA Astrophysics Data System (ADS)
Gyasi-Agyei, Yeboah
2018-01-01
This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.
Covariate-adjusted Spearman's rank correlation with probability-scale residuals.
Liu, Qi; Li, Chun; Wanga, Valentine; Shepherd, Bryan E
2018-06-01
It is desirable to adjust Spearman's rank correlation for covariates, yet existing approaches have limitations. For example, the traditionally defined partial Spearman's correlation does not have a sensible population parameter, and the conditional Spearman's correlation defined with copulas cannot be easily generalized to discrete variables. We define population parameters for both partial and conditional Spearman's correlation through concordance-discordance probabilities. The definitions are natural extensions of Spearman's rank correlation in the presence of covariates and are general for any orderable random variables. We show that they can be neatly expressed using probability-scale residuals (PSRs). This connection allows us to derive simple estimators. Our partial estimator for Spearman's correlation between X and Y adjusted for Z is the correlation of PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson's correlation derived as the correlation of observed-minus-expected residuals. Our conditional estimator is the conditional correlation of PSRs. We describe estimation and inference, and highlight the use of semiparametric cumulative probability models, which allow preservation of the rank-based nature of Spearman's correlation. We conduct simulations to evaluate the performance of our estimators and compare them with other popular measures of association, demonstrating their robustness and efficiency. We illustrate our method in two applications, a biomarker study and a large survey. © 2017, The International Biometric Society.
NASA Technical Reports Server (NTRS)
Reese, Erik D.; Mroczkowski, Tony; Menanteau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep;
2011-01-01
We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10(exp 15) Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the less than = 20% level for some fraction of clusters.
NASA Technical Reports Server (NTRS)
Reese, Erik; Mroczkowski, Tony; Menateau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep;
2011-01-01
We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters.
Automatic streak endpoint localization from the cornerness metric
NASA Astrophysics Data System (ADS)
Sease, Brad; Flewelling, Brien; Black, Jonathan
2017-05-01
Streaked point sources are a common occurrence when imaging unresolved space objects from both ground- and space-based platforms. Effective localization of streak endpoints is a key component of traditional techniques in space situational awareness related to orbit estimation and attitude determination. To further that goal, this paper derives a general detection and localization method for streak endpoints based on the cornerness metric. Corners detection involves searching an image for strong bi-directional gradients. These locations typically correspond to robust structural features in an image. In the case of unresolved imagery, regions with a high cornerness score correspond directly to the endpoints of streaks. This paper explores three approaches for global extraction of streak endpoints and applies them to an attitude and rate estimation routine.
Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.
Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon
2014-05-01
In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.
Exponential Approximations Using Fourier Series Partial Sums
NASA Technical Reports Server (NTRS)
Banerjee, Nana S.; Geer, James F.
1997-01-01
The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.
Kinematically Optimal Robust Control of Redundant Manipulators
NASA Astrophysics Data System (ADS)
Galicki, M.
2017-12-01
This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.
Zhang, Xian-Ming; Han, Qing-Long; Ge, Xiaohua
2017-09-22
This paper is concerned with the problem of robust H∞ control of an uncertain discrete-time Takagi-Sugeno fuzzy system with an interval-like time-varying delay. A novel finite-sum inequality-based method is proposed to provide a tighter estimation on the forward difference of certain Lyapunov functional, leading to a less conservative result. First, an auxiliary vector function is used to establish two finite-sum inequalities, which can produce tighter bounds for the finite-sum terms appearing in the forward difference of the Lyapunov functional. Second, a matrix-based quadratic convex approach is employed to equivalently convert the original matrix inequality including a quadratic polynomial on the time-varying delay into two boundary matrix inequalities, which delivers a less conservative bounded real lemma (BRL) for the resultant closed-loop system. Third, based on the BRL, a novel sufficient condition on the existence of suitable robust H∞ fuzzy controllers is derived. Finally, two numerical examples and a computer-simulated truck-trailer system are provided to show the effectiveness of the obtained results.
Using robust Bayesian network to estimate the residuals of fluoroquinolone antibiotic in soil.
Li, Xuewen; Xie, Yunfeng; Li, Lianfa; Yang, Xunfeng; Wang, Ning; Wang, Jinfeng
2015-11-01
Prediction of antibiotic pollution and its consequences is difficult, due to the uncertainties and complexities associated with multiple related factors. This article employed domain knowledge and spatial data to construct a Bayesian network (BN) model to assess fluoroquinolone antibiotic (FQs) pollution in the soil of an intensive vegetable cultivation area. The results show: (1) The relationships between FQs pollution and contributory factors: Three factors (cultivation methods, crop rotations, and chicken manure types) were consistently identified as predictors in the topological structures of three FQs, indicating their importance in FQs pollution; deduced with domain knowledge, the cultivation methods are determined by the crop rotations, which require different nutrients (derived from the manure) according to different plant biomass. (2) The performance of BN model: The integrative robust Bayesian network model achieved the highest detection probability (pd) of high-risk and receiver operating characteristic (ROC) area, since it incorporates domain knowledge and model uncertainty. Our encouraging findings have implications for the use of BN as a robust approach to assessment of FQs pollution and for informing decisions on appropriate remedial measures.
Adaptive torque estimation of robot joint with harmonic drive transmission
NASA Astrophysics Data System (ADS)
Shi, Zhiguo; Li, Yuankai; Liu, Guangjun
2017-11-01
Robot joint torque estimation using input and output position measurements is a promising technique, but the result may be affected by the load variation of the joint. In this paper, a torque estimation method with adaptive robustness and optimality adjustment according to load variation is proposed for robot joint with harmonic drive transmission. Based on a harmonic drive model and a redundant adaptive robust Kalman filter (RARKF), the proposed approach can adapt torque estimation filtering optimality and robustness to the load variation by self-tuning the filtering gain and self-switching the filtering mode between optimal and robust. The redundant factor of RARKF is designed as a function of the motor current for tolerating the modeling error and load-dependent filtering mode switching. The proposed joint torque estimation method has been experimentally studied in comparison with a commercial torque sensor and two representative filtering methods. The results have demonstrated the effectiveness of the proposed torque estimation technique.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].
Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria
Stumpf, Rick P; Davis, Timothy W.; Wynne, Timothy T.; Graham, Jennifer L.; Loftin, Keith A.; Johengen, T.H.; Gossiaux, D.; Palladino, D.; Burtner, A.
2016-01-01
Using satellite imagery to quantify the spatial patterns of cyanobacterial toxins has several challenges. These challenges include the need for surrogate pigments – since cyanotoxins cannot be directly detected by remote sensing, the variability in the relationship between the pigments and cyanotoxins – especially microcystins (MC), and the lack of standardization of the various measurement methods. A dual-model strategy can provide an approach to address these challenges. One model uses either chlorophyll-a (Chl-a) or phycocyanin (PC) collected in situ as a surrogate to estimate the MC concentration. The other uses a remote sensing algorithm to estimate the concentration of the surrogate pigment. Where blooms are mixtures of cyanobacteria and eukaryotic algae, PC should be the preferred surrogate to Chl-a. Where cyanobacteria dominate, Chl-a is a better surrogate than PC for remote sensing. Phycocyanin is less sensitive to detection by optical remote sensing, it is less frequently measured, PC laboratory methods are still not standardized, and PC has greater intracellular variability. Either pigment should not be presumed to have a fixed relationship with MC for any water body. The MC-pigment relationship can be valid over weeks, but have considerable intra- and inter-annual variability due to changes in the amount of MC produced relative to cyanobacterial biomass. To detect pigments by satellite, three classes of algorithms (analytic, semi-analytic, and derivative) have been used. Analytical and semi-analytical algorithms are more sensitive but less robust than derivatives because they depend on accurate atmospheric correction; as a result derivatives are more commonly used. Derivatives can estimate Chl-a concentration, and research suggests they can detect and possibly quantify PC. Derivative algorithms, however, need to be standardized in order to evaluate the reproducibility of parameterizations between lakes. A strategy for producing useful estimates of microcystins from cyanobacterial biomass is described, provided cyanotoxin variability is addressed.
Tsiatis, Anastasios A.; Davidian, Marie; Cao, Weihua
2010-01-01
Summary A routine challenge is that of making inference on parameters in a statistical model of interest from longitudinal data subject to drop out, which are a special case of the more general setting of monotonely coarsened data. Considerable recent attention has focused on doubly robust estimators, which in this context involve positing models for both the missingness (more generally, coarsening) mechanism and aspects of the distribution of the full data, that have the appealing property of yielding consistent inferences if only one of these models is correctly specified. Doubly robust estimators have been criticized for potentially disastrous performance when both of these models are even only mildly misspecified. We propose a doubly robust estimator applicable in general monotone coarsening problems that achieves comparable or improved performance relative to existing doubly robust methods, which we demonstrate via simulation studies and by application to data from an AIDS clinical trial. PMID:20731640
Integrated direct/indirect adaptive robust motion trajectory tracking control of pneumatic cylinders
NASA Astrophysics Data System (ADS)
Meng, Deyuan; Tao, Guoliang; Zhu, Xiaocong
2013-09-01
This paper studies the precision motion trajectory tracking control of a pneumatic cylinder driven by a proportional-directional control valve. An integrated direct/indirect adaptive robust controller is proposed. The controller employs a physical model based indirect-type parameter estimation to obtain reliable estimates of unknown model parameters, and utilises a robust control method with dynamic compensation type fast adaptation to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Due to the use of projection mapping, the robust control law and the parameter adaption algorithm can be designed separately. Since the system model uncertainties are unmatched, the recursive backstepping technology is adopted to design the robust control law. Extensive comparative experimental results are presented to illustrate the effectiveness of the proposed controller and its performance robustness to parameter variations and sudden disturbances.
The effectiveness of robust RMCD control chart as outliers’ detector
NASA Astrophysics Data System (ADS)
Darmanto; Astutik, Suci
2017-12-01
A well-known control chart to monitor a multivariate process is Hotelling’s T 2 which its parameters are estimated classically, very sensitive and also marred by masking and swamping of outliers data effect. To overcome these situation, robust estimators are strongly recommended. One of robust estimators is re-weighted minimum covariance determinant (RMCD) which has robust characteristics as same as MCD. In this paper, the effectiveness term is accuracy of the RMCD control chart in detecting outliers as real outliers. In other word, how effectively this control chart can identify and remove masking and swamping effects of outliers. We assessed the effectiveness the robust control chart based on simulation by considering different scenarios: n sample sizes, proportion of outliers, number of p quality characteristics. We found that in some scenarios, this RMCD robust control chart works effectively.
Li, Peng; Redden, David T.
2014-01-01
SUMMARY The sandwich estimator in generalized estimating equations (GEE) approach underestimates the true variance in small samples and consequently results in inflated type I error rates in hypothesis testing. This fact limits the application of the GEE in cluster-randomized trials (CRTs) with few clusters. Under various CRT scenarios with correlated binary outcomes, we evaluate the small sample properties of the GEE Wald tests using bias-corrected sandwich estimators. Our results suggest that the GEE Wald z test should be avoided in the analyses of CRTs with few clusters even when bias-corrected sandwich estimators are used. With t-distribution approximation, the Kauermann and Carroll (KC)-correction can keep the test size to nominal levels even when the number of clusters is as low as 10, and is robust to the moderate variation of the cluster sizes. However, in cases with large variations in cluster sizes, the Fay and Graubard (FG)-correction should be used instead. Furthermore, we derive a formula to calculate the power and minimum total number of clusters one needs using the t test and KC-correction for the CRTs with binary outcomes. The power levels as predicted by the proposed formula agree well with the empirical powers from the simulations. The proposed methods are illustrated using real CRT data. We conclude that with appropriate control of type I error rates under small sample sizes, we recommend the use of GEE approach in CRTs with binary outcomes due to fewer assumptions and robustness to the misspecification of the covariance structure. PMID:25345738
cBathy: A robust algorithm for estimating nearshore bathymetry
Plant, Nathaniel G.; Holman, Rob; Holland, K. Todd
2013-01-01
A three-part algorithm is described and tested to provide robust bathymetry maps based solely on long time series observations of surface wave motions. The first phase consists of frequency-dependent characterization of the wave field in which dominant frequencies are estimated by Fourier transform while corresponding wave numbers are derived from spatial gradients in cross-spectral phase over analysis tiles that can be small, allowing high-spatial resolution. Coherent spatial structures at each frequency are extracted by frequency-dependent empirical orthogonal function (EOF). In phase two, depths are found that best fit weighted sets of frequency-wave number pairs. These are subsequently smoothed in time in phase 3 using a Kalman filter that fills gaps in coverage and objectively averages new estimates of variable quality with prior estimates. Objective confidence intervals are returned. Tests at Duck, NC, using 16 surveys collected over 2 years showed a bias and root-mean-square (RMS) error of 0.19 and 0.51 m, respectively but were largest near the offshore limits of analysis (roughly 500 m from the camera) and near the steep shoreline where analysis tiles mix information from waves, swash and static dry sand. Performance was excellent for small waves but degraded somewhat with increasing wave height. Sand bars and their small-scale alongshore variability were well resolved. A single ground truth survey from a dissipative, low-sloping beach (Agate Beach, OR) showed similar errors over a region that extended several kilometers from the camera and reached depths of 14 m. Vector wave number estimates can also be incorporated into data assimilation models of nearshore dynamics.
Information-geometric measures as robust estimators of connection strengths and external inputs.
Tatsuno, Masami; Fellous, Jean-Marc; Amari, Shun-Ichi
2009-08-01
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric measures corresponded to the number of external inputs and the connection strengths of the network, respectively. This relationship was, however, limited to a symmetrically connected network, and the number of neurons used in the parameter estimation of the log-linear model needed to be known. Recently, simulation studies of biophysical model neurons have suggested that information geometry can estimate the relative change of connection strengths and external inputs even with asymmetric connections. Inspired by these studies, we analytically investigated the link between the information-geometric measures and the neural network structure with asymmetrically connected networks of N neurons. We focused on the information-geometric measures of orders one and two, which can be derived from the two-neuron log-linear model, because unlike higher-order measures, they can be easily estimated experimentally. Considering the equilibrium state of a network of binary model neurons that obey stochastic dynamics, we analytically showed that the corrected first- and second-order information-geometric measures provided robust and consistent approximation of the external inputs and connection strengths, respectively. These results suggest that information-geometric measures provide useful insights into the neural network architecture and that they will contribute to the study of system-level neuroscience.
Evaluation of methods to estimate lake herring spawner abundance in Lake Superior
Yule, D.L.; Stockwell, J.D.; Cholwek, G.A.; Evrard, L.M.; Schram, S.; Seider, M.; Symbal, M.
2006-01-01
Historically, commercial fishers harvested Lake Superior lake herring Coregonus artedi for their flesh, but recently operators have targeted lake herring for roe. Because no surveys have estimated spawning female abundance, direct estimates of fishing mortality are lacking. The primary objective of this study was to determine the feasibility of using acoustic techniques in combination with midwater trawling to estimate spawning female lake herring densities in a Lake Superior statistical grid (i.e., a 10′ latitude × 10′ longitude area over which annual commercial harvest statistics are compiled). Midwater trawling showed that mature female lake herring were largely pelagic during the night in late November, accounting for 94.5% of all fish caught exceeding 250 mm total length. When calculating acoustic estimates of mature female lake herring, we excluded backscattering from smaller pelagic fishes like immature lake herring and rainbow smelt Osmerus mordax by applying an empirically derived threshold of −35.6 dB. We estimated the average density of mature females in statistical grid 1409 at 13.3 fish/ha and the total number of spawning females at 227,600 (95% confidence interval = 172,500–282,700). Using information on mature female densities, size structure, and fecundity, we estimate that females deposited 3.027 billion (109) eggs in grid 1409 (95% confidence interval = 2.356–3.778 billion). The relative estimation error of the mature female density estimate derived using a geostatistical model—based approach was low (12.3%), suggesting that the employed method was robust. Fishing mortality rates of all mature females and their eggs were estimated at 2.3% and 3.8%, respectively. The techniques described for enumerating spawning female lake herring could be used to develop a more accurate stock–recruitment model for Lake Superior lake herring.
Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood
Bondell, Howard D.; Stefanski, Leonard A.
2013-01-01
Large- and finite-sample efficiency and resistance to outliers are the key goals of robust statistics. Although often not simultaneously attainable, we develop and study a linear regression estimator that comes close. Efficiency obtains from the estimator’s close connection to generalized empirical likelihood, and its favorable robustness properties are obtained by constraining the associated sum of (weighted) squared residuals. We prove maximum attainable finite-sample replacement breakdown point, and full asymptotic efficiency for normal errors. Simulation evidence shows that compared to existing robust regression estimators, the new estimator has relatively high efficiency for small sample sizes, and comparable outlier resistance. The estimator is further illustrated and compared to existing methods via application to a real data set with purported outliers. PMID:23976805
Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty
Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun
2017-01-01
With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness. PMID:28287450
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2016-01-01
Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.
Secure Fusion Estimation for Bandwidth Constrained Cyber-Physical Systems Under Replay Attacks.
Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li; Bo Chen; Ho, Daniel W C; Guoqiang Hu; Li Yu; Chen, Bo; Ho, Daniel W C; Hu, Guoqiang; Yu, Li
2018-06-01
State estimation plays an essential role in the monitoring and supervision of cyber-physical systems (CPSs), and its importance has made the security and estimation performance a major concern. In this case, multisensor information fusion estimation (MIFE) provides an attractive alternative to study secure estimation problems because MIFE can potentially improve estimation accuracy and enhance reliability and robustness against attacks. From the perspective of the defender, the secure distributed Kalman fusion estimation problem is investigated in this paper for a class of CPSs under replay attacks, where each local estimate obtained by the sink node is transmitted to a remote fusion center through bandwidth constrained communication channels. A new mathematical model with compensation strategy is proposed to characterize the replay attacks and bandwidth constrains, and then a recursive distributed Kalman fusion estimator (DKFE) is designed in the linear minimum variance sense. According to different communication frameworks, two classes of data compression and compensation algorithms are developed such that the DKFEs can achieve the desired performance. Several attack-dependent and bandwidth-dependent conditions are derived such that the DKFEs are secure under replay attacks. An illustrative example is given to demonstrate the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Gillam, Thomas P. S.; Lester, Christopher G.
2014-11-01
We consider current and alternative approaches to setting limits on new physics signals having backgrounds from misidentified objects; for example jets misidentified as leptons, b-jets or photons. Many ATLAS and CMS analyses have used a heuristic "matrix method" for estimating the background contribution from such sources. We demonstrate that the matrix method suffers from statistical shortcomings that can adversely affect its ability to set robust limits. A rigorous alternative method is discussed, and is seen to produce fake rate estimates and limits with better qualities, but is found to be too costly to use. Having investigated the nature of the approximations used to derive the matrix method, we propose a third strategy that is seen to marry the speed of the matrix method to the performance and physicality of the more rigorous approach.
RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy
NASA Astrophysics Data System (ADS)
Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.
2016-02-01
We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.
Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-04-01
Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with respect to other commonly used approaches in the literature.
Motion compensation for cone-beam CT using Fourier consistency conditions
NASA Astrophysics Data System (ADS)
Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.
2017-09-01
In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.
NASA Astrophysics Data System (ADS)
Schaffrin, Burkhard
2008-02-01
In a linear Gauss-Markov model, the parameter estimates from BLUUE (Best Linear Uniformly Unbiased Estimate) are not robust against possible outliers in the observations. Moreover, by giving up the unbiasedness constraint, the mean squared error (MSE) risk may be further reduced, in particular when the problem is ill-posed. In this paper, the α-weighted S-homBLE (Best homogeneously Linear Estimate) is derived via formulas originally used for variance component estimation on the basis of the repro-BIQUUE (reproducing Best Invariant Quadratic Uniformly Unbiased Estimate) principle in a model with stochastic prior information. In the present model, however, such prior information is not included, which allows the comparison of the stochastic approach (α-weighted S-homBLE) with the well-established algebraic approach of Tykhonov-Phillips regularization, also known as R-HAPS (Hybrid APproximation Solution), whenever the inverse of the “substitute matrix” S exists and is chosen as the R matrix that defines the relative impact of the regularizing term on the final result.
Practical robustness measures in multivariable control system analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.
1981-01-01
The robustness of the stability of multivariable linear time invariant feedback control systems with respect to model uncertainty is considered using frequency domain criteria. Available robustness tests are unified under a common framework based on the nature and structure of model errors. These results are derived using a multivariable version of Nyquist's stability theorem in which the minimum singular value of the return difference transfer matrix is shown to be the multivariable generalization of the distance to the critical point on a single input, single output Nyquist diagram. Using the return difference transfer matrix, a very general robustness theorem is presented from which all of the robustness tests dealing with specific model errors may be derived. The robustness tests that explicitly utilized model error structure are able to guarantee feedback system stability in the face of model errors of larger magnitude than those robustness tests that do not. The robustness of linear quadratic Gaussian control systems are analyzed.
A robust background regression based score estimation algorithm for hyperspectral anomaly detection
NASA Astrophysics Data System (ADS)
Zhao, Rui; Du, Bo; Zhang, Liangpei; Zhang, Lefei
2016-12-01
Anomaly detection has become a hot topic in the hyperspectral image analysis and processing fields in recent years. The most important issue for hyperspectral anomaly detection is the background estimation and suppression. Unreasonable or non-robust background estimation usually leads to unsatisfactory anomaly detection results. Furthermore, the inherent nonlinearity of hyperspectral images may cover up the intrinsic data structure in the anomaly detection. In order to implement robust background estimation, as well as to explore the intrinsic data structure of the hyperspectral image, we propose a robust background regression based score estimation algorithm (RBRSE) for hyperspectral anomaly detection. The Robust Background Regression (RBR) is actually a label assignment procedure which segments the hyperspectral data into a robust background dataset and a potential anomaly dataset with an intersection boundary. In the RBR, a kernel expansion technique, which explores the nonlinear structure of the hyperspectral data in a reproducing kernel Hilbert space, is utilized to formulate the data as a density feature representation. A minimum squared loss relationship is constructed between the data density feature and the corresponding assigned labels of the hyperspectral data, to formulate the foundation of the regression. Furthermore, a manifold regularization term which explores the manifold smoothness of the hyperspectral data, and a maximization term of the robust background average density, which suppresses the bias caused by the potential anomalies, are jointly appended in the RBR procedure. After this, a paired-dataset based k-nn score estimation method is undertaken on the robust background and potential anomaly datasets, to implement the detection output. The experimental results show that RBRSE achieves superior ROC curves, AUC values, and background-anomaly separation than some of the other state-of-the-art anomaly detection methods, and is easy to implement in practice.
NASA Astrophysics Data System (ADS)
Ruan, Zhixing; Guo, Huadong; Liu, Guang; Yan, Shiyong
2014-01-01
Glacier movement is closely related to changes in climatic, hydrological, and geological factors. However, detecting glacier surface flow velocity with conventional ground surveys is challenging. Remote sensing techniques, especially synthetic aperture radar (SAR), provide regular observations covering larger-scale glacier regions. Glacier surface flow velocity in the West Kunlun Mountains using modified offset-tracking techniques based on ALOS/PALSAR images is estimated. Three maps of glacier flow velocity for the period 2007 to 2010 are derived from procedures of offset detection using cross correlation in the Fourier domain and global offset elimination of thin plate smooth splines. Our results indicate that, on average, winter glacier motion on the North Slope is 1 cm/day faster than on the South Slope-a result which corresponds well with the local topography. The performance of our method as regards the reliability of extracted displacements and the robustness of this algorithm are discussed. The SAR-based offset tracking is proven to be reliable and robust, making it possible to investigate comprehensive glacier movement and its response mechanism to environmental change.
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Solution to the Problem of Calibration of Low-Cost Air Quality Measurement Sensors in Networks.
Miskell, Georgia; Salmond, Jennifer A; Williams, David E
2018-04-27
We provide a simple, remote, continuous calibration technique suitable for application in a hierarchical network featuring a few well-maintained, high-quality instruments ("proxies") and a larger number of low-cost devices. The ideas are grounded in a clear definition of the purpose of a low-cost network, defined here as providing reliable information on air quality at small spatiotemporal scales. The technique assumes linearity of the sensor signal. It derives running slope and offset estimates by matching mean and standard deviations of the sensor data to values derived from proxies over the same time. The idea is extremely simple: choose an appropriate proxy and an averaging-time that is sufficiently long to remove the influence of short-term fluctuations but sufficiently short that it preserves the regular diurnal variations. The use of running statistical measures rather than cross-correlation of sites means that the method is robust against periods of missing data. Ideas are first developed using simulated data and then demonstrated using field data, at hourly and 1 min time-scales, from a real network of low-cost semiconductor-based sensors. Despite the almost naïve simplicity of the method, it was robust for both drift detection and calibration correction applications. We discuss the use of generally available geographic and environmental data as well as microscale land-use regression as means to enhance the proxy estimates and to generalize the ideas to other pollutants with high spatial variability, such as nitrogen dioxide and particulates. These improvements can also be used to minimize the required number of proxy sites.
ROBNCA: robust network component analysis for recovering transcription factor activities.
Noor, Amina; Ahmad, Aitzaz; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem
2013-10-01
Network component analysis (NCA) is an efficient method of reconstructing the transcription factor activity (TFA), which makes use of the gene expression data and prior information available about transcription factor (TF)-gene regulations. Most of the contemporary algorithms either exhibit the drawback of inconsistency and poor reliability, or suffer from prohibitive computational complexity. In addition, the existing algorithms do not possess the ability to counteract the presence of outliers in the microarray data. Hence, robust and computationally efficient algorithms are needed to enable practical applications. We propose ROBust Network Component Analysis (ROBNCA), a novel iterative algorithm that explicitly models the possible outliers in the microarray data. An attractive feature of the ROBNCA algorithm is the derivation of a closed form solution for estimating the connectivity matrix, which was not available in prior contributions. The ROBNCA algorithm is compared with FastNCA and the non-iterative NCA (NI-NCA). ROBNCA estimates the TF activity profiles as well as the TF-gene control strength matrix with a much higher degree of accuracy than FastNCA and NI-NCA, irrespective of varying noise, correlation and/or amount of outliers in case of synthetic data. The ROBNCA algorithm is also tested on Saccharomyces cerevisiae data and Escherichia coli data, and it is observed to outperform the existing algorithms. The run time of the ROBNCA algorithm is comparable with that of FastNCA, and is hundreds of times faster than NI-NCA. The ROBNCA software is available at http://people.tamu.edu/∼amina/ROBNCA
Li, Zukui; Floudas, Christodoulos A.
2012-01-01
Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868
Robust guaranteed-cost adaptive quantum phase estimation
NASA Astrophysics Data System (ADS)
Roy, Shibdas; Berry, Dominic W.; Petersen, Ian R.; Huntington, Elanor H.
2017-05-01
Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using the measurement results from both before and after that time within a fixed time interval up to current time. Here, we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in the worst case always performs better than the best achievable variance for heterodyne measurements, which we consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and effective noise power, and show that our filter provides the best results by these measures in the worst case.
A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.
Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C
2018-05-03
The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Gerlich, Nikolas; Rostek, Stefan
2015-09-01
We derive a heuristic method to estimate the degree of self-similarity and serial correlation in financial time series. Especially, we propagate the use of a tailor-made selection of different estimation techniques that are used in various fields of time series analysis but until now have not consequently found their way into the finance literature. Following the idea of portfolio diversification, we show that considerable improvements with respect to robustness and unbiasedness can be achieved by using a basket of estimation methods. With this methodological toolbox at hand, we investigate real market data to show that noticeable deviations from the assumptions of constant self-similarity and absence of serial correlation occur during certain periods. On the one hand, this may shed a new light on seemingly ambiguous scientific findings concerning serial correlation of financial time series. On the other hand, a proven time-changing degree of self-similarity may help to explain high-volatility clusters of stock price indices.
Cao, Yanpeng; Tisse, Christel-Loic
2013-09-01
In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen
2018-01-01
In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.
Robust inference in discrete hazard models for randomized clinical trials.
Nguyen, Vinh Q; Gillen, Daniel L
2012-10-01
Time-to-event data in which failures are only assessed at discrete time points are common in many clinical trials. Examples include oncology studies where events are observed through periodic screenings such as radiographic scans. When the survival endpoint is acknowledged to be discrete, common methods for the analysis of observed failure times include the discrete hazard models (e.g., the discrete-time proportional hazards and the continuation ratio model) and the proportional odds model. In this manuscript, we consider estimation of a marginal treatment effect in discrete hazard models where the constant treatment effect assumption is violated. We demonstrate that the estimator resulting from these discrete hazard models is consistent for a parameter that depends on the underlying censoring distribution. An estimator that removes the dependence on the censoring mechanism is proposed and its asymptotic distribution is derived. Basing inference on the proposed estimator allows for statistical inference that is scientifically meaningful and reproducible. Simulation is used to assess the performance of the presented methodology in finite samples.
Hubble, Michael W; Richards, Michael E; Wilfong, Denise A
2008-01-01
To estimate the cost-effectiveness of continuous positive airway pressure (CPAP) in managing prehospital acute pulmonary edema in an urban EMS system. Using estimates from published reports on prehospital and emergency department CPAP, a cost-effectiveness model of implementing CPAP in a typical urban EMS system was derived from the societal perspective as well as the perspective of the implementing EMS system. To assess the robustness of the model, a series of univariate and multivariate sensitivity analyses was performed on the input variables. The cost of consumables, equipment, and training yielded a total cost of $89 per CPAP application. The theoretical system would be expected to use CPAP 4 times per 1000 EMS patients and is expected to save 0.75 additional lives per 1000 EMS patients at a cost of $490 per life saved. CPAP is also expected to result in approximately one less intubation per 6 CPAP applications and reduce hospitalization costs by $4075 per year for each CPAP application. Through sensitivity analyses the model was verified to be robust across a wide range of input variable assumptions. Previous studies have demonstrated the clinical effectiveness of CPAP in the management of acute pulmonary edema. Through a theoretical analysis which modeled the costs and clinical benefits of implementing CPAP in an urban EMS system, prehospital CPAP appears to be a cost-effective treatment.
Lateral control system design for VTOL landing on a DD963 in high sea states. M.S. Thesis
NASA Technical Reports Server (NTRS)
Bodson, M.
1982-01-01
The problem of designing lateral control systems for the safe landing of VTOL aircraft on small ships is addressed. A ship model is derived. The issues of estimation and prediction of ship motions are discussed, using optimal linear linear estimation techniques. The roll motion is the most important of the lateral motions, and it is found that it can be predicted for up to 10 seconds in perfect conditions. The automatic landing of the VTOL aircraft is considered, and a lateral controller, defined as a ship motion tracker, is designed, using optimal control techniqes. The tradeoffs between the tracking errors and the control authority are obtained. The important couplings between the lateral motions and controls are demonstrated, and it is shown that the adverse couplings between the sway and the roll motion at the landing pad are significant constraints in the tracking of the lateral ship motions. The robustness of the control system, including the optimal estimator, is studied, using the singular values analysis. Through a robustification procedure, a robust control system is obtained, and the usefulness of the singular values to define stability margins that take into account general types of unstructured modelling errors is demonstrated. The minimal destabilizing perturbations indicated by the singular values analysis are interpreted and related to the multivariable Nyquist diagrams.
Robust image modeling techniques with an image restoration application
NASA Astrophysics Data System (ADS)
Kashyap, Rangasami L.; Eom, Kie-Bum
1988-08-01
A robust parameter-estimation algorithm for a nonsymmetric half-plane (NSHP) autoregressive model, where the driving noise is a mixture of a Gaussian and an outlier process, is presented. The convergence of the estimation algorithm is proved. An algorithm to estimate parameters and original image intensity simultaneously from the impulse-noise-corrupted image, where the model governing the image is not available, is also presented. The robustness of the parameter estimates is demonstrated by simulation. Finally, an algorithm to restore realistic images is presented. The entire image generally does not obey a simple image model, but a small portion (e.g., 8 x 8) of the image is assumed to obey an NSHP model. The original image is divided into windows and the robust estimation algorithm is applied for each window. The restoration algorithm is tested by comparing it to traditional methods on several different images.
NASA Astrophysics Data System (ADS)
Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah
2017-08-01
Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.
Modelling rainfall interception by forests: a new method for estimating the canopy storage capacity
NASA Astrophysics Data System (ADS)
Pereira, Fernando; Valente, Fernanda; Nóbrega, Cristina
2015-04-01
Evaporation of rainfall intercepted by forests is usually an important part of a catchment water balance. Recognizing the importance of interception loss, several models of the process have been developed. A key parameter of these models is the canopy storage capacity (S), commonly estimated by the so-called Leyton method. However, this method is somewhat subjective in the selection of the storms used to derive S, which is particularly critical when throughfall is highly variable in space. To overcome these problems, a new method for estimating S was proposed in 2009 by Pereira et al. (Agricultural and Forest Meteorology, 149: 680-688), which uses information from a larger number of storms, is less sensitive to throughfall spatial variability and is consistent with the formulation of the two most widely used rainfall interception models, Gash analytical model and Rutter model. However, this method has a drawback: it does not account for stemflow (Sf). To allow a wider use of this methodology, we propose now a revised version which makes the estimation of S independent of the importance of stemflow. For the application of this new version we only need to establish a linear regression of throughfall vs. gross rainfall using data from all storms large enough to saturate the canopy. Two of the parameters used by the Gash and the Rutter models, pd (the drainage partitioning coefficient) and S, are then derived from the regression coefficients: pd is firstly estimated allowing then the derivation of S but, if Sf is not considered, S can be estimated making pd= 0. This new method was tested using data from a eucalyptus plantation, a maritime pine forest and a traditional olive grove, all located in Central Portugal. For both the eucalyptus and the pine forests pd and S estimated by this new approach were comparable to the values derived in previous studies using the standard procedures. In the case of the traditional olive grove, the estimates obtained by this methodology for pd and S allowed interception loss to be modelled with a normalized averaged error less than 4%. Globally, these results confirm that the method is more robust and certainly less subjective, providing adequate estimates for pd and S which, in turn, are crucial for a good performance of the interception models.
Causal inference with measurement error in outcomes: Bias analysis and estimation methods.
Shu, Di; Yi, Grace Y
2017-01-01
Inverse probability weighting estimation has been popularly used to consistently estimate the average treatment effect. Its validity, however, is challenged by the presence of error-prone variables. In this paper, we explore the inverse probability weighting estimation with mismeasured outcome variables. We study the impact of measurement error for both continuous and discrete outcome variables and reveal interesting consequences of the naive analysis which ignores measurement error. When a continuous outcome variable is mismeasured under an additive measurement error model, the naive analysis may still yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias in a closed-form. Furthermore, we develop consistent estimation procedures for practical scenarios where either validation data or replicates are available. With validation data, we propose an efficient method for estimation of average treatment effect; the efficiency gain is substantial relative to usual methods of using validation data. To provide protection against model misspecification, we further propose a doubly robust estimator which is consistent even when either the treatment model or the outcome model is misspecified. Simulation studies are reported to assess the performance of the proposed methods. An application to a smoking cessation dataset is presented.
Obtaining changes in calibration-coil to seismometer output constants using sine waves
Ringler, Adam T.; Hutt, Charles R.; Gee, Lind S.; Sandoval, Leo D.; Wilson, David C.
2013-01-01
The midband sensitivity of a broadband seismometer is one of the most commonly used parameters from station metadata. Thus, it is critical for station operators to robustly estimate this quantity with a high degree of accuracy. We develop an in situ method for estimating changes in sensitivity using sine‐wave calibrations, assuming the calibration coil and its drive are stable over time and temperature. This approach has been used in the past for passive instruments (e.g., geophones) but has not been applied, to our knowledge, to derive sensitivities of modern force‐feedback broadband seismometers. We are able to detect changes in sensitivity to well within 1%, and our method is capable of detecting these sensitivity changes using any frequency of sine calibration within the passband of the instrument.
Robustness enhancement of neurocontroller and state estimator
NASA Technical Reports Server (NTRS)
Troudet, Terry
1993-01-01
The feasibility of enhancing neurocontrol robustness, through training of the neurocontroller and state estimator in the presence of system uncertainties, is investigated on the example of a multivariable aircraft control problem. The performance and robustness of the newly trained neurocontroller are compared to those for an existing neurocontrol design scheme. The newly designed dynamic neurocontroller exhibits a better trade-off between phase and gain stability margins, and it is significantly more robust to degradations of the plant dynamics.
A Robust Post-Processing Workflow for Datasets with Motion Artifacts in Diffusion Kurtosis Imaging
Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X.; Wan, Mingxi
2014-01-01
Purpose The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). Materials and methods The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). Results The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). Conclusion The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements. PMID:24727862
A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.
Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X; Wan, Mingxi
2014-01-01
The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.
NASA Astrophysics Data System (ADS)
Famiglietti, C.; Fisher, J.; Halverson, G. H.
2017-12-01
This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.
Blind Compensation of I/Q Impairments in Wireless Transceivers
Aziz, Mohsin; Ghannouchi, Fadhel M.; Helaoui, Mohamed
2017-01-01
The majority of techniques that deal with the mitigation of in-phase and quadrature-phase (I/Q) imbalance at the transmitter (pre-compensation) require long training sequences, reducing the throughput of the system. These techniques also require a feedback path, which adds more complexity and cost to the transmitter architecture. Blind estimation techniques are attractive for avoiding the use of long training sequences. In this paper, we propose a blind frequency-independent I/Q imbalance compensation method based on the maximum likelihood (ML) estimation of the imbalance parameters of a transceiver. A closed-form joint probability density function (PDF) for the imbalanced I and Q signals is derived and validated. ML estimation is then used to estimate the imbalance parameters using the derived joint PDF of the output I and Q signals. Various figures of merit have been used to evaluate the efficacy of the proposed approach using extensive computer simulations and measurements. Additionally, the bit error rate curves show the effectiveness of the proposed method in the presence of the wireless channel and Additive White Gaussian Noise. Real-world experimental results show an image rejection of greater than 30 dB as compared to the uncompensated system. This method has also been found to be robust in the presence of practical system impairments, such as time and phase delay mismatches. PMID:29257081
Robust multiperson detection and tracking for mobile service and social robots.
Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou
2012-10-01
This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.
The Robustness of LISREL Estimates in Structural Equation Models with Categorical Variables.
ERIC Educational Resources Information Center
Ethington, Corinna A.
1987-01-01
This study examined the effect of type of correlation matrix on the robustness of LISREL maximum likelihood and unweighted least squares structural parameter estimates for models with categorical variables. The analysis of mixed matrices produced estimates that closely approximated the model parameters except where dichotomous variables were…
Thilak, Vimal; Voelz, David G; Creusere, Charles D
2007-10-20
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Voelz, David G.; Creusere, Charles D.
2007-10-01
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
A note on variance estimation in random effects meta-regression.
Sidik, Kurex; Jonkman, Jeffrey N
2005-01-01
For random effects meta-regression inference, variance estimation for the parameter estimates is discussed. Because estimated weights are used for meta-regression analysis in practice, the assumed or estimated covariance matrix used in meta-regression is not strictly correct, due to possible errors in estimating the weights. Therefore, this note investigates the use of a robust variance estimation approach for obtaining variances of the parameter estimates in random effects meta-regression inference. This method treats the assumed covariance matrix of the effect measure variables as a working covariance matrix. Using an example of meta-analysis data from clinical trials of a vaccine, the robust variance estimation approach is illustrated in comparison with two other methods of variance estimation. A simulation study is presented, comparing the three methods of variance estimation in terms of bias and coverage probability. We find that, despite the seeming suitability of the robust estimator for random effects meta-regression, the improved variance estimator of Knapp and Hartung (2003) yields the best performance among the three estimators, and thus may provide the best protection against errors in the estimated weights.
A lower limit on the age of the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaboyer, B.; Demarque, P.; Kernan, P.J.
1996-02-16
A detailed numerical study was designed and conducted to estimate the absolute age and the uncertainty in age (with confidence limits) of the oldest globular clusters in our galaxy, and hence to put a robust lower bound on the age of the universe. Estimates of the uncertainty range and distribution in the input parameters of stellar evolution codes were used to produce 1000 Monte Carlo realizations of stellar isochrones, which were then used to derive ages for the 17 oldest globular clusters. A probability distribution for the mean age of these systems was derived by incorporating the observational uncertainties inmore » chrones. The dominant contribution to the width of the distribution (approximately {sup +}{sub -}5) magnitudes. Subdominant contributions came from the choice of the color table used to translate theoretical luminosities and temperatures to observed magnitudes and colors, as well as from theoretical uncertainties in heavy element abundances and mixing length. The one-sided 95 percent confidence limit lower bound for this distribution occurs at an age of 12.07 X 10{sup 9} years, and the median age for the distribution is 14.56 X 10{sup 9} years. These age limits, when compared with the Hubble age estimate, put powerful constraints on cosmology. 41 refs., 2 figs.« less
Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.
Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang
2018-02-24
This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
Robust Statistical Approaches for RSS-Based Floor Detection in Indoor Localization.
Razavi, Alireza; Valkama, Mikko; Lohan, Elena Simona
2016-05-31
Floor detection for indoor 3D localization of mobile devices is currently an important challenge in the wireless world. Many approaches currently exist, but usually the robustness of such approaches is not addressed or investigated. The goal of this paper is to show how to robustify the floor estimation when probabilistic approaches with a low number of parameters are employed. Indeed, such an approach would allow a building-independent estimation and a lower computing power at the mobile side. Four robustified algorithms are to be presented: a robust weighted centroid localization method, a robust linear trilateration method, a robust nonlinear trilateration method, and a robust deconvolution method. The proposed approaches use the received signal strengths (RSS) measured by the Mobile Station (MS) from various heard WiFi access points (APs) and provide an estimate of the vertical position of the MS, which can be used for floor detection. We will show that robustification can indeed increase the performance of the RSS-based floor detection algorithms.
Robust global ocean cooling trend for the pre-industrial Common Era
NASA Astrophysics Data System (ADS)
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-09-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Robust global ocean cooling trend for the pre-industrial Common Era
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-01-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Xiong, Naixue; Liu, Ryan Wen; Liang, Maohan; Wu, Di; Liu, Zhao; Wu, Huisi
2017-01-18
Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
NASA Astrophysics Data System (ADS)
Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan
2015-05-01
Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.
Constrained Low-Rank Learning Using Least Squares-Based Regularization.
Li, Ping; Yu, Jun; Wang, Meng; Zhang, Luming; Cai, Deng; Li, Xuelong
2017-12-01
Low-rank learning has attracted much attention recently due to its efficacy in a rich variety of real-world tasks, e.g., subspace segmentation and image categorization. Most low-rank methods are incapable of capturing low-dimensional subspace for supervised learning tasks, e.g., classification and regression. This paper aims to learn both the discriminant low-rank representation (LRR) and the robust projecting subspace in a supervised manner. To achieve this goal, we cast the problem into a constrained rank minimization framework by adopting the least squares regularization. Naturally, the data label structure tends to resemble that of the corresponding low-dimensional representation, which is derived from the robust subspace projection of clean data by low-rank learning. Moreover, the low-dimensional representation of original data can be paired with some informative structure by imposing an appropriate constraint, e.g., Laplacian regularizer. Therefore, we propose a novel constrained LRR method. The objective function is formulated as a constrained nuclear norm minimization problem, which can be solved by the inexact augmented Lagrange multiplier algorithm. Extensive experiments on image classification, human pose estimation, and robust face recovery have confirmed the superiority of our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less
A robust vision-based sensor fusion approach for real-time pose estimation.
Assa, Akbar; Janabi-Sharifi, Farrokh
2014-02-01
Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.
Zhang, Zhiyong; Yuan, Ke-Hai
2016-06-01
Cronbach's coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald's omega has been used as a popular alternative to alpha in the literature. Traditional estimation methods for alpha and omega often implicitly assume that data are complete and normally distributed. This study proposes robust procedures to estimate both alpha and omega as well as corresponding standard errors and confidence intervals from samples that may contain potential outlying observations and missing values. The influence of outlying observations and missing data on the estimates of alpha and omega is investigated through two simulation studies. Results show that the newly developed robust method yields substantially improved alpha and omega estimates as well as better coverage rates of confidence intervals than the conventional nonrobust method. An R package coefficientalpha is developed and demonstrated to obtain robust estimates of alpha and omega.
Zhang, Zhiyong; Yuan, Ke-Hai
2015-01-01
Cronbach’s coefficient alpha is a widely used reliability measure in social, behavioral, and education sciences. It is reported in nearly every study that involves measuring a construct through multiple items. With non-tau-equivalent items, McDonald’s omega has been used as a popular alternative to alpha in the literature. Traditional estimation methods for alpha and omega often implicitly assume that data are complete and normally distributed. This study proposes robust procedures to estimate both alpha and omega as well as corresponding standard errors and confidence intervals from samples that may contain potential outlying observations and missing values. The influence of outlying observations and missing data on the estimates of alpha and omega is investigated through two simulation studies. Results show that the newly developed robust method yields substantially improved alpha and omega estimates as well as better coverage rates of confidence intervals than the conventional nonrobust method. An R package coefficientalpha is developed and demonstrated to obtain robust estimates of alpha and omega. PMID:29795870
Robustness of location estimators under t-distributions: a literature review
NASA Astrophysics Data System (ADS)
Sumarni, C.; Sadik, K.; Notodiputro, K. A.; Sartono, B.
2017-03-01
The assumption of normality is commonly used in estimation of parameters in statistical modelling, but this assumption is very sensitive to outliers. The t-distribution is more robust than the normal distribution since the t-distributions have longer tails. The robustness measures of location estimators under t-distributions are reviewed and discussed in this paper. For the purpose of illustration we use the onion yield data which includes outliers as a case study and showed that the t model produces better fit than the normal model.
Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring
ERIC Educational Resources Information Center
Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.
2015-01-01
Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…
NASA Astrophysics Data System (ADS)
Rock, N. M. S.
ROBUST calculates 53 statistics, plus significance levels for 6 hypothesis tests, on each of up to 52 variables. These together allow the following properties of the data distribution for each variable to be examined in detail: (1) Location. Three means (arithmetic, geometric, harmonic) are calculated, together with the midrange and 19 high-performance robust L-, M-, and W-estimates of location (combined, adaptive, trimmed estimates, etc.) (2) Scale. The standard deviation is calculated along with the H-spread/2 (≈ semi-interquartile range), the mean and median absolute deviations from both mean and median, and a biweight scale estimator. The 23 location and 6 scale estimators programmed cover all possible degrees of robustness. (3) Normality: Distributions are tested against the null hypothesis that they are normal, using the 3rd (√ h1) and 4th ( b 2) moments, Geary's ratio (mean deviation/standard deviation), Filliben's probability plot correlation coefficient, and a more robust test based on the biweight scale estimator. These statistics collectively are sensitive to most usual departures from normality. (4) Presence of outliers. The maximum and minimum values are assessed individually or jointly using Grubbs' maximum Studentized residuals, Harvey's and Dixon's criteria, and the Studentized range. For a single input variable, outliers can be either winsorized or eliminated and all estimates recalculated iteratively as desired. The following data-transformations also can be applied: linear, log 10, generalized Box Cox power (including log, reciprocal, and square root), exponentiation, and standardization. For more than one variable, all results are tabulated in a single run of ROBUST. Further options are incorporated to assess ratios (of two variables) as well as discrete variables, and be concerned with missing data. Cumulative S-plots (for assessing normality graphically) also can be generated. The mutual consistency or inconsistency of all these measures helps to detect errors in data as well as to assess data-distributions themselves.
ERIC Educational Resources Information Center
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria
2012-01-01
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Software For Least-Squares And Robust Estimation
NASA Technical Reports Server (NTRS)
Jeffreys, William H.; Fitzpatrick, Michael J.; Mcarthur, Barbara E.; Mccartney, James
1990-01-01
GAUSSFIT computer program includes full-featured programming language facilitating creation of mathematical models solving least-squares and robust-estimation problems. Programming language designed to make it easy to specify complex reduction models. Written in 100 percent C language.
Rank-preserving regression: a more robust rank regression model against outliers.
Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M
2016-08-30
Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Estimating open population site occupancy from presence-absence data lacking the robust design.
Dail, D; Madsen, L
2013-03-01
Many animal monitoring studies seek to estimate the proportion of a study area occupied by a target population. The study area is divided into spatially distinct sites where the detected presence or absence of the population is recorded, and this is repeated in time for multiple seasons. However, when occupied sites are detected with probability p < 1, the lack of a detection does not imply lack of occupancy. MacKenzie et al. (2003, Ecology 84, 2200-2207) developed a multiseason model for estimating seasonal site occupancy (ψt ) while accounting for unknown p. Their model performs well when observations are collected according to the robust design, where multiple sampling occasions occur during each season; the repeated sampling aids in the estimation p. However, their model does not perform as well when the robust design is lacking. In this paper, we propose an alternative likelihood model that yields improved seasonal estimates of p and Ψt in the absence of the robust design. We construct the marginal likelihood of the observed data by conditioning on, and summing out, the latent number of occupied sites during each season. A simulation study shows that in cases without the robust design, the proposed model estimates p with less bias than the MacKenzie et al. model and hence improves the estimates of Ψt . We apply both models to a data set consisting of repeated presence-absence observations of American robins (Turdus migratorius) with yearly survey periods. The two models are compared to a third estimator available when the repeated counts (from the same study) are considered, with the proposed model yielding estimates of Ψt closest to estimates from the point count model. Copyright © 2013, The International Biometric Society.
Prenatal air pollution exposure and ultrasound measures of fetal growth in Los Angeles, California.
Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Erin Weiss, Robert; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle
2014-04-01
Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3mm. For women residing within 5km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. Copyright © 2014 Elsevier Inc. All rights reserved.
Prenatal Air Pollution Exposure and Ultrasound Measures of Fetal Growth in Los Angeles, California
Ritz, Beate; Qiu, Jiaheng; Lee, Pei-Chen; Lurmann, Fred; Penfold, Bryan; Weiss, Robert Erin; McConnell, Rob; Arora, Chander; Hobel, Calvin; Wilhelm, Michelle
2014-01-01
Background Few previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy. Methods In a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10 μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound. Results Exposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3 mm. For women residing within 5 km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0 mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined. Conclusions Prenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy. PMID:24517884
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voort, Sebastian van der; Section of Nuclear Energy and Radiation Applications, Department of Radiation, Science and Technology, Delft University of Technology, Delft; Water, Steven van de
Purpose: We aimed to derive a “robustness recipe” giving the range robustness (RR) and setup robustness (SR) settings (ie, the error values) that ensure adequate clinical target volume (CTV) coverage in oropharyngeal cancer patients for given gaussian distributions of systematic setup, random setup, and range errors (characterized by standard deviations of Σ, σ, and ρ, respectively) when used in minimax worst-case robust intensity modulated proton therapy (IMPT) optimization. Methods and Materials: For the analysis, contoured computed tomography (CT) scans of 9 unilateral and 9 bilateral patients were used. An IMPT plan was considered robust if, for at least 98% of themore » simulated fractionated treatments, 98% of the CTV received 95% or more of the prescribed dose. For fast assessment of the CTV coverage for given error distributions (ie, different values of Σ, σ, and ρ), polynomial chaos methods were used. Separate recipes were derived for the unilateral and bilateral cases using one patient from each group, and all 18 patients were included in the validation of the recipes. Results: Treatment plans for bilateral cases are intrinsically more robust than those for unilateral cases. The required RR only depends on the ρ, and SR can be fitted by second-order polynomials in Σ and σ. The formulas for the derived robustness recipes are as follows: Unilateral patients need SR = −0.15Σ{sup 2} + 0.27σ{sup 2} + 1.85Σ − 0.06σ + 1.22 and RR=3% for ρ = 1% and ρ = 2%; bilateral patients need SR = −0.07Σ{sup 2} + 0.19σ{sup 2} + 1.34Σ − 0.07σ + 1.17 and RR=3% and 4% for ρ = 1% and 2%, respectively. For the recipe validation, 2 plans were generated for each of the 18 patients corresponding to Σ = σ = 1.5 mm and ρ = 0% and 2%. Thirty-four plans had adequate CTV coverage in 98% or more of the simulated fractionated treatments; the remaining 2 had adequate coverage in 97.8% and 97.9%. Conclusions: Robustness recipes were derived that can be used in minimax robust optimization of IMPT treatment plans to ensure adequate CTV coverage for oropharyngeal cancer patients.« less
NASA Astrophysics Data System (ADS)
Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim
2016-08-01
Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface groundwater models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKFOSA. Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25 % more accurate state and parameter estimations than the joint and dual approaches.
Robust estimators of palaeosecular variation
NASA Astrophysics Data System (ADS)
Suttie, Neil; Biggin, Andrew; Holme, Richard
2015-02-01
The Fisher distribution is central to palaeomagnetism but presents several problems when used to characterize geomagnetic field directions as observed in sequences of volcanic rocks. First, it introduces a shallowing effect when used to define the mean of any group of directional unit vectors. This is problematic because it can suggest the presence of persistent non-axial dipole components when none are present. More importantly, it fails to capture the observed `long tail' in distributions of both directions and associated virtual geomagnetic poles in terms of angular distance from a central direction. To achieve a good fit to data, it therefore requires the introduction of a second distribution (and therefore the estimation of additional parameters) or the arbitrary removal of data. Here we present a new distribution to describe palaeomagnetic directions and demonstrate that it overcomes both of these problems, generating robust indicators of both the central direction (or pole position) and the spread of palaeomagnetic data as defined by unit vectors. Starting from the assumption that poles (or directions) have an expected colatitude, rather than a mean location, we derive the spherical exponential distribution. We demonstrate that this new distribution provides a good fit to palaeomagnetic data sets from seven large igneous provinces between 15 and 65 Ma and also those produced by numerical dynamo models. We also use it to derive a new shape parameter which may be used as a diagnostic tool for testing goodness of fit of models to data and use this to argue for a shift in geomagnetic behaviour between 5 and 15 Ma. Furthermore, we point out that this new statistic can be used to determine the most appropriate distribution to be used when constructing confidence limits for poles.
Steinke, Dirk; Salzburger, Walter; Meyer, Axel
2006-06-01
The power of comparative phylogenomic analyses also depends on the amount of data that are included in such studies. We used expressed sequence tags (ESTs) from fish model species as a proof of principle approach in order to test the reliability of using ESTs for phylogenetic inference. As expected, the robustness increases with the amount of sequences. Although some progress has been made in the elucidation of the phylogeny of teleosts, relationships among the main lineages of the derived fish (Euteleostei) remain poorly defined and are still debated. We performed a phylogenomic analysis of a set of 42 of orthologous genes from 10 available fish model systems from seven different orders (Salmoniformes, Siluriformes, Cypriniformes, Tetraodontiformes, Cyprinodontiformes, Beloniformes, and Perciformes) of euteleostean fish to estimate divergence times and evolutionary relationships among those lineages. All 10 fish species serve as models for developmental, aquaculture, genomic, and comparative genetic studies. The phylogenetic signal and the strength of the contribution of each of the 42 orthologous genes were estimated with randomly chosen data subsets. Our study revealed a molecular phylogeny of higher-level relationships of derived teleosts, which indicates that the use of multiple genes produces robust phylogenies, a finding that is expected to apply to other phylogenetic issues among distantly related taxa. Our phylogenomic analyses confirm that the euteleostean superorders Ostariophysi and Acanthopterygii are monophyletic and the Protacanthopterygii and Ostariophysi are sister clades. In addition, and contrary to the traditional phylogenetic hypothesis, our analyses determine that killifish (Cyprinodontiformes), medaka (Beloniformes), and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes). All 10 lineages split before or during the fragmentation of the supercontinent Pangea in the Jurassic.
V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.
Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn
2008-10-09
A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.
Robust inference in the negative binomial regression model with an application to falls data.
Aeberhard, William H; Cantoni, Eva; Heritier, Stephane
2014-12-01
A popular way to model overdispersed count data, such as the number of falls reported during intervention studies, is by means of the negative binomial (NB) distribution. Classical estimating methods are well-known to be sensitive to model misspecifications, taking the form of patients falling much more than expected in such intervention studies where the NB regression model is used. We extend in this article two approaches for building robust M-estimators of the regression parameters in the class of generalized linear models to the NB distribution. The first approach achieves robustness in the response by applying a bounded function on the Pearson residuals arising in the maximum likelihood estimating equations, while the second approach achieves robustness by bounding the unscaled deviance components. For both approaches, we explore different choices for the bounding functions. Through a unified notation, we show how close these approaches may actually be as long as the bounding functions are chosen and tuned appropriately, and provide the asymptotic distributions of the resulting estimators. Moreover, we introduce a robust weighted maximum likelihood estimator for the overdispersion parameter, specific to the NB distribution. Simulations under various settings show that redescending bounding functions yield estimates with smaller biases under contamination while keeping high efficiency at the assumed model, and this for both approaches. We present an application to a recent randomized controlled trial measuring the effectiveness of an exercise program at reducing the number of falls among people suffering from Parkinsons disease to illustrate the diagnostic use of such robust procedures and their need for reliable inference. © 2014, The International Biometric Society.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.
Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing
2018-03-07
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
Zheng, Binqi; Yuan, Xiaobing
2018-01-01
The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results. PMID:29518960
NASA Astrophysics Data System (ADS)
Ishtiaq, K. S.; Abdul-Aziz, O. I.
2014-12-01
We developed a scaling-based, simple empirical model for spatio-temporally robust prediction of the diurnal cycles of wetland net ecosystem exchange (NEE) by using an extended stochastic harmonic algorithm (ESHA). A reference-time observation from each diurnal cycle was utilized as the scaling parameter to normalize and collapse hourly observed NEE of different days into a single, dimensionless diurnal curve. The modeling concept was tested by parameterizing the unique diurnal curve and predicting hourly NEE of May to October (summer growing and fall seasons) between 2002-12 for diverse wetland ecosystems, as available in the U.S. AmeriFLUX network. As an example, the Taylor Slough short hydroperiod marsh site in the Florida Everglades had data for four consecutive growing seasons from 2009-12; results showed impressive modeling efficiency (coefficient of determination, R2 = 0.66) and accuracy (ratio of root-mean-square-error to the standard deviation of observations, RSR = 0.58). Model validation was performed with an independent year of NEE data, indicating equally impressive performance (R2 = 0.68, RSR = 0.57). The model included a parsimonious set of estimated parameters, which exhibited spatio-temporal robustness by collapsing onto narrow ranges. Model robustness was further investigated by analytically deriving and quantifying parameter sensitivity coefficients and a first-order uncertainty measure. The relatively robust, empirical NEE model can be applied for simulating continuous (e.g., hourly) NEE time-series from a single reference observation (or a set of limited observations) at different wetland sites of comparable hydro-climatology, biogeochemistry, and ecology. The method can also be used for a robust gap-filling of missing data in observed time-series of periodic ecohydrological variables for wetland or other ecosystems.
Sensitivity of wildlife habitat models to uncertainties in GIS data
NASA Technical Reports Server (NTRS)
Stoms, David M.; Davis, Frank W.; Cogan, Christopher B.
1992-01-01
Decision makers need to know the reliability of output products from GIS analysis. For many GIS applications, it is not possible to compare these products to an independent measure of 'truth'. Sensitivity analysis offers an alternative means of estimating reliability. In this paper, we present a CIS-based statistical procedure for estimating the sensitivity of wildlife habitat models to uncertainties in input data and model assumptions. The approach is demonstrated in an analysis of habitat associations derived from a GIS database for the endangered California condor. Alternative data sets were generated to compare results over a reasonable range of assumptions about several sources of uncertainty. Sensitivity analysis indicated that condor habitat associations are relatively robust, and the results have increased our confidence in our initial findings. Uncertainties and methods described in the paper have general relevance for many GIS applications.
Real-time estimation and biofeedback of single-neuron firing rates using local field potentials
Hall, Thomas M.; Nazarpour, Kianoush; Jackson, Andrew
2014-01-01
The long-term stability and low-frequency composition of local field potentials (LFPs) offer important advantages for robust and efficient neuroprostheses. However, cortical LFPs recorded by multi-electrode arrays are often assumed to contain only redundant information arising from the activity of large neuronal populations. Here we show that multichannel LFPs in monkey motor cortex each contain a slightly different mixture of distinctive slow potentials that accompany neuronal firing. As a result, the firing rates of individual neurons can be estimated with surprising accuracy. We implemented this method in a real-time biofeedback brain–machine interface, and found that monkeys could learn to modulate the activity of arbitrary neurons using feedback derived solely from LFPs. These findings provide a principled method for monitoring individual neurons without long-term recording of action potentials. PMID:25394574
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The aspect of controller design for improving the ride quality of aircraft in terms of damping ratio and natural frequency specifications on the short period dynamics is addressed. The controller is designed to be robust with respect to uncertainties in the real parameters of the control design model such as uncertainties in the dimensional stability derivatives, imperfections in actuator/sensor locations and possibly variations in flight conditions, etc. The design is based on a new robust root clustering theory developed by the author by extending the nominal root clustering theory of Gutman and Jury to perturbed matrices. The proposed methodology allows to get an explicit relationship between the parameters of the root clustering region and the uncertainty radius of the parameter space. The current literature available for robust stability becomes a special case of this unified theory. The bounds derived on the parameter perturbation for robust root clustering are then used in selecting the robust controller.
Peters, Susan; Kromhout, Hans; Portengen, Lützen; Olsson, Ann; Kendzia, Benjamin; Vincent, Raymond; Savary, Barbara; Lavoué, Jérôme; Cavallo, Domenico; Cattaneo, Andrea; Mirabelli, Dario; Plato, Nils; Fevotte, Joelle; Pesch, Beate; Brüning, Thomas; Straif, Kurt; Vermeulen, Roel
2013-01-01
We describe the elaboration and sensitivity analyses of a quantitative job-exposure matrix (SYN-JEM) for respirable crystalline silica (RCS). The aim was to gain insight into the robustness of the SYN-JEM RCS estimates based on critical decisions taken in the elaboration process. SYN-JEM for RCS exposure consists of three axes (job, region, and year) based on estimates derived from a previously developed statistical model. To elaborate SYN-JEM, several decisions were taken: i.e. the application of (i) a single time trend; (ii) region-specific adjustments in RCS exposure; and (iii) a prior job-specific exposure level (by the semi-quantitative DOM-JEM), with an override of 0 mg/m(3) for jobs a priori defined as non-exposed. Furthermore, we assumed that exposure levels reached a ceiling in 1960 and remained constant prior to this date. We applied SYN-JEM to the occupational histories of subjects from a large international pooled community-based case-control study. Cumulative exposure levels derived with SYN-JEM were compared with those from alternative models, described by Pearson correlation ((Rp)) and differences in unit of exposure (mg/m(3)-year). Alternative models concerned changes in application of job- and region-specific estimates and exposure ceiling, and omitting the a priori exposure ranking. Cumulative exposure levels for the study subjects ranged from 0.01 to 60 mg/m(3)-years, with a median of 1.76 mg/m(3)-years. Exposure levels derived from SYN-JEM and alternative models were overall highly correlated (R(p) > 0.90), although somewhat lower when omitting the region estimate ((Rp) = 0.80) or not taking into account the assigned semi-quantitative exposure level (R(p) = 0.65). Modification of the time trend (i.e. exposure ceiling at 1950 or 1970, or assuming a decline before 1960) caused the largest changes in absolute exposure levels (26-33% difference), but without changing the relative ranking ((Rp) = 0.99). Exposure estimates derived from SYN-JEM appeared to be plausible compared with (historical) levels described in the literature. Decisions taken in the development of SYN-JEM did not critically change the cumulative exposure levels. The influence of region-specific estimates needs to be explored in future risk analyses.
An Open-Source Bayesian Atmospheric Radiative Transfer (BART) Code, with Application to WASP-12b
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Rojo, Patricio; Loredo, Thomas J.; Bowman, M. Oliver; Foster, Andrew S. D.; Stemm, Madison M.; Lust, Nate B.
2015-01-01
Atmospheric retrievals for solar-system planets typically fit, either with a minimizer or by eye, a synthetic spectrum to high-resolution (Δλ/λ ~ 1000-100,000) data with S/N > 100 per point. In contrast, exoplanet data often have S/N ~ 10 per point, and may have just a few points representing bandpasses larger than 1 um. To derive atmospheric constraints and robust parameter uncertainty estimates from such data requires a Bayesian approach. To date there are few investigators with the relevant codes, none of which are publicly available. We are therefore pleased to announce the open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART uses a Bayesian phase-space explorer to drive a radiative-transfer model through the parameter phase space, producing the most robust estimates available for the thermal profile and chemical abundances in the atmosphere. We present an overview of the code and an initial application to Spitzer eclipse data for WASP-12b. We invite the community to use and improve BART via the open-source development site GitHub.com. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
An Open-Source Bayesian Atmospheric Radiative Transfer (BART) Code, and Application to WASP-12b
NASA Astrophysics Data System (ADS)
Harrington, Joseph; Blecic, Jasmina; Cubillos, Patricio; Rojo, Patricio M.; Loredo, Thomas J.; Bowman, Matthew O.; Foster, Andrew S.; Stemm, Madison M.; Lust, Nate B.
2014-11-01
Atmospheric retrievals for solar-system planets typically fit, either with a minimizer or by eye, a synthetic spectrum to high-resolution (Δλ/λ ~ 1000-100,000) data with S/N > 100 per point. In contrast, exoplanet data often have S/N ~ 10 per point, and may have just a few points representing bandpasses larger than 1 um. To derive atmospheric constraints and robust parameter uncertainty estimates from such data requires a Bayesian approach. To date there are few investigators with the relevant codes, none of which are publicly available. We are therefore pleased to announce the open-source Bayesian Atmospheric Radiative Transfer (BART) code. BART uses a Bayesian phase-space explorer to drive a radiative-transfer model through the parameter phase space, producing the most robust estimates available for the thermal profile and chemical abundances in the atmosphere. We present an overview of the code and an initial application to Spitzer eclipse data for WASP-12b. We invite the community to use and improve BART via the open-source development site GitHub.com. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G. JB holds a NASA Earth and Space Science Fellowship.
Robust Feedback Zoom Tracking for Digital Video Surveillance
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called “trace curve”, which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance. PMID:22969388
Infused chemotherapy use in the elderly after patent expiration.
Conti, Rena M; Rosenthal, Meredith B; Polite, Blase N; Bach, Peter B; Shih, Ya-Chen Tina
2012-05-01
The use of anticancer drugs (chemotherapies) is an important determinant of national spending trends. Recent policies have aimed to accelerate generic entry among chemotherapies to generate cost savings. We examined the effects of generic entry on the choice of chemotherapy for the treatment of metastatic colorectal cancer (MCRC) between 2006 and 2009 using autoregressive-moving average modeling with case control. A nationally representative sample of oncologists and patients with cancer (age ≥ 65 years) was employed to estimate the magnitude and significance of the impact of the generic entry of irinotecan in February 2008 on the number of administrations of irinotecan compared with oxaliplatin. The generic entry of irinotecan resulted in a 17% to 19% decrease (P < .001) in use among elderly patients with MCRC compared with oxaliplatin. The results were robust to multiple sensitivity checks. This study provides novel and robust estimates of the decline in use of a chemotherapy to treat a common cancer in the elderly after patent expiration. The results suggest estimates from a previous Office of the Inspector General report of the potential savings derived from the generic entry of irinotecan for public payers are an overestimate, likely confounded by oncologists' response to financial incentives, changes in scientific evidence, and promotional activities. As calls for improving the quality and cost efficiency of oncology increase, future empirical work is needed to examine the responsiveness of oncologists' treatment decision making to incentives among patients of all ages and insurance types.
Infused chemotherapy use in the elderly after patent expiration.
Conti, Rena M; Rosenthal, Meredith B; Polite, Blase N; Bach, Peter B; Shih, Ya-Chen Tina
2012-05-01
The use of anticancer drugs (chemotherapies) is an important determinant of national spending trends. Recent policies have aimed to accelerate generic entry among chemotherapies to generate cost savings. We examined the effects of generic entry on the choice of chemotherapy for the treatment of metastatic colorectal cancer (MCRC) between 2006 and 2009 using autoregressivemoving average modeling with case control. A nationally representative sample of oncologists and patients with cancer (aged ≥65 years) was employed to estimate the magnitude and significance of the impact of the generic entry of irinotecan in February 2008 on the number of administrations of irinotecan compared with oxaliplatin. The generic entry of irinotecan resulted in a 17% to 19% decrease (P <.001) in use among elderly patients with MCRC compared with oxaliplatin. The results were robust to multiple sensitivity checks. This study provides novel and robust estimates of the decline in use of a chemotherapy to treat a common cancer in the elderly after patent expiration. The results suggest estimates from a previous Office of the Inspector General report of the potential savings derived from the generic entry of irinotecan for public payers are an overestimate, likely confounded by oncologists' response to financial incentives, changes in scientific evidence, and promotional activities. As calls for improving the quality and cost efficiency of oncology increase, future empirical work is needed to examine the responsiveness of oncologists' treatment decision making to incentives among patients of all ages and insurance types.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Lv, Youbin; Wang, Hong
Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation basedmore » robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.« less
NASA Astrophysics Data System (ADS)
Al-Gburi, A.; Freeman, C. T.; French, M. C.
2018-06-01
This paper uses gap metric analysis to derive robustness and performance margins for feedback linearising controllers. Distinct from previous robustness analysis, it incorporates the case of output unstructured uncertainties, and is shown to yield general stability conditions which can be applied to both stable and unstable plants. It then expands on existing feedback linearising control schemes by introducing a more general robust feedback linearising control design which classifies the system nonlinearity into stable and unstable components and cancels only the unstable plant nonlinearities. This is done in order to preserve the stabilising action of the inherently stabilising nonlinearities. Robustness and performance margins are derived for this control scheme, and are expressed in terms of bounds on the plant nonlinearities and the accuracy of the cancellation of the unstable plant nonlinearity by the controller. Case studies then confirm reduced conservatism compared with standard methods.
Robust control for fractional variable-order chaotic systems with non-singular kernel
NASA Astrophysics Data System (ADS)
Zuñiga-Aguilar, C. J.; Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Romero-Ugalde, H. M.
2018-01-01
This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen's attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.
NASA Astrophysics Data System (ADS)
Watkinson, Catherine A.; Majumdar, Suman; Pritchard, Jonathan R.; Mondal, Rajesh
2017-12-01
In this paper, we establish the accuracy and robustness of a fast estimator for the bispectrum - the 'FFT-bispectrum estimator'. The implementation of the estimator presented here offers speed and simplicity benefits over a direct-measurement approach. We also generalize the derivation so it may be easily be applied to any order polyspectra, such as the trispectrum, with the cost of only a handful of Fast-Fourier Transforms (FFTs). All lower order statistics can also be calculated simultaneously for little extra cost. To test the estimator, we make use of a non-linear density field, and for a more strongly non-Gaussian test case, we use a toy-model of reionization in which ionized bubbles at a given redshift are all of equal size and are randomly distributed. Our tests find that the FFT-estimator remains accurate over a wide range of k, and so should be extremely useful for analysis of 21-cm observations. The speed of the FFT-bispectrum estimator makes it suitable for sampling applications, such as Bayesian inference. The algorithm we describe should prove valuable in the analysis of simulations and observations, and whilst, we apply it within the field of cosmology, this estimator is useful in any field that deals with non-Gaussian data.
NASA Astrophysics Data System (ADS)
Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.
2018-02-01
In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S
2012-03-01
In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Nunno, Giulia, E-mail: giulian@math.uio.no; Khedher, Asma, E-mail: asma.khedher@tum.de; Vanmaele, Michèle, E-mail: michele.vanmaele@ugent.be
We consider a backward stochastic differential equation with jumps (BSDEJ) which is driven by a Brownian motion and a Poisson random measure. We present two candidate-approximations to this BSDEJ and we prove that the solution of each candidate-approximation converges to the solution of the original BSDEJ in a space which we specify. We use this result to investigate in further detail the consequences of the choice of the model to (partial) hedging in incomplete markets in finance. As an application, we consider models in which the small variations in the price dynamics are modeled with a Poisson random measure withmore » infinite activity and models in which these small variations are modeled with a Brownian motion or are cut off. Using the convergence results on BSDEJs, we show that quadratic hedging strategies are robust towards the approximation of the market prices and we derive an estimation of the model risk.« less
NASA Astrophysics Data System (ADS)
Bai, Heming; Gong, Cheng; Wang, Minghuai; Zhang, Zhibo; L'Ecuyer, Tristan
2018-02-01
Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) from June 2006 to April 2011 are analyzed to estimate precipitation frequency susceptibility SPOP, precipitation intensity susceptibility SI, and precipitation rate susceptibility SR in warm marine clouds. We find that SPOP strongly depends on atmospheric stability, with larger values under more stable environments. Our results show that precipitation susceptibility for drizzle (with a -15 dBZ rainfall threshold) is significantly different than that for rain (with a 0 dBZ rainfall threshold). Onset of drizzle is not as readily suppressed in warm clouds as rainfall while precipitation intensity susceptibility is generally smaller for rain than for drizzle. We find that SPOP derived with respect to aerosol index (AI) is about one-third of SPOP derived with respect to cloud droplet number concentration (CDNC). Overall, SPOP demonstrates relatively robust features throughout independent liquid water path (LWP) products and diverse rain products. In contrast, the behaviors of SI and SR are subject to LWP or rain products used to derive them. Recommendations are further made for how to better use these metrics to quantify aerosol-cloud-precipitation interactions in observations and models.
Moxley, Jerry H.; Bogomolni, Andrea; Hammill, Mike O.; Moore, Kathleen M. T.; Polito, Michael J.; Sette, Lisa; Sharp, W. Brian; Waring, Gordon T.; Gilbert, James R.; Halpin, Patrick N.; Johnston, David W.
2017-01-01
Abstract As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances. PMID:29599542
Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome
NASA Astrophysics Data System (ADS)
Teschendorff, Andrew E.; Enver, Tariq
2017-06-01
The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes.
Moxley, Jerry H; Bogomolni, Andrea; Hammill, Mike O; Moore, Kathleen M T; Polito, Michael J; Sette, Lisa; Sharp, W Brian; Waring, Gordon T; Gilbert, James R; Halpin, Patrick N; Johnston, David W
2017-08-01
As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.
Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness
NASA Technical Reports Server (NTRS)
Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne
2015-01-01
The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.
Single-cell entropy for accurate estimation of differentiation potency from a cell's transcriptome
Teschendorff, Andrew E.; Enver, Tariq
2017-01-01
The ability to quantify differentiation potential of single cells is a task of critical importance. Here we demonstrate, using over 7,000 single-cell RNA-Seq profiles, that differentiation potency of a single cell can be approximated by computing the signalling promiscuity, or entropy, of a cell's transcriptome in the context of an interaction network, without the need for feature selection. We show that signalling entropy provides a more accurate and robust potency estimate than other entropy-based measures, driven in part by a subtle positive correlation between the transcriptome and connectome. Signalling entropy identifies known cell subpopulations of varying potency and drug resistant cancer stem-cell phenotypes, including those derived from circulating tumour cells. It further reveals that expression heterogeneity within single-cell populations is regulated. In summary, signalling entropy allows in silico estimation of the differentiation potency and plasticity of single cells and bulk samples, providing a means to identify normal and cancer stem-cell phenotypes. PMID:28569836
Efficient robust doubly adaptive regularized regression with applications.
Karunamuni, Rohana J; Kong, Linglong; Tu, Wei
2018-01-01
We consider the problem of estimation and variable selection for general linear regression models. Regularized regression procedures have been widely used for variable selection, but most existing methods perform poorly in the presence of outliers. We construct a new penalized procedure that simultaneously attains full efficiency and maximum robustness. Furthermore, the proposed procedure satisfies the oracle properties. The new procedure is designed to achieve sparse and robust solutions by imposing adaptive weights on both the decision loss and the penalty function. The proposed method of estimation and variable selection attains full efficiency when the model is correct and, at the same time, achieves maximum robustness when outliers are present. We examine the robustness properties using the finite-sample breakdown point and an influence function. We show that the proposed estimator attains the maximum breakdown point. Furthermore, there is no loss in efficiency when there are no outliers or the error distribution is normal. For practical implementation of the proposed method, we present a computational algorithm. We examine the finite-sample and robustness properties using Monte Carlo studies. Two datasets are also analyzed.
An improved method for bivariate meta-analysis when within-study correlations are unknown.
Hong, Chuan; D Riley, Richard; Chen, Yong
2018-03-01
Multivariate meta-analysis, which jointly analyzes multiple and possibly correlated outcomes in a single analysis, is becoming increasingly popular in recent years. An attractive feature of the multivariate meta-analysis is its ability to account for the dependence between multiple estimates from the same study. However, standard inference procedures for multivariate meta-analysis require the knowledge of within-study correlations, which are usually unavailable. This limits standard inference approaches in practice. Riley et al proposed a working model and an overall synthesis correlation parameter to account for the marginal correlation between outcomes, where the only data needed are those required for a separate univariate random-effects meta-analysis. As within-study correlations are not required, the Riley method is applicable to a wide variety of evidence synthesis situations. However, the standard variance estimator of the Riley method is not entirely correct under many important settings. As a consequence, the coverage of a function of pooled estimates may not reach the nominal level even when the number of studies in the multivariate meta-analysis is large. In this paper, we improve the Riley method by proposing a robust variance estimator, which is asymptotically correct even when the model is misspecified (ie, when the likelihood function is incorrect). Simulation studies of a bivariate meta-analysis, in a variety of settings, show a function of pooled estimates has improved performance when using the proposed robust variance estimator. In terms of individual pooled estimates themselves, the standard variance estimator and robust variance estimator give similar results to the original method, with appropriate coverage. The proposed robust variance estimator performs well when the number of studies is relatively large. Therefore, we recommend the use of the robust method for meta-analyses with a relatively large number of studies (eg, m≥50). When the sample size is relatively small, we recommend the use of the robust method under the working independence assumption. We illustrate the proposed method through 2 meta-analyses. Copyright © 2017 John Wiley & Sons, Ltd.
On the robustness of EC-PC spike detection method for online neural recording.
Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi
2014-09-30
Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.
Estimating Velocities of Glaciers Using Sentinel-1 SAR Imagery
NASA Astrophysics Data System (ADS)
Gens, R.; Arnoult, K., Jr.; Friedl, P.; Vijay, S.; Braun, M.; Meyer, F. J.; Gracheva, V.; Hogenson, K.
2017-12-01
In an international collaborative effort, software has been developed to estimate the velocities of glaciers by using Sentinel-1 Synthetic Aperture Radar (SAR) imagery. The technique, initially designed by the University of Erlangen-Nuremberg (FAU), has been previously used to quantify spatial and temporal variabilities in the velocities of surging glaciers in the Pakistan Karakoram. The software estimates surface velocities by first co-registering image pairs to sub-pixel precision and then by estimating local offsets based on cross-correlation. The Alaska Satellite Facility (ASF) at the University of Alaska Fairbanks (UAF) has modified the software to make it more robust and also capable of migration into the Amazon Cloud. Additionally, ASF has implemented a prototype that offers the glacier tracking processing flow as a subscription service as part of its Hybrid Pluggable Processing Pipeline (HyP3). Since the software is co-located with ASF's cloud-based Sentinel-1 archive, processing of large data volumes is now more efficient and cost effective. Velocity maps are estimated for Single Look Complex (SLC) SAR image pairs and a digital elevation model (DEM) of the local topography. A time series of these velocity maps then allows the long-term monitoring of these glaciers. Due to the all-weather capabilities and the dense coverage of Sentinel-1 data, the results are complementary to optically generated ones. Together with the products from the Global Land Ice Velocity Extraction project (GoLIVE) derived from Landsat 8 data, glacier speeds can be monitored more comprehensively. Examples from Sentinel-1 SAR-derived results are presented along with optical results for the same glaciers.
Zhang, Zhilin; Pi, Zhouyue; Liu, Benyuan
2015-02-01
Heart rate monitoring using wrist-type photoplethysmographic signals during subjects' intensive exercise is a difficult problem, since the signals are contaminated by extremely strong motion artifacts caused by subjects' hand movements. So far few works have studied this problem. In this study, a general framework, termed TROIKA, is proposed, which consists of signal decomposiTion for denoising, sparse signal RecOnstructIon for high-resolution spectrum estimation, and spectral peaK trAcking with verification. The TROIKA framework has high estimation accuracy and is robust to strong motion artifacts. Many variants can be straightforwardly derived from this framework. Experimental results on datasets recorded from 12 subjects during fast running at the peak speed of 15 km/h showed that the average absolute error of heart rate estimation was 2.34 beat per minute, and the Pearson correlation between the estimates and the ground truth of heart rate was 0.992. This framework is of great values to wearable devices such as smartwatches which use PPG signals to monitor heart rate for fitness.
Recovering the 3d Pose and Shape of Vehicles from Stereo Images
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2018-05-01
The precise reconstruction and pose estimation of vehicles plays an important role, e.g. for autonomous driving. We tackle this problem on the basis of street level stereo images obtained from a moving vehicle. Starting from initial vehicle detections, we use a deformable vehicle shape prior learned from CAD vehicle data to fully reconstruct the vehicles in 3D and to recover their 3D pose and shape. To fit a deformable vehicle model to each detection by inferring the optimal parameters for pose and shape, we define an energy function leveraging reconstructed 3D data, image information, the vehicle model and derived scene knowledge. To minimise the energy function, we apply a robust model fitting procedure based on iterative Monte Carlo model particle sampling. We evaluate our approach using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012). Our approach can deal with very coarse pose initialisations and we achieve encouraging results with up to 82 % correct pose estimations. Moreover, we are able to deliver very precise orientation estimation results with an average absolute error smaller than 4°.
Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates
Curtis, Caroline A.; Bradley, Bethany A.
2016-01-01
Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859
NASA Astrophysics Data System (ADS)
Streubel, D. P.; Kodama, K.
2014-12-01
To provide continuous flash flood situational awareness and to better differentiate severity of ongoing individual precipitation events, the National Weather Service Research Distributed Hydrologic Model (RDHM) is being implemented over Hawaii and Alaska. In the implementation process of RDHM, three gridded precipitation analyses are used as forcing. The first analysis is a radar only precipitation estimate derived from WSR-88D digital hybrid reflectivity, a Z-R relationship and aggregated into an hourly ¼ HRAP grid. The second analysis is derived from a rain gauge network and interpolated into an hourly ¼ HRAP grid using PRISM climatology. The third analysis is derived from a rain gauge network where rain gauges are assigned static pre-determined weights to derive a uniform mean areal precipitation that is applied over a catchment on a ¼ HRAP grid. To assess the effect of different QPE analyses on the accuracy of RDHM simulations and to potentially identify a preferred analysis for operational use, each QPE was used to force RDHM to simulate stream flow for 20 USGS peak flow events. An evaluation of the RDHM simulations was focused on peak flow magnitude, peak flow timing, and event volume accuracy to be most relevant for operational use. Results showed RDHM simulations based on the observed rain gauge amounts were more accurate in simulating peak flow magnitude and event volume relative to the radar derived analysis. However this result was not consistent for all 20 events nor was it consistent for a few of the rainfall events where an annual peak flow was recorded at more than one USGS gage. Implications of this indicate that a more robust QPE forcing with the inclusion of uncertainty derived from the three analyses may provide a better input for simulating extreme peak flow events.
Toward Robust Estimation of the Components of Forest Population Change
Francis A. Roesch
2014-01-01
Multiple levels of simulation are used to test the robustness of estimators of the components of change. I first created a variety of spatial-temporal populations based on, but more variable than, an actual forest monitoring data set and then sampled those populations under a variety of sampling error structures. The performance of each of four estimation approaches is...
ERIC Educational Resources Information Center
Thissen, David; Wainer, Howard
Simulation studies of the performance of (potentially) robust statistical estimation produce large quantities of numbers in the form of performance indices of the various estimators under various conditions. This report presents a multivariate graphical display used to aid in the digestion of the plentiful results in a current study of Item…
Zhao, Junbo; Wang, Shaobu; Mili, Lamine; ...
2018-01-08
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junbo; Wang, Shaobu; Mili, Lamine
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
Boddy, Lynne M; Noonan, Robert J; Kim, Youngwon; Rowlands, Alex V; Welk, Greg J; Knowles, Zoe R; Fairclough, Stuart J
2018-03-28
To examine the comparability of children's free-living sedentary time (ST) derived from raw acceleration thresholds for wrist mounted GENEActiv accelerometer data, with ST estimated using the waist mounted ActiGraph 100count·min -1 threshold. Secondary data analysis. 108 10-11-year-old children (n=43 boys) from Liverpool, UK wore one ActiGraph GT3X+ and one GENEActiv accelerometer on their right hip and left wrist, respectively for seven days. Signal vector magnitude (SVM; mg) was calculated using the ENMO approach for GENEActiv data. ST was estimated from hip-worn ActiGraph data, applying the widely used 100count·min -1 threshold. ROC analysis using 10-fold hold-out cross-validation was conducted to establish a wrist-worn GENEActiv threshold comparable to the hip ActiGraph 100count·min -1 threshold. GENEActiv data were also classified using three empirical wrist thresholds and equivalence testing was completed. Analysis indicated that a GENEActiv SVM value of 51mg demonstrated fair to moderate agreement (Kappa: 0.32-0.41) with the 100count·min -1 threshold. However, the generated and empirical thresholds for GENEActiv devices were not significantly equivalent to ActiGraph 100count·min -1 . GENEActiv data classified using the 35.6mg threshold intended for ActiGraph devices generated significantly equivalent ST estimates as the ActiGraph 100count·min -1 . The newly generated and empirical GENEActiv wrist thresholds do not provide equivalent estimates of ST to the ActiGraph 100count·min -1 approach. More investigation is required to assess the validity of applying ActiGraph cutpoints to GENEActiv data. Future studies are needed to examine the backward compatibility of ST data and to produce a robust method of classifying SVM-derived ST. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Li, Liyuan; Huang, Weimin; Gu, Irene Yu-Hua; Luo, Ruijiang; Tian, Qi
2008-10-01
Efficiency and robustness are the two most important issues for multiobject tracking algorithms in real-time intelligent video surveillance systems. We propose a novel 2.5-D approach to real-time multiobject tracking in crowds, which is formulated as a maximum a posteriori estimation problem and is approximated through an assignment step and a location step. Observing that the occluding object is usually less affected by the occluded objects, sequential solutions for the assignment and the location are derived. A novel dominant color histogram (DCH) is proposed as an efficient object model. The DCH can be regarded as a generalized color histogram, where dominant colors are selected based on a given distance measure. Comparing with conventional color histograms, the DCH only requires a few color components (31 on average). Furthermore, our theoretical analysis and evaluation on real data have shown that DCHs are robust to illumination changes. Using the DCH, efficient implementations of sequential solutions for the assignment and location steps are proposed. The assignment step includes the estimation of the depth order for the objects in a dispersing group, one-by-one assignment, and feature exclusion from the group representation. The location step includes the depth-order estimation for the objects in a new group, the two-phase mean-shift location, and the exclusion of tracked objects from the new position in the group. Multiobject tracking results and evaluation from public data sets are presented. Experiments on image sequences captured from crowded public environments have shown good tracking results, where about 90% of the objects have been successfully tracked with the correct identification numbers by the proposed method. Our results and evaluation have indicated that the method is efficient and robust for tracking multiple objects (>or= 3) in complex occlusion for real-world surveillance scenarios.
Water Vapor Winds and Their Application to Climate Change Studies
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Lerner, Jeffrey A.
2000-01-01
The retrieval of satellite-derived winds and moisture from geostationary water vapor imagery has matured to the point where it may be applied to better understanding longer term climate changes that were previously not possible using conventional measurements or model analysis in data-sparse regions. In this paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursors and other detectable interannual climate change signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions are used to show the robustness of the data and its value over regions that have previously eluded measurement.
Correlations Between the Contributions of Individual IVS Analysis Centers
NASA Technical Reports Server (NTRS)
Bockmann, Sarah; Artz, Thomas; Nothnagel, Axel
2010-01-01
Within almost all space-geodetic techniques, contributions of different analysis centers (ACs) are combined in order to improve the robustness of the final product. So far, the contributing series are assumed to be independent as each AC processes the observations in different ways. However, the series cannot be completely independent as each analyst uses the same set of original observations and many applied models are subject to conventions used by each AC. In this paper, it is shown that neglecting correlations between the contributing series yields too optimistic formal errors and small, but insignificant, errors in the estimated parameters derived from the adjustment of the combined solution.
A Photometric (griz) Metallicity Calibration for Cool Stars
NASA Astrophysics Data System (ADS)
West, Andrew A.; Davenport, James R. A.; Dhital, Saurav; Mann, Andrew; Massey, Angela P
2014-06-01
We present results from a study that uses wide pairs as tools for estimating and constraining the metal content of cool stars from their spectra and broad band colors. Specifically, we will present results that optimize the Mann et al. M dwarf metallicity calibrations (derived using wide binaries) for the optical regime covered by SDSS spectra. We will demonstrate the robustness of the new calibrations using a sample of wide, low-mass binaries for which both components have an SDSS spectrum. Using these new spectroscopic metallicity calibrations, we will present relations between the metallicities (from optical spectra) and the Sloan colors derived using more than 20,000 M dwarfs in the SDSS DR7 spectroscopic catalog. These relations have important ramifications for studies of Galactic chemical evolution, the search for exoplanets and subdwarfs, and are essential for surveys such as Pan-STARRS and LSST, which use griz photometry but have no spectroscopic component.
Weinman, J A
1988-10-01
A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik
2015-01-16
We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many ofmore » the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.« less
Dodging the dark matter degeneracy while determining the dynamics of dark energy
NASA Astrophysics Data System (ADS)
Busti, Vinicius C.; Clarkson, Chris
2016-05-01
One of the key issues in cosmology is to establish the nature of dark energy, and to determine whether the equation of state evolves with time. When estimating this from distance measurements there is a degeneracy with the matter density. We show that there exists a simple function of the dark energy equation of state and its first derivative which is independent of this degeneracy at all redshifts, and so is a much more robust determinant of the evolution of dark energy than just its derivative. We show that this function can be well determined at low redshift from supernovae using Gaussian Processes, and that this method is far superior to a variety of parameterisations which are also subject to priors on the matter density. This shows that parametrised models give very biased constraints on the evolution of dark energy.
IVS Pilot Project - Tropospheric Parameters
NASA Astrophysics Data System (ADS)
Boehm, J.; Schuh, H.; Engelhardt, G.; MacMillan, D.; Lanotte, R.; Tomasi, P.; Vereshchagina, I.; Haas, R.; Negusini, M.; Gubanov, V.
2003-04-01
In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the IVS Pilot Project - Tropospheric Parameters and the Institute of Geodesy and Geophysics (IGG), Vienna, was asked to coordinate the project. After a call for participation six IVS Analysis Centers have joined the project and submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 and IVS-R4 sessions since January 1st, 2002, on a regular basis. Using a two-step procedure the individual submissions are combined to stable and robust tropospheric parameters with 1h resolution and high accuracy. The zenith delays derived by VLBI are also compared with those provided by IGS (International GPS Service). At collocated sites (VLBI and GPS antennas at the same station) rather constant biases are found between the GPS and VLBI derived zenith delays, although both techniques are subject to the same tropospheric delays. Possible reasons for these biases are discussed.
Algamal, Z Y; Lee, M H
2017-01-01
A high-dimensional quantitative structure-activity relationship (QSAR) classification model typically contains a large number of irrelevant and redundant descriptors. In this paper, a new design of descriptor selection for the QSAR classification model estimation method is proposed by adding a new weight inside L1-norm. The experimental results of classifying the anti-hepatitis C virus activity of thiourea derivatives demonstrate that the proposed descriptor selection method in the QSAR classification model performs effectively and competitively compared with other existing penalized methods in terms of classification performance on both the training and the testing datasets. Moreover, it is noteworthy that the results obtained in terms of stability test and applicability domain provide a robust QSAR classification model. It is evident from the results that the developed QSAR classification model could conceivably be employed for further high-dimensional QSAR classification studies.
Robustness results in LQG based multivariable control designs
NASA Technical Reports Server (NTRS)
Lehtomaki, N. A.; Sandell, N. R., Jr.; Athans, M.
1980-01-01
The robustness of control systems with respect to model uncertainty is considered using simple frequency domain criteria. Results are derived under a common framework in which the minimum singular value of the return difference transfer matrix is the key quantity. In particular, the LQ and LQG robustness results are discussed.
Robustness properties of discrete time regulators, LOG regulators and hybrid systems
NASA Technical Reports Server (NTRS)
Stein, G.; Athans, M.
1979-01-01
Robustness properites of sample-data LQ regulators are derived which show that these regulators have fundamentally inferior uncertainty tolerances when compared to their continuous-time counterparts. Results are also presented in stability theory, multivariable frequency domain analysis, LQG robustness, and mathematical representations of hybrid systems.
NASA Astrophysics Data System (ADS)
Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.
2016-10-01
Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.
Robust estimation procedure in panel data model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shariff, Nurul Sima Mohamad; Hamzah, Nor Aishah
2014-06-19
The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependencemore » is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.« less
CONTROL FUNCTION ASSISTED IPW ESTIMATION WITH A SECONDARY OUTCOME IN CASE-CONTROL STUDIES.
Sofer, Tamar; Cornelis, Marilyn C; Kraft, Peter; Tchetgen Tchetgen, Eric J
2017-04-01
Case-control studies are designed towards studying associations between risk factors and a single, primary outcome. Information about additional, secondary outcomes is also collected, but association studies targeting such secondary outcomes should account for the case-control sampling scheme, or otherwise results may be biased. Often, one uses inverse probability weighted (IPW) estimators to estimate population effects in such studies. IPW estimators are robust, as they only require correct specification of the mean regression model of the secondary outcome on covariates, and knowledge of the disease prevalence. However, IPW estimators are inefficient relative to estimators that make additional assumptions about the data generating mechanism. We propose a class of estimators for the effect of risk factors on a secondary outcome in case-control studies that combine IPW with an additional modeling assumption: specification of the disease outcome probability model. We incorporate this model via a mean zero control function. We derive the class of all regular and asymptotically linear estimators corresponding to our modeling assumption, when the secondary outcome mean is modeled using either the identity or the log link. We find the efficient estimator in our class of estimators and show that it reduces to standard IPW when the model for the primary disease outcome is unrestricted, and is more efficient than standard IPW when the model is either parametric or semiparametric.
NASA Astrophysics Data System (ADS)
Innerkofler, Josef; Pock, Christian; Kirchengast, Gottfried; Schwaerz, Marc; Jaeggi, Adrian; Schwarz, Jakob
2016-04-01
The GNSS Radio Occultation (RO) measurement technique is highly valuable for climate monitoring of the atmosphere as it provides accurate and precise measurements in the troposphere and stratosphere regions with global coverage, long-term stability, and virtually all-weather capability. The novel Reference Occultation Processing System (rOPS), currently under development at the WEGC at University of Graz aims to process raw RO measurements into essential climate variables, such as temperature, pressure, and tropospheric water vapor, in a way which is SI-traceable to the universal time standard and which includes rigorous uncertainty propagation. As part of this rOPS climate-quality processing system, accurate atmospheric excess phase profiles with new approaches integrating uncertainty propagation are derived from the raw occultation tracking data and orbit data. Regarding the latter, highly accurate orbit positions and velocities of the GNSS transmitter satellites and the RO receiver satellites in low Earth orbit (LEO) need to be determined, in order to enable high accuracy of the excess phase profiles. Using several representative test days of GPS orbit data from the CODE and IGS archives, which are available at accuracies of about 3 cm (position) / 0.03 mm/s (velocity), and employing Bernese 5.2 and Napeos 3.3.1 software packages for the LEO orbit determination of the CHAMP, GRACE, and MetOp RO satellites, we achieved robust SI-traced LEO orbit uncertainty estimates of about 5 cm (position) / 0.05 mm/s (velocity) for the daily orbits, including estimates of systematic uncertainty bounds and of propagated random uncertainties. For COSMIC RO satellites, we found decreased accuracy estimates near 10-15 cm (position) / 0.1-0.15 mm/s (velocity), since the characteristics of the small COSMIC satellite platforms and antennas provide somewhat less favorable orbit determination conditions. We present the setup of how we (I) used the Bernese and Napeos package in mutual cross-check for this purpose, (II) integrated satellite laser-ranging validation of the estimated systematic uncertainty bounds, (III) expanded the Bernese 5.2 software for propagating random uncertainties from the GPS orbit data and LEO navigation tracking data input to the LEO data output. Preliminary excess phase results including propagated uncertainty estimates will also be shown. Except for disturbed space weather conditions, we expect a robust performance at millimeter level for the derived excess phases, which after large-scale processing of the RO data of many years can provide a new SI-traced fundamental climate data record.
Maximum likelihood solution for inclination-only data in paleomagnetism
NASA Astrophysics Data System (ADS)
Arason, P.; Levi, S.
2010-08-01
We have developed a new robust maximum likelihood method for estimating the unbiased mean inclination from inclination-only data. In paleomagnetic analysis, the arithmetic mean of inclination-only data is known to introduce a shallowing bias. Several methods have been introduced to estimate the unbiased mean inclination of inclination-only data together with measures of the dispersion. Some inclination-only methods were designed to maximize the likelihood function of the marginal Fisher distribution. However, the exact analytical form of the maximum likelihood function is fairly complicated, and all the methods require various assumptions and approximations that are often inappropriate. For some steep and dispersed data sets, these methods provide estimates that are significantly displaced from the peak of the likelihood function to systematically shallower inclination. The problem locating the maximum of the likelihood function is partly due to difficulties in accurately evaluating the function for all values of interest, because some elements of the likelihood function increase exponentially as precision parameters increase, leading to numerical instabilities. In this study, we succeeded in analytically cancelling exponential elements from the log-likelihood function, and we are now able to calculate its value anywhere in the parameter space and for any inclination-only data set. Furthermore, we can now calculate the partial derivatives of the log-likelihood function with desired accuracy, and locate the maximum likelihood without the assumptions required by previous methods. To assess the reliability and accuracy of our method, we generated large numbers of random Fisher-distributed data sets, for which we calculated mean inclinations and precision parameters. The comparisons show that our new robust Arason-Levi maximum likelihood method is the most reliable, and the mean inclination estimates are the least biased towards shallow values.
NASA Astrophysics Data System (ADS)
Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang
2018-02-01
Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.
Evaluation of the Absolute Regional Temperature Potential
NASA Technical Reports Server (NTRS)
Shindell, D. T.
2012-01-01
The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.
Can Selforganizing Maps Accurately Predict Photometric Redshifts?
NASA Technical Reports Server (NTRS)
Way, Michael J.; Klose, Christian
2012-01-01
We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods
Robust Variable Selection with Exponential Squared Loss.
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
2013-04-01
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are [Formula: see text] and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.
Robust Variable Selection with Exponential Squared Loss
Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping
2013-01-01
Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are n-consistent and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods. PMID:23913996
Inertia-gravity wave radiation from the elliptical vortex in the f-plane shallow water system
NASA Astrophysics Data System (ADS)
Sugimoto, Norihiko
2017-04-01
Inertia-gravity wave (IGW) radiation from the elliptical vortex is investigated in the f-plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone-anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f. A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone-anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature.
NASA Astrophysics Data System (ADS)
Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan
2016-02-01
In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.
Bias and robustness of uncertainty components estimates in transient climate projections
NASA Astrophysics Data System (ADS)
Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal
2016-04-01
A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate
NASA Astrophysics Data System (ADS)
Jin, X.; Fiore, A. M.; Curci, G.; Lyapustin, A.; Wang, Y.; Civerolo, K.; Ku, M.; van Donkelaar, A.; Martin, R.
2017-12-01
Ambient exposure to fine particulate matter (PM2.5) is one of the top global health concerns. Efforts have been made to regulate PM2.5 precursor emissions across the U.S.A, which are expected to mitigate the air pollution related health impacts. However, quantifying the health outcomes from emission controls requires robust estimates of PM2.5 exposures that accurately describe the spatial and temporal variability of PM2.5. Satellite remote sensing offers the potential to fill the gaps of the sparse, limited sampling of in situ measurement networks and is increasingly being used in health assessments. We provide new estimates of PM2.5 over New York State with 1 km spatial resolution that use Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD and a regional air quality model (CMAQ) to estimate the AOD-PM2.5 scaling factors. Next, we evaluate three major sources of uncertainties of satellite-derived PM2.5 data and their impacts on the derived decadal changes: 1) satellite retrieval of AOD, 2) optical properties of the particles, 3) relationships between the aerosol burden in the planetary boundary layer and full atmospheric column. Finally, we analyze the decadal changes of PM2.5 over New York State using the newly developed PM2.5 data, alongside four other PM2.5 estimates including satellite-derived PM2.5 developed by van Donkelaar et al. (2015), statistical land use regression developed by Beckerman et al. (2013), CMAQ simulations, and a Bayesian fusion of CMAQ and ground-based measurements. By evaluating the decadal changes of PM2.5 from multiple datasets over areas with dense (e.g. New York City area) and sparse ground-based measurements (e.g. upstate New York), we evaluate the extent to which satellite remote sensing could help better quantify the health outcomes of emission controls. References: Beckerman et al., (2013), A Hybrid Approach to Estimating National Scale Spatiotemporal Variability of PM2.5 in the Contiguous United States, Environ. Sci. Technol., 47(13), 7233-7241. van Donkelaar et al. (2015), High-Resolution Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted Regression over North America, Environ. Sci. Technol., 49(17), 10482-10491.
NASA Astrophysics Data System (ADS)
Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, Markus
2017-08-01
We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ˜ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ˜ 1 km thickness and lying some kilometers apart from each other.
Robust detection, isolation and accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.
1986-01-01
The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques
Trong Bui, Duong; Nguyen, Nhan Duc; Jeong, Gu-Min
2018-06-25
Human activity recognition and pedestrian dead reckoning are an interesting field because of their importance utilities in daily life healthcare. Currently, these fields are facing many challenges, one of which is the lack of a robust algorithm with high performance. This paper proposes a new method to implement a robust step detection and adaptive distance estimation algorithm based on the classification of five daily wrist activities during walking at various speeds using a smart band. The key idea is that the non-parametric adaptive distance estimator is performed after two activity classifiers and a robust step detector. In this study, two classifiers perform two phases of recognizing five wrist activities during walking. Then, a robust step detection algorithm, which is integrated with an adaptive threshold, peak and valley correction algorithm, is applied to the classified activities to detect the walking steps. In addition, the misclassification activities are fed back to the previous layer. Finally, three adaptive distance estimators, which are based on a non-parametric model of the average walking speed, calculate the length of each strike. The experimental results show that the average classification accuracy is about 99%, and the accuracy of the step detection is 98.7%. The error of the estimated distance is 2.2⁻4.2% depending on the type of wrist activities.
NASA Astrophysics Data System (ADS)
Leptokaropoulos, K.; Papadimitriou, E.; Orlecka-Sikora, B.; Karakostas, V.
2012-04-01
The spatial variation of the stress field (ΔCFF) after the 2001 strong (Mw=6.4) Skyros earthquake in North Aegean Sea, Greece, is investigated in association with the changes of earthquake production rates. A detailed slip model is considered in which the causative fault is consisted of several sub-faults with different coseismic slip onto each one of them. First the spatial distribution of aftershock productivity is compared with the static stress changes due to the coseismic slip. Calculations of ΔCFF are performed at different depths inside the seismogenic layer, defined from the vertical distribution of the aftershocks. Seismicity rates of the smaller magnitude events with M≥Mc for different time increments before and after the main shock are then derived from the application of a Probability Density Function (PDF). These rates are computed by spatially smoothing the seismicity and for this purpose a normal grid of rectangular cells is superimposed onto the area and the PDF determines seismicity rate values at the center of each cell. The differences between the earthquake occurrence rates before and after the main shock are compared and used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an independent estimation of stress changes. This model incorporates the physical properties of the fault zones (characteristic relaxation time, fault constitutive parameters, effective friction coefficient) with a probabilistic estimation of the spatial distribution of seismicity rates, derived from the application of the PDF. The stress patterns derived from the previously mentioned approaches are compared and the quantitative correlation between the respective results is accomplished by the evaluation of Pearson linear correlation coefficient and its confidence intervals to quantify their significance. Different assumptions and combinations of the physical and statistical parameters are tested for the model performance and robustness to be evaluated. Simulations will provide a measure of how robust is the use of seismicity rate changes as a stress meter for both positive and negative stress steps. This work was partially prepared within the framework of the research projects No. N N307234937 and 3935/B/T02/2010/39 financed by the Ministry of Education and Science of Poland during the period 2009 to 2011 and 2010 to 2012, respectively.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Quantile rank maps: a new tool for understanding individual brain development.
Chen, Huaihou; Kelly, Clare; Castellanos, F Xavier; He, Ye; Zuo, Xi-Nian; Reiss, Philip T
2015-05-01
We propose a novel method for neurodevelopmental brain mapping that displays how an individual's values for a quantity of interest compare with age-specific norms. By estimating smoothly age-varying distributions at a set of brain regions of interest, we derive age-dependent region-wise quantile ranks for a given individual, which can be presented in the form of a brain map. Such quantile rank maps could potentially be used for clinical screening. Bootstrap-based confidence intervals are proposed for the quantile rank estimates. We also propose a recalibrated Kolmogorov-Smirnov test for detecting group differences in the age-varying distribution. This test is shown to be more robust to model misspecification than a linear regression-based test. The proposed methods are applied to brain imaging data from the Nathan Kline Institute Rockland Sample and from the Autism Brain Imaging Data Exchange (ABIDE) sample. Copyright © 2015 Elsevier Inc. All rights reserved.
Performance analysis of improved iterated cubature Kalman filter and its application to GNSS/INS.
Cui, Bingbo; Chen, Xiyuan; Xu, Yuan; Huang, Haoqian; Liu, Xiao
2017-01-01
In order to improve the accuracy and robustness of GNSS/INS navigation system, an improved iterated cubature Kalman filter (IICKF) is proposed by considering the state-dependent noise and system uncertainty. First, a simplified framework of iterated Gaussian filter is derived by using damped Newton-Raphson algorithm and online noise estimator. Then the effect of state-dependent noise coming from iterated update is analyzed theoretically, and an augmented form of CKF algorithm is applied to improve the estimation accuracy. The performance of IICKF is verified by field test and numerical simulation, and results reveal that, compared with non-iterated filter, iterated filter is less sensitive to the system uncertainty, and IICKF improves the accuracy of yaw, roll and pitch by 48.9%, 73.1% and 83.3%, respectively, compared with traditional iterated KF. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yonghuai; Rodrigues, Marcos A.
2000-03-01
This paper describes research on the application of machine vision techniques to a real time automatic inspection task of air filter components in a manufacturing line. A novel calibration algorithm is proposed based on a special camera setup where defective items would show a large calibration error. The algorithm makes full use of rigid constraints derived from the analysis of geometrical properties of reflected correspondence vectors which have been synthesized into a single coordinate frame and provides a closed form solution to the estimation of all parameters. For a comparative study of performance, we also developed another algorithm based on this special camera setup using epipolar geometry. A number of experiments using synthetic data have shown that the proposed algorithm is generally more accurate and robust than the epipolar geometry based algorithm and that the geometric properties of reflected correspondence vectors provide effective constraints to the calibration of rigid body transformations.
On the robustness of a Bayes estimate. [in reliability theory
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1974-01-01
This paper examines the robustness of a Bayes estimator with respect to the assigned prior distribution. A Bayesian analysis for a stochastic scale parameter of a Weibull failure model is summarized in which the natural conjugate is assigned as the prior distribution of the random parameter. The sensitivity analysis is carried out by the Monte Carlo method in which, although an inverted gamma is the assigned prior, realizations are generated using distribution functions of varying shape. For several distributional forms and even for some fixed values of the parameter, simulated mean squared errors of Bayes and minimum variance unbiased estimators are determined and compared. Results indicate that the Bayes estimator remains squared-error superior and appears to be largely robust to the form of the assigned prior distribution.
Robust range estimation with a monocular camera for vision-based forward collision warning system.
Park, Ki-Yeong; Hwang, Sun-Young
2014-01-01
We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.
Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System
2014-01-01
We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344
Arbitrary-step randomly delayed robust filter with application to boost phase tracking
NASA Astrophysics Data System (ADS)
Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang
2018-04-01
The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.
Peng, Xiang; King, Irwin
2008-01-01
The Biased Minimax Probability Machine (BMPM) constructs a classifier which deals with the imbalanced learning tasks. It provides a worst-case bound on the probability of misclassification of future data points based on reliable estimates of means and covariance matrices of the classes from the training data samples, and achieves promising performance. In this paper, we develop a novel yet critical extension training algorithm for BMPM that is based on Second-Order Cone Programming (SOCP). Moreover, we apply the biased classification model to medical diagnosis problems to demonstrate its usefulness. By removing some crucial assumptions in the original solution to this model, we make the new method more accurate and robust. We outline the theoretical derivatives of the biased classification model, and reformulate it into an SOCP problem which could be efficiently solved with global optima guarantee. We evaluate our proposed SOCP-based BMPM (BMPMSOCP) scheme in comparison with traditional solutions on medical diagnosis tasks where the objectives are to focus on improving the sensitivity (the accuracy of the more important class, say "ill" samples) instead of the overall accuracy of the classification. Empirical results have shown that our method is more effective and robust to handle imbalanced classification problems than traditional classification approaches, and the original Fractional Programming-based BMPM (BMPMFP).
NASA Astrophysics Data System (ADS)
Li, Qiang; Zhang, Ying; Lin, Jingran; Wu, Sissi Xiaoxiao
2017-09-01
Consider a full-duplex (FD) bidirectional secure communication system, where two communication nodes, named Alice and Bob, simultaneously transmit and receive confidential information from each other, and an eavesdropper, named Eve, overhears the transmissions. Our goal is to maximize the sum secrecy rate (SSR) of the bidirectional transmissions by optimizing the transmit covariance matrices at Alice and Bob. To tackle this SSR maximization (SSRM) problem, we develop an alternating difference-of-concave (ADC) programming approach to alternately optimize the transmit covariance matrices at Alice and Bob. We show that the ADC iteration has a semi-closed-form beamforming solution, and is guaranteed to converge to a stationary solution of the SSRM problem. Besides the SSRM design, this paper also deals with a robust SSRM transmit design under a moment-based random channel state information (CSI) model, where only some roughly estimated first and second-order statistics of Eve's CSI are available, but the exact distribution or other high-order statistics is not known. This moment-based error model is new and different from the widely used bounded-sphere error model and the Gaussian random error model. Under the consider CSI error model, the robust SSRM is formulated as an outage probability-constrained SSRM problem. By leveraging the Lagrangian duality theory and DC programming, a tractable safe solution to the robust SSRM problem is derived. The effectiveness and the robustness of the proposed designs are demonstrated through simulations.
Liu, Hong; Wang, Jie; Xu, Xiangyang; Song, Enmin; Wang, Qian; Jin, Renchao; Hung, Chih-Cheng; Fei, Baowei
2014-11-01
A robust and accurate center-frequency (CF) estimation (RACE) algorithm for improving the performance of the local sine-wave modeling (SinMod) method, which is a good motion estimation method for tagged cardiac magnetic resonance (MR) images, is proposed in this study. The RACE algorithm can automatically, effectively and efficiently produce a very appropriate CF estimate for the SinMod method, under the circumstance that the specified tagging parameters are unknown, on account of the following two key techniques: (1) the well-known mean-shift algorithm, which can provide accurate and rapid CF estimation; and (2) an original two-direction-combination strategy, which can further enhance the accuracy and robustness of CF estimation. Some other available CF estimation algorithms are brought out for comparison. Several validation approaches that can work on the real data without ground truths are specially designed. Experimental results on human body in vivo cardiac data demonstrate the significance of accurate CF estimation for SinMod, and validate the effectiveness of RACE in facilitating the motion estimation performance of SinMod. Copyright © 2014 Elsevier Inc. All rights reserved.
Noori, Nazanin; Wald, Ron; Sharma Parpia, Arti; Goldstein, Marc B
2018-01-01
Accurate assessment of total body water (TBW) is essential for the evaluation of dialysis adequacy (Kt/V urea ). The Watson formula, which is recommended for the calculation of TBW, was derived in healthy volunteers thereby leading to potentially inaccurate TBW estimates in maintenance hemodialysis recipients. Bioimpedance spectroscopy (BIS) may be a robust alternative for the measurement of TBW in hemodialysis recipients. The primary objective of this study was to evaluate the accuracy of Watson formula-derived TBW estimates as compared with TBW measured with BIS. Second, we aimed to identify the anthropometric characteristics that are most likely to generate inaccuracy when using the Watson formula to calculate TBW. Finally, we derived novel anthropometric equations for the more accurate estimation of TBW. This was a cross-sectional study of prevalent in-center HD patients at St Michael's Hospital. One hundred eighty-four hemodialysis patients (109 men and 75 women) were evaluated in this study. Anthropometric measurements including weight, height, waist circumference, midarm circumference, and 4-site skinfold (biceps, triceps, subscapular, and suprailiac) thickness were measured; fat mass was measured using the formula by Durnin and Womersley. We measured TBW by BIS using the Body Composition Monitor (Fresenius Medical Care, Bad Homburg, Germany). We used the Bland-Altman method to calculate the difference between the TBW derived from the Watson method and the BIS. To derive new equations for TBW estimation, Pearson's correlation coefficients between BIS-TBW (the reference test) and other variables were examined. We used the least squares regression analysis to develop parsimonious equations to predict TBW. TBW values based on the Watson method had a high correlation with BIS-TBW (correlation coefficients = 0.87 and P < .001). Despite the high correlation, the Watson formula overestimated TBW by 5.1 (4.5-5.8) liters and 3.8 (3.0-4.5) liters, in men and women, respectively. Higher fat mass and waist circumference (general and abdominal obesity) were correlated with the greater TBW overestimation by the Watson formula. We created separate equations for men and women based on weight and waist circumference. The main limitation of our study was the lack of an external validation for our novel estimating equation. Furthermore, though BIS has been validated against traditional reference standards, our assumption that it represents the "gold standard" for body compartment assessment may be flawed. The Watson formula generally overestimates TBW in chronic dialysis recipients, particularly in patients with the highest waist circumference. Widespread reliance on the Watson formula for derivation of TBW may lead to the underestimation of Kt/V urea. .
Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes
NASA Astrophysics Data System (ADS)
Stockstill-Cahill, K. R.; Peplowski, P. N.
2018-05-01
PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.
Robust adaptive tracking control for nonholonomic mobile manipulator with uncertainties.
Peng, Jinzhu; Yu, Jie; Wang, Jie
2014-07-01
In this paper, mobile manipulator is divided into two subsystems, that is, nonholonomic mobile platform subsystem and holonomic manipulator subsystem. First, the kinematic controller of the mobile platform is derived to obtain a desired velocity. Second, regarding the coupling between the two subsystems as disturbances, Lyapunov functions of the two subsystems are designed respectively. Third, a robust adaptive tracking controller is proposed to deal with the unknown upper bounds of parameter uncertainties and disturbances. According to the Lyapunov stability theory, the derived robust adaptive controller guarantees global stability of the closed-loop system, and the tracking errors and adaptive coefficient errors are all bounded. Finally, simulation results show that the proposed robust adaptive tracking controller for nonholonomic mobile manipulator is effective and has good tracking capacity. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Parallel Motion Estimation and Mapping with Stereo Cameras in Underground Infrastructure
NASA Astrophysics Data System (ADS)
Liu, Chun; Li, Zhengning; Zhou, Yuan
2016-06-01
Presently, we developed a novel robust motion estimation method for localization and mapping in underground infrastructure using a pre-calibrated rigid stereo camera rig. Localization and mapping in underground infrastructure is important to safety. Yet it's also nontrivial since most underground infrastructures have poor lighting condition and featureless structure. Overcoming these difficulties, we discovered that parallel system is more efficient than the EKF-based SLAM approach since parallel system divides motion estimation and 3D mapping tasks into separate threads, eliminating data-association problem which is quite an issue in SLAM. Moreover, the motion estimation thread takes the advantage of state-of-art robust visual odometry algorithm which is highly functional under low illumination and provides accurate pose information. We designed and built an unmanned vehicle and used the vehicle to collect a dataset in an underground garage. The parallel system was evaluated by the actual dataset. Motion estimation results indicated a relative position error of 0.3%, and 3D mapping results showed a mean position error of 13cm. Off-line process reduced position error to 2cm. Performance evaluation by actual dataset showed that our system is capable of robust motion estimation and accurate 3D mapping in poor illumination and featureless underground environment.
The 'robust' capture-recapture design allows components of recruitment to be estimated
Pollock, K.H.; Kendall, W.L.; Nichols, J.D.; Lebreton, J.-D.; North, P.M.
1993-01-01
The 'robust' capture-recapture design (Pollock 1982) allows analyses which combine features of closed population model analyses (Otis et aI., 1978, White et aI., 1982) and open population model analyses (Pollock et aI., 1990). Estimators obtained under these analyses are more robust to unequal catch ability than traditional Jolly-Seber estimators (Pollock, 1982; Pollock et al., 1990; Kendall, 1992). The robust design also allows estimation of parameters for population size, survival rate and recruitment numbers for all periods of the study unlike under Jolly-Seber type models. The major advantage of this design that we emphasize in this short review paper is that it allows separate estimation of immigration and in situ recruitment numbers for a two or more age class model (Nichols and Pollock, 1990). This is contrasted with the age-dependent Jolly-Seber model (Pollock, 1981; Stokes, 1984; Pollock et L, 1990) which provides separate estimates for immigration and in situ recruitment for all but the first two age classes where there is at least a three age class model. The ability to achieve this separation of recruitment components can be very important to population modelers and wildlife managers as many species can only be separated into two easily identified age classes in the field.
Chu, Hui-May; Ette, Ene I
2005-09-02
his study was performed to develop a new nonparametric approach for the estimation of robust tissue-to-plasma ratio from extremely sparsely sampled paired data (ie, one sample each from plasma and tissue per subject). Tissue-to-plasma ratio was estimated from paired/unpaired experimental data using independent time points approach, area under the curve (AUC) values calculated with the naïve data averaging approach, and AUC values calculated using sampling based approaches (eg, the pseudoprofile-based bootstrap [PpbB] approach and the random sampling approach [our proposed approach]). The random sampling approach involves the use of a 2-phase algorithm. The convergence of the sampling/resampling approaches was investigated, as well as the robustness of the estimates produced by different approaches. To evaluate the latter, new data sets were generated by introducing outlier(s) into the real data set. One to 2 concentration values were inflated by 10% to 40% from their original values to produce the outliers. Tissue-to-plasma ratios computed using the independent time points approach varied between 0 and 50 across time points. The ratio obtained from AUC values acquired using the naive data averaging approach was not associated with any measure of uncertainty or variability. Calculating the ratio without regard to pairing yielded poorer estimates. The random sampling and pseudoprofile-based bootstrap approaches yielded tissue-to-plasma ratios with uncertainty and variability. However, the random sampling approach, because of the 2-phase nature of its algorithm, yielded more robust estimates and required fewer replications. Therefore, a 2-phase random sampling approach is proposed for the robust estimation of tissue-to-plasma ratio from extremely sparsely sampled data.
NASA Astrophysics Data System (ADS)
Delhaye, Robert; Rath, Volker; Jones, Alan G.; Muller, Mark R.; Reay, Derek
2017-05-01
Galvanic distortions of magnetotelluric (MT) data, such as the static-shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes; however, static-shift correction is required in order to ensure robust and precise modelling accuracy.We present here a possible method to employ frequency-domain electromagnetic data in order to correct static-shift effects, illustrated by a case study from Northern Ireland. In our survey area, airborne frequency domain electromagnetic (FDEM) data are regionally available with high spatial density. The spatial distributions of the derived static-shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static-shift corrections, with instructive results. As expected from the one-dimensional analogy of static-shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static-shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using Archie's Law, between the two models reinforces our conclusion that the suborder of magnitude resistivity contrasts induced by the correction of static shifts correspond to similar contrasts in estimated porosities, and hence, for purposes of reservoir investigation or similar cases requiring accurate absolute resistivity estimates, galvanic distortion correction, especially static-shift correction, is essential.
NASA Astrophysics Data System (ADS)
Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.
2013-03-01
Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime ice retreat should stimulate photosynthesis by exposing more of the AO to solar irradiance, total PP is ultimately limited by nutrient availability. Therefore, changes in AO PP will be forced by the balance between stratification and mixing, the effects of which are not yet quantified.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-10-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.
Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto
2016-01-01
Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786
Sworn testimony of the model evidence: Gaussian Mixture Importance (GAME) sampling
NASA Astrophysics Data System (ADS)
Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.
2017-07-01
What is the "best" model? The answer to this question lies in part in the eyes of the beholder, nevertheless a good model must blend rigorous theory with redeeming qualities such as parsimony and quality of fit. Model selection is used to make inferences, via weighted averaging, from a set of K candidate models, Mk; k=>(1,…,K>), and help identify which model is most supported by the observed data, Y>˜=>(y˜1,…,y˜n>). Here, we introduce a new and robust estimator of the model evidence, p>(Y>˜|Mk>), which acts as normalizing constant in the denominator of Bayes' theorem and provides a single quantitative measure of relative support for each hypothesis that integrates model accuracy, uncertainty, and complexity. However, p>(Y>˜|Mk>) is analytically intractable for most practical modeling problems. Our method, coined GAussian Mixture importancE (GAME) sampling, uses bridge sampling of a mixture distribution fitted to samples of the posterior model parameter distribution derived from MCMC simulation. We benchmark the accuracy and reliability of GAME sampling by application to a diverse set of multivariate target distributions (up to 100 dimensions) with known values of p>(Y>˜|Mk>) and to hypothesis testing using numerical modeling of the rainfall-runoff transformation of the Leaf River watershed in Mississippi, USA. These case studies demonstrate that GAME sampling provides robust and unbiased estimates of the evidence at a relatively small computational cost outperforming commonly used estimators. The GAME sampler is implemented in the MATLAB package of DREAM and simplifies considerably scientific inquiry through hypothesis testing and model selection.
An Estimate of Avian Mortality at Communication Towers in the United States and Canada
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G.; Sullivan, Lauren M.; Mutrie, Erin; Gauthreaux, Sidney A.; Avery, Michael L.; Crawford, Robert L.; Manville, Albert M.; Travis, Emilie R.; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action. PMID:22558082
An estimate of avian mortality at communication towers in the United States and Canada.
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G; Sullivan, Lauren M; Mutrie, Erin; Gauthreaux, Sidney A; Avery, Michael L; Crawford, Robert L; Manville, Albert M; Travis, Emilie R; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.
Doubly Robust Additive Hazards Models to Estimate Effects of a Continuous Exposure on Survival.
Wang, Yan; Lee, Mihye; Liu, Pengfei; Shi, Liuhua; Yu, Zhi; Abu Awad, Yara; Zanobetti, Antonella; Schwartz, Joel D
2017-11-01
The effect of an exposure on survival can be biased when the regression model is misspecified. Hazard difference is easier to use in risk assessment than hazard ratio and has a clearer interpretation in the assessment of effect modifications. We proposed two doubly robust additive hazards models to estimate the causal hazard difference of a continuous exposure on survival. The first model is an inverse probability-weighted additive hazards regression. The second model is an extension of the doubly robust estimator for binary exposures by categorizing the continuous exposure. We compared these with the marginal structural model and outcome regression with correct and incorrect model specifications using simulations. We applied doubly robust additive hazard models to the estimation of hazard difference of long-term exposure to PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 microns) on survival using a large cohort of 13 million older adults residing in seven states of the Southeastern United States. We showed that the proposed approaches are doubly robust. We found that each 1 μg m increase in annual PM2.5 exposure was associated with a causal hazard difference in mortality of 8.0 × 10 (95% confidence interval 7.4 × 10, 8.7 × 10), which was modified by age, medical history, socioeconomic status, and urbanicity. The overall hazard difference translates to approximately 5.5 (5.1, 6.0) thousand deaths per year in the study population. The proposed approaches improve the robustness of the additive hazards model and produce a novel additive causal estimate of PM2.5 on survival and several additive effect modifications, including social inequality.
Tools of Robustness for Item Response Theory.
ERIC Educational Resources Information Center
Jones, Douglas H.
This paper briefly demonstrates a few of the possibilities of a systematic application of robustness theory, concentrating on the estimation of ability when the true item response model does and does not fit the data. The definition of the maximum likelihood estimator (MLE) of ability is briefly reviewed. After introducing the notion of…
Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis
ERIC Educational Resources Information Center
Young, Cristobal; Holsteen, Katherine
2017-01-01
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all…
The Robustness of LISREL Estimates in Structural Equation Models with Categorical Variables.
ERIC Educational Resources Information Center
Ethington, Corinna A.
This study examined the effect of type of correlation matrix on the robustness of LISREL maximum likelihood and unweighted least squares structural parameter estimates for models with categorical manifest variables. Two types of correlation matrices were analyzed; one containing Pearson product-moment correlations and one containing tetrachoric,…
NASA Astrophysics Data System (ADS)
Ablay, Gunyaz
Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.
NASA Astrophysics Data System (ADS)
Friedel, M. J.; Daughney, C.
2016-12-01
The development of a successful surface-groundwater management strategy depends on the quality of data provided for analysis. This study evaluates the statistical robustness when using a modified self-organizing map (MSOM) technique to estimate missing values for three hypersurface models: synoptic groundwater-surface water hydrochemistry, time-series of groundwater-surface water hydrochemistry, and mixed-survey (combination of groundwater-surface water hydrochemistry and lithologies) hydrostratigraphic unit data. These models of increasing complexity are developed and validated based on observations from the Southland region of New Zealand. In each case, the estimation method is sufficiently robust to cope with groundwater-surface water hydrochemistry vagaries due to sample size and extreme data insufficiency, even when >80% of the data are missing. The estimation of surface water hydrochemistry time series values enabled the evaluation of seasonal variation, and the imputation of lithologies facilitated the evaluation of hydrostratigraphic controls on groundwater-surface water interaction. The robust statistical results for groundwater-surface water models of increasing data complexity provide justification to apply the MSOM technique in other regions of New Zealand and abroad.
Robust mislabel logistic regression without modeling mislabel probabilities.
Hung, Hung; Jou, Zhi-Yu; Huang, Su-Yun
2018-03-01
Logistic regression is among the most widely used statistical methods for linear discriminant analysis. In many applications, we only observe possibly mislabeled responses. Fitting a conventional logistic regression can then lead to biased estimation. One common resolution is to fit a mislabel logistic regression model, which takes into consideration of mislabeled responses. Another common method is to adopt a robust M-estimation by down-weighting suspected instances. In this work, we propose a new robust mislabel logistic regression based on γ-divergence. Our proposal possesses two advantageous features: (1) It does not need to model the mislabel probabilities. (2) The minimum γ-divergence estimation leads to a weighted estimating equation without the need to include any bias correction term, that is, it is automatically bias-corrected. These features make the proposed γ-logistic regression more robust in model fitting and more intuitive for model interpretation through a simple weighting scheme. Our method is also easy to implement, and two types of algorithms are included. Simulation studies and the Pima data application are presented to demonstrate the performance of γ-logistic regression. © 2017, The International Biometric Society.
Hu, Meng-Han; Dong, Qing-Li; Liu, Bao-Lin
2016-08-01
Hyperspectral reflectance and transmittance sensing as well as near-infrared (NIR) spectroscopy were investigated as non-destructive tools for estimating blueberry firmness, elastic modulus and soluble solid content (SSC). Least squares-support vector machine models were established from these three spectra based on samples from three cultivars viz. Bluecrop, Duke and M2 and two harvest years viz. 2014 and 2015 for predicting blueberry postharvest quality. One-cultivar reflectance models (establishing model using one cultivar) derived better results than the corresponding transmittance and NIR models for predicting blueberry firmness with few cultivar effects. Two-cultivar NIR models (establishing model using two cultivars) proved to be suitable for estimating blueberry SSC with correlations over 0.83. Rp (RMSEp ) values of the three-cultivar reflectance models (establishing model using 75% of three cultivars) were 0.73 (0.094) and 0.73 (0.186), respectively , for predicting blueberry firmness and elastic modulus. For SSC prediction, the three-cultivar NIR model was found to achieve an Rp (RMSEp ) value of 0.85 (0.090). Adding Bluecrop samples harvested in 2014 could enhance the three-cultivar model robustness for firmness and elastic modulus. The above results indicated the potential for using spatial and spectral techniques to develop robust models for predicting blueberry postharvest quality containing biological variability. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Five-equation and robust three-equation methods for solution verification of large eddy simulation
NASA Astrophysics Data System (ADS)
Dutta, Rabijit; Xing, Tao
2018-02-01
This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.
Li, Haojie; Graham, Daniel J
2016-08-01
This paper estimates the causal effect of 20mph zones on road casualties in London. Potential confounders in the key relationship of interest are included within outcome regression and propensity score models, and the models are then combined to form a doubly robust estimator. A total of 234 treated zones and 2844 potential control zones are included in the data sample. The propensity score model is used to select a viable control group which has common support in the covariate distributions. We compare the doubly robust estimates with those obtained using three other methods: inverse probability weighting, regression adjustment, and propensity score matching. The results indicate that 20mph zones have had a significant causal impact on road casualty reduction in both absolute and proportional terms. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Girinoto, Sadik, Kusman; Indahwati
2017-03-01
The National Socio-Economic Survey samples are designed to produce estimates of parameters of planned domains (provinces and districts). The estimation of unplanned domains (sub-districts and villages) has its limitation to obtain reliable direct estimates. One of the possible solutions to overcome this problem is employing small area estimation techniques. The popular choice of small area estimation is based on linear mixed models. However, such models need strong distributional assumptions and do not easy allow for outlier-robust estimation. As an alternative approach for this purpose, M-quantile regression approach to small area estimation based on modeling specific M-quantile coefficients of conditional distribution of study variable given auxiliary covariates. It obtained outlier-robust estimation from influence function of M-estimator type and also no need strong distributional assumptions. In this paper, the aim of study is to estimate the poverty indicator at sub-district level in Bogor District-West Java using M-quantile models for small area estimation. Using data taken from National Socioeconomic Survey and Villages Potential Statistics, the results provide a detailed description of pattern of incidence and intensity of poverty within Bogor district. We also compare the results with direct estimates. The results showed the framework may be preferable when direct estimate having no incidence of poverty at all in the small area.
Robust power spectral estimation for EEG data
Melman, Tamar; Victor, Jonathan D.
2016-01-01
Background Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. New method Using the multitaper method[1] as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Results Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. Comparison to existing method The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. Conclusion In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. PMID:27102041
Robust power spectral estimation for EEG data.
Melman, Tamar; Victor, Jonathan D
2016-08-01
Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-01-01
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS. PMID:27420066
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-07-12
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.
NASA Astrophysics Data System (ADS)
Fitton, N.; Datta, A.; Hastings, A.; Kuhnert, M.; Topp, C. F. E.; Cloy, J. M.; Rees, R. M.; Cardenas, L. M.; Williams, J. R.; Smith, K.; Chadwick, D.; Smith, P.
2014-09-01
The United Kingdom currently reports nitrous oxide emissions from agriculture using the IPCC default Tier 1 methodology. However Tier 1 estimates have a large degree of uncertainty as they do not account for spatial variations in emissions. Therefore biogeochemical models such as DailyDayCent (DDC) are increasingly being used to provide a spatially disaggregated assessment of annual emissions. Prior to use, an assessment of the ability of the model to predict annual emissions should be undertaken, coupled with an analysis of how model inputs influence model outputs, and whether the modelled estimates are more robust that those derived from the Tier 1 methodology. The aims of the study were (a) to evaluate if the DailyDayCent model can accurately estimate annual N2O emissions across nine different experimental sites, (b) to examine its sensitivity to different soil and climate inputs across a number of experimental sites and (c) to examine the influence of uncertainty in the measured inputs on modelled N2O emissions. DailyDayCent performed well across the range of cropland and grassland sites, particularly for fertilized fields indicating that it is robust for UK conditions. The sensitivity of the model varied across the sites and also between fertilizer/manure treatments. Overall our results showed that there was a stronger correlation between the sensitivity of N2O emissions to changes in soil pH and clay content than the remaining input parameters used in this study. The lower the initial site values for soil pH and clay content, the more sensitive DDC was to changes from their initial value. When we compared modelled estimates with Tier 1 estimates for each site, we found that DailyDayCent provided a more accurate representation of the rate of annual emissions.
Image distortion analysis using polynomial series expansion.
Baggenstoss, Paul M
2004-11-01
In this paper, we derive a technique for analysis of local distortions which affect data in real-world applications. In the paper, we focus on image data, specifically handwritten characters. Given a reference image and a distorted copy of it, the method is able to efficiently determine the rotations, translations, scaling, and any other distortions that have been applied. Because the method is robust, it is also able to estimate distortions for two unrelated images, thus determining the distortions that would be required to cause the two images to resemble each other. The approach is based on a polynomial series expansion using matrix powers of linear transformation matrices. The technique has applications in pattern recognition in the presence of distortions.
Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
Asteris, Panagiotis G.; Roussis, Panayiotis C.; Douvika, Maria G.
2017-01-01
This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature. PMID:28598400
Assessing the robustness of quantitative fatty acid signature analysis to assumption violations
Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.; Rode, Karyn D.
2016-01-01
In most QFASA applications, investigators will generally have some knowledge of the prey available to predators and be able to assess the completeness of prey signature data and sample additional prey as necessary. Conversely, because calibration coefficients are derived from feeding trials with captive animals and their values may be sensitive to consumer physiology and nutritional status, their applicability to free-ranging animals is difficult to establish. We therefore recommend that investigators first make any improvements to the prey signature data that seem warranted and then base estimation on the Aitchison distance measure, as it appears to minimize risk from violations of the assumption that is most difficult to verify.
A Very Simple Method to Calculate the (Positive) Largest Lyapunov Exponent Using Interval Extensions
NASA Astrophysics Data System (ADS)
Mendes, Eduardo M. A. M.; Nepomuceno, Erivelton G.
2016-12-01
In this letter, a very simple method to calculate the positive Largest Lyapunov Exponent (LLE) based on the concept of interval extensions and using the original equations of motion is presented. The exponent is estimated from the slope of the line derived from the lower bound error when considering two interval extensions of the original system. It is shown that the algorithm is robust, fast and easy to implement and can be considered as alternative to other algorithms available in the literature. The method has been successfully tested in five well-known systems: Logistic, Hénon, Lorenz and Rössler equations and the Mackey-Glass system.
Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts
NASA Astrophysics Data System (ADS)
Wang, Zhenyu; Goldenfeld, Nigel
2010-07-01
Starting with stochastic rate equations for the fundamental interactions between microbes and their viruses, we derive a mean-field theory for the population dynamics of microbe-virus systems, including the effects of lysogeny. In the absence of lysogeny, our model is a generalization of that proposed phenomenologically by Weitz and Dushoff. In the presence of lysogeny, we analyze the possible states of the system, identifying a limit cycle, which we interpret physically. To test the robustness of our mean-field calculations to demographic fluctuations, we have compared our results with stochastic simulations using the Gillespie algorithm. Finally, we estimate the range of parameters that delineate the various steady states of our model.
NASA Astrophysics Data System (ADS)
Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao
2017-10-01
This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.
Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis
NASA Astrophysics Data System (ADS)
Kürkçü, Burak; Kasnakoğlu, Coşku
2018-02-01
In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.
Robust Fuzzy Logic Stabilization with Disturbance Elimination
Danapalasingam, Kumeresan A.
2014-01-01
A robust fuzzy logic controller is proposed for stabilization and disturbance rejection in nonlinear control systems of a particular type. The dynamic feedback controller is designed as a combination of a control law that compensates for nonlinear terms in a control system and a dynamic fuzzy logic controller that addresses unknown model uncertainties and an unmeasured disturbance. Since it is challenging to derive a highly accurate mathematical model, the proposed controller requires only nominal functions of a control system. In this paper, a mathematical derivation is carried out to prove that the controller is able to achieve asymptotic stability by processing state measurements. Robustness here refers to the ability of the controller to asymptotically steer the state vector towards the origin in the presence of model uncertainties and a disturbance input. Simulation results of the robust fuzzy logic controller application in a magnetic levitation system demonstrate the feasibility of the control design. PMID:25177713
Employing Sensitivity Derivatives for Robust Optimization under Uncertainty in CFD
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Putko, Michele M.; Taylor, Arthur C., III
2004-01-01
A robust optimization is demonstrated on a two-dimensional inviscid airfoil problem in subsonic flow. Given uncertainties in statistically independent, random, normally distributed flow parameters (input variables), an approximate first-order statistical moment method is employed to represent the Computational Fluid Dynamics (CFD) code outputs as expected values with variances. These output quantities are used to form the objective function and constraints. The constraints are cast in probabilistic terms; that is, the probability that a constraint is satisfied is greater than or equal to some desired target probability. Gradient-based robust optimization of this stochastic problem is accomplished through use of both first and second-order sensitivity derivatives. For each robust optimization, the effect of increasing both input standard deviations and target probability of constraint satisfaction are demonstrated. This method provides a means for incorporating uncertainty when considering small deviations from input mean values.
Robust reliable sampled-data control for switched systems with application to flight control
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Joby, Maya; Shi, P.; Mathiyalagan, K.
2016-11-01
This paper addresses the robust reliable stabilisation problem for a class of uncertain switched systems with random delays and norm bounded uncertainties. The main aim of this paper is to obtain the reliable robust sampled-data control design which involves random time delay with an appropriate gain control matrix for achieving the robust exponential stabilisation for uncertain switched system against actuator failures. In particular, the involved delays are assumed to be randomly time-varying which obeys certain mutually uncorrelated Bernoulli distributed white noise sequences. By constructing an appropriate Lyapunov-Krasovskii functional (LKF) and employing an average-dwell time approach, a new set of criteria is derived for ensuring the robust exponential stability of the closed-loop switched system. More precisely, the Schur complement and Jensen's integral inequality are used in derivation of stabilisation criteria. By considering the relationship among the random time-varying delay and its lower and upper bounds, a new set of sufficient condition is established for the existence of reliable robust sampled-data control in terms of solution to linear matrix inequalities (LMIs). Finally, an illustrative example based on the F-18 aircraft model is provided to show the effectiveness of the proposed design procedures.
Jiang, Xuejun; Guo, Xu; Zhang, Ning; Wang, Bo
2018-01-01
This article presents and investigates performance of a series of robust multivariate nonparametric tests for detection of location shift between two multivariate samples in randomized controlled trials. The tests are built upon robust estimators of distribution locations (medians, Hodges-Lehmann estimators, and an extended U statistic) with both unscaled and scaled versions. The nonparametric tests are robust to outliers and do not assume that the two samples are drawn from multivariate normal distributions. Bootstrap and permutation approaches are introduced for determining the p-values of the proposed test statistics. Simulation studies are conducted and numerical results are reported to examine performance of the proposed statistical tests. The numerical results demonstrate that the robust multivariate nonparametric tests constructed from the Hodges-Lehmann estimators are more efficient than those based on medians and the extended U statistic. The permutation approach can provide a more stringent control of Type I error and is generally more powerful than the bootstrap procedure. The proposed robust nonparametric tests are applied to detect multivariate distributional difference between the intervention and control groups in the Thai Healthy Choices study and examine the intervention effect of a four-session motivational interviewing-based intervention developed in the study to reduce risk behaviors among youth living with HIV. PMID:29672555
Cauchemez, Simon; Epperson, Scott; Biggerstaff, Matthew; Swerdlow, David; Finelli, Lyn; Ferguson, Neil M
2013-01-01
Prior to emergence in human populations, zoonoses such as SARS cause occasional infections in human populations exposed to reservoir species. The risk of widespread epidemics in humans can be assessed by monitoring the reproduction number R (average number of persons infected by a human case). However, until now, estimating R required detailed outbreak investigations of human clusters, for which resources and expertise are not always available. Additionally, existing methods do not correct for important selection and under-ascertainment biases. Here, we present simple estimation methods that overcome many of these limitations. Our approach is based on a parsimonious mathematical model of disease transmission and only requires data collected through routine surveillance and standard case investigations. We apply it to assess the transmissibility of swine-origin influenza A H3N2v-M virus in the US, Nipah virus in Malaysia and Bangladesh, and also present a non-zoonotic example (cholera in the Dominican Republic). Estimation is based on two simple summary statistics, the proportion infected by the natural reservoir among detected cases (G) and among the subset of the first detected cases in each cluster (F). If detection of a case does not affect detection of other cases from the same cluster, we find that R can be estimated by 1-G; otherwise R can be estimated by 1-F when the case detection rate is low. In more general cases, bounds on R can still be derived. We have developed a simple approach with limited data requirements that enables robust assessment of the risks posed by emerging zoonoses. We illustrate this by deriving transmissibility estimates for the H3N2v-M virus, an important step in evaluating the possible pandemic threat posed by this virus. Please see later in the article for the Editors' Summary.
NASA Astrophysics Data System (ADS)
Wang, Xun; Ghidaoui, Mohamed S.
2018-07-01
This paper considers the problem of identifying multiple leaks in a water-filled pipeline based on inverse transient wave theory. The analytical solution to this problem involves nonlinear interaction terms between the various leaks. This paper shows analytically and numerically that these nonlinear terms are of the order of the leak sizes to the power two and; thus, negligible. As a result of this simplification, a maximum likelihood (ML) scheme that identifies leak locations and leak sizes separately is formulated and tested. It is found that the ML estimation scheme is highly efficient and robust with respect to noise. In addition, the ML method is a super-resolution leak localization scheme because its resolvable leak distance (approximately 0.15λmin , where λmin is the minimum wavelength) is below the Nyquist-Shannon sampling theorem limit (0.5λmin). Moreover, the Cramér-Rao lower bound (CRLB) is derived and used to show the efficiency of the ML scheme estimates. The variance of the ML estimator approximates the CRLB proving that the ML scheme belongs to class of best unbiased estimator of leak localization methods.
L-moments and TL-moments of the generalized lambda distribution
Asquith, W.H.
2007-01-01
The 4-parameter generalized lambda distribution (GLD) is a flexible distribution capable of mimicking the shapes of many distributions and data samples including those with heavy tails. The method of L-moments and the recently developed method of trimmed L-moments (TL-moments) are attractive techniques for parameter estimation for heavy-tailed distributions for which the L- and TL-moments have been defined. Analytical solutions for the first five L- and TL-moments in terms of GLD parameters are derived. Unfortunately, numerical methods are needed to compute the parameters from the L- or TL-moments. Algorithms are suggested for parameter estimation. Application of the GLD using both L- and TL-moment parameter estimates from example data is demonstrated, and comparison of the L-moment fit of the 4-parameter kappa distribution is made. A small simulation study of the 98th percentile (far-right tail) is conducted for a heavy-tail GLD with high-outlier contamination. The simulations show, with respect to estimation of the 98th-percent quantile, that TL-moments are less biased (more robost) in the presence of high-outlier contamination. However, the robustness comes at the expense of considerably more sampling variability. ?? 2006 Elsevier B.V. All rights reserved.
Bartels, Meike
2015-03-01
Wellbeing is a major topic of research across several disciplines, reflecting the increasing recognition of its strong value across major domains in life. Previous twin-family studies have revealed that individual differences in wellbeing are accounted for by both genetic as well as environmental factors. A systematic literature search identified 30 twin-family studies on wellbeing or a related measure such as satisfaction with life or happiness. Review of these studies showed considerable variation in heritability estimates (ranging from 0 to 64 %), which makes it difficult to draw firm conclusions regarding the genetic influences on wellbeing. For overall wellbeing twelve heritability estimates, from 10 independent studies, were meta-analyzed by computing a sample size weighted average heritability. Ten heritability estimates, derived from 9 independent samples, were used for the meta-analysis of satisfaction with life. The weighted average heritability of wellbeing, based on a sample size of 55,974 individuals, was 36 % (34-38), while the weighted average heritability for satisfaction with life was 32 % (29-35) (n = 47,750). With this result a more robust estimate of the relative influence of genetic effects on wellbeing is provided.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).
ERIC Educational Resources Information Center
Blankmeyer, Eric
P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…
A robust bayesian estimate of the concordance correlation coefficient.
Feng, Dai; Baumgartner, Richard; Svetnik, Vladimir
2015-01-01
A need for assessment of agreement arises in many situations including statistical biomarker qualification or assay or method validation. Concordance correlation coefficient (CCC) is one of the most popular scaled indices reported in evaluation of agreement. Robust methods for CCC estimation currently present an important statistical challenge. Here, we propose a novel Bayesian method of robust estimation of CCC based on multivariate Student's t-distribution and compare it with its alternatives. Furthermore, we extend the method to practically relevant settings, enabling incorporation of confounding covariates and replications. The superiority of the new approach is demonstrated using simulation as well as real datasets from biomarker application in electroencephalography (EEG). This biomarker is relevant in neuroscience for development of treatments for insomnia.
Kesselmeier, Miriam; Lorenzo Bermejo, Justo
2017-11-01
Logistic regression is the most common technique used for genetic case-control association studies. A disadvantage of standard maximum likelihood estimators of the genotype relative risk (GRR) is their strong dependence on outlier subjects, for example, patients diagnosed at unusually young age. Robust methods are available to constrain outlier influence, but they are scarcely used in genetic studies. This article provides a non-intimidating introduction to robust logistic regression, and investigates its benefits and limitations in genetic association studies. We applied the bounded Huber and extended the R package 'robustbase' with the re-descending Hampel functions to down-weight outlier influence. Computer simulations were carried out to assess the type I error rate, mean squared error (MSE) and statistical power according to major characteristics of the genetic study and investigated markers. Simulations were complemented with the analysis of real data. Both standard and robust estimation controlled type I error rates. Standard logistic regression showed the highest power but standard GRR estimates also showed the largest bias and MSE, in particular for associated rare and recessive variants. For illustration, a recessive variant with a true GRR=6.32 and a minor allele frequency=0.05 investigated in a 1000 case/1000 control study by standard logistic regression resulted in power=0.60 and MSE=16.5. The corresponding figures for Huber-based estimation were power=0.51 and MSE=0.53. Overall, Hampel- and Huber-based GRR estimates did not differ much. Robust logistic regression may represent a valuable alternative to standard maximum likelihood estimation when the focus lies on risk prediction rather than identification of susceptibility variants. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing
2016-12-20
Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Lin, Huiming; Fu, Bo; Qin, Guoyou; Zhu, Zhongyi
2017-12-01
We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts. Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed method and use simulation studies to compare its finite sample performance with that of Qu's method, the complete-case generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated using data from a longitudinal cohort study. © 2017, The International Biometric Society.
Skeletal Correlates for Body Mass Estimation in Modern and Fossil Flying Birds
Field, Daniel J.; Lynner, Colton; Brown, Christian; Darroch, Simon A. F.
2013-01-01
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid’s humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies. PMID:24312392
Interpretable inference on the mixed effect model with the Box-Cox transformation.
Maruo, K; Yamaguchi, Y; Noma, H; Gosho, M
2017-07-10
We derived results for inference on parameters of the marginal model of the mixed effect model with the Box-Cox transformation based on the asymptotic theory approach. We also provided a robust variance estimator of the maximum likelihood estimator of the parameters of this model in consideration of the model misspecifications. Using these results, we developed an inference procedure for the difference of the model median between treatment groups at the specified occasion in the context of mixed effects models for repeated measures analysis for randomized clinical trials, which provided interpretable estimates of the treatment effect. From simulation studies, it was shown that our proposed method controlled type I error of the statistical test for the model median difference in almost all the situations and had moderate or high performance for power compared with the existing methods. We illustrated our method with cluster of differentiation 4 (CD4) data in an AIDS clinical trial, where the interpretability of the analysis results based on our proposed method is demonstrated. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
On estimating scale invariance in stratocumulus cloud fields
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard A.
1990-01-01
Examination of cloud radiance fields derived from satellite observations sometimes indicates the existence of a range of scales over which the statistics of the field are scale invariant. Many methods were developed to quantify this scaling behavior in geophysics. The usefulness of such techniques depends both on the physics of the process being robust over a wide range of scales and on the availability of high resolution, low noise observations over these scales. These techniques (area perimeter relation, distribution of areas, estimation of the capacity, d0, through box counting, correlation exponent) are applied to the high resolution satellite data taken during the FIRE experiment and provides initial estimates of the quality of data required by analyzing simple sets. The results of the observed fields are contrasted with those of images of objects with known characteristics (e.g., dimension) where the details of the constructed image simulate current observational limits. Throughout when cloud elements and cloud boundaries are mentioned; it should be clearly understood that by this structures in the radiance field are meant: all the boundaries considered are defined by simple threshold arguments.
NASA Technical Reports Server (NTRS)
Platt, Trevor; Sathyendranath, Shubha
1993-01-01
Various conclusions by Balch et al. (1992) about the current state of modeling primary production in the sea (lack of improvement in primary production models, since 1957, utility of analytical models, and merits or weaknesses of complex models) are commented on. It is argued that since they are based on a false premise, these conclusions are not robust, and that the approach used by Balch et al. (the model of Platt and Sathyendranath, 1988) was inadequate for the question they set out to address. The present criticism is based mainly on the issue of whether implementation was correct with respect to parameter selection. It is concluded that the findings of Balch et al. with respect to the model of Platt and Sathyendranath is unreliable. Balch replies that satellite-derived estimates of primary production should be compared directly to that measured in situ in as many regions as possible. This will provide a first-order estimate of the magnitude of the error involved in estimating primary production from space.
Estimation of covariate-specific time-dependent ROC curves in the presence of missing biomarkers.
Li, Shanshan; Ning, Yang
2015-09-01
Covariate-specific time-dependent ROC curves are often used to evaluate the diagnostic accuracy of a biomarker with time-to-event outcomes, when certain covariates have an impact on the test accuracy. In many medical studies, measurements of biomarkers are subject to missingness due to high cost or limitation of technology. This article considers estimation of covariate-specific time-dependent ROC curves in the presence of missing biomarkers. To incorporate the covariate effect, we assume a proportional hazards model for the failure time given the biomarker and the covariates, and a semiparametric location model for the biomarker given the covariates. In the presence of missing biomarkers, we propose a simple weighted estimator for the ROC curves where the weights are inversely proportional to the selection probability. We also propose an augmented weighted estimator which utilizes information from the subjects with missing biomarkers. The augmented weighted estimator enjoys the double-robustness property in the sense that the estimator remains consistent if either the missing data process or the conditional distribution of the missing data given the observed data is correctly specified. We derive the large sample properties of the proposed estimators and evaluate their finite sample performance using numerical studies. The proposed approaches are illustrated using the US Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. © 2015, The International Biometric Society.
Wang, Ching-Yun; Song, Xiao
2017-01-01
SUMMARY Biomedical researchers are often interested in estimating the effect of an environmental exposure in relation to a chronic disease endpoint. However, the exposure variable of interest may be measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies an additive measurement error model, but it may not have repeated measurements. The subset in which the surrogate variables are available is called a calibration sample. In addition to the surrogate variables that are available among the subjects in the calibration sample, we consider the situation when there is an instrumental variable available for all study subjects. An instrumental variable is correlated with the unobserved true exposure variable, and hence can be useful in the estimation of the regression coefficients. In this paper, we propose a nonparametric method for Cox regression using the observed data from the whole cohort. The nonparametric estimator is the best linear combination of a nonparametric correction estimator from the calibration sample and the difference of the naive estimators from the calibration sample and the whole cohort. The asymptotic distribution is derived, and the finite sample performance of the proposed estimator is examined via intensive simulation studies. The methods are applied to the Nutritional Biomarkers Study of the Women’s Health Initiative. PMID:27546625
Control algorithms for aerobraking in the Martian atmosphere
NASA Technical Reports Server (NTRS)
Ward, Donald T.; Shipley, Buford W., Jr.
1991-01-01
The Analytic Predictor Corrector (APC) and Energy Controller (EC) atmospheric guidance concepts were adapted to control an interplanetary vehicle aerobraking in the Martian atmosphere. Changes are made to the APC to improve its robustness to density variations. These changes include adaptation of a new exit phase algorithm, an adaptive transition velocity to initiate the exit phase, refinement of the reference dynamic pressure calculation and two improved density estimation techniques. The modified controller with the hybrid density estimation technique is called the Mars Hybrid Predictor Corrector (MHPC), while the modified controller with a polynomial density estimator is called the Mars Predictor Corrector (MPC). A Lyapunov Steepest Descent Controller (LSDC) is adapted to control the vehicle. The LSDC lacked robustness, so a Lyapunov tracking exit phase algorithm is developed to guide the vehicle along a reference trajectory. This algorithm, when using the hybrid density estimation technique to define the reference path, is called the Lyapunov Hybrid Tracking Controller (LHTC). With the polynomial density estimator used to define the reference trajectory, the algorithm is called the Lyapunov Tracking Controller (LTC). These four new controllers are tested using a six degree of freedom computer simulation to evaluate their robustness. The MHPC, MPC, LHTC, and LTC show dramatic improvements in robustness over the APC and EC.
How Accurate and Robust Are the Phylogenetic Estimates of Austronesian Language Relationships?
Greenhill, Simon J.; Drummond, Alexei J.; Gray, Russell D.
2010-01-01
We recently used computational phylogenetic methods on lexical data to test between two scenarios for the peopling of the Pacific. Our analyses of lexical data supported a pulse-pause scenario of Pacific settlement in which the Austronesian speakers originated in Taiwan around 5,200 years ago and rapidly spread through the Pacific in a series of expansion pulses and settlement pauses. We claimed that there was high congruence between traditional language subgroups and those observed in the language phylogenies, and that the estimated age of the Austronesian expansion at 5,200 years ago was consistent with the archaeological evidence. However, the congruence between the language phylogenies and the evidence from historical linguistics was not quantitatively assessed using tree comparison metrics. The robustness of the divergence time estimates to different calibration points was also not investigated exhaustively. Here we address these limitations by using a systematic tree comparison metric to calculate the similarity between the Bayesian phylogenetic trees and the subgroups proposed by historical linguistics, and by re-estimating the age of the Austronesian expansion using only the most robust calibrations. The results show that the Austronesian language phylogenies are highly congruent with the traditional subgroupings, and the date estimates are robust even when calculated using a restricted set of historical calibrations. PMID:20224774
Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter B; Fripp, Jurgen; Dowling, Jason A
2015-07-01
CT-MR registration is a critical component of many radiation oncology protocols. In prostate external beam radiation therapy, it allows the propagation of MR-derived contours to reference CT images at the planning stage, and it enables dose mapping during dosimetry studies. The use of carefully registered CT-MR atlases allows the estimation of patient specific electron density maps from MRI scans, enabling MRI-alone radiation therapy planning and treatment adaptation. In all cases, the precision and accuracy achieved by registration influences the quality of the entire process. Most current registration algorithms do not robustly generalize and lack inverse-consistency, increasing the risk of human error and acting as a source of bias in studies where information is propagated in a particular direction, e.g. CT to MR or vice versa. In MRI-based treatment planning where both CT and MR scans serve as spatial references, inverse-consistency is critical, if under-acknowledged. A robust, inverse-consistent, rigid/affine registration algorithm that is well suited to CT-MR alignment in prostate radiation therapy is presented. The presented method is based on a robust block-matching optimization process that utilises a half-way space definition to maintain inverse-consistency. Inverse-consistency substantially reduces the influence of the order of input images, simplifying analysis, and increasing robustness. An open source implementation is available online at http://aehrc.github.io/Mirorr/. Experimental results on a challenging 35 CT-MR pelvis dataset demonstrate that the proposed method is more accurate than other popular registration packages and is at least as accurate as the state of the art, while being more robust and having an order of magnitude higher inverse-consistency than competing approaches. The presented results demonstrate that the proposed registration algorithm is readily applicable to prostate radiation therapy planning. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yan, Peng; Zhang, Yangming
2018-06-01
High performance scanning of nano-manipulators is widely deployed in various precision engineering applications such as SPM (scanning probe microscope), where trajectory tracking of sophisticated reference signals is an challenging control problem. The situation is further complicated when rate dependent hysteresis of the piezoelectric actuators and the stress-stiffening induced nonlinear stiffness of the flexure mechanism are considered. In this paper, a novel control framework is proposed to achieve high precision tracking of a piezoelectric nano-manipulator subjected to hysteresis and stiffness nonlinearities. An adaptive parameterized rate-dependent Prandtl-Ishlinskii model is constructed and the corresponding adaptive inverse model based online compensation is derived. Meanwhile a robust adaptive control architecture is further introduced to improve the tracking accuracy and robustness of the compensated system, where the parametric uncertainties of the nonlinear dynamics can be well eliminated by on-line estimations. Comparative experimental studies of the proposed control algorithm are conducted on a PZT actuated nano-manipulating stage, where hysteresis modeling accuracy and excellent tracking performance are demonstrated in real-time implementations, with significant improvement over existing results.
Seismic noise attenuation using an online subspace tracking algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang
2018-02-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
NASA Astrophysics Data System (ADS)
Shao, Xingling; Liu, Jun; Wang, Honglun
2018-05-01
In this paper, a robust back-stepping output feedback trajectory tracking controller is proposed for quadrotors subject to parametric uncertainties and external disturbances. Based on the hierarchical control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems to facilitate the back-stepping control design. With given model information incorporated into observer design, a high-order extended state observer (ESO) that relies only on position measurements is developed to estimate the remaining unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To overcome the problem of "explosion of complexity" in the back-stepping design, the sigmoid tracking differentiator (STD) is introduced to compute the derivative of virtual control laws. The advantage is that the proposed controller via output-feedback scheme not only can ensure good tracking performance using very limited information of quadrotors, but also has the ability of handling the undesired uncertainties. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.
The heritability of the functional connectome is robust to common nonlinear registration methods
NASA Astrophysics Data System (ADS)
Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.
2016-03-01
Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.
Digital robust active control law synthesis for large order systems using constrained optimization
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
1987-01-01
This paper presents a direct digital control law synthesis procedure for a large order, sampled data, linear feedback system using constrained optimization techniques to meet multiple design requirements. A linear quadratic Gaussian type cost function is minimized while satisfying a set of constraints on the design loads and responses. General expressions for gradients of the cost function and constraints, with respect to the digital control law design variables are derived analytically and computed by solving a set of discrete Liapunov equations. The designer can choose the structure of the control law and the design variables, hence a stable classical control law as well as an estimator-based full or reduced order control law can be used as an initial starting point. Selected design responses can be treated as constraints instead of lumping them into the cost function. This feature can be used to modify a control law, to meet individual root mean square response limitations as well as minimum single value restrictions. Low order, robust digital control laws were synthesized for gust load alleviation of a flexible remotely piloted drone aircraft.
NASA Astrophysics Data System (ADS)
Hasan, Mohammed A.
1997-11-01
In this dissertation, we present several novel approaches for detection and identification of targets of arbitrary shapes from the acoustic backscattered data and using the incident waveform. This problem is formulated as time- delay estimation and sinusoidal frequency estimation problems which both have applications in many other important areas in signal processing. Solving time-delay estimation problem allows the identification of the specular components in the backscattered signal from elastic and non-elastic targets. Thus, accurate estimation of these time delays would help in determining the existence of certain clues for detecting targets. Several new methods for solving these two problems in the time, frequency and wavelet domains are developed. In the time domain, a new block fast transversal filter (BFTF) is proposed for a fast implementation of the least squares (LS) method. This BFTF algorithm is derived by using data-related constrained block-LS cost function to guarantee global optimality. The new soft-constrained algorithm provides an efficient way of transferring weight information between blocks of data and thus it is computationally very efficient compared with other LS- based schemes. Additionally, the tracking ability of the algorithm can be controlled by varying the block length and/or a soft constrained parameter. The effectiveness of this algorithm is tested on several underwater acoustic backscattered data for elastic targets and non-elastic (cement chunk) objects. In the frequency domain, the time-delay estimation problem is converted to a sinusoidal frequency estimation problem by using the discrete Fourier transform. Then, the lagged sample covariance matrices of the resulting signal are computed and studied in terms of their eigen- structure. These matrices are shown to be robust and effective in extracting bases for the signal and noise subspaces. New MUSIC and matrix pencil-based methods are derived these subspaces. The effectiveness of the method is demonstrated on the problem of detection of multiple specular components in the acoustic backscattered data. Finally, a method for the estimation of time delays using wavelet decomposition is derived. The sub-band adaptive filtering uses discrete wavelet transform for multi- resolution or sub-band decomposition. Joint time delay estimation for identifying multi-specular components and subsequent adaptive filtering processes are performed on the signal in each sub-band. This would provide multiple 'look' of the signal at different resolution scale which results in more accurate estimates for delays associated with the specular components. Simulation results on the simulated and real shallow water data are provided which show the promise of this new scheme for target detection in a heavy cluttered environment.
Towards national-scale greenhouse gas emissions evaluation with robust uncertainty estimates
NASA Astrophysics Data System (ADS)
Rigby, Matthew; Swallow, Ben; Lunt, Mark; Manning, Alistair; Ganesan, Anita; Stavert, Ann; Stanley, Kieran; O'Doherty, Simon
2016-04-01
Through the Deriving Emissions related to Climate Change (DECC) network and the Greenhouse gAs Uk and Global Emissions (GAUGE) programme, the UK's greenhouse gases are now monitored by instruments mounted on telecommunications towers and churches, on a ferry that performs regular transects of the North Sea, on-board a research aircraft and from space. When combined with information from high-resolution chemical transport models such as the Met Office Numerical Atmospheric dispersion Modelling Environment (NAME), these measurements are allowing us to evaluate emissions more accurately than has previously been possible. However, it has long been appreciated that current methods for quantifying fluxes using atmospheric data suffer from uncertainties, primarily relating to the chemical transport model, that have been largely ignored to date. Here, we use novel model reduction techniques for quantifying the influence of a set of potential systematic model errors on the outcome of a national-scale inversion. This new technique has been incorporated into a hierarchical Bayesian framework, which can be shown to reduce the influence of subjective choices on the outcome of inverse modelling studies. Using estimates of the UK's methane emissions derived from DECC and GAUGE tall-tower measurements as a case study, we will show that such model systematic errors have the potential to significantly increase the uncertainty on national-scale emissions estimates. Therefore, we conclude that these factors must be incorporated in national emissions evaluation efforts, if they are to be credible.
Jackknife variance of the partial area under the empirical receiver operating characteristic curve.
Bandos, Andriy I; Guo, Ben; Gur, David
2017-04-01
Receiver operating characteristic analysis provides an important methodology for assessing traditional (e.g., imaging technologies and clinical practices) and new (e.g., genomic studies, biomarker development) diagnostic problems. The area under the clinically/practically relevant part of the receiver operating characteristic curve (partial area or partial area under the receiver operating characteristic curve) is an important performance index summarizing diagnostic accuracy at multiple operating points (decision thresholds) that are relevant to actual clinical practice. A robust estimate of the partial area under the receiver operating characteristic curve is provided by the area under the corresponding part of the empirical receiver operating characteristic curve. We derive a closed-form expression for the jackknife variance of the partial area under the empirical receiver operating characteristic curve. Using the derived analytical expression, we investigate the differences between the jackknife variance and a conventional variance estimator. The relative properties in finite samples are demonstrated in a simulation study. The developed formula enables an easy way to estimate the variance of the empirical partial area under the receiver operating characteristic curve, thereby substantially reducing the computation burden, and provides important insight into the structure of the variability. We demonstrate that when compared with the conventional approach, the jackknife variance has substantially smaller bias, and leads to a more appropriate type I error rate of the Wald-type test. The use of the jackknife variance is illustrated in the analysis of a data set from a diagnostic imaging study.
Roberts-Ashby, Tina; Brandon N. Ashby,
2016-01-01
This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.
Robust Flutter Margin Analysis that Incorporates Flight Data
NASA Technical Reports Server (NTRS)
Lind, Rick; Brenner, Martin J.
1998-01-01
An approach for computing worst-case flutter margins has been formulated in a robust stability framework. Uncertainty operators are included with a linear model to describe modeling errors and flight variations. The structured singular value, mu, computes a stability margin that directly accounts for these uncertainties. This approach introduces a new method of computing flutter margins and an associated new parameter for describing these margins. The mu margins are robust margins that indicate worst-case stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously estimated by p-k analysis.
ACOSS Six (Active Control of Space Structures)
1981-10-01
modes, specially useful simpler conditions for ensuring closed-loop asymptotic stability are also derived. In addition, conditions for robustness of...in this initial study of FOCL stability and robustness . Such a condition is strong but not unreasonable nor unrealistic. Many useful simple in- sights...smallest possible feedback gains) and many interesting numerical results on closed-loop stability and robustness of the modal-dashpot designs. The
NASA Astrophysics Data System (ADS)
Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.
2018-04-01
Epidemiologic and health impact studies have examined the chemical composition of ambient PM2.5 in China but have been constrained by the paucity of long-term ground measurements. Using the GEOS-Chem chemical transport model and satellite-derived PM2.5 data, sulfate and ammonium levels were estimated over China from 2004 to 2014. A comparison of the satellite-estimated dataset with model simulations based on ground measurements obtained from the literature indicated our results are more accurate. Using satellite-derived PM2.5 data with a spatial resolution of 0.1° × 0.1°, we further presented finer satellite-estimated sulfate and ammonium concentrations in anthropogenic polluted regions, including the NCP (the North China Plain), the SCB (the Sichuan Basin) and the PRD (the Pearl River Delta). Linear regression results obtained on a national scale yielded an r value of 0.62, NMB of -35.9 %, NME of 48.2 %, ARB_50 % of 53.68 % for sulfate and an r value of 0.63, slope of 0.67, and intercept of 5.14 for ammonium. In typical regions, the satellite-derived dataset was significantly robust. Based on the satellite-derived dataset, the spatial-temporal variation of 11-year annual average satellite-derived SO42- and NH4+ concentrations and time series of monthly average concentrations were also investigated. On a national scale, both exhibited a downward trend each year between 2004 and 2014 (SO42-: -0.61 %; NH4+: -0.21 %), large values were mainly concentrated in the NCP and SCB. For regions captured at a finer resolution, the inter-annual variation trends presented a positive trend over the periods 2004-2007 and 2008-2011, followed by a negative trend over the period 2012-2014, and sulfate concentrations varied appreciably. Moreover, the seasonal distributions of the 11-year satellite-derived dataset over China were presented. The distribution of both sulfate and ammonium concentrations exhibited seasonal characteristics, with the seasonal concentrations ranking as follows: winter > summer > autumn > spring. High concentrations of these species were concentrated in the NCP and SCB, originating from coal-fired power plants and agricultural activities, respectively. Efforts to reduce sulfur dioxide (SO2) emissions have yielded remarkable results since the government has adopted stricter control measures in recent years. Moreover, ammonia emissions should be controlled while reducing the concentration of sulfur, nitrogen and particulate matter. This study provides an assessment of the population's exposure to certain chemical components.
A robust interpolation method for constructing digital elevation models from remote sensing data
NASA Astrophysics Data System (ADS)
Chen, Chuanfa; Liu, Fengying; Li, Yanyan; Yan, Changqing; Liu, Guolin
2016-09-01
A digital elevation model (DEM) derived from remote sensing data often suffers from outliers due to various reasons such as the physical limitation of sensors and low contrast of terrain textures. In order to reduce the effect of outliers on DEM construction, a robust algorithm of multiquadric (MQ) methodology based on M-estimators (MQ-M) was proposed. MQ-M adopts an adaptive weight function with three-parts. The weight function is null for large errors, one for small errors and quadric for others. A mathematical surface was employed to comparatively analyze the robustness of MQ-M, and its performance was compared with those of the classical MQ and a recently developed robust MQ method based on least absolute deviation (MQ-L). Numerical tests show that MQ-M is comparative to the classical MQ and superior to MQ-L when sample points follow normal and Laplace distributions, and under the presence of outliers the former is more accurate than the latter. A real-world example of DEM construction using stereo images indicates that compared with the classical interpolation methods, such as natural neighbor (NN), ordinary kriging (OK), ANUDEM, MQ-L and MQ, MQ-M has a better ability of preserving subtle terrain features. MQ-M replaces thin plate spline for reference DEM construction to assess the contribution to our recently developed multiresolution hierarchical classification method (MHC). Classifying the 15 groups of benchmark datasets provided by the ISPRS Commission demonstrates that MQ-M-based MHC is more accurate than MQ-L-based and TPS-based MHCs. MQ-M has high potential for DEM construction.
Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.
Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun
2016-05-09
The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.
Robust Mean and Covariance Structure Analysis through Iteratively Reweighted Least Squares.
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2000-01-01
Adapts robust schemes to mean and covariance structures, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is weighted according to its distance, based on first and second order moments. Test statistics and standard error estimators are given. (SLD)
A global reconstruction of climate-driven subdecadal water storage variability
NASA Astrophysics Data System (ADS)
Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.
2017-03-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:
Model risk for European-style stock index options.
Gençay, Ramazan; Gibson, Rajna
2007-01-01
In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning.
Toward robust estimation of the components of forest population change: simulation results
Francis A. Roesch
2014-01-01
This report presents the full simulation results of the work described in Roesch (2014), in which multiple levels of simulation were used to test the robustness of estimators for the components of forest change. In that study, a variety of spatial-temporal populations were created based on, but more variable than, an actual forest monitoring dataset, and then those...
Automatic SAR/optical cross-matching for GCP monograph generation
NASA Astrophysics Data System (ADS)
Nutricato, Raffaele; Morea, Alberto; Nitti, Davide Oscar; La Mantia, Claudio; Agrimano, Luigi; Samarelli, Sergio; Chiaradia, Maria Teresa
2016-10-01
Ground Control Points (GCP), automatically extracted from Synthetic Aperture Radar (SAR) images through 3D stereo analysis, can be effectively exploited for an automatic orthorectification of optical imagery if they can be robustly located in the basic optical images. The present study outlines a SAR/Optical cross-matching procedure that allows a robust alignment of radar and optical images, and consequently to derive automatically the corresponding sub-pixel position of the GCPs in the optical image in input, expressed as fractional pixel/line image coordinates. The cross-matching in performed in two subsequent steps, in order to gradually gather a better precision. The first step is based on the Mutual Information (MI) maximization between optical and SAR chips while the last one uses the Normalized Cross-Correlation as similarity metric. This work outlines the designed algorithmic solution and discusses the results derived over the urban area of Pisa (Italy), where more than ten COSMO-SkyMed Enhanced Spotlight stereo images with different beams and passes are available. The experimental analysis involves different satellite images, in order to evaluate the performances of the algorithm w.r.t. the optical spatial resolution. An assessment of the performances of the algorithm has been carried out, and errors are computed by measuring the distance between the GCP pixel/line position in the optical image, automatically estimated by the tool, and the "true" position of the GCP, visually identified by an expert user in the optical images.
Influence of model reduction on uncertainty of flood inundation predictions
NASA Astrophysics Data System (ADS)
Romanowicz, R. J.; Kiczko, A.; Osuch, M.
2012-04-01
Derivation of flood risk maps requires an estimation of the maximum inundation extent for a flood with an assumed probability of exceedence, e.g. a 100 or 500 year flood. The results of numerical simulations of flood wave propagation are used to overcome the lack of relevant observations. In practice, deterministic 1-D models are used for flow routing, giving a simplified image of a flood wave propagation process. The solution of a 1-D model depends on the simplifications to the model structure, the initial and boundary conditions and the estimates of model parameters which are usually identified using the inverse problem based on the available noisy observations. Therefore, there is a large uncertainty involved in the derivation of flood risk maps. In this study we examine the influence of model structure simplifications on estimates of flood extent for the urban river reach. As the study area we chose the Warsaw reach of the River Vistula, where nine bridges and several dikes are located. The aim of the study is to examine the influence of water structures on the derived model roughness parameters, with all the bridges and dikes taken into account, with a reduced number and without any water infrastructure. The results indicate that roughness parameter values of a 1-D HEC-RAS model can be adjusted for the reduction in model structure. However, the price we pay is the model robustness. Apart from a relatively simple question regarding reducing model structure, we also try to answer more fundamental questions regarding the relative importance of input, model structure simplification, parametric and rating curve uncertainty to the uncertainty of flood extent estimates. We apply pseudo-Bayesian methods of uncertainty estimation and Global Sensitivity Analysis as the main methodological tools. The results indicate that the uncertainties have a substantial influence on flood risk assessment. In the paper we present a simplified methodology allowing the influence of that uncertainty to be assessed. This work was supported by National Science Centre of Poland (grant 2011/01/B/ST10/06866).
NASA Astrophysics Data System (ADS)
Simons, F. J.; Eggers, G. L.; Lewis, K. W.; Olhede, S. C.
2015-12-01
What numbers "capture" topography? If stationary, white, and Gaussian: mean and variance. But "whiteness" is strong; we are led to a "baseline" over which to compute means and variances. We then have subscribed to topography as a correlated process, and to the estimation (noisy, afftected by edge effects) of the parameters of a spatial or spectral covariance function. What if the covariance function or the point process itself aren't Gaussian? What if the region under study isn't regularly shaped or sampled? How can results from differently sized patches be compared robustly? We present a spectral-domain "Whittle" maximum-likelihood procedure that circumvents these difficulties and answers the above questions. The key is the Matern form, whose parameters (variance, range, differentiability) define the shape of the covariance function (Gaussian, exponential, ..., are all special cases). We treat edge effects in simulation and in estimation. Data tapering allows for the irregular regions. We determine the estimation variance of all parameters. And the "best" estimate may not be "good enough": we test whether the "model" itself warrants rejection. We illustrate our methodology on geologically mapped patches of Venus. Surprisingly few numbers capture planetary topography. We derive them, with uncertainty bounds, we simulate "new" realizations of patches that look to the geologists exactly as if they were derived from similar processes. Our approach holds in 1, 2, and 3 spatial dimensions, and generalizes to multiple variables, e.g. when topography and gravity are being considered jointly (perhaps linked by flexural rigidity, erosion, or other surface and sub-surface modifying processes). Our results have widespread implications for the study of planetary topography in the Solar System, and are interpreted in the light of trying to derive "process" from "parameters", the end goal to assign likely formation histories for the patches under consideration. Our results should also be relevant for whomever needed to perform spatial interpolation or out-of-sample extension (e.g. kriging), machine learning and feature detection, on geological data. We present procedural details but focus on high-level results that have real-world implications for the study of Venus, Earth, other planets, and moons.
Huang, Lei
2015-01-01
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409
Robust Speech Enhancement Using Two-Stage Filtered Minima Controlled Recursive Averaging
NASA Astrophysics Data System (ADS)
Ghourchian, Negar; Selouani, Sid-Ahmed; O'Shaughnessy, Douglas
In this paper we propose an algorithm for estimating noise in highly non-stationary noisy environments, which is a challenging problem in speech enhancement. This method is based on minima-controlled recursive averaging (MCRA) whereby an accurate, robust and efficient noise power spectrum estimation is demonstrated. We propose a two-stage technique to prevent the appearance of musical noise after enhancement. This algorithm filters the noisy speech to achieve a robust signal with minimum distortion in the first stage. Subsequently, it estimates the residual noise using MCRA and removes it with spectral subtraction. The proposed Filtered MCRA (FMCRA) performance is evaluated using objective tests on the Aurora database under various noisy environments. These measures indicate the higher output SNR and lower output residual noise and distortion.
Robust control of the DC-DC boost converter based on the uncertainty and disturbance estimator
NASA Astrophysics Data System (ADS)
Oucheriah, Said
2017-11-01
In this paper, a robust non-linear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed and implemented for the output voltage regulation of the DC-DC boost converter. System uncertainties, external disturbances and unknown non-linear dynamics are lumped as a signal that is accurately estimated using a low-pass filter and their effects are cancelled by the controller. This methodology forms the basis of the UDE-based controller. A simple procedure is also developed that systematically determines the parameters of the controller to meet certain specifications. Using simulation, the effectiveness of the proposed controller is compared against the sliding-mode control (SMC). Experimental tests also show that the proposed controller is robust to system uncertainties, large input and load perturbations.
The Utility of Robust Means in Statistics
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
Location estimates calculated from heuristic data were examined using traditional and robust statistical methods. The current paper demonstrates the impact outliers have on the sample mean and proposes robust methods to control for outliers in sample data. Traditional methods fail because they rely on the statistical assumptions of normality and…
Is it feasible to estimate radiosonde biases from interlaced measurements?
NASA Astrophysics Data System (ADS)
Kremser, Stefanie; Tradowsky, Jordis S.; Rust, Henning W.; Bodeker, Greg E.
2018-05-01
Upper-air measurements of essential climate variables (ECVs), such as temperature, are crucial for climate monitoring and climate change detection. Because of the internal variability of the climate system, many decades of measurements are typically required to robustly detect any trend in the climate data record. It is imperative for the records to be temporally homogeneous over many decades to confidently estimate any trend. Historically, records of upper-air measurements were primarily made for short-term weather forecasts and as such are seldom suitable for studying long-term climate change as they lack the required continuity and homogeneity. Recognizing this, the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) has been established to provide reference-quality measurements of climate variables, such as temperature, pressure, and humidity, together with well-characterized and traceable estimates of the measurement uncertainty. To ensure that GRUAN data products are suitable to detect climate change, a scientifically robust instrument replacement strategy must always be adopted whenever there is a change in instrumentation. By fully characterizing any systematic differences between the old and new measurement system a temporally homogeneous data series can be created. One strategy is to operate both the old and new instruments in tandem for some overlap period to characterize any inter-instrument biases. However, this strategy can be prohibitively expensive at measurement sites operated by national weather services or research institutes. An alternative strategy that has been proposed is to alternate between the old and new instruments, so-called interlacing, and then statistically derive the systematic biases between the two instruments. Here we investigate the feasibility of such an approach specifically for radiosondes, i.e. flying the old and new instruments on alternating days. Synthetic data sets are used to explore the applicability of this statistical approach to radiosonde change management.
Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?
Wojan, Timothy R; Nichols, Bonnie
2018-01-01
Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment's design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010-2014). Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, "design last finish," and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design.
Design, innovation, and rural creative places: Are the arts the cherry on top, or the secret sauce?
Nichols, Bonnie
2018-01-01
Objective Creative class theory explains the positive relationship between the arts and commercial innovation as the mutual attraction of artists and other creative workers by an unobserved creative milieu. This study explores alternative theories for rural settings, by analyzing establishment-level survey data combined with data on the local arts scene. The study identifies the local contextual factors associated with a strong design orientation, and estimates the impact that a strong design orientation has on the local economy. Method Data on innovation and design come from a nationally representative sample of establishments in tradable industries. Latent class analysis allows identifying unobserved subpopulations comprised of establishments with different design and innovation orientations. Logistic regression allows estimating the association between an establishment’s design orientation and local contextual factors. A quantile instrumental variable regression allows assessing the robustness of the logistic regression results with respect to endogeneity. An estimate of design orientation at the local level derived from the survey is used to examine variation in economic performance during the period of recovery from the Great Recession (2010–2014). Results Three distinct innovation (substantive, nominal, and non-innovators) and design orientations (design-integrated, “design last finish,” and no systematic approach to design) are identified. Innovation- and design-intensive establishments were identified in both rural and urban areas. Rural design-integrated establishments tended to locate in counties with more highly educated workforces and containing at least one performing arts organization. A quantile instrumental variable regression confirmed that the logistic regression result is robust to endogeneity concerns. Finally, rural areas characterized by design-integrated establishments experienced faster growth in wages relative to rural areas characterized by establishments using no systematic approach to design. PMID:29489884
Robust estimation for class averaging in cryo-EM Single Particle Reconstruction.
Huang, Chenxi; Tagare, Hemant D
2014-01-01
Single Particle Reconstruction (SPR) for Cryogenic Electron Microscopy (cryo-EM) aligns and averages the images extracted from micrographs to improve the Signal-to-Noise ratio (SNR). Outliers compromise the fidelity of the averaging. We propose a robust cross-correlation-like w-estimator for combating the effect of outliers on the average images in cryo-EM. The estimator accounts for the natural variation of signal contrast among the images and eliminates the need for a threshold for outlier rejection. We show that the influence function of our estimator is asymptotically bounded. Evaluations of the estimator on simulated and real cryo-EM images show good performance in the presence of outliers.
Evaluation of the robustness of estimating five components from a skin spectral image
NASA Astrophysics Data System (ADS)
Akaho, Rina; Hirose, Misa; Tsumura, Norimichi
2018-04-01
We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.
Li, Yunji; Wu, QingE; Peng, Li
2018-01-23
In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
Ye, Yu; Kerr, William C
2011-01-01
To explore various model specifications in estimating relationships between liver cirrhosis mortality rates and per capita alcohol consumption in aggregate-level cross-section time-series data. Using a series of liver cirrhosis mortality rates from 1950 to 2002 for 47 U.S. states, the effects of alcohol consumption were estimated from pooled autoregressive integrated moving average (ARIMA) models and 4 types of panel data models: generalized estimating equation, generalized least square, fixed effect, and multilevel models. Various specifications of error term structure under each type of model were also examined. Different approaches controlling for time trends and for using concurrent or accumulated consumption as predictors were also evaluated. When cirrhosis mortality was predicted by total alcohol, highly consistent estimates were found between ARIMA and panel data analyses, with an average overall effect of 0.07 to 0.09. Less consistent estimates were derived using spirits, beer, and wine consumption as predictors. When multiple geographic time series are combined as panel data, none of existent models could accommodate all sources of heterogeneity such that any type of panel model must employ some form of generalization. Different types of panel data models should thus be estimated to examine the robustness of findings. We also suggest cautious interpretation when beverage-specific volumes are used as predictors. Copyright © 2010 by the Research Society on Alcoholism.
Robust photometric invariant features from the color tensor.
van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M
2006-01-01
Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.
Beda, Alessandro; Simpson, David M; Faes, Luca
2017-01-01
The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings.
Kery, M.; Royle, J. Andrew; Schmid, Hans; Schaub, M.; Volet, B.; Hafliger, G.; Zbinden, N.
2010-01-01
Species' assessments must frequently be derived from opportunistic observations made by volunteers (i.e., citizen scientists). Interpretation of the resulting data to estimate population trends is plagued with problems, including teasing apart genuine population trends from variations in observation effort. We devised a way to correct for annual variation in effort when estimating trends in occupancy (species distribution) from faunal or floral databases of opportunistic observations. First, for all surveyed sites, detection histories (i.e., strings of detection-nondetection records) are generated. Within-season replicate surveys provide information on the detectability of an occupied site. Detectability directly represents observation effort; hence, estimating detectablity means correcting for observation effort. Second, site-occupancy models are applied directly to the detection-history data set (i.e., without aggregation by site and year) to estimate detectability and species distribution (occupancy, i.e., the true proportion of sites where a species occurs). Site-occupancy models also provide unbiased estimators of components of distributional change (i.e., colonization and extinction rates). We illustrate our method with data from a large citizen-science project in Switzerland in which field ornithologists record opportunistic observations. We analyzed data collected on four species: the widespread Kingfisher (Alcedo atthis. ) and Sparrowhawk (Accipiter nisus. ) and the scarce Rock Thrush (Monticola saxatilis. ) and Wallcreeper (Tichodroma muraria. ). Our method requires that all observed species are recorded. Detectability was <1 and varied over the years. Simulations suggested some robustness, but we advocate recording complete species lists (checklists), rather than recording individual records of single species. The representation of observation effort with its effect on detectability provides a solution to the problem of differences in effort encountered when extracting trend information from haphazard observations. We expect our method is widely applicable for global biodiversity monitoring and modeling of species distributions. ?? 2010 Society for Conservation Biology.
2017-01-01
The growing interest in personalized medicine requires making inferences from descriptive indexes estimated from individual recordings of physiological signals, with statistical analyses focused on individual differences between/within subjects, rather than comparing supposedly homogeneous cohorts. To this end, methods to compute confidence limits of individual estimates of descriptive indexes are needed. This study introduces numerical methods to compute such confidence limits and perform statistical comparisons between indexes derived from autoregressive (AR) modeling of individual time series. Analytical approaches are generally not viable, because the indexes are usually nonlinear functions of the AR parameters. We exploit Monte Carlo (MC) and Bootstrap (BS) methods to reproduce the sampling distribution of the AR parameters and indexes computed from them. Here, these methods are implemented for spectral and information-theoretic indexes of heart-rate variability (HRV) estimated from AR models of heart-period time series. First, the MS and BC methods are tested in a wide range of synthetic HRV time series, showing good agreement with a gold-standard approach (i.e. multiple realizations of the "true" process driving the simulation). Then, real HRV time series measured from volunteers performing cognitive tasks are considered, documenting (i) the strong variability of confidence limits' width across recordings, (ii) the diversity of individual responses to the same task, and (iii) frequent disagreement between the cohort-average response and that of many individuals. We conclude that MC and BS methods are robust in estimating confidence limits of these AR-based indexes and thus recommended for short-term HRV analysis. Moreover, the strong inter-individual differences in the response to tasks shown by AR-based indexes evidence the need of individual-by-individual assessments of HRV features. Given their generality, MC and BS methods are promising for applications in biomedical signal processing and beyond, providing a powerful new tool for assessing the confidence limits of indexes estimated from individual recordings. PMID:28968394
The end of trend-estimation for extreme floods under climate change?
NASA Astrophysics Data System (ADS)
Schulz, Karsten; Bernhardt, Matthias
2016-04-01
An increased risk of flood events is one of the major threats under future climate change conditions. Therefore, many recent studies have investigated trends in flood extreme occurences using historic long-term river discharge data as well as simulations from combined global/regional climate and hydrological models. Severe floods are relatively rare events and the robust estimation of their probability of occurrence requires long time series of data (6). Following a method outlined by the IPCC research community, trends in extreme floods are calculated based on the difference of discharge values exceeding e.g. a 100-year level (Q100) between two 30-year windows, which represents prevailing conditions in a reference and a future time period, respectively. Following this approach, we analysed multiple, synthetically derived 2,000-year trend-free, yearly maximum runoff data generated using three different extreme value distributions (EDV). The parameters were estimated from long term runoff data of four large European watersheds (Danube, Elbe, Rhine, Thames). Both, Q100-values estimated from 30-year moving windows, as well as the subsequently derived trends showed enormous variations with time: for example, estimating the Extreme Value (Gumbel) - distribution for the Danube data, trends of Q100 in the synthetic time-series range from -4,480 to 4,028 m³/s per 100 years (Q100 =10,071m³/s, for reference). Similar results were found when applying other extreme value distributions (Weibull, and log-Normal) to all of the watersheds considered. This variability or "background noise" of estimating trends in flood extremes makes it almost impossible to significantly distinguish any real trend in observed as well as modelled data when such an approach is applied. These uncertainties, even though known in principle are hardly addressed and discussed by the climate change impact community. Any decision making and flood risk management, including the dimensioning of flood protection measures, that is based on such studies might therefore be fundamentally flawed.
Improving Marine Ecosystem Models with Biochemical Tracers
NASA Astrophysics Data System (ADS)
Pethybridge, Heidi R.; Choy, C. Anela; Polovina, Jeffrey J.; Fulton, Elizabeth A.
2018-01-01
Empirical data on food web dynamics and predator-prey interactions underpin ecosystem models, which are increasingly used to support strategic management of marine resources. These data have traditionally derived from stomach content analysis, but new and complementary forms of ecological data are increasingly available from biochemical tracer techniques. Extensive opportunities exist to improve the empirical robustness of ecosystem models through the incorporation of biochemical tracer data and derived indices, an area that is rapidly expanding because of advances in analytical developments and sophisticated statistical techniques. Here, we explore the trophic information required by ecosystem model frameworks (species, individual, and size based) and match them to the most commonly used biochemical tracers (bulk tissue and compound-specific stable isotopes, fatty acids, and trace elements). Key quantitative parameters derived from biochemical tracers include estimates of diet composition, niche width, and trophic position. Biochemical tracers also provide powerful insight into the spatial and temporal variability of food web structure and the characterization of dominant basal and microbial food web groups. A major challenge in incorporating biochemical tracer data into ecosystem models is scale and data type mismatches, which can be overcome with greater knowledge exchange and numerical approaches that transform, integrate, and visualize data.
WTA estimates using the method of paired comparison: tests of robustness
Patricia A. Champ; John B. Loomis
1998-01-01
The method of paired comparison is modified to allow choices between two alternative gains so as to estimate willingness to accept (WTA) without loss aversion. The robustness of WTA values for two public goods is tested with respect to sensitivity of theWTA measure to the context of the bundle of goods used in the paired comparison exercise and to the scope (scale) of...
Robust detection-isolation-accommodation for sensor failures
NASA Technical Reports Server (NTRS)
Weiss, J. L.; Pattipati, K. R.; Willsky, A. S.; Eterno, J. S.; Crawford, J. T.
1985-01-01
The results of a one year study to: (1) develop a theory for Robust Failure Detection and Identification (FDI) in the presence of model uncertainty, (2) develop a design methodology which utilizes the robust FDI ththeory, (3) apply the methodology to a sensor FDI problem for the F-100 jet engine, and (4) demonstrate the application of the theory to the evaluation of alternative FDI schemes are presented. Theoretical results in statistical discrimination are used to evaluate the robustness of residual signals (or parity relations) in terms of their usefulness for FDI. Furthermore, optimally robust parity relations are derived through the optimization of robustness metrics. The result is viewed as decentralization of the FDI process. A general structure for decentralized FDI is proposed and robustness metrics are used for determining various parameters of the algorithm.
Learning partial differential equations via data discovery and sparse optimization
NASA Astrophysics Data System (ADS)
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
Synchronization and information processing by an on-off coupling
NASA Astrophysics Data System (ADS)
Wei, G. W.; Zhao, Shan
2002-05-01
This paper proposes an on-off coupling process for chaos synchronization and information processing. An in depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied. We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchronization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schrödinger equation.
Lamont, Margaret M.; Fujisaki, Ikuko; Carthy, Raymond R.
2015-01-01
The Open Robust Model methods used for analysis in this study were developed by Kendall and Bjorkland (2001) and Kendall (2010). The language used in this manuscript to describe formatting and implementation of data for these analyses was derived heavily from Phillips et al. (2014). Therefore, the wording in the last paragraph of the ‘Materials and methods’ (p. 2662) and in the last paragraph of the ‘Results’ (p. 2663) of our publication is largely identical to the corresponding sections on pp. 865–866 in Phillips et al. (2014). Unfortunately, we did not indicate this adequately, thus proper credit was not given to the contribution of Phillips et al. (2014) in our publication.
RZA-NLMF algorithm-based adaptive sparse sensing for realizing compressive sensing
NASA Astrophysics Data System (ADS)
Gui, Guan; Xu, Li; Adachi, Fumiyuki
2014-12-01
Nonlinear sparse sensing (NSS) techniques have been adopted for realizing compressive sensing in many applications such as radar imaging. Unlike the NSS, in this paper, we propose an adaptive sparse sensing (ASS) approach using the reweighted zero-attracting normalized least mean fourth (RZA-NLMF) algorithm which depends on several given parameters, i.e., reweighted factor, regularization parameter, and initial step size. First, based on the independent assumption, Cramer-Rao lower bound (CRLB) is derived as for the performance comparisons. In addition, reweighted factor selection method is proposed for achieving robust estimation performance. Finally, to verify the algorithm, Monte Carlo-based computer simulations are given to show that the ASS achieves much better mean square error (MSE) performance than the NSS.
Monocular Visual Odometry Based on Trifocal Tensor Constraint
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Yang, G. L.; Jiang, Y. X.; Liu, X. Y.
2018-02-01
For the problem of real-time precise localization in the urban street, a monocular visual odometry based on Extend Kalman fusion of optical-flow tracking and trifocal tensor constraint is proposed. To diminish the influence of moving object, such as pedestrian, we estimate the motion of the camera by extracting the features on the ground, which improves the robustness of the system. The observation equation based on trifocal tensor constraint is derived, which can form the Kalman filter alone with the state transition equation. An Extend Kalman filter is employed to cope with the nonlinear system. Experimental results demonstrate that, compares with Yu’s 2-step EKF method, the algorithm is more accurate which meets the needs of real-time accurate localization in cities.
A simple filter circuit for denoising biomechanical impact signals.
Subramaniam, Suba R; Georgakis, Apostolos
2009-01-01
We present a simple scheme for denoising non-stationary biomechanical signals with the aim of accurately estimating their second derivative (acceleration). The method is based on filtering in fractional Fourier domains using well-known low-pass filters in a way that amounts to a time-varying cut-off threshold. The resulting algorithm is linear and its design is facilitated by the relationship between the fractional Fourier transform and joint time-frequency representations. The implemented filter circuit employs only three low-order filters while its efficiency is further supported by the low computational complexity of the fractional Fourier transform. The results demonstrate that the proposed method can denoise the signals effectively and is more robust against noise as compared to conventional low-pass filters.
Learning partial differential equations via data discovery and sparse optimization.
Schaeffer, Hayden
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection.
Learning partial differential equations via data discovery and sparse optimization
2017-01-01
We investigate the problem of learning an evolution equation directly from some given data. This work develops a learning algorithm to identify the terms in the underlying partial differential equations and to approximate the coefficients of the terms only using data. The algorithm uses sparse optimization in order to perform feature selection and parameter estimation. The features are data driven in the sense that they are constructed using nonlinear algebraic equations on the spatial derivatives of the data. Several numerical experiments show the proposed method's robustness to data noise and size, its ability to capture the true features of the data, and its capability of performing additional analytics. Examples include shock equations, pattern formation, fluid flow and turbulence, and oscillatory convection. PMID:28265183
Distributed Sensing and Processing for Multi-Camera Networks
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.
Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.
Kern, Eli; Verguet, Stéphane; Yuhas, Krista; Odhiambo, Frederick H; Kahn, James G; Walson, Judd
2013-08-01
To estimate the effectiveness, costs and cost-effectiveness of providing long-lasting insecticide-treated nets (LLINs) and point-of-use water filters to antiretroviral therapy (ART)-naïve HIV-infected adults and their family members, in the context of a multisite study in Kenya of 589 HIV-positive adults followed on average for 1.7 years. The effectiveness, costs and cost-effectiveness of the intervention were estimated using an epidemiologic-cost model. Model epidemiologic inputs were derived from the Kenya multisite study data, local epidemiological data and from the published literature. Model cost inputs were derived from published literature specific to Kenya. Uncertainty in the model estimates was assessed through univariate and multivariate sensitivity analyses. We estimated net cost savings of about US$ 26 000 for the intervention, over 1.7 years. Even when ignoring net cost savings, the intervention was found to be very cost-effective at a cost of US$ 3100 per death averted or US$ 99 per disability-adjusted life year (DALY) averted. The findings were robust to the sensitivity analysis and remained most sensitive to both the duration of ART use and the cost of ART per person-year. The provision of LLINs and water filters to ART-naïve HIV-infected adults in the Kenyan study resulted in substantial net cost savings, due to the delay in the initiation of ART. The addition of an LLIN and a point-of-use water filter to the existing package of care provided to ART-naïve HIV-infected adults could bring substantial cost savings to resource-constrained health systems in low- and middle-income countries. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Czernecki, Bartosz; Nowosad, Jakub; Jabłońska, Katarzyna
2018-04-01
Changes in the timing of plant phenological phases are important proxies in contemporary climate research. However, most of the commonly used traditional phenological observations do not give any coherent spatial information. While consistent spatial data can be obtained from airborne sensors and preprocessed gridded meteorological data, not many studies robustly benefit from these data sources. Therefore, the main aim of this study is to create and evaluate different statistical models for reconstructing, predicting, and improving quality of phenological phases monitoring with the use of satellite and meteorological products. A quality-controlled dataset of the 13 BBCH plant phenophases in Poland was collected for the period 2007-2014. For each phenophase, statistical models were built using the most commonly applied regression-based machine learning techniques, such as multiple linear regression, lasso, principal component regression, generalized boosted models, and random forest. The quality of the models was estimated using a k-fold cross-validation. The obtained results showed varying potential for coupling meteorological derived indices with remote sensing products in terms of phenological modeling; however, application of both data sources improves models' accuracy from 0.6 to 4.6 day in terms of obtained RMSE. It is shown that a robust prediction of early phenological phases is mostly related to meteorological indices, whereas for autumn phenophases, there is a stronger information signal provided by satellite-derived vegetation metrics. Choosing a specific set of predictors and applying a robust preprocessing procedures is more important for final results than the selection of a particular statistical model. The average RMSE for the best models of all phenophases is 6.3, while the individual RMSE vary seasonally from 3.5 to 10 days. Models give reliable proxy for ground observations with RMSE below 5 days for early spring and late spring phenophases. For other phenophases, RMSE are higher and rise up to 9-10 days in the case of the earliest spring phenophases.
Burgette, Reed J.; Hanson, Austin; Scharer, Katherine M.; Midttun, Nikolas
2016-01-01
The Sierra Madre Fault is a reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. This study focuses on the Central Sierra Madre Fault (CSMF) in an effort to provide numeric dating on surfaces with ages previously estimated from soil development alone. We have refined previous geomorphic mapping conducted in the western portion of the CSMF near Pasadena, CA, with the aid of new lidar data. This progress report focuses on our geochronology strategy employed in collecting samples and interpreting data to determine a robust suite of terrace surface ages. Sample sites for terrestrial cosmogenic nuclide and luminescence dating techniques were selected to be redundant and to be validated through relative geomorphic relationships between inset terrace levels. Additional sample sites were selected to evaluate the post-abandonment histories of terrace surfaces. We will combine lidar-derived displacement data with surface ages to estimate slip rates for the CSMF.
Measurements and Modeling of Total Solar Irradiance in X-class Solar Flares
NASA Technical Reports Server (NTRS)
Moore, Christopher S.; Chamberlin, Phillip Clyde; Hock, Rachel
2014-01-01
The Total Irradiance Monitor (TIM) from NASA's SOlar Radiation and Climate Experiment can detect changes in the total solar irradiance (TSI) to a precision of 2 ppm, allowing observations of variations due to the largest X-class solar flares for the first time. Presented here is a robust algorithm for determining the radiative output in the TIM TSI measurements, in both the impulsive and gradual phases, for the four solar flares presented in Woods et al., as well as an additional flare measured on 2006 December 6. The radiative outputs for both phases of these five flares are then compared to the vacuum ultraviolet (VUV) irradiance output from the Flare Irradiance Spectral Model (FISM) in order to derive an empirical relationship between the FISM VUV model and the TIM TSI data output to estimate the TSI radiative output for eight other X-class flares. This model provides the basis for the bolometric energy estimates for the solar flares analyzed in the Emslie et al. study.
Re-examination of the relationship between marine virus and microbial cell abundances.
Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S
2016-01-25
Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.
Im, Subin; Min, Soonhong
2013-04-01
Exploratory factor analyses of the Kirton Adaption-Innovation Inventory (KAI), which serves to measure individual cognitive styles, generally indicate three factors: sufficiency of originality, efficiency, and rule/group conformity. In contrast, a 2005 study by Im and Hu using confirmatory factor analysis supported a four-factor structure, dividing the sufficiency of originality dimension into two subdimensions, idea generation and preference for change. This study extends Im and Hu's (2005) study of a derived version of the KAI by providing additional evidence of the four-factor structure. Specifically, the authors test the robustness of the parameter estimates to the violation of normality assumptions in the sample using bootstrap methods. A bias-corrected confidence interval bootstrapping procedure conducted among a sample of 356 participants--members of the Arkansas Household Research Panel, with middle SES and average age of 55.6 yr. (SD = 13.9)--showed that the four-factor model with two subdimensions of sufficiency of originality fits the data significantly better than the three-factor model in non-normality conditions.
A fast new algorithm for a robot neurocontroller using inverse QR decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, A.S.; Khemaissia, S.
2000-01-01
A new adaptive neural network controller for robots is presented. The controller is based on direct adaptive techniques. Unlike many neural network controllers in the literature, inverse dynamical model evaluation is not required. A numerically robust, computationally efficient processing scheme for neutral network weight estimation is described, namely, the inverse QR decomposition (INVQR). The inverse QR decomposition and a weighted recursive least-squares (WRLS) method for neural network weight estimation is derived using Cholesky factorization of the data matrix. The algorithm that performs the efficient INVQR of the underlying space-time data matrix may be implemented in parallel on a triangular array.more » Furthermore, its systolic architecture is well suited for VLSI implementation. Another important benefit is well suited for VLSI implementation. Another important benefit of the INVQR decomposition is that it solves directly for the time-recursive least-squares filter vector, while avoiding the sequential back-substitution step required by the QR decomposition approaches.« less
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-03-09
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.
A Secure Trust Establishment Scheme for Wireless Sensor Networks
Ishmanov, Farruh; Kim, Sung Won; Nam, Seung Yeob
2014-01-01
Trust establishment is an important tool to improve cooperation and enhance security in wireless sensor networks. The core of trust establishment is trust estimation. If a trust estimation method is not robust against attack and misbehavior, the trust values produced will be meaningless, and system performance will be degraded. We present a novel trust estimation method that is robust against on-off attacks and persistent malicious behavior. Moreover, in order to aggregate recommendations securely, we propose using a modified one-step M-estimator scheme. The novelty of the proposed scheme arises from combining past misbehavior with current status in a comprehensive way. Specifically, we introduce an aggregated misbehavior component in trust estimation, which assists in detecting an on-off attack and persistent malicious behavior. In order to determine the current status of the node, we employ previous trust values and current measured misbehavior components. These components are combined to obtain a robust trust value. Theoretical analyses and evaluation results show that our scheme performs better than other trust schemes in terms of detecting an on-off attack and persistent misbehavior. PMID:24451471
Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise
Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan
2018-01-01
This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499
A subagging regression method for estimating the qualitative and quantitative state of groundwater
NASA Astrophysics Data System (ADS)
Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young
2017-08-01
A subsample aggregating (subagging) regression (SBR) method for the analysis of groundwater data pertaining to trend-estimation-associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of other methods, and the uncertainties are reasonably estimated; the others have no uncertainty analysis option. To validate further, actual groundwater data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by both SBR and GPR regardless of Gaussian or non-Gaussian skewed data. However, it is expected that GPR has a limitation in applications to severely corrupted data by outliers owing to its non-robustness. From the implementations, it is determined that the SBR method has the potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data such as the groundwater level and contaminant concentration.
Multiple robustness in factorized likelihood models.
Molina, J; Rotnitzky, A; Sued, M; Robins, J M
2017-09-01
We consider inference under a nonparametric or semiparametric model with likelihood that factorizes as the product of two or more variation-independent factors. We are interested in a finite-dimensional parameter that depends on only one of the likelihood factors and whose estimation requires the auxiliary estimation of one or several nuisance functions. We investigate general structures conducive to the construction of so-called multiply robust estimating functions, whose computation requires postulating several dimension-reducing models but which have mean zero at the true parameter value provided one of these models is correct.
Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.
2015-01-01
Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830
Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J
2015-03-01
Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang
2010-09-01
This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.
SKYNET: an efficient and robust neural network training tool for machine learning in astronomy
NASA Astrophysics Data System (ADS)
Graff, Philip; Feroz, Farhan; Hobson, Michael P.; Lasenby, Anthony
2014-06-01
We present the first public release of our generic neural network training algorithm, called SKYNET. This efficient and robust machine learning tool is able to train large and deep feed-forward neural networks, including autoencoders, for use in a wide range of supervised and unsupervised learning applications, such as regression, classification, density estimation, clustering and dimensionality reduction. SKYNET uses a `pre-training' method to obtain a set of network parameters that has empirically been shown to be close to a good solution, followed by further optimization using a regularized variant of Newton's method, where the level of regularization is determined and adjusted automatically; the latter uses second-order derivative information to improve convergence, but without the need to evaluate or store the full Hessian matrix, by using a fast approximate method to calculate Hessian-vector products. This combination of methods allows for the training of complicated networks that are difficult to optimize using standard backpropagation techniques. SKYNET employs convergence criteria that naturally prevent overfitting, and also includes a fast algorithm for estimating the accuracy of network outputs. The utility and flexibility of SKYNET are demonstrated by application to a number of toy problems, and to astronomical problems focusing on the recovery of structure from blurred and noisy images, the identification of gamma-ray bursters, and the compression and denoising of galaxy images. The SKYNET software, which is implemented in standard ANSI C and fully parallelized using MPI, is available at http://www.mrao.cam.ac.uk/software/skynet/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bernardi, E., E-mail: elisabetta.debernardi@unimib.it; Ricotti, R.; Riboldi, M.
2016-02-15
Purpose: An innovative strategy to improve the sensitivity of positron emission tomography (PET)-based treatment verification in ion beam radiotherapy is proposed. Methods: Low counting statistics PET images acquired during or shortly after the treatment (Measured PET) and a Monte Carlo estimate of the same PET images derived from the treatment plan (Expected PET) are considered as two frames of a 4D dataset. A 4D maximum likelihood reconstruction strategy was adapted to iteratively estimate the annihilation events distribution in a reference frame and the deformation motion fields that map it in the Expected PET and Measured PET frames. The outputs generatedmore » by the proposed strategy are as follows: (1) an estimate of the Measured PET with an image quality comparable to the Expected PET and (2) an estimate of the motion field mapping Expected PET to Measured PET. The details of the algorithm are presented and the strategy is preliminarily tested on analytically simulated datasets. Results: The algorithm demonstrates (1) robustness against noise, even in the worst conditions where 1.5 × 10{sup 4} true coincidences and a random fraction of 73% are simulated; (2) a proper sensitivity to different kind and grade of mismatches ranging between 1 and 10 mm; (3) robustness against bias due to incorrect washout modeling in the Monte Carlo simulation up to 1/3 of the original signal amplitude; and (4) an ability to describe the mismatch even in presence of complex annihilation distributions such as those induced by two perpendicular superimposed ion fields. Conclusions: The promising results obtained in this work suggest the applicability of the method as a quantification tool for PET-based treatment verification in ion beam radiotherapy. An extensive assessment of the proposed strategy on real treatment verification data is planned.« less
Enhanced echolocation via robust statistics and super-resolution of sonar images
NASA Astrophysics Data System (ADS)
Kim, Kio
Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust statistics is in fusing the images. It is shown that the maximum a posteriori fusion method can be formulated in a Kalman filter-like manner, and also that the resulting expression is identical to a W-estimator with a specific weight function.
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
Filtering Based Adaptive Visual Odometry Sensor Framework Robust to Blurred Images
Zhao, Haiying; Liu, Yong; Xie, Xiaojia; Liao, Yiyi; Liu, Xixi
2016-01-01
Visual odometry (VO) estimation from blurred image is a challenging problem in practical robot applications, and the blurred images will severely reduce the estimation accuracy of the VO. In this paper, we address the problem of visual odometry estimation from blurred images, and present an adaptive visual odometry estimation framework robust to blurred images. Our approach employs an objective measure of images, named small image gradient distribution (SIGD), to evaluate the blurring degree of the image, then an adaptive blurred image classification algorithm is proposed to recognize the blurred images, finally we propose an anti-blurred key-frame selection algorithm to enable the VO robust to blurred images. We also carried out varied comparable experiments to evaluate the performance of the VO algorithms with our anti-blur framework under varied blurred images, and the experimental results show that our approach can achieve superior performance comparing to the state-of-the-art methods under the condition with blurred images while not increasing too much computation cost to the original VO algorithms. PMID:27399704
Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning.
Zhao, Jonathan Z L; Mucaki, Eliseos J; Rogan, Peter K
2018-01-01
Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets. The present study develops human and murine signatures with biochemically-inspired machine learning that are strictly validated using k-fold and traditional approaches. Methods: Gene Expression Omnibus (GEO) datasets of exposed human and murine lymphocytes were preprocessed via nearest neighbor imputation and expression of genes implicated in the literature to be responsive to radiation exposure (n=998) were then ranked by Minimum Redundancy Maximum Relevance (mRMR). Optimal signatures were derived by backward, complete, and forward sequential feature selection using Support Vector Machines (SVM), and validated using k-fold or traditional validation on independent datasets. Results: The best human signatures we derived exhibit k-fold validation accuracies of up to 98% ( DDB2 , PRKDC , TPP2 , PTPRE , and GADD45A ) when validated over 209 samples and traditional validation accuracies of up to 92% ( DDB2 , CD8A , TALDO1 , PCNA , EIF4G2 , LCN2 , CDKN1A , PRKCH , ENO1 , and PPM1D ) when validated over 85 samples. Some human signatures are specific enough to differentiate between chemotherapy and radiotherapy. Certain multi-class murine signatures have sufficient granularity in dose estimation to inform eligibility for cytokine therapy (assuming these signatures could be translated to humans). We compiled a list of the most frequently appearing genes in the top 20 human and mouse signatures. More frequently appearing genes among an ensemble of signatures may indicate greater impact of these genes on the performance of individual signatures. Several genes in the signatures we derived are present in previously proposed signatures. Conclusions: Gene signatures for ionizing radiation exposure derived by machine learning have low error rates in externally validated, independent datasets, and exhibit high specificity and granularity for dose estimation.
Robust Mosaicking of Stereo Digital Elevation Models from the Ames Stereo Pipeline
NASA Technical Reports Server (NTRS)
Kim, Tae Min; Moratto, Zachary M.; Nefian, Ara Victor
2010-01-01
Robust estimation method is proposed to combine multiple observations and create consistent, accurate, dense Digital Elevation Models (DEMs) from lunar orbital imagery. The NASA Ames Intelligent Robotics Group (IRG) aims to produce higher-quality terrain reconstructions of the Moon from Apollo Metric Camera (AMC) data than is currently possible. In particular, IRG makes use of a stereo vision process, the Ames Stereo Pipeline (ASP), to automatically generate DEMs from consecutive AMC image pairs. However, the DEMs currently produced by the ASP often contain errors and inconsistencies due to image noise, shadows, etc. The proposed method addresses this problem by making use of multiple observations and by considering their goodness of fit to improve both the accuracy and robustness of the estimate. The stepwise regression method is applied to estimate the relaxed weight of each observation.
Optimizing the robustness of electrical power systems against cascading failures.
Zhang, Yingrui; Yağan, Osman
2016-06-21
Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.
Reassessment of the mass balance of the Abbot and Getz sectors of West Antarctica
NASA Astrophysics Data System (ADS)
Chuter, Stephen; Martín-Español, Alba; Wouters, Bert; Bamber, Jonathan
2017-04-01
Large discrepancies exist in mass balance estimates for the Getz and Abbot drainage basins, primarily due to previous poor knowledge of ice thickness at the grounding line, poor coverage by previous altimetry missions and signal leakage issues for GRACE. This is particularly the case for the Abbot region, where previously there have been contrasting positive ice sheet basin elevation rates from altimetry and negative mass budget estimates. Large errors arise when using ice thickness measurements derived from ERS-1 and/or ICESat altimetry data due to poor track spacing, 'loss of lock' issues near the grounding line and the complex morphology of these shelves, requiring fine resolution to derive robust and accurate elevations close to the grounding line. This was exemplified with the manual adjustments of up to 100 m required at the grounding line during the creation of Bedmap2. However, the advent of CryoSat-2 with its unique orbit and SARIn mode of operation has overcome these issues and enabled the determination of ice shelf thickness at a much higher accuracy than possible from previous satellites, particularly within the grounding zone. We present a reassessment of mass balance estimates for the 2007-2009 epoch using improved CryoSat-2 ice thicknesses. We find that CryoSat-2 ice thickness estimates are systematically thinner by 30% and 16.5% for the Abbot and Getz sectors respectively. Our new mass balance estimate of 8 ± 6 Gt yr-1for the Abbot region resolves the previous discrepancy with altimetry. Over the Getz region, the new mass balance estimate of 7.56 ± 16.6 Gt yr-1is in better agreement with other geodetic techniques. We also find there has been an increase in grounding line velocity of up to 20% since the 2007-2009 epoch, coupled with mean ice sheet thinning rates of -0.67 ± 0.13 m yr-1 derived from CryoSat-2 in fast flow regions. This is in addition to mean snowfall trends of -0.33 m yr-1w.e. since 2006. This suggests the onset of a dynamic instability in the region and the possibility of grounding line retreat, driven by both surface processes and ice dynamics.
Robust linear discriminant analysis with distance based estimators
NASA Astrophysics Data System (ADS)
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Study of Desert Dust Events over the Southwestern Iberian Peninsula in Year 2000: Two Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cachorro, V. E.; Vergaz, R.; de Frutos, A. M.
2006-03-07
Strong desert dust events occurring in 2000 over the southwestern Atlantic coast of the Iberian Peninsula are detected and evaluated by means of the TOMS Aerosol Index (A.I.) at three different sites, Funchal (Madeira Island, Portugal), Lisboa (Portugal), and El Arenosillo (Huelva, Spain). At the El Arenosillo station, measurements from an AERONET Cimel sunphotometer allow more retrieval of the spectral AOD and the derived alpha ''angstrom'' coefficient. After using different threshold values of these parameters, we conclude that it is difficult to establish reliable and robust criteria for an automatic estimation of the number of dust episodes and the totalmore » number of dusty days per year. As a result, additional information, such as airmass trajectories, were used to improve the estimation, from which reasonable results were obtained (although some manual editing was still needed). A detailed characterization of two selected desert dust episodes, a strong event in winter and another of less intensity in summer, was carried out using AOD derived from Brewer spectrometer measurements. Size distribution parameters and radiative properties, such as refractive index and the aerosol single scattering albedo derived from Cimel data, were analyzed in detail for one of these two case studies. Although specific to this dust episode, the retrieved range of values of these parameters clearly reflect the characteristics of desert aerosols. Back-trajectory analysis, synoptic weather maps and satellite images were also considered together, as supporting data to assess the aerosol desert characterization in this region of study.« less
Asymptotic solutions for the case of nearly symmetric gravitational lens systems
NASA Astrophysics Data System (ADS)
Wertz, O.; Pelgrims, V.; Surdej, J.
2012-08-01
Gravitational lensing provides a powerful tool to determine the Hubble parameter H0 from the measurement of the time delay Δt between two lensed images of a background variable source. Nevertheless, knowledge of the deflector mass distribution constitutes a hurdle. We propose in the present work interesting solutions for the case of nearly symmetric gravitational lens systems. For the case of a small misalignment between the source, the deflector and the observer, we first consider power-law (ɛ) axially symmetric models for which we derive an analytical relation between the amplification ratio and source position which is independent of the power-law slope ɛ. According to this relation, we deduce an expression for H0 also irrespective of the value ɛ. Secondly, we consider the power-law axially symmetric lens models with an external large-scale gravitational field, the shear γ, resulting in the so-called ɛ-γ models, for which we deduce simple first-order equations linking the model parameters and the lensed image positions, the latter being observable quantities. We also deduce simple relations between H0 and observables quantities only. From these equations, we may estimate the value of the Hubble parameter in a robust way. Nevertheless, comparison between the ɛ-γ and singular isothermal ellipsoid (SIE) models leads to the conclusion that these models remain most often distinct. Therefore, even for the case of a small misalignment, use of the first-order equations and precise astrometric measurements of the positions of the lensed images with respect to the centre of the deflector enables one to discriminate between these two families of models. Finally, we confront the models with numerical simulations to evaluate the intrinsic error of the first-order expressions used when deriving the model parameters under the assumption of a quasi-alignment between the source, the deflector and the observer. From these same simulations, we estimate for the case of the ɛ-γ family of models that the standard deviation affecting H0 is ? which merely reflects the adopted astrometric uncertainties on the relative image positions, typically ? arcsec. In conclusions, we stress the importance of getting very accurate measurements of the relative positions of the multiple lensed images and of the time delays for the case of nearly symmetric gravitational lens systems, in order to derive robust and precise values of the Hubble parameter.
NASA Astrophysics Data System (ADS)
Booker, David; Clarke, Peter J.; Lavallée, David A.
2014-09-01
The changing distribution of surface mass (oceans, atmospheric pressure, continental water storage, groundwater, lakes, snow and ice) causes detectable changes in the shape of the solid Earth, on time scales ranging from hours to millennia. Transient changes in the Earth's shape can, regardless of cause, be readily separated from steady secular variation in surface mass loading, but other secular changes due to plate tectonics and glacial isostatic adjustment (GIA) cannot. We estimate secular station velocities from almost 11 years of high quality combined GPS position solutions (GPS weeks 1,000-1,570) submitted as part of the first international global navigation satellite system service reprocessing campaign. Individual station velocities are estimated as a linear fit, paying careful attention to outliers and offsets. We remove a suite of a priori GIA models, each with an associated set of plate tectonic Euler vectors estimated by us; the latter are shown to be insensitive to the a priori GIA model. From the coordinate time series residuals after removing the GIA models and corresponding plate tectonic velocities, we use mass-conserving continental basis functions to estimate surface mass loading including the secular term. The different GIA models lead to significant differences in the estimates of loading in selected regions. Although our loading estimates are broadly comparable with independent estimates from other satellite missions, their range highlights the need for better, more robust GIA models that incorporate 3D Earth structure and accurately represent 3D surface displacements.
NASA Astrophysics Data System (ADS)
Bouchaala, F.; Ali, M. Y.; Matsushima, J.
2016-06-01
In this study a relationship between the seismic wavelength and the scale of heterogeneity in the propagating medium has been examined. The relationship estimates the size of heterogeneity that significantly affects the wave propagation at a specific frequency, and enables a decrease in the calculation time of wave scattering estimation. The relationship was applied in analyzing synthetic and Vertical Seismic Profiling (VSP) data obtained from an onshore oilfield in the Emirate of Abu Dhabi, United Arab Emirates. Prior to estimation of the attenuation, a robust processing workflow was applied to both synthetic and recorded data to increase the Signal-to-Noise Ratio (SNR). Two conventional methods of spectral ratio and centroid frequency shift methods were applied to estimate the attenuation from the extracted seismic waveforms in addition to a new method based on seismic interferometry. The attenuation profiles derived from the three approaches demonstrated similar variation, however the interferometry method resulted in greater depth resolution, differences in attenuation magnitude. Furthermore, the attenuation profiles revealed significant contribution of scattering on seismic wave attenuation. The results obtained from the seismic interferometry method revealed estimated scattering attenuation ranges from 0 to 0.1 and estimated intrinsic attenuation can reach 0.2. The subsurface of the studied zones is known to be highly porous and permeable, which suggest that the mechanism of the intrinsic attenuation is probably the interactions between pore fluids and solids.
Wang, Ching-Yun; Song, Xiao
2016-11-01
Biomedical researchers are often interested in estimating the effect of an environmental exposure in relation to a chronic disease endpoint. However, the exposure variable of interest may be measured with errors. In a subset of the whole cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies an additive measurement error model, but it may not have repeated measurements. The subset in which the surrogate variables are available is called a calibration sample. In addition to the surrogate variables that are available among the subjects in the calibration sample, we consider the situation when there is an instrumental variable available for all study subjects. An instrumental variable is correlated with the unobserved true exposure variable, and hence can be useful in the estimation of the regression coefficients. In this paper, we propose a nonparametric method for Cox regression using the observed data from the whole cohort. The nonparametric estimator is the best linear combination of a nonparametric correction estimator from the calibration sample and the difference of the naive estimators from the calibration sample and the whole cohort. The asymptotic distribution is derived, and the finite sample performance of the proposed estimator is examined via intensive simulation studies. The methods are applied to the Nutritional Biomarkers Study of the Women's Health Initiative. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ebrahimkhani, Sadegh
2016-07-01
Wind power plants have nonlinear dynamics and contain many uncertainties such as unknown nonlinear disturbances and parameter uncertainties. Thus, it is a difficult task to design a robust reliable controller for this system. This paper proposes a novel robust fractional-order sliding mode (FOSM) controller for maximum power point tracking (MPPT) control of doubly fed induction generator (DFIG)-based wind energy conversion system. In order to enhance the robustness of the control system, uncertainties and disturbances are estimated using a fractional order uncertainty estimator. In the proposed method a continuous control strategy is developed to achieve the chattering free fractional order sliding-mode control, and also no knowledge of the uncertainties and disturbances or their bound is assumed. The boundedness and convergence properties of the closed-loop signals are proven using Lyapunov׳s stability theory. Simulation results in the presence of various uncertainties were carried out to evaluate the effectiveness and robustness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R
2012-01-01
This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.
Estimating daily climatologies for climate indices derived from climate model data and observations
Mahlstein, Irina; Spirig, Christoph; Liniger, Mark A; Appenzeller, Christof
2015-01-01
Climate indices help to describe the past, present, and the future climate. They are usually closer related to possible impacts and are therefore more illustrative to users than simple climate means. Indices are often based on daily data series and thresholds. It is shown that the percentile-based thresholds are sensitive to the method of computation, and so are the climatological daily mean and the daily standard deviation, which are used for bias corrections of daily climate model data. Sample size issues of either the observed reference period or the model data lead to uncertainties in these estimations. A large number of past ensemble seasonal forecasts, called hindcasts, is used to explore these sampling uncertainties and to compare two different approaches. Based on a perfect model approach it is shown that a fitting approach can improve substantially the estimates of daily climatologies of percentile-based thresholds over land areas, as well as the mean and the variability. These improvements are relevant for bias removal in long-range forecasts or predictions of climate indices based on percentile thresholds. But also for climate change studies, the method shows potential for use. Key Points More robust estimates of daily climate characteristics Statistical fitting approach Based on a perfect model approach PMID:26042192
Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.
Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung
2010-07-01
An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems.
Stop consonant voicing in young children's speech: Evidence from a cross-sectional study
NASA Astrophysics Data System (ADS)
Ganser, Emily
There are intuitive reasons to believe that speech-sound acquisition and language acquisition should be related in development. Surprisingly, only recently has research begun to parse just how the two might be related. This study investigated possible correlations between speech-sound acquisition and language acquisition, as part of a large-scale, longitudinal study of the relationship between different types of phonological development and vocabulary growth in the preschool years. Productions of voiced and voiceless stop-initial words were recorded from 96 children aged 28-39 months. Voice Onset Time (VOT, in ms) for each token context was calculated. A mixed-model logistic regression was calculated which predicted whether the sound was intended to be voiced or voiceless based on its VOT. This model estimated the slopes of the logistic function for each child. This slope was referred to as Robustness of Contrast (based on Holliday, Reidy, Beckman, and Edwards, 2015), defined as being the degree of categorical differentiation between the production of two speech sounds or classes of sounds, in this case, voiced and voiceless stops. Results showed a wide range of slopes for individual children, suggesting that slope-derived Robustness of Contrast could be a viable means of measuring a child's acquisition of the voicing contrast. Robustness of Contrast was then compared to traditional measures of speech and language skills to investigate whether there was any correlation between the production of stop voicing and broader measures of speech and language development. The Robustness of Contrast measure was found to correlate with all individual measures of speech and language, suggesting that it might indeed be predictive of later language skills.
2008-12-01
for other sources of ECs such as those derived from embryonic and adult progenitor cells ( Rafii ; Lyden 2003). For example, human ES-derived...functional endothelial precursors. Blood, 95, 952-958. Rafii , S., and D. Lyden, 2003: Therapeutic stem and progenitor cell transplantation for
NASA Astrophysics Data System (ADS)
Libonati, R.; Dacamara, C. C.; Setzer, A. W.; Morelli, F.
2014-12-01
A procedure is presented that allows using information from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor to improve the quality of monthly burned area estimates over Brazil. The method integrates MODIS derived information from two sources; the NASA MCD64A1 Direct Broadcast Monthly Burned Area Product and INPE's Monthly Burned Area MODIS product (AQM-MODIS). The latter product relies on an algorithm that was specifically designed for ecosystems in Brazil, taking advantage of the ability of MIR reflectances to discriminate burned areas. Information from both MODIS products is incorporated by means of a linear regression model where an optimal estimate of the burned area is obtained as a linear combination of burned area estimates from MCD64A1 and AQM-MODIS. The linear regression model is calibrated using as optimal estimates values of burned area derived from Landsat TM during 2005 and 2006 over Jalapão, a region of Cerrado covering an area of 187 x 187 km2. Obtained values of coefficients for MCD64A1 and AQM-MODIS were 0.51 and 0.35, respectively and the root mean square error was 7.6 km2. Robustness of the model was checked by calibrating the model separately for 2005 and 2006 and cross-validating with 2006 and 2005; coefficients for 2005 (2006) were 0.46 (0.54) for MCD64A1 and 0.35 (0.35) for AQM-MODIS and the corresponding root mean square errors for 2006 (2005) were 7.8 (7.4) km2. The linear model was then applied to Brazil as well as to the six Brazilian main biomes, namely Cerrado, Amazônia, Caatinga, Pantanal, Mata Atlântica and Pampa. As to be expected the interannual variability based on the proposed synergistic use of MCD64A1, AQM-MODIS and Landsat Tm data for the period 2005-2010 presents marked differences with the corresponding amounts derived from MCD64A1 alone. For instance during the considered period, values (in 103 km2) from the proposed approach (from MCD64A1) are 399 (142), 232 (62), 559 (259), 274 (73), 219 (31) and 415 (251). Values obtained with the proposed approach may be viewed as an improved alternative to the currently available products over Brazil.
2011-01-01
Abstract Background The combinatorial library strategy of using multiple candidate ligands in mixtures as library members is ideal in terms of cost and efficiency, but needs special screening methods to estimate the affinities of candidate ligands in such mixtures. Herein, a new method to screen candidate ligands present in unknown molar quantities in mixtures was investigated. Results The proposed method involves preparing a processed-mixture-for-screening (PMFS) with each mixture sample and an exogenous reference ligand, initiating competitive binding among ligands from the PMFS to a target immobilized on magnetic particles, recovering target-ligand complexes in equilibrium by magnetic force, extracting and concentrating bound ligands, and analyzing ligands in the PMFS and the concentrated extract by chromatography. The relative affinity of each candidate ligand to its reference ligand is estimated via an approximation equation assuming (a) the candidate ligand and its reference ligand bind to the same site(s) on the target, (b) their chromatographic peak areas are over five times their intercepts of linear response but within their linear ranges, (c) their binding ratios are below 10%. These prerequisites are met by optimizing primarily the quantity of the target used and the PMFS composition ratio. The new method was tested using the competitive binding of biotin derivatives from mixtures to streptavidin immobilized on magnetic particles as a model. Each mixture sample containing a limited number of candidate biotin derivatives with moderate differences in their molar quantities were prepared via parallel-combinatorial-synthesis (PCS) without purification, or via the pooling of individual compounds. Some purified biotin derivatives were used as reference ligands. This method showed resistance to variations in chromatographic quantification sensitivity and concentration ratios; optimized conditions to validate the approximation equation could be applied to different mixture samples. Relative affinities of candidate biotin derivatives with unknown molar quantities in each mixture sample were consistent with those estimated by a homogenous method using their purified counterparts as samples. Conclusions This new method is robust and effective for each mixture possessing a limited number of candidate ligands whose molar quantities have moderate differences, and its integration with PCS has promise to routinely practice the mixture-based library strategy. PMID:21545719
Eickhoff, Simon B; Nichols, Thomas E; Laird, Angela R; Hoffstaedter, Felix; Amunts, Katrin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Claudia R
2016-08-15
Given the increasing number of neuroimaging publications, the automated knowledge extraction on brain-behavior associations by quantitative meta-analyses has become a highly important and rapidly growing field of research. Among several methods to perform coordinate-based neuroimaging meta-analyses, Activation Likelihood Estimation (ALE) has been widely adopted. In this paper, we addressed two pressing questions related to ALE meta-analysis: i) Which thresholding method is most appropriate to perform statistical inference? ii) Which sample size, i.e., number of experiments, is needed to perform robust meta-analyses? We provided quantitative answers to these questions by simulating more than 120,000 meta-analysis datasets using empirical parameters (i.e., number of subjects, number of reported foci, distribution of activation foci) derived from the BrainMap database. This allowed to characterize the behavior of ALE analyses, to derive first power estimates for neuroimaging meta-analyses, and to thus formulate recommendations for future ALE studies. We could show as a first consequence that cluster-level family-wise error (FWE) correction represents the most appropriate method for statistical inference, while voxel-level FWE correction is valid but more conservative. In contrast, uncorrected inference and false-discovery rate correction should be avoided. As a second consequence, researchers should aim to include at least 20 experiments into an ALE meta-analysis to achieve sufficient power for moderate effects. We would like to note, though, that these calculations and recommendations are specific to ALE and may not be extrapolated to other approaches for (neuroimaging) meta-analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum
NASA Technical Reports Server (NTRS)
Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.
2003-01-01
We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.
Monopole and dipole estimation for multi-frequency sky maps by linear regression
NASA Astrophysics Data System (ADS)
Wehus, I. K.; Fuskeland, U.; Eriksen, H. K.; Banday, A. J.; Dickinson, C.; Ghosh, T.; Górski, K. M.; Lawrence, C. R.; Leahy, J. P.; Maino, D.; Reich, P.; Reich, W.
2017-01-01
We describe a simple but efficient method for deriving a consistent set of monopole and dipole corrections for multi-frequency sky map data sets, allowing robust parametric component separation with the same data set. The computational core of this method is linear regression between pairs of frequency maps, often called T-T plots. Individual contributions from monopole and dipole terms are determined by performing the regression locally in patches on the sky, while the degeneracy between different frequencies is lifted whenever the dominant foreground component exhibits a significant spatial spectral index variation. Based on this method, we present two different, but each internally consistent, sets of monopole and dipole coefficients for the nine-year WMAP, Planck 2013, SFD 100 μm, Haslam 408 MHz and Reich & Reich 1420 MHz maps. The two sets have been derived with different analysis assumptions and data selection, and provide an estimate of residual systematic uncertainties. In general, our values are in good agreement with previously published results. Among the most notable results are a relative dipole between the WMAP and Planck experiments of 10-15μK (depending on frequency), an estimate of the 408 MHz map monopole of 8.9 ± 1.3 K, and a non-zero dipole in the 1420 MHz map of 0.15 ± 0.03 K pointing towards Galactic coordinates (l,b) = (308°,-36°) ± 14°. These values represent the sum of any instrumental and data processing offsets, as well as any Galactic or extra-Galactic component that is spectrally uniform over the full sky.