Sample records for derive simple analytic

  1. Erratum: A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2011-01-01

    The following describes a list of errata in our paper, "A simple, analytical model of collisionless magnetic reconnection in a pair plasma." It supersedes an earlier erratum. We recently discovered an error in the derivation of the outflow-to-inflow density ratio.

  2. An Approximate Solution to the Equation of Motion for Large-Angle Oscillations of the Simple Pendulum with Initial Velocity

    ERIC Educational Resources Information Center

    Johannessen, Kim

    2010-01-01

    An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…

  3. Transport of a decay chain in homogenous porous media: analytical solutions.

    PubMed

    Bauer, P; Attinger, S; Kinzelbach, W

    2001-06-01

    With the aid of integral transforms, analytical solutions for the transport of a decay chain in homogenous porous media are derived. Unidirectional steady-state flow and radial steady-state flow in single and multiple porosity media are considered. At least in Laplace domain, all solutions can be written in closed analytical formulae. Partly, the solutions can also be inverted analytically. If not, analytical calculation of the steady-state concentration distributions, evaluation of temporal moments and numerical inversion are still possible. Formulae for several simple boundary conditions are given and visualized in this paper. The derived novel solutions are widely applicable and are very useful for the validation of numerical transport codes.

  4. The use of precession modulation for nutation control in spin-stabilized spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, J. M.; Donner, R. J.; Tasar, V.

    1974-01-01

    The relations which determine the nutation effects induced in a spinning spacecraft by periodic precession thrust pulses are derived analytically. By utilizing the idea that nutation need only be observed just before each precession thrust pulse, a difficult continuous-time derivation is replaced by a simple discrete-time derivation using z-transforms. The analytic results obtained are used to develop two types of modulated precession control laws which use the precession maneuver to concurrently control nutation. Results are illustrated by digital simulation of an actual spacecraft configuration.

  5. An empirical, graphical, and analytical study of the relationship between vegetation indices. [derived from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Lautenschlager, L.; Perry, C. R., Jr. (Principal Investigator)

    1981-01-01

    The development of formulae for the reduction of multispectral scanner measurements to a single value (vegetation index) for predicting and assessing vegetative characteristics is addressed. The origin, motivation, and derivation of some four dozen vegetation indices are summarized. Empirical, graphical, and analytical techniques are used to investigate the relationships among the various indices. It is concluded that many vegetative indices are very similar, some being simple algebraic transforms of others.

  6. A simple analytical aerodynamic model of Langley Winged-Cone Aerospace Plane concept

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.

    1994-01-01

    A simple three DOF analytical aerodynamic model of the Langley Winged-Coned Aerospace Plane concept is presented in a form suitable for simulation, trajectory optimization, and guidance and control studies. The analytical model is especially suitable for methods based on variational calculus. Analytical expressions are presented for lift, drag, and pitching moment coefficients from subsonic to hypersonic Mach numbers and angles of attack up to +/- 20 deg. This analytical model has break points at Mach numbers of 1.0, 1.4, 4.0, and 6.0. Across these Mach number break points, the lift, drag, and pitching moment coefficients are made continuous but their derivatives are not. There are no break points in angle of attack. The effect of control surface deflection is not considered. The present analytical model compares well with the APAS calculations and wind tunnel test data for most angles of attack and Mach numbers.

  7. An analytic performance model of disk arrays and its application

    NASA Technical Reports Server (NTRS)

    Lee, Edward K.; Katz, Randy H.

    1991-01-01

    As disk arrays become widely used, tools for understanding and analyzing their performance become increasingly important. In particular, performance models can be invaluable in both configuring and designing disk arrays. Accurate analytic performance models are desirable over other types of models because they can be quickly evaluated, are applicable under a wide range of system and workload parameters, and can be manipulated by a range of mathematical techniques. Unfortunately, analytical performance models of disk arrays are difficult to formulate due to the presence of queuing and fork-join synchronization; a disk array request is broken up into independent disk requests which must all complete to satisfy the original request. We develop, validate, and apply an analytic performance model for disk arrays. We derive simple equations for approximating their utilization, response time, and throughput. We then validate the analytic model via simulation and investigate the accuracy of each approximation used in deriving the analytical model. Finally, we apply the analytical model to derive an equation for the optimal unit of data striping in disk arrays.

  8. A computational method for optimizing fuel treatment locations

    Treesearch

    Mark A. Finney

    2006-01-01

    Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...

  9. A Comprehensive Analytical Solution of the Nonlinear Pendulum

    ERIC Educational Resources Information Center

    Ochs, Karlheinz

    2011-01-01

    In this paper, an analytical solution for the differential equation of the simple but nonlinear pendulum is derived. This solution is valid for any time and is not limited to any special initial instance or initial values. Moreover, this solution holds if the pendulum swings over or not. The method of approach is based on Jacobi elliptic functions…

  10. The analysis of non-linear dynamic behavior (including snap-through) of postbuckled plates by simple analytical solution

    NASA Technical Reports Server (NTRS)

    Ng, C. F.

    1988-01-01

    Static postbuckling and nonlinear dynamic analysis of plates are usually accomplished by multimode analyses, although the methods are complicated and do not give straightforward understanding of the nonlinear behavior. Assuming single-mode transverse displacement, a simple formula is derived for the transverse load displacement relationship of a plate under in-plane compression. The formula is used to derive a simple analytical expression for the static postbuckling displacement and nonlinear dynamic responses of postbuckled plates under sinusoidal or random excitation. Regions with softening and hardening spring behavior are identified. Also, the highly nonlinear motion of snap-through and its effects on the overall dynamic response can be easily interpreted using the single-mode formula. Theoretical results are compared with experimental results obtained using a buckled aluminum panel, using discrete frequency and broadband point excitation. Some important effects of the snap-through motion on the dynamic response of the postbuckled plates are found.

  11. Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop

    NASA Technical Reports Server (NTRS)

    Simpson, James C.; Lane, John E.; Immer, Christopher D.; Youngquist, Robert C.

    2001-01-01

    Analytic expressions for the magnetic induction (magnetic flux density, B) of a simple planar circular current loop have been published in Cartesian and cylindrical coordinates [1,2], and are also known implicitly in spherical coordinates [3]. In this paper, we present explicit analytic expressions for B and its spatial derivatives in Cartesian, cylindrical, and spherical coordinates for a filamentary current loop. These results were obtained with extensive use of Mathematica "TM" and are exact throughout all space outside of the conductor. The field expressions reduce to the well-known limiting cases and satisfy V · B = 0 and V x B = 0 outside the conductor. These results are general and applicable to any model using filamentary circular current loops. Solenoids of arbitrary size may be easily modeled by approximating the total magnetic induction as the sum of those for the individual loops. The inclusion of the spatial derivatives expands their utility to magnetohydrodynamics where the derivatives are required. The equations can be coded into any high-level programming language. It is necessary to numerically evaluate complete elliptic integrals of the first and second kind, but this capability is now available with most programming packages.

  12. Comment on "Classification of aerosol properties derived from AERONET direct sun data" by Gobbi et al. (2007)

    NASA Astrophysics Data System (ADS)

    O'Neill, N. T.

    2010-10-01

    It is pointed out that the graphical, aerosol classification method of Gobbi et al. (2007) can be interpreted as a manifestation of fundamental analytical relations whose existance depends on the simple assumption that the optical effects of aerosols are essentially bimodal in nature. The families of contour lines in their "Ada" curvature space are essentially empirical and discretized illustrations of analytical parabolic forms in (α, α') space (the space formed by the continuously differentiable Angstrom exponent and its spectral derivative).

  13. A Requirements-Driven Optimization Method for Acoustic Liners Using Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Lopes, Leonard V.

    2017-01-01

    More than ever, there is flexibility and freedom in acoustic liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. In a previous paper on this subject, a method deriving the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground was described. A simple code-wrapping approach was used to evaluate a community noise objective function for an external optimizer. Gradients were evaluated using a finite difference formula. The subject of this paper is an application of analytic derivatives that supply precise gradients to an optimization process. Analytic derivatives improve the efficiency and accuracy of gradient-based optimization methods and allow consideration of more design variables. In addition, the benefit of variable impedance liners is explored using a multi-objective optimization.

  14. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    ERIC Educational Resources Information Center

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  15. Simple waves in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ivanov, S. K.; Kamchatnov, A. M.

    2018-04-01

    We study the dynamics of so-called simple waves in a two-component Bose-Einstein condensate. The evolution of the condensate is described by Gross-Pitaevskii equations which can be reduced for these simple wave solutions to a system of ordinary differential equations which coincide with those derived by Ovsyannikov for the two-layer fluid dynamics. We solve the Ovsyannikov system for two typical situations of large and small difference between interspecies and intraspecies nonlinear interaction constants. Our analytic results are confirmed by numerical simulations.

  16. Broadband Noise Prediction When Turbulence Simulation Is Available - Derivation of Formulation 2B and Its Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Casper, Jay H.

    2012-01-01

    We show that a simple modification of Formulation 1 of Farassat results in a new analytic expression that is highly suitable for broadband noise prediction when extensive turbulence simulation is available. This result satisfies all the stringent requirements, such as permitting the use of the exact geometry and kinematics of the moving body, that we have set as our goal in the derivation of useful acoustic formulas for the prediction of rotating blade and airframe noise. We also derive a simple analytic expression for the autocorrelation of the acoustic pressure that is valid in the near and far fields. Our analysis is based on the time integral of the acoustic pressure that can easily be obtained at any resolution for any observer time interval and digitally analyzed for broadband noise prediction. We have named this result as Formulation 2B of Farassat. One significant consequence of Formulation 2B is the derivation of the acoustic velocity potential for the thickness and loading terms of the Ffowcs Williams-Hawkings (FW-H) equation. This will greatly enhance the usefulness of the Fast Scattering Code (FSC) by providing a high fidelity boundary condition input for scattering predictions.

  17. Analytical expressions for stability regions in the Ince-Strutt diagram of Mathieu equation

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2018-04-01

    Simple analytical expressions are suggested for transition curves that separate, in the Ince-Strutt diagram, different types of solutions to the famous Mathieu equation. The derivations of these expressions in this paper rely on physically meaningful periodic solutions describing various regular motions of a familiar nonlinear mechanical system—a rigid planar pendulum with a vertically oscillating pivot. The paper is accompanied by a relevant simulation program.

  18. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Simple formula for the thermal conductivity of a quaternary solid solution

    NASA Astrophysics Data System (ADS)

    Nakwaski, W.

    1988-11-01

    An analysis is made of the thermal conductivity of quaternary solid solutions (alloys) allowing for their disordered structure on the basis of a phenomenological analysis proposed by Abeles. This method is applied to a quaternary solid solution In1 - xGaxAsyP1 - y. A simple analytic expression is derived for the thermal conductivity of this material.

  19. Validation of Analytical Damping Ratio by Fatigue Stress Limit

    NASA Astrophysics Data System (ADS)

    Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul

    2018-03-01

    The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.

  20. Information and complexity measures in the interface of a metal and a superconductor

    NASA Astrophysics Data System (ADS)

    Moustakidis, Ch. C.; Panos, C. P.

    2018-06-01

    Fisher information, Shannon information entropy and Statistical Complexity are calculated for the interface of a normal metal and a superconductor, as a function of the temperature for several materials. The order parameter Ψ (r) derived from the Ginzburg-Landau theory is used as an input together with experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized information measures like the Tsallis entropy and Fisher information. We conclude that the proper value of the non-extensivity parameter q ≃ 1, in agreement with previous work using a different model, where q ≃ 1.005.

  1. Spectral properties of thermal fluctuations on simple liquid surfaces below shot-noise levels.

    PubMed

    Aoki, Kenichiro; Mitsui, Takahisa

    2012-07-01

    We study the spectral properties of thermal fluctuations on simple liquid surfaces, sometimes called ripplons. Analytical properties of the spectral function are investigated and are shown to be composed of regions with simple analytic behavior with respect to the frequency or the wave number. The derived expressions are compared to spectral measurements performed orders of magnitude below shot-noise levels, which is achieved using a novel noise reduction method. The agreement between the theory of thermal surface fluctuations and the experiment is found to be excellent, elucidating the spectral properties of the surface fluctuations. The measurement method requires relatively only a small sample both spatially (few μm) and temporally (~20 s). The method also requires relatively weak light power (~0.5 mW) so that it has a broad range of applicability, including local measurements, investigations of time-dependent phenomena, and noninvasive measurements.

  2. Cruise performance and range prediction reconsidered

    NASA Astrophysics Data System (ADS)

    Torenbeek, Egbert

    1997-05-01

    A unified analytical treatment of the cruise performance of subsonic transport aircraft is derived, valid for gas turbine powerplant installations: turboprop, turbojet and turbofan powered aircraft. Different from the classical treatment the present article deals with compressibility effects on the aerodynamic characteristics. Analytical criteria are derived for optimum cruise lift coefficient and Mach number, with and without constraints on the altitude and engine rating. A simple alternative to the Bréguet range equation is presented which applies to several practical cruising flight techniques: flight at constant altitude and Mach number and stepped cruise/climb. A practical non-iterative procedure for computing mission and reserve fuel loads in the preliminary design stage is proposed.

  3. Nonlinear field equations for aligning self-propelled rods.

    PubMed

    Peshkov, Anton; Aranson, Igor S; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco

    2012-12-28

    We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.

  4. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  5. Analytical solution for boundary heat fluxes from a radiating rectangular medium

    NASA Technical Reports Server (NTRS)

    Siegel, R.

    1991-01-01

    Reference is made to the work of Shah (1979) which demonstrated the possibility of partially integrating the radiative equations analytically to obtain an 'exact' solution. Shah's solution was given as a double integration of the modified Bessel function of order zero. Here, it is shown that the 'exact' solution for a rectangular region radiating to cold black walls can be conveniently derived, and expressed in simple form, by using an integral function, Sn, analogous to the exponential integral function appearing in plane-layer solutions.

  6. Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations

    NASA Technical Reports Server (NTRS)

    Gayley, K. G.

    1993-01-01

    Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.

  7. Divergence thrust loss calculations for convergent-divergent nozzles: Extensions to the classical case

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1991-01-01

    The analytical derivations of the non-axial thrust divergence losses for convergent-divergent nozzles are described as well as how these calculations are embodied in the Navy/NASA engine computer program. The convergent-divergent geometries considered are simple classic axisymmetric nozzles, two dimensional rectangular nozzles, and axisymmetric and two dimensional plug nozzles. A simple, traditional, inviscid mathematical approach is used to deduce the influence of the ineffectual non-axial thrust as a function of the nozzle exit divergence angle.

  8. A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2015-08-01

    A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.

  9. On the Application of Euler Deconvolution to the Analytic Signal

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Florio, G.; Pasteka, R.

    2005-05-01

    In the last years papers on Euler deconvolution (ED) used formulations that accounted for the unknown background field, allowing to consider the structural index (N) an unknown to be solved for, together with the source coordinates. Among them, Hsu (2002) and Fedi and Florio (2002) independently pointed out that the use of an adequate m-order derivative of the field, instead than the field itself, allowed solving for both N and source position. For the same reason, Keating and Pilkington (2004) proposed the ED of the analytic signal. A function being analyzed by ED must be homogeneous but also harmonic, because it must be possible to compute its vertical derivative, as well known from potential field theory. Huang et al. (1995), demonstrated that analytic signal is a homogeneous function, but, for instance, it is rather obvious that the magnetic field modulus (corresponding to the analytic signal of a gravity field) is not a harmonic function (e.g.: Grant & West, 1965). Thus, it appears that a straightforward application of ED to the analytic signal is not possible because a vertical derivation of this function is not correct by using standard potential fields analysis tools. In this note we want to theoretically and empirically check what kind of error are caused in the ED by such wrong assumption about analytic signal harmonicity. We will discuss results on profile and map synthetic data, and use a simple method to compute the vertical derivative of non-harmonic functions measured on a horizontal plane. Our main conclusions are: 1. To approximate a correct evaluation of the vertical derivative of a non-harmonic function it is useful to compute it with finite-difference, by using upward continuation. 2. We found that the errors on the vertical derivative computed as if the analytic signal was harmonic reflects mainly on the structural index estimate; these errors can mislead an interpretation even though the depth estimates are almost correct. 3. Consistent estimates of depth and S.I. are instead obtained by using a finite-difference vertical derivative of the analytic signal. 4. Analysis of a case history confirms the strong error in the estimation of structural index if the analytic signal is treated as an harmonic function.

  10. Modelling of nanoscale quantum tunnelling structures using algebraic topology method

    NASA Astrophysics Data System (ADS)

    Sankaran, Krishnaswamy; Sairam, B.

    2018-05-01

    We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.

  11. Analytical Expressions for the Mixed-Order Kinetics Parameters of TL Glow Peaks Based on the two Heating Rates Method.

    PubMed

    Maghrabi, Mufeed; Al-Abdullah, Tariq; Khattari, Ziad

    2018-03-24

    The two heating rates method (originally developed for first-order glow peaks) was used for the first time to evaluate the activation energy (E) from glow peaks obeying mixed-order (MO) kinetics. The derived expression for E has an insignificant additional term (on the scale of a few meV) when compared with the first-order case. Hence, the original expression for E using the two heating rates method can be used with excellent accuracy in the case of MO glow peaks. In addition, we derived a simple analytical expression for the MO parameter. The present procedure has the advantage that the MO parameter can now be evaluated using analytical expression instead of using the graphical representation between the geometrical factor and the MO parameter as given by the existing peak shape methods. The applicability of the derived expressions for real samples was demonstrated for the glow curve of Li 2 B 4 O 7 :Mn single crystal. The obtained parameters compare very well with those obtained by glow curve fitting and with the available published data.

  12. Boundary condition determined wave functions for the ground states of one- and two-electron homonuclear molecules

    NASA Astrophysics Data System (ADS)

    Patil, S. H.; Tang, K. T.; Toennies, J. P.

    1999-10-01

    Simple analytical wave functions satisfying appropriate boundary conditions are constructed for the ground states of one-and two-electron homonuclear molecules. Both the asymptotic condition when one electron is far away and the cusp condition when the electron coalesces with a nucleus are satisfied by the proposed wave function. For H2+, the resulting wave function is almost identical to the Guillemin-Zener wave function which is known to give very good energies. For the two electron systems H2 and He2++, the additional electron-electron cusp condition is rigorously accounted for by a simple analytic correlation function which has the correct behavior not only for r12→0 and r12→∞ but also for R→0 and R→∞, where r12 is the interelectronic distance and R, the internuclear distance. Energies obtained from these simple wave functions agree within 2×10-3 a.u. with the results of the most sophisticated variational calculations for all R and for all systems studied. This demonstrates that rather simple physical considerations can be used to derive very accurate wave functions for simple molecules thereby avoiding laborious numerical variational calculations.

  13. A Simple, Analytical Model of Collisionless Magnetic Reconnection in a Pair Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetova, Masha; Klimas, Alex

    2011-01-01

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region, and to impart thermal energy to the plasma by means of quasi-viscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative, procedure. The solutions show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as combination of adiabatic and quasi-viscous heating. Furthermore, the model predicts a maximum reconnection electric field of E(sup *)=0.4, normalized to the parameters at the inflow edge of the diffusion region.

  14. A simple, analytical model of collisionless magnetic reconnection in a pair plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha

    2009-10-15

    A set of conservation equations is utilized to derive balance equations in the reconnection diffusion region of a symmetric pair plasma. The reconnection electric field is assumed to have the function to maintain the current density in the diffusion region and to impart thermal energy to the plasma by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set of equations for diffusion region parameters in dependence on inflow conditions and on plasma compressibility. These equations are solved by means of a simple, iterative procedure. The solutions show expected features such as dominance of enthalpymore » flux in the reconnection outflow, as well as combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum reconnection electric field of E{sup *}=0.4, normalized to the parameters at the inflow edge of the diffusion region.« less

  15. Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results

    NASA Astrophysics Data System (ADS)

    Park, DaeKil

    2018-06-01

    The dynamics of entanglement and uncertainty relation is explored by solving the time-dependent Schrödinger equation for coupled harmonic oscillator system analytically when the angular frequencies and coupling constant are arbitrarily time dependent. We derive the spectral and Schmidt decompositions for vacuum solution. Using the decompositions, we derive the analytical expressions for von Neumann and Rényi entropies. Making use of Wigner distribution function defined in phase space, we derive the time dependence of position-momentum uncertainty relations. To show the dynamics of entanglement and uncertainty relation graphically, we introduce two toy models and one realistic quenched model. While the dynamics can be conjectured by simple consideration in the toy models, the dynamics in the realistic quenched model is somewhat different from that in the toy models. In particular, the dynamics of entanglement exhibits similar pattern to dynamics of uncertainty parameter in the realistic quenched model.

  16. A Novel Mechanism for Chemical Sensing Based on Solvent-Fluorophore-Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast.

    PubMed

    Chung, Kyeongwoon; Yang, Da Seul; Jung, Jaehun; Seo, Deokwon; Kwon, Min Sang; Kim, Jinsang

    2016-10-06

    Differentiation of solvents having similar physicochemical properties, such as ethanol and methanol, is an important issue of interest. However, without performing chemical analyses, discrimination between methanol and ethanol is highly challenging due to their similarity in chemical structure as well as properties. Here, we present a novel type of alcohol and water sensor based on the subtle differences in interaction among solvent analytes, fluorescent organic molecules, and a mesoporous silica gel substrate. A gradual change in the chemical structure of the fluorescent diketopyrrolopyrrole (DPP) derivatives alters their interaction with the substrate and solvent analyte, which creates a distinct intermolecular aggregation of the DPP derivatives on the silica gel substrate depending on the solvent environment and produces a change in the fluorescence color and intensity as a sensory signal. The devised sensor device, which is fabricated with simple drop-casting of the DPP derivative solutions onto a silica gel substrate, exhibited a completely reversible fluorescence signal change with large fluorescence signal contrast, which allows selective solvent detection by simple optical observation with the naked eye under UV light. Superior selectivity of the alcohol and water sensor system, which can clearly distinguish among ethanol, methanol, ethylene glycol, and water, is demonstrated.

  17. Analytical expressions for the nonlinear interference in dispersion managed transmission coherent optical systems

    NASA Astrophysics Data System (ADS)

    Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng

    2015-01-01

    Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.

  18. Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM

    NASA Astrophysics Data System (ADS)

    Pandey, Rishi Kumar; Mishra, Hradyesh Kumar

    2017-11-01

    In this paper, the semi-analytic numerical technique for the solution of time-space fractional telegraph equation is applied. This numerical technique is based on coupling of the homotopy analysis method and sumudu transform. It shows the clear advantage with mess methods like finite difference method and also with polynomial methods similar to perturbation and Adomian decomposition methods. It is easily transform the complex fractional order derivatives in simple time domain and interpret the results in same meaning.

  19. Streamflow variability and optimal capacity of run-of-river hydropower plants

    NASA Astrophysics Data System (ADS)

    Basso, S.; Botter, G.

    2012-10-01

    The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.

  20. Entanglement transitions induced by large deviations

    NASA Astrophysics Data System (ADS)

    Bhosale, Udaysinh T.

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  1. Entanglement transitions induced by large deviations.

    PubMed

    Bhosale, Udaysinh T

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  2. Approximate Analytical Time-Dependent Solutions to Describe Large-Amplitude Local Calcium Transients in the Presence of Buffers

    PubMed Central

    Mironova, Lidia A.; Mironov, Sergej L.

    2008-01-01

    Local Ca2+ signaling controls many neuronal functions, which is often achieved through spatial localization of Ca2+ signals. These nanodomains are formed due to combined effects of Ca2+ diffusion and binding to the cytoplasmic buffers. In this article we derived simple analytical expressions to describe Ca2+ diffusion in the presence of mobile and immobile buffers. A nonlinear character of the reaction-diffusion problem was circumvented by introducing a logarithmic approximation of the concentration term. The obtained formulas reproduce free Ca2+ levels up to 50 μM and their changes in the millisecond range. Derived equations can be useful to predict spatiotemporal profiles of large-amplitude [Ca2+] transients, which participate in various physiological processes. PMID:17872951

  3. Value of the distant future: Model-independent results

    NASA Astrophysics Data System (ADS)

    Katz, Yuri A.

    2017-01-01

    This paper shows that the model-independent account of correlations in an interest rate process or a log-consumption growth process leads to declining long-term tails of discount curves. Under the assumption of an exponentially decaying memory in fluctuations of risk-free real interest rates, I derive the analytical expression for an apt value of the long run discount factor and provide a detailed comparison of the obtained result with the outcome of the benchmark risk-free interest rate models. Utilizing the standard consumption-based model with an isoelastic power utility of the representative economic agent, I derive the non-Markovian generalization of the Ramsey discounting formula. Obtained analytical results allowing simple calibration, may augment the rigorous cost-benefit and regulatory impact analysis of long-term environmental and infrastructure projects.

  4. Review of Thawing Time Prediction Models Depending
on Process Conditions and Product Characteristics

    PubMed Central

    Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna

    2016-01-01

    Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387

  5. Simple Analytical Forms of the Perpendicular Diffusion Coefficient for Two-component Turbulence. III. Damping Model of Dynamical Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammon, M.; Shalchi, A., E-mail: andreasm4@yahoo.com

    2017-10-01

    In several astrophysical applications one needs analytical forms of cosmic-ray diffusion parameters. Some examples are studies of diffusive shock acceleration and solar modulation. In the current article we explore perpendicular diffusion based on the unified nonlinear transport theory. While we focused on magnetostatic turbulence in Paper I, we included the effect of dynamical turbulence in Paper II of the series. In the latter paper we assumed that the temporal correlation time does not depend on the wavenumber. More realistic models have been proposed in the past, such as the so-called damping model of dynamical turbulence. In the present paper wemore » derive analytical forms for the perpendicular diffusion coefficient of energetic particles in two-component turbulence for this type of time-dependent turbulence. We present new formulas for the perpendicular diffusion coefficient and we derive a condition for which the magnetostatic result is recovered.« less

  6. Second-harmonic diffraction from holographic volume grating.

    PubMed

    Nee, Tsu-Wei

    2006-10-01

    The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.

  7. Big Data Tools as Applied to ATLAS Event Data

    NASA Astrophysics Data System (ADS)

    Vukotic, I.; Gardner, R. W.; Bryant, L. A.

    2017-10-01

    Big Data technologies have proven to be very useful for storage, processing and visualization of derived metrics associated with ATLAS distributed computing (ADC) services. Logfiles, database records, and metadata from a diversity of systems have been aggregated and indexed to create an analytics platform for ATLAS ADC operations analysis. Dashboards, wide area data access cost metrics, user analysis patterns, and resource utilization efficiency charts are produced flexibly through queries against a powerful analytics cluster. Here we explore whether these techniques and associated analytics ecosystem can be applied to add new modes of open, quick, and pervasive access to ATLAS event data. Such modes would simplify access and broaden the reach of ATLAS public data to new communities of users. An ability to efficiently store, filter, search and deliver ATLAS data at the event and/or sub-event level in a widely supported format would enable or significantly simplify usage of machine learning environments and tools like Spark, Jupyter, R, SciPy, Caffe, TensorFlow, etc. Machine learning challenges such as the Higgs Boson Machine Learning Challenge, the Tracking challenge, Event viewers (VP1, ATLANTIS, ATLASrift), and still to be developed educational and outreach tools would be able to access the data through a simple REST API. In this preliminary investigation we focus on derived xAOD data sets. These are much smaller than the primary xAODs having containers, variables, and events of interest to a particular analysis. Being encouraged with the performance of Elasticsearch for the ADC analytics platform, we developed an algorithm for indexing derived xAOD event data. We have made an appropriate document mapping and have imported a full set of standard model W/Z datasets. We compare the disk space efficiency of this approach to that of standard ROOT files, the performance in simple cut flow type of data analysis, and will present preliminary results on its scaling characteristics with different numbers of clients, query complexity, and size of the data retrieved.

  8. Analytical model for the radio-frequency sheath

    NASA Astrophysics Data System (ADS)

    Czarnetzki, Uwe

    2013-12-01

    A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.

  9. Analytical model for the radio-frequency sheath.

    PubMed

    Czarnetzki, Uwe

    2013-12-01

    A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary symmetry. The externally applied rf voltage is assumed to be sinusoidal, although the model can be extended to arbitrary wave forms, e.g., for dual-frequency discharges. The model calculates explicitly the cubic correction parameter in the charge-voltage relation for the case of highly asymmetric discharges. It is shown that the cubic correction is generally moderate but more pronounced in the collisionless case. The analytical results are compared to experimental data from the literature obtained by laser electric field measurements of the mean and dynamic fields in the capacitive sheath for various gases and pressures. Very good agreement is found throughout.

  10. Design sensitivity analysis of nonlinear structural response

    NASA Technical Reports Server (NTRS)

    Cardoso, J. B.; Arora, J. S.

    1987-01-01

    A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use.

  11. Analytical study of index-coupled herd behavior in financial markets

    NASA Astrophysics Data System (ADS)

    Berman, Yonatan; Shapira, Yoash; Schwartz, Moshe

    2016-12-01

    Herd behavior in financial markets had been investigated extensively in the past few decades. Scholars have argued that the behavioral tendency of traders and investors to follow the market trend, notably reflected in indices both on short and long time scales, is substantially affecting the overall market behavior. Research has also been devoted to revealing these behaviors and characterizing the market herd behavior. In this paper we present a simple herd behavior model for the dynamics of financial variables by introducing a simple coupling mechanism of stock returns to the index return, deriving analytic expressions for statistical properties of the returns. We found that several important phenomena in the stock market, namely the correlations between stock market returns and the exponential decay of short-term autocorrelations, are derived from our model. These phenomena have been given various explanations and theories, with herd market behavior being one of the leading. We conclude that the coupling mechanism, which essentially encapsulates the herd behavior, indeed creates correlation and autocorrelation. We also show that this introduces a time scale to the system, which is the characteristic time lag between a change in the index and its effect on the return of a stock.

  12. Geometerial description for a proposed aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. M.; Dejarnette, F. J.; Hamilton, H. H., II

    1986-01-01

    One geometry currently under consideration for the Aeroassist Flight Experiment (AFE) vehicle is composed of several segments of simple general conics: an ellipsoidal nose tangent to an elliptical cone and a base skirt with the base plane raked relative to the body axis. An analytic representation for the body coordinates and first and second partial derivatives of this configuration has been developed. Equations are given which define the body radius and partial derivatives for a prescribed axial and circumferential position on the vehicle. The results for a sample case are tabulated and presented graphically.

  13. Simultaneous determination of dextromethorphan HBr and bromhexine HCl in tablets by first-derivative spectrophotometry.

    PubMed

    Tantishaiyakul, V; Poeaknapo, C; Sribun, P; Sirisuppanon, K

    1998-06-01

    A rapid, simple and direct assay procedure based on first-derivative spectrophotometry, using a zero-crossing and peak-to-base measurement at 234 and 324 nm, respectively, has been developed for the specific determination of dextromethorphan HBr and bromhexine HCl in tablets. Calibration graphs were linear with the correlation coefficients of 0.9999 for both analytes. The limit of detections were 0.033 and 0.103 microgram ml-1 for dextromethorphan HBr and bromhexine HCl, respectively. A HPLC method has been developed as the reference method. The results obtained by the first-derivative spectrophotometry were in good agreement with those found by the HPLC method.

  14. Analytical model of the optical vortex microscope.

    PubMed

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  15. Similarity solution of the Boussinesq equation

    NASA Astrophysics Data System (ADS)

    Lockington, D. A.; Parlange, J.-Y.; Parlange, M. B.; Selker, J.

    Similarity transforms of the Boussinesq equation in a semi-infinite medium are available when the boundary conditions are a power of time. The Boussinesq equation is reduced from a partial differential equation to a boundary-value problem. Chen et al. [Trans Porous Media 1995;18:15-36] use a hodograph method to derive an integral equation formulation of the new differential equation which they solve by numerical iteration. In the present paper, the convergence of their scheme is improved such that numerical iteration can be avoided for all practical purposes. However, a simpler analytical approach is also presented which is based on Shampine's transformation of the boundary value problem to an initial value problem. This analytical approximation is remarkably simple and yet more accurate than the analytical hodograph approximations.

  16. Analytical study of the critical behavior of the nonlinear pendulum

    NASA Astrophysics Data System (ADS)

    Lima, F. M. S.

    2010-11-01

    The dynamics of a simple pendulum consisting of a small bob and a massless rigid rod has three possible regimes depending on its total energy E: Oscillatory (when E is not enough for the pendulum to reach the top position), "perpetual ascent" when E is exactly the energy needed to reach the top, and nonoscillatory for greater energies. In the latter regime, the pendulum rotates periodically without velocity inversions. In contrast to the oscillatory regime, for which an exact analytic solution is known, the other two regimes are usually studied by solving the equation of motion numerically. By applying conservation of energy, I derive exact analytical solutions to both the perpetual ascent and nonoscillatory regimes and an exact expression for the pendulum period in the nonoscillatory regime. Based on Cromer's approximation for the large-angle pendulum period, I find a simple approximate expression for the decrease of the period with the initial velocity in the nonoscillatory regime, valid near the critical velocity. This expression is used to study the critical slowing down, which is observed near the transition between the oscillatory and nonoscillatory regimes.

  17. Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov

    We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less

  18. Ultimate Longitudinal Strength of Composite Ship Hulls

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen

    2017-01-01

    A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.

  19. Critical power for self-focusing of optical beam in absorbing media

    NASA Astrophysics Data System (ADS)

    Qi, Pengfei; Zhang, Lin; Lin, Lie; Zhang, Nan; Wang, Yan; Liu, Weiwei

    2018-04-01

    Self-focusing effects are of central importance for most nonlinear optical effects. The critical power for self-focusing is commonly investigated theoretically without considering a material’s absorption. Although this is practicable for various materials, investigating the critical power for self-focusing in media with non-negligible absorption is also necessary, because this is the situation usually met in practice. In this paper, the simple analytical expressions describing the relationships among incident power, absorption coefficient and focal position are provided by a simple physical model based on the Fermat principle. Expressions for the absorption dependent critical power are also derived; these can play important roles in experimental and applied research on self-focusing-related nonlinear optical phenomena in absorbing media. Numerical results, based on the nonlinear wave equation—and which can predict experimental results perfectly—are also presented, and agree quantitatively with the analytical results proposed in this paper.

  20. Trajectory optimization and guidance law development for national aerospace plane applications

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Flandro, G. A.; Corban, J. E.

    1988-01-01

    The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.

  1. Analytical solution for the transient wave propagation of a buried cylindrical P-wave line source in a semi-infinite elastic medium with a fluid surface layer

    NASA Astrophysics Data System (ADS)

    Shan, Zhendong; Ling, Daosheng

    2018-02-01

    This article develops an analytical solution for the transient wave propagation of a cylindrical P-wave line source in a semi-infinite elastic solid with a fluid layer. The analytical solution is presented in a simple closed form in which each term represents a transient physical wave. The Scholte equation is derived, through which the Scholte wave velocity can be determined. The Scholte wave is the wave that propagates along the interface between the fluid and solid. To develop the analytical solution, the wave fields in the fluid and solid are defined, their analytical solutions in the Laplace domain are derived using the boundary and interface conditions, and the solutions are then decomposed into series form according to the power series expansion method. Each item of the series solution has a clear physical meaning and represents a transient wave path. Finally, by applying Cagniard's method and the convolution theorem, the analytical solutions are transformed into the time domain. Numerical examples are provided to illustrate some interesting features in the fluid layer, the interface and the semi-infinite solid. When the P-wave velocity in the fluid is higher than that in the solid, two head waves in the solid, one head wave in the fluid and a Scholte wave at the interface are observed for the cylindrical P-wave line source.

  2. Use of airborne hyperspectral imagery to map soil parameters in tilled agricultural fields

    USGS Publications Warehouse

    Hively, W. Dean; McCarty, Gregory W.; Reeves, James B.; Lang, Megan W.; Oesterling, Robert A.; Delwiche, Stephen R.

    2011-01-01

    Soil hyperspectral reflectance imagery was obtained for six tilled (soil) agricultural fields using an airborne imaging spectrometer (400–2450 nm, ~10 nm resolution, 2.5 m spatial resolution). Surface soil samples (n = 315) were analyzed for carbon content, particle size distribution, and 15 agronomically important elements (Mehlich-III extraction). When partial least squares (PLS) regression of imagery-derived reflectance spectra was used to predict analyte concentrations, 13 of the 19 analytes were predicted with R2 > 0.50, including carbon (0.65), aluminum (0.76), iron (0.75), and silt content (0.79). Comparison of 15 spectral math preprocessing treatments showed that a simple first derivative worked well for nearly all analytes. The resulting PLS factors were exported as a vector of coefficients and used to calculate predicted maps of soil properties for each field. Image smoothing with a 3 × 3 low-pass filter prior to spectral data extraction improved prediction accuracy. The resulting raster maps showed variation associated with topographic factors, indicating the effect of soil redistribution and moisture regime on in-field spatial variability. High-resolution maps of soil analyte concentrations can be used to improve precision environmental management of farmlands.

  3. A novel analytical description of periodic volume coil geometries in MRI

    NASA Astrophysics Data System (ADS)

    Koh, D.; Felder, J.; Shah, N. J.

    2018-03-01

    MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.

  4. Extensions of the Johnson-Neyman Technique to Linear Models with Curvilinear Effects: Derivations and Analytical Tools

    ERIC Educational Resources Information Center

    Miller, Jason W.; Stromeyer, William R.; Schwieterman, Matthew A.

    2013-01-01

    The past decade has witnessed renewed interest in the use of the Johnson-Neyman (J-N) technique for calculating the regions of significance for the simple slope of a focal predictor on an outcome variable across the range of a second, continuous independent variable. Although tools have been developed to apply this technique to probe 2- and 3-way…

  5. A simple method for the enrichment of bisphenols using boron nitride.

    PubMed

    Fischnaller, Martin; Bakry, Rania; Bonn, Günther K

    2016-03-01

    A simple solid-phase extraction method for the enrichment of 5 bisphenol derivatives using hexagonal boron nitride (BN) was developed. BN was applied to concentrate bisphenol derivatives in spiked water samples and the compounds were analyzed using HPLC coupled to fluorescence detection. The effect of pH and organic solvents on the extraction efficiency was investigated. An enrichment factor up to 100 was achieved without evaporation and reconstitution. The developed method was applied for the determination of bisphenol A migrated from some polycarbonate plastic products. Furthermore, bisphenol derivatives were analyzed in spiked and non-spiked canned food and beverages. None of the analyzed samples exceeded the migration limit set by the European Union of 0.6mg/kg food. The method showed good recovery rates ranging from 80% to 110%. Validation of the method was performed in terms of accuracy and precision. The applied method is robust, fast, efficient and easily adaptable to different analytical problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Interaction of a conductive crack and of an electrode at a piezoelectric bimaterial interface

    NASA Astrophysics Data System (ADS)

    Onopriienko, Oleg; Loboda, Volodymyr; Sheveleva, Alla; Lapusta, Yuri

    2018-06-01

    The interaction of a conductive crack and an electrode at a piezoelectric bi-material interface is studied. The bimaterial is subjected to an in-plane electrical field parallel to the interface and an anti-plane mechanical loading. The problem is formulated and reduced, via the application of sectionally analytic vector functions, to a combined Dirichlet-Riemann boundary value problem. Simple analytical expressions for the stress, the electric field, and their intensity factors as well as for the crack faces' displacement jump are derived. Our numerical results illustrate the proposed approach and permit to draw some conclusions on the crack-electrode interaction.

  7. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    PubMed Central

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  8. Analytical model for electromagnetic radiation from a wakefield excited by intense short laser pulses in an unmagnetized plasma

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Chen, Shi; Dan, Jia-Kun; Li, Jian-Feng; Peng, Qi-Xian

    2011-10-01

    A simple one-dimensional analytical model for electromagnetic emission from an unmagnetized wakefield excited by an intense short-pulse laser in the nonlinear regime has been developed in this paper. The expressions for the spectral and angular distributions of the radiation have been derived. The model suggests that the origin of the radiation can be attributed to the violent sudden acceleration of plasma electrons experiencing the accelerating potential of the laser wakefield. The radiation process could help to provide a qualitative interpretation of existing experimental results, and offers useful information for future laser wakefield experiments.

  9. Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.

    PubMed

    Goodin, Christopher

    2013-05-01

    The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.

  10. Highly Accurate Analytical Approximate Solution to a Nonlinear Pseudo-Oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Baisheng; Liu, Weijia; Lim, C. W.

    2017-07-01

    A second-order Newton method is presented to construct analytical approximate solutions to a nonlinear pseudo-oscillator in which the restoring force is inversely proportional to the dependent variable. The nonlinear equation is first expressed in a specific form, and it is then solved in two steps, a predictor and a corrector step. In each step, the harmonic balance method is used in an appropriate manner to obtain a set of linear algebraic equations. With only one simple second-order Newton iteration step, a short, explicit, and highly accurate analytical approximate solution can be derived. The approximate solutions are valid for all amplitudes of the pseudo-oscillator. Furthermore, the method incorporates second-order Taylor expansion in a natural way, and it is of significant faster convergence rate.

  11. An Analytic Approximation to Very High Specific Impulse and Specific Power Interplanetary Space Mission Analysis

    NASA Technical Reports Server (NTRS)

    Williams, Craig Hamilton

    1995-01-01

    A simple, analytic approximation is derived to calculate trip time and performance for propulsion systems of very high specific impulse (50,000 to 200,000 seconds) and very high specific power (10 to 1000 kW/kg) for human interplanetary space missions. The approach assumed field-free space, constant thrust/constant specific power, and near straight line (radial) trajectories between the planets. Closed form, one dimensional equations of motion for two-burn rendezvous and four-burn round trip missions are derived as a function of specific impulse, specific power, and propellant mass ratio. The equations are coupled to an optimizing parameter that maximizes performance and minimizes trip time. Data generated for hypothetical one-way and round trip human missions to Jupiter were found to be within 1% and 6% accuracy of integrated solutions respectively, verifying that for these systems, credible analysis does not require computationally intensive numerical techniques.

  12. Designing stellarator coils by a modified Newton method using FOCUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  13. Evaluation of geopotential and luni-solar perturbations by a recursive algorithm

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.

    1975-01-01

    The disturbing functions due to the geopotential and Luni-solar attractions are linear and bilinear forms in spherical harmonics. Making use of recurrence relations for the solid spherical harmonics and their derivatives, recurrence formulas are obtained for high degree terms as function of lower degree for any term of those disturbing functions and their derivative with respect to any element. The equations obtained are effective when a numerical integration of the equations of motion is appropriate. In analytical theories, they provide a fast way of obtaining high degree terms starting from initial very simple functions.

  14. Designing stellarator coils by a modified Newton method using FOCUS

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-06-01

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  15. Designing stellarator coils by a modified Newton method using FOCUS

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...

    2018-03-22

    To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in existing coil design codes. However, none of these codes have used the information from the second-order derivatives. In this paper, we present a modified Newton method in the recently developed code FOCUS. The Hessian matrix is calculated with analytically derived equations. Its inverse is approximated by a modified Cholesky factorization and applied in the iterative scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X modular coils starting from a simple initial guess. Results demonstrate significant advantages.

  16. Chirality sensing with stereodynamic copper(I) complexes.

    PubMed

    De Los Santos, Zeus A; Legaux, Nicholas M; Wolf, Christian

    2017-11-01

    Three Cu(I) complexes derived from stereodynamic diphosphine ligands were synthesized and used for chirality sensing. The coordination of diamines and amino acids to these complexes generates distinct circular dichroism signals. The chiroptical sensor response allows determination of the absolute configuration and the enantiomeric excess of the analyte at low concentrations. This method is operationally simple, fast, and attractive for high-throughput sensing applications. © 2017 Wiley Periodicals, Inc.

  17. Analytic derivation of bacterial growth laws from a simple model of intracellular chemical dynamics.

    PubMed

    Pandey, Parth Pratim; Jain, Sanjay

    2016-09-01

    Experiments have found that the growth rate and certain other macroscopic properties of bacterial cells in steady-state cultures depend upon the medium in a surprisingly simple manner; these dependencies are referred to as 'growth laws'. Here we construct a dynamical model of interacting intracellular populations to understand some of the growth laws. The model has only three population variables: an amino acid pool, a pool of enzymes that transport an external nutrient and produce the amino acids, and ribosomes that catalyze their own and the enzymes' production from the amino acids. We assume that the cell allocates its resources between the enzyme sector and the ribosomal sector to maximize its growth rate. We show that the empirical growth laws follow from this assumption and derive analytic expressions for the phenomenological parameters in terms of the more basic model parameters. Interestingly, the maximization of the growth rate of the cell as a whole implies that the cell allocates resources to the enzyme and ribosomal sectors in inverse proportion to their respective 'efficiencies'. The work introduces a mathematical scheme in which the cellular growth rate can be explicitly determined and shows that two large parameters, the number of amino acid residues per enzyme and per ribosome, are useful for making approximations.

  18. Variational method enabling simplified solutions to the linearized Boltzmann equation for oscillatory gas flows

    NASA Astrophysics Data System (ADS)

    Ladiges, Daniel R.; Sader, John E.

    2018-05-01

    Nanomechanical resonators and sensors, operated in ambient conditions, often generate low-Mach-number oscillating rarefied gas flows. Cercignani [C. Cercignani, J. Stat. Phys. 1, 297 (1969), 10.1007/BF01007482] proposed a variational principle for the linearized Boltzmann equation, which can be used to derive approximate analytical solutions of steady (time-independent) flows. Here we extend and generalize this principle to unsteady oscillatory rarefied flows and thus accommodate resonating nanomechanical devices. This includes a mathematical approach that facilitates its general use and allows for systematic improvements in accuracy. This formulation is demonstrated for two canonical flow problems: oscillatory Couette flow and Stokes' second problem. Approximate analytical formulas giving the bulk velocity and shear stress, valid for arbitrary oscillation frequency, are obtained for Couette flow. For Stokes' second problem, a simple system of ordinary differential equations is derived which may be solved to obtain the desired flow fields. Using this framework, a simple and accurate formula is provided for the shear stress at the oscillating boundary, again for arbitrary frequency, which may prove useful in application. These solutions are easily implemented on any symbolic or numerical package, such as Mathematica or matlab, facilitating the characterization of flows produced by nanomechanical devices and providing insight into the underlying flow physics.

  19. A simple and effective method for detecting precipitated proteins in MALDI-TOF MS.

    PubMed

    Oshikane, Hiroyuki; Watabe, Masahiko; Nakaki, Toshio

    2018-04-01

    MALDI-TOF MS has developed rapidly into an essential analytical tool for the life sciences. Cinnamic acid derivatives are generally employed in routine molecular weight determinations of intact proteins using MALDI-TOF MS. However, a protein of interest may precipitate when mixed with matrix solution, perhaps preventing MS detection. We herein provide a simple approach to enable the MS detection of such precipitated protein species by means of a "direct deposition method" -- loading the precipitant directly onto the sample plate. It is thus expected to improve routine MS analysis of intact proteins. Copyright © 2018. Published by Elsevier Inc.

  20. Spatial structures in a simple model of population dynamics for parasite-host interactions

    NASA Astrophysics Data System (ADS)

    Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.

    2015-08-01

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the population's long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.

  1. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many ofmore » the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.« less

  2. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.

    1988-01-01

    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.

  3. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA

    PubMed Central

    Zill, Oliver A.; Sebisanovic, Dragan; Lopez, Rene; Blau, Sibel; Collisson, Eric A.; Divers, Stephen G.; Hoon, Dave S. B.; Kopetz, E. Scott; Lee, Jeeyun; Nikolinakos, Petros G.; Baca, Arthur M.; Kermani, Bahram G.; Eltoukhy, Helmy; Talasaz, AmirAli

    2015-01-01

    Next-generation sequencing of cell-free circulating solid tumor DNA addresses two challenges in contemporary cancer care. First this method of massively parallel and deep sequencing enables assessment of a comprehensive panel of genomic targets from a single sample, and second, it obviates the need for repeat invasive tissue biopsies. Digital SequencingTM is a novel method for high-quality sequencing of circulating tumor DNA simultaneously across a comprehensive panel of over 50 cancer-related genes with a simple blood test. Here we report the analytic and clinical validation of the gene panel. Analytic sensitivity down to 0.1% mutant allele fraction is demonstrated via serial dilution studies of known samples. Near-perfect analytic specificity (> 99.9999%) enables complete coverage of many genes without the false positives typically seen with traditional sequencing assays at mutant allele frequencies or fractions below 5%. We compared digital sequencing of plasma-derived cell-free DNA to tissue-based sequencing on 165 consecutive matched samples from five outside centers in patients with stage III-IV solid tumor cancers. Clinical sensitivity of plasma-derived NGS was 85.0%, comparable to 80.7% sensitivity for tissue. The assay success rate on 1,000 consecutive samples in clinical practice was 99.8%. Digital sequencing of plasma-derived DNA is indicated in advanced cancer patients to prevent repeated invasive biopsies when the initial biopsy is inadequate, unobtainable for genomic testing, or uninformative, or when the patient’s cancer has progressed despite treatment. Its clinical utility is derived from reduction in the costs, complications and delays associated with invasive tissue biopsies for genomic testing. PMID:26474073

  4. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-07-01

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virus infection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with P-value > 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  5. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  6. Radiative transfer in falling snow: A two-stream approximation

    NASA Astrophysics Data System (ADS)

    Koh, Gary

    1989-04-01

    Light transmission measurements through falling snow have produced results unexplainable by single scattering arguments. A two-stream approximation to radiative transfer is used to derive an analytical expression that describes the effects of multiple scattering as a function of the snow optical depth and the snow asymmetry parameter. The approximate solution is simple and it may be as accurate as the exact solution for describing the transmission measurements within the limits of experimental uncertainties.

  7. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  8. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    PubMed

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  9. Current to the ionosphere following a lightning stroke

    NASA Technical Reports Server (NTRS)

    Hale, L. C.; Baginski, M. E.

    1987-01-01

    A simple analytical expression for calculating the total current waveform to the ionosphere after a lightning stroke is derived. The validity of this expression is demonstrated by comparison with a more rigorous computer solution of Maxwell's equations. The analytic model demonstrates that the temporal variation of the current induced in the ionosphere and global circuit and the corresponding return current in the earth depends on the conductivity profile at intervening altitudes in the middle atmosphere. A conclusion is that capacitative coupling may provide tighter coupling between the lower atmosphere and the ionosphere than usually considered, in both directions, which may help to explain observations which seem to indicate that magnetospheric phenomena may in some instances trigger lightning.

  10. Estimation of the curvature of the solid liquid interface during Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Barat, Catherine; Duffar, Thierry; Garandet, Jean-Paul

    1998-11-01

    An approximate solution for the solid/liquid interface curvature due to the crucible effect in crystal growth is derived from simple heat flux considerations. The numerical modelling of the problem carried out with the help of the finite element code FIDAP supports the predictions of our analytical expression and allows to identify its range of validity. Experimental interface curvatures, measured in gallium antimonide samples grown by the vertical Bridgman method, are seen to compare satisfactorily to analytical and numerical results. Other literature data are also in fair agreement with the predictions of our models in the case where the amount of heat carried by the crucible is small compared to the overall heat flux.

  11. Determination of transport wind speed in the gaussian plume diffusion equation for low-lying point sources

    NASA Astrophysics Data System (ADS)

    Wang, I. T.

    A general method for determining the effective transport wind speed, overlineu, in the Gaussian plume equation is discussed. Physical arguments are given for using the generalized overlineu instead of the often adopted release-level wind speed with the plume diffusion equation. Simple analytical expressions for overlineu applicable to low-level point releases and a wide range of atmospheric conditions are developed. A non-linear plume kinematic equation is derived using these expressions. Crosswind-integrated SF 6 concentration data from the 1983 PNL tracer experiment are used to evaluate the proposed analytical procedures along with the usual approach of using the release-level wind speed. Results of the evaluation are briefly discussed.

  12. Fraction number of trapped atoms and velocity distribution function in sub-recoil laser cooling scheme

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Krylova, D. D.

    1996-02-01

    The analytical investigation of Bloch equations is used to describe the main features of the 1D velocity selective coherent population trapping cooling scheme. For the initial stage of cooling the fraction of cooled atoms is derived in the case of a Gaussian initial velocity distribution. At very long times of interaction the fraction of cooled atoms and the velocity distribution function are described by simple analytical formulae and do not depend on the initial distribution. These results are in good agreement with those of Bardou, Bouchaud, Emile, Aspect and Cohen-Tannoudji based on statistical analysis in terms of Levy flights and with Monte-Carlo simulations of the process.

  13. Role of external torque in the formation of ion thermal internal transport barriers

    NASA Astrophysics Data System (ADS)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  14. Adhesive-bonded double-lap joints. [analytical solutions for static load carrying capacity

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1973-01-01

    Explicit analytical solutions are derived for the static load carrying capacity of double-lap adhesive-bonded joints. The analyses extend the elastic solution Volkersen and cover adhesive plasticity, adherend stiffness imbalance and thermal mismatch between the adherends. Both elastic-plastic and bi-elastic adhesive representations lead to the explicit result that the influence of the adhesive on the maximum potential bond strength is defined uniquely by the strain energy in shear per unit area of bond. Failures induced by peel stresses at the ends of the joint are examined. This failure mode is particularly important for composite adherends. The explicit solutions are sufficiently simple to be used for design purposes

  15. The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewhurst, J. M.; Hnat, B.; Dendy, R. O.

    2009-07-15

    The extended Hasegawa-Wakatani equations generate fully nonlinear self-consistent solutions for coupled density n and vorticity {nabla}{sup 2}{phi}, where {phi} is electrostatic potential, in a plasma with background density inhomogeneity {kappa}=-{partial_derivative} ln n{sub 0}/{partial_derivative}x and magnetic field strength inhomogeneity C=-{partial_derivative} ln B/{partial_derivative}x. Finite C introduces interchange effects and {nabla}B drifts into the framework of drift turbulence through compressibility of the ExB and diamagnetic drifts. This paper addresses the direct computation of the radial ExB density flux {gamma}{sub n}=-n{partial_derivative}{phi}/{partial_derivative}y, tracer particle transport, the statistical properties of the turbulent fluctuations that drive {gamma}{sub n} and tracer motion, and analytical underpinnings. Systematic trends emergemore » in the dependence on C of the skewness of the distribution of pointwise {gamma}{sub n} and in the relative phase of density-velocity and density-potential pairings. It is shown how these effects, together with conservation of potential vorticity {pi}={nabla}{sup 2}{phi}-n+({kappa}-C)x, account for much of the transport phenomenology. Simple analytical arguments yield a Fickian relation {gamma}{sub n}=({kappa}-C)D{sub x} between the radial density flux {gamma}{sub n} and the radial tracer diffusivity D{sub x}, which is shown to explain key trends in the simulations.« less

  16. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide

    NASA Astrophysics Data System (ADS)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively.

  17. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  18. Effective field theory dimensional regularization

    NASA Astrophysics Data System (ADS)

    Lehmann, Dirk; Prézeau, Gary

    2002-01-01

    A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.

  19. Dispersion of TE modes in slab waveguides with reference to double heterostructure semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Buus, J.

    1980-06-01

    The group index for TE modes in an asymmetrical slab waveguide is investigated, and a simple analytical expression is derived. It is shown that the product of the phase and group indices is related to the power fraction in each of the three layers of the waveguide. The results are of interest in the analysis of double heterostructure semiconductor lasers. Theoretical and experimental results for lasers emitting at 1.55 microns are compared.

  20. Analysis of Mathematical Modelling on Potentiometric Biosensors

    PubMed Central

    Mehala, N.; Rajendran, L.

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories. PMID:25969765

  1. Analysis of mathematical modelling on potentiometric biosensors.

    PubMed

    Mehala, N; Rajendran, L

    2014-01-01

    A mathematical model of potentiometric enzyme electrodes for a nonsteady condition has been developed. The model is based on the system of two coupled nonlinear time-dependent reaction diffusion equations for Michaelis-Menten formalism that describes the concentrations of substrate and product within the enzymatic layer. Analytical expressions for the concentration of substrate and product and the corresponding flux response have been derived for all values of parameters using the new homotopy perturbation method. Furthermore, the complex inversion formula is employed in this work to solve the boundary value problem. The analytical solutions obtained allow a full description of the response curves for only two kinetic parameters (unsaturation/saturation parameter and reaction/diffusion parameter). Theoretical descriptions are given for the two limiting cases (zero and first order kinetics) and relatively simple approaches for general cases are presented. All the analytical results are compared with simulation results using Scilab/Matlab program. The numerical results agree with the appropriate theories.

  2. Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, T.E.

    1996-01-01

    The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less

  3. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  4. Cosmological Perturbation Theory and the Spherical Collapse model - I. Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Fosalba, Pablo; Gaztanaga, Enrique

    1998-12-01

    We present a simple and intuitive approximation for solving the perturbation theory (PT) of small cosmic fluctuations. We consider only the spherically symmetric or monopole contribution to the PT integrals, which yields the exact result for tree-graphs (i.e. at leading order). We find that the non-linear evolution in Lagrangian space is then given by a simple local transformation over the initial conditions, although it is not local in Euler space. This transformation is found to be described by the spherical collapse (SC) dynamics, as it is the exact solution in the shearless (and therefore local) approximation in Lagrangian space. Taking advantage of this property, it is straightforward to derive the one-point cumulants, xi_J, for both the unsmoothed and smoothed density fields to arbitrary order in the perturbative regime. To leading-order this reproduces, and provides us with a simple explanation for, the exact results obtained by Bernardeau. We then show that the SC model leads to accurate estimates for the next corrective terms when compared with the results derived in the exact perturbation theory making use of the loop calculations. The agreement is within a few per cent for the hierarchical ratios S_J=xi_J/xi^J-1_2. We compare our analytic results with N-body simulations, which turn out to be in very good agreement up to scales where sigma~1. A similar treatment is presented to estimate higher order corrections in the Zel'dovich approximation. These results represent a powerful and readily usable tool to produce analytical predictions that describe the gravitational clustering of large-scale structure in the weakly non-linear regime.

  5. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    DOE PAGES

    Hemsing, E.; Garcia, B.; Huang, Z.; ...

    2017-06-19

    Here, we analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG) transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG) and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by themore » microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.« less

  6. Performance Analysis of Blind Subspace-Based Signature Estimation Algorithms for DS-CDMA Systems with Unknown Correlated Noise

    NASA Astrophysics Data System (ADS)

    Zarifi, Keyvan; Gershman, Alex B.

    2006-12-01

    We analyze the performance of two popular blind subspace-based signature waveform estimation techniques proposed by Wang and Poor and Buzzi and Poor for direct-sequence code division multiple-access (DS-CDMA) systems with unknown correlated noise. Using the first-order perturbation theory, analytical expressions for the mean-square error (MSE) of these algorithms are derived. We also obtain simple high SNR approximations of the MSE expressions which explicitly clarify how the performance of these techniques depends on the environmental parameters and how it is related to that of the conventional techniques that are based on the standard white noise assumption. Numerical examples further verify the consistency of the obtained analytical results with simulation results.

  7. Capture zones for simple aquifers

    USGS Publications Warehouse

    McElwee, Carl D.

    1991-01-01

    Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application.

  8. Simple phenomenological modeling of transition-region capacitance of forward-biased p-n junction diodes and transistor diodes

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.

    1982-01-01

    The derivation of a simple expression for the capacitance C(V) associated with the transition region of a p-n junction under a forward bias is derived by phenomenological reasoning. The treatment of C(V) is based on the conventional Shockley equations, and simpler expressions for C(V) result that are in general accord with the previous analytical and numerical results. C(V) consists of two components resulting from changes in majority carrier concentration and from free hole and electron accumulation in the space-charge region. The space-charge region is conceived as the intrinsic region of an n-i-p structure for a space-charge region markedly wider than the extrinsic Debye lengths at its edges. This region is excited in the sense that the forward bias creates hole and electron densities orders of magnitude larger than those in equilibrium. The recent Shirts-Gordon (1979) modeling of the space-charge region using a dielectric response function is contrasted with the more conventional Schottky-Shockley modeling.

  9. The forced sound transmission of finite single leaf walls using a variational technique.

    PubMed

    Brunskog, Jonas

    2012-09-01

    The single wall is the simplest element of concern in building acoustics, but there still remain some open questions regarding the sound insulation of this simple case. The two main reasons for this are the effects on the excitation and sound radiation of the wall when it has a finite size, and the fact that the wave field in the wall is consisting of two types of waves, namely forced waves due to the exciting acoustic field, and free bending waves due to reflections in the boundary. The aim of the present paper is to derive simple analytical formulas for the forced part of the airborne sound insulation of a single homogeneous wall of finite size, using a variational technique based on the integral-differential equation of the fluid loaded wall. The so derived formulas are valid in the entire audible frequency range. The results are compared with full numerical calculations, measurements and alternative theory, with reasonable agreement.

  10. A comparison of the structureborne and airborne paths for propfan interior noise

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Koval, L. R.; Ramakrishnan, J. V.

    1986-01-01

    A comparison is made between the relative levels of aircraft interior noise related to structureborne and airborne paths for the same propeller source. A simple, but physically meaningful, model of the structure treats the fuselage interior as a rectangular cavity with five rigid walls. The sixth wall, the fuselage sidewall, is a stiffened panel. The wing is modeled as a simple beam carried into the fuselage by a large discrete stiffener representing the carry-through structure. The fuselage interior is represented by analytically-derived acoustic cavity modes and the entire structure is represented by structural modes derived from a finite element model. The noise source for structureborne noise is the unsteady lift generation on the wing due to the rotating trailing vortex system of the propeller. The airborne noise source is the acoustic field created by a propeller model consistent with the vortex representation. Comparisons are made on the basis of interior noise over a range of propeller rotational frequencies at a fixed thrust.

  11. Optimized theory for simple and molecular fluids.

    PubMed

    Marucho, M; Montgomery Pettitt, B

    2007-03-28

    An optimized closure approximation for both simple and molecular fluids is presented. A smooth interpolation between Perkus-Yevick and hypernetted chain closures is optimized by minimizing the free energy self-consistently with respect to the interpolation parameter(s). The molecular version is derived from a refinement of the method for simple fluids. In doing so, a method is proposed which appropriately couples an optimized closure with the variant of the diagrammatically proper integral equation recently introduced by this laboratory [K. M. Dyer et al., J. Chem. Phys. 123, 204512 (2005)]. The simplicity of the expressions involved in this proposed theory has allowed the authors to obtain an analytic expression for the approximate excess chemical potential. This is shown to be an efficient tool to estimate, from first principles, the numerical value of the interpolation parameters defining the aforementioned closure. As a preliminary test, representative models for simple fluids and homonuclear diatomic Lennard-Jones fluids were analyzed, obtaining site-site correlation functions in excellent agreement with simulation data.

  12. Demodulation of messages received with low signal to noise ratio

    NASA Astrophysics Data System (ADS)

    Marguinaud, A.; Quignon, T.; Romann, B.

    The implementation of this all-digital demodulator is derived from maximum likelihood considerations applied to an analytical representation of the received signal. Traditional adapted filters and phase lock loops are replaced by minimum variance estimators and hypothesis tests. These statistical tests become very simple when working on phase signal. These methods, combined with rigorous control data representation allow significant computation savings as compared to conventional realizations. Nominal operation has been verified down to energetic signal over noise of -3 dB upon a QPSK demodulator.

  13. Comparison of Alcator C data with the Rebut-Lallia-Watkins critical gradient scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, I.H.

    The critical temperature gradient model of Rebut, Lallia and Watkins is compared with data from Alcator C. The predicted central electron temperature is derived from the model, and a simple analytic formula is given. It is found to be in quite good agreement with the observed temperatures on Alcator C under ohmic heating conditions. However, the thermal diffusivity postulated in the model for gradients that exceed the critical is not consistent with the observed electron heating by Lower Hybrid waves.

  14. Tsunami and acoustic-gravity waves in water of constant depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendin, Gali; Stiassnie, Michael

    2013-08-15

    A study of wave radiation by a rather general bottom displacement, in a compressible ocean of otherwise constant depth, is carried out within the framework of a three-dimensional linear theory. Simple analytic expressions for the flow field, at large distance from the disturbance, are derived. Realistic numerical examples indicate that the Acoustic-Gravity waves, which significantly precede the Tsunami, are expected to leave a measurable signature on bottom-pressure records that should be considered for early detection of Tsunami.

  15. Optical response of photopolymer materials for holographic data storage applications.

    PubMed

    Sheridan, J T; Gleeson, M R; Close, C E; Kelly, J V

    2007-01-01

    We briefly review the application of photopolymer recording materials in the area of holographic data storage. In particular we discuss the recent development of the Non-local Polymerisation Driven Diffusion model. Applying this model we develop simple first-order analytic expressions describing the spatial frequency response of photopolymer materials. The assumptions made in the derivation of these formulae are described and their ranges of validity are examined. The effects of particular physical parameters of a photopolymer on the material response are discussed.

  16. Variational description of the positive column with two-stem ionization

    NASA Technical Reports Server (NTRS)

    Crawford, F. W.

    1979-01-01

    The ionization balance in diffusion dominated discharges which depends on both one and two step ionization processes is considered. The Spenke diffusion equation (D sq delta n + neutrino n + sq kn =0) describing such conditions is solved by the Rayleigh-Ritz variational method. Simple analytic approximations to the density profile, and the similarity relation between neutrino,k,D and the discharge dimensions, are derived for planar and cylindrical geometry, and compared with exact computations for certain limiting cases.

  17. Gain Switching for a Detection System to Accommodate a Newly Developed MALDI-Based Quantification Method

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Hyeon, Taeghwan; Kim, Myung Soo; Moon, Jeong Hee

    2017-09-01

    In matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF), matrix-derived ions are routinely deflected away to avoid problems with ion detection. This, however, limits the use of a quantification method that utilizes the analyte-to-matrix ion abundance ratio. In this work, we will show that it is possible to measure this ratio by a minor instrumental modification of a simple form of MALDI-TOF. This involves detector gain switching. [Figure not available: see fulltext.

  18. Gauge-independent decoherence models for solids in external fields

    NASA Astrophysics Data System (ADS)

    Wismer, Michael S.; Yakovlev, Vladislav S.

    2018-04-01

    We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.

  19. Comparative study between derivative spectrophotometry and multivariate calibration as analytical tools applied for the simultaneous quantitation of Amlodipine, Valsartan and Hydrochlorothiazide.

    PubMed

    Darwish, Hany W; Hassan, Said A; Salem, Maissa Y; El-Zeany, Badr A

    2013-09-01

    Four simple, accurate and specific methods were developed and validated for the simultaneous estimation of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in commercial tablets. The derivative spectrophotometric methods include Derivative Ratio Zero Crossing (DRZC) and Double Divisor Ratio Spectra-Derivative Spectrophotometry (DDRS-DS) methods, while the multivariate calibrations used are Principal Component Regression (PCR) and Partial Least Squares (PLSs). The proposed methods were applied successfully in the determination of the drugs in laboratory-prepared mixtures and in commercial pharmaceutical preparations. The validity of the proposed methods was assessed using the standard addition technique. The linearity of the proposed methods is investigated in the range of 2-32, 4-44 and 2-20 μg/mL for AML, VAL and HCT, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The kinetic energy operator for distance-dependent effective nuclear masses: Derivation for a triatomic molecule.

    PubMed

    Khoma, Mykhaylo; Jaquet, Ralph

    2017-09-21

    The kinetic energy operator for triatomic molecules with coordinate or distance-dependent nuclear masses has been derived. By combination of the chain rule method and the analysis of infinitesimal variations of molecular coordinates, a simple and general technique for the construction of the kinetic energy operator has been proposed. The asymptotic properties of the Hamiltonian have been investigated with respect to the ratio of the electron and proton mass. We have demonstrated that an ad hoc introduction of distance (and direction) dependent nuclear masses in Cartesian coordinates preserves the total rotational invariance of the problem. With the help of Wigner rotation functions, an effective Hamiltonian for nuclear motion can be derived. In the derivation, we have focused on the effective trinuclear Hamiltonian. All necessary matrix elements are given in closed analytical form. Preliminary results for the influence of non-adiabaticity on vibrational band origins are presented for H 3 + .

  1. Rosenzweig instability in a thin layer of a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  2. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  3. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  4. Comparative Validation of the Determination of Sofosbuvir in Pharmaceuticals by Several Inexpensive Ecofriendly Chromatographic, Electrophoretic, and Spectrophotometric Methods.

    PubMed

    El-Yazbi, Amira F

    2017-01-20

    Sofosbuvir (SOFO) was approved by the U.S. Food and Drug Administration in 2013 for the treatment of hepatitis C virusinfection with enhanced antiviral potency compared with earlier analogs. Notwithstanding, all current editions of the pharmacopeias still do not present any analytical methods for the quantification of SOFO. Thus, rapid, simple, and ecofriendly methods for the routine analysis of commercial formulations of SOFO are desirable. In this study, five accurate methods for the determination of SOFO in pharmaceutical tablets were developed and validated. These methods include HPLC, capillary zone electrophoresis, HPTLC, and UV spectrophotometric and derivative spectrometry methods. The proposed methods proved to be rapid, simple, sensitive, selective, and accurate analytical procedures that were suitable for the reliable determination of SOFO in pharmaceutical tablets. An analysis of variance test with <em>P</em>-value &#x003E; 0.05 confirmed that there were no significant differences between the proposed assays. Thus, any of these methods can be used for the routine analysis of SOFO in commercial tablets.

  5. ΛCDM Cosmology for Astronomers

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Matthews, A. M.

    2018-07-01

    The homogeneous, isotropic, and flat ΛCDM universe favored by observations of the cosmic microwave background can be described using only Euclidean geometry, locally correct Newtonian mechanics, and the basic postulates of special and general relativity. We present simple derivations of the most useful equations connecting astronomical observables (redshift, flux density, angular diameter, brightness, local space density, ...) with the corresponding intrinsic properties of distant sources (lookback time, distance, spectral luminosity, linear size, specific intensity, source counts, ...). We also present an analytic equation for lookback time that is accurate within 0.1% for all redshifts z. The exact equation for comoving distance is an elliptic integral that must be evaluated numerically, but we found a simple approximation with errors <0.2% for all redshifts up to z ≈ 50.

  6. Controlling the light shift of the CPT resonance by modulation technique

    NASA Astrophysics Data System (ADS)

    Tsygankov, E. A.; Petropavlovsky, S. V.; Vaskovskaya, M. I.; Zibrov, S. A.; Velichansky, V. L.; Yakovlev, V. P.

    2017-12-01

    Motivated by recent developments in atomic frequency standards employing the effect of coherent population trapping (CPT), we propose a theoretical framework for the frequency modulation spectroscopy of the CPT resonances. Under realistic assumptions we provide simple yet non-trivial analytical formulae for the major spectroscopic signals such as the CPT resonance line and the in-phase/quadrature responses. We discuss the influence of the light shift and, in particular, derive a simple expression for the displacement of the resonance as a function of modulation index. The performance of the model is checked against numerical simulations, the agreement is good to perfect. The obtained results can be used in more general models accounting for light absorption in the thick optical medium.

  7. Characteristics of HgS nanoparticles formed in hair by a chemical reaction

    NASA Astrophysics Data System (ADS)

    Patriarche, G.; Walter, P.; Van Elslande, E.; Ayache, J.; Castaing, J.

    2013-01-01

    A chemical reaction, derived from an ancient recipe for hair dyeing, is used to precipitate nanoparticles of mercury sulphide in hair by the simple process of immersion in a water solution of Ca(OH)2 and HgO. After several days, HgS nanoparticles appear throughout the hair and are particularly numerous in the various interfaces. The formation of these nanoparticles has been studied by analytical and atomic resolution electron microscopy. High resolution quantitative analysis allowed the determination of two varieties of HgS precipitate crystal structures formed: a hexagonal cinnabar and a cubic metacinnabar structure. This very simple process of a chemical reaction in hair is a particularly inexpensive way to fabricate semiconductor sulphide nanoparticles with specific properties.

  8. Charged reflecting stars supporting charged massive scalar field configurations

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2018-03-01

    The recently published no-hair theorems of Hod, Bhattacharjee, and Sarkar have revealed the intriguing fact that horizonless compact reflecting stars cannot support spatially regular configurations made of scalar, vector and tensor fields. In the present paper we explicitly prove that the interesting no-hair behavior observed in these studies is not a generic feature of compact reflecting stars. In particular, we shall prove that charged reflecting stars can support charged massive scalar field configurations in their exterior spacetime regions. To this end, we solve analytically the characteristic Klein-Gordon wave equation for a linearized charged scalar field of mass μ , charge coupling constant q, and spherical harmonic index l in the background of a spherically symmetric compact reflecting star of mass M, electric charge Q, and radius R_{ {s}}≫ M,Q. Interestingly, it is proved that the discrete set {R_{ {s}}(M,Q,μ ,q,l;n)}^{n=∞}_{n=1} of star radii that can support the charged massive scalar field configurations is determined by the characteristic zeroes of the confluent hypergeometric function. Following this simple observation, we derive a remarkably compact analytical formula for the discrete spectrum of star radii in the intermediate regime M≪ R_{ {s}}≪ 1/μ . The analytically derived resonance spectrum is confirmed by direct numerical computations.

  9. Analytical Investigation of the Decrease in the Size of the Habitable Zone Due to a Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, Dorian S.

    2016-08-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. In this paper, I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a snowball state and a warm climate are only possible beyond this limit if the weathering rate in the snowball climate is smaller than the CO2 outgassing rate (otherwise stable snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  10. Analytical Investigation of the Decrease in the Size of the Habitable Zone due to Limited CO2 Outgassing Rate

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2016-12-01

    The habitable zone concept is important because it focuses the scientific search for extraterrestrial life and aids the planning of future telescopes. Recent work has shown that planets near the outer edge of the habitable zone might not actually be able to stay warm and habitable if CO2 outgassing rates are not large enough to maintain high CO2 partial pressures against removal by silicate weathering. I use simple equations for the climate and CO2 budget of a planet in the habitable zone that can capture the qualitative behavior of the system. With these equations I derive an analytical formula for an effective outer edge of the habitable zone, including limitations imposed by the CO2 outgassing rate. I then show that climate cycles between a Snowball state and a warm climate are only possible beyond this limit if the weathering rate in the Snowball climate is smaller than the CO2 outgassing rate (otherwise stable Snowball states result). I derive an analytical solution for the climate cycles including a formula for their period in this limit. This work allows us to explore the qualitative effects of weathering processes on the effective outer edge of the habitable zone, which is important because weathering parameterizations are uncertain.

  11. Analytic Reflected Lightcurves for Exoplanets

    NASA Astrophysics Data System (ADS)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  12. Analytic Formulation and Numerical Implementation of an Acoustic Pressure Gradient Prediction

    NASA Technical Reports Server (NTRS)

    Lee, Seongkyu; Brentner, Kenneth S.; Farassat, Fereidoun

    2007-01-01

    The scattering of rotor noise is an area that has received little attention over the years, yet the limited work that has been done has shown that both the directivity and intensity of the acoustic field may be significantly modified by the presence of scattering bodies. One of the inputs needed to compute the scattered acoustic field is the acoustic pressure gradient on a scattering surface. Two new analytical formulations of the acoustic pressure gradient have been developed and implemented in the PSU-WOPWOP rotor noise prediction code. These formulations are presented in this paper. The first formulation is derived by taking the gradient of Farassat's retarded-time Formulation 1A. Although this formulation is relatively simple, it requires numerical time differentiation of the acoustic integrals. In the second formulation, the time differentiation is taken inside the integrals analytically. The acoustic pressure gradient predicted by these new formulations is validated through comparison with the acoustic pressure gradient determined by a purely numerical approach for two model rotors. The agreement between analytic formulations and numerical method is excellent for both stationary and moving observers case.

  13. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  14. Point spread functions and deconvolution of ultrasonic images.

    PubMed

    Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten

    2015-03-01

    This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.

  15. Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.

    2018-03-01

    We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

  16. Analytic algorithms for determining radiative transfer optical properties of ocean waters.

    PubMed

    Kaskas, Ayse; Güleçyüz, Mustafa C; Tezcan, Cevdet; McCormick, Norman J

    2006-10-10

    A synthetic model for the scattering phase function is used to develop simple algebraic equations, valid for any water type, for evaluating the ratio of the backscattering to absorption coefficients of spatially uniform, very deep waters with data from upward and downward planar irradiances and the remotely sensed reflectance. The phase function is a variable combination of a forward-directed Dirac delta function plus isotropic scattering, which is an elementary model for strongly forward scattering such as that encountered in oceanic optics applications. The incident illumination at the surface is taken to be diffuse plus a collimated beam. The algorithms are compared with other analytic correlations that were previously derived from extensive numerical simulations, and they are also numerically tested with forward problem results computed with a modified FN method.

  17. Plate and butt-weld stresses beyond elastic limit, material and structural modeling

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1991-01-01

    Ultimate safety factors of high performance structures depend on stress behavior beyond the elastic limit, a region not too well understood. An analytical modeling approach was developed to gain fundamental insights into inelastic responses of simple structural elements. Nonlinear material properties were expressed in engineering stresses and strains variables and combined with strength of material stress and strain equations similar to numerical piece-wise linear method. Integrations are continuous which allows for more detailed solutions. Included with interesting results are the classical combined axial tension and bending load model and the strain gauge conversion to stress beyond the elastic limit. Material discontinuity stress factors in butt-welds were derived. This is a working-type document with analytical methods and results applicable to all industries of high reliability structures.

  18. Development of an isocratic HPLC method for catechin quantification and its application to formulation studies.

    PubMed

    Li, Danhui; Martini, Nataly; Wu, Zimei; Wen, Jingyuan

    2012-10-01

    The aim of this study was to develop a simple, rapid and accurate isocratic HPLC analytical method to qualify and quantify five catechin derivatives, namely (+)-catechin (C), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epicatechin (EC) and (-)-epigallocatechin gallate (EGCG). To validate the analytical method, linearity, repeatability, intermediate precision, sensitivity, selectivity and recovery were investigated. The five catechin derivatives were completely separated by HPLC using a mobile phase containing 0.1% TFA in Milli-Q water (pH 2.0) mixed with methanol at the volume ratio of 75:25 at a flow rate of 0.8 ml/min. The method was shown to be linear (r²>0.99), repeatable with instrumental precision<2.0 and intra-assay precision<2.5 (%CV, percent coefficient of variation), precise with intra-day variation<1 and inter-day variation<2.5 (%CV, percent coefficient of variation) and sensitive (LOD<1 μg/mL and LOQ<3 μg/mL) over the calibration range for all five derivatives. Derivatives could be fully recovered in the presence of niosomal formulation (recovery rates>91%). Selectivity of the method was proven by the forced degradation studies, which showed that under acidic, basic, oxidation temperature and photolysis stresses, the parent drug can be separated from the degradation products by means of this analytical method. The described method was successfully applied in the in vitro release studies of catechin-loaded niosomes to manifest its utility in formulation characterization. Obtained results indicated that the drug release from niosomal formulations was a biphasic process and a diffusion mechanism regulated the permeation of catechin niosomes. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Analytically derived switching functions for exact H2+ eigenstates

    NASA Astrophysics Data System (ADS)

    Thorson, W. R.; Kimura, M.; Choi, J. H.; Knudson, S. K.

    1981-10-01

    Electron translation factors (ETF's) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical "two-center decomposition" of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the "angle variable" of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-ɛR22, where ɛ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic "optimization" scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV.

  20. Vortex Core Size in the Rotor Near-Wake

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2003-01-01

    Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.

  1. Renormalization-group theory of plasma microturbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carati, D.; Chriaa, K.; Balescu, R.

    1994-08-01

    The dynamical renormalization-group methods are applied to the gyrokinetic equation describing drift-wave turbulence in plasmas. As in both magnetohydrodynamic and neutral turbulence, small-scale fluctuations appear to act as effective dissipative processes on large-scale phenomena. A linear renormalized gyrokinetic equation is derived. No artificial forcing is introduced into the equations and all the renormalized corrections are expressed in terms of the fluctuating electric potential. The link with the quasilinear limit and the direct interaction approximation is investigated. Simple analytical expressions for the anomalous transport coefficients are derived by using the linear renormalized gyrokinetic equation. Examples show that both quasilinear and Bohmmore » scalings can be recovered depending on the spectral amplitude of the electric potential fluctuations.« less

  2. Analysis of polymeric phenolics in red wines using different techniques combined with gel permeation chromatography fractionation.

    PubMed

    Guadalupe, Zenaida; Soldevilla, Alberto; Sáenz-Navajas, María-Pilar; Ayestarán, Belén

    2006-04-21

    A multiple-step analytical method was developed to improve the analysis of polymeric phenolics in red wines. With a common initial step based on the fractionation of wine phenolics by gel permeation chromatography (GPC), different analytical techniques were used: high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-mass spectrometry (MS), capillary zone electrophoresis (CZE) and spectrophotometry. This method proved to be valid for analyzing different families of phenolic compounds, such as monomeric phenolics and their derivatives, polymeric pigments and proanthocyanidins. The analytical characteristics of fractionation by GPC were studied and the method was fully validated, yielding satisfactory statistical results. GPC fractionation substantially improved the analysis of polymeric pigments by CZE, in terms of response, repeatability and reproducibility. It also represented an improvement in the traditional vanillin assay used for proanthocyanidin (PA) quantification. Astringent proanthocyanidins were also analyzed using a simple combined method that allowed these compounds, for which only general indexes were available, to be quantified.

  3. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.

    PubMed Central

    Rubinstein, J T; Spelman, F A

    1988-01-01

    The cable model of a passive, unmyelinated fiber in an applied extracellular field is derived. The solution is valid for an arbitrary, time-varying, applied field, which may be determined analytically or numerically. Simple analytical computations are presented. They explain a variety of known phenomena and predict some previously undescribed properties of extracellular electrical stimulation. The polarization of a fiber in an applied field behaves like the output of a spatial high-pass and temporal low-pass filter of the stimulus. High-frequency stimulation results in a more spatially restricted region of fiber excitation, effectively reducing current spread relative to that produced by low-frequency stimulation. Chronaxie measured extracellularly is a function of electrode position relative to the stimulated fiber, and its value may differ substantially from that obtained intracellularly. Frequency dependence of psychophysical threshold obtained by electrical stimulation of the macaque cochlea closely follows the frequency dependence of single-fiber passive response. PMID:3233274

  4. Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications

    NASA Astrophysics Data System (ADS)

    Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen

    2018-05-01

    The aim of this article is to construct some new traveling wave solutions and investigate localized structures for fourth-order nonlinear Ablowitz-Kaup-Newell-Segur (AKNS) water wave dynamical equation. The simple equation method (SEM) and the modified simple equation method (MSEM) are applied in this paper to construct the analytical traveling wave solutions of AKNS equation. The different waves solutions are derived by assigning special values to the parameters. The obtained results have their importance in the field of physics and other areas of applied sciences. All the solutions are also graphically represented. The constructed results are often helpful for studying several new localized structures and the waves interaction in the high-dimensional models.

  5. A simple analytical model for dynamics of time-varying target leverage ratios

    NASA Astrophysics Data System (ADS)

    Lo, C. F.; Hui, C. H.

    2012-03-01

    In this paper we have formulated a simple theoretical model for the dynamics of the time-varying target leverage ratio of a firm under some assumptions based upon empirical observations. In our theoretical model the time evolution of the target leverage ratio of a firm can be derived self-consistently from a set of coupled Ito's stochastic differential equations governing the leverage ratios of an ensemble of firms by the nonlinear Fokker-Planck equation approach. The theoretically derived time paths of the target leverage ratio bear great resemblance to those used in the time-dependent stationary-leverage (TDSL) model [Hui et al., Int. Rev. Financ. Analy. 15, 220 (2006)]. Thus, our simple model is able to provide a theoretical foundation for the selected time paths of the target leverage ratio in the TDSL model. We also examine how the pace of the adjustment of a firm's target ratio, the volatility of the leverage ratio and the current leverage ratio affect the dynamics of the time-varying target leverage ratio. Hence, with the proposed dynamics of the time-dependent target leverage ratio, the TDSL model can be readily applied to generate the default probabilities of individual firms and to assess the default risk of the firms.

  6. Temperature-controlled micro-TLC: a versatile green chemistry and fast analytical tool for separation and preliminary screening of steroids fraction from biological and environmental samples.

    PubMed

    Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J

    2011-11-01

    This paper is a continuation of our previous research focusing on development of micro-TLC methodology under temperature-controlled conditions. The main goal of present paper is to demonstrate separation and detection capability of micro-TLC technique involving simple analytical protocols without multi-steps sample pre-purification. One of the advantages of planar chromatography over its column counterpart is that each TLC run can be performed using non-previously used stationary phase. Therefore, it is possible to fractionate or separate complex samples characterized by heavy biological matrix loading. In present studies components of interest, mainly steroids, were isolated from biological samples like fish bile using single pre-treatment steps involving direct organic liquid extraction and/or deproteinization by freeze-drying method. Low-molecular mass compounds with polarity ranging from estetrol to progesterone derived from the environmental samples (lake water, untreated and treated sewage waters) were concentrated using optimized solid-phase extraction (SPE). Specific bands patterns for samples derived from surface water of the Middle Pomerania in northern part of Poland can be easily observed on obtained micro-TLC chromatograms. This approach can be useful as simple and non-expensive complementary method for fast control and screening of treated sewage water discharged by the municipal wastewater treatment plants. Moreover, our experimental results show the potential of micro-TLC as an efficient tool for retention measurements of a wide range of steroids under reversed-phase (RP) chromatographic conditions. These data can be used for further optimalization of SPE or HPLC systems working under RP conditions. Furthermore, we also demonstrated that micro-TLC based analytical approach can be applied as an effective method for the internal standard (IS) substance search. Generally, described methodology can be applied for fast fractionation or screening of the whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Analyses of chlorogenic acids and related cinnamic acid derivatives from Nicotiana tabacum tissues with the aid of UPLC-QTOF-MS/MS based on the in-source collision-induced dissociation method.

    PubMed

    Ncube, Efficient N; Mhlongo, Msizi I; Piater, Lizelle A; Steenkamp, Paul A; Dubery, Ian A; Madala, Ntakadzeni E

    2014-01-01

    Chlorogenic acids (CGAs) are a class of phytochemicals that are formed as esters between different derivatives of cinnamic acid and quinic acid molecules. In plants, accumulation of these compounds has been linked to several physiological responses against various stress factors; however, biochemical synthesis differs from one plant to another. Although structurally simple, the analysis of CGA molecules with modern analytical platforms poses an analytical challenge. The objective of the study was to perform a comparison of the CGA profiles and related derivatives from differentiated tobacco leaf tissues and undifferentiated cell suspension cultures. Using an UHPLC-Q-TOF-MS/MS fingerprinting method based on the in-source collision induced dissociation (ISCID) approach, a total of 19 different metabolites with a cinnamic acid core moiety were identified. These metabolites were either present in both leaf tissue and cell suspension samples or in only one of the two plant systems. Profile differences point to underlying biochemical similarities or differences thereof. Using this method, the regio- and geometric-isomer profiles of chlorogenic acids of the two tissue types of Nicotiana tabacum were achieved. The method was also shown to be applicable for the detection of other related molecules containing a cinnamic acid core.

  8. Decoding of the light changes in eclipsing Wolf-Rayet binaries. I. A non-classical approach to the solution of light curves

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Breysacher, J.; Rauw, G.

    2009-09-01

    Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.

  9. Climatic influence of background and volcanic stratosphere aerosol models

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Herman, M.; Lenoble, J.; Tanre, D.

    1982-01-01

    A simple modelization of the earth atmosphere system including tropospheric and stratospheric aerosols has been derived and tested. Analytical expressions are obtained for the albedo variation due to a thin stratospheric aerosol layer. Also outlined are the physical procedures and the respective influence of the main parameters: aerosol optical thickness, single scattering albedo and asymmetry factor, and sublayer albedo. The method is applied to compute the variation of the zonal and planetary albedos due to a stratospheric layer of background H2SO4 particles and of volcanic ash.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalvit, Diego; Messina, Riccardo; Maia Neto, Paulo

    We develop the scattering approach for the dispersive force on a ground state atom on top of a corrugated surface. We present explicit results to first order in the corrugation amplitude. A variety of analytical results are derived in different limiting cases, including the van der Waals and Casimir-Polder regimes. We compute numerically the exact first-order dispersive potential for arbitrary separation distances and corrugation wavelengths, for a Rubidium atom on top of a silicon or gold corrugated surface. We consider in detail the correction to the proximity force approximation, and present a very simple approximation algorithm for computing the potential.

  11. Leading temperature dependence of the conductance in Kondo-correlated quantum dots.

    PubMed

    Aligia, A A

    2018-04-18

    Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.

  12. Instrument Attitude Precision Control

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    2004-01-01

    A novel approach is presented in this paper to analyze attitude precision and control for an instrument gimbaled to a spacecraft subject to an internal disturbance caused by a moving component inside the instrument. Nonlinear differential equations of motion for some sample cases are derived and solved analytically to gain insight into the influence of the disturbance on the attitude pointing error. A simple control law is developed to eliminate the instrument pointing error caused by the internal disturbance. Several cases are presented to demonstrate and verify the concept presented in this paper.

  13. Unsteady Aerodynamic Force Sensing from Strain Data

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2017-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm.

  14. Robust autoassociative memory with coupled networks of Kuramoto-type oscillators

    NASA Astrophysics Data System (ADS)

    Heger, Daniel; Krischer, Katharina

    2016-08-01

    Uncertain recognition success, unfavorable scaling of connection complexity, or dependence on complex external input impair the usefulness of current oscillatory neural networks for pattern recognition or restrict technical realizations to small networks. We propose a network architecture of coupled oscillators for pattern recognition which shows none of the mentioned flaws. Furthermore we illustrate the recognition process with simulation results and analyze the dynamics analytically: Possible output patterns are isolated attractors of the system. Additionally, simple criteria for recognition success are derived from a lower bound on the basins of attraction.

  15. Multi-hole pressure probes to wind tunnel experiments and air data systems

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Shmakov, A. S.

    2017-10-01

    The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.

  16. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Strum, R.; Stiles, D.; Long, C.; Rakhman, A.; Blokland, W.; Winder, D.; Riemer, B.; Wendel, M.

    2018-03-01

    We describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. The proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry-Perot sensors for measurement of strains and vibrations.

  17. Energy density and energy flow of surface waves in a strongly magnetized graphene

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  18. HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots.

    PubMed

    Arnoldi, Lolita; Ballero, Mauro; Fuzzati, Nicola; Maxia, Andrea; Mercalli, Enrico; Pagni, Luca

    2004-06-01

    A simple HPLC method was developed to distinguish between 'poisonous' and 'non-poisonous' chemotypes of Ferula communis. The method was performed on a C8 reverse phase analytical column using a binary eluent (aqueous TFA 0.01%-TFA 0.01% in acetonitrile) under gradient condition. The two chemotypes showed different fingerprints. The identification of five coumarins and eleven daucane derivatives by HPLC-diode array detection (HPLC-DAD) and HPLC-MS is described. A coumarin, not yet described, was detected. Copyright 2004 Elsevier B.V.

  19. Design and performance of optimal detectors for guided wave structural health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, G.; Udpa, L.

    2016-01-01

    Ultrasonic guided wave measurements in a long term structural health monitoring system are affected by measurement noise, environmental conditions, transducer aging and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This paper derives the optimal detector structure, within the framework of detection theory, where a guided wave signal at the sensor is represented by a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure’s complexity: (i) Simple structures where defect reflections can bemore » identified without the need for baseline data; (ii) Simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; (iii) Complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model is used to generate guided wave signals and the performance results of a Monte-Carlo simulation are compared with the theoretical performance. initial results demonstrate that the problems of signal complexity and environmental variability can in fact be exploited to improve detection performance.« less

  20. On-line focusing of flavin derivatives using Dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection.

    PubMed

    Britz-McKibbin, Philip; Otsuka, Koji; Terabe, Shigeru

    2002-08-01

    Simple yet effective methods to enhance concentration sensitivity is needed for capillary electrophoresis (CE) to become a practical method to analyze trace levels of analytes in real samples. In this report, the development of a novel on-line preconcentration technique combining dynamic pH junction and sweeping modes of focusing is applied to the sensitive and selective analysis of three flavin derivatives: riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Picomolar (pM) detectability of flavins by CE with laser-induced fluorescence (LIF) detection is demonstrated through effective focusing of large sample volumes (up to 22% capillary length) using a dual pH junction-sweeping focusing mode. This results in greater than a 1,200-fold improvement in sensitivity relative to conventional injection methods, giving a limit of detection (S/N = 3) of approximately 4.0 pM for FAD and FMN. Flavin focusing is examined in terms of analyte mobility dependence on buffer pH, borate complexation and SDS interaction. Dynamic pH junction-sweeping extends on-line focusing to both neutral (hydrophobic) and weakly acidic (hydrophilic) species and is considered useful in cases when either conventional sweeping or dynamic pH junction techniques used alone are less effective for certain classes of analytes. Enhanced focusing performance by this hyphenated method was demonstrated by greater than a 4-fold reduction in flavin bandwidth, as compared to either sweeping or dynamic pH junction, reflected by analyte detector bandwidths <0.20 cm. Novel on-line focusing strategies are required to improve sensitivity in CE, which may be applied toward more effective biochemical analysis methods for diverse types of analytes.

  1. The Quantum Approximation Optimization Algorithm for MaxCut: A Fermionic View

    NASA Technical Reports Server (NTRS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2017-01-01

    Farhi et al. recently proposed a class of quantum algorithms, the Quantum Approximate Optimization Algorithm (QAOA), for approximately solving combinatorial optimization problems. A level-p QAOA circuit consists of steps in which a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2p times for which these two Hamiltonians are applied are the parameters of the algorithm. As p increases, however, the parameter search space grows quickly. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here, we analytically and numerically study parameter setting for QAOA applied to MAXCUT. For level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MAXCUT, the Ring of Disagrees, or the 1D antiferromagnetic ring, we provide an analysis for arbitrarily high level. Using a Fermionic representation, the evolution of the system under QAOA translates into quantum optimal control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of QAOA for any p. It also greatly simplifies numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional sub-manifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  2. A Simple Method for Deriving the Confidence Regions for the Penalized Cox’s Model via the Minimand Perturbation†

    PubMed Central

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox’s proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer. PMID:29326496

  3. A Simple Method for Deriving the Confidence Regions for the Penalized Cox's Model via the Minimand Perturbation.

    PubMed

    Lin, Chen-Yen; Halabi, Susan

    2017-01-01

    We propose a minimand perturbation method to derive the confidence regions for the regularized estimators for the Cox's proportional hazards model. Although the regularized estimation procedure produces a more stable point estimate, it remains challenging to provide an interval estimator or an analytic variance estimator for the associated point estimate. Based on the sandwich formula, the current variance estimator provides a simple approximation, but its finite sample performance is not entirely satisfactory. Besides, the sandwich formula can only provide variance estimates for the non-zero coefficients. In this article, we present a generic description for the perturbation method and then introduce a computation algorithm using the adaptive least absolute shrinkage and selection operator (LASSO) penalty. Through simulation studies, we demonstrate that our method can better approximate the limiting distribution of the adaptive LASSO estimator and produces more accurate inference compared with the sandwich formula. The simulation results also indicate the possibility of extending the applications to the adaptive elastic-net penalty. We further demonstrate our method using data from a phase III clinical trial in prostate cancer.

  4. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    NASA Astrophysics Data System (ADS)

    Prathap Reddy, K.

    2016-11-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.

  5. Universal binding energy relations in metallic adhesion

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. J.

    1984-01-01

    Rose, Smith, and Ferrante have discovered scaling relations which map the adhesive binding energy calculated by Ferrante and Smith onto a single universal binding energy curve. These binding energies are calculated for all combinations of Al(111), Zn(0001), Mg(0001), and Na(110) in contact. The scaling involves normalizing the energy by the maximum binding energy and normalizing distances by a suitable combination of Thomas-Fermi screening lengths. Rose et al. have also found that the calculated cohesive energies of K, Ba, Cu, Mo, and Sm scale by similar simple relations, suggesting the universal relation may be more general than for the simple free electron metals for which it was derived. In addition, the scaling length was defined more generally in order to relate it to measurable physical properties. Further this universality can be extended to chemisorption. A simple and yet quite accurate prediction of a zero temperature equation of state (volume as a function of pressure for metals and alloys) is presented. Thermal expansion coefficients and melting temperatures are predicted by simple, analytic expressions, and results compare favorably with experiment for a broad range of metals.

  6. Improving the treatment of coarse-grain electrostatics: CVCEL.

    PubMed

    Ceres, N; Lavery, R

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.

  7. A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet

    NASA Astrophysics Data System (ADS)

    Houser, C.; Bishop, M. P.; Barrineau, C. P.

    2014-12-01

    Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.

  8. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices.

    PubMed

    Barker, John R; Martinez, Antonio

    2018-04-04

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  9. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices

    NASA Astrophysics Data System (ADS)

    Barker, John R.; Martinez, Antonio

    2018-04-01

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  10. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.

  11. Probabilistic inference of ecohydrological parameters using observations from point to satellite scales

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Higgins, Chad W.; Still, Christopher J.; Good, Stephen P.

    2018-06-01

    Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.

  12. Validation of the replica trick for simple models

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2018-04-01

    We discuss the replica analytic continuation using several simple models in order to prove mathematically the validity of the replica analysis, which is used in a wide range of fields related to large-scale complex systems. While replica analysis consists of two analytical techniques—the replica trick (or replica analytic continuation) and the thermodynamical limit (and/or order parameter expansion)—we focus our study on replica analytic continuation, which is the mathematical basis of the replica trick. We apply replica analysis to solve a variety of analytical models, and examine the properties of replica analytic continuation. Based on the positive results for these models we propose that replica analytic continuation is a robust procedure in replica analysis.

  13. An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska

    USGS Publications Warehouse

    Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D.; Giles, S.A.

    2009-01-01

    Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.

  14. Exact results in the large system size limit for the dynamics of the chemical master equation, a one dimensional chain of equations.

    PubMed

    Martirosyan, A; Saakian, David B

    2011-08-01

    We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.

  15. Quantifying entanglement in two-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Tserkis, Spyros; Ralph, Timothy C.

    2017-12-01

    Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.

  16. Induced Eddy Currents in Simple Conductive Geometries: Mathematical Formalism Describes the Excitation of Electrical Eddy Currents in a Time-Varying Magnetic Field

    DOE PAGES

    Nagel, James R.

    2017-12-22

    In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less

  17. Evaluation of generalized degrees of freedom for sparse estimation by replica method

    NASA Astrophysics Data System (ADS)

    Sakata, A.

    2016-12-01

    We develop a method to evaluate the generalized degrees of freedom (GDF) for linear regression with sparse regularization. The GDF is a key factor in model selection, and thus its evaluation is useful in many modelling applications. An analytical expression for the GDF is derived using the replica method in the large-system-size limit with random Gaussian predictors. The resulting formula has a universal form that is independent of the type of regularization, providing us with a simple interpretation. Within the framework of replica symmetric (RS) analysis, GDF has a physical meaning as the effective fraction of non-zero components. The validity of our method in the RS phase is supported by the consistency of our results with previous mathematical results. The analytical results in the RS phase are calculated numerically using the belief propagation algorithm.

  18. Induced Eddy Currents in Simple Conductive Geometries: Mathematical Formalism Describes the Excitation of Electrical Eddy Currents in a Time-Varying Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, James R.

    In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less

  19. Simple Map in Action-Angle Coordinates.

    NASA Astrophysics Data System (ADS)

    Kerwin, Olivia; Punjabi, Alkesh; Ali, Halima

    2008-04-01

    The simple map is the simplest map that has the topology of a divertor tokamak. The simple map has three canonical representations: (i) the natural coordinates - toroidal magnetic flux and poloidal angle (ψ,θ), (ii) the physical coordinates - the physical variables (R,Z) or (X,Y), and (iii) the action-angle coordinates - (J,θ) or magnetic coordinates (ψ, θ). All three are canonical coordinates for field lines. The simple map in the (X,Y) representation has been studied extensively ^1, 2. Here we analytically calculate the action-angle coordinates and safety factor q for the simple map. We construct the equilibrium generating function for the simple map in action-angle coordinates. We derive the simple map in action-angle representation, and calculate the stochastic broadening of the ideal separatrix due to topological noise in action-angle representation. We also show how the geometric effects such as elongation, the height, and width of the ideal separatrix surface can be investigated using a slight modification of the simple map in action-angle representation. This work is supported by the following grants US Department of Energy - OFES DE-FG02-01ER54624 and DE-FG02-04ER54793 and National Science Foundation - HRD-0630372 and 0411394. [1] A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys Lett A, 364 140-145 (2007). [2] A. Punjabi, A. Verma, and A. Boozer, Phys.Rev. Lett. 69, 3322 (1992).

  20. Resonant Drag Instability of Grains Streaming in Fluids

    NASA Astrophysics Data System (ADS)

    Squire, J.; Hopkins, P. F.

    2018-03-01

    We show that grains streaming through a fluid are generically unstable if their velocity, projected along some direction, matches the phase velocity of a fluid wave (linear oscillation). This can occur whenever grains stream faster than any fluid wave. The wave itself can be quite general—sound waves, magnetosonic waves, epicyclic oscillations, and Brunt–Väisälä oscillations each generate instabilities, for example. We derive a simple expression for the growth rates of these “resonant drag instabilities” (RDI). This expression (i) illustrates why such instabilities are so virulent and generic and (ii) allows for simple analytic computation of RDI growth rates and properties for different fluids. As examples, we introduce several new instabilities, which could see application across a variety of physical systems from atmospheres to protoplanetary disks, the interstellar medium, and galactic outflows. The matrix-based resonance formalism we introduce can also be applied more generally in other (nonfluid) contexts, providing a simple means for calculating and understanding the stability properties of interacting systems.

  1. Is the Jeffreys' scale a reliable tool for Bayesian model comparison in cosmology?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesseris, Savvas; García-Bellido, Juan, E-mail: savvas.nesseris@uam.es, E-mail: juan.garciabellido@uam.es

    2013-08-01

    We are entering an era where progress in cosmology is driven by data, and alternative models will have to be compared and ruled out according to some consistent criterium. The most conservative and widely used approach is Bayesian model comparison. In this paper we explicitly calculate the Bayes factors for all models that are linear with respect to their parameters. We do this in order to test the so called Jeffreys' scale and determine analytically how accurate its predictions are in a simple case where we fully understand and can calculate everything analytically. We also discuss the case of nestedmore » models, e.g. one with M{sub 1} and another with M{sub 2} superset of M{sub 1} parameters and we derive analytic expressions for both the Bayes factor and the figure of Merit, defined as the inverse area of the model parameter's confidence contours. With all this machinery and the use of an explicit example we demonstrate that the threshold nature of Jeffreys' scale is not a ''one size fits all'' reliable tool for model comparison and that it may lead to biased conclusions. Furthermore, we discuss the importance of choosing the right basis in the context of models that are linear with respect to their parameters and how that basis affects the parameter estimation and the derived constraints.« less

  2. Stationary bound-state massive scalar field configurations supported by spherically symmetric compact reflecting stars

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2017-12-01

    It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R_{ {s}}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1-2M/R_{ {s}}<(ω /μ )^2<1. Interestingly, in the regime M/R_{ {s}}≪ 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω (M,R_{ {s}},μ )}^{n=∞}_{n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations.

  3. The stationary sine-Gordon equation on metric graphs: Exact analytical solutions for simple topologies

    NASA Astrophysics Data System (ADS)

    Sabirov, K.; Rakhmanov, S.; Matrasulov, D.; Susanto, H.

    2018-04-01

    We consider the stationary sine-Gordon equation on metric graphs with simple topologies. Exact analytical solutions are obtained for different vertex boundary conditions. It is shown that the method can be extended for tree and other simple graph topologies. Applications of the obtained results to branched planar Josephson junctions and Josephson junctions with tricrystal boundaries are discussed.

  4. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.

    PubMed

    Meng, X Flora; Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M

    2017-05-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. © 2017 The Author(s).

  5. Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks

    PubMed Central

    Baetica, Ania-Ariadna; Singhal, Vipul; Murray, Richard M.

    2017-01-01

    Noise is often indispensable to key cellular activities, such as gene expression, necessitating the use of stochastic models to capture its dynamics. The chemical master equation (CME) is a commonly used stochastic model of Kolmogorov forward equations that describe how the probability distribution of a chemically reacting system varies with time. Finding analytic solutions to the CME can have benefits, such as expediting simulations of multiscale biochemical reaction networks and aiding the design of distributional responses. However, analytic solutions are rarely known. A recent method of computing analytic stationary solutions relies on gluing simple state spaces together recursively at one or two states. We explore the capabilities of this method and introduce algorithms to derive analytic stationary solutions to the CME. We first formally characterize state spaces that can be constructed by performing single-state gluing of paths, cycles or both sequentially. We then study stochastic biochemical reaction networks that consist of reversible, elementary reactions with two-dimensional state spaces. We also discuss extending the method to infinite state spaces and designing the stationary behaviour of stochastic biochemical reaction networks. Finally, we illustrate the aforementioned ideas using examples that include two interconnected transcriptional components and biochemical reactions with two-dimensional state spaces. PMID:28566513

  6. Analytic reflected light curves for exoplanets

    NASA Astrophysics Data System (ADS)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-07-01

    The disc-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motions coupled with an inhomogeneous albedo map. We have previously derived analytic reflected light curves for spherical harmonic albedo maps in the special case of a synchronously rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard). In this paper, we present analytic reflected light curves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_ l^m-maps). In particular, we use Wigner D-matrices to express an harmonic light curve for an arbitrary viewing geometry as a non-linear combination of harmonic light curves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected light curves, as well as fast calculation of light curves for mapping exoplanets based on time-resolved photometry. To these ends, we make available Exoplanet Analytic Reflected Lightcurves, a simple open-source code that allows rapid computation of reflected light curves.

  7. Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Angioni, C.

    2014-11-07

    In this paper, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch-Schl¨uter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impuritymore » Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number.« less

  8. Effective holographic theory of charge density waves

    NASA Astrophysics Data System (ADS)

    Amoretti, Andrea; Areán, Daniel; Goutéraux, Blaise; Musso, Daniele

    2018-04-01

    We use gauge/gravity duality to write down an effective low energy holographic theory of charge density waves. We consider a simple gravity model which breaks translations spontaneously in the dual field theory in a homogeneous manner, capturing the low energy dynamics of phonons coupled to conserved currents. We first focus on the leading two-derivative action, which leads to excited states with nonzero strain. We show that including subleading quartic derivative terms leads to dynamical instabilities of AdS2 translation invariant states and to stable phases breaking translations spontaneously. We compute analytically the real part of the electric conductivity. The model allows to construct Lifshitz-like hyperscaling violating quantum critical ground states breaking translations spontaneously. At these critical points, the real part of the dc conductivity can be metallic or insulating.

  9. New Tools to Prepare ACE Cross-section Files for MCNP Analytic Test Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    Monte Carlo calculations using one-group cross sections, multigroup cross sections, or simple continuous energy cross sections are often used to: (1) verify production codes against known analytical solutions, (2) verify new methods and algorithms that do not involve detailed collision physics, (3) compare Monte Carlo calculation methods with deterministic methods, and (4) teach fundamentals to students. In this work we describe 2 new tools for preparing the ACE cross-section files to be used by MCNP ® for these analytic test problems, simple_ace.pl and simple_ace_mg.pl.

  10. Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds

    DOE PAGES

    Yang, Fan; Luke, Edward P.; Kollias, Pavlos; ...

    2018-04-20

    Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less

  11. A simple model to quantitatively account for periodic outbreaks of the measles in the Dutch Bible Belt

    NASA Astrophysics Data System (ADS)

    Bier, Martin; Brak, Bastiaan

    2015-04-01

    In the Netherlands there has been nationwide vaccination against the measles since 1976. However, in small clustered communities of orthodox Protestants there is widespread refusal of the vaccine. After 1976, three large outbreaks with about 3000 reported cases of the measles have occurred among these orthodox Protestants. The outbreaks appear to occur about every twelve years. We show how a simple Kermack-McKendrick-like model can quantitatively account for the periodic outbreaks. Approximate analytic formulae to connect the period, size, and outbreak duration are derived. With an enhanced model we take the latency period in account. We also expand the model to follow how different age groups are affected. Like other researchers using other methods, we conclude that large scale underreporting of the disease must occur.

  12. A simple method to calculate first-passage time densities with arbitrary initial conditions

    NASA Astrophysics Data System (ADS)

    Nyberg, Markus; Ambjörnsson, Tobias; Lizana, Ludvig

    2016-06-01

    Numerous applications all the way from biology and physics to economics depend on the density of first crossings over a boundary. Motivated by the lack of general purpose analytical tools for computing first-passage time densities (FPTDs) for complex problems, we propose a new simple method based on the independent interval approximation (IIA). We generalise previous formulations of the IIA to include arbitrary initial conditions as well as to deal with discrete time and non-smooth continuous time processes. We derive a closed form expression for the FPTD in z and Laplace-transform space to a boundary in one dimension. Two classes of problems are analysed in detail: discrete time symmetric random walks (Markovian) and continuous time Gaussian stationary processes (Markovian and non-Markovian). Our results are in good agreement with Langevin dynamics simulations.

  13. Simplified Formulae System for Resonant Inverse Compton Scattering of a Fast Electron in an Intense Magnetic Field

    NASA Technical Reports Server (NTRS)

    You, J. H.; Chen, W. P.; Zhang, S. N.; Chen, L.; Liu, D.; Chou, C. K.

    2003-01-01

    We present simple analytical formulae for the emission spectrum and total power of a special kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense magnetic field. In contrast with the available formulae system, we obtain a markedly simplified one based on the semiclassical quantum theory, which is more understandable for people who are unfamiliar with quantum electrodynamics. We show that the RICS process, under an appropriate 'accommodation condition' derived in this paper, is predominantly much more efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed high-frequency radiation with moderately good monochromaticity. Our formulae are simple to use - thus offering a lucid physical intuition for the theory - and may find wide applications in hard X-ray and gamma-ray astrophysics.

  14. Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Luke, Edward P.; Kollias, Pavlos

    Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less

  15. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    NASA Astrophysics Data System (ADS)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of experimentally measured luminescence signals originate in a single trap, or in multiple traps.

  16. Experimental Method for Characterizing Electrical Steel Sheets in the Normal Direction

    PubMed Central

    Hihat, Nabil; Lecointe, Jean Philippe; Duchesne, Stephane; Napieralska, Ewa; Belgrand, Thierry

    2010-01-01

    This paper proposes an experimental method to characterise magnetic laminations in the direction normal to the sheet plane. The principle, which is based on a static excitation to avoid planar eddy currents, is explained and specific test benches are proposed. Measurements of the flux density are made with a sensor moving in and out of an air-gap. A simple analytical model is derived in order to determine the permeability in the normal direction. The experimental results for grain oriented steel sheets are presented and a comparison is provided with values obtained from literature. PMID:22163394

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, J. J.; Skinner, B.; Breecher, N.

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocitymore » generally increases the parasite population.« less

  18. Mathematical, numerical and experimental analysis of the swirling flow at a Kaplan runner outlet

    NASA Astrophysics Data System (ADS)

    Muntean, S.; Ciocan, T.; Susan-Resiga, R. F.; Cervantes, M.; Nilsson, H.

    2012-11-01

    The paper presents a novel mathematical model for a-priori computation of the swirling flow at Kaplan runners outlet. The model is an extension of the initial version developed by Susan-Resiga et al [1], to include the contributions of non-negligible radial velocity and of the variable rothalpy. Simple analytical expressions are derived for these additional data from three-dimensional numerical simulations of the Kaplan turbine. The final results, i.e. velocity components profiles, are validated against experimental data at two operating points, with the same Kaplan runner blades opening, but variable discharge.

  19. Simple, accurate formula for the average bit error probability of multiple-input multiple-output free-space optical links over negative exponential turbulence channels.

    PubMed

    Peppas, Kostas P; Lazarakis, Fotis; Alexandridis, Antonis; Dangakis, Kostas

    2012-08-01

    In this Letter we investigate the error performance of multiple-input multiple-output free-space optical communication systems employing intensity modulation/direct detection and operating over strong atmospheric turbulence channels. Atmospheric-induced strong turbulence fading is modeled using the negative exponential distribution. For the considered system, an approximate yet accurate analytical expression for the average bit error probability is derived and an efficient method for its numerical evaluation is proposed. Numerically evaluated and computer simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

  20. Implementing a GPU-based numerical algorithm for modelling dynamics of a high-speed train

    NASA Astrophysics Data System (ADS)

    Sytov, E. S.; Bratus, A. S.; Yurchenko, D.

    2018-04-01

    This paper discusses the initiative of implementing a GPU-based numerical algorithm for studying various phenomena associated with dynamics of a high-speed railway transport. The proposed numerical algorithm for calculating a critical speed of the bogie is based on the first Lyapunov number. Numerical algorithm is validated by analytical results, derived for a simple model. A dynamic model of a carriage connected to a new dual-wheelset flexible bogie is studied for linear and dry friction damping. Numerical results obtained by CPU, MPU and GPU approaches are compared and appropriateness of these methods is discussed.

  1. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y.; Strum, R.; Stiles, D.

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  2. Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors

    DOE PAGES

    Liu, Y.; Strum, R.; Stiles, D.; ...

    2017-11-20

    In this paper, we describe a digital phase demodulation scheme for low-coherence interferometry-based fiber-optic sensors by employing a simple generation of phase-shifted signals at the interrogation interferometer. The scheme allows a real-time calibration process and offers capability of measuring large variations (up to the coherence of the light source) at the bandwidth that is only limited by the data acquisition system. Finally, the proposed phase demodulation method is analytically derived and its validity and performance are experimentally verified using fiber-optic Fabry–Perot sensors for measurement of strains and vibrations.

  3. Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2003-02-01

    We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.

  4. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  5. Optimal attitude maneuver execution for the Advanced Composition Explorer (ACE) mission

    NASA Technical Reports Server (NTRS)

    Woodard, Mark A.; Baker, David

    1995-01-01

    The Advanced Composition Explorer (ACE) spacecraft will require frequent attitude reorientations in order to maintain the spacecraft high gain antenna (HGA) within 3 deg of earth-pointing. These attitude maneuvers will be accomplished by employing a series of ground-commanded thruster pulses, computed by ground operations personnel, to achieve the desired change in the spacecraft angular momentum vector. With each maneuver, attitude nutation will be excited. Large nutation angles are undesirable from a science standpoint. It is important that the thruster firings be phased properly in order to minimize the nutation angle at the end of the maneuver so that science collection time is maximized. The analysis presented derives a simple approximation for the nutation contribution resulting from a series of short thruster burns. Analytic equations are derived which give the induced nutation angle as a function of the number of small thruster burns used to execute the attitude maneuver and the phasing of the burns. The results show that by properly subdividing the attitude burns, the induced nutation can be kept low. The analytic equations are also verified through attitude dynamics simulation and simulation results are presented. Finally, techniques for quantifying the post-maneuver nutation are discussed.

  6. Why behavior analysts should study emotion: the example of anxiety.

    PubMed Central

    Friman, P C; Hayes, S C; Wilson, K G

    1998-01-01

    Historically, anxiety has been a dominant subject in mainstream psychology but an incidental or even insignificant one in behavior analysis. We discuss several reasons for this discrepancy. We follow with a behavior-analytic conceptualization of anxiety that could just as easily be applied to emotion in general. Its primary points are (a) that languageable humans have an extraordinary capacity to derive relations between events and that it is a simple matter to show that neutral stimuli can acquire discriminative functions indirectly with no direct training; (b) that private events can readily acquire discriminative functions; (c) that anxiety disorders seem to occur with little apparent direct learning or that the amount of direct learning is extraordinarily out of proportion with the amount of responding; and (d) that the primary function of anxious behavior is experiential avoidance. We conclude that the most interesting aspects of anxiety disorders may occur as a function of derived rather than direct relations between public events and overt and private responses with avoidance functions. Implicit in this conclusion and explicit in the paper is the assertion that anxiety is a suitable subject for behavior-analytic study. PMID:9532758

  7. Analytical model of a corona discharge from a conical electrode under saturation

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Zubarev, N. M.

    2012-11-01

    Exact partial solutions are found for the electric field distribution in the outer region of a stationary unipolar corona discharge from an ideal conical needle in the space-charge-limited current mode with allowance for the electric field dependence of the ion mobility. It is assumed that only the very tip of the cone is responsible for the discharge, i.e., that the ionization zone is a point. The solutions are obtained by joining the spherically symmetric potential distribution in the drift space and the self-similar potential distribution in the space-charge-free region. Such solutions are outside the framework of the conventional Deutsch approximation, according to which the space charge insignificantly influences the shape of equipotential surfaces and electric lines of force. The dependence is derived of the corona discharge saturation current on the apex angle of the conical electrode and applied potential difference. A simple analytical model is suggested that describes drift in the point-plane electrode geometry under saturation as a superposition of two exact solutions for the field potential. In terms of this model, the angular distribution of the current density over the massive plane electrode is derived, which agrees well with Warburg's empirical law.

  8. Fabricating Simple Wax Screen-Printing Paper-Based Analytical Devices to Demonstrate the Concept of Limiting Reagent in Acid- Base Reactions

    ERIC Educational Resources Information Center

    Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe

    2018-01-01

    In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…

  9. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part II

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper presents a new unified analysis of estimate errors by model-matching extended-back-EMF estimation methods for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using model-matching extended-back-EMF estimation methods.

  10. Exactly soluble model of the time-resolved fluorescence return to thermal equilibrium in many-particle systems after excitation

    NASA Astrophysics Data System (ADS)

    Czachor, Andrzej

    2016-02-01

    In this paper we consider the assembly of weakly interacting identical particles, where the occupation of single-particle energy-levels at thermal equilibrium is governed by statistics. The analytic form of the inter-energy-level jump matrix is derived and analytic solution of the related eigen-problem is given. It allows one to demonstrate the nature of decline in time of the energy emission (fluorescence, recombination) of such many-level system after excitation in a relatively simple and unifying way - as a multi-exponential de-excitation. For the system of L energy levels the number of the de-excitation lifetimes is L-1. The lifetimes depend on the energy level spectrum as a whole. Two- and three-level systems are considered in detail. The impact of the energy level degeneracy on the lifetimes is discussed.

  11. The Hubbard Dimer: A Complete DFT Solution to a Many-Body Problem

    NASA Astrophysics Data System (ADS)

    Smith, Justin; Carrascal, Diego; Ferrer, Jaime; Burke, Kieron

    2015-03-01

    In this work we explain the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site asymmetric Hubbard model. We discuss the connection between the lattice and real-space and how this is a simple model for stretched H2. We can solve this elementary example analytically, and with that we can illuminate the underlying logic and aims of DFT. While the many-body solution is analytic, the density functional is given only implicitly. We overcome this difficulty by creating a highly accurate parameterization of the exact function. We use this parameterization to perform benchmark calculations of correlation kinetic energy, the adiabatic connection, etc. We also test Hartree-Fock and the Bethe Ansatz Local Density Approximation. We also discuss and illustrate the derivative discontinuity in the exchange-correlation energy and the infamous gap problem in DFT. DGE-1321846, DE-FG02-08ER46496.

  12. Simple estimation of linear 1+1 D tsunami run-up

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Campos, J. A.; Riquelme, S.

    2016-12-01

    An analytical expression is derived concerning the linear run-up for any given initial wave generated over a sloping bathymetry. Due to the simplicity of the linear formulation, complex transformations are unnecessay, because the shoreline motion is directly obtained in terms of the initial wave. This analytical result not only supports maximum run-up invariance between linear and non-linear theories, but also the time evolution of shoreline motion and velocity. The results exhibit good agreement with the non-linear theory. The present formulation also allows computing the shoreline motion numerically from a customised initial waveform, including non-smooth functions. This is useful for numerical tests, laboratory experiments or realistic cases in which the initial disturbance might be retrieved from seismic data rather than using a theoretical model. It is also shown that the real case studied is consistent with the field observations.

  13. An Analytical Time–Domain Expression for the Net Ripple Produced by Parallel Interleaved Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B.; Krein, Philip T.

    We apply modular arithmetic and Fourier series to analyze the superposition of N interleaved triangular waveforms with identical amplitudes and duty-ratios. Here, interleaving refers to the condition when a collection of periodic waveforms with identical periods are each uniformly phase-shifted across one period. The main result is a time-domain expression which provides an exact representation of the summed and interleaved triangular waveforms, where the peak amplitude and parameters of the time-periodic component are all specified in closed-form. Analysis is general and can be used to study various applications in multi-converter systems. This model is unique not only in that itmore » reveals a simple and intuitive expression for the net ripple, but its derivation via modular arithmetic and Fourier series is distinct from prior approaches. The analytical framework is experimentally validated with a system of three parallel converters under time-varying operating conditions.« less

  14. An accurate analytic description of neutrino oscillations in matter

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Niro, Viviana

    2008-12-01

    A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.

  15. New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields

    NASA Astrophysics Data System (ADS)

    Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent

    2017-02-01

    Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.

  16. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory.

    PubMed

    Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor

    2018-05-24

    The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.

  17. Analytical model of diffuse reflectance spectrum of skin tissue

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.; Firago, V. A.; Sobchuk, A. N.

    2014-01-01

    We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions.

  18. Analysis of mode-locked and intracavity frequency-doubled Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Heritier, J.-M.

    1980-01-01

    The paper presents analytical and computer studies of the CW mode-locked and intracavity frequency-doubled Nd:YAG laser which provide new insight into the operation, including the detuning behavior, of this type of laser. Computer solutions show that the steady-state pulse shape for this laser is much closer to a truncated cosine than to a Gaussian; there is little spectral broadening for on-resonance operation; and the chirp is negligible. This leads to a simplified analytical model carried out entirely in the time domain, with atomic linewidth effects ignored. Simple analytical results for on-resonance pulse shape, pulse width, signal intensity, and harmonic conversion efficiency in terms of basic laser parameters are derived from this model. A simplified physical description of the detuning behavior is also developed. Agreement is found with experimental studies showing that the pulsewidth decreases as the modulation frequency is detuned off resonance; the harmonic power output initially increases and then decreases; and the pulse shape develops a sharp-edged asymmetry of opposite sense for opposite signs of detuning.

  19. Analytical evaluation of the trajectories of hypersonic projectiles launched into space

    NASA Astrophysics Data System (ADS)

    Stutz, John David

    An equation of motion has been derived that may be solved using simple analytic functions which describes the motion of a projectile launched from the surface of the Earth into space accounting for both Newtonian gravity and aerodynamic drag. The equation of motion is based upon the Kepler equation of motion differential and variable transformations with the inclusion of a decaying angular momentum driving function and appropriate simplifying assumptions. The new equation of motion is first compared to various numerical and analytical trajectory approximations in a non-rotating Earth reference frame. The Modified Kepler solution is then corrected to include Earth rotation and compared to a rotating Earth simulation. Finally, the modified equation of motion is used to predict the apogee and trajectory of projectiles launched into space by the High Altitude Research Project from 1961 to 1967. The new equation of motion allows for the rapid equalization of projectile trajectories and intercept solutions that may be used to calculate firing solutions to enable ground launched projectiles to intercept or rendezvous with targets in low Earth orbit such as ballistic missiles.

  20. Discovery of pyrrolospirooxindole derivatives as novel cyclin dependent kinase 4 (CDK4) inhibitors by catalyst-free, green approach.

    PubMed

    Kamal, Ahmed; Mahesh, Rasala; Nayak, V Lakshma; Babu, Korrapati Suresh; Kumar, G Bharath; Shaik, Anver Basha; Kapure, Jeevak Sopanrao; Alarifi, Abdullah

    2016-01-27

    Aiming to develop a new target for the anticancer treatment, a series of 5'H-spiro[indoline-3,4'-pyrrolo [1,2-a]quinoxalin]-2-ones has been synthesized by simple, highly efficient and environmentally friendly method in excellent yields under catalyst-free conditions using ethanol as a green solvent. A simple filtration of the reaction mixture and subsequent drying affords analytically pure products. The synthesized derivatives were evaluated for their antiproliferative activity against five different human cancer cell lines, among the congeners compound 3n showed significant cytotoxicity against the human prostate cancer (DU-145). Flow cytometric analysis revealed that this compound induces cell cycle arrest in the G0/G1 phase and Western blot analysis suggested that reduction in Cdk4 expression level leads to apoptotic cell death. This was further confirmed by mitochondrial membrane potential ((ΔΨm), Annexin V-FITC assay and docking experiments. Furthermore, it was observed that there is an increase in expression levels of cyclin dependent kinase inhibitors like Cip1/p21 and Kip1/p27. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Floppy swimming: Viscous locomotion of actuated elastica

    NASA Astrophysics Data System (ADS)

    Lauga, Eric

    2007-04-01

    Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell’s scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices—which we call “elastic swimmers”—where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical picture of the phenomenon and the expected scaling relationships, we derive analytically the elastic swimming velocities in the limit of small actuation amplitude. The emphasis is on the coupling between the two unknowns of the problems—namely the shape of the elastic filament and the swimming kinematics—which have to be solved simultaneously. We then compute the performance of the resulting swimming device and its dependence on geometry. The optimal actuation frequency and body shapes are derived and a discussion of filament shapes and internal torques is presented. Swimming using multiple elastic filaments is discussed, and simple strategies are presented which result in straight swimming trajectories. Finally, we compare the performance of elastic swimming with that of swimming micro-organisms.

  2. Optional games on cycles and complete graphs.

    PubMed

    Jeong, Hyeong-Chai; Oh, Seung-Yoon; Allen, Benjamin; Nowak, Martin A

    2014-09-07

    We study stochastic evolution of optional games on simple graphs. There are two strategies, A and B, whose interaction is described by a general payoff matrix. In addition, there are one or several possibilities to opt out from the game by adopting loner strategies. Optional games lead to relaxed social dilemmas. Here we explore the interaction between spatial structure and optional games. We find that increasing the number of loner strategies (or equivalently increasing mutational bias toward loner strategies) facilitates evolution of cooperation both in well-mixed and in structured populations. We derive various limits for weak selection and large population size. For some cases we derive analytic results for strong selection. We also analyze strategy selection numerically for finite selection intensity and discuss combined effects of optionality and spatial structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Implicit Multibody Penalty-BasedDistributed Contact.

    PubMed

    Xu, Hongyi; Zhao, Yili; Barbic, Jernej

    2014-09-01

    The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.

  4. Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method

    NASA Technical Reports Server (NTRS)

    Chander, R.

    1990-01-01

    The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.

  5. A simple analytical infiltration model for short-duration rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming

    2017-12-01

    Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.

  6. Analytical Model for Mars Crater-Size Frequency Distribution

    NASA Astrophysics Data System (ADS)

    Bruckman, W.; Ruiz, A.; Ramos, E.

    2009-05-01

    We present a theoretical and analytical curve that reproduces essential features of the frequency distributions vs. diameter of the 42,000 impact craters contained in Barlow's Mars Catalog. The model is derived using reasonable simple assumptions that allow us to relate the present craters population with the craters population at each particular epoch. The model takes into consideration the reduction of the number of craters as a function of time caused by their erosion and obliteration, and this provides a simple and natural explanation for the presence of different slopes in the empirical log-log plot of number of craters (N) vs. diameter (D). A mean life for martians craters as a function of diameter is deduced, and it is shown that this result is consistent with the corresponding determination of craters mean life based on Earth data. Arguments are given to suggest that this consistency follows from the fact that a crater mean life is proportional to its volumen. It also follows that in the absence of erosions and obliterations, when craters are preserved, we would have N ∝ 1/D^{4.3}, which is a striking conclusion, since the exponent 4.3 is larger than previously thought. Such an exponent implies a similar slope in the extrapolated impactors size-frequency distribution.

  7. Analytical method for lipoperoxidation relevant reactive aldehydes in human sera by high-performance liquid chromatography-fluorescence detection.

    PubMed

    El-Maghrabey, Mahmoud H; Kishikawa, Naoya; Ohyama, Kaname; Kuroda, Naotaka

    2014-11-01

    A validated, simple and sensitive HPLC method was developed for the simultaneous determination of lipoperoxidation relevant reactive aldehydes: glyoxal (GO), acrolein (ACR), malondialdehyde (MDA), and 4-hydroxy-2-nonenal (HNE) in human serum. The studied aldehydes were reacted with 2,2'-furil to form fluorescent difurylimidazole derivatives that were separated on a C18 column using gradient elution and fluorescence detection at excitation and emission wavelengths of 250 and 355nm, respectively. The method showed good linearity over the concentration ranges of 0.100-5.00, 0.200-10.0, 0.200-40.0, and 0.400-10.0nmol/mL for GO, ACR, HNE, and MDA, respectively, with detection limits ranging from 0.030 to 0.11nmol/mL. The percentage RSD of intraday and interday precision did not exceed 5.0 and 6.2%, respectively, and the accuracy (%found) ranged from 95.5 to 103%. The proposed method was applied for monitoring the four aldehydes in sera of healthy, diabetic, and rheumatic human subjects with simple pretreatment steps and without interference from endogenous components. By virtue of its high sensitivity and accuracy, our method enabled detection of differences between analytes concentrations in sera of human subjects under different clinical conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Optimal weighting in fNL constraints from large scale structure in an idealised case

    NASA Astrophysics Data System (ADS)

    Slosar, Anže

    2009-03-01

    We consider the problem of optimal weighting of tracers of structure for the purpose of constraining the non-Gaussianity parameter fNL. We work within the Fisher matrix formalism expanded around fiducial model with fNL = 0 and make several simplifying assumptions. By slicing a general sample into infinitely many samples with different biases, we derive the analytic expression for the relevant Fisher matrix element. We next consider weighting schemes that construct two effective samples from a single sample of tracers with a continuously varying bias. We show that a particularly simple ansatz for weighting functions can recover all information about fNL in the initial sample that is recoverable using a given bias observable and that simple division into two equal samples is considerably suboptimal when sampling of modes is good, but only marginally suboptimal in the limit where Poisson errors dominate.

  9. Extended Poisson process modelling and analysis of grouped binary data.

    PubMed

    Faddy, Malcolm J; Smith, David M

    2012-05-01

    A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Semi-empirical formulation of multiple scattering for the Gaussian beam model of heavy charged particles stopping in tissue-like matter.

    PubMed

    Kanematsu, Nobuyuki

    2009-03-07

    Dose calculation for radiotherapy with protons and heavier ions deals with a large volume of path integrals involving a scattering power of body tissue. This work provides a simple model for such demanding applications. There is an approximate linearity between RMS end-point displacement and range of incident particles in water, empirically found in measurements and detailed calculations. This fact was translated into a simple linear formula, from which the scattering power that is only inversely proportional to the residual range was derived. The simplicity enabled the analytical formulation for ions stopping in water, which was designed to be equivalent with the extended Highland model and agreed with measurements within 2% or 0.02 cm in RMS displacement. The simplicity will also improve the efficiency of numerical path integrals in the presence of heterogeneity.

  11. Capacitive touch sensing : signal and image processing algorithms

    NASA Astrophysics Data System (ADS)

    Baharav, Zachi; Kakarala, Ramakrishna

    2011-03-01

    Capacitive touch sensors have been in use for many years, and recently gained center stage with the ubiquitous use in smart-phones. In this work we will analyze the most common method of projected capacitive sensing, that of absolute capacitive sensing, together with the most common sensing pattern, that of diamond-shaped sensors. After a brief introduction to the problem, and the reasons behind its popularity, we will formulate the problem as a reconstruction from projections. We derive analytic solutions for two simple cases: circular finger on a wire grid, and square finger on a square grid. The solutions give insight into the ambiguities of finding finger location from sensor readings. The main contribution of our paper is the discussion of interpolation algorithms including simple linear interpolation , curve fitting (parabolic and Gaussian), filtering, general look-up-table, and combinations thereof. We conclude with observations on the limits of the present algorithmic methods, and point to possible future research.

  12. Vacillations induced by interference of stationary and traveling planetary waves

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.; Garcia, Rolando R.

    1987-01-01

    The interference pattern produced when a traveling planetary wave propagates over a stationary forced wave is explored, examining the interference signature in a variety of diagnostics. The wave field is first restricted to a diatomic spectrum consisting of two components: a single stationary wave and a single monochromatic traveling wave. A simple barotropic normal mode propagating over a simple stationary plane wave is considered, and closed form solutions are obtained. The wave fields are then restricted spatially, providing more realistic structures without sacrificing the advantages of an analytical solution. Both stationary and traveling wave fields are calculated numerically with the linearized Primitive Equations in a realistic basic state. The mean flow reaction to the fluctuating eddy forcing which results from interference is derived. Synoptic geopotential behavior corresponding to the combined wave and mean flow fields is presented, and the synoptic signature in potential vorticity on isentropic surfaces is examined.

  13. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  14. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  15. Sample distribution in peak mode isotachophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran, E-mail: mberco@technion.ac.il

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify andmore » validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.« less

  16. Two-Pendulum Model of Propellant Slosh in Europa Clipper PMD Tank

    NASA Technical Reports Server (NTRS)

    Ng, Wanyi; Benson, David

    2017-01-01

    The objective of this fluids analysis is to model propellant slosh for the Europa Clipper mission using a two-pendulum model, such that controls engineers can predict slosh behavior during the mission. Propellant slosh causes shifts in center of mass and exerts forces and torques on the spacecraft which, if not adequately controlled, can lead to mission failure. The two-pendulum model provides a computationally simple model that can be used to predict slosh for the Europa Clipper tank geometry. The Europa Clipper tank is cylindrical with a domed top and bottom and includes a propellant management device (PMD). Due to the lack of experimental data in low gravity environments, computational fluid dynamics (CFD) simulation results were used as 'real' slosh behavior for two propellants at three fill fractions. Key pendulum parameters were derived that allow the pendulum model's center of mass, forces, and moments to closely match the CFD data. The parameter trends were examined as a function of tank fill fraction and compared with solutions to analytic equations that describe the frequency of slosh in tanks with simple geometries. The trends were monotonic as expected, and parameters resembled analytical predictions; any differences could be explained by the specific differences in the geometry of the tank. This paper summarizes the new method developed at Goddard Space Flight Center (GSFC) for deriving pendulum parameters for two-pendulum equivalent sloshing models. It presents the results of this method and discusses the validity of the results. This analysis is at a completed stage and will be applied in the immediate future to the evolving tank geometry as Europa Clipper moves past its preliminary design review (PDR) phase.

  17. The use of handheld GPS to determine tidal slack in estuaries

    NASA Astrophysics Data System (ADS)

    Lievens, M.; Savenije, H.; Luxemburg, W.

    2010-12-01

    The phase lag between the moment of high water and high water slack, respectively low water and low water slack, is a key parameter in tidal hydraulics which is often disregarded. Savenije (1992) found that there are simple analytical relations for estuary topography, wave celerity and phase lag, that can be derived from the equation for conservation of mass and momentum. At present, methods to determine the phase lag by measuring the moment of tidal slack in the field are often either inadequate or very expensive. To be sure if assumptions made for the analytical derivation are acceptable, measuring the ‘real’ moment of tidal slack in the field is necessary. The method to determine the exact moment of tidal slack, developed in this work, is based on the use of a simple handheld GPS at some locations in the Dutch part of the Scheldt estuary. The GPS device is attached to a shipping lane buoy, which is fixed to the bottom of the estuary with a long chain. The chain gives the buoy enough space for an amplitude of approximately 25 - 30 meters. The GPS device measures the location of the buoy every 30 seconds for a few days. The data from the GPS results in a nice view of the path that the buoy travelled. The moment that the buoy switches direction, should be the moment of tidal slack. The “GPS method” of measuring the phase lag would allow application on full estuary scale in the future. Besides that, we get more insight in the key parameter of slack times for tidal hydraulics. The results are also of key importance to commercial shipping, towage and salvage companies and other users of estuaries worldwide.

  18. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    PubMed

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    PubMed

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.

  20. A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives

    NASA Astrophysics Data System (ADS)

    Abro, Kashif Ali; Memon, Anwar Ahmed; Uqaili, Muhammad Aslam

    2018-03-01

    This research article is analyzed for the comparative study of RL and RC electrical circuits by employing newly presented Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. The governing ordinary differential equations of RL and RC electrical circuits have been fractionalized in terms of fractional operators in the range of 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1. The analytic solutions of fractional differential equations for RL and RC electrical circuits have been solved by using the Laplace transform with its inversions. General solutions have been investigated for periodic and exponential sources by implementing the Atangana-Baleanu and Caputo-Fabrizio fractional operators separately. The investigated solutions have been expressed in terms of simple elementary functions with convolution product. On the basis of newly fractional derivatives with and without singular kernel, the voltage and current have interesting behavior with several similarities and differences for the periodic and exponential sources.

  1. Phase derivative method for reconstruction of slightly off-axis digital holograms.

    PubMed

    Guo, Cheng-Shan; Wang, Ben-Yi; Sha, Bei; Lu, Yu-Jie; Xu, Ming-Yuan

    2014-12-15

    A phase derivative (PD) method is proposed for reconstruction of off-axis holograms. In this method, a phase distribution of the tested object wave constrained within 0 to pi radian is firstly worked out by a simple analytical formula; then it is corrected to its right range from -pi to pi according to the sign characteristics of its first-order derivative. A theoretical analysis indicates that this PD method is particularly suitable for reconstruction of slightly off-axis holograms because it only requires the spatial frequency of the reference beam larger than spatial frequency of the tested object wave in principle. In addition, because the PD method belongs to a pure local method with no need of any integral operation or phase shifting algorithm in process of the phase retrieval, it could have some advantages in reducing computer load and memory requirements to the image processing system. Some experimental results are given to demonstrate the feasibility of the method.

  2. Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Del Duca, V.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C. D.

    2017-11-01

    We consider the production of an arbitrary number of colour-singlet particles near partonic threshold, and show that next-to-leading order cross sections for this class of processes have a simple universal form at next-to-leading power (NLP) in the energy of the emitted gluon radiation. Our analysis relies on a recently derived factorisation formula for NLP threshold effects at amplitude level, and therefore applies both if the leading-order process is tree-level and if it is loop-induced. It holds for differential distributions as well. The results can furthermore be seen as applications of recently derived next-to-soft theorems for gauge theory amplitudes. We use our universal expression to re-derive known results for the production of up to three Higgs bosons at NLO in the large top mass limit, and for the hadro-production of a pair of electroweak gauge bosons. Finally, we present new analytic results for Higgs boson pair production at NLO and NLP, with exact top-mass dependence.

  3. On the connection coefficients and recurrence relations arising from expansions in series of Laguerre polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2003-05-01

    A formula expressing the Laguerre coefficients of a general-order derivative of an infinitely differentiable function in terms of its original coefficients is proved, and a formula expressing explicitly the derivatives of Laguerre polynomials of any degree and for any order as a linear combination of suitable Laguerre polynomials is deduced. A formula for the Laguerre coefficients of the moments of one single Laguerre polynomial of certain degree is given. Formulae for the Laguerre coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Laguerre coefficients are also obtained. A simple approach in order to build and solve recursively for the connection coefficients between Jacobi-Laguerre and Hermite-Laguerre polynomials is described. An explicit formula for these coefficients between Jacobi and Laguerre polynomials is given, of which the ultra-spherical polynomials of the first and second kinds and Legendre polynomials are important special cases. An analytical formula for the connection coefficients between Hermite and Laguerre polynomials is also obtained.

  4. On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials

    NASA Astrophysics Data System (ADS)

    Doha, E. H.

    2004-01-01

    Formulae expressing explicitly the Jacobi coefficients of a general-order derivative (integral) of an infinitely differentiable function in terms of its original expansion coefficients, and formulae for the derivatives (integrals) of Jacobi polynomials in terms of Jacobi polynomials themselves are stated. A formula for the Jacobi coefficients of the moments of one single Jacobi polynomial of certain degree is proved. Another formula for the Jacobi coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its original expanded coefficients is also given. A simple approach in order to construct and solve recursively for the connection coefficients between Jacobi-Jacobi polynomials is described. Explicit formulae for these coefficients between ultraspherical and Jacobi polynomials are deduced, of which the Chebyshev polynomials of the first and second kinds and Legendre polynomials are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Jacobi and Hermite-Jacobi are developed.

  5. A simple method for estimating frequency response corrections for eddy covariance systems

    Treesearch

    W. J. Massman

    2000-01-01

    A simple analytical formula is developed for estimating the frequency attenuation of eddy covariance fluxes due to sensor response, path-length averaging, sensor separation, signal processing, and flux averaging periods. Although it is an approximation based on flat terrain cospectra, this analytical formula should have broader applicability than just flat-terrain...

  6. Understanding Business Analytics

    DTIC Science & Technology

    2015-01-05

    analytics have been used in organizations for a variety of reasons for quite some time; ranging from the simple (generating and understanding business analytics...process. understanding business analytics 3 How well these two components are orchestrated will determine the level of success an organization has in

  7. Electron-cyclotron absorption in high-temperature plasmas: quasi-exact analytical evaluation and comparative numerical analysis

    NASA Astrophysics Data System (ADS)

    Albajar, F.; Bertelli, N.; Bornatici, M.; Engelmann, F.

    2007-01-01

    On the basis of the electromagnetic energy balance equation, a quasi-exact analytical evaluation of the electron-cyclotron (EC) absorption coefficient is performed for arbitrary propagation (with respect to the magnetic field) in a (Maxwellian) magneto-plasma for the temperature range of interest for fusion reactors (in which EC radiation losses tend to be important in the plasma power balance). The calculation makes use of Bateman's expansion for the product of two Bessel functions, retaining the lowest-order contribution. The integration over electron momentum can then be carried out analytically, fully accounting for finite Larmor radius effects in this approximation. On the basis of the analytical expressions for the EC absorption coefficients of both the extraordinary and ordinary modes thus obtained, (i) for the case of perpendicular propagation simple formulae are derived for both modes and (ii) a numerical analysis of the angular distribution of EC absorption is carried out. An assessment of the accuracy of asymptotic expressions that have been given earlier is also performed, showing that these approximations can be usefully applied for calculating EC power losses from reactor-grade plasmas. Presented in part at the 14th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating, Santorini, Greece, 9-12 May 2006.

  8. A Fractional Differential Kinetic Equation and Applications to Modelling Bursts in Turbulent Nonlinear Space Plasmas

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Rosenberg, S.; Sanchez, R.; Chapman, S. C.; Credgington, D.

    2008-12-01

    Since the 1960s Mandelbrot has advocated the use of fractals for the description of the non-Euclidean geometry of many aspects of nature. In particular he proposed two kinds of model to capture persistence in time (his Joseph effect, common in hydrology and with fractional Brownian motion as the prototype) and/or prone to heavy tailed jumps (the Noah effect, typical of economic indices, for which he proposed Lévy flights as an exemplar). Both effects are now well demonstrated in space plasmas, notably in the turbulent solar wind. Models have, however, typically emphasised one of the Noah and Joseph parameters (the Lévy exponent μ and the temporal exponent β) at the other's expense. I will describe recent work in which we studied a simple self-affine stable model-linear fractional stable motion, LFSM, which unifies both effects and present a recently-derived diffusion equation for LFSM. This replaces the second order spatial derivative in the equation of fBm with a fractional derivative of order μ, but retains a diffusion coefficient with a power law time dependence rather than a fractional derivative in time. I will also show work in progress using an LFSM model and simple analytic scaling arguments to study the problem of the area between an LFSM curve and a threshold. This problem relates to the burst size measure introduced by Takalo and Consolini into solar-terrestrial physics and further studied by Freeman et al [PRE, 2000] on solar wind Poynting flux near L1. We test how expressions derived by other authors generalise to the non-Gaussian, constant threshold problem. Ongoing work on extension of these LFSM results to multifractals will also be discussed.

  9. The Role of Breccia Lenses in Regolith Generation From the Formation of Small, Simple Craters: Application to the Apollo 15 Landing Site

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Howl, B. A.; Fassett, C. I.; Soderblom, J. M.; Minton, D. A.; Melosh, H. J.

    2018-02-01

    Impact cratering is likely a primary agent of regolith generation on airless bodies. Regolith production via impact cratering has long been a key topic of study since the Apollo era. The evolution of regolith due to impact cratering, however, is not well understood. A better formulation is needed to help quantify the formation mechanism and timescale of regolith evolution. Here we propose an analytically derived stochastic model that describes the evolution of regolith generated by small, simple craters. We account for ejecta blanketing as well as regolith infilling of the transient crater cavity. Our results show that the regolith infilling plays a key role in producing regolith. Our model demonstrates that because of the stochastic nature of impact cratering, the regolith thickness varies laterally, which is consistent with earlier work. We apply this analytical model to the regolith evolution at the Apollo 15 site. The regolith thickness is computed considering the observed crater size-frequency distribution of small, simple lunar craters (< 381 m in radius for ejecta blanketing and <100 m in radius for the regolith infilling). Allowing for some amount of regolith coming from the outside of the area, our result is consistent with an empirical result from the Apollo 15 seismic experiment. Finally, we find that the timescale of regolith growth is longer than that of crater equilibrium, implying that even if crater equilibrium is observed on a cratered surface, it is likely that the regolith thickness is still evolving due to additional impact craters.

  10. Effective refractive index and first-order-mode cutoff conditions in InGaAsP/InP DH laser structures /lambda = 1.2-1.6 microns/

    NASA Technical Reports Server (NTRS)

    Botez, D.

    1982-01-01

    A highly accurate analytical expression for the effective refractive index in In GaAsP/InP DH lasers emitting in the 1.2-1.6 micron range is presented. This closed-form expression is used to derive simple wavelength-independent expressions for the first-order mode cutoff conditions of various lateral waveguides. The effective refractive index is a function of emission wavelength and active layer thickness, and the mode cutoff conditions are compared to experimental data from mode-stabilized 1.3 and 1.55 micron DH lasers.

  11. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi

    PubMed Central

    Hodgkinson, A.

    1971-01-01

    A better understanding of the physico-chemical principles underlying the formation of calculus has led to a need for more precise information on the chemical composition of stones. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi which is suitable for routine use is presented. The procedure involves five simple qualitative tests followed by the quantitative determination of calcium, magnesium, inorganic phosphate, and oxalate. These data are used to calculate the composition of the stone in terms of calcium oxalate, apatite, and magnesium ammonium phosphate. Analytical results and derived values for five representative types of calculi are presented. PMID:5551382

  12. Entanglement of two blocks of spins in the critical Ising model

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.

    2008-11-01

    We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.

  13. Towards a model of pion generalized parton distributions from Dyson-Schwinger equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moutarde, H.

    2015-04-10

    We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.

  14. Stochastic theory of log-periodic patterns

    NASA Astrophysics Data System (ADS)

    Canessa, Enrique

    2000-12-01

    We introduce an analytical model based on birth-death clustering processes to help in understanding the empirical log-periodic corrections to power law scaling and the finite-time singularity as reported in several domains including rupture, earthquakes, world population and financial systems. In our stochastic theory log-periodicities are a consequence of transient clusters induced by an entropy-like term that may reflect the amount of co-operative information carried by the state of a large system of different species. The clustering completion rates for the system are assumed to be given by a simple linear death process. The singularity at t0 is derived in terms of birth-death clustering coefficients.

  15. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  16. Self-sustained peristaltic waves: Explicit asymptotic solutions

    NASA Astrophysics Data System (ADS)

    Dudchenko, O. A.; Guria, G. Th.

    2012-02-01

    A simple nonlinear model for the coupled problem of fluid flow and contractile wall deformation is proposed to describe peristalsis. In the context of the model the ability of a transporting system to perform autonomous peristaltic pumping is interpreted as the ability to propagate sustained waves of wall deformation. Piecewise-linear approximations of nonlinear functions are used to analytically demonstrate the existence of traveling-wave solutions. Explicit formulas are derived which relate the speed of self-sustained peristaltic waves to the rheological properties of the transporting vessel and the transported fluid. The results may contribute to the development of diagnostic and therapeutic procedures for cases of peristaltic motility disorders.

  17. Assay of the Martian Regolith with Neutrons

    NASA Technical Reports Server (NTRS)

    Drake, Darrell M.; Reedy, R.; Jakowsky, B.; Clark, B.; Squyres, S.

    1998-01-01

    Different aspects of assaying Martian regolith using neutrons have been investigated. The epithermal portion of moderated neutrons spectra is dramatically effected by the presence of hydrogen (usually in the form of water). A simple analytic formula has been derived to describe the amplitude of this portion of the neutron spectrum as a function of water concentration. Several demonstration experiments have been performed and modeled with a Monte Carlo code. Results of these experiments generally agreed with the calculations to within 20%. In addition to He-3 detectors, lithium-glass scintillators and U-238 fission ion chambers were investigated to determine their applicability to space experiments.

  18. Metrics on the relative spacecraft motion invariant manifold.

    PubMed

    Gurfil, P; Kholshevnikov, Konstantin V

    2005-12-01

    This paper establishes a methodology for obtaining the general solution to the spacecraft relative motion problem by utilizing Cartesian configuration space in conjunction with classical orbital elements. The geometry of the relative motion configuration space is analyzed, and the relative motion invariant manifold is determined. Most importantly, the geometric structure of the relative motion problem is used to derive useful metrics for quantification of the minimum, maximum, and mean distance between spacecraft for commensurable and non-commensurable mean motions. A number of analytic solutions, as well as useful examples, are provided, illustrating the calculated bounds. A few particular cases are given that yield simple solutions.

  19. Analysis in temporal regime of dispersive invisible structures designed from transformation optics

    NASA Astrophysics Data System (ADS)

    Gralak, B.; Arismendi, G.; Avril, B.; Diatta, A.; Guenneau, S.

    2016-03-01

    A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically in temporal regime. The frequency dispersion is introduced and analytic expression of the transient part of the field is derived for large times when the structure is illuminated by a causal excitation. This expression shows that the limiting amplitude principle applies with transient fields decaying as the power -3 /4 of the time. The quality of the cloak is then reduced at short times and remains preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave numerical simulations in two-dimensional situations which confirm the effect of dispersion.

  20. A Simple, Powerful Method for Optimal Guidance of Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2005-01-01

    One of the most interesting and challenging aspects of formation guidance law design is the coupling of the orbit design and the science return. The analyst s role is more complicated than simply to design the formation geometry and evolution. He or she is also involved in designing a significant portion of the science instrument itself. The effectiveness of the formation as a science instrument is intimately coupled with the relative geoniet,ry and evolution of the collection of spacecraft. Therefore, the science return can be maximized by optimizing the orbit design according to a performance metric relevant to the science mission goals. In this work, we present a simple method for optimal formation guidance that is applicable to missions whose performance metric, requirements, and constraints can be cast as functions that are explicitly dependent upon the orbit states and spacecraft relative positions and velocities. We present a general form for the cost and constraint functions, and derive their semi-analytic gradients with respect to the formation initial conditions. The gradients are broken down into two types. The first type are gradients of the mission specific performance metric with respect to formation geometry. The second type are derivatives of the formation geometry with respect to the orbit initial conditions. The fact that these two types of derivatives appear separately allows us to derive and implement a general framework that requires minimal modification to be applied to different missions or mission phases. To illustrate the applicability of the approach, we conclude with applications to twc missims: the Magnetospheric Mu!tiscale mission (MMS), a,nd the TJaser Interferometer Space Antenna (LISA).

  1. A Simple, Powerful Method for Optimal Guidance of Spacecraft Formations

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2006-01-01

    One of the most interesting and challenging aspects of formation guidance law design is the coupling of the orbit design and the science return. The analyst's role is more complicated than simply to design the formation geometry and evolution. He or she is also involved in designing a significant portion of the science instrument itself. The effectiveness of the formation as a science instrument is intimately coupled with the relative geometry and evolution of the collection of spacecraft. Therefore, the science return can be maximized by optimizing the orbit design according to a performance metric relevant to the science mission goals. In this work, we present a simple method for optimal formation guidance that is applicable to missions whose performance metric, requirements, and constraints can be cast as functions that are explicitly dependent upon the orbit states and spacecraft relative positions and velocities. We present a general form for the cost and constraint functions, and derive their semi-analytic gradients with respect to the formation initial conditions. The gradients are broken down into two types. The first type are gradients of the mission specific performance metric with respect to formation geometry. The second type are derivatives of the formation geometry with respect to the orbit initial conditions. The fact that these two types of derivatives appear separately allows us to derive and implement a general framework that requires minimal modification to be applied to different missions or mission phases. To illustrate the applicability of the approach, we conclude with applications to two missions: the Magnetospheric Multiscale mission (MMS) , and the Laser Interferometer Space Antenna (LISA).

  2. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL

    EPA Science Inventory

    The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...

  3. A simulation-based analytic model of radio galaxies

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  4. An improved 3D MoF method based on analytical partial derivatives

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Zhang, Xiong

    2016-12-01

    MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.

  5. From the physics of interacting polymers to optimizing routes on the London Underground

    PubMed Central

    Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael

    2013-01-01

    Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198

  6. From the physics of interacting polymers to optimizing routes on the London Underground.

    PubMed

    Yeung, Chi Ho; Saad, David; Wong, K Y Michael

    2013-08-20

    Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.

  7. Seeking maximum linearity of transfer functions

    NASA Astrophysics Data System (ADS)

    Silva, Filipi N.; Comin, Cesar H.; Costa, Luciano da F.

    2016-12-01

    Linearity is an important and frequently sought property in electronics and instrumentation. Here, we report a method capable of, given a transfer function (theoretical or derived from some real system), identifying the respective most linear region of operation with a fixed width. This methodology, which is based on least squares regression and systematic consideration of all possible regions, has been illustrated with respect to both an analytical (sigmoid transfer function) and a simple situation involving experimental data of a low-power, one-stage class A transistor current amplifier. Such an approach, which has been addressed in terms of transfer functions derived from experimentally obtained characteristic surface, also yielded contributions such as the estimation of local constants of the device, as opposed to typically considered average values. The reported method and results pave the way to several further applications in other types of devices and systems, intelligent control operation, and other areas such as identifying regions of power law behavior.

  8. Series solution for two-frequency Bragg interaction using the Korpel-Poon multiple-scattering model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, R.K.; Somekh, M.G.

    1993-03-01

    The two-frequency acousto-optic interaction is analytically solved in the Bragg regime by use of a multiple-scattering model that was previously described by Korpel and Poon [J. Opt. Soc. Am. 70, 817-820 (1980)]. The method uses Feynman diagrams to conceptualize the problem and demonstrates the applicability of such a method to model a relatively complex system. The solution presented is compared with that derived by Hecht [IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977)], who used a coupled-mode approach. The derivation of the authors' solution is relatively simple and leads to a formulation that appears to be more compact. Numerical evaluations havemore » demonstrated their equivalence. The authors present results that illustrate the dependence of the diffracted beam intensities on the amplitude of the two acoustic waves. 21 refs., 8 figs.« less

  9. Determination of myriocin in natural and cultured Cordyceps cicadae using 9-fluorenylmethyl chloroformate derivatization and high-performance liquid chromatography with UV-detection.

    PubMed

    Yu, Jiawen; Xu, Hongjuan; Mo, Zhihong; Zhu, Huali; Mao, Xianbing

    2009-07-01

    A simple and sensitive reversed-phase liquid chromatographic method, based on the precolumn derivatization with 9-fluorenylmethyl chloroformate, was developed for the determination of myriocin. The derivatization reaction was performed in organic solvents of pyridine and tetrahydrofuran at 40 degrees C. Several factors influencing the derivative yield were investigated and optimized. The formed derivative was stable for more than 24 h at room temperature. The detection wavelength was 262 nm. The system offered the following analytical parameters: the limit of detection was 0.045 microg ml(-1), the linear correlation coefficient was 0.9963 and the linear range response was from 2.0 to 500.0 microg ml(-1). The precision of the method was <2.0%. As a preliminary application, the method has been successfully applied to the determination of myriocin in natural and cultured Cordyceps cicadae.

  10. Calculation of stress intensity factors in an isotropic multicracked plate: Part 2: Symbolic/numeric implementation

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Binienda, W. K.; Tan, H. Q.; Xu, M. H.

    1992-01-01

    Analytical derivations of stress intensity factors (SIF's) of a multicracked plate can be complex and tedious. Recent advances, however, in intelligent application of symbolic computation can overcome these difficulties and provide the means to rigorously and efficiently analyze this class of problems. Here, the symbolic algorithm required to implement the methodology described in Part 1 is presented. The special problem-oriented symbolic functions to derive the fundamental kernels are described, and the associated automatically generated FORTRAN subroutines are given. As a result, a symbolic/FORTRAN package named SYMFRAC, capable of providing accurate SIF's at each crack tip, was developed and validated. Simple illustrative examples using SYMFRAC show the potential of the present approach for predicting the macrocrack propagation path due to existing microcracks in the vicinity of a macrocrack tip, when the influence of the microcrack's location, orientation, size, and interaction are taken into account.

  11. Chemical potential and compressibility of quantum Hall bilayer excitons,.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, Brian

    2016-02-25

    I consider a system of two parallel quantum Hall layers with total filling factor 0 or 1. When the distance between the layers is small enough, electrons and holes in opposite layers can form inter-layer excitons, which have a finite effective mass and interact via a dipole-dipole potential. I present results for the chemical potential u of the resulting bosonic system as a function of the exciton concentration n and the interlayer separation d. I show that both u and the interlayer capacitance have an unusual nonmonotonic dependence on d, owing to the interplay between an increasing dipole moment andmore » an increasing effective mass with increasing d. Finally, I discuss the transition between the superfluid and Wigner crystal phases, which is shown to occur at d x n-1/10. Results are derived first via simple intuitive arguments, and then verified with more careful analytic derivations and numeric calculations.« less

  12. Pushing the limits of Monte Carlo simulations for the three-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Ferrenberg, Alan M.; Xu, Jiahao; Landau, David P.

    2018-04-01

    While the three-dimensional Ising model has defied analytic solution, various numerical methods like Monte Carlo, Monte Carlo renormalization group, and series expansion have provided precise information about the phase transition. Using Monte Carlo simulation that employs the Wolff cluster flipping algorithm with both 32-bit and 53-bit random number generators and data analysis with histogram reweighting and quadruple precision arithmetic, we have investigated the critical behavior of the simple cubic Ising Model, with lattice sizes ranging from 163 to 10243. By analyzing data with cross correlations between various thermodynamic quantities obtained from the same data pool, e.g., logarithmic derivatives of magnetization and derivatives of magnetization cumulants, we have obtained the critical inverse temperature Kc=0.221 654 626 (5 ) and the critical exponent of the correlation length ν =0.629 912 (86 ) with precision that exceeds all previous Monte Carlo estimates.

  13. Delay-bandwidth product of electromagnetically induced transparency media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidstroem, Jonas; Jaenes, Peter; Andersson, L. Mauritz

    2007-05-15

    The limitations on the delay-bandwidth product (DBP) in an electromagnetically induced transparency medium are investigated analytically by studying the susceptibility of the system, derived through Lindblad's master equation, including dephasing. The effect of inhomogeneous broadening is treated. It is shown that the DBP for a given material is fundamentally limited by the frequency-dependent absorption, while the residual absorption limits the penetration length of a pulse. Simple expression for the optimal choice of parameters to maximize the DBP are derived. Also, the length of a device is presented as a function of DBP and control-field Rabi frequency. Supporting these results, numericalmore » calculations are carried out through the Maxwell-Bloch equations in the slowly varying envelope approximation. The results are scalable, hence they apply to the case of atoms or molecules in a gas as well as quantum dots and wells.« less

  14. Perihelion precession from power law central force and magnetic-like force

    NASA Astrophysics Data System (ADS)

    Xu, Feng

    2011-04-01

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury’s 43”/century is reproduced, and 2) spherically distributed dark matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.

  15. Perihelion precession from power law central force and magnetic-like force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Feng

    2011-04-15

    By the Laplace-Runge-Lenz (LRL) vector, we analyzed perihelion precessions of orbit with arbitrary eccentricity from perturbations of 1) power law central force and 2) fThusmagnetic-like force. Exact and analytically closed expressions for the precession rate are derived in both cases. In the central force case, we give a further expansion expression of precession rate in orders of eccentricity, and a rule judging pro- or retrograde precession is also given. We applied the result of central force to precessions of a planet in 1) Schwarzschild space-time, for which the formula for the Mercury's 43''/century is reproduced, and 2) spherically distributed darkmore » matter, for which we find a formula that is a generalization of the result derived by others for circular orbit. In the magnetic case, the use of the LRL vector proves to be simple and efficient. An example of magnetic-like perturbation is also discussed.« less

  16. On the theory of drainage area for regular and non-regular points.

    PubMed

    Bonetti, S; Bragg, A D; Porporato, A

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47 , W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219 , 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  17. Does the cost function matter in Bayes decision rule?

    PubMed

    Schlü ter, Ralf; Nussbaum-Thom, Markus; Ney, Hermann

    2012-02-01

    In many tasks in pattern recognition, such as automatic speech recognition (ASR), optical character recognition (OCR), part-of-speech (POS) tagging, and other string recognition tasks, we are faced with a well-known inconsistency: The Bayes decision rule is usually used to minimize string (symbol sequence) error, whereas, in practice, we want to minimize symbol (word, character, tag, etc.) error. When comparing different recognition systems, we do indeed use symbol error rate as an evaluation measure. The topic of this work is to analyze the relation between string (i.e., 0-1) and symbol error (i.e., metric, integer valued) cost functions in the Bayes decision rule, for which fundamental analytic results are derived. Simple conditions are derived for which the Bayes decision rule with integer-valued metric cost function and with 0-1 cost gives the same decisions or leads to classes with limited cost. The corresponding conditions can be tested with complexity linear in the number of classes. The results obtained do not make any assumption w.r.t. the structure of the underlying distributions or the classification problem. Nevertheless, the general analytic results are analyzed via simulations of string recognition problems with Levenshtein (edit) distance cost function. The results support earlier findings that considerable improvements are to be expected when initial error rates are high.

  18. Cooling of solar flares plasmas. 1: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.

    1995-01-01

    Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).

  19. On the theory of drainage area for regular and non-regular points

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Bragg, A. D.; Porporato, A.

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  20. Volume moiré tomography based on projection extraction by spatial phase shifting of double crossed gratings

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun

    2018-01-01

    To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.

  1. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    NASA Astrophysics Data System (ADS)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  2. Analytic Theory and Control of the Motion of Spinning Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Tsiotras, Panagiotis

    1993-01-01

    Numerical simulations are often resorted to, in order to understand the attitude response and control characteristics of a rigid body. However, this approach in performing sensitivity and/or error analyses may be prohibitively expensive and time consuming, especially when a large number of problem parameters are involved. Thus, there is an important role for analytical models in obtaining an understanding of the complex dynamical behavior. In this dissertation, new analytic solutions are derived for the complete attitude motion of spinning rigid bodies, under minimal assumptions. Hence, we obtain the most general solutions reported in the literature so far. Specifically, large external torques and large asymmetries are included in the problem statement. Moreover, problems involving large angular excursions are treated in detail. A new tractable formulation of the kinematics is introduced which proves to be extremely helpful in the search for analytic solutions of the attitude history of such kinds of problems. The main utility of the new formulation becomes apparent however, when searching for feedback control laws for stabilization and/or reorientation of spinning spacecraft. This is an inherently nonlinear problem, where standard linear control techniques fail. We derive a class of control laws for spin axis stabilization of symmetric spacecraft using only two pairs of gas jet actuators. Practically, this could correspond to a spacecraft operating in failure mode, for example. Theoretically, it is also an important control problem which, because of its difficulty, has received little, if any, attention in the literature. The proposed control laws are especially simple and elegant. A feedback control law that achieves arbitrary reorientation of the spacecraft is also derived, using ideas from invariant manifold theory. The significance of this research is twofold. First, it provides a deeper understanding of the fundamental behavior of rigid bodies subject to body-fixed torques. Assessment of the analytic solutions reveals that they are very accurate; for symmetric bodies the solutions of Euler's equations of motion are, in fact, exact. Second, the results of this research have a fundamental impact on practical scientific and mechanical applications in terms of the analysis and control of all finite-sized rigid bodies ranging from nanomachines to very large bodies, both man made and natural. After all, Euler's equations of motion apply to all physical bodies, barring only the extreme limits of quantum mechanics and relativity.

  3. Analytical assessment of some characteristic ratios for s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan

    2018-04-01

    We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.

  4. Modeling and control of flexible space platforms with articulated payloads

    NASA Technical Reports Server (NTRS)

    Graves, Philip C.; Joshi, Suresh M.

    1989-01-01

    The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.

  5. Development of a new semi-analytical model for cross-borehole flow experiments in fractured media

    USGS Publications Warehouse

    Roubinet, Delphine; Irving, James; Day-Lewis, Frederick D.

    2015-01-01

    Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.

  6. Characteristic effects of stochastic oscillatory forcing on neural firing: analytical theory and comparison to paddlefish electroreceptor data.

    PubMed

    Bauermeister, Christoph; Schwalger, Tilo; Russell, David F; Neiman, Alexander B; Lindner, Benjamin

    2013-01-01

    Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.

  7. Role of partial miscibility on pressure buildup due to constant rate injection of CO2 into closed and open brine aquifers

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Gluyas, Jon G.; GonzáLez MartíNez de Miguel, Gerardo J.; Hosseini, Seyyed A.

    2011-12-01

    This work extends an existing analytical solution for pressure buildup because of CO2 injection in brine aquifers by incorporating effects associated with partial miscibility. These include evaporation of water into the CO2 rich phase and dissolution of CO2 into brine and salt precipitation. The resulting equations are closed-form, including the locations of the associated leading and trailing shock fronts. Derivation of the analytical solution involves making a number of simplifying assumptions including: vertical pressure equilibrium, negligible capillary pressure, and constant fluid properties. The analytical solution is compared to results from TOUGH2 and found to accurately approximate the extent of the dry-out zone around the well, the resulting permeability enhancement due to residual brine evaporation, the volumetric saturation of precipitated salt, and the vertically averaged pressure distribution in both space and time for the four scenarios studied. While brine evaporation is found to have a considerable effect on pressure, the effect of CO2 dissolution is found to be small. The resulting equations remain simple to evaluate in spreadsheet software and represent a significant improvement on current methods for estimating pressure-limited CO2 storage capacity.

  8. The role of settling velocity formulation in the determination of gully pot trapping efficiency: comparison between analytical and experimental data.

    PubMed

    Ciccarello, Annalisa; Bolognesi, Andrea; Maglionico, Marco; Artina, Sandro

    2012-01-01

    Roadside gully pots are the connecting points between surface runoff and the underground drainage network; therefore they can be considered as the most superficial component of urban drainage systems. Gully pots are supposed to trap particulate matter washed off the catchment surface, but also to collect and convey stormwater into the network. The continuous accumulation of particulate matter results in a progressive loss of the gully pot hydraulic conveyance, thereby increasing the probability of urban flooding during rainstorm events. This study has therefore the objective to determine which variables influence the gully pot capability of retaining solids (efficiency), both experimentally and analytically. Several laboratory tests have been performed on a simple plastic gully pot, with different inflow rates and using both mono and hetero-disperse particle samples. Particular attention has been given to the influence exerted by the way particle settling velocity is expressed: efficiency has been analytically determined by means of multiple settling velocity formulas proposed by various authors and eventually compared to experimental data. Results deriving from the adoption of each single settling velocity formula have been extensively analysed, showing fairly different outcomes.

  9. Analytic expressions for ULF wave radiation belt radial diffusion coefficients

    PubMed Central

    Ozeke, Louis G; Mann, Ian R; Murphy, Kyle R; Jonathan Rae, I; Milling, David K

    2014-01-01

    We present analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements. We show that the overall electric and magnetic diffusion coefficients are to a good approximation both independent of energy. We present example 1-D radial diffusion results from simulations driven by CRRES-observed time-dependent energy spectra at the outer boundary, under the action of radial diffusion driven by the new ULF wave radial diffusion coefficients and with empirical chorus wave loss terms (as a function of energy, Kp and L). There is excellent agreement between the differential flux produced by the 1-D, Kp-driven, radial diffusion model and CRRES observations of differential electron flux at 0.976 MeV—even though the model does not include the effects of local internal acceleration sources. Our results highlight not only the importance of correct specification of radial diffusion coefficients for developing accurate models but also show significant promise for belt specification based on relatively simple models driven by solar wind parameters such as solar wind speed or geomagnetic indices such as Kp. Key Points Analytic expressions for the radial diffusion coefficients are presented The coefficients do not dependent on energy or wave m value The electric field diffusion coefficient dominates over the magnetic PMID:26167440

  10. Analytical solution for the transient response of a fluid/saturated porous medium halfspace system subjected to an impulsive line source

    NASA Astrophysics Data System (ADS)

    Shan, Zhendong; Ling, Daosheng; Jing, Liping; Li, Yongqiang

    2018-05-01

    In this paper, transient wave propagation is investigated within a fluid/saturated porous medium halfspace system with a planar interface that is subjected to a cylindrical P-wave line source. Assuming the permeability coefficient is sufficiently large, analytical solutions for the transient response of the fluid/saturated porous medium halfspace system are developed. Moreover, the analytical solutions are presented in simple closed forms wherein each term represents a transient physical wave, especially the expressions for head waves. The methodology utilised to determine where the head wave can emerge within the system is also given. The wave fields within the fluid and porous medium are first defined considering the behaviour of two compressional waves and one tangential wave in the saturated porous medium and one compressional wave in the fluid. Substituting these wave fields into the interface continuity conditions, the analytical solutions in the Laplace domain are then derived. To transform the solutions into the time domain, a suitable distortion of the contour is provided to change the integration path of the solution, after which the analytical solutions in the Laplace domain are transformed into the time domain by employing Cagniard's method. Numerical examples are provided to illustrate some interesting features of the fluid/saturated porous medium halfspace system. In particular, the interface wave and head waves that propagate along the interface between the fluid and saturated porous medium can be observed.

  11. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  12. Selection by consequences, behavioral evolution, and the price equation.

    PubMed

    Baum, William M

    2017-05-01

    Price's equation describes evolution across time in simple mathematical terms. Although it is not a theory, but a derived identity, it is useful as an analytical tool. It affords lucid descriptions of genetic evolution, cultural evolution, and behavioral evolution (often called "selection by consequences") at different levels (e.g., individual vs. group) and at different time scales (local and extended). The importance of the Price equation for behavior analysis lies in its ability to precisely restate selection by consequences, thereby restating, or even replacing, the law of effect. Beyond this, the equation may be useful whenever one regards ontogenetic behavioral change as evolutionary change, because it describes evolutionary change in abstract, general terms. As an analytical tool, the behavioral Price equation is an excellent aid in understanding how behavior changes within organisms' lifetimes. For example, it illuminates evolution of response rate, analyses of choice in concurrent schedules, negative contingencies, and dilemmas of self-control. © 2017 Society for the Experimental Analysis of Behavior.

  13. Comparison of Gluten Extraction Protocols Assessed by LC-MS/MS Analysis.

    PubMed

    Fallahbaghery, Azadeh; Zou, Wei; Byrne, Keren; Howitt, Crispin A; Colgrave, Michelle L

    2017-04-05

    The efficiency of gluten extraction is of critical importance to the results derived from any analytical method for gluten detection and quantitation, whether it employs reagent-based technology (antibodies) or analytical instrumentation (mass spectrometry). If the target proteins are not efficiently extracted, the end result will be an under-estimation in the gluten content posing a health risk to people affected by conditions such as celiac disease (CD) and nonceliac gluten sensitivity (NCGS). Five different extraction protocols were investigated using LC-MRM-MS for their ability to efficiently and reproducibly extract gluten. The rapid and simple "IPA/DTT" protocol and related "two-step" protocol were enriched for gluten proteins, 55/86% (trypsin/chymotrypsin) and 41/68% of all protein identifications, respectively, with both methods showing high reproducibility (CV < 15%). When using multistep protocols, it was critical to examine all fractions, as coextraction of proteins occurred across fractions, with significant levels of proteins existing in unexpected fractions and not all proteins within a particular gluten class behaving the same.

  14. Replica and extreme-value analysis of the Jarzynski free-energy estimator

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo; Ritort, Felix

    2008-03-01

    We analyze the Jarzynski estimator of free-energy differences from nonequilibrium work measurements. By a simple mapping onto Derrida's Random Energy Model, we obtain a scaling limit for the expectation of the bias of the estimator. We then derive analytical approximations in three different regimes of the scaling parameter x = log(N)/W, where N is the number of measurements and W the mean dissipated work. Our approach is valid for a generic distribution of the dissipated work, and is based on a replica symmetry breaking scheme for x >> 1, the asymptotic theory of extreme value statistics for x << 1, and a direct approach for x near one. The combination of the three analytic approximations describes well Monte Carlo data for the expectation value of the estimator, for a wide range of values of N, from N=1 to large N, and for different work distributions. Based on these results, we introduce improved free-energy estimators and discuss the application to the analysis of experimental data.

  15. A New Unified Analysis of Estimate Errors by Model-Matching Phase-Estimation Methods for Sensorless Drive of Permanent-Magnet Synchronous Motors and New Trajectory-Oriented Vector Control, Part I

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji; Sano, Kousuke

    This paper presents a new unified analysis of estimate errors by model-matching phase-estimation methods such as rotor-flux state-observers, back EMF state-observers, and back EMF disturbance-observers, for sensorless drive of permanent-magnet synchronous motors. Analytical solutions about estimate errors, whose validity is confirmed by numerical experiments, are rich in universality and applicability. As an example of universality and applicability, a new trajectory-oriented vector control method is proposed, which can realize directly quasi-optimal strategy minimizing total losses with no additional computational loads by simply orienting one of vector-control coordinates to the associated quasi-optimal trajectory. The coordinate orientation rule, which is analytically derived, is surprisingly simple. Consequently the trajectory-oriented vector control method can be applied to a number of conventional vector control systems using one of the model-matching phase-estimation methods.

  16. Neutrino and C P -even Higgs boson masses in a nonuniversal U (1 )' extension

    NASA Astrophysics Data System (ADS)

    Mantilla, S. F.; Martinez, R.; Ochoa, F.

    2017-05-01

    We propose a new anomaly-free and family nonuniversal U (1 )' extension of the standard model with the addition of two scalar singlets and a new scalar doublet. The quark sector is extended by adding three exotic quark singlets, while the lepton sector includes two exotic charged lepton singlets, three right-handed neutrinos, and three sterile Majorana leptons to obtain the fermionic mass spectrum of the standard model. The lepton sector also reproduces the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and the squared-mass differences data from neutrino oscillation experiments. Also, analytical relations of the PMNS matrix are derived via the inverse seesaw mechanism, and numerical predictions of the parameters in both normal and inverse order scheme for the mass of the phenomenological neutrinos are obtained. We employed a simple seesawlike method to obtain analytical mass eigenstates of the C P -even 3 ×3 mass matrix of the scalar sector.

  17. An analytical model for transient deformation of viscoelastically coated beams: Applications to static-mode microcantilever chemical sensors

    NASA Astrophysics Data System (ADS)

    Heinrich, S. M.; Wenzel, M. J.; Josse, F.; Dufour, I.

    2009-06-01

    The problem governing the transient deformation of an elastic cantilever beam with viscoelastic coating, subjected to a time-dependent coating eigenstrain, is mathematically formulated. An analytical solution for an exponential eigenstrain history, exact within the context of beam theory, is obtained in terms of the coating and base layer thicknesses, the elastic modulus of the base material, the initial coating modulus, the coating relaxation percentage (0%-100%), and the time constants of the coating's relaxation process and its eigenstrain history. Approximate formulas, valid for thin coatings, are derived as special cases to provide insight into system behavior. Main results include (1) the time histories of the beam curvature and the coating stresses, (2) a criterion governing the response type (monotonic or "overshoot" response), and (3) simple expressions for the overshoot ratio, defined as the peak response scaled by the steady-state response, and the time at which the peak response occurs. Applications to polymer-coated microcantilever-based chemical sensors operating in the static mode are discussed.

  18. A novel multiple headspace extraction gas chromatographic method for measuring the diffusion coefficient of methanol in water and in olive oil.

    PubMed

    Zhang, Chun-Yun; Chai, Xin-Sheng

    2015-03-13

    A novel method for the determination of the diffusion coefficient (D) of methanol in water and olive oil has been developed. Based on multiple headspace extraction gas chromatography (MHE-GC), the methanol released from the liquid sample of interest in a closed sample vial was determined in a stepwise fashion. A theoretical model was derived to establish the relationship between the diffusion coefficient and the GC signals from MHE-GC measurements. The results showed that the present method has an excellent precision (RSD<1%) in the linear fitting procedure and good accuracy for the diffusion coefficients of methanol in both water and olive oil, when compared with data reported in the literature. The present method is simple and practical and can be a valuable tool for the determination of the diffusion coefficient of volatile analyte(s) into food simulants from food and beverage packaging material, both in research studies and in actual applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Transient well flow in leaky multiple-aquifer systems

    NASA Astrophysics Data System (ADS)

    Hemker, C. J.

    1985-10-01

    A previously developed eigenvalue analysis approach to groundwater flow in leaky multiple aquifers is used to derive exact solutions for transient well flow problems in leaky and confined systems comprising any number of aquifers. Equations are presented for the drawdown distribution in systems of infinite extent, caused by wells penetrating one or more of the aquifers completely and discharging each layer at a constant rate. Since the solution obtained may be regarded as a combined analytical-numerical technique, a type of one-dimensional modelling can be applied to find approximate solutions for several complicating conditions. Numerical evaluations are presented as time-drawdown curves and include effects of storage in the aquitard, unconfined conditions, partially penetrating wells and stratified aquifers. The outcome of calculations for relatively simple systems compares very well with published corresponding results. The proposed multilayer solution can be a valuable tool in aquifer test evaluation, as it provides the analytical expression required to enable the application of existing computer methods to the determination of aquifer characteristics.

  20. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    NASA Technical Reports Server (NTRS)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  1. Deflection of cross-ply composite laminates induced by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2010-01-01

    The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.

  2. A forecast for extinction debt in the presence of speciation.

    PubMed

    Sgardeli, Vasiliki; Iwasa, Yoh; Varvoglis, Harry; Halley, John M

    2017-02-21

    Predicting biodiversity relaxation following a disturbance is of great importance to conservation biology. Recently-developed models of stochastic community assembly allow us to predict the evolution of communities on the basis of mechanistic processes at the level of individuals. The neutral model of biodiversity, in particular, has provided closed-form solutions for the relaxation of biodiversity in isolated communities (no immigration or speciation). Here, we extend these results by deriving a relaxation curve for a neutral community in which new species are introduced through the mechanism of random fission speciation (RFS). The solution provides simple closed-form expressions for the equilibrium species richness, the relaxation time and the species-individual curve, which are good approximation to the more complicated formulas existing for the same model. The derivation of the relaxation curve is based on the assumption of a broken-stick species-abundance distribution (SAD) as an initial community configuration; yet for commonly observed SADs, the maximum deviation from the curve does not exceed 10%. Importantly, the solution confirms theoretical results and observations showing that the relaxation time increases with community size and thus habitat area. Such simple and analytically tractable models can help crystallize our ideas on the leading factors affecting biodiversity loss. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Vector-based model of elastic bonds for simulation of granular solids.

    PubMed

    Kuzkin, Vitaly A; Asonov, Igor E

    2012-11-01

    A model (further referred to as the V model) for the simulation of granular solids, such as rocks, ceramics, concrete, nanocomposites, and agglomerates, composed of bonded particles (rigid bodies), is proposed. It is assumed that the bonds, usually representing some additional gluelike material connecting particles, cause both forces and torques acting on the particles. Vectors rigidly connected with the particles are used to describe the deformation of a single bond. The expression for potential energy of the bond and corresponding expressions for forces and torques are derived. Formulas connecting parameters of the model with longitudinal, shear, bending, and torsional stiffnesses of the bond are obtained. It is shown that the model makes it possible to describe any values of the bond stiffnesses exactly; that is, the model is applicable for the bonds with arbitrary length/thickness ratio. Two different calibration procedures depending on bond length/thickness ratio are proposed. It is shown that parameters of the model can be chosen so that under small deformations the bond is equivalent to either a Bernoulli-Euler beam or a Timoshenko beam or short cylinder connecting particles. Simple analytical expressions, relating parameters of the V model with geometrical and mechanical characteristics of the bond, are derived. Two simple examples of computer simulation of thin granular structures using the V model are given.

  4. Ultrasound-assisted extraction of azadirachtin from dried entire fruits of Azadirachta indica A. Juss. (Meliaceae) and its determination by a validated HPLC-PDA method.

    PubMed

    de Paula, Joelma Abadia Marciano; Brito, Lucas Ferreira; Caetano, Karen Lorena Ferreira Neves; de Morais Rodrigues, Mariana Cristina; Borges, Leonardo Luiz; da Conceição, Edemilson Cardoso

    2016-01-01

    Azadirachta indica A. Juss., also known as neem, is a Meliaceae family tree from India. It is globally known for the insecticidal properties of its limonoid tetranortriterpenoid derivatives, such as azadirachtin. This work aimed to optimize the azadirachtin ultrasound-assisted extraction (UAE) and validate the HPLC-PDA analytical method for the measurement of this marker in neem dried fruit extracts. Box-Behnken design and response surface methodology (RSM) were used to investigate the effect of process variables on the UAE. Three independent variables, including ethanol concentration (%, w/w), temperature (°C), and material-to-solvent ratio (gmL(-1)), were studied. The azadirachtin content (µgmL(-1)), i.e., dependent variable, was quantified by the HPLC-PDA analytical method. Isocratic reversed-phase chromatography was performed using acetonitrile/water (40:60), a flow of 1.0mLmin(-1), detection at 214nm, and C18 column (250×4.6mm(2), 5µm). The primary validation parameters were determined according to ICH guidelines and Brazilian legislation. The results demonstrated that the optimal UAE condition was obtained with ethanol concentration range of 75-80% (w/w), temperature of 30°C, and material-to-solvent ratio of 0.55gmL(-1). The HPLC-PDA analytical method proved to be simple, selective, linear, precise, accurate and robust. The experimental values of azadirachtin content under optimal UAE conditions were in good agreement with the RSM predicted values and were superior to the azadirachtin content of percolated extract. Such findings suggest that UAE is a more efficient extractive process in addition to being simple, fast, and inexpensive. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Median of patient results as a tool for assessment of analytical stability.

    PubMed

    Jørgensen, Lars Mønster; Hansen, Steen Ingemann; Petersen, Per Hyltoft; Sölétormos, György

    2015-06-15

    In spite of the well-established external quality assessment and proficiency testing surveys of analytical quality performance in laboratory medicine, a simple tool to monitor the long-term analytical stability as a supplement to the internal control procedures is often needed. Patient data from daily internal control schemes was used for monthly appraisal of the analytical stability. This was accomplished by using the monthly medians of patient results to disclose deviations from analytical stability, and by comparing divergences with the quality specifications for allowable analytical bias based on biological variation. Seventy five percent of the twenty analytes achieved on two COBASs INTEGRA 800 instruments performed in accordance with the optimum and with the desirable specifications for bias. Patient results applied in analytical quality performance control procedures are the most reliable sources of material as they represent the genuine substance of the measurements and therefore circumvent the problems associated with non-commutable materials in external assessment. Patient medians in the monthly monitoring of analytical stability in laboratory medicine are an inexpensive, simple and reliable tool to monitor the steadiness of the analytical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Graphene-sensitized microporous membrane/solvent microextraction for the preconcentration of cinnamic acid derivatives in Rhizoma Typhonii.

    PubMed

    Xing, Rongrong; Hu, Shuang; Chen, Xuan; Bai, Xiaohong

    2014-09-01

    A novel graphene-sensitized microporous membrane/solvent microextraction method named microporous membrane/graphene/solvent synergistic microextraction, coupled with high-performance liquid chromatography and UV detection, was developed and introduced for the extraction and determination of three cinnamic acid derivatives in Rhizoma Typhonii. Several factors affecting performance were investigated and optimized, including the types of graphene and extraction solvent, concentration of graphene dispersed in octanol, sample phase pH, ionic strength, stirring rate, extraction time, extraction temperature, and sample volume. Under optimized conditions, the enrichment factors of cinnamic acid derivatives ranged from 75 to 269. Good linearities were obtained from 0.01 to 10 μg/mL for all analytes with regression coefficients between 0.9927 and 0.9994. The limits of quantification were <1 ng/mL, and satisfactory recoveries (99-104%) and precision (1.1-10.8%) were also achieved. The synergistic microextraction mechanism based on graphene sensitization was analyzed and described. The experimental results showed that the method was simple, sensitive, practical, and effective for the preconcentration and determination of cinnamic acid derivatives in Rhizoma Typhonii. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Theoretical Treatment of Ion Transfers in Two Polarizable Interface Systems When the Analyte Has Access to Both Interfaces.

    PubMed

    Olmos, José Manuel; Molina, Ángela; Laborda, Eduardo; Millán-Barrios, Enrique; Ortuño, Joaquín Ángel

    2018-02-06

    A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.

  8. Analytic H I-to-H2 Photodissociation Transition Profiles

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2016-05-01

    We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.

  9. Quantum approximate optimization algorithm for MaxCut: A fermionic view

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Hadfield, Stuart; Jiang, Zhang; Rieffel, Eleanor G.

    2018-02-01

    Farhi et al. recently proposed a class of quantum algorithms, the quantum approximate optimization algorithm (QAOA), for approximately solving combinatorial optimization problems (E. Farhi et al., arXiv:1411.4028; arXiv:1412.6062; arXiv:1602.07674). A level-p QAOA circuit consists of p steps; in each step a classical Hamiltonian, derived from the cost function, is applied followed by a mixing Hamiltonian. The 2 p times for which these two Hamiltonians are applied are the parameters of the algorithm, which are to be optimized classically for the best performance. As p increases, parameter optimization becomes inefficient due to the curse of dimensionality. The success of the QAOA approach will depend, in part, on finding effective parameter-setting strategies. Here we analytically and numerically study parameter setting for the QAOA applied to MaxCut. For the level-1 QAOA, we derive an analytical expression for a general graph. In principle, expressions for higher p could be derived, but the number of terms quickly becomes prohibitive. For a special case of MaxCut, the "ring of disagrees," or the one-dimensional antiferromagnetic ring, we provide an analysis for an arbitrarily high level. Using a fermionic representation, the evolution of the system under the QAOA translates into quantum control of an ensemble of independent spins. This treatment enables us to obtain analytical expressions for the performance of the QAOA for any p . It also greatly simplifies the numerical search for the optimal values of the parameters. By exploring symmetries, we identify a lower-dimensional submanifold of interest; the search effort can be accordingly reduced. This analysis also explains an observed symmetry in the optimal parameter values. Further, we numerically investigate the parameter landscape and show that it is a simple one in the sense of having no local optima.

  10. A simple, analytical, axisymmetric microburst model for downdraft estimation

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1991-01-01

    A simple analytical microburst model was developed for use in estimating vertical winds from horizontal wind measurements. It is an axisymmetric, steady state model that uses shaping functions to satisfy the mass continuity equation and simulate boundary layer effects. The model is defined through four model variables: the radius and altitude of the maximum horizontal wind, a shaping function variable, and a scale factor. The model closely agrees with a high fidelity analytical model and measured data, particularily in the radial direction and at lower altitudes. At higher altitudes, the model tends to overestimate the wind magnitude relative to the measured data.

  11. Simple analytical model of a thermal diode

    NASA Astrophysics Data System (ADS)

    Kaushik, Saurabh; Kaushik, Sachin; Marathe, Rahul

    2018-05-01

    Recently there is a lot of attention given to manipulation of heat by constructing thermal devices such as thermal diodes, transistors and logic gates. Many of the models proposed have an asymmetry which leads to the desired effect. Presence of non-linear interactions among the particles is also essential. But, such models lack analytical understanding. Here we propose a simple, analytically solvable model of a thermal diode. Our model consists of classical spins in contact with multiple heat baths and constant external magnetic fields. Interestingly the magnetic field is the only parameter required to get the effect of heat rectification.

  12. An analytic solution of the stochastic storage problem applicable to soil water

    USGS Publications Warehouse

    Milly, P.C.D.

    1993-01-01

    The accumulation of soil water during rainfall events and the subsequent depletion of soil water by evaporation between storms can be described, to first order, by simple accounting models. When the alternating supplies (precipitation) and demands (potential evaporation) are viewed as random variables, it follows that soil-water storage, evaporation, and runoff are also random variables. If the forcing (supply and demand) processes are stationary for a sufficiently long period of time, an asymptotic regime should eventually be reached where the probability distribution functions of storage, evaporation, and runoff are stationary and uniquely determined by the distribution functions of the forcing. Under the assumptions that the potential evaporation rate is constant, storm arrivals are Poisson-distributed, rainfall is instantaneous, and storm depth follows an exponential distribution, it is possible to derive the asymptotic distributions of storage, evaporation, and runoff analytically for a simple balance model. A particular result is that the fraction of rainfall converted to runoff is given by (1 - R−1)/(eα(1−R−1) − R−1), in which R is the ratio of mean potential evaporation to mean rainfall and a is the ratio of soil water-holding capacity to mean storm depth. The problem considered here is analogous to the well-known problem of storage in a reservoir behind a dam, for which the present work offers a new solution for reservoirs of finite capacity. A simple application of the results of this analysis suggests that random, intraseasonal fluctuations of precipitation cannot by themselves explain the observed dependence of the annual water balance on annual totals of precipitation and potential evaporation.

  13. Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods

    NASA Astrophysics Data System (ADS)

    Park, Brian T.; Petrosian, Vahe

    1996-03-01

    Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.

  14. Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples

    NASA Astrophysics Data System (ADS)

    Rath, V.; Wolf, A.; Bücker, H. M.

    2006-10-01

    Inverse methods are useful tools not only for deriving estimates of unknown parameters of the subsurface, but also for appraisal of the thus obtained models. While not being neither the most general nor the most efficient methods, Bayesian inversion based on the calculation of the Jacobian of a given forward model can be used to evaluate many quantities useful in this process. The calculation of the Jacobian, however, is computationally expensive and, if done by divided differences, prone to truncation error. Here, automatic differentiation can be used to produce derivative code by source transformation of an existing forward model. We describe this process for a coupled fluid flow and heat transport finite difference code, which is used in a Bayesian inverse scheme to estimate thermal and hydraulic properties and boundary conditions form measured hydraulic potentials and temperatures. The resulting derivative code was validated by comparison to simple analytical solutions and divided differences. Synthetic examples from different flow regimes demonstrate the use of the inverse scheme, and its behaviour in different configurations.

  15. Derivative spectrum chromatographic method for the determination of trimethoprim in honey samples using an on-line solid-phase extraction technique.

    PubMed

    Uchiyama, Kazuhisa; Kondo, Mari; Yokochi, Rika; Takeuchi, Yuri; Yamamoto, Atsushi; Inoue, Yoshinori

    2011-07-01

    A simple, selective and rapid analytical method for determination of trimethoprim (TMP) in honey samples was developed and validated. This method is based on a SPE technique followed by HPLC with photodiode array detection. After dilution and filtration, aliquots of 500 μL honey samples were directly injected to an on-line SPE HPLC system. TMP was extracted on an RP SPE column, and separated on a hydrophilic interaction chromatography column during HPLC analysis. At the first detection step, the noise level of the photodiode array data was reduced with two-dimensional equalizer filtering, and then the smoothed data were subjected to derivative spectrum chromatography. On the second-derivative chromatogram at 254 nm, the limit of detection and the limit of quantification of TMP in a honey sample were 5 and 10 ng/g, respectively. The proposed method showed high accuracy (60-103%) with adequate sensitivity for TMP monitoring in honey samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencze, G.; Chandler, C.

    It is shown that the electric polarizability of the deuteron produces negligible effect on the cross section of deuteron induced rearrangement reactions even at extremely low energies. This assessment is based on simple analytical formulas, derived on the basis of {ital N}-particle scattering theory by means of the general two-potential formalism, including Coulomb and exchange effects. It is shown on the basis of general physical arguments that the polarizability effects at very low energies are entirely contained in a multiplicative enhancement factor that differs from 1 by at most a few percent. As a result enhancement of ({ital d},{ital p})more » relative to ({ital d},{ital n}) reactions is not possible by the Oppenheimer-Phillips mechanism.« less

  17. On the realization of quantum Fisher information

    NASA Astrophysics Data System (ADS)

    Saha, Aparna; Talukdar, B.; Chatterjee, Supriya

    2017-03-01

    With special attention to the role of information theory in physical sciences we present analytical results for the coordinate- and momentum-space Fisher information of some important one-dimensional quantum systems which differ in spacing of their energy levels. The studies envisaged allow us to relate the coordinate-space information ({I}ρ ) with the familiar energy levels of the quantum system. The corresponding momentum-space information ({I}γ ) does not obey such a simple relationship with the energy spectrum. Our results for the product ({I}ρ {I}γ ) depend quadratically on the principal quantum number n and satisfy an appropriate uncertainty relation derived by Dehesa et al (2007 J. Phys. A: Math. Theor. 40 1845)

  18. Quantum Corrections in Nanoplasmonics: Shape, Scale, and Material

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas; Yan, Wei; Jauho, Antti-Pekka; Soljačić, Marin; Mortensen, N. Asger

    2017-04-01

    The classical treatment of plasmonics is insufficient at the nanometer-scale due to quantum mechanical surface phenomena. Here, an extension of the classical paradigm is reported which rigorously remedies this deficiency through the incorporation of first-principles surface response functions—the Feibelman d parameters—in general geometries. Several analytical results for the leading-order plasmonic quantum corrections are obtained in a first-principles setting; particularly, a clear separation of the roles of shape, scale, and material is established. The utility of the formalism is illustrated by the derivation of a modified sum rule for complementary structures, a rigorous reformulation of Kreibig's phenomenological damping prescription, and an account of the small-scale resonance shifting of simple and noble metal nanostructures.

  19. Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials

    PubMed Central

    Ba, Abdoulaye; Kovalenko, Artem; Aristégui, Christophe; Mondain-Monval, Olivier; Brunet, Thomas

    2017-01-01

    Soft porous silicone rubbers are demonstrated to exhibit extremely low sound speeds of tens of m/s for these dense materials, even for low porosities of the order of a few percent. Our ultrasonic experiments show a sudden drop of the longitudinal sound speed with the porosity, while the transverse sound speed remains constant. For such porous elastomeric materials, we propose simple analytical expressions for these two sound speeds, derived in the framework of Kuster and Toksöz, revealing an excellent agreement between the theoretical predictions and the experimental results for both longitudinal and shear waves. Acoustic attenuation measurements also complete the characterization of these soft porous materials. PMID:28054661

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitsyn, N. A.

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  1. Scaling laws for AC gas breakdown and implications for universality

    NASA Astrophysics Data System (ADS)

    Loveless, Amanda M.; Garner, Allen L.

    2017-10-01

    The reduced dependence on secondary electron emission and electrode surface properties makes radiofrequency (RF) and microwave (MW) plasmas advantageous over direct current (DC) plasmas for various applications, such as microthrusters. Theoretical models relating molecular constants to alternating current (AC) breakdown often fail due to incomplete understanding of both the constants and the mechanisms involved. This work derives simple analytic expressions for RF and MW breakdown, demonstrating the transition between these regimes at their high and low frequency limits, respectively. We further show that the limiting expressions for DC, RF, and MW breakdown voltage all have the same universal scaling dependence on pressure and gap distance at high pressure, agreeing with experiment.

  2. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow.

    PubMed

    Bette, Henrik M; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P(v=0) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P(v∈{0,1}) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  3. Mechanisms of jamming in the Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Bette, Henrik M.; Habel, Lars; Emig, Thorsten; Schreckenberg, Michael

    2017-01-01

    We study the Nagel-Schreckenberg cellular automata model for traffic flow by both simulations and analytical techniques. To better understand the nature of the jamming transition, we analyze the fraction of stopped cars P (v =0 ) as a function of the mean car density. We present a simple argument that yields an estimate for the free density where jamming occurs, and show satisfying agreement with simulation results. We demonstrate that the fraction of jammed cars P (v ∈{0 ,1 }) can be decomposed into the three factors (jamming rate, jam lifetime, and jam size) for which we derive, from random walk arguments, exponents that control their scaling close to the critical density.

  4. Economic model for QoS guarantee on the Internet

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wei, Jiaolong

    2001-09-01

    This paper describes a QoS guarantee architecture suited for best-effort environments, based on ideas from microeconomics and non-cooperative game theory. First, an analytic model is developed for the study of the resource allocation in the Internet. Then we show that with a simple pricing mechanism (from network implementation and users' points-of-view), we were able to provide QoS guarantee at per flow level without resource allocation or complicated scheduling mechanisms or maintaining per flow state in the core network. Unlike the previous work on this area, we extend the basic model to support inelastic applications which require minimum bandwidth guarantees for a given time period by introducing derivative market.

  5. Statistical methods for astronomical data with upper limits. I - Univariate distributions

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Nelson, P. I.

    1985-01-01

    The statistical treatment of univariate censored data is discussed. A heuristic derivation of the Kaplan-Meier maximum-likelihood estimator from first principles is presented which results in an expression amenable to analytic error analysis. Methods for comparing two or more censored samples are given along with simple computational examples, stressing the fact that most astronomical problems involve upper limits while the standard mathematical methods require lower limits. The application of univariate survival analysis to six data sets in the recent astrophysical literature is described, and various aspects of the use of survival analysis in astronomy, such as the limitations of various two-sample tests and the role of parametric modelling, are discussed.

  6. Hypo-Elastic Model for Lung Parenchyma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freed, Alan D.; Einstein, Daniel R.

    2012-03-01

    A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less

  7. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  8. Surface roughness effects on the solar reflectance of cool asphalt shingles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Berdahl, Paul; Akbari, Hashem

    2008-02-17

    We analyze the solar reflectance of asphalt roofing shingles that are covered with pigmented mineral roofing granules. The reflecting surface is rough, with a total area approximately twice the nominal area. We introduce a simple analytical model that relates the 'micro-reflectance' of a small surface region to the 'macro-reflectance' of the shingle. This model uses a mean field approximation to account for multiple scattering effects. The model is then used to compute the reflectance of shingles with a mixture of different colored granules, when the reflectances of the corresponding mono-color shingles are known. Simple linear averaging works well, with smallmore » corrections to linear averaging derived for highly reflective materials. Reflective base granules and reflective surface coatings aid achievement of high solar reflectance. Other factors that influence the solar reflectance are the size distribution of the granules, coverage of the asphalt substrate, and orientation of the granules as affected by rollers during fabrication.« less

  9. Clairvoyant fusion: a new methodology for designing robust detection algorithms

    NASA Astrophysics Data System (ADS)

    Schaum, Alan

    2016-10-01

    Many realistic detection problems cannot be solved with simple statistical tests for known alternative probability models. Uncontrollable environmental conditions, imperfect sensors, and other uncertainties transform simple detection problems with likelihood ratio solutions into composite hypothesis (CH) testing problems. Recently many multi- and hyperspectral sensing CH problems have been addressed with a new approach. Clairvoyant fusion (CF) integrates the optimal detectors ("clairvoyants") associated with every unspecified value of the parameters appearing in a detection model. For problems with discrete parameter values, logical rules emerge for combining the decisions of the associated clairvoyants. For many problems with continuous parameters, analytic methods of CF have been found that produce closed-form solutions-or approximations for intractable problems. Here the principals of CF are reviewed and mathematical insights are described that have proven useful in the derivation of solutions. It is also shown how a second-stage fusion procedure can be used to create theoretically superior detection algorithms for ALL discrete parameter problems.

  10. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview

    PubMed Central

    Ruiz-Bermejo, Marta; Zorzano, María-Paz; Osuna-Esteban, Susana

    2013-01-01

    Hydrogen cyanide (HCN) is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system. PMID:25369814

  11. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  12. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  13. Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.

    PubMed

    Abdelnour, Farras; Dayan, Michael; Devinsky, Orrin; Thesen, Thomas; Raj, Ashish

    2018-05-15

    How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. Here we mathematically derive a simple relationship between SC measured from diffusion tensor imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially related. This gives, for the first time, a simple and analytical relationship between the graph spectra of structural and functional networks. Laplacian eigenvectors are shown to be good predictors of functional eigenvectors and networks based on independent component analysis of functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-consuming simulations. It was tested on two empirical SC/FC datasets, and was found to significantly outperform generative model simulations of coupled neural masses. Copyright © 2018. Published by Elsevier Inc.

  14. Simplified analysis about horizontal displacement of deep soil under tunnel excavation

    NASA Astrophysics Data System (ADS)

    Tian, Xiaoyan; Gu, Shuancheng; Huang, Rongbin

    2017-11-01

    Most of the domestic scholars focus on the study about the law of the soil settlement caused by subway tunnel excavation, however, studies on the law of horizontal displacement are lacking. And it is difficult to obtain the horizontal displacement data of any depth in the project. At present, there are many formulas for calculating the settlement of soil layers. In terms of integral solutions of Mindlin classic elastic theory, stochastic medium theory, source-sink theory, the Peck empirical formula is relatively simple, and also has a strong applicability at home. Considering the incompressibility of rock and soil mass, based on the principle of plane strain, the calculation formula of the horizontal displacement of the soil along the cross section of the tunnel was derived by using the Peck settlement formula. The applicability of the formula is verified by comparing with the existing engineering cases, a simple and rapid analytical method for predicting the horizontal displacement is presented.

  15. Stationary echo canceling in velocity estimation by time-domain cross-correlation.

    PubMed

    Jensen, J A

    1993-01-01

    The application of stationary echo canceling to ultrasonic estimation of blood velocities using time-domain cross-correlation is investigated. Expressions are derived that show the influence from the echo canceler on the signals that enter the cross-correlation estimator. It is demonstrated that the filtration results in a velocity-dependent degradation of the signal-to-noise ratio. An analytic expression is given for the degradation for a realistic pulse. The probability of correct detection at low signal-to-noise ratios is influenced by signal-to-noise ratio, transducer bandwidth, center frequency, number of samples in the range gate, and number of A-lines employed in the estimation. Quantitative results calculated by a simple simulation program are given for the variation in probability from these parameters. An index reflecting the reliability of the estimate at hand can be calculated from the actual cross-correlation estimate by a simple formula and used in rejecting poor estimates or in displaying the reliability of the velocity estimated.

  16. A simple derivation and analysis of a helical cone beam tomographic algorithm for long object imaging via a novel definition of region of interest

    NASA Astrophysics Data System (ADS)

    Hu, Jicun; Tam, Kwok; Johnson, Roger H.

    2004-01-01

    We derive and analyse a simple algorithm first proposed by Kudo et al (2001 Proc. 2001 Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine (Pacific Grove, CA) pp 7-10) for long object imaging from truncated helical cone beam data via a novel definition of region of interest (ROI). Our approach is based on the theory of short object imaging by Kudo et al (1998 Phys. Med. Biol. 43 2885-909). One of the key findings in their work is that filtering of the truncated projection can be divided into two parts: one, finite in the axial direction, results from ramp filtering the data within the Tam window. The other, infinite in the z direction, results from unbounded filtering of ray sums over PI lines only. We show that for an ROI defined by PI lines emanating from the initial and final source positions on a helical segment, the boundary data which would otherwise contaminate the reconstruction of the ROI can be completely excluded. This novel definition of the ROI leads to a simple algorithm for long object imaging. The overscan of the algorithm is analytically calculated and it is the same as that of the zero boundary method. The reconstructed ROI can be divided into two regions: one is minimally contaminated by the portion outside the ROI, while the other is reconstructed free of contamination. We validate the algorithm with a 3D Shepp-Logan phantom and a disc phantom.

  17. Analytical approach for the fractional differential equations by using the extended tanh method

    NASA Astrophysics Data System (ADS)

    Pandir, Yusuf; Yildirim, Ayse

    2018-07-01

    In this study, we consider analytical solutions of space-time fractional derivative foam drainage equation, the nonlinear Korteweg-de Vries equation with time and space-fractional derivatives and time-fractional reaction-diffusion equation by using the extended tanh method. The fractional derivatives are defined in the modified Riemann-Liouville context. As a result, various exact analytical solutions consisting of trigonometric function solutions, kink-shaped soliton solutions and new exact solitary wave solutions are obtained.

  18. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROTECTION

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  19. Analytical Tools in School Finance Reform.

    ERIC Educational Resources Information Center

    Johns, R. L.

    This paper discusses the problem of analyzing variations in the educational opportunities provided by different school districts and describes how to assess the impact of school finance alternatives through use of various analytical tools. The author first examines relatively simple analytical methods, including calculation of per-pupil…

  20. Horizontal lifelines - review of regulations and simple design method considering anchorage rigidity.

    PubMed

    Galy, Bertrand; Lan, André

    2018-03-01

    Among the many occupational risks construction workers encounter every day falling from a height is the most dangerous. The objective of this article is to propose a simple analytical design method for horizontal lifelines (HLLs) that considers anchorage flexibility. The article presents a short review of the standards and regulations/acts/codes concerning HLLs in Canada the USA and Europe. A static analytical approach is proposed considering anchorage flexibility. The analytical results are compared with a series of 42 dynamic fall tests and a SAP2000 numerical model. The experimental results show that the analytical method is a little conservative and overestimates the line tension in most cases with a maximum of 17%. The static SAP2000 results show a maximum 2.1% difference with the analytical method. The analytical method is accurate enough to safely design HLLs and quick design abaci are provided to allow the engineer to make quick on-site verification if needed.

  1. PLS and first derivative of ratio spectra methods for determination of hydrochlorothiazide and propranolol hydrochloride in tablets.

    PubMed

    Vignaduzzo, Silvana E; Maggio, Rubén M; Castellano, Patricia M; Kaufman, Teodoro S

    2006-12-01

    Two new analytical methods have been developed as convenient and useful alternatives for simultaneous determination of hydrochlorothiazide (HCT) and propranolol hydrochloride (PRO) in pharmaceutical formulations. The methods are based on the first derivative of ratio spectra (DRS) and on partial least squares (PLS) analysis of the ultraviolet absorption spectra of the samples in the 250-350-nm region. The methods were calibrated between 8.7 and 16.0 mg L(-1) for HCT and between 14.0 and 51.5 mg L(-1) for PRO. An asymmetric full-factorial design and wavelength selection (277-294 nm for HCT and 297-319 for PRO) were used for the PLS method and signal intensities at 276 and 322 nm were used in the DRS method for HCT and PRO, respectively. Performance characteristics of the analytical methods were evaluated by use of validation samples and both methods showed to be accurate and precise, furnishing near quantitative analyte recoveries (100.4 and 99.3% for HCT and PRO by use of PLS) and relative standard deviations below 2%. For PLS the lower limits of quantification were 0.37 and 0.66 mg L(-1) for HCT and PRO, respectively, whereas for DRS they were 1.15 and 3.05 mg L(-1) for HCT and PRO, respectively. The methods were used for quantification of HCT and PRO in synthetic mixtures and in two commercial tablet preparations containing different proportions of the analytes. The results of the drug content assay and the tablet dissolution test were in statistical agreement (p < 0.05) with those furnished by the official procedures of the USP 29. Preparation of dissolution profiles of the combined tablet formulations was also performed with the aid of the proposed methods. The methods are easy to apply, use relatively simple equipment, require minimum sample pre-treatment, enable high sample throughput, and generate less solvent waste than other procedures.

  2. DEMONSTRATION OF THE ANALYTIC ELEMENT METHOD FOR WELLHEAD PROJECTION - PROJECT SUMMARY

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a ground-water fl...

  3. Analytical determination of space station response to crew motion and design of suspension system for microgravity experiments

    NASA Technical Reports Server (NTRS)

    Liu, F. C.

    1986-01-01

    The objective of this investigation is to make analytical determination of the acceleration produced by crew motion in an orbiting space station and define design parameters for the suspension system of microgravity experiments. A simple structural model for simulation of the IOC space station is proposed. Mathematical formulation of this model provides the engineers a simple and direct tool for designing an effective suspension system.

  4. An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.

  5. On analytic design of loudspeaker arrays with uniform radiation characteristics

    PubMed

    Aarts; Janssen

    2000-01-01

    Some notes on analytical derived loudspeaker arrays with uniform radiation characteristics are presented. The array coefficients are derived via analytical means and compared with so-called maximal flat sequences known from telecommunications and information theory. It appears that the newly derived array, i.e., the quadratic phase array, has a higher efficiency than the Bessel array and a flatter response than the Barker array. The method discussed admits generalization to the design of arrays with desired nonuniform radiating characteristics.

  6. Linear and Order Statistics Combiners for Pattern Classification

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)

    2001-01-01

    Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.

  7. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  8. Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO

    NASA Technical Reports Server (NTRS)

    Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.

    2016-01-01

    A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.

  9. Improved multidimensional semiclassical tunneling theory.

    PubMed

    Wagner, Albert F

    2013-12-12

    We show that the analytic multidimensional semiclassical tunneling formula of Miller et al. [Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A. Chem. Phys. Lett. 1990, 172, 62] is qualitatively incorrect for deep tunneling at energies well below the top of the barrier. The origin of this deficiency is that the formula uses an effective barrier weakly related to the true energetics but correctly adjusted to reproduce the harmonic description and anharmonic corrections of the reaction path at the saddle point as determined by second order vibrational perturbation theory. We present an analytic improved semiclassical formula that correctly includes energetic information and allows a qualitatively correct representation of deep tunneling. This is done by constructing a three segment composite Eckart potential that is continuous everywhere in both value and derivative. This composite potential has an analytic barrier penetration integral from which the semiclassical action can be derived and then used to define the semiclassical tunneling probability. The middle segment of the composite potential by itself is superior to the original formula of Miller et al. because it incorporates the asymmetry of the reaction barrier produced by the known reaction exoergicity. Comparison of the semiclassical and exact quantum tunneling probability for the pure Eckart potential suggests a simple threshold multiplicative factor to the improved formula to account for quantum effects very near threshold not represented by semiclassical theory. The deep tunneling limitations of the original formula are echoed in semiclassical high-energy descriptions of bound vibrational states perpendicular to the reaction path at the saddle point. However, typically ab initio energetic information is not available to correct it. The Supporting Information contains a Fortran code, test input, and test output that implements the improved semiclassical tunneling formula.

  10. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    PubMed

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL (EPA/600/SR-94/210)

    EPA Science Inventory

    A new computer program has been developed to determine time-of-travel capture zones in relatively simple geohydrological settings. The WhAEM package contains an analytic element model that uses superposition of (many) closed form analytical solutions to generate a groundwater flo...

  12. The CMB neutrino mass/vacuum energy degeneracy: a simple derivation of the degeneracy slopes

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2018-06-01

    It is well known that estimating cosmological parameters from cosmic microwave background (CMB) data alone results in a significant degeneracy between the total neutrino mass and several other cosmological parameters, especially the Hubble constant H0 and the matter density parameter Ωm. Adding low-redshift measurements such as baryon acoustic oscillations (BAOs) breaks this degeneracy and greatly improves the constraints on neutrino mass. The sensitivity is surprisingly high, for example, adding the ˜1 percent measurement of the BAO ratio rs/DV from the BOSS survey leads to a limit Σ mν < 0.19 eV, equivalent to Ων < 0.0045 at 95 per cent confidence. For the case of Σ mν < 0.6 eV, the CMB degeneracy with neutrino mass almost follows a track of constant sound horizon angle (Howlett et al. 2012). For a ΛCDM + mν model, we use simple but quite accurate analytic approximations to derive the slope of this track, giving dimensionless multipliers between the neutrino to matter ratio (xν ≡ ων/ωcb) and the shifts in other cosmological parameters. The resulting multipliers are substantially larger than 1: conserving the CMB sound horizon angle requires parameter shifts δln H0 ≈ -2 δxν, δln Ωm ≈ +5 δxν, δln ωΛ ≈ -6.2 δxν, and most notably δωΛ ≈ -14 δων. These multipliers give an intuitive derivation of the degeneracy direction, which agrees well with the numerical likelihood results from the Planck team.

  13. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties

    NASA Astrophysics Data System (ADS)

    Roderick, Michael L.; Farquhar, Graham D.

    2011-12-01

    We use the Budyko framework to calculate catchment-scale evapotranspiration (E) and runoff (Q) as a function of two climatic factors, precipitation (P) and evaporative demand (Eo = 0.75 times the pan evaporation rate), and a third parameter that encodes the catchment properties (n) and modifies how P is partitioned between E and Q. This simple theory accurately predicted the long-term evapotranspiration (E) and runoff (Q) for the Murray-Darling Basin (MDB) in southeast Australia. We extend the theory by developing a simple and novel analytical expression for the effects on E and Q of small perturbations in P, Eo, and n. The theory predicts that a 10% change in P, with all else constant, would result in a 26% change in Q in the MDB. Future climate scenarios (2070-2099) derived using Intergovernmental Panel on Climate Change AR4 climate model output highlight the diversity of projections for P (±30%) with a correspondingly large range in projections for Q (±80%) in the MDB. We conclude with a qualitative description about the impact of changes in catchment properties on water availability and focus on the interaction between vegetation change, increasing atmospheric [CO2], and fire frequency. We conclude that the modern version of the Budyko framework is a useful tool for making simple and transparent estimates of changes in water availability.

  14. Study of the Forced Response of a Clamped Circular Plate Coupled to a Uni-Dimensional Acoustic Cavity

    NASA Astrophysics Data System (ADS)

    Curà, F.; Curti, G.; Mantovani, M.

    1996-03-01

    The subject of this paper is an experimental and analytical study of a structural-acoustical coupling problem. To simplify the issue, the analytical model considered here consists of a uni-dimensional acoustic cavity coupled to a one-degree-of-freedom system (mass, spring and damper). An harmonic excitation force is applied to the mass of the oscillator. In the theoretical analysis, the uni-dimensional cavity is subjected, in correspondence of its end sections, to boundary conditions, which are either the usual ones (closed or open ended) or those deriving from the coupling with the oscillator. This simple model proved to be very useful to investigate the influence of the variation of both the geometrical parameters (i.e., the length of the cavity) and the physical parameters (i.e., mass, damping coefficient and stiffness of the oscillator). The analytical results are compared to those obtained experimentally on a real coupled system, consisting of a cavity enclosed by an acoustically rigid steel cylinder, closed at one end by a movable, acoustically rigid piston and at the other end by a flexible plate, clamped around its edge by the cylinder. Thus the length of the cavity can be varied by simply moving the rigid piston.

  15. ON THE ELECTRON-TO-NEUTRAL NUMBER DENSITY RATIO IN THE COMA OF COMET 67P/CHURYUMOV–GERASIMENKO: GUIDING EXPRESSION AND SOURCES FOR DEVIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Eriksson, A. I.; Edberg, N. J. T.

    2015-10-10

    We compute partial photoionization frequencies of H{sub 2}O, CO{sub 2}, and CO, the major molecules in the coma of comet 67P/Churyumov–Gerasimenko, the target comet of the ongoing ESA Rosetta mission. Values are computed from Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment solar EUV spectra for 2014 August 1, 2015 March 1, and for perihelion (2015 August, as based on prediction). From the varying total photoionization frequency of H{sub 2}O, as computed from 2014 August 1 to 2015 May 20, we derive a simple analytical expression for the electron-to-neutral number density ratio as a function of cometocentric and heliocentric distance. Themore » underlying model assumes radial movement of the coma constituents and does not account for chemical loss or the presence of electric fields. We discuss various effects/processes that can cause deviations between values from the analytical expression and actual electron-to-neutral number density ratios. The analytical expression is thus not strictly meant as predicting the actual electron-to-neutral number density ratio, but is useful in comparisons with observations as an indicator of processes at play in the cometary coma.« less

  16. Theoretical and Numerical Investigations on Shallow Tunnelling in Unsaturated Soils

    NASA Astrophysics Data System (ADS)

    Soranzo, Enrico; Wu, Wei

    2013-04-01

    Excavation of shallow tunnels with the New Austrian Tunnelling Method (NATM) requires proper assessing of the tunnel face stability, to enable an open-face excavation, and the estimation of the correspondent surface settlements. Soils in a partially saturated condition exhibit a higher cohesion than in a fully saturated state, which can be taken into account when assessing the stability of the tunnel face. For the assessment of the face support pressure, different methods are used in engineering practice, varying from simple empirical and analytical formulations to advanced finite element analysis. Such procedures can be modified to account for the unsaturated state of soils. In this study a method is presented to incorporate the effect of partial saturation in the numerical analysis. The results are then compared with a simple analytical formulation derived from parametric studies. As to the numerical analysis, the variation of cohesion and of Young's modulus with saturation can be considered when the water table lies below the tunnel in a soil exhibiting a certain capillary rise, so that the tunnel is driven in a partially saturated layer. The linear elastic model with Mohr-Coulomb failure criterion can be extended to partially saturated states and calibrated with triaxial tests on unsaturated. In order to model both positive and negative pore water pressure (suction), Bishop's effective stress is incorporated into Mohr-Coulomb's failure criterion. The effective stress parameter in Bishop's formulation is related to the degree of saturation as suggested by Fredlund. If a linear suction distribution is assumed, the degree of saturation can be calculated from the Soil Water Characteristic Curve (SWCC). Expressions exist that relate the Young's modulus of unsaturated soils to the net mean stress and the matric suction. The results of the numerical computation can be compared to Vermeer & Ruse's closed-form formula that expresses the limit support pressure of the tunnel face. The expression is derived from parametric studies and predicts stability of the tunnel face when negative values are returned, suggesting that open-face tunnelling can be performed. The formula can be modified to account for the variation of cohesion along the tunnel face. The results obtained from both the numerical analysis and the analytical formulation are well in agreement and show that the stability of the tunnel face can greatly benefit from the enhanced cohesion of partially saturated soils.

  17. Quantifying risks with exact analytical solutions of derivative pricing distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Liu, Jing; Wang, Erkang; Wang, Jin

    2017-04-01

    Derivative (i.e. option) pricing is essential for modern financial instrumentations. Despite of the previous efforts, the exact analytical forms of the derivative pricing distributions are still challenging to obtain. In this study, we established a quantitative framework using path integrals to obtain the exact analytical solutions of the statistical distribution for bond and bond option pricing for the Vasicek model. We discuss the importance of statistical fluctuations away from the expected option pricing characterized by the distribution tail and their associations to value at risk (VaR). The framework established here is general and can be applied to other financial derivatives for quantifying the underlying statistical distributions.

  18. Consistent Yokoya-Chen Approximation to Beamstrahlung(LCC-0010)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, M

    2004-04-22

    I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.I reconsider the Yokoya-Chen approximate evolution equation for beamstrahlung and modify it slightly to generate simple, consistent analytical approximations for the electron and photon energy spectra. I compare these approximations to previous ones, and to simulation data.

  19. Analytical Derivation: An Epistemic Game for Solving Mathematically Based Physics Problems

    ERIC Educational Resources Information Center

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-01-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the "analytical derivation" game. This game involves deriving an…

  20. A pseudo-sound constitutive relationship for the dilatational covariances in compressible turbulence: An analytical theory

    NASA Technical Reports Server (NTRS)

    Ristorcelli, J. R.

    1995-01-01

    The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.

  1. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  2. PHOTOPHORESIS IN A DILUTE, OPTICALLY THICK MEDIUM AND DUST MOTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, Colin P.; Hubbard, Alexander, E-mail: cmcnally@nbi.dk, E-mail: ahubbard@amnh.org

    2015-11-20

    We derive expressions for the photophoretic force on opaque spherical particles in a dilute gas in the optically thick regime where the radiation field is in local thermal equilibrium. Under those conditions, the radiation field has a simple form, leading to well defined analytical approximations for the photophoretic force that also consider both the internal thermal conduction within the particle, and the effects of heat conduction and radiation to the surrounding gas. We derive these results for homogeneous spherical particles; and for the double layered spheres appropriate for modeling solid grains with porous aggregate mantles. Then, as a specific astrophysicalmore » application of these general physical results, we explore the parameter space relevant to the photophoresis driven drift of dust in protoplanetary disks. We show that highly porous silicate grains have sufficiently low thermal conductivities that photophoretic effects, such as significant relative velocities between particles with differing porosity or levitation above the midplane, are expected to occur.« less

  3. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications

    PubMed Central

    Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama

    2017-01-01

    Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741

  4. Asymptotic Cramer-Rao bounds for Morlet wavelet filter bank transforms of FM signals

    NASA Astrophysics Data System (ADS)

    Scheper, Richard

    2002-03-01

    Wavelet filter banks are potentially useful tools for analyzing and extracting information from frequency modulated (FM) signals in noise. Chief among the advantages of such filter banks is the tendency of wavelet transforms to concentrate signal energy while simultaneously dispersing noise energy over the time-frequency plane, thus raising the effective signal to noise ratio of filtered signals. Over the past decade, much effort has gone into devising new algorithms to extract the relevant information from transformed signals while identifying and discarding the transformed noise. Therefore, estimates of the ultimate performance bounds on such algorithms would serve as valuable benchmarks in the process of choosing optimal algorithms for given signal classes. Discussed here is the specific case of FM signals analyzed by Morlet wavelet filter banks. By making use of the stationary phase approximation of the Morlet transform, and assuming that the measured signals are well resolved digitally, the asymptotic form of the Fisher Information Matrix is derived. From this, Cramer-Rao bounds are analytically derived for simple cases.

  5. Limits of detection and decision. Part 3

    NASA Astrophysics Data System (ADS)

    Voigtman, E.

    2008-02-01

    It has been shown that the MARLAP (Multi-Agency Radiological Laboratory Analytical Protocols) for estimating the Currie detection limit, which is based on 'critical values of the non-centrality parameter of the non-central t distribution', is intrinsically biased, even if no calibration curve or regression is used. This completed the refutation of the method, begun in Part 2. With the field cleared of obstructions, the true theory underlying Currie's limits of decision, detection and quantification, as they apply in a simple linear chemical measurement system (CMS) having heteroscedastic, Gaussian measurement noise and using weighted least squares (WLS) processing, was then derived. Extensive Monte Carlo simulations were performed, on 900 million independent calibration curves, for linear, "hockey stick" and quadratic noise precision models (NPMs). With errorless NPM parameters, all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Even with as much as 30% noise on all of the relevant NPM parameters, the worst absolute errors in rates of false positives and false negatives, was only 0.3%.

  6. Analytical derivatives of the individual state energies in ensemble density functional theory method. I. General formalism

    DOE PAGES

    Filatov, Michael; Liu, Fang; Martínez, Todd J.

    2017-07-21

    The state-averaged (SA) spin restricted ensemble referenced Kohn-Sham (REKS) method and its state interaction (SI) extension, SI-SA-REKS, enable one to describe correctly the shape of the ground and excited potential energy surfaces of molecules undergoing bond breaking/bond formation reactions including features such as conical intersections crucial for theoretical modeling of non-adiabatic reactions. Until recently, application of the SA-REKS and SI-SA-REKS methods to modeling the dynamics of such reactions was obstructed due to the lack of the analytical energy derivatives. Here, the analytical derivatives of the individual SA-REKS and SI-SA-REKS energies are derived. The final analytic gradient expressions are formulated entirelymore » in terms of traces of matrix products and are presented in the form convenient for implementation in the traditional quantum chemical codes employing basis set expansions of the molecular orbitals. Finally, we will describe the implementation and benchmarking of the derived formalism in a subsequent article of this series.« less

  7. An analytic formula for H-infinity norm sensitivity with applications to control system design

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Lim, Kyong B.

    1992-01-01

    An analytic formula for the sensitivity of singular value peak variation with respect to parameter variation is derived. As a corollary, the derivative of the H-infinity norm of a stable transfer function with respect to a parameter is presented. It depends on some of the first two derivatives of the transfer function with respect to frequency and the parameter. For cases when the transfer function has a linear system realization whose matrices depend on the parameter, analytic formulas for these first two derivatives are derived, and an efficient algorithm for calculating them is discussed. Examples are given which provide numerical verification of the H-infinity norm sensitivity formula and which demonstrate its utility in designing control systems satisfying H-infinity norm constraints. In the appendix, derivative formulas for singular values are paraphrased.

  8. Response of a Rotating Propeller to Aerodynamic Excitation

    NASA Technical Reports Server (NTRS)

    Arnoldi, Walter E.

    1949-01-01

    The flexural vibration of a rotating propeller blade with clamped shank is analyzed with the object of presenting, in matrix form, equations for the elastic bending moments in forced vibration resulting from aerodynamic forces applied at a fixed multiple of rotational speed. Matrix equations are also derived which define the critical speeds end mode shapes for any excitation order and the relation between critical speed and blade angle. Reference is given to standard works on the numerical solution of matrix equations of the forms derived. The use of a segmented blade as an approximation to a continuous blade provides a simple means for obtaining the matrix solution from the integral equation of equilibrium, so that, in the numerical application of the method presented, the several matrix arrays of the basic physical characteristics of the propeller blade are of simple form, end their simplicity is preserved until, with the solution in sight, numerical manipulations well-known in matrix algebra yield the desired critical speeds and mode shapes frame which the vibration at any operating condition may be synthesized. A close correspondence between the familiar Stodola method and the matrix method is pointed out, indicating that any features of novelty are characteristic not of the analytical procedure but only of the abbreviation, condensation, and efficient organization of the numerical procedure made possible by the use of classical matrix theory.

  9. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  10. Amplification of light in one-dimensional vibrating metal photonic crystal

    NASA Astrophysics Data System (ADS)

    Ueta, Tsuyoshi

    2012-04-01

    Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional metal photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analyzed, and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration and is confirmed by numerical works.

  11. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  12. Radiative transport equation for the Mittag-Leffler path length distribution

    NASA Astrophysics Data System (ADS)

    Liemert, André; Kienle, Alwin

    2017-05-01

    In this paper, we consider the radiative transport equation for infinitely extended scattering media that are characterized by the Mittag-Leffler path length distribution p (ℓ ) =-∂ℓEα(-σtℓα ) , which is a generalization of the usually assumed Lambert-Beer law p (ℓ ) =σtexp(-σtℓ ) . In this context, we derive the infinite-space Green's function of the underlying fractional transport equation for the spherically symmetric medium as well as for the one-dimensional string. Moreover, simple analytical solutions are presented for the prediction of the radiation field in the single-scattering approximation. The resulting equations are compared with Monte Carlo simulations in the steady-state and time domain showing, within the stochastic nature of the simulations, an excellent agreement.

  13. Time delay of critical images in the vicinity of cusp point of gravitational-lens systems

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-12-01

    We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.

  14. LASER METHODS IN MEDICINE: Light absorption in blood during low-intensity laser irradiation of skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-06-01

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis.

  15. Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry.

    PubMed

    Rerucha, Simon; Buchta, Zdenek; Sarbort, Martin; Lazar, Josef; Cip, Ondrej

    2012-10-19

    We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems).

  16. A statistical theory for sound radiation and reflection from a duct

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1979-01-01

    A new analytical method is introduced for the study of the sound radiation and reflection from the open end of a duct. The sound is thought of as an aggregation of the quasiparticles-phonons. The motion of the latter is described in terms of the statistical distribution, which is derived from the classical wave theory. The results are in good agreement with the solutions obtained using the Wiener-Hopf technique when the latter is applicable, but the new method is simple and provides straightforward physical interpretation of the problem. Furthermore, it is applicable to a problem involving a duct in which modes are difficult to determine or cannot be defined at all, whereas the Wiener-Hopf technique is not.

  17. Test of a potential link between analytic and nonanalytic category learning and automatic, effortful processing.

    PubMed

    Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J

    2001-08-01

    The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.

  18. Electron transfer statistics and thermal fluctuations in molecular junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend tomore » suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, S.; Rohlfing, E.A.; Rahn, L.A.

    We present analytical signal expressions for each two-color resonant four-wave mixing (TC-RFWM) scheme that can be used for double-resonance molecular spectroscopy in the limit of weak fields (no saturation). The theoretical approach employs time-independent, diagrammatic perturbation theory and a spherical tensor analysis in an extension of recent treatments of degenerate four-wave mixing [S. Williams, R. N. Zare, and L. A. Rahn, J. Chem. Phys. {bold 101}, 1072 (1994)] and TC-RFWM for the specific case of stimulated emission pumping [S. Williams {ital et al.}, J. Chem. Phys. {bold 102}, 8342 (1995)]. Under the assumption that the relaxation of the population, themore » orientation, and the alignment are the same, simple analytic expressions are derived for commonly used experimental configurations. The TC-RFWM signal is found to be a product of a concentration term, a one-photon molecular term, a line shape function, and a laboratory-frame geometric factor. These expressions are intended to facilitate the practical analysis of TC-RFWM spectra by clarifying, for example, the dependence on beam polarizations and rotational branch combinations. {copyright} {ital 1997 American Institute of Physics.}« less

  20. Joint nonlinearity effects in the design of a flexible truss structure control system

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  1. Polar decomposition for attitude determination from vector observations

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1993-01-01

    This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.

  2. Vapor Sensing Using Conjugated Molecule-Linked Au Nanoparticles in a Silica Matrix

    DOE PAGES

    Dirk, Shawn M.; Howell, Stephen W.; Price, B. Katherine; ...

    2009-01-01

    Cross-linkedmore » assemblies of nanoparticles are of great value as chemiresistor-type sensors. Herein, we report a simple method to fabricate a chemiresistor-type sensor that minimizes the swelling transduction mechanism while optimizing the change in dielectric response. Sensors prepared with this methodology showed enhanced chemoselectivity for phosphonates which are useful surrogates for chemical weapons. Chemoselective sensors were fabricated using an aqueous solution of gold nanoparticles that were then cross-linked in the presence of the silica precursor, tetraethyl orthosilicate with the α -, ω -dithiolate (which is derived from the in situ deprotection of 1,4-di(Phenylethynyl- 4 ′ , 4 ″ -diacetylthio)-benzene ( 1 ) with wet triethylamine). The cross-linked nanoparticles and silica matrix were drop coated onto interdigitated electrodes having 8  μ m spacing. Samples were exposed to a series of analytes including dimethyl methylphosphonate (DMMP), octane, and toluene. A limit of detection was obtained for each analyte. Sensors assembled in this fashion were more sensitive to dimethyl methylphosphonate than to octane by a factor of 1000.« less

  3. The Role of Nanoparticle Design in Determining Analytical Performance of Lateral Flow Immunoassays.

    PubMed

    Zhan, Li; Guo, Shuang-Zhuang; Song, Fayi; Gong, Yan; Xu, Feng; Boulware, David R; McAlpine, Michael C; Chan, Warren C W; Bischof, John C

    2017-12-13

    Rapid, simple, and cost-effective diagnostics are needed to improve healthcare at the point of care (POC). However, the most widely used POC diagnostic, the lateral flow immunoassay (LFA), is ∼1000-times less sensitive and has a smaller analytical range than laboratory tests, requiring a confirmatory test to establish truly negative results. Here, a rational and systematic strategy is used to design the LFA contrast label (i.e., gold nanoparticles) to improve the analytical sensitivity, analytical detection range, and antigen quantification of LFAs. Specifically, we discovered that the size (30, 60, or 100 nm) of the gold nanoparticles is a main contributor to the LFA analytical performance through both the degree of receptor interaction and the ultimate visual or thermal contrast signals. Using the optimal LFA design, we demonstrated the ability to improve the analytical sensitivity by 256-fold and expand the analytical detection range from 3 log 10 to 6 log 10 for diagnosing patients with inflammatory conditions by measuring C-reactive protein. This work demonstrates that, with appropriate design of the contrast label, a simple and commonly used diagnostic technology can compete with more expensive state-of-the-art laboratory tests.

  4. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  5. Standard Errors of Equating for the Percentile Rank-Based Equipercentile Equating with Log-Linear Presmoothing

    ERIC Educational Resources Information Center

    Wang, Tianyou

    2009-01-01

    Holland and colleagues derived a formula for analytical standard error of equating using the delta-method for the kernel equating method. Extending their derivation, this article derives an analytical standard error of equating procedure for the conventional percentile rank-based equipercentile equating with log-linear smoothing. This procedure is…

  6. Forgetfulness can help you win games.

    PubMed

    Burridge, James; Gao, Yu; Mao, Yong

    2015-09-01

    We present a simple game model where agents with different memory lengths compete for finite resources. We show by simulation and analytically that an instability exists at a critical memory length, and as a result, different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes a connection to statistical urn models, and we show that temperature is mirrored by the agent's memory. Our simple model of memory may be incorporated into other game models with implications that we briefly discuss.

  7. Simple functionalization method for single conical pores with a polydopamine layer

    NASA Astrophysics Data System (ADS)

    Horiguchi, Yukichi; Goda, Tatsuro; Miyahara, Yuji

    2018-04-01

    Resistive pulse sensing (RPS) is an interesting analytical system in which micro- to nanosized pores are used to evaluate particles or small analytes. Recently, molecular immobilization techniques to improve the performance of RPS have been reported. The problem in functionalization for RPS is that molecular immobilization by chemical reaction is restricted by the pore material type. Herein, a simple functionalization is performed using mussel-inspired polydopamine as an intermediate layer to connect the pore material with functional molecules.

  8. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  9. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  10. EMBEDDED LENSING TIME DELAYS, THE FERMAT POTENTIAL, AND THE INTEGRATED SACHS–WOLFE EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu, E-mail: bchen3@fsu.edu

    2015-05-01

    We derive the Fermat potential for a spherically symmetric lens embedded in a Friedman–Lemaître–Robertson–Walker cosmology and use it to investigate the late-time integrated Sachs–Wolfe (ISW) effect, i.e., secondary temperature fluctuations in the cosmic microwave background (CMB) caused by individual large-scale clusters and voids. We present a simple analytical expression for the temperature fluctuation in the CMB across such a lens as a derivative of the lens’ Fermat potential. This formalism is applicable to both linear and nonlinear density evolution scenarios, to arbitrarily large density contrasts, and to all open and closed background cosmologies. It is much simpler to use andmore » makes the same predictions as conventional approaches. In this approach the total temperature fluctuation can be split into a time-delay part and an evolutionary part. Both parts must be included for cosmic structures that evolve and both can be equally important. We present very simple ISW models for cosmic voids and galaxy clusters to illustrate the ease of use of our formalism. We use the Fermat potentials of simple cosmic void models to compare predicted ISW effects with those recently extracted from WMAP and Planck data by stacking large cosmic voids using the aperture photometry method. If voids in the local universe with large density contrasts are no longer evolving we find that the time delay contribution alone predicts values consistent with the measurements. However, we find that for voids still evolving linearly, the evolutionary contribution cancels a significant part of the time delay contribution and results in predicted signals that are much smaller than recently observed.« less

  11. Experimental Validation of Lightning-Induced Electromagnetic (Indirect) Coupling to Short Monopole Antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crull, E W; Brown Jr., C G; Perkins, M P

    2008-07-30

    For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analyticalmore » models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).« less

  12. A Simple Transmission Electron Microscopy Method for Fast Thickness Characterization of Suspended Graphene and Graphite Flakes.

    PubMed

    Rubino, Stefano; Akhtar, Sultan; Leifer, Klaus

    2016-02-01

    We present a simple, fast method for thickness characterization of suspended graphene/graphite flakes that is based on transmission electron microscopy (TEM). We derive an analytical expression for the intensity of the transmitted electron beam I 0(t), as a function of the specimen thickness t (t<λ; where λ is the absorption constant for graphite). We show that in thin graphite crystals the transmitted intensity is a linear function of t. Furthermore, high-resolution (HR) TEM simulations are performed to obtain λ for a 001 zone axis orientation, in a two-beam case and in a low symmetry orientation. Subsequently, HR (used to determine t) and bright-field (to measure I 0(0) and I 0(t)) images were acquired to experimentally determine λ. The experimental value measured in low symmetry orientation matches the calculated value (i.e., λ=225±9 nm). The simulations also show that the linear approximation is valid up to a sample thickness of 3-4 nm regardless of the orientation and up to several ten nanometers for a low symmetry orientation. When compared with standard techniques for thickness determination of graphene/graphite, the method we propose has the advantage of being simple and fast, requiring only the acquisition of bright-field images.

  13. Engineering model for ultrafast laser microprocessing

    NASA Astrophysics Data System (ADS)

    Audouard, E.; Mottay, E.

    2016-03-01

    Ultrafast laser micro-machining relies on complex laser-matter interaction processes, leading to a virtually athermal laser ablation. The development of industrial ultrafast laser applications benefits from a better understanding of these processes. To this end, a number of sophisticated scientific models have been developed, providing valuable insights in the physics of the interaction. Yet, from an engineering point of view, they are often difficult to use, and require a number of adjustable parameters. We present a simple engineering model for ultrafast laser processing, applied in various real life applications: percussion drilling, line engraving, and non normal incidence trepanning. The model requires only two global parameters. Analytical results are derived for single pulse percussion drilling or simple pass engraving. Simple assumptions allow to predict the effect of non normal incident beams to obtain key parameters for trepanning drilling. The model is compared to experimental data on stainless steel with a wide range of laser characteristics (time duration, repetition rate, pulse energy) and machining conditions (sample or beam speed). Ablation depth and volume ablation rate are modeled for pulse durations from 100 fs to 1 ps. Trepanning time of 5.4 s with a conicity of 0.15° is obtained for a hole of 900 μm depth and 100 μm diameter.

  14. [Developments in preparation and experimental method of solid phase microextraction fibers].

    PubMed

    Yi, Xu; Fu, Yujie

    2004-09-01

    Solid phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which concentrates volatile or nonvolatile compounds from liquid samples or headspace of samples. SPME is compatible with analyte separation and detection by gas chromatography, high performance liquid chromatography, and other instrumental methods. It can provide many advantages, such as wide linear scale, low solvent and sample consumption, short analytical times, low detection limits, simple apparatus, and so on. The theory of SPME is introduced, which includes equilibrium theory and non-equilibrium theory. The novel development of fiber preparation methods and relative experimental techniques are discussed. In addition to commercial fiber preparation, different newly developed fabrication techniques, such as sol-gel, electronic deposition, carbon-base adsorption, high-temperature epoxy immobilization, are presented. Effects of extraction modes, selection of fiber coating, optimization of operating conditions, method sensitivity and precision, and systematical automation, are taken into considerations in the analytical process of SPME. A simple perspective of SPME is proposed at last.

  15. Analysis of Closely Related Antioxidant Nutraceuticals Using the Green Analytical Methodology of ANN and Smart Spectrophotometric Methods.

    PubMed

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2017-01-01

    Two new, simple, and specific green analytical methods are proposed: zero-crossing first-derivative and chemometric-based spectrophotometric artificial neural network (ANN). The proposed methods were used for the simultaneous estimation of two closely related antioxidant nutraceuticals, coenzyme Q10 (Q10) and vitamin E, in their mixtures and pharmaceutical preparations. The first method is based on the handling of spectrophotometric data with the first-derivative technique, in which both nutraceuticals were determined in ethanol, each at the zero crossing of the other. The amplitudes of the first-derivative spectra for Q10 and vitamin E were recorded at 285 and 235 nm respectively, and correlated with their concentrations. The linearity ranges of Q10 and vitamin E were 10-60 and 5.6-70 μg⋅mL-1, respectively. The second method, ANN, is a multivariate calibration method and it was developed and applied for the simultaneous determination of both analytes. A training set of 90 different synthetic mixtures containing Q10 and vitamin E in the ranges of 0-100 and 0-556 μg⋅mL-1, respectively, was prepared in ethanol. The absorption spectra of the training set were recorded in the spectral region of 230-300 nm. By relating the concentration sets (x-block) with their corresponding absorption data (y-block), gradient-descent back-propagation ANN calibration could be computed. To validate the proposed network, a set of 45 synthetic mixtures of the two drugs was used. Both proposed methods were successfully applied for the assay of Q10 and vitamin E in their laboratory-prepared mixtures and in their pharmaceutical tablets with excellent recovery. These methods offer advantages over other methods because of low-cost equipment, time-saving measures, and environmentally friendly materials. In addition, no chemical separation prior to analysis was needed. The ANN method was superior to the derivative technique because ANN can determine both drugs under nonlinear experimental conditions. Consequently, ANN would be the method of choice in the routine analysis of Q10 and vitamin E tablets. No interference from common pharmaceutical additives was observed. Student's t-test and the F-test were used to compare the two methods. No significant difference was recorded.

  16. A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate

    PubMed Central

    Khatri, Bhavin S.; Goldstein, Richard A.

    2015-01-01

    Speciation is fundamental to understanding the huge diversity of life on Earth. Although still controversial, empirical evidence suggests that the rate of speciation is larger for smaller populations. Here, we explore a biophysical model of speciation by developing a simple coarse-grained theory of transcription factor-DNA binding and how their co-evolution in two geographically isolated lineages leads to incompatibilities. To develop a tractable analytical theory, we derive a Smoluchowski equation for the dynamics of binding energy evolution that accounts for the fact that natural selection acts on phenotypes, but variation arises from mutations in sequences; the Smoluchowski equation includes selection due to both gradients in fitness and gradients in sequence entropy, which is the logarithm of the number of sequences that correspond to a particular binding energy. This simple consideration predicts that smaller populations develop incompatibilities more quickly in the weak mutation regime; this trend arises as sequence entropy poises smaller populations closer to incompatible regions of phenotype space. These results suggest a generic coarse-grained approach to evolutionary stochastic dynamics, allowing realistic modelling at the phenotypic level. PMID:25936759

  17. s -wave scattering length of a Gaussian potential

    NASA Astrophysics Data System (ADS)

    Jeszenszki, Peter; Cherny, Alexander Yu.; Brand, Joachim

    2018-04-01

    We provide accurate expressions for the s -wave scattering length for a Gaussian potential well in one, two, and three spatial dimensions. The Gaussian potential is widely used as a pseudopotential in the theoretical description of ultracold-atomic gases, where the s -wave scattering length is a physically relevant parameter. We first describe a numerical procedure to compute the value of the s -wave scattering length from the parameters of the Gaussian, but find that its accuracy is limited in the vicinity of singularities that result from the formation of new bound states. We then derive simple analytical expressions that capture the correct asymptotic behavior of the s -wave scattering length near the bound states. Expressions that are increasingly accurate in wide parameter regimes are found by a hierarchy of approximations that capture an increasing number of bound states. The small number of numerical coefficients that enter these expressions is determined from accurate numerical calculations. The approximate formulas combine the advantages of the numerical and approximate expressions, yielding an accurate and simple description from the weakly to the strongly interacting limit.

  18. The quasar proximity effect in an equivalent-width-limited sample of the Lyman-alpha forest

    NASA Technical Reports Server (NTRS)

    Chernomordik, Viktor V.; Ozernoy, Leonid M.

    1993-01-01

    We have obtained a simple analytical approximation to the relationship between a rest-frame equivalent-width distribution for Ly-alpha forest absorption lines, N(W), and an H I column density distribution of the observed cloud number, N(N). Assuming a simple power-law form for N(N) proportional to N exp (1-beta), it is shown that beta = 1.4 turns out to agree fairly well with the observed form of N(W) in a broad range of column densities. We present a theoretical analysis of how the 'proximity effect' influences a W-limited sample of Ly-alpha forest lines. It is shown that this influence is considerably smaller than has been found before for a N-limited sample, for which an approximate value of beta was assumed rather than derived as has been done, for a W-limited sample, in the present paper. As a result, available observational data appear to be still consistent with the conjecture that the observed population of QSOs is the major source of the UV background at redshifts z about 2-4.

  19. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer.

    PubMed

    Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2015-01-10

    We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

  20. A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil.

    PubMed

    Di Girolamo, Francesco; Masotti, Andrea; Lante, Isabella; Scapaticci, Margherita; Calvano, Cosima Damiana; Zambonin, Carlo; Muraca, Maurizio; Putignani, Lorenza

    2015-09-01

    Extra virgin olive oil (EVOO) with its nutraceutical characteristics substantially contributes as a major nutrient to the health benefit of the Mediterranean diet. Unfortunately, the adulteration of EVOO with less expensive oils (e.g., peanut and corn oils), has become one of the biggest source of agricultural fraud in the European Union, with important health implications for consumers, mainly due to the introduction of seed oil-derived allergens causing, especially in children, severe food allergy phenomena. In this regard, revealing adulterations of EVOO is of fundamental importance for health care and prevention reasons, especially in children. To this aim, effective analytical methods to assess EVOO purity are necessary. Here, we propose a simple, rapid, robust and very sensitive method for non-specialized mass spectrometric laboratory, based on the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) coupled to unsupervised hierarchical clustering (UHC), principal component (PCA) and Pearson's correlation analyses, to reveal corn oil (CO) adulterations in EVOO at very low levels (down to 0.5%).

  1. A Simple and Effective Mass Spectrometric Approach to Identify the Adulteration of the Mediterranean Diet Component Extra-Virgin Olive Oil with Corn Oil

    PubMed Central

    Di Girolamo, Francesco; Masotti, Andrea; Lante, Isabella; Scapaticci, Margherita; Calvano, Cosima Damiana; Zambonin, Carlo; Muraca, Maurizio; Putignani, Lorenza

    2015-01-01

    Extra virgin olive oil (EVOO) with its nutraceutical characteristics substantially contributes as a major nutrient to the health benefit of the Mediterranean diet. Unfortunately, the adulteration of EVOO with less expensive oils (e.g., peanut and corn oils), has become one of the biggest source of agricultural fraud in the European Union, with important health implications for consumers, mainly due to the introduction of seed oil-derived allergens causing, especially in children, severe food allergy phenomena. In this regard, revealing adulterations of EVOO is of fundamental importance for health care and prevention reasons, especially in children. To this aim, effective analytical methods to assess EVOO purity are necessary. Here, we propose a simple, rapid, robust and very sensitive method for non-specialized mass spectrometric laboratory, based on the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) coupled to unsupervised hierarchical clustering (UHC), principal component (PCA) and Pearson’s correlation analyses, to reveal corn oil (CO) adulterations in EVOO at very low levels (down to 0.5%). PMID:26340625

  2. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was built using the OpenMDAO framework. Pycycle provides analytic derivatives allowing for an efficient use of gradient-based optimization methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  3. Vitamin K

    USDA-ARS?s Scientific Manuscript database

    A wide range of analytical techniques are available for the detection, quantitation, and evaluation of vitamin K in foods. The methods vary from simple to complex depending on extraction, separation, identification and detection of the analyte. Among the extraction methods applied for vitamin K anal...

  4. The Asian project for collaborative derivation of reference intervals: (1) strategy and major results of standardized analytes.

    PubMed

    Ichihara, Kiyoshi; Ceriotti, Ferruccio; Tam, Tran Huu; Sueyoshi, Shigeo; Poon, Priscilla M K; Thong, Mee Ling; Higashiuesato, Yasushi; Wang, Xuejing; Kataoka, Hiromi; Matsubara, Akemi; Shiesh, Shu-Chu; Muliaty, Dewi; Kim, Jeong-Ho; Watanabe, Masakazu; Lam, Christopher W K; Siekmann, Lothar; Lopez, Joseph B; Panteghini, Mauro

    2013-07-01

    A multicenter study conducted in Southeast Asia to derive reference intervals (RIs) for 72 commonly measured analytes (general chemistry, inflammatory markers, hormones, etc.) featured centralized measurement to clearly detect regionality in test results. The results of 31 standardized analytes are reported, with the remaining analytes presented in the next report. The study included 63 clinical laboratories from South Korea, China, Vietnam, Malaysia, Indonesia, and seven areas in Japan. A total of 3541 healthy individuals aged 20-65 years (Japan 2082, others 1459) were recruited mostly from hospital workers using a well-defined common protocol. All serum specimens were transported to Tokyo at -80°C and collectively measured using reagents from four manufacturers. Three-level nested ANOVA was used to quantitate variation (SD) of test results due to region, sex, and age. A ratio of SD for a given factor over residual SD (representing net between-individual variations) (SDR) exceeding 0.3 was considered significant. Traceability of RIs was ensured by recalibration using value-assigned reference materials. RIs were derived parametrically. SDRs for sex and age were significant for 19 and 16 analytes, respectively. Regional difference was significant for 11 analytes, including high density lipoprotein (HDL)-cholesterol and inflammatory markers. However, when the data were limited to those from Japan, regionality was not observed in any of the analytes. Accordingly, RIs were derived with or without partition by sex and region. RIs applicable to a wide area in Asia were established for the majority of analytes with traceability to reference measuring systems, whereas regional partitioning was required for RIs of the other analytes.

  5. Analysis of antithyroid drugs in surface water by using liquid chromatography-tandem mass spectrometry.

    PubMed

    Pérez-Fernández, Virginia; Marchese, Stefano; Gentili, Alessandra; García, María Ángeles; Curini, Roberta; Caretti, Fulvia; Perret, Daniela

    2014-11-07

    This paper describes development and validation of a new method for the simultaneous determination of six antithyroid drugs (ATDs) in surface waters by using liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). Target compounds include two ATD classes: thiouracil derivatives (thiouracil (TU), methyl-thiouracil (MTU), propyl-thiouracil (PTU), phenyl-thiouracil (PhTU)) and imidazole derivatives (tapazole (TAP), and mercaptobenzimidazole (MBI)). Sensitivity and selectivity of the LC-multiple reaction monitoring (MRM) analysis allowed applying a simple pre-concentration procedure and "shooting" the concentrated sample into the LC-MS/MS system without any other treatment. Recoveries were higher than 75% for all analytes. Intra-day precision and inter-day precision, calculated as relative standard deviation (RSD), were below 19 and 22%, respectively. Limits of detection (LODs) ranged from 0.05 to 0.25 μg/L; limits of quantitation (LOQs) varied between 0.15 and 0.75 μg/L. The validated method was successfully applied to the analysis of ATD residues in surface water samples collected from the Tiber River basin and three lakes of Lazio (central Italy). The analytes were quantified based on matrix-matched calibration curves with mercaptobenzimidazole-d4 (MBI-d4) as the internal standard (IS). The most widespread compound was TAP, one of the most common ATDs used in human medicine, but also TU and MBI were often detected in the analysed samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparison of maximum runup through analytical and numerical approaches for different fault parameters estimates

    NASA Astrophysics Data System (ADS)

    Kanoglu, U.; Wronna, M.; Baptista, M. A.; Miranda, J. M. A.

    2017-12-01

    The one-dimensional analytical runup theory in combination with near shore synthetic waveforms is a promising tool for tsunami rapid early warning systems. Its application in realistic cases with complex bathymetry and initial wave condition from inverse modelling have shown that maximum runup values can be estimated reasonably well. In this study we generate a simplistic bathymetry domains which resemble realistic near-shore features. We investigate the accuracy of the analytical runup formulae to the variation of fault source parameters and near-shore bathymetric features. To do this we systematically vary the fault plane parameters to compute the initial tsunami wave condition. Subsequently, we use the initial conditions to run the numerical tsunami model using coupled system of four nested grids and compare the results to the analytical estimates. Variation of the dip angle of the fault plane showed that analytical estimates have less than 10% difference for angles 5-45 degrees in a simple bathymetric domain. These results shows that the use of analytical formulae for fast run up estimates constitutes a very promising approach in a simple bathymetric domain and might be implemented in Hazard Mapping and Early Warning.

  7. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm.

    PubMed

    Lee, ZhongPing; Arnone, Robert; Hu, Chuanmin; Werdell, P Jeremy; Lubac, Bertrand

    2010-01-20

    Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within +/-10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.

  8. Analytical method for the effects of the asteroid belt on planetary orbits

    NASA Technical Reports Server (NTRS)

    Mayo, A. P.

    1979-01-01

    Analytic expressions are derived for the perturbation of planetary orbits due to a thick constant-density asteroid belt. The derivations include extensions and adaptations of Plakhov's (1968) analytic expressions for the perturbations in five of the orbital elements for closed orbits around Saturn's rings. The equations of Plakhov are modified to include the effect of ring thickness, and additional equations are derived for the perturbations in the sixth orbital element, the mean anomaly. The gravitational potential and orbital perturbations are derived for the asteroid belt with and without thickness, and for a hoop approximation to the belt. The procedures are also applicable to Saturn's rings and the newly discovered rings of Uranus. The effects of the asteroid belt thickness on the gravitational potential coefficients and the orbital motions are demonstrated. Comparisons between the Mars orbital perturbations obtained by using the analytic expressions and those obtained by numerical integration are discussed. The effects of the asteroid belt on earth-based ranging to Mars are also demonstrated.

  9. Stress Analysis of Beams with Shear Deformation of the Flanges

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1937-01-01

    This report discusses the fundamental action of shear deformation of the flanges on the basis of simplifying assumptions. The theory is developed to the point of giving analytical solutions for simple cases of beams and of skin-stringer panels under axial load. Strain-gage tests on a tension panel and on a beam corresponding to these simple cases are described and the results are compared with analytical results. For wing beams, an approximate method of applying the theory is given. As an alternative, the construction of a mechanical analyzer is advocated.

  10. A green method for the quantification of plastics-derived endocrine disruptors in beverages by chemometrics-assisted liquid chromatography with simultaneous diode array and fluorescent detection.

    PubMed

    Vidal, Rocío B Pellegrino; Ibañez, Gabriela A; Escandar, Graciela M

    2016-10-01

    The aim of this study was to develop a novel analytical method for the determination of bisphenol A, nonylphenol, octylphenol, diethyl phthalate, dibutyl phthalate and diethylhexyl phthalate, compounds known for their endocrine-disruptor properties, based on liquid chromatography with simultaneous diode array and fluorescent detection. Following the principles of green analytical chemistry, solvent consumption and chromatographic run time were minimized. To deal with the resulting incomplete resolution in the chromatograms, a second-order calibration was proposed. Second-order data (elution time-absorbance wavelength and elution time-fluorescence emission wavelength matrices) were obtained and processed by multivariate curve resolution-alternating least-squares (MCR-ALS). Applying MCR-ALS allowed quantification of the analytes even in the presence of partially overlapped chromatographic and spectral bands among these compounds and the potential interferents. The obtained results from the analysis of beer, wine, soda, juice, water and distilled beverage samples were compared with gas chromatography-mass spectrometry (GC-MS). Limits of detection (LODs) in the range 0.04-0.38ngmL(-1) were estimated in real samples after a very simple solid-phase extraction. All the samples were found to contain at least three EDs, in concentrations as high as 334ngmL(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A quantitative approach to aquifer vulnerability mapping

    NASA Astrophysics Data System (ADS)

    Connell, L. D.; Daele, Gerd van den

    2003-05-01

    This paper presents a procedure for calculating the transport to groundwater of surface-released contaminants. The approach is derived from a series of analytical and semi-analytical solutions to the advection-dispersion equation that include root zone and unsaturated water movement effects on the transport process. The steady-state form of these equations provides an efficient means of calculating the maximum concentration at the watertable and therefore has potential for use in vulnerability mapping. A two-layer approach is used in the solutions to represent the unsaturated profile, with the root zone corresponding to the upper layer where evapotranspiration can occur and transport properties can be in contrast to the rest of the profile. A novel transformation is applied to the advection-dispersion equation that considerably simplifies the way in which water movement is represented. To provide a combined flow and transport model an approximate procedure for water movement, using averages of the infiltration and transpiration rates with a novel, simple, quasi-steady state solution, is presented that can be used in conjunction with the solutions to the advection-dispersion equation. This quasi-steady state approximation for water movement allows for layering in the soil profile and root water uptake. Results from the combined quasi-steady state water movement and semi-analytical solute transport procedure compare well with numerical solutions to the coupled unsaturated flow and solute transport equations in a series of hypothetical simulations.

  12. Counterfeit drugs: analytical techniques for their identification.

    PubMed

    Martino, R; Malet-Martino, M; Gilard, V; Balayssac, S

    2010-09-01

    In recent years, the number of counterfeit drugs has increased dramatically, including not only "lifestyle" products but also vital medicines. Besides the threat to public health, the financial and reputational damage to pharmaceutical companies is substantial. The lack of robust information on the prevalence of fake drugs is an obstacle in the fight against drug counterfeiting. It is generally accepted that approximately 10% of drugs worldwide could be counterfeit, but it is also well known that this number covers very different situations depending on the country, the places where the drugs are purchased, and the definition of what constitutes a counterfeit drug. The chemical analysis of drugs suspected to be fake is a crucial step as counterfeiters are becoming increasingly sophisticated, rendering visual inspection insufficient to distinguish the genuine products from the counterfeit ones. This article critically reviews the recent analytical methods employed to control the quality of drug formulations, using as an example artemisinin derivatives, medicines particularly targeted by counterfeiters. Indeed, a broad panel of techniques have been reported for their analysis, ranging from simple and cheap in-field ones (colorimetry and thin-layer chromatography) to more advanced laboratory methods (mass spectrometry, nuclear magnetic resonance, and vibrational spectroscopies) through chromatographic methods, which remain the most widely used. The conclusion section of the article highlights the questions to be posed before selecting the most appropriate analytical approach.

  13. Large density expansion of a hydrodynamic theory for self-propelled particles

    NASA Astrophysics Data System (ADS)

    Ihle, T.

    2015-07-01

    Recently, an Enskog-type kinetic theory for Vicsek-type models for self-propelled particles has been proposed [T. Ihle, Phys. Rev. E 83, 030901 (2011)]. This theory is based on an exact equation for a Markov chain in phase space and is not limited to small density. Previously, the hydrodynamic equations were derived from this theory and its transport coefficients were given in terms of infinite series. Here, I show that the transport coefficients take a simple form in the large density limit. This allows me to analytically evaluate the well-known density instability of the polarly ordered phase near the flocking threshold at moderate and large densities. The growth rate of a longitudinal perturbation is calculated and several scaling regimes, including three different power laws, are identified. It is shown that at large densities, the restabilization of the ordered phase at smaller noise is analytically accessible within the range of validity of the hydrodynamic theory. Analytical predictions for the width of the unstable band, the maximum growth rate, and for the wave number below which the instability occurs are given. In particular, the system size below which spatial perturbations of the homogeneous ordered state are stable is predicted to scale with where √ M is the average number of collision partners. The typical time scale until the instability becomes visible is calculated and is proportional to M.

  14. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.

    PubMed

    Cammi, R

    2009-10-28

    We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.

  15. New method to design stellarator coils without the winding surface

    NASA Astrophysics Data System (ADS)

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; Wan, Yuanxi

    2018-01-01

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal ‘winding’ surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code, named flexible optimized coils using space curves (FOCUS), has been developed. Applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.

  16. Pump-dump iterative squeezing of vibrational wave packets.

    PubMed

    Chang, Bo Y; Sola, Ignacio R

    2005-12-22

    The free motion of a nonstationary vibrational wave packet in an electronic potential is a source of interesting quantum properties. In this work we propose an iterative scheme that allows continuous stretching and squeezing of a wave packet in the ground or in an excited electronic state, by switching the wave function between both potentials with pi pulses at certain times. Using a simple model of displaced harmonic oscillators and delta pulses, we derive the analytical solution and the conditions for its possible implementation and optimization in different molecules and electronic states. We show that the main constraining parameter is the pulse bandwidth. Although in principle the degree of squeezing (or stretching) is not bounded, the physical resources increase quadratically with the number of iterations, while the achieved squeezing only increases linearly.

  17. Driven tracer with absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2018-02-01

    Instances of negative mobility, where a system responds to a perturbation in a way opposite to naive expectation, have been studied theoretically and experimentally in numerous nonequilibrium systems. In this work we show that absolute negative mobility (ANM), whereby current is produced in a direction opposite to the drive, can occur around equilibrium states. This is demonstrated with a simple one-dimensional lattice model with a driven tracer. We derive analytical predictions in the linear response regime and elucidate the mechanism leading to ANM by studying the high-density limit. We also study numerically a model of hard Brownian disks in a narrow planar channel, for which the lattice model can be viewed as a toy model. We find that the model exhibits negative differential mobility (NDM), but no ANM.

  18. Reflection and emission models for deserts derived from Nimbus-7 ERB scanner measurements

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Suttles, J. T.

    1986-01-01

    Broadband shortwave and longwave radiance measurements obtained from the Nimbus-7 Earth Radiation Budget scanner were used to develop reflectance and emittance models for the Sahara-Arabian, Gibson, and Saudi Deserts. The models were established by fitting the satellite measurements to analytic functions. For the shortwave, the model function is based on an approximate solution to the radiative transfer equation. The bidirectional-reflectance function was obtained from a single-scattering approximation with a Rayleigh-like phase function. The directional-reflectance model followed from integration of the bidirectional model and is a function of the sum and product of cosine solar and viewing zenith angles, thus satisfying reciprocity between these angles. The emittance model was based on a simple power-law of cosine viewing zenith angle.

  19. Rogue-wave solutions of the Zakharov equation

    NASA Astrophysics Data System (ADS)

    Rao, Jiguang; Wang, Lihong; Liu, Wei; He, Jingsong

    2017-12-01

    Using the bilinear transformation method, we derive general rogue-wave solutions of the Zakharov equation. We present these Nth-order rogue-wave solutions explicitly in terms of Nth-order determinants whose matrix elements have simple expressions. We show that the fundamental rogue wave is a line rogue wave with a line profile on the plane ( x, y) arising from a constant background at t ≪ 0 and then gradually tending to the constant background for t ≫ 0. Higher-order rogue waves arising from a constant background and later disappearing into it describe the interaction of several fundamental line rogue waves. We also consider different structures of higher-order rogue waves. We present differences between rogue waves of the Zakharov equation and of the first type of the Davey-Stewartson equation analytically and graphically.

  20. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  1. Robust LOD scores for variance component-based linkage analysis.

    PubMed

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  2. Benchmark solutions for the galactic ion transport equations: Energy and spatially dependent problems

    NASA Technical Reports Server (NTRS)

    Ganapol, Barry D.; Townsend, Lawrence W.; Wilson, John W.

    1989-01-01

    Nontrivial benchmark solutions are developed for the galactic ion transport (GIT) equations in the straight-ahead approximation. These equations are used to predict potential radiation hazards in the upper atmosphere and in space. Two levels of difficulty are considered: (1) energy independent, and (2) spatially independent. The analysis emphasizes analytical methods never before applied to the GIT equations. Most of the representations derived have been numerically implemented and compared to more approximate calculations. Accurate ion fluxes are obtained (3 to 5 digits) for nontrivial sources. For monoenergetic beams, both accurate doses and fluxes are found. The benchmarks presented are useful in assessing the accuracy of transport algorithms designed to accommodate more complex radiation protection problems. In addition, these solutions can provide fast and accurate assessments of relatively simple shield configurations.

  3. Zero-crossing statistics for non-Markovian time series.

    PubMed

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  4. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  5. On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation

    NASA Astrophysics Data System (ADS)

    Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei

    2018-06-01

    In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.

  6. Thermal shock fracture in cross-ply fibre-reinforced ceramic-matrix composites

    NASA Astrophysics Data System (ADS)

    Kastritseas, C.; Smith, P. A.; Yeomans, J. A.

    2010-11-01

    The onset of matrix cracking due to thermal shock in a range of simple and multi-layer cross-ply laminates comprising a calcium aluminosilicate (CAS) matrix reinforced with Nicalon® fibres is investigated analytically. A comprehensive stress analysis under conditions of thermal shock, ignoring transient effects, is performed and fracture criteria based on either a recently derived model for the thermal shock resistance of unidirectional Nicalon®/glass ceramic-matrix composites or fracture mechanics considerations are formulated. The effect of material thickness on the apparent thermal shock resistance is also modelled. Comparison with experimental results reveals that the accuracy of the predictions is satisfactory and the reasons for some discrepancies are discussed. In addition, a theoretical argument based on thermal shock theory is formulated to explain the observed cracking patterns.

  7. Investigation of a New Flux-Modulated Permanent Magnet Brushless Motor for EVs

    PubMed Central

    Gu, Lingling; Luo, Yong; Han, Xuedong

    2014-01-01

    This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation. PMID:24883405

  8. Micro liquid chromatography-mass spectrometry with direct liquid introduction used for separation and quantitation of all-trans- and 13-cis-retinoic acids and their 4-oxo metabolites in human plasma.

    PubMed

    Ranalder, U B; Lausecker, B B; Huselton, C

    1993-07-23

    The separation and quantitation of the pentafluorobenzyl derivatives of all-trans- and 13-cis-retinoic acids and their 4-oxo metabolites in human plasma on micro high-performance liquid chromatographic columns (0.32 mm I.D.) is described. The column outlet was directly coupled to the source of a quadrupole mass spectrometer via a simple SFC-frit interface. Negative ion chemical ionization conditions were obtained by coaxial introduction of ammonia as a reagent gas. A signal-to-noise ratio well above 3 was obtained for 1 pg of each analyte injected. The limit of quantitation calculated from spiked biological plasma extracts was 0.3 ng/ml.

  9. Detection of Interference Phase by Digital Computation of Quadrature Signals in Homodyne Laser Interferometry

    PubMed Central

    Rerucha, Simon; Buchta, Zdenek; Sarbort, Martin; Lazar, Josef; Cip, Ondrej

    2012-01-01

    We have proposed an approach to the interference phase extraction in the homodyne laser interferometry. The method employs a series of computational steps to reconstruct the signals for quadrature detection from an interference signal from a non-polarising interferometer sampled by a simple photodetector. The complexity trade-off is the use of laser beam with frequency modulation capability. It is analytically derived and its validity and performance is experimentally verified. The method has proven to be a feasible alternative for the traditional homodyne detection since it performs with comparable accuracy, especially where the optical setup complexity is principal issue and the modulation of laser beam is not a heavy burden (e.g., in multi-axis sensor or laser diode based systems). PMID:23202038

  10. Load Carrying Capacity of Metal Dowel Type Connections of Timber Structures

    NASA Astrophysics Data System (ADS)

    Gocál, Jozef

    2014-12-01

    This paper deals with the load-carrying capacity calculation of laterally loaded metal dowel type connections according to Eurocode 5. It is based on analytically derived, relatively complicated mathematical relationships, and thus it can be quite laborious for practical use. The aim is to propose a possible simplification of the calculation. Due to quite a great variability of fasteners' types and the connection arrangements, the attention is paid to the most commonly used nailed connections. There was performed quite an extensive parametric study focused on the calculation of load-carrying capacity of the simple shear and double shear plane nail connections, joining two or three timber parts of softwood or hardwood. Based on the study results, in conclusion there are presented simplifying recommendations for practical design.

  11. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  12. The Discounted Method and Equivalence of Average Criteria for Risk-Sensitive Markov Decision Processes on Borel Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavazos-Cadena, Rolando, E-mail: rcavazos@uaaan.m; Salem-Silva, Francisco, E-mail: frsalem@uv.m

    2010-04-15

    This note concerns discrete-time controlled Markov chains with Borel state and action spaces. Given a nonnegative cost function, the performance of a control policy is measured by the superior limit risk-sensitive average criterion associated with a constant and positive risk sensitivity coefficient. Within such a framework, the discounted approach is used (a) to establish the existence of solutions for the corresponding optimality inequality, and (b) to show that, under mild conditions on the cost function, the optimal value functions corresponding to the superior and inferior limit average criteria coincide on a certain subset of the state space. The approach ofmore » the paper relies on standard dynamic programming ideas and on a simple analytical derivation of a Tauberian relation.« less

  13. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  14. Cyanoacrylate Skin Surface Stripping and the 3S-Biokit Advent in Tropical Dermatology: A Look from Liège

    PubMed Central

    Piérard, Gérald E.; Piérard-Franchimont, Claudine; Paquet, Philippe; Hermanns-Lê, Trinh; Delvenne, Philippe

    2014-01-01

    In the dermatopathology field, some simple available laboratory tests require minimum equipment for establishing a diagnosis. Among them, the cyanoacrylate skin surface stripping (CSSS), formerly named skin surface biopsy or follicular biopsy, represents a convenient low cost procedure. It is a minimally invasive method collecting a continuous sheet of stratum corneum and horny follicular casts. In the vast majority of cases, it is painless and is unassociated with adverse events. CSSS can be performed in subjects of any age. The method has a number of applications in diagnostic dermatopathology and cosmetology, as well as in experimental dermatology settings. A series of derived analytic procedures include xerosis grading, comedometry, corneofungimetry, corneodynamics of stratum corneum renewal, corneomelametry, corneosurfametry, and corneoxenometry. PMID:25177726

  15. Investigation of a new flux-modulated permanent magnet brushless motor for EVs.

    PubMed

    Fan, Ying; Gu, Lingling; Luo, Yong; Han, Xuedong; Cheng, Ming

    2014-01-01

    This paper presents a flux-modulated direct drive (FMDD) motor. The key is to integrate the magnetic gear with the PM motor while removing the gear inner-rotor. Hence, the proposed FMDD motor can achieve the low-speed high-torque output and high-speed compact design requirements as well as high-torque density with a simple structure. The output power equation is analytically derived. By using finite element analysis (FEA), the static characteristics of the proposed motor are obtained. Based on these characteristics, the system mathematical model can be established. Hence, the evaluation of system performances is conducted by computer simulation using the Matlab/Simulink. A prototype is designed and built for experimentation. Experimental results are given to verify the theoretical analysis and simulation.

  16. Tunnelling in asymmetric double-well potentials: varying initial states

    NASA Astrophysics Data System (ADS)

    Cordes, J. G.; Das, A. K.

    2001-02-01

    Tunnelling in a double-well potential has features which are not derivable through a mere extension of the concepts used in the context of a single potential barrier with no confining walls on either side. Furthermore, an asymmetric double-well potential, relevant in many contemporary areas of physics and chemistry, possesses certain distinctive aspects in contrast to the relatively simple case of a symmetric double-well potential. In this paper a self-contained numerical and analytical study of these features is reported, and a theoretical model is presented with special attention being given to a unified treatment of both the symmetric and asymmetric cases. The popularly used pair-state model is critically examined, and the important role of the initial state (which is rarely discussed in the literature) is highlighted with specific examples.

  17. A sensitivity model for energy consumption in buildings. Part 1: Effect of exterior environment

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    A simple analytical model is developed for the simulation of seasonal heating and cooling loads of any class of buildings to complement available computerized techniques which make hourly, daily, and monthly calculations. An expression for the annual energy utilization index, which is a common measure of rating buildings having the same functional utilization, is derived to include about 30 parameters for both building interior and exterior environments. The sensitivity of a general class building to either controlled or uncontrolled weather parameters is examined. A hypothetical office type building, located at the Goldstone Space Communication Complex, Goldstone, California, is selected as an example for the numerical sensitivity evaluations. Several expressions of variations in local outside air temperature, pressure, solar radiation, and wind velocity are presented.

  18. Modeling and measuring limb fine-motor unsteadiness

    NASA Technical Reports Server (NTRS)

    Magdaleno, R. E.; Jex, H. R.; Allen, R. W.

    1973-01-01

    Fine-motor unsteadiness its properties, conceptual and analytical models, and experimental measurements is examined. Based on a data review, the tentative model derived includes: neuromuscular system, grip interface, and control system dynamic elements. The properties of this model change with muscle tension and match a wide group of extant data. A simple experiment was performed to investigate the amplitude/force relationships of the tremor mode. As the finger-pull force increased from 5 to 20 Newtons, the tremor mode frequency for a given individual stayed within roughly + or - 1 Hz over a range from 9-12 Hz, while the average magnitude of the rms tremor acceleration increased tenfold. A standardized test for making such measurements is given and applications in the fields of psychophysiological stress and strain measurements are mentioned.

  19. Zero-crossing statistics for non-Markovian time series

    NASA Astrophysics Data System (ADS)

    Nyberg, Markus; Lizana, Ludvig; Ambjörnsson, Tobias

    2018-03-01

    In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

  20. Derivation of phase functions from multiply scattered sunlight transmitted through a hazy atmosphere

    NASA Technical Reports Server (NTRS)

    Weinman, J. A.; Twitty, J. T.; Browning, S. R.; Herman, B. M.

    1975-01-01

    The intensity of sunlight multiply scattered in model atmospheres is derived from the equation of radiative transfer by an analytical small-angle approximation. The approximate analytical solutions are compared to rigorous numerical solutions of the same problem. Results obtained from an aerosol-laden model atmosphere are presented. Agreement between the rigorous and the approximate solutions is found to be within a few per cent. The analytical solution to the problem which considers an aerosol-laden atmosphere is then inverted to yield a phase function which describes a single scattering event at small angles. The effect of noisy data on the derived phase function is discussed.

  1. Frechet derivatives for shallow water ocean acoustic inverse problems

    NASA Astrophysics Data System (ADS)

    Odom, Robert I.

    2003-04-01

    For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.

  2. Exact Analytic Result of Contact Value for the Density in a Modified Poisson-Boltzmann Theory of an Electrical Double Layer.

    PubMed

    Lou, Ping; Lee, Jin Yong

    2009-04-14

    For a simple modified Poisson-Boltzmann (SMPB) theory, taking into account the finite ionic size, we have derived the exact analytic expression for the contact values of the difference profile of the counterion and co-ion, as well as of the sum (density) and product profiles, near a charged planar electrode that is immersed in a binary symmetric electrolyte. In the zero ionic size or dilute limit, these contact values reduce to the contact values of the Poisson-Boltzmann (PB) theory. The analytic results of the SMPB theory, for the difference, sum, and product profiles were compared with the results of the Monte-Carlo (MC) simulations [ Bhuiyan, L. B.; Outhwaite, C. W.; Henderson, D. J. Electroanal. Chem. 2007, 607, 54 ; Bhuiyan, L. B.; Henderson, D. J. Chem. Phys. 2008, 128, 117101 ], as well as of the PB theory. In general, the analytic expression of the SMPB theory gives better agreement with the MC data than the PB theory does. For the difference profile, as the electrode charge increases, the result of the PB theory departs from the MC data, but the SMPB theory still reproduces the MC data quite well, which indicates the importance of including steric effects in modeling diffuse layer properties. As for the product profile, (i) it drops to zero as the electrode charge approaches infinity; (ii) the speed of the drop increases with the ionic size, and these behaviors are in contrast with the predictions of the PB theory, where the product is identically 1.

  3. Comparison of NMR simulations of porous media derived from analytical and voxelized representations.

    PubMed

    Jin, Guodong; Torres-Verdín, Carlos; Toumelin, Emmanuel

    2009-10-01

    We develop and compare two formulations of the random-walk method, grain-based and voxel-based, to simulate the nuclear-magnetic-resonance (NMR) response of fluids contained in various models of porous media. The grain-based approach uses a spherical grain pack as input, where the solid surface is analytically defined without an approximation. In the voxel-based approach, the input is a computer-tomography or computer-generated image of reconstructed porous media. Implementation of the two approaches is largely the same, except for the representation of porous media. For comparison, both approaches are applied to various analytical and digitized models of porous media: isolated spherical pore, simple cubic packing of spheres, and random packings of monodisperse and polydisperse spheres. We find that spin magnetization decays much faster in the digitized models than in their analytical counterparts. The difference in decay rate relates to the overestimation of surface area due to the discretization of the sample; it cannot be eliminated even if the voxel size decreases. However, once considering the effect of surface-area increase in the simulation of surface relaxation, good quantitative agreement is found between the two approaches. Different grain or pore shapes entail different rates of increase of surface area, whereupon we emphasize that the value of the "surface-area-corrected" coefficient may not be universal. Using an example of X-ray-CT image of Fontainebleau rock sample, we show that voxel size has a significant effect on the calculated surface area and, therefore, on the numerically simulated magnetization response.

  4. Analytic first derivatives for a spin-adapted open-shell coupled cluster theory: Evaluation of first-order electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta@uni-mainz.de; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    2014-09-14

    An analytic scheme is presented for the evaluation of first derivatives of the energy for a unitary group based spin-adapted coupled cluster (CC) theory, namely, the combinatoric open-shell CC (COSCC) approach within the singles and doubles approximation. The widely used Lagrange multiplier approach is employed for the derivation of an analytical expression for the first derivative of the energy, which in combination with the well-established density-matrix formulation, is used for the computation of first-order electrical properties. Derivations of the spin-adapted lambda equations for determining the Lagrange multipliers and the expressions for the spin-free effective density matrices for the COSCC approachmore » are presented. Orbital-relaxation effects due to the electric-field perturbation are treated via the Z-vector technique. We present calculations of the dipole moments for a number of doublet radicals in their ground states using restricted open-shell Hartree-Fock (ROHF) and quasi-restricted HF (QRHF) orbitals in order to demonstrate the applicability of our analytic scheme for computing energy derivatives. We also report calculations of the chlorine electric-field gradients and nuclear quadrupole-coupling constants for the CCl, CH{sub 2}Cl, ClO{sub 2}, and SiCl radicals.« less

  5. Implementing a Matrix-free Analytical Jacobian to Handle Nonlinearities in Models of 3D Lithospheric Deformation

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Popov, A.

    2015-12-01

    The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results with those obtained with a finite difference approximation of the Jacobian. This project is funded by ERC Starting Grant 258830 and computer facilities were provided by Jülich supercomputer center (Germany).

  6. An analytical solution to assess the SH seismoelectric response of the vadose zone

    NASA Astrophysics Data System (ADS)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-03-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a one-dimensional soil constituted by a single layer on top of a half space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the electric coseismic field, whereas it is the opposite using compressional waves as shown by theoretical and experimental results. This fact should encourage the performance of field and laboratory tests to check the viability of SHTE seismoelectrics as a near surface prospecting/monitoring tool.

  7. An analytical solution to assess the SH seismoelectric response of the vadose zone

    NASA Astrophysics Data System (ADS)

    Monachesi, L. B.; Zyserman, F. I.; Jouniaux, L.

    2018-06-01

    We derive an analytical solution of the seismoelectric conversions generated in the vadose zone, when this region is crossed by a pure shear horizontal (SH) wave. Seismoelectric conversions are induced by electrokinetic effects linked to relative motions between fluid and porous media. The considered model assumes a 1D soil constituted by a single layer on top of a half-space in contact at the water table, and a shearing force located at the earth's surface as the wave source. The water table is an interface expected to induce a seismoelectric interfacial response (IR). The top layer represents a porous rock in which porous space is partially saturated by water and air, while the half-space is completely saturated with water, representing the saturated zone. The analytical expressions for the coseismic fields and the interface responses, both electric and magnetic, are derived by solving Pride's equations with proper boundary conditions. An approximate analytical expression of the solution is also obtained, which is very simple and applicable in a fairly broad set of situations. Hypothetical scenarios are proposed to study and analyse the dependence of the electromagnetic fields on various parameters of the medium. An analysis of the approximate solution is also made together with a comparison to the exact solution. The main result of the present analysis is that the amplitude of the interface response generated at the water table is found to be proportional to the jump in the electric current density, which in turn depends on the saturation contrast, poro-mechanical and electrical properties of the medium and on the amplitude of the solid displacement produced by the source. This result is in agreement with the one numerically obtained by the authors, which has been published in a recent work. We also predict the existence of an interface response located at the surface, and that the electric interface response is several orders of magnitude bigger than the electric coseismic field, whereas it is the opposite using compressional waves as shown by theoretical and experimental results. This fact should encourage the performance of field and laboratory tests to check the viability of SHTE seismoelectrics as a near surface prospecting/monitoring tool.

  8. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  9. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE PAGES

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; ...

    2017-07-10

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  10. Quantitative determination of carcinogenic mycotoxins in human and animal biological matrices and animal-derived foods using multi-mycotoxin and analyte-specific high performance liquid chromatography-tandem mass spectrometric methods.

    PubMed

    Cao, Xiaoqin; Li, Xiaofei; Li, Jian; Niu, Yunhui; Shi, Lu; Fang, Zhenfeng; Zhang, Tao; Ding, Hong

    2018-01-15

    A sensitive and reliable multi-mycotoxin-based method was developed to identify and quantify several carcinogenic mycotoxins in human blood and urine, as well as edible animal tissues, including muscle and liver tissue from swine and chickens, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). For the toxicokinetic studies with individual mycotoxins, highly sensitive analyte-specific LC-MS/MS methods were developed for rat plasma and urine. Sample purification consisted of a rapid 'dilute and shoot' approach in urine samples, a simple 'dilute, evaporate and shoot' approach in plasma samples and a 'QuEChERS' procedure in edible animal tissues. The multi-mycotoxin and analyte-specific methods were validated in-house: The limits of detection (LOD) for the multi-mycotoxin and analyte-specific methods ranged from 0.02 to 0.41 μg/kg (μg/L) and 0.01 to 0.19 μg/L, respectively, and limits of quantification (LOQ) between 0.10 to 1.02 μg/kg (μg/L) and 0.09 to 0.47 μg/L, respectively. Apparent recoveries of the samples spiked with 0.25 to 4 μg/kg (μg/L) ranged from 60.1% to 109.8% with relative standard deviations below 15%. The methods were successfully applied to real samples. To the best of our knowledge, this is the first study carried out using a small group of patients from the Chinese population with hepatocellular carcinoma to assess their exposure to carcinogenic mycotoxins using biomarkers. Finally, the multi-mycotoxin method is a useful analytical method for assessing exposure to mycotoxins edible in animal tissues. The analyte-specific methods could be useful during toxicokinetic and toxicological studies. Copyright © 2017. Published by Elsevier B.V.

  11. Enabling quaternion derivatives: the generalized HR calculus

    PubMed Central

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C.; Mandic, Danilo P.

    2015-01-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis. PMID:26361555

  12. Enabling quaternion derivatives: the generalized HR calculus.

    PubMed

    Xu, Dongpo; Jahanchahi, Cyrus; Took, Clive C; Mandic, Danilo P

    2015-08-01

    Quaternion derivatives exist only for a very restricted class of analytic (regular) functions; however, in many applications, functions of interest are real-valued and hence not analytic, a typical case being the standard real mean square error objective function. The recent HR calculus is a step forward and provides a way to calculate derivatives and gradients of both analytic and non-analytic functions of quaternion variables; however, the HR calculus can become cumbersome in complex optimization problems due to the lack of rigorous product and chain rules, a consequence of the non-commutativity of quaternion algebra. To address this issue, we introduce the generalized HR (GHR) derivatives which employ quaternion rotations in a general orthogonal system and provide the left- and right-hand versions of the quaternion derivative of general functions. The GHR calculus also solves the long-standing problems of product and chain rules, mean-value theorem and Taylor's theorem in the quaternion field. At the core of the proposed GHR calculus is quaternion rotation, which makes it possible to extend the principle to other functional calculi in non-commutative settings. Examples in statistical learning theory and adaptive signal processing support the analysis.

  13. Comparative spectral analysis of veterinary powder product by continuous wavelet and derivative transforms

    NASA Astrophysics Data System (ADS)

    Dinç, Erdal; Kanbur, Murat; Baleanu, Dumitru

    2007-10-01

    Comparative simultaneous determination of chlortetracycline and benzocaine in the commercial veterinary powder product was carried out by continuous wavelet transform (CWT) and classical derivative transform (or classical derivative spectrophotometry). In this quantitative spectral analysis, two proposed analytical methods do not require any chemical separation process. In the first step, several wavelet families were tested to find an optimal CWT for the overlapping signal processing of the analyzed compounds. Subsequently, we observed that the coiflets (COIF-CWT) method with dilation parameter, a = 400, gives suitable results for this analytical application. For a comparison, the classical derivative spectrophotometry (CDS) approach was also applied to the simultaneous quantitative resolution of the same analytical problem. Calibration functions were obtained by measuring the transform amplitudes corresponding to zero-crossing points for both CWT and CDS methods. The utility of these two analytical approaches were verified by analyzing various synthetic mixtures consisting of chlortetracycline and benzocaine and they were applied to the real samples consisting of veterinary powder formulation. The experimental results obtained from the COIF-CWT approach were statistically compared with those obtained by classical derivative spectrophotometry and successful results were reported.

  14. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    NASA Astrophysics Data System (ADS)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which new ASTA filter determined Andezite boundaries from surrounded more accurately than other filters. Keywords: Horizontal derivative, Vertical derivative, Tilt angle, Analytic signal, ASTA, Sar-Cheshme.

  15. Fast computation of derivative based sensitivities of PSHA models via algorithmic differentiation

    NASA Astrophysics Data System (ADS)

    Leövey, Hernan; Molkenthin, Christian; Scherbaum, Frank; Griewank, Andreas; Kuehn, Nicolas; Stafford, Peter

    2015-04-01

    Probabilistic seismic hazard analysis (PSHA) is the preferred tool for estimation of potential ground-shaking hazard due to future earthquakes at a site of interest. A modern PSHA represents a complex framework which combines different models with possible many inputs. Sensitivity analysis is a valuable tool for quantifying changes of a model output as inputs are perturbed, identifying critical input parameters and obtaining insight in the model behavior. Differential sensitivity analysis relies on calculating first-order partial derivatives of the model output with respect to its inputs. Moreover, derivative based global sensitivity measures (Sobol' & Kucherenko '09) can be practically used to detect non-essential inputs of the models, thus restricting the focus of attention to a possible much smaller set of inputs. Nevertheless, obtaining first-order partial derivatives of complex models with traditional approaches can be very challenging, and usually increases the computation complexity linearly with the number of inputs appearing in the models. In this study we show how Algorithmic Differentiation (AD) tools can be used in a complex framework such as PSHA to successfully estimate derivative based sensitivities, as is the case in various other domains such as meteorology or aerodynamics, without no significant increase in the computation complexity required for the original computations. First we demonstrate the feasibility of the AD methodology by comparing AD derived sensitivities to analytically derived sensitivities for a basic case of PSHA using a simple ground-motion prediction equation. In a second step, we derive sensitivities via AD for a more complex PSHA study using a ground motion attenuation relation based on a stochastic method to simulate strong motion. The presented approach is general enough to accommodate more advanced PSHA studies of higher complexity.

  16. Analyticity without Differentiability

    ERIC Educational Resources Information Center

    Kirillova, Evgenia; Spindler, Karlheinz

    2008-01-01

    In this article we derive all salient properties of analytic functions, including the analytic version of the inverse function theorem, using only the most elementary convergence properties of series. Not even the notion of differentiability is required to do so. Instead, analytical arguments are replaced by combinatorial arguments exhibiting…

  17. Are Higher Education Institutions Prepared for Learning Analytics?

    ERIC Educational Resources Information Center

    Ifenthaler, Dirk

    2017-01-01

    Higher education institutions and involved stakeholders can derive multiple benefits from learning analytics by using different data analytics strategies to produce summative, real-time, and predictive insights and recommendations. However, are institutions and academic as well as administrative staff prepared for learning analytics? A learning…

  18. Optimization of Turbine Engine Cycle Analysis with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan; Hendricks, Eric; Chin, Jeffrey; Gray, Justin; Moore, Kenneth T.

    2016-01-01

    A new engine cycle analysis tool, called Pycycle, was recently built using the OpenMDAO framework. This tool uses equilibrium chemistry based thermodynamics, and provides analytic derivatives. This allows for stable and efficient use of gradient-based optimization and sensitivity analysis methods on engine cycle models, without requiring the use of finite difference derivative approximation methods. To demonstrate this, a gradient-based design optimization was performed on a multi-point turbofan engine model. Results demonstrate very favorable performance compared to an optimization of an identical model using finite-difference approximated derivatives.

  19. Theory of negative refraction in periodic stratified metamaterials.

    PubMed

    Rukhlenko, Ivan D; Premaratne, Malin; Agrawal, Govind P

    2010-12-20

    We present a general theory of negative refraction in periodic stratified heterostructures with an arbitrary number of homogeneous, isotropic, nonmagnetic layers in a unit cell. With a 4×4-matrix technique, we derive analytic expressions for the normal modes of such a heterostructure slab, introduce the average refraction angles of the energy flow and wavevector for the TE- and TM-polarized plane waves falling obliquely on the slab, and derive expressions for the reflectivity and transmissivity of the whole slab. For a specific case, in which all layers in a unit cell are much thinner than the wavelength of light, we obtain approximate simple formulae for the effective refraction angles. Using the example of a semiconductor heterostructure slab with two layers in a unit cell, we demonstrate that ultrathin layers are preferable for metamaterial applications because they enable higher transmissivity within the frequency band of negative refraction. Our theory can be used to study the optical properties of any stratified metamaterial, irrespective of whether semiconductors or metals are employed for fabricating its various layers, because it includes absorption within each layer.

  20. Improved alternating gradient transport and focusing of neutral molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnins, Juris; Lambertson, Glen; Gould, Harvey

    2001-12-02

    Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describemore » a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed.« less

  1. A porous media theory for characterization of membrane blood oxygenation devices

    NASA Astrophysics Data System (ADS)

    Sano, Yoshihiko; Adachi, Jun; Nakayama, Akira

    2013-07-01

    A porous media theory has been proposed to characterize oxygen transport processes associated with membrane blood oxygenation devices. For the first time, a rigorous mathematical procedure based a volume averaging procedure has been presented to derive a complete set of the governing equations for the blood flow field and oxygen concentration field. As a first step towards a complete three-dimensional numerical analysis, one-dimensional steady case is considered to model typical membrane blood oxygenator scenarios, and to validate the derived equations. The relative magnitudes of oxygen transport terms are made clear, introducing a dimensionless parameter which measures the distance the oxygen gas travels to dissolve in the blood as compared with the blood dispersion length. This dimensionless number is found so large that the oxygen diffusion term can be neglected in most cases. A simple linear relationship between the blood flow rate and total oxygen transfer rate is found for oxygenators with sufficiently large membrane surface areas. Comparison of the one-dimensional analytic results and available experimental data reveals the soundness of the present analysis.

  2. Sample preparation combined with electroanalysis to improve simultaneous determination of antibiotics in animal derived food samples.

    PubMed

    da Silva, Wesley Pereira; de Oliveira, Luiz Henrique; Santos, André Luiz Dos; Ferreira, Valdir Souza; Trindade, Magno Aparecido Gonçalves

    2018-06-01

    A procedure based on liquid-liquid extraction (LLE) and phase separation using magnetically stirred salt-induced high-temperature liquid-liquid extraction (PS-MSSI-HT-LLE) was developed to extract and pre-concentrate ciprofloxacin (CIPRO) and enrofloxacin (ENRO) from animal food samples before electroanalysis. Firstly, simple LLE was used to extract the fluoroquinolones (FQs) from animal food samples, in which dilution was performed to reduce interference effects to below a tolerable threshold. Then, adapted PS-MSSI-HT-LLE protocols allowed re-extraction and further pre-concentration of target analytes in the diluted acid samples for simultaneous electrochemical quantification at low concentration levels. To improve the peak separation, in simultaneous detection, a baseline-corrected second-order derivative approach was processed. These approaches allowed quantification of target FQs from animal food samples spiked at levels of 0.80 to 2.00 µmol L -1 in chicken meat, with recovery values always higher than 80.5%, as well as in milk samples spiked at 4.00 µmol L -1 , with recovery values close to 70.0%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An accurate behavioral model for single-photon avalanche diode statistical performance simulation

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Zhao, Tingchen; Li, Ding

    2018-01-01

    An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.

  4. Analytical Theory of the Destruction Terms in Dissipation Rate Transport Equations

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Zhou, Ye

    1996-01-01

    Modeled dissipation rate transport equations are often derived by invoking various hypotheses to close correlations in the corresponding exact equations. D. C. Leslie suggested that these models might be derived instead from Kraichnan's wavenumber space integrals for inertial range transport power. This suggestion is applied to the destruction terms in the dissipation rate equations for incompressible turbulence, buoyant turbulence, rotating incompressible turbulence, and rotating buoyant turbulence. Model constants like C(epsilon 2) are expressed as integrals; convergence of these integrals implies the absence of Reynolds number dependence in the corresponding destruction term. The dependence of C(epsilon 2) on rotation rate emerges naturally; sensitization of the modeled dissipation rate equation to rotation is not required. A buoyancy related effect which is absent in the exact transport equation for temperature variance dissipation, but which sometimes improves computational predictions, also arises naturally. Both the presence of this effect and the appropriate time scale in the modeled transport equation depend on whether Bolgiano or Kolmogorov inertial range scaling applies. A simple application of these methods leads to a preliminary, dissipation rate equation for rotating buoyant turbulence.

  5. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  6. Post hoc support vector machine learning for impedimetric biosensors based on weak protein-ligand interactions.

    PubMed

    Rong, Y; Padron, A V; Hagerty, K J; Nelson, N; Chi, S; Keyhani, N O; Katz, J; Datta, S P A; Gomes, C; McLamore, E S

    2018-04-30

    Impedimetric biosensors for measuring small molecules based on weak/transient interactions between bioreceptors and target analytes are a challenge for detection electronics, particularly in field studies or in the analysis of complex matrices. Protein-ligand binding sensors have enormous potential for biosensing, but achieving accuracy in complex solutions is a major challenge. There is a need for simple post hoc analytical tools that are not computationally expensive, yet provide near real time feedback on data derived from impedance spectra. Here, we show the use of a simple, open source support vector machine learning algorithm for analyzing impedimetric data in lieu of using equivalent circuit analysis. We demonstrate two different protein-based biosensors to show that the tool can be used for various applications. We conclude with a mobile phone-based demonstration focused on the measurement of acetone, an important biomarker related to the onset of diabetic ketoacidosis. In all conditions tested, the open source classifier was capable of performing as well as, or better, than the equivalent circuit analysis for characterizing weak/transient interactions between a model ligand (acetone) and a small chemosensory protein derived from the tsetse fly. In addition, the tool has a low computational requirement, facilitating use for mobile acquisition systems such as mobile phones. The protocol is deployed through Jupyter notebook (an open source computing environment available for mobile phone, tablet or computer use) and the code was written in Python. For each of the applications, we provide step-by-step instructions in English, Spanish, Mandarin and Portuguese to facilitate widespread use. All codes were based on scikit-learn, an open source software machine learning library in the Python language, and were processed in Jupyter notebook, an open-source web application for Python. The tool can easily be integrated with the mobile biosensor equipment for rapid detection, facilitating use by a broad range of impedimetric biosensor users. This post hoc analysis tool can serve as a launchpad for the convergence of nanobiosensors in planetary health monitoring applications based on mobile phone hardware.

  7. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  8. A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.

    2014-01-01

    The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.

  9. Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.

    2010-03-01

    We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the infrared universality of higher-order cumulants and the method of superposition and show how to model BEC statistics in the actual traps. In particular, we find that the three-level trap model with matching the first four or five cumulants is enough to yield remarkably accurate results for all interesting quantities in the whole critical region. We derive an exact multinomial expansion for the noncondensate occupation probability distribution and find its high-temperature asymptotics (Poisson distribution) and corrections to it. Finally, we demonstrate that the critical exponents and a few known terms of the Taylor expansion of the universal functions, which were calculated previously from fitting the finite-size simulations within the phenomenological renormalization-group theory, can be easily obtained from the presented full analytical solutions for the mesoscopic BEC as certain approximations in the close vicinity of the critical point.

  10. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  11. Quantum noise in a transversely-pumped-cavity Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Nagy, Dávid; Kónya, Gábor; Domokos, Peter; Szirmai, Gergely

    2018-06-01

    We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose-Hubbard Hamiltonian for the atoms and a Heisenberg-Langevin equation for the lossy cavity-field mode. We assume that the atoms are prepared initially in the ground state of the lattice Hamiltonian and then start to interact with the cavity mode. We show that the cavity-field fluctuations originating from the dissipative outcoupling of photons from the resonator lead to vastly different effects in the different possible ground-state phases, i.e., the superfluid, the supersolid, the Mott and charge-density-wave phases. In the former two phases with the presence of a superfluid wavefunction, the quantum measurement noise appears as a driving term leading to depletion of the ground state. The timescale for the system to leave the ground state is presented in a simple analytical form. For the latter two incompressible phases, the quantum noise results in the fluctuation of the chemical potential. We derive an analytical expression for the corresponding broadening of the quasiparticle resonances.

  12. Intensity correction for multichannel hyperpolarized 13C imaging of the heart.

    PubMed

    Dominguez-Viqueira, William; Geraghty, Benjamin J; Lau, Justin Y C; Robb, Fraser J; Chen, Albert P; Cunningham, Charles H

    2016-02-01

    Develop and test an analytic correction method to correct the signal intensity variation caused by the inhomogeneous reception profile of an eight-channel phased array for hyperpolarized (13) C imaging. Fiducial markers visible in anatomical images were attached to the individual coils to provide three dimensional localization of the receive hardware with respect to the image frame of reference. The coil locations and dimensions were used to numerically model the reception profile using the Biot-Savart Law. The accuracy of the coil sensitivity estimation was validated with images derived from a homogenous (13) C phantom. Numerical coil sensitivity estimates were used to perform intensity correction of in vivo hyperpolarized (13) C cardiac images in pigs. In comparison to the conventional sum-of-squares reconstruction, improved signal uniformity was observed in the corrected images. The analytical intensity correction scheme was shown to improve the uniformity of multichannel image reconstruction in hyperpolarized [1-(13) C]pyruvate and (13) C-bicarbonate cardiac MRI. The method is independent of the pulse sequence used for (13) C data acquisition, simple to implement and does not require additional scan time, making it an attractive technique for multichannel hyperpolarized (13) C MRI. © 2015 Wiley Periodicals, Inc.

  13. Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system

    NASA Technical Reports Server (NTRS)

    Tso, W.; Hou, T. H.; Tiwari, S. N.

    1993-01-01

    Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables us to estimate the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance our knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.

  14. Linking Mechanics and Statistics in Epidermal Tissues

    NASA Astrophysics Data System (ADS)

    Kim, Sangwoo; Hilgenfeldt, Sascha

    2015-03-01

    Disordered cellular structures, such as foams, polycrystals, or living tissues, can be characterized by quantitative measurements of domain size and topology. In recent work, we showed that correlations between size and topology in 2D systems are sensitive to the shape (eccentricity) of the individual domains: From a local model of neighbor relations, we derived an analytical justification for the famous empirical Lewis law, confirming the theory with experimental data from cucumber epidermal tissue. Here, we go beyond this purely geometrical model and identify mechanical properties of the tissue as the root cause for the domain eccentricity and thus the statistics of tissue structure. The simple model approach is based on the minimization of an interfacial energy functional. Simulations with Surface Evolver show that the domain statistics depend on a single mechanical parameter, while parameter fluctuations from cell to cell play an important role in simultaneously explaining the shape distribution of cells. The simulations are in excellent agreement with experiments and analytical theory, and establish a general link between the mechanical properties of a tissue and its structure. The model is relevant to diagnostic applications in a variety of animal and plant tissues.

  15. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  16. Modal expansions in periodic photonic systems with material loss and dispersion

    NASA Astrophysics Data System (ADS)

    Wolff, Christian; Busch, Kurt; Mortensen, N. Asger

    2018-03-01

    We study band-structure properties of periodic optical systems composed of lossy and intrinsically dispersive materials. To this end, we develop an analytical framework based on adjoint modes of a lossy periodic electromagnetic system and show how the problem of linearly dependent eigenmodes in the presence of material dispersion can be overcome. We then formulate expressions for the band-structure derivative (∂ ω )/(∂ k ) (complex group velocity) and the local and total density of transverse optical states. Our exact expressions hold for 3D periodic arrays of materials with arbitrary dispersion properties and in general need to be evaluated numerically. They can be generalized to systems with two, one, or no directions of periodicity provided the fields are localized along nonperiodic directions. Possible applications are photonic crystals, metamaterials, metasurfaces composed of highly dispersive materials such as metals or lossless photonic crystals, and metamaterials or metasurfaces strongly coupled to resonant perturbations such as quantum dots or excitons in 2D materials. For illustration purposes, we analytically evaluate our expressions for some simple systems consisting of lossless dielectrics with one sharp Lorentzian material resonance added. By combining several Lorentz poles, this provides an avenue to perturbatively treat quite general material loss bands in photonic crystals.

  17. MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Samsing, Johan; Askar, Abbas; Giersz, Mirek

    2018-03-01

    We estimate the population of eccentric gravitational wave (GW) binary black hole (BBH) mergers forming during binary–single interactions in globular clusters (GCs), using ∼800 GC models that were evolved using the MOCCA code for star cluster simulations as part of the MOCCA-Survey Database I project. By re-simulating BH binary–single interactions extracted from this set of GC models using an N-body code that includes GW emission at the 2.5 post-Newtonian level, we find that ∼10% of all the BBHs assembled in our GC models that merge at present time form during chaotic binary–single interactions, and that about half of this sample have an eccentricity >0.1 at 10 Hz. We explicitly show that this derived rate of eccentric mergers is ∼100 times higher than one would find with a purely Newtonian N-body code. Furthermore, we demonstrate that the eccentric fraction can be accurately estimated using a simple analytical formalism when the interacting BHs are of similar mass, a result that serves as the first successful analytical description of eccentric GW mergers forming during three-body interactions in realistic GCs.

  18. The Development of MST Test Information for the Prediction of Test Performances

    ERIC Educational Resources Information Center

    Park, Ryoungsun; Kim, Jiseon; Chung, Hyewon; Dodd, Barbara G.

    2017-01-01

    The current study proposes novel methods to predict multistage testing (MST) performance without conducting simulations. This method, called MST test information, is based on analytic derivation of standard errors of ability estimates across theta levels. We compared standard errors derived analytically to the simulation results to demonstrate the…

  19. A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey.

    PubMed

    Silva, Pedro; Silva, Catarina L; Perestrelo, Rosa; Nunes, Fernando M; Câmara, José S

    2017-10-20

    Sugarcane honey (SCH) is one of the Madeira Island products par excellence and it is now popular worldwide. Its sui generis and peculiar sensory properties, explained by a variety of volatile compounds including furanic derivatives (FDs), arise mainly from manufacturing and storage conditions. A simple high-throughput approach based on semi-automatic microextraction by packed sorbent (MEPS) combined with ultra-high performance liquid chromatography (UHPLC) was developed and validated for identification and quantification of target FDs in sugarcane honey. A Quality-by-Design (QbD) approach was used as a powerful strategy to optimize analytical conditions for high throughput analysis of FDs in complex sugar-rich food matrices. The optimum point into MEPS-Method Operable Design: Region (MODR) was obtained with R-CX sorbent, acetonitrile (ACN) as elution solvent, three loading cycles and 500μL of sample volume. The optimum point into UHPLC-MODR was obtained with a CORTECS column operating at a temperature of 50°C, ACN as eluent and a flow rate of 125μLmin -1 . The robustness was demonstrated by Monte Carlo simulation and capability analysis for estimation of residual errors. The concentration-response relationship for all FDs were described by polynomial function models, being confirmed by Fisher variance (F-test). The% recoveries were in a range of 91.9-112.1%. Good method precision was observed, yielding relative standard deviations (RSDs) less than 4.9% for repeatability and 8.8% for intermediate precision. The limits of quantitation for the analytes ranged from 30.6 to 737.7μgkg -1 . The MEPS R-CX /UHPLC CORTECS -PDA method revealed an effective and potential analytical tool for SCH authenticity control based on target analysis of FDs allowing a strict control and differentiation from other similar or adulterated products. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. On the analytical form of the Earth's magnetic attraction expressed as a function of time

    NASA Technical Reports Server (NTRS)

    Carlheim-Gyllenskold, V.

    1983-01-01

    An attempt is made to express the Earth's magnetic attraction in simple analytical form using observations during the 16th to 19th centuries. Observations of the magnetic inclination in the 16th and 17th centuries are discussed.

  1. (U) Analytic First and Second Derivatives of the Uncollided Leakage for a Homogeneous Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favorite, Jeffrey A.

    2017-04-26

    The second-order adjoint sensitivity analysis methodology (2nd-ASAM), developed by Cacuci, has been applied by Cacuci to derive second derivatives of a response with respect to input parameters for uncollided particles in an inhomogeneous transport problem. In this memo, we present an analytic benchmark for verifying the derivatives of the 2nd-ASAM. The problem is a homogeneous sphere, and the response is the uncollided total leakage. This memo does not repeat the formulas given in Ref. 2. We are preparing a journal article that will include the derivation of Ref. 2 and the benchmark of this memo.

  2. Single Particle-Inductively Coupled Plasma Mass Spectroscopy Analysis of Metallic Nanoparticles in Environmental Samples with Large Dissolved Analyte Fractions.

    PubMed

    Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Scroggins, Richard P; Princz, Juliska I

    2016-10-18

    There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.

  3. A sensitive gas chromatographic-tandem mass spectrometric method for detection of alkylating agents in water: application to acrylamide in drinking water, coffee and snuff.

    PubMed

    Pérez, Hermes Licea; Osterman-Golkar, Siv

    2003-08-01

    A sensitive analytical method for the analysis of acrylamide and other electrophilic agents in water has been developed. The amino acid L-valine served as a nucleophilic trapping agent. The method was applied to the analysis of acrylamide in 0.2-1 mL samples of drinking water or Millipore-filtered water, brewed coffee, or water extracts of snuff. The reaction product, N-(2-carbamoylethyl)valine, was incubated with pentafluorophenyl isothiocyanate to give a pentafluorophenylthiohydantoin (PFPTH) derivative. This derivative was extracted with diethyl ether, separated from excess reagent and impurities by a simple extraction procedure, and analyzed by gas chromatography-tandem mass spectrometry. (2H3)Acrylamide, added before the reaction with L-valine, was used as internal standard. Acrylamide and the related compound, N-methylolacrylamide, gave the same PFPTH derivative. The concentrations of acrylamides were < or = 0.4 nmol L(-1) (< or = 0.03 microg acrylamide L(-1)) in water, 200 to 350 nmol L(-1) in brewed coffee, and 10 to 34 nmol g(-1) snuff in portion bags, respectively. The precision (the coefficient of variation was 5%) and accuracy of the method were good. The detection limit was considerably lower than that of previously published methods for the analysis of acrylamide.

  4. Simultaneous measurement of chlorophyll and astaxanthin in Haematococcus pluvialis cells by first-order derivative ultraviolet-visible spectrophotometry.

    PubMed

    Lababpour, Abdolmajid; Lee, Choul-Gyun

    2006-02-01

    A first-order derivative spectrophotometric method has been developed for the simultaneous measurement of chlorophyll and astaxanthin concentrations in Haematococcus pluvialis cells. Acetone was selected for the extraction of pigments because of its good sensitivity and low toxicity compared with other organic solvents tested; the tested solvents included acetone, methanol, hexane, chloroform, n-propanol, and acetonitrile. A first-order derivative spectrophotometric method was used to eliminate the effects of the overlaping of the chlorophyll and astaxanthin peaks. The linear ranges in 1D evaluation were from 0.50 to 20.0 microg x ml(-1) for chlorophyll and from 1.00 to 12.0 microg x ml(-1) for astaxanthin. The limits of detection of the analytical procedure were found to be 0.35 microg x ml(-1) for chlorophyll and 0.25 microg x ml(-1) for astaxanthin. The relative standard deviations for the determination of 7.0 microg x ml(-1) chlorophyll and 5.0 microg x ml(-1) astaxanthin were 1.2% and 1.1%, respectively. The procedure was found to be simple, rapid, and reliable. This method was successfully applied to the determination of chlorophyll and astaxanthin concentrations in H. pluvialis cells. A good agreement was achieved between the results obtained by the proposed method and HPLC method.

  5. Localization in finite vibroimpact chains: Discrete breathers and multibreathers.

    PubMed

    Grinberg, Itay; Gendelman, Oleg V

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  6. Establishment of reference intervals of clinical chemistry analytes for the adult population in Saudi Arabia: a study conducted as a part of the IFCC global study on reference values.

    PubMed

    Borai, Anwar; Ichihara, Kiyoshi; Al Masaud, Abdulaziz; Tamimi, Waleed; Bahijri, Suhad; Armbuster, David; Bawazeer, Ali; Nawajha, Mustafa; Otaibi, Nawaf; Khalil, Haitham; Kawano, Reo; Kaddam, Ibrahim; Abdelaal, Mohamed

    2016-05-01

    This study is a part of the IFCC-global study to derive reference intervals (RIs) for 28 chemistry analytes in Saudis. Healthy individuals (n=826) aged ≥18 years were recruited using the global study protocol. All specimens were measured using an Architect analyzer. RIs were derived by both parametric and non-parametric methods for comparative purpose. The need for secondary exclusion of reference values based on latent abnormal values exclusion (LAVE) method was examined. The magnitude of variation attributable to gender, ages and regions was calculated by the standard deviation ratio (SDR). Sources of variations: age, BMI, physical exercise and smoking levels were investigated by using the multiple regression analysis. SDRs for gender, age and regional differences were significant for 14, 8 and 2 analytes, respectively. BMI-related changes in test results were noted conspicuously for CRP. For some metabolic related parameters the ranges of RIs by non-parametric method were wider than by the parametric method and RIs derived using the LAVE method were significantly different than those without it. RIs were derived with and without gender partition (BMI, drugs and supplements were considered). RIs applicable to Saudis were established for the majority of chemistry analytes, whereas gender, regional and age RI partitioning was required for some analytes. The elevated upper limits of metabolic analytes reflects the existence of high prevalence of metabolic syndrome in Saudi population.

  7. Phonon scattering in nanoscale systems: lowest order expansion of the current and power expressions

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Frederiksen, Thomas; Brandbyge, Mads

    2006-04-01

    We use the non-equilibrium Green's function method to describe the effects of phonon scattering on the conductance of nano-scale devices. Useful and accurate approximations are developed that both provide (i) computationally simple formulas for large systems and (ii) simple analytical models. In addition, the simple models can be used to fit experimental data and provide physical parameters.

  8. On the first crossing distributions in fractional Brownian motion and the mass function of dark matter haloes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiotelis, Nicos; Popolo, Antonino Del, E-mail: adelpopolo@oact.inaf.it, E-mail: hiotelis@ipta.demokritos.gr

    We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions aremore » in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.« less

  9. A simple derivation of Lorentz self-force

    NASA Astrophysics Data System (ADS)

    Haque, Asrarul

    2014-09-01

    We derive the Lorentz self-force for a charged particle in arbitrary non-relativistic motion by averaging the retarded fields. The derivation is simple and at the same time pedagogically accessible. We obtain the radiation reaction for a charged particle moving in a circle. We pin down the underlying concept of mass renormalization.

  10. Keeping It Simple: Can We Estimate Malting Quality Potential Using an Isothermal Mashing Protocol and Common Laboratory Instrumentation?

    USDA-ARS?s Scientific Manuscript database

    Current methods for generating malting quality metrics have been developed largely to support commercial malting and brewing operations, providing accurate, reproducible analytical data to guide malting and brewing production. Infrastructure to support these analytical operations often involves sub...

  11. Analytical evaluation of current starch methods used in the international sugar industry: Part I

    USDA-ARS?s Scientific Manuscript database

    Several analytical starch methods currently exist in the international sugar industry that are used to prevent or mitigate starch-related processing challenges as well as assess the quality of traded end-products. These methods use simple iodometric chemistry, mostly potato starch standards, and uti...

  12. Spacecraft formation control using analytical finite-duration approaches

    NASA Astrophysics Data System (ADS)

    Ben Larbi, Mohamed Khalil; Stoll, Enrico

    2018-03-01

    This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.

  13. New method to design stellarator coils without the winding surface

    DOE PAGES

    Zhu, Caoxiang; Hudson, Stuart R.; Song, Yuntao; ...

    2017-11-06

    Finding an easy-to-build coils set has been a critical issue for stellarator design for decades. Conventional approaches assume a toroidal 'winding' surface, but a poorly chosen winding surface can unnecessarily constrain the coil optimization algorithm, This article presents a new method to design coils for stellarators. Each discrete coil is represented as an arbitrary, closed, one-dimensional curve embedded in three-dimensional space. A target function to be minimized that includes both physical requirements and engineering constraints is constructed. The derivatives of the target function with respect to the parameters describing the coil geometries and currents are calculated analytically. A numerical code,more » named flexible optimized coils using space curves (FOCUS), has been developed. Furthermore, applications to a simple stellarator configuration, W7-X and LHD vacuum fields are presented.« less

  14. Hypervelocity impact on shielded plates

    NASA Technical Reports Server (NTRS)

    Smith, James P.

    1993-01-01

    A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and it is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoretical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius versus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.

  15. Stabilizing skateboard speed-wobble with reflex delay.

    PubMed

    Varszegi, Balazs; Takacs, Denes; Stepan, Gabor; Hogan, S John

    2016-08-01

    A simple mechanical model of the skateboard-skater system is analysed, in which the effect of human control is considered by means of a linear proportional-derivative (PD) controller with delay. The equations of motion of this non-holonomic system are neutral delay-differential equations. A linear stability analysis of the rectilinear motion is carried out analytically. It is shown how to vary the control gains with respect to the speed of the skateboard to stabilize the uniform motion. The critical reflex delay of the skater is determined as the function of the speed. Based on this analysis, we present an explanation for the linear instability of the skateboard-skater system at high speed. Moreover, the advantages of standing ahead of the centre of the board are demonstrated from the viewpoint of reflex delay and control gain sensitivity. © 2016 The Author(s).

  16. Optical properties of relativistic plasma mirrors

    PubMed Central

    Vincenti, H.; Monchocé, S.; Kahaly, S.; Bonnaud, G.; Martin, Ph.; Quéré, F.

    2014-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for an entirely new class of optical components based on plasmas. The most promising of these are known as plasma mirrors, formed when an intense femtosecond laser ionizes a solid surface. These mirrors specularly reflect the main part of a laser pulse and can be used as active optical elements to manipulate its temporal and spatial properties. Unfortunately, the considerable pressures exerted by the laser can deform the mirror surface, unfavourably affecting the reflected beam and complicating, or even preventing, the use of plasma mirrors at ultrahigh intensities. Here we derive a simple analytical model of the basic physics involved in laser-induced deformation of a plasma mirror. We validate this model numerically and experimentally, and use it to show how such deformation might be mitigated by appropriate control of the laser phase. PMID:24614748

  17. Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Kushibiki, Junichi; Zou, Wei

    2006-10-01

    We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.

  18. Analytical approach to chromatic correction in the final focus system of circular colliders

    DOE PAGES

    Cai, Yunhai

    2016-11-28

    Here, a conventional final focus system in particle accelerators is systematically analyzed. We find simple relations between the parameters of two focus modules in the final telescope. Using the relations, we derive the chromatic Courant-Snyder parameters for the telescope. The parameters are scaled approximately according to (L*/βmore » $$*\\atop{y}$$)δ, where L* is the distance from the interaction point to the first quadrupole, β$$*\\atop{y}$$ the vertical beta function at the interaction point, and δ the relative momentum deviation. Most importantly, we show how to compensate its chromaticity order by order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles. The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path forward to 4% in the future.« less

  19. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  20. Assessment of Trading Partners for China's Rare Earth Exports Using a Decision Analytic Approach

    PubMed Central

    He, Chunyan; Lei, Yalin; Ge, Jianping

    2014-01-01

    Chinese rare earth export policies currently result in accelerating its depletion. Thus adopting an optimal export trade selection strategy is crucial to determining and ultimately identifying the ideal trading partners. This paper introduces a multi-attribute decision-making methodology which is then used to select the optimal trading partner. In the method, an evaluation criteria system is established to assess the seven top trading partners based on three dimensions: political relationships, economic benefits and industrial security. Specifically, a simple additive weighing model derived from an additive utility function is utilized to calculate, rank and select alternatives. Results show that Japan would be the optimal trading partner for Chinese rare earths. The criteria evaluation method of trading partners for China's rare earth exports provides the Chinese government with a tool to enhance rare earth industrial policies. PMID:25051534

Top