Science.gov

Sample records for derived fuel markets

  1. Fuel cell market applications

    SciTech Connect

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  2. 2009 Fuel Cell Market Report

    SciTech Connect

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  3. Derived enriched uranium market

    SciTech Connect

    Rutkowski, E.

    1996-12-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market.

  4. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  5. Alternative Fuels Market and Policy Trends (Presentation)

    SciTech Connect

    Schroeder, A. N.

    2013-09-01

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  6. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  7. Transportation Fuels Markets, PADD 5

    EIA Publications

    2015-01-01

    This study examines supply, demand, and distribution of transportation fuels in Petroleum Administration for Defense District (PADD) 5, a region that includes the western states of California, Arizona, Nevada, Oregon, Washington, Alaska, and Hawaii. For this study, transportation fuels include gasoline, diesel fuel, and jet fuel.

  8. 2008 Fuel Cell Technologies Market Report

    SciTech Connect

    Vincent, B.

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  9. 2008 Fuel Cell Technologies Market Report

    SciTech Connect

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  10. Binder enhanced refuse derived fuel

    DOEpatents

    Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.

    1996-01-01

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  11. Liquid Fuels Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Defines the objectives of the Liquid Fuels Market Model (LFMM), describes its basic approach, and provides detail on how it works. This report is intended as a reference document for model analysts, users, and the public.

  12. Transportation Fuels Markets, Midwest and Rocky Mountain

    EIA Publications

    2017-01-01

    A new study commissioned by the U.S. Energy Information Administration (EIA), finds that changes in North American energy markets over the past decade have strengthened the supply of transportation fuels including motor gasoline, distillates, and jet fuel in the Midwest and Rocky Mountain regions.

  13. 2007 Fuel Cell Technologies Market Report

    SciTech Connect

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  14. Market penetration scenarios for fuel cell vehicles

    SciTech Connect

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  15. Supply Security in Future Nuclear Fuel Markets

    SciTech Connect

    Seward, Amy M.; Wood, Thomas W.; Gitau, Ernest T.; Ford, Benjamin E.

    2013-11-18

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs – that is, reactors likely to be licensed and market ready over the next several decades – that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  16. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  17. 2010 Fuel Cell Technologies Market Report, June 2011

    SciTech Connect

    Not Available

    2011-06-01

    This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

  18. Fuel Cells Today: Early Market Applications and Learning Demonstrations

    SciTech Connect

    2015-09-09

    This MP3 provides an overview of early market fuel cell applications including today's commercially available fuel cells and "learning demonstrations" to validate fuel cell technology in real world conditions.

  19. Clean fuel for demanding environmental markets

    SciTech Connect

    Josewicz, W.; Natschke, D.E.

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  20. Market opportunities for fuel cells in Argentina

    SciTech Connect

    Marschoff, C.M.; Lande, J.; Espindola, S.

    1996-12-31

    Electricity in Argentina is mainly supplied through the National Interconnected System (NIS) grid, that manages the generation of all medium and large size utilities (thermal, hydro and nuclear) in the country. However, there are still large areas not linked to the NIS: electricity there either comes from utilities that mainly work with diesel groups, or is obtained by individuals from 1-5 kW generators (mostly IC powered, although some wind and solar devices also exist). Finally, in many low-income rural and semi-rural sites, there is no electric generation at all. In this context, we wish to show that there is an important market niche where fuel cells should be competitive and that this market size justifies a detailed investment analysis. Thus, we have performed economic calculations in three sites, which are representative samples of different structural situations, in which costs of fuel cell produced electricity are compared to presently existing devices. Also, calculations were carried out for use of fuel cells in Antarctica.

  1. The Northeast heating fuel market: Assessment and options

    SciTech Connect

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  2. Northeast Heating Fuel Market The, Assessment and Options

    EIA Publications

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  3. Developments in U.S. Alternative Fuel Markets

    EIA Publications

    2001-01-01

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  4. Fuel cell added value for early market applications

    NASA Astrophysics Data System (ADS)

    Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert

    2015-08-01

    Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.

  5. Data Analysis of Early Fuel Cell Market Demonstrations (Presentation)

    SciTech Connect

    Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

    2009-11-17

    Presentation about early fuel cell markets, the National Renewable Energy Laboratory's Hydrogen Secure Data Center and its role in data analysis and demonstrations, and composite data products, and results reported to multiple stakeholders.

  6. Markets and commercialization scenarios for emerging fuel cells in evolving electricity markets

    SciTech Connect

    Rastler, D.M.

    1996-12-31

    Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper introduces these structural changes and forces and discuss the implications, markets and commercialization scenarios for emerging fuel cells in evolving US electricity markets.

  7. The market for utility-scale fuel cell plants

    NASA Astrophysics Data System (ADS)

    Watanabe, Yasuo; Matsumoto, Masaru; Takasu, Kazuhiko

    This paper is devoted to a survey of the current technology and future market for utility-scale fuel cell plants. The phosphoric acid fuel cell (PAFC) is entering into the stage where it is practically available for use with natural gas. Large capacity plants such as 11, 5 and 1 MW have been installed and operated in Italy and Japan. Their efficiency ranges from 36 to 42%. The molten carbonate fuel cell (MCFC) is in the demonstrating stage, both the fuel cell and the balance-of-plant (BOP) for natural gas. Demonstration plants of 2 and 1 MW have been under construction in the USA and Japan. Their efficiency will range from 40 to 50%. The solid oxide fuel cell (SOFC) is in the experimental stage around 100 kW for co-generation. Its conceptual system design has been conducted for both centralized and dispersed power plant in a cooperation with Westinghouse and NEDO. A market survey is now considered on the basis that future fuel cells will run for around 40 000 h in a stable manner with competitive performance. The market for fuel cells will be roughly at 2000 MW in Japan by the year 2010. Half of them will be installed for electric companies on the utility scale. The market will be shared between PAFC and MCFC by 10 and 90%, respectively. Current technologies have not reached the stage to precisely forecast when fuel cells will be entering into the market on a utility scale. At the present time, it is worthwhile to consider how the technological and economic requirements will be definitely achieved. After achieving these requirements, fuel cells will be positively introduced and socially accepted as the best energy converting option to save energy and environmental impact. Further efforts will be devoted to meeting the market from the technological and economic aspects.

  8. Analysis of Fuel Cell Markets in Japan and the US: Experience Curve Development and Cost Reduction Disaggregation

    SciTech Connect

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    2016-07-15

    Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learning rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to

  9. The chemical industry, a novel market NICHE for fuel cells?

    SciTech Connect

    Dijkema, G.P.J.; Grievink, J.; Luteijn, C.P.; Weijnen, M.P.C.

    1996-12-31

    The chemical industry may be seen as a market for fuel cells. Fuel cells can be applied to upgrade by-product hydrogen. Fuel cell stacks may be fully integrated in the process system design to enhance the chemical process performance. In this case the arrangement of stacks is one of the unit operations which the chemical process is composed of. Finally trigeneration systems may be designed to produce chemicals, power and heat simultaneously, as equally important commercial products. Identification of novel market opportunities in the chemical industry can be done by a three-step method. The economic feasibility largely depends on stack lifetime and stack capital cost.

  10. Nuclear fuel: a new market dynamic

    SciTech Connect

    Kee, Edward D.

    2007-12-15

    After almost 20 years of low nuclear fuel prices, buyers have come to expect that these low and stable nuclear fuel prices will continue. This conventional wisdom may not reflect the significant changes and higher prices that growing demand, and the end of secondary sources of uranium and enrichment, will bring. (author)

  11. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  12. The economic characteristics of the US fuel ethanol market

    SciTech Connect

    Rask, K.N.; Rask, N.

    1993-12-31

    Ethanol has become an increasingly important fuel additive in the US over the past decade. Recent clean-air legislation has mandated the use of cleaner burning fuels in specific regions and seasons across the US. The fundamental role of fuel ethanol is changing from an octane enhancing gasoline substitute to one of a number of possible clean-air additives. In addition to these changing market conditions the institutional structure surrounding the ethanol market has changed. While there is a uniform national subsidy for ethanol use, each state has its own supplemental subsidy level which can vary from zero to $.40 per gallon. State subsidy levels have been declining. This paper uses data from 1984:1 through 1990:12 and explores the economic characteristics of the US ethanol market so that possible supply responses to new clean-air legislation can be addressed. Specific issues regarding whether we have individual state-level markets or a national market are discussed. The implications of this market structure are important for determining state and federal subsidies and their possible impact on budget deficits.

  13. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, Robert J.; Link, Dirk D.; Baltrus, John P.; Zandhuis, Paul H.

    2009-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  14. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2008-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

  15. Hydrogen PEM Fuel Cells: A Market Need Provides Research Opportunities

    SciTech Connect

    Payne, Terry L; Brown, Gilbert M; Bogomolny, David

    2010-01-01

    It has been said that necessity is the mother of invention. Another way this can be stated is that market demands create research opportunities. Because of the increasing demand for oil (especially for fueling vehicles utilizing internal combustion engines) and the fact that oil is a depleting (not renewable) energy source, a market need for a renewable source of energy has created significant opportunities for research. This paper addresses the research opportunities associated with producing a market competitive (i.e., high performance, low cost and durable) hydrogen proton exchange membrane (PEM) fuel cell. Of the many research opportunities, the primary ones to be addressed directly are: Alternative membrane materials, Alternative catalysts, Impurity effects, and Water transport. A status of Department of Energy-sponsored research in these areas will be summarized and the impact of each on the ability to develop a market-competitive hydrogen PEM fuel cell powered vehicle will be discussed. Also, activities of the International Partnership for the Hydrogen Economy in areas such as advanced membranes for fuel cells and materials for storage will be summarized.

  16. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  17. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect

    Not Available

    1990-06-01

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  18. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    Synthetic aviation kerosene (Syn. Jet-A), liquid methane (LCH4), and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Liquid hydrogen aircraft configurations, their fuel systems, and their ground requirements at the airport are identified. These aircraft appear viable, particularly for long haul use, where aircraft fueled with coal derived LH2 would consume 9 percent less coal resources than would aircraft fueled with coal derived Syn. Jet-A. Distribution of hydrogen from the point of manufacture to airports may pose problems. Synthetic JET-A would appear to cause fewer concerns to the air transportation industry. Of the three candidate fuels, LCH4 is the most energy efficient to produce, and an aircraft fueled with coal derived LCH4 may provide both the most efficient utilization of coal resources and the least expensive ticket as well.

  19. Production of distillate fuels from biomass-derived polyoxygenates

    DOEpatents

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  20. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  1. Fuel additive programs at crossroads of regulation, market dynamics

    SciTech Connect

    Adler, K.

    1998-01-01

    Fuel additive manufacturers, gasoline marketers and automakers seem to be forgetting about the power of the marketplace in their efforts to use additives to help reduce emissions and improve vehicle performance. Recall that the port fuel injector (PFI) and intake valve deposit (IVD) problems of the 1980s were addressed quickly by the fuels industry. In just a few months after the PFID problem surfaced, additive makers had detergents on the market, and fuel marketers followed up with an effective advertising campaign. Formal regulations came about a decade later. The solution to the BMW IVD problem was similar. BMW provided an enticing incentive for oil companies to differentiate through better additives and many did. Contrast those developments with the command-and-control approach that has been in effect since January 1995. EPA`s additive rule is working almost to perfection - if adherence to strict rules is considered. All gasolines in the US are additized, and a wide variety of packages have been developed that meet the regulatory standards. But by the measure of real-world performance, the circumstances can look quite different. And with industry finalizing a better IVD test and conducting research into the need for a combustion chamber deposit (CCD) regulation, now may be the time to limit the regulatory approach and let refiners and additive suppliers return to creating products that target excellence instead of regulatory minimums.

  2. Jet flames of a refuse derived fuel

    SciTech Connect

    Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof

    2009-04-15

    This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far into the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)

  3. Progress on coal-derived fuels for aviation systems

    NASA Technical Reports Server (NTRS)

    Witcofski, R. D.

    1978-01-01

    The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.

  4. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  5. Life cycle assessment of camelina oil derived biodiesel and jet fuel in the Canadian Prairies.

    PubMed

    Li, Xue; Mupondwa, Edmund

    2014-05-15

    This study evaluated the environmental impact of biodiesel and hydroprocessed renewable jet fuel derived from camelina oil in terms of global warming potential, human health, ecosystem quality, and energy resource consumption. The life cycle inventory is based on production activities in the Canadian Prairies and encompasses activities ranging from agricultural production to oil extraction and fuel conversion. The system expansion method is used in this study to avoid allocation and to credit input energy to co-products associated with the products displaced in the market during camelina oil extraction and fuel processing. This is the preferred allocation method for LCA analysis in the context of most renewable and sustainable energy programs. The results show that greenhouse gas (GHG) emissions from 1 MJ of camelina derived biodiesel ranged from 7.61 to 24.72 g CO2 equivalent and 3.06 to 31.01 kg CO2/MJ equivalent for camelina HRJ fuel. Non-renewable energy consumption for camelina biodiesel ranged from 0.40 to 0.67 MJ/MJ; HRJ fuel ranged from -0.13 to 0.52 MJ/MJ. Camelina oil as a feedstock for fuel production accounted for the highest contribution to overall environmental performance, demonstrating the importance of reducing environmental burdens during the agricultural production process. Attaining higher seed yield would dramatically lower environmental impacts associated with camelina seed, oil, and fuel production. The lower GHG emissions and energy consumption associated with camelina in comparison with other oilseed derived fuel and petroleum fuel make camelina derived fuel from Canadian Prairies environmentally attractive.

  6. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The anticipated depletion of our resources of natural gas and petroleum in a few decades has caused a search for renewable sources of fuel. Among the possibilities is the chemical conversion of waste and grown organic matter into gaseous or liquid fuels. The overall feasibility of such a system is considered from the technical, economic, and social viewpoints. Although there are a number of difficult problems to overcome, this preliminary study indicates that this option could provide between 4 and 10 percent of the U.S. energy needs. Estimated costs of fuels derived from grown organic material are appreciably higher than today's market price for fossil fuel. The cost of fuel derived from waste organics is competitive with fossil fuel prices. Economic and social reasons will prohibit the allocation of good food producing land to fuel crop production.

  7. Development of end-market uses for sludge derived oils

    SciTech Connect

    Campbell, H.W.; Houde, J. Jr.; Mohamed, H.H. El.

    1995-11-01

    Pyrolytic processes can be utilized to convert organic materials into solid and liquid fuels. The economic viability of most of these processes will be greatly affected by the end-use market for the oil, in terms of both a guaranteed outlet for the product and the potential revenue. Since these oils are not conventional products, significant effort may be required to establish firm markets. The {open_quotes}Oil from Sludge{close_quotes} (OFS) technology developed by the Wastewater Technology Centre (WTC) has been shown to produce oil yields ranging from 10 to 30% (on a dry weight basis) from dried sewage sludge. Efforts over the last several years have focused on developing high-value, non-combustion uses for the oil, primarily in the asphalt industry. Two applications which have shown significant promise are as an asphalt antistripping agent and as an additive for recycling aged asphalt. This paper will focus on the antistripping application. This research has been a joint effort of the WTC, the Canada Centre for Mineral and Energy Technology, the National Research Council of Canada and SNC-Lavalin. The program included preliminary characterization of the sludge derived oil (SDO), laboratory tests to evaluate its potential as an antistripping agent and to determine the effect of SDO on asphalt performance factors, field tests to evaluate engineering properties and a highway test trial on an operating highway. The study included that SDO is an effective antistripping agent and provides protection against moisture induced damage comparable to that achieved with commercial additives. The addition of SDO did not adversely affect the performance of asphalt concrete but did result in increased workability and compaction, and increased resistance to damage by low temperature, rutting and fatigue.

  8. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Not Available

    1991-03-22

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels development Unit (AFDU). The program will initially involve a continuation of the work performed under the Liquid Phase Methanol Program but will later draw upon information and technologies generated in current and future DOE-funded contracts, as well as test commercially available catalysts. 1 fig., 3 tabs.

  9. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  10. Designing the microturbine engine for waste-derived fuels.

    PubMed

    Seljak, Tine; Katrašnik, Tomaž

    2016-01-01

    Presented paper deals with adaptation procedure of a microturbine (MGT) for exploitation of refuse derived fuels (RDF). RDF often possess significantly different properties than conventional fuels and usually require at least some adaptations of internal combustion systems to obtain full functionality. With the methodology, developed in the paper it is possible to evaluate the extent of required adaptations by performing a thorough analysis of fuel combustion properties in a dedicated experimental rig suitable for testing of wide-variety of waste and biomass derived fuels. In the first part key turbine components are analyzed followed by cause and effect analysis of interaction between different fuel properties and design parameters of the components. The data are then used to build a dedicated test system where two fuels with diametric physical and chemical properties are tested - liquefied biomass waste (LW) and waste tire pyrolysis oil (TPO). The analysis suggests that exploitation of LW requires higher complexity of target MGT system as stable combustion can be achieved only with regenerative thermodynamic cycle, high fuel preheat temperatures and optimized fuel injection nozzle. Contrary, TPO requires less complex MGT design and sufficient operational stability is achieved already with simple cycle MGT and conventional fuel system. The presented approach of testing can significantly reduce the extent and cost of required adaptations of commercial system as pre-selection procedure of suitable MGT is done in developed test system. The obtained data can at the same time serve as an input for fine-tuning the processes for RDF production.

  11. Matched conversion sales in the nuclear fuel market

    SciTech Connect

    Fuller, D.M.

    1996-02-01

    The negotiations leading up to the Suspension Agreement with Russia focused solely on uranium and SWU, leaving conversion in its traditional role as the overlooked constituent of the fuel cycle. In fact, the initial agreement did not even distinguish U{sub 3}O{sub 8} from UF{sub 6}; it effectively ignored the conversion component contained in UF{sub 6} and the possibility of matched conversion sales. After some criticism from ConverDyn and others, The US Department of Commerce issued a clarification, confirming that all three major components of the fuel cycle can be sold under matched sales agreements. However, matched conversion sales remain somewhat of an enigma as few have been done and the logistics are poorly understood. Nonetheless, in a conversion market where supply and demand are closely balanced, secondary supplies, including those from matched sales, will likely play an important role in the evolution of conversion prices.

  12. Study of the competitive viability of minority fuel oil marketers. Final report

    SciTech Connect

    1981-09-30

    Previous studies on the competitive viability of the fuel oil heating market had addressed some of the unique problems facing minority fuel oil marketers (MFMs) within the total market sector (TMS). This study focused on identifying and developing quantitative information on MFMs in the TMS. The specific objective was to determine whether the business problems experienced by MFMs were directly related to their minority status or were characterstic of any firm in the TMS operating under comparable conditions. As an overall conclusion, thorough investigation of the MFMs considered to constitute the universe of minoriy firms within the TMS did not reveal any evidence of overt discrimination affecting the competitive viability of MFMs. Upon analysis, the problems reported by MFMs could not be reasonably ascribed to discrimination on the basis of their minority business status. The study, however, did point up problems unique to MFMs as the result of typical operational and financial characteristics. For example, MFMs, compared to the TMS norm, have not been in the market as long and are smaller in terms of total assets, number of employees, number of trucks, number of accounts and annual volume of oil delivered. Their primary customers are low-income families in urban areas. Financial indicators suggest that the average MFM does not have long-term financial stability. The basis for this overall conclusion, derived by analyses of information from MFMs, as well as many independent sources, is summarized in three parts: (1) MFM industry profile; (2) financial analyses; and (3) problem analyses.

  13. Test burning of tire-derived fuel in solid fuel combustors

    SciTech Connect

    Dennis, D.C.

    1994-12-31

    This study was commissioned to determine the overall viability of utilizing scrap tire chips, known as tire-derived fuel (TDF), as a supplemental fuel in conventional coal-fired boilers. The study involved actual tests at Monsanto Company`s W.G. Krummrich Plant in Sauget, Illinois, as well as general extrapolations as to the feasibility of using TDF at other sites. This report will show that TDF can be an excellent supplemental fuel supply, providing a cost-effective fuel source while helping to alleviate the dilemma of scrap tire disposal.

  14. The characteristics of organic sludge/sawdust derived fuel.

    PubMed

    Chen, Wei-Sheng; Chang, Fang-Chih; Shen, Yun-Hwei; Tsai, Min-Shing

    2011-05-01

    A fundamental study of the characteristics of a sludge refuse-derived fuel (RDF) and the combustion behaviors were done. The test data demonstrate good results for the development of energy recovery technology of organic sludge or waste. The ash deposit formation propensity has been based on pretreatment, temperature and the ratio of organic sludge to sawdust. The usage of organic sludge and waste as an alternative fuel is cost effective and has environmental benefits.

  15. Utilization of Refuse Derived Fuels by the United States Navy,

    DTIC Science & Technology

    1983-07-01

    makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economi- cally...fuel for use in a heat recove:y system. Refuse * derived fuels (MDF) can be in the form of raw rieiuse, %leaksified riuse, puw- dered refuse, gas, or...maximum allowable as specified in 40 CFR 261.24. A URI can theoretically produce steam at a lower cost than conventional methods being used today. These

  16. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  17. Fuel cell commercialization — beyond the 'Notice of Market Opportunity for Fuel Cells' (NOMO)

    NASA Astrophysics Data System (ADS)

    Serfass, J. A.; Glenn, D. R.

    1992-01-01

    The Notice of Market Opportunity for Fuel Cells (NOMO) was released in Oct. 1988 by the American Public Power Association. Its goal was to identify a manufacturer for commercializing a multi-megawatt fuel cell power plant with attractive cost and performance characteristics, supported by a realistic, yet aggressive commercialization plan, leading to mid-1990s application. Energy Research Corporation's program to commercialize its 2-MW internal-reforming carbonate fuel cell was selected. The program was refined in the development of the Principles and Framework for Commercializing Direct Fuel Cell Power Plants, which defines buyer responsibilities for promotion and coordination of information development, supplier responsibilities for meeting certain milestones and for sharing the results of success in a royalty agreement, and risk management features. Twenty-three electric and gas utilities in the US and Canada have joined the Fuel Cell Commercialization Group to support the buyers' obligations in this program. The City of Santa Clara, CA; Electric Power Research Institute; Los Angeles Department of Water and Power; Southern California Gas Company; Southern California Edison; National Rural Electric Cooperative Association; and Pacific Gas & Electric, have formed the Santa Clara Demonstration Group to build the first 2-MW power plant. The preliminary design for this demonstration is nearly complete. Integrated testing of a 20-kW stack with the complete balance-of-plant, has been successfully accomplished by Pacific Gas & Electric at its test facility in San Ramon, CA.

  18. Myeloid Derived Suppressor Cells: Fuel the Fire.

    PubMed

    Achyut, B R; Arbab, Ali S

    2014-08-01

    Low oxygen tension, hypoxia, is a characteristic of many tumors and associated with the poor prognosis. Hypoxia invites bone marrow derived cells (BMDCs) from bone marrow to the site of tumor. These recruited CXCR4+ BMDCs provide favorable environment for the tumor growth by acquiring pro-angiogenic phenotype such as CD45+VEGFR2+ Endothelial Progenitor Cells (EPC), or CD45+Tie2+ myeloid cells. CD11b+CD13+ myeloid population of the BMDCs modulate tumor progression. These myeloid populations retain immunosuppressive characteristics, for example, myeloid derived suppressor cells (MDSCs), and regulates immune- suppression by inhibiting cytotoxic T cell function. In addition, MDSCs were observed at the premetastatic niche of the distant organs in other tumors. Protumorigenic and prometastatic role of the myeloid cells provides a basis for therapeutic targeting of immunosuppression and thus inhibiting tumor development and metastasis.

  19. Energetic utilisation of refuse derived fuels from landfill mining.

    PubMed

    Rotheut, Martin; Quicker, Peter

    2017-02-19

    The residence of municipal solid waste within a landfill body results in a significant change of material properties. Experiences with the energetic utilisation of the burnable fractions from formerly landfilled waste are hardly documented, the influence of refuse derived fuels (RDF) from such materials on the performance of modern waste-to-energy plants is not sufficiently described in scientific literature. Therefore this study focuses on the energetic utilisation of refuse derived fuel from landfilled waste, processed in a mechanical waste treatment facility, and the impact of the material on the operation of the incineration plant. Additionally, the possibility of direct combustion of non-pre-treated excavated landfill material has been evaluated in the same facility. First, sampling and analysis of the fuel has been carried out. Based on this, a large-scale combustion experiment was planned and conducted in an industrial waste-to-energy plant. Steam mass flow rate, concentration of harmful substances in the raw gas, as well as total emissions of the facility have been monitored in detail. Furthermore, the influence of the landfilled material on the additive consumption has been determined. The combustion residues (bottom ash) were also sampled and analysed. Based on the evaluation of operating data and analysis of both fuel and residue, suitable thermal treatment approaches for the refuse-derived fuel and the non-pre-treated excavated material have been assessed.

  20. Production of jet fuels from coal-derived liquids

    SciTech Connect

    Knudson, C.L.

    1990-06-01

    Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

  1. Conversion of Pentose-Derived Furans into Hydrocarbon Fuels

    SciTech Connect

    Moens, L.; Johnson, D. K.

    2012-01-01

    We are interested in the conversion of biomass-derived hemicellulose into hydrocarbon molecules that can be used in the formulation of 'drop-in' fuels such as gasoline (C5-12), diesel (C10-20) and jet fuel (C9-16). Our focus lies on the use of furfuryl alcohol as a starting material since that is already produced commercially from hemicellulose-derived pentoses. The steps required to convert the latter into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. However, furfuryl alcohol readily polymerizes to form resins in the presence of an acid catalyst, and the exothermic oligomerization must be carried out under reaction control. This presentation will discuss our progress in the development of this sugar-to-hydrocarbon pathway.

  2. SERA Scenarios of Early Market Fuel Cell Electric Vehicle Introductions: Modeling Framework, Regional Markets, and Station Clustering

    SciTech Connect

    Bush, B.; Melaina, M.; Penev, M.; Daniel, W.

    2013-09-01

    This report describes the development and analysis of detailed temporal and spatial scenarios for early market hydrogen fueling infrastructure clustering and fuel cell electric vehicle rollout using the Scenario Evaluation, Regionalization and Analysis (SERA) model. The report provides an overview of the SERA scenario development framework and discusses the approach used to develop the nationwidescenario.

  3. Informal Market Survey of Training Issues: Heavy Duty Alternative Fuel Vehicles.

    ERIC Educational Resources Information Center

    Eckert, Doug

    The needs and opportunities in the heavy-duty alternative fuel vehicle training arena were examined in an informal marketing survey. A list of 277 potential respondents was compiled from the 220 individuals in the National Alternative Fuels Training Program database and 57 names identified from journals in the field of alternative fuels. When 2…

  4. Conversion of Biomass-Derived Furans into Hydrocarbon Fuels

    SciTech Connect

    Moens, L.; Johnson, D. K.

    2013-01-01

    One of the most studied chemical transformations of carbohydrates is their thermocatalytic dehydration to form furans. Cellulose-derived glucose is thereby converted into 5-hydroxymethylfurfuraldehyde (5-HMF), while the hemicellulose-derived pentoses (e.g., xylose, arabinose) form furfuraldehyde. Our objective is to identify new pathways to convert furfuryl alcohol into a mixture of aliphatic hydrocarbons that can be used as drop-in fuels for diesel (C10-20) and jet fuel (C9-16) blends. Furfuryl alcohol is produced commercially through hydrogenation of furfuraldehyde that is derived from hemicellulose-derived pentoses via acid-catalyzed dehydration. The steps that we are currently pursuing to convert furfuryl alcohol into hydrocarbons are 1) oligomerization of furfuryl alcohol to form dimers (C10) and trimers (C15), and 2) hydrotreatment of the dimers and trimers to produce a mixture of linear hydrocarbons with carbon chain lengths in the range of diesel and jet fuels. This presentation will discuss our progress in the development of this pathway.

  5. Development of alternative fuels from coal-derived syngas

    SciTech Connect

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  6. Microbial production of fatty acid-derived fuels and chemicals

    PubMed Central

    Lennen, Rebecca M; Pfleger, Brian F

    2013-01-01

    Fatty acid metabolism is an attractive route to produce liquid transportation fuels and commodity oleochemicals from renewable feedstocks. Recently, genes and enzymes, which comprise metabolic pathways for producing fatty acid-derived compounds (e.g. esters, alkanes, olefins, ketones, alcohols, polyesters) have been elucidated and used in engineered microbial hosts. The resulting strains often generate products at low percentages of maximum theoretical yields, leaving significant room for metabolic engineering. Economically viable processes will require strains to approach theoretical yields, particularly for replacement of petroleum-derived fuels. This review will describe recent progress toward this goal, highlighting the scientific discoveries of each pathway, ongoing biochemical studies to understand each enzyme, and metabolic engineering strategies that are being used to improve strain performance. PMID:23541503

  7. Refuse-derived fuels still a long-term goal

    SciTech Connect

    Singh, R.

    1981-11-17

    A report on the Institution of Civil Engineers' two-day international symposium held in London in November, titled ''The practical implications of the reuse of solid wastes''. Topics dealt with included: systems for mechanical separation, reclamation and re- use of secondary materials; refuse-derived fuels; use of raw refuse in land reclamation; methane recovery from landfills and direct landfill as a major disposal option.

  8. EIA model documentation: Electricity market module - electricity fuel dispatch

    SciTech Connect

    1997-01-01

    This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

  9. Development and evaluation of lime enhanced refuse-derived fuel (RDF) pellets

    SciTech Connect

    Ohlsson, O.O.

    1996-12-31

    The disposal of municipal solid waste (MSW) is of increasing concern for municipalities and state governments throughout the US. There are two technologies currently in use for the combustion of MSW: (1) mass burning in which unprocessed MSW is burned in a heat recovery furnace, and (2) a refuse-derived fuel (RDF) product, which consists of the organic (combustible) fraction of MSW which has been processed to produce a more homogeneous fuel product than raw MSW. The RDF is either marketed to outside users or combusted on-site in a dedicated or existing furnace. In an attempt to alleviate the problems encountered with RDF as a feedstock, Argonne National Laboratory (ANL) and the University of North Texas (UNT) under the sponsorship of the US Department of Energy (DOE) began a multi-phase research study to investigate the development of a low-cost binder that would improve the quality of RDF pellets.

  10. Combustion Of Poultry-Derived Fuel in a CFBC

    NASA Astrophysics Data System (ADS)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  11. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect

    Not Available

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  12. A fresh look at coal-derived liquid fuels

    SciTech Connect

    Paul, A.D.

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  13. Market survey of fuel cells in Mexico: Niche for low power portable systems

    NASA Astrophysics Data System (ADS)

    Ramírez-Salgado, Joel; Domínguez-Aguilar, Marco A.

    This work provides an overview of the potential market in Mexico for portable electronic devices to be potentially powered by direct methanol fuel cells. An extrapolation method based on data published in Mexico and abroad served to complete this market survey. A review of electronics consumption set the basis for the future forecast and technology assimilation. The potential market for fuel cells for mobile phones in Mexico will be around 5.5 billion USD by 2013, considering a cost of 41 USD per cell in a market of 135 million mobile phones. Likewise, the market for notebook computers, PDAs and other electronic devices will likely grow in the future, with a combined consumption of fuel cell technology equivalent to 1.6 billion USD by 2014.

  14. Transportation Fuels Markets, PADD 1 and PADD 3

    EIA Publications

    2016-01-01

    This study examines supply, consumption, and distribution of transportation fuels in Petroleum Administration for Defense Districts (PADDs) 1 and 3, or the U.S. East Coast and the Gulf Coast, respectively. The East Coast region includes states from Maine to Florida along the U.S. Atlantic Coast. The Gulf Coast region comprises states between New Mexico in the west to Alabama in the east along the Gulf of Mexico. For this study, transportation fuels include gasoline, diesel fuel and jet fuel. Residual fuel oil supply is also analyzed where applicable.

  15. Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)

    SciTech Connect

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-06-01

    This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

  16. Pathways for Biomass-Derived Lignin to Hydrocarbon Fuels

    SciTech Connect

    Laskar, Dhrubojyoti; Yang, Bin; Wang, Huamin; Lee, Guo-Shuh J.

    2013-09-01

    Production of hydrocarbon fuel from biomass-derived lignin sources with current version of biorefinery infrastructure would significantly improve the total carbon use in biomass and make biomass conversion more economically viable. Thus, developing specialty and commodity products from biomass derived-lignin has been an important industrial and scientific endeavor for several decades. However, deconstruction of lignin’s complex polymeric framework into low molecular weight reactive moieties amenable for deoxygenation and subsequent processing into hydrocarbons has been proven challenging. This review offers a comprehensive outlook on the existing body of work that has been devoted to catalytic processing of lignin derivatives into hydrocarbon fuels, focusing on: (1) The intrinsic complexity and characteristic structural features of biomass-derived lignin; (2) Existing processing technologies for the isolation and depolymerization of bulk lignin (including detailed mechanistic considerations); (3) Approaches aimed at significantly improving the yields of depolymerized lignin species amenable to catalytic upgrading, and; (4) Catalytic upgrading, using aqueous phase processes for transforming depolymerized lignin to hydrocarbon derivatives. Technical barriers and challenges to the valorization of lignin are highlighted throughout. The central goal of this review is to present an array of strategies that have been reported to obtain lignin, deconstruct it to reactive intermediates, and reduce its substantial oxygen content to yield hydrocarbon liquids. In this regard, reaction networks with reference to studies of lignin model compounds are exclusively surveyed. Special attention is paid to catalytic hydrodeoxygenation, hydrogenolyis and hydrogenation. Finally, this review addresses important features of lignin that are vital to economic success of hydrocarbon production.

  17. Impact study on the use of biomass-derived fuels in gas turbines for power generation

    SciTech Connect

    Moses, C A; Bernstein, H

    1994-01-01

    This report evaluates the properties of fuels derived from biomass, both gaseous and liquid, against the fuel requirements of gas turbine systems for gernating electrical power. The report attempts to be quantitative rather than merely qualitative to establish the significant variations in the properties of biomass fuels from those of conventional fuels. Three general categories are covered: performance, durability, and storage and handling.

  18. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  19. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    PubMed

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper.

  20. Fluidized bed gasification of waste-derived fuels.

    PubMed

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2010-07-01

    Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

  1. Fluidized bed gasification of waste-derived fuels

    SciTech Connect

    Arena, Umberto; Zaccariello, Lucio; Mastellone, Maria Laura

    2010-07-15

    Five alternative waste-derived fuels obtained from municipal solid waste and different post-consumer packaging were fed in a pilot-scale bubbling fluidized bed gasifier, having a maximum feeding capacity of 100 kg/h. The experimental runs utilized beds of natural olivine, quartz sand or dolomite, fluidized by air, and were carried out under various values of equivalence ratio. The process resulted technically feasible with all the materials tested. The olivine, a neo-silicate of Fe and Mg with an olive-green colour, has proven to be a good candidate to act as a bed catalyst for tar removal during gasification of polyolefin plastic wastes. Thanks to its catalytic activity it is possible to obtain very high fractions of hydrogen in the syngas (between 20% and 30%), even using air as the gasifying agent, i.e. in the most favourable economical conditions and with the simplest plant and reactor configuration. The catalytic activity of olivine was instead reduced or completely inhibited when waste-derived fuels from municipal solid wastes and aggregates of different post-consumer plastic packagings were fed. Anyhow, these materials have given acceptable performance, yielding a syngas of sufficient quality for energy applications after an adequate downstream cleaning.

  2. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  3. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  4. DME: The next market breakthrough or a methanol-related fuel

    SciTech Connect

    Gradassi, M.J.; Basu, A.; Fleisch, T.H.; Masin, J.G.

    1995-12-31

    Amoco has been involved for several years in the development of technology for the synthesis of liquid fuels from remote natural gas. In a recent collaborative work with Haldor Topsoe S/A, AVL LIST GmbH and Navistar, Amoco identified Dimethyl Ether (DME) as a new, ultraclean alternative fuel for diesel engines. DME can be handled like liquefied petroleum gas (LPG), itself an important alternative transportation fuel. However, unlike most other fuels, the raw exhaust of diesel engines fueled with DME satisfies California 1998 ULEV (Ultra Low Emission Vehicle) standards, now. DME`s greenhouse gas emissions, measured from cradle-to-grave, are lowest among all transportation fuel alternatives. Today, DME is manufactured from methanol and is used primarily as an aerosol propellant because of its attractive physical properties and its environmentally benign characteristics. Haldor Topsoe S/A developed a process for the direct production of DME from natural gas. The process can be used for the large scale manufacture of DME using predominantly single-train process units. When manufactured at large scale, DME can be produced and marketed at a cost comparable to conventional transportation fuels. The market driven demand for DME as a transportation fuel is envisioned to grow in three stages. Initially, DME is envisioned to be produced via methanol dehydration, followed by retrofits, and lastly by large scale dedicated plants. DME fuel demonstration fleet tests are scheduled to commence during 1996. Today`s methanol producer likely also will be tomorrow`s DME producer.

  5. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  6. Refuse derived fuels: New technologies for successful operations

    SciTech Connect

    Ohlsson, O.O.

    1988-01-01

    The rising cost of refuse disposal, coupled with the decreasing availability of land suitable for the siting of new landfills have greatly accelerated the use of refuse-derived fuel (RDF) processing systems as a viable technology of the disposal of our municipal solid waste. The energy products produces by an RDF processing facility-electricity and/or steam, as well as the recovery of other valuable materials from the waste stream, coupled with the inherent flexibility of the RDF technology to be used in varying forms, over a wide range of combustion technologies, makes it an extremely desirable waste-to-energy system. Use of an RDF prepared fuel product can also provide a potentially beneficial reduction of air emissions, and trace metals in the ash when compared to the burning of unprocessed solid waste. This paper discusses the problems which have been encountered in the past with RDF systems; the current status of these facilities including institutional considerations and system economics; and the future potential of RDF processing systems. 6 refs., 5 figs.

  7. Densified refuse derived fuel: An alternative energy source

    SciTech Connect

    Ohlsson, O. ); Daugherty, K.E. ); Venables, B.J. )

    1986-01-01

    The objective of this research effort is to produce an environmentally acceptable, chemically/biologically stable, and storable densified refuse derived fuel (dRDF) pellet. To accomplish this, a suitable binder(s) must be used. Over 150 binders were investigated by a laboratory screening procedure. Thirteen binder/binder combinations of the initial group of 150 binders were selected for further pilot plant studies. Approximately seven tons of RDF from Ames, Iowa and Refcom, Pompano Beach, Florida were pelletized in the summer-1985 in a series of experiments at the Jacksonville, Florida Naval Air Station using these binder. The pelletized dRDF was then subjected to a battery of chemical and physical tests. Results to date and work to be accomplished during the next fiscal year will be discussed. 2 figs., 2 tabs.

  8. Densified refuse derived fuel as a power source

    SciTech Connect

    Daugherty, K.E.; Safa, A.; Ohlsson, O.; Venables, B.J.

    1986-04-01

    This project is aimed at producing environmentally acceptable, chemically/biologically stable, and storable densified- Refuse Derived Fuel (d-RDF) pellets which are similar to lignite coal. To accomplish this, a suitable binder (s) must be used. Over 100 binders were investigated by a laboratory screening procedure. Six binding materials were selected for pilot plant/commercial scale studies. Approximately seven tons of RDF from Ames, Iowa and Refcom, Pompano Beach, Florida were pelletized in the summer-1985 in a series of experiments at the Jacksonville, Florida Naval Air Station using these binders. The pelletized d-RDF was then subjected to a battery of chemical and physical tests. Results to date are discussed.

  9. Market share elasticities for fuel and technology choice in home heating and cooling

    SciTech Connect

    Wood, D.J.; Ruderman, H.; McMahon, J.E.

    1989-05-01

    A new technique for estimating own- and cross-elasticities of market share for fuel and technology choices in home heating and cooling is presented. We simulate changes in economic conditions and estimate elasticities by calculating predicted changes in fuel and technology market shares. Elasticities are found with respect to household income, equipment capital cost, and equipment capital cost, and equipment operating cost (including fuel price). The method is applied to a revised and extended version of a study by the Electric Power Research Institute (EPRI). Data for that study are drawn primarily from the 1975--1979 Annual Housing Surveys. Results are generally similar to previous studies, although our estimates of elasticities are somewhat lower. We feel the superior formulation of consumer choice and the currency of data in EPRI's work produce reliable estimates of market share elasticities. 18 refs., 1 fig., 6 tabs.

  10. Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived biodiesel and renewable fuels.

    PubMed

    Huo, Hong; Wang, Michael; Bloyd, Cary; Putsche, Vicky

    2009-02-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts.

  11. Life-Cycle Assessment of Energy Use and Greenhouse Gas Emissions of Soybean-Derived Biodiesel and Renewable Fuels

    SciTech Connect

    Huo, H.; Wang, M.; Bloyd, C.; Putsche, V.

    2009-01-01

    In this study, we used Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model to assess the life-cycle energy and greenhouse gas (GHG) emission impacts of four soybean-derived fuels: biodiesel fuel produced via transesterification, two renewable diesel fuels (I and II) produced from different hydrogenation processes, and renewable gasoline produced from catalytic cracking. Five approaches were employed to allocate the coproducts: a displacement approach; two allocation approaches, one based on the energy value and the other based on the market value; and two hybrid approaches that integrated the displacement and allocation methods. The relative rankings of soybean-based fuels in terms of energy and environmental impacts were different under the different approaches, and the reasons were analyzed. Results from the five allocation approaches showed that although the production and combustion of soybean-based fuels might increase total energy use, they could have significant benefits in reducing fossil energy use (>52%), petroleum use (>88%), and GHG emissions (>57%) relative to petroleum fuels. This study emphasized the importance of the methods used to deal with coproduct issues and provided a comprehensive solution for conducting a life-cycle assessment of fuel pathways with multiple coproducts.

  12. Should the Defense Fuel Supply Center Trade in the Futures Market?

    DTIC Science & Technology

    1993-12-01

    to better understand some of the difficult economic issues , and for your tireless "word-smithing." You have an uncanny ability to say things so much...the potential benefits of the Defense Fuel Supply Center trading in the futures market? "e What are the potential problems of the Defense Fuel Supply...other strategy under consideration. This thesis will only seek to provide depth of understanding in futures trading and associated issues . The general

  13. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  14. Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington

    SciTech Connect

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  15. Production of Jet Fuels from Coal-Derived Liquids. Volume 14. Oxygenates Content of Coal-Derived Jet Fuels

    DTIC Science & Technology

    1990-06-01

    Compour-W RI Rt JP-4 JP-8 BuLk JP-8X Cumilative wtX wt% wt% wt% wt% JP-4 Bulk JP- SX 1. n-C4 400.0 0.001 0.11 0.04 0.02 0.11 0.02 2. 466.0 2.837 0.21 0.07...DATA FOR COAL-DERIVED JET FUELS # Conound RI Rt JP-4 JP-8 Bulk JP-8X Cumulative wtX wtX wt% wtX wtX JP-4 Bulk JP- SX 166. C2-Decalin 1306.2 24.869 0.16...boiling cyclopentadiene ( CDP ) dimers and other material that decomposed to small sulfur-containing compounds and cycloolefins. Nitrogen base

  16. [U.S. renewable fuel standard implementation mechanism and market tracking].

    PubMed

    Kang, Liping; Earley, Robert; An, Feng; Zhang, Yu

    2013-03-01

    U.S. Renewable Fuel Standard (RFS) is a mandatory policy for promoting the utilization of biofuels in road transpiration sector in order to reduce the country's dependency on foreign oil and greenhouse gas emissions. U.S. Environmental Protection Agency (EPA) defines the proportion of renewable fuels according to RFS annual target, and requests obligated parties such like fossil fuel refiner, blenders and importer in the U.S. to complete Renewable Volume Obligation (RVO) every year. Obligated parties prove they have achieved their RVO through a renewable fuels certification system, which generates Renewable Identification Numbers (RINs) for every gallon of qualified renewable fuels produced or imported into U.S., RINs is a key for tracking renewable fuel consumption, which in turn is a key for implementing the RFS in the U.S., separated RINs can be freely traded in market and obligated parties could fulfill their RVO through buying RINs from other stakeholders. This briefing paper highlights RFS policy implementing mechanism and marketing tracking, mainly describes importance of RINs, and the method for generating and tracking RINs by both government and fuels industry participants.

  17. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor

    SciTech Connect

    Wagland, S.T.; Kilgallon, P.; Coveney, R.; Garg, A.; Smith, R.; Longhurst, P.J.; Pollard, S.J.T.; Simms, N.

    2011-06-15

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  18. Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidized bed reactor.

    PubMed

    Wagland, S T; Kilgallon, P; Coveney, R; Garg, A; Smith, R; Longhurst, P J; Pollard, S J T; Simms, N

    2011-06-01

    An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidized bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal+10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal+10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

  19. Market projections and factors influencing the development of new products and energy derived from agricultural crops in the European Union

    SciTech Connect

    Knight, B.E.A.; Houghton, T.M.

    1995-11-01

    Following the 1992 revision of the Common Agricultural Policy in the European Union, it is projected that 25-50 million acres of arable land currently used for food production could be surplus to requirements by 2000. This strategic study was carried out in order to assess factors that will determine, over the next twenty years, the use of a range of crops for non food outlets. Analysis of published research and economic reports and interviews with legislators and opinion leaders in different Member States was carried out. Five defined market sectors were covered: (i) biomass crops for the generation of heat and electricity, (ii) oilseed and cereal crops as sources of transport fuel, (iii) products from vegetable oils, (iv) products from starch and sugar, and (v) products from fibre crops. Opportunities and constraints were ranked and maximum and minimum land use requirements forecast for each sector. Biomass for electricity is projected to need most land, up to 20 million acres by 2015, if all factors are favourable. In the shorter term, crops grown to produce liquid transport fuel are likely to show the most rapid expansion in area. Market demand for environmentally superior products will be a driving force despite, currently, poor relative economics in comparison with fossil fuel derived products. Better integration between crop production and the end markets will be essential.

  20. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  1. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  2. Impact of alcohol fuel production on agricultural markets

    SciTech Connect

    Gardiner, W.H.

    1986-01-01

    Production of alcohol from biomass feedstocks, such as corn, was given Federal and State support which resulted in alcohol production rising from 20 million gallons in 1979 to 430 million gallons in 1984. This study estimates the impacts of alcohol production from corn on selected agricultural markets. The tool of analysis was a three region (United States, the European Community and the rest of the world) econometric model of the markets for corn, soybeans, soybean meal, soybean oil, wheat and corn byproduct feeds. Three alternative growth paths for alcohol production (totalling 1.1, 2.0, and 3.0 billion gallons) were analyzed with the model in the context of three different trade environments. The results of this analysis indicate that alcohol production of 1.1 billion gallons by 1980 would have caused moderate adjustments to commodity markets while 3.0 billion gallons would have caused major adjustments. Corn prices rose sharply with increased alcohol production as did wheat prices but to a somewhat lesser extent. The substitution of corn for soybeans on the supply side was not sufficient to offset the demand depressing effects of corn byproduct feeds on soybean meal which translated into slightly lower soybean prices. A quota limiting imports of corn gluten feed into the EC to three million tons annually would cause reductions in export earnings for corn millers.

  3. Fuel cell adventures. Dynamics of a technological community in a quasi-market of technological options

    NASA Astrophysics Data System (ADS)

    Schaeffer, G. J.; Uyterlinde, M. A.

    In this paper some insights from a social science perspective in the dynamics of the fuel cell community will be provided. An important concept used in the analysis is that of a `quasi'-market of technological options. The strategic choices of actors for certain technological options can be regarded as analogous to choices of consumers made on a market. A scientometric research approach has been used to investigate the aggregate effects of this and other variations of strategic behaviour. These concepts and analyses are shown to be helpful in answering questions such as why fuel cells are so popular today whereas they have not always been, and why preferences for different types of fuel cells shift over time. At the end of the paper the relevance of these kind of analyses for technology forecasting and management practices is briefly discussed.

  4. Utilization of spent activated carbon to enhance the combustion efficiency of organic sludge derived fuel.

    PubMed

    Chen, Wei-Sheng; Lin, Chang-Wen; Chang, Fang-Chih; Lee, Wen-Jhy; Wu, Jhong-Lin

    2012-06-01

    This study examines the heating value and combustion efficiency of organic sludge derived fuel, spent activated carbon derived fuel, and derived fuel from a mixture of organic sludge and spent activated carbon. Spent activated carbon was sampled from an air pollution control device of an incinerator and characterized by XRD, XRF, TG/DTA, and SEM. The spent activated carbon was washed with deionized water and solvent (1N sulfuric acid) and then processed by the organic sludge derived fuel manufacturing process. After washing, the salt (chloride) and sulfide content could be reduced to 99% and 97%, respectively; in addition the carbon content and heating value were increased. Different ratios of spent activated carbon have been applied to the organic sludge derived fuel to reduce the NO(x) emission of the combustion.

  5. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Pricing Theory of Derivatives in Financial Engineering and the Problems on the Application to Electricity Markets

    NASA Astrophysics Data System (ADS)

    Misawa, Tetsuya

    Recently, the wholesale electric power exchange has been founded in Japan. With the progress of the electricity market, some management schemes of electricity price risk will be necessary. In financial markets or the preceding electricity markets, various “derivatives" on assets in the markets are often used as management tools to hedge the price risk. This paper gives a short commentary on some fundamental concepts of the derivatives and the pricing theory in the financial engineering, and discusses the problems on the financial engineering approach to electricity derivatives.

  8. Market-driven considerations affecting the prospects of alternative road fuels.

    PubMed

    Freedman, David

    2014-01-13

    Without significant intervention, demand for crude oil could rise by a further 25% by 2035, stemming from its use for transportation, particularly road transport. Many technologies for alternative fuels and substitute transport energy carriers are being researched, but successful implementation of these technologies at scale will require attention to consumer-behavioural and policy challenges as well as adapting existing or introducing new commercial value chains. In particular, there will be new capital-intensive roles for which there are no obvious contenders as yet. The legacy of diverse urban planning and fuel taxation policies and varying degrees of consumer inertia will lead to different rates of adoption of different alternative technologies in regional markets. In the absence of technology that provides a compelling consumer proposition, substitution of crude demand in mature markets will be challenging, as will be channelling exponential growth from growing markets like China into less crude-intensive road transport solutions.

  9. Intraday price dynamics in spot and derivatives markets

    NASA Astrophysics Data System (ADS)

    Kim, Jun Sik; Ryu, Doojin

    2014-01-01

    This study examines intraday relationships among the spot index, index futures, and the implied volatility index based on the VAR(1)-asymmetric BEKK-MGARCH model. Analysis of a high-frequency dataset from the Korean financial market confirms that there is a strong intraday market linkage between the spot index, KOSPI200 futures, and VKOSPI and that asymmetric volatility behaviour is clearly present in the Korean market. The empirical results indicate that the futures return shock affects the spot market more severely than the spot return shock affects the futures market, though there is a bi-directional causal relationship between the spot and futures markets. Our results, based on a high-quality intraday dataset, satisfy both the positive risk-return relationship and asymmetric volatility effect, which are not reconciled in the frameworks of previous studies.

  10. An environmentally benign soybean derived fuel as a blending stock or replacement for home heating oil.

    PubMed

    Mushrush, G; Beal, E J; Spencer, G; Wynne, J H; Lloyd, C L; Hughes, J M; Walls, C L; Hardy, D R

    2001-05-01

    The use of bio-derived materials both as fuels and/or as blending stocks becomes more attractive as the price of middle distillate fuels, especially home heating oil, continues to rise. Historically, many biomass and agricultural derived materials have been suggested. One of the most difficult problems encountered with home heating oil is that of storage stability. High maintenance costs associated with home heating oil are, in large part, because of this stability problem. In the present research, Soygold, a soybean derived fuel, was added in concentrations of 10%-20% to both a stable middle distillate fuel and an unstable home heating oil. Fuel instability in this article will be further related to the organo-nitrogen compounds present. The soy-fuel mixtures proved stable, and the addition of the soy liquid enhanced both the combustion properties, and dramatically improved the stability of the unstable home heating oil.

  11. The health effects of fossil fuel derived particles.

    PubMed

    Grigg, J

    2002-02-01

    Over the past 10 years there has been increasing evidence that particles generated by the combustion of fossil fuels adversely affect health. To what extent should paediatricians be concerned about particle pollution? This review assesses what we know, and what we still need to know about the health effects of fossil fuel particles.

  12. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels

    SciTech Connect

    Knothe, G.; Bagby, M.O.

    1996-10-01

    Vegetable oils and their derivatives (especially methyl esters), commonly referred to as {open_quotes}biodiesel{close_quotes}, are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. Besides being a renewable resource, biodiesel reduces most emissions while engine performance and fuel economy are nearly identical compared to conventional fuels. Several problems, however, remain, which include economics, combustion, some emissions, lube oil contamination, and low-temperature properties. An overview on all the mentioned aspects of biodiesel will be presented.

  13. Reversible solid oxide cells for bidirectional energy conversion in spot electricity and fuel markets

    NASA Astrophysics Data System (ADS)

    Villarreal Singer, Diego

    The decarbonization of the energy system is one of the most complex and consequential challenges of the 21st century. Meeting this challenge will require the deployment of existing low carbon technologies at unprecedented scales and rates and will necessitate the development of new technologies that have the ability to transform variable renewable energy into high energy density products. Reversible Solid Oxide Cells (RSOCs) are electrochemical devices that can function both as fuel cells or electrolyzers: in fuel cell mode, RSOCs consume a chemical fuel (H2, CO, CH4, etc.) to produce electrical power, while in electrolysis mode they consume electric power and chemical inputs (H2O, CO2) to produce a chemical fuel (H2, CO, CH4, etc.). As such, RSOC systems can be thought of as flexible "energy hubs" that have unique potential to bridge the low power density renewable infrastructure with that of high energy density fuels in an efficient, dynamic, and bidirectional fashion. This dissertation explores the different operational sensitivities and design trade-offs of a methane based RSOC system, investigates the optimum operating strategies for a system that adapts to variations in the hourly spot electricity and fuel prices in Western Denmark, and provides an economic analysis of the system under a wide variety of design assumptions, operational strategies, and fuel and electricity market structures. (Abstract shortened by ProQuest.).

  14. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  15. Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system

    SciTech Connect

    Zalbowitz, M.

    1992-06-02

    In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercial non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.

  16. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE PAGES

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; ...

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  17. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    EPA Science Inventory

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  18. Will biodiesel derived from algal oils live up to its promise? A fuel property assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Algae have been attracting considerable attention as a source of biodiesel recently. This attention is largely due to the claimed high production potential of algal oils while circumventing the food vs. fuel issue. However, the properties of biodiesel fuels derived from algal oils have been only spa...

  19. Western New York State coal-water fuel market and boiler-conversion study. Final report

    SciTech Connect

    Not Available

    1987-04-01

    This report examines the feasibility of converting industrial boilers in Western New York to burn coal-water fuel (CWF) and the attractiveness of producing CWF in this region. Use of coal would increase the diversification of fuel supplies. The project began with a market study to determine the market size and estimate the potential demand for CWF. The project then evaluated the technical and economic feasibility of converting two coal-designed boilers in Western New York, currently firing oil, to CWF. A coal supplier was located and an analysis was made of the options for developing a 315,000 tpy CWF production facility. Adapting an existing site with the facilities for coal receiving, handling, storing, and pollution control, such as a steelmaking facility, would provide the least-cost fuel. Coal-water fuel could be competitive with oil and, to a lesser extent, gas; however, the estimated savings failed to provide an adequate rate of return against the costs associated with converting the industrial boilers at this time.

  20. Using case-mix information in strategic hospital marketing. Deriving market research from patient data.

    PubMed

    Little, A

    1992-01-01

    Hospital survival requires adaptation, adaptation requires understanding, and understanding requires information. These are the basic equations behind hospital strategic marketing, and one of the answers may lie in hospitals' own patient-data systems. Marketers' and administrators' enlightened application of case-mix information could become one more hospital survival tool.

  1. Airfoil cooling hole plugging by combustion gas impurities of the type found in coal derived fuels

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1979-01-01

    The plugging of airfoil cooling holes by typical coal-derived fuel impurities was evaluated using doped combustion gases in an atmospheric pressure burner rig. Very high specific cooling air mass flow rates reduced or eliminated plugging. The amount of flow needed was a function of the composition of the deposit. It appears that plugging of film-cooled holes may be a problem for gas turbines burning coal-derived fuels.

  2. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion

    SciTech Connect

    Qualls, A L; Hancock, Emily F

    2011-01-01

    The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

  3. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels.

    PubMed

    van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat

    2011-07-15

    Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel.

  4. Production of Jet Fuels from Coal Derived Liquids. Volume 7. GPGP Jet Fuels Production Program. Evaluation of Technical Uncertainties for Producing Jet Fuels from Liquid By-Products of the Great Plains Gasification Plant

    DTIC Science & Technology

    1989-01-01

    AFWAL-TR-87-2042 VOLUME VII PRODUCTION OF JET FUELS FROM COAL DERIVED LIQUIDS I VOLUME VII -- GPGP JET FUELS PRODUCTION PROGRAM -- EVALUATION OF o...from Coal Derived Liquids, Vol VII - GPGP Jet Fuels Production Program - Evaluation of Technical Uncertainties for Producing Jet Fuels from Liquid By...potential of jet fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant ( GPGP

  5. Analysis of the market and product costs for coal-derived high Btu gas: staff working paper

    SciTech Connect

    Not Available

    1980-12-01

    The purpose of this paper is to analyze the market and product costs for coal-derived high Btu gas. This analysis is based upon supply and demand projections that reflect the effects of natural gas deregulation, recent large oil price increases, and new or pending legislation designed to reduce oil imports. Product economics are based upon estimates developed by staff of the Office of Plans and Technology Assessment using internal DOE studies and published data. While these data are believed to be representative of the costs to produce high Btu gas from coal using advanced gasification technology that is ready for technical demonstration at commercially relevant scales, they are not based upon detailed design studies. The analysis indicates that an increasingly large market for supplemental gas is expected to open up by 1990 and that high Btu gas from advanced technology is likely to be economically superior to gas imports over a wide range of alternative assumptions. While several studies suggest that there may be a considerable market for MBG, the potential supplemental gas demand is sufficiently large that significant markets will exist for both MBG and HBG from coal. HBG from advanced technology is especially important if synthetic fuels are to be produced in the East, since there is no data available to indicate that current coal gasification technology can economically use the abundant, moderate to highly caking Eastern coals.

  6. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  7. The use of modified tyre derived fuel for compression ignition engines.

    PubMed

    Pilusa, T J

    2017-02-01

    This study investigated physical and chemical modification of tyre-derived fuel oil (TDFO) obtained from pyrolysis of waste tyres and rubber products for application as an alternative fuel for compression ignition engines (CIE's). TDFO collected from a local waste tyre treatment facility was refined via a novel "oxidative gas-phase fractional distillation over 13× molecular sieves" to recover the light to medium fractions of the TDFO while oxidising and capturing some sulphur compounds in a gas phase. This was followed by desulphurization and chemical modification to improve cetane number, kinematic viscosity and fuel stability. The resulting fuel was tested in an ADE407T truck engine to compare its performance with petroleum diesel fuel. It was discovered that gas phase oxidative fractional distillation reduces the low boiling point sulphur compounds in TDFO such as mercaptans. Using petroleum diesel fuel as a reference, it was observed that the produced fuel has a lower cetane number, flash point and viscosity. On storage the fuel tends to form fibrous microstructures as a result of auto-oxidation of asphaltenes present in the fuel. Mixtures of alkyl nitrate, vinyl acetate, methacrylic anhydride, methyl-tert butyl ether, n-hexane and n-heptane were used to chemically modify the fuel in accordance with the minimum fuel specifications as per SANS 342. The engine performance tests results did not show any sign of engine ceasing or knocking effect. The power-torque trend was very consistent and compared well with petroleum diesel fuelled engine. The levels of total sulphur are still considerably high compared to other cleaner fuel alternatives derived from zero sulphur sources.

  8. Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives

    SciTech Connect

    DeCorso, M.; Newby, R.; Anson, D.; Wenglarz, R.; Wright, I.

    1996-06-01

    This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

  9. Life cycle assessment of fuel ethanol derived from corn grain via dry milling.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-01

    Life cycle analysis enables to investigate environmental performance of fuel ethanol used in an E10 fueled compact passenger vehicle. Ethanol is derived from corn grain via dry milling. This type of analysis is an important component for identifying practices that will help to ensure that a renewable fuel, such as ethanol, may be produced in a sustainable manner. Based on data from eight counties in seven Corn Belt states as corn farming sites, we show ethanol derived from corn grain as E10 fuel would reduce nonrenewable energy and greenhouse gas emissions, but would increase acidification, eutrophication and photochemical smog, compared to using gasoline as liquid fuel. The ethanol fuel systems considered in this study offer economic benefits, namely more money returned to society than the investment for producing ethanol. The environmental performance of ethanol fuel system varies significantly with corn farming sites because of different crop management practices, soil properties, and climatic conditions. The dominant factor determining most environmental impacts considered here (i.e., greenhouse gas emissions, acidification, eutrophication, and photochemical smog formation) is soil related nitrogen losses (e.g., N2O, NOx, and NO3-). The sources of soil nitrogen include nitrogen fertilizer, crop residues, and air deposition. Nitrogen fertilizer is probably the primary source. Simulations using an agro-ecosystem model predict that planting winter cover crops would reduce soil nitrogen losses and increase soil organic carbon levels, thereby greatly improving the environmental performance of the ethanol fuel system.

  10. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel.

  11. Environmental Life Cycle Assessment of Coal-Biomass to Liquid Jet Fuel Compared to Petroleum-Derived JP-8 Jet Fuel

    DTIC Science & Technology

    2010-03-01

    64 Co- Gasification of Coal and Biomass ...Fuels from Biomass jet fuel components Cellulose CO + H2 “BTL or CBTL” “first generation”“second generation” Lignin gasification (or co- gasification ...than typical petroleum derived fuel resulting in a lower total GWP during the fuel’s life cycle. Gasification is breaking down the coal and biomass

  12. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  13. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  14. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

  15. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    PubMed

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed.

  16. Integrated process for the catalytic conversion of biomass-derived syngas into transportation fuels

    SciTech Connect

    Dagle, Vanessa Lebarbier; Smith, Colin; Flake, Matthew; Albrecht, Karl O.; Gray, Michel J.; Ramasamy, Karthikeyan K.; Dagle, Robert A.

    2016-01-01

    Efficient synthesis of renewable fuels that will enable cost competitiveness with petroleum-derived fuels remains a grand challenge for U.S. scientists. In this paper, we report on an integrated catalytic approach for producing transportation fuels from biomass-derived syngas. The composition of the resulting hydrocarbon fuel can be modulated to meet specified requirements. Biomass-derived syngas is first converted over an Rh-based catalyst into a complex aqueous mixture of condensable C2+ oxygenated compounds (predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate). This multi-component aqueous mixture then is fed to a second reactor loaded with a ZnxZryOz mixed oxide catalyst, which has tailored acid-base sites, to produce an olefin mixture rich in isobutene. The olefins then are oligomerized using a solid acid catalyst (e.g., Amberlyst-36) to form condensable olefins with molecular weights that can be targeted for gasoline, jet, and/or diesel fuel applications. The product rich in long-chain olefins (C7+) is finally sent to a fourth reactor that is needed for hydrogenation of the olefins into paraffin fuels. Simulated distillation of the hydrotreated oligomerized liquid product indicates that ~75% of the hydrocarbons present are in the jet-fuel range. Process optimization for the oligomerization step could further improve yield to the jet-fuel range. All of these catalytic steps have been demonstrated in sequence, thus providing proof-of-concept for a new integrated process for the production of drop-in biofuels. This unique and flexible process does not require external hydrogen and also could be applied to non-syngas derived feedstock, such as fermentation products (e.g., ethanol, acetic acid, etc.), other oxygenates, and mixtures thereof containing alcohols, acids, aldehydes and/or esters.

  17. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    DOEpatents

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2016-07-05

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  18. Production of Jet Fuels from Coal Derived Liquids. Volume 4. GPGP Jet Fuels Production Program-Feed Analyses Compilation and Review

    DTIC Science & Technology

    1988-07-01

    DTICFORM70ASTOCK IS EXHAUSTED. o Volume IV 00 PRODUCTION OF JET FUELS FROM COAL DERIVED LIQUIDS SVOL IV - GPGP JET FUELS PRODUCTION PROGRAM-FEEDI ANALYSES...DERIVED LIQUIDS - VOL IV - GPGP JET FUELS PRODUCTION PROGRAM - FEED ANALYSIS COMPILATION AND REVIEW 12. PERSONAL AUTHOR(S) R.J. Rossi 13a. TYPE OF REPORT...the gasification of lignite at the Great Plains Gasification Plant ( GPGP ) in Beulah, North Dakota. Funding has been provided to the Department of

  19. Effects of coal-derived trace species on performance of molten carbonate fuel cells. Final report

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  20. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    SciTech Connect

    Not Available

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  1. An approach to determining the economic feasibility of refuse-derived fuels and materials recovery processing

    SciTech Connect

    Gershman, H.W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of various materials is demonstrated, using data developed for the metropolitan Washington, D.C., area as input. The processing facility, designed to handle 650 tpd of refuse, is described. Since materials revenues can be predicted with a higher degree of certainty than refuse fuel revenues, it is necessary to determine what revenues the sale of solid waste fuel will have to generate for projected economics to be the same as an alternative disposal practice. (1 diagram, 8 references, 6 tables)

  2. Use of pyrolysis-derived fuel in a gas turbine engine

    SciTech Connect

    Kasper, J.M.; Jasas, G.B.; Trauth, R.L.

    1983-01-01

    Combustion of a pyrolytically derived oil has been demonstrated in a J69-T-29 gas turbine combustor rig. The fuel was derived from agricultural and forest products/wastes through a pyrolysis conversion process which yields the oil and a residual char. The char was ground to a mean size of 25 microns and mixed with the oil and JP-4 in additional combustor rig tests. Analysis of the oil and char showed that both have hydrogen/carbon ratios less than 1.0 for the combustible components. The oil has a water content of 29%, a room temperature viscosity of 250 cS, and a pH of 2.9. The combustion system of the J69 consists of an annular combustor and a centrifugal fuel injector rotating as shaft speed. The centrifugal fuel injector can use slurry fuels without clogging and provides good atomization with viscous fuels. The combustor rig was operated at pressures and temperatures lower than those of the engine, and JP-4 was used as a baseline fuel. Test results indicate that use of pyrolytic oil will result in engine combustion efficiencies of over 99%. The pyrolytic oil may also be used as a supplement to JP-4. Additional development will be necessary to use the pyrolytic char as a gas turbine fuel.

  3. Preliminary assessment of systems for deriving liquid and gaseous fuels from waste or grown organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.

    1976-01-01

    The overall feasibility of the chemical conversion of waste or grown organic matter to fuel is examined from the technical, economic, and social viewpoints. The energy contribution from a system that uses waste and grown organic feedstocks is estimated as 4 to 12 percent of our current energy consumption. Estimates of today's market prices for these fuels are included. Economic and social issues are as important as technology in determining the feasibility of such a proposal. An orderly program of development and demonstration is recommended to provide reliable data for an assessment of the viability of the proposal.

  4. From a fuel supplier to an active participant: Shell's view of the opportunities offered by a changing power market

    SciTech Connect

    Nyhan, J.

    1998-07-01

    In the last 10 years, the power generation market has seen radical changes. The coming years will see yet more change. Although the pace of change may be uneven across Europe, it is clear that the old reference points for the power generation market are no longer valid. Along with other market players, Shell has re-evaluated the role it wishes to play in the power generation market. Although it has long operated large generation capacity on its own sites, Shell's role has been that of a fuel supplier to monopoly power generation and distribution organizations, which were largely state controlled . Privatization and liberalization have been followed by changing market structures tending to push risk towards the producer. This evolution presents challenges for the normal IPP structure, where market risk is transferred and offers an opportunity for the active participation of the fuel supplier in meeting these challenges. In 1996, Shell decided to embrace the changes in power generation market. Already, significant steps have been taken in markets in Asia, Latin America and in Europe. The differing requirements of each of these markets means there are no standard solutions and requires Shell to devise flexible frameworks which meet the customer's needs. Shell is bringing its significant strengths to the power generation market and looks forward to participating on a world wide scale in the industry at this exciting phase in its development.

  5. Fuel areal density distributions derived from nuclear scattering signatures

    NASA Astrophysics Data System (ADS)

    Bionta, R. M.; Casey, D. T.; Cerjan, C. J.; Yeamans, C. B.; Gatu Johnson, M. G.

    2016-10-01

    The spatial variation of activities measured in the array of 20 Nuclear Activation Detectors mounted on the flanges around the NIF target chamber (FNADs) are correlated with asymmetries in the underlying fuel areal density of compressed ICF targets. The asymmetric areal density distributions cause variations in the neutron spectra with direction which are seen in the dsr (down scattered ratio) metric, the ratio of the number of 10-12 MeV neutrons to the number of 13-15 MeV neutrons. We show, using a simple physics based simulation of neutron scattering through an idealized non-uniform DT shell with a realistic neutron source, that for most shots an areal distribution can be found which reproduces both the FNAD activity and the dsr measurements. Furthermore, by linking the simulation to a Marquardt minimizer, we fit the areal distribution to a truncated set of spherical harmonics. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. A Study on Market Efficiency of Selected Commodity Derivatives Traded on NCDEX During 2011

    NASA Astrophysics Data System (ADS)

    Sajipriya, N.

    2012-10-01

    The study aims at testing the weak form of Efficient Market Hypothesis in the context of an emerging commodity market - National Commodity Derivatives Exchange (NCDEX), which is considered as the prime commodity derivatives market in India. The study considered daily spot and futures prices of five selected commodities traded on NCDEX over 12 month period (the futures contracts originating and expiring during the period January 2011 to December 2011) The five commodities chosen are Pepper, Crude palm Oil, steel silver and Chana as they account for almost two-thirds of the value of agricultural commodity derivatives traded on NCDEX. The results of Run test indicate that both spot and futures prices are weak form efficient

  7. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  8. [Control of malaria: market for artemisinin and its derivatives].

    PubMed

    Pilloy, J

    2006-12-01

    Artemisinin compounds derived from the Artemisia annua plant provide the raw material for new artemisinin based combined therapies (ACT) against malaria. The purpose of this report is to present the different steps in production of these compounds from planting to harvesting, extraction, purification, chemical transformation and final formulation. Factors affecting cost are given special focus to gain better insight into ways of holding down the purchasing price. We also describe the consequences that the April 2004 decision by several international organizations (e.g. WHO and Global Fund to fight AIDS, tuberculosis and malaria) to make ACT the reference treatment for malaria has had on the supply of ACT, i.e., shortages with a sharp price increase followed by overinvestment and surpluses with a sharp price decrease. In view of these fluctuations, we discuss whether regulation is necessary and who should intervene.

  9. Towards Safer Rocket Fuels: Hypergolic Imidazolylidene-Borane Compounds as Replacements for Hydrazine Derivatives.

    PubMed

    Huang, Shi; Qi, Xiujuan; Liu, Tianlin; Wang, Kangcai; Zhang, Wenquan; Li, Jianlin; Zhang, Qinghua

    2016-07-11

    Currently, toxic and volatile hydrazine derivatives are still the main fuel choices for liquid bipropellants, especially in some traditional rocket propulsion systems. Therefore, the search for safer hypergolic fuels as replacements for hydrazine derivatives has been one of the most challenging tasks. In this study, six imidazolylidene-borane compounds with zwitterionic structure have been synthesized and characterized, and their hypergolic reactivity has been studied. As expected, these compounds exhibited fast spontaneous combustion upon contact with white fuming nitric acid (WFNA). Among them, compound 5 showed excellent integrated properties including wide liquid operating range (-70-160 °C), superior loading density (0.99 g cm(-3) ), ultrafast ignition delay times with WFNA (15 ms), and high specific impulse (303.5 s), suggesting promising application potential as safer hypergolic fuels in liquid bipropellant formulations.

  10. Heterogeneous catalysts for the transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons

    NASA Astrophysics Data System (ADS)

    Yakovlev, Vadim A.; Khromova, Sofia A.; Bukhtiyarov, Valerii I.

    2011-10-01

    The results of studies devoted to the catalysts for transformation of fatty acid triglycerides and their derivatives to fuel hydrocarbons are presented and described systematically. Various approaches to the use of heterogeneous catalysts for the production of biofuel from these raw materials are considered. The bibliography includes 134 references.

  11. QUANTIFYING HAZARDOUS SPECIES IN PARTICULATE MATTER DERIVED FROM FOSSIL-FUEL COMBUSTION

    EPA Science Inventory

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size- segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used...

  12. 75 FR 63732 - Requirements for Derivatives Clearing Organizations, Designated Contract Markets, and Swap...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ...The Commodity Futures Trading Commission (the ``Commission'') hereby proposes rules to implement new statutory provisions enacted by Title VII of the Dodd-Frank Wall Street Reform and Consumer Protection Act (the ``Dodd-Frank Act''). Specifically, the proposed rules contained herein impose new requirements on derivatives clearing organizations (``DCOs''), designated contract markets......

  13. Bioconversion of coal derived synthesis gas to liquid fuels

    NASA Astrophysics Data System (ADS)

    Jain, M. K.; Worden, R. M.; Grethlein, A.

    1994-07-01

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H2-CO2; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following: butyrate production was enhanced during H2/CO2 (50/50) batch fermentation; isolation of CO-utilizing anaerobic strains is in progress; pressure (15 psig) fermentation was evaluated as a means of increasing CO availability; polyurethane foam packing material was selected for trickle bed solid support; cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8; trickle bed and gas lift fermentor designs were modified after initial water testing; and pervaporation system was constructed (No alcohol selectivity was shown with the existing membranes during initial start-up).

  14. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  15. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A

    2012-10-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  16. Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa

    SciTech Connect

    Not Available

    1989-10-01

    Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

  17. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced.

  18. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    SciTech Connect

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.; Corlett, John; Murphy, Chris; Przesmitzki, Steve

    2016-04-01

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, and the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.

  19. Alternative Bio-Derived JP-8 Class Fuel and JP-8 Fuel: Flame Tube Combustor Test Results Compared using a GE TAPS Injector Configuration

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.

    2016-01-01

    This paper presents results from tests in a flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include combustion efficiency from gaseous emission measurements, 2D planar laser-based imaging as well as basic flow visualization of the flame. Four inlet test conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics Project and Environmentally Responsible Aviation Program. One inlet condition was a pilot-only test point. The other three inlet conditions incorporated fuel staging via a split between the pilot and main circuits of either 10%/90% or 20%/80%. For each engine power condition, three fuel mixes were used: 100% JP-8; 100% alternative; and a blend of the two, containing 75% alternative. Results for the inlet cases that have fuel split between pilot and main, indicate that fuel from the pilot appears to be evaporated by the time it reaches the dome exit. Main circuit liquid evaporates within a downstream distance equal to annulus height, no matter the fuel. Some fuel fluorescence images for a 10%/90% fuel staging case show a distinct difference between JP-8 and bio-derived fuel. OH PLIF results indicate that OH forms in a region more centrally-located for the JP-8 case downstream of the pilot, in its central recirculation region (CRZ). For the bio-derived Hydrotreated Renewable Jet (HRJ) fuel, however, we do not see much OH in the CRZ. The OH image structure near the dome exit is similar for the two fuels, but farther downstream the OH in the CRZ is much more apparent for the JP-8 than for the alternate fuel. For all conditions, there was no discernable difference between fuel types in combustion efficiency or emissions.

  20. Evaluation of tire-derived fuel for use in nitrogen oxide reduction by reburning.

    PubMed

    Miller, C A; Lemieux, P M; Touati, A

    1998-08-01

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped with ammonia to simulate a high NO combustion process. Emissions of NO, oxygen, carbon dioxide, carbon monoxide, and particulate matter were measured. The tests varied the nominal primary NO level from 600 to 1,200 ppm and the primary stoichiometry from 1.1 to 1.2, and used both natural gas and TDF as reburn fuels. The reburn injection rate was varied to achieve 8-20% of the total heat input from the reburn fuel. NO emissions reductions ranged between 20 and 63% when using TDF, depending upon the rate of TDF injection, primary NO, and primary stoichiometry. NO emission reductions when using natural gas as the reburn fuel were consistently higher than those when using TDF. While additional work remains to optimize the process and evaluate costs, TDF has been shown to have the potential to be a technically viable reburning fuel.

  1. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    PubMed

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  2. 75 FR 55315 - National Fuel Marketing Company, LLC; NFM Midstream, LLC; NFM Texas Pipeline, LLC; NFM Texas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission National Fuel Marketing Company, LLC; NFM Midstream, LLC; NFM Texas Pipeline, LLC; NFM Texas Gathering, LLC; Notice of Amended Designation of Commission Staff as Non-Decisional September 2, 2010. On January 15, 2009,...

  3. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products

    SciTech Connect

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

    2013-01-01

    This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

  4. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA): Quarter 4 2013 Composite Data Products

    SciTech Connect

    Kurtz, J.; Sprik, S.

    2014-06-01

    This report includes the composite data products (CDPs) for early fuel cell market deployments in quarter 4 of 2013. Results are presented for ARRA (projects funded by the American Recovery and Reinvestment Act of 2009 [ARRA]) and Combined (projects funded by DOE Interagency Agreements [IAA], Department of Defense Defense Logistics Agency [DLA], and ARRA).

  5. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    NASA Astrophysics Data System (ADS)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  6. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    SciTech Connect

    Kenny, Kevin; Bradley, Dwayne

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  7. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis

    SciTech Connect

    Galvagno, S. Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S.

    2009-02-15

    In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  8. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-06-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  9. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

  10. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.

    PubMed

    Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

    2009-02-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  11. Thermal stability of some aircraft turbine fuels derived from oil shale and coal

    NASA Technical Reports Server (NTRS)

    Reynolds, T. W.

    1977-01-01

    Thermal stability breakpoint temperatures are shown for 32 jet fuels prepared from oil shale and coal syncrudes by various degrees of hydrogenation. Low severity hydrotreated shale oils, with nitrogen contents of 0.1 to 0.24 weight percent, had breakpoint temperatures in the 477 to 505 K (400 to 450 F) range. Higher severity treatment, lowering nitrogen levels to 0.008 to 0.017 weight percent, resulted in breakpoint temperatures in the 505 to 533 K (450 to 500 F) range. Coal derived fuels showed generally increasing breakpoint temperatures with increasing weight percent hydrogen, fuels below 13 weight percent hydrogen having breakpoints below 533 K (500 F). Comparisons are shown with similar literature data.

  12. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Li, Christina W.; Ciston, Jim; Kanan, Matthew W.

    2014-04-01

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (`oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  13. Commercializing fuel cells: managing risks

    NASA Astrophysics Data System (ADS)

    Bos, Peter B.

    Commercialization of fuel cells, like any other product, entails both financial and technical risks. Most of the fuel cell literature has focussed upon technical risks, however, the most significant risks during commercialization may well be associated with the financial funding requirements of this process. Successful commercialization requires an integrated management of these risks. Like any developing technology, fuel cells face the typical 'Catch-22' of commercialization: "to enter the market, the production costs must come down, however, to lower these costs, the cumulative production must be greatly increased, i.e. significant market penetration must occur". Unless explicit steps are taken to address this dilemma, fuel cell commercialization will remain slow and require large subsidies for market entry. To successfully address this commercialization dilemma, it is necessary to follow a market-driven commercialization strategy that identifies high-value entry markets while minimizing the financial and technical risks of market entry. The financial and technical risks of fuel cell commercialization are minimized, both for vendors and end-users, with the initial market entry of small-scale systems into high-value stationary applications. Small-scale systems, in the order of 1-40 kW, benefit from economies of production — as opposed to economies to scale — to attain rapid cost reductions from production learning and continuous technological innovation. These capital costs reductions will accelerate their commercialization through market pull as the fuel cell systems become progressively more viable, starting with various high-value stationary and, eventually, for high-volume mobile applications. To facilitate market penetration via market pull, fuel cell systems must meet market-derived economic and technical specifications and be compatible with existing market and fuels infrastructures. Compatibility with the fuels infrastructure is facilitated by a

  14. Preliminary Investigation for Engine Performance by Using Tire-Derived Pyrolysis Oil-Diesel Blended Fuels

    NASA Astrophysics Data System (ADS)

    Rofiqul, Islam M.; Haniu, Hiroyuki; Alam, Beg R.; Takai, Kazunori

    In the first phase of the present study, the pyrolysis oil derived from light automotive tire waste has been characterized including fuel properties, elemental analyses, FT-IR, 1H-NMR, GC-MS and distillation. The studies on the oil show that it can be used as liquid fuel with a gross calorific value (GCV) of 42.00 MJ/kg and empirical formula of CH1.27O0.025N0.006. In the second phase of the investigation, the performance of a diesel engine was studied blending the pyrolysis oil with diesel fuel in different ratios. The experimental results show that the bsfc of pyrolysis oil-diesel blended fuels slightly increases and hence the brake thermal efficiency decreases compared to those of neat diesel. The pyrolysis oil-diesel blends show lower carbon monoxide (CO) emission but higher oxides of nitrogen (NOx) emissions than those of neat diesel. However, NOx emissions with pyrolysis oil-diesel blended fuels reduced when EGR was applied.

  15. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2006-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

  16. National markets for organic waste-derived fertilizers and soil amendments

    SciTech Connect

    Logan, T.J.; Pierzynski, G.M.; Pepperman, R.E.

    1995-12-31

    The last decade has seen enormous growth in the U.S. in the recycling of organic waste materials like sewage sludge, manures, yard waste, solid waste and various industrial wastes. This has been prompted by real or perceived shortages of landfill capacity, state and federal regulations favoring beneficial use of organic wastes, and public support for recycling. Use of fertilizers and soil amendments derived from these wastes has been stimulated by favorable supply-side economics, a shift to organic/sustainable agriculture, and water quality concerns that favor slow-release nutrient sources. This paper summarizes the properties and beneficial use attributes of the various wastes and their derived products, markets for these materials, and constraints/strategies for market penetration.

  17. Reduction of CO2 Emissions from Mobile Sources by Alternative Fuels Derived from Biomass.

    DTIC Science & Technology

    1993-11-01

    those goals with alcohol fuels derived from biomass produced as short-rotation woody crops. Emphasis is on the Hydrocarb process , now under evaluation...that a process such as Hydrocarb, that can leverage biomass with natural gas, should maximize petroleum displacement at least cost. Because of these...on the Hydrocarb process , now under evaluation by the EPA for production of methanol from biomass and natural gas. Factors considered in this

  18. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2005-04-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

  19. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2005-09-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  20. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  1. A preliminary evaluation of a combined tire- and refuse-derived fuel (TDF-RDF)

    SciTech Connect

    Stessel, R.I.; Amari, T.; Themelis, N.J.; Wearnick, I.K.

    1999-07-01

    In dense urban areas of the US, it is now becoming clear that waste management is far from economically-optimum. Even with the popularity of inexpensive land disposal, hauling and recycling costs are driving up the average waste bill. An historic option has been refuse-derived fuel, or RDF. Difficulties included low energy content and difficulty obtaining uniformity. Today, many resource-recovery technologies used in RDF are finding their way into materials recovery facilities (MRFs), some of which are reviving the automated processing of waste. Any MRF, automated or not, will have residue streams. Currently, one of the most significant problems is waste tires. Local options are difficult to locate in dense urban areas. As fuels, tires typically have energy contents considerably above those for which most solid-fuel combustors are designed, leading to thermal imbalances and various forms of failure. This paper suggests a new fuel that can be either co-fired with coal, or used in its own right in a combustor primarily designed for coal: TDF-RDF. A preliminary examination is undertaken of thermal and emissions characteristics, and possible costs for a few applications of the fuel. Immediately, TDF is already cleaner-burning than many coals, even in sulfur emissions. RDF has been widely-regarded as being similarly cleanly. Posited MRF residue streams should be still cleaner, and more consistent, than RDF. Overall, there is quite a potential for developing a fuel that would allow old coal powerplants in historic urban centers to be better neighbors, while helping with a few problems in municipal waste management.

  2. Biomass-derived Syngas Utilization for Fuels and Chemicals - Final Report

    SciTech Connect

    Dayton, David C

    2010-03-24

    Executive Summary The growing gap between petroleum production and demand, mounting environmental concerns, and increasing fuel prices have stimulated intense interest in research and development (R&D) of alternative fuels, both synthetic and bio-derived. Currently, the most technically defined thermochemical route for producing alternative fuels from lignocellulosic biomass involves gasification/reforming of biomass to produce syngas (carbon monoxide [CO] + hydrogen [H2]), followed by syngas cleaning, Fischer-Tropsch synthesis (FTS) or mixed alcohol synthesis, and some product upgrading via hydroprocessing or separation. A detailed techno-economic analysis of this type of process has recently been published [1] and it highlights the need for technical breakthroughs and technology demonstration for gas cleanup and fuel synthesis. The latter two technical barrier areas contribute 40% of the total thermochemical ethanol cost and 70% of the production cost, if feedstock costs are factored out. Developing and validating technologies that reduce the capital and operating costs of these unit operations will greatly reduce the risk for commercializing integrated biomass gasification/fuel synthesis processes for biofuel production. The objective of this project is to develop and demonstrate new catalysts and catalytic processes that can efficiently convert biomass-derived syngas into diesel fuel and C2-C4 alcohols. The goal is to improve the economics of the processes by improving the catalytic activity and product selectivity, which could lead to commercialization. The project was divided into 4 tasks: Task 1: Reactor Systems: Construction of three reactor systems was a project milestone. Construction of a fixed-bed microreactor (FBR), a continuous stirred tank reactor (CSTR), and a slurry bubble column reactor (SBCR) were completed to meet this milestone. Task 2: Iron Fischer-Tropsch (FT) Catalyst: An attrition resistant iron FT catalyst will be developed and tested

  3. Quantifying hazardous species in particulate matter derived from fossil-fuel combustion.

    PubMed

    Huggins, Frank E; Huffman, Gerald P; Linak, William P; Miller, C Andrew

    2004-03-15

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size-segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used to identify and determine quantitatively the amounts of three important toxic species in combustion-derived PM: viz., nickel sulfides in residual oil fly ash (ROFA) PM, and Cr(VI) and As(III) species in coal fly ash PM. Although it has been assumed that these toxic species might exist in PM derived from fossil-fuel combustion, the results presented here constitute the first direct determination of them in combustion-derived PM and their potential bioavailability. Detailed information on the presence of these toxic species in PM samples is of significant interest to epidemiological and toxicological studies of the health effects of both source and ambient PM. Additionally, information is obtained on insoluble forms that may be useful for source attribution and on the distribution of phases between size fractions that may be related to formation mechanisms of specific toxic species during combustion.

  4. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    SciTech Connect

    Folk, Richard L.; Govett, Robert L.

    1992-07-01

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  5. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  6. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2004-09-30

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

  7. Performance and economics of advanced energy conversion systems for coal and coal-derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.; Fox, G. R.

    1978-01-01

    The desire to establish an efficient Energy Conversion System to utilize the fossil fuel of the future - coal - has produced many candidate systems. A comparative technical/economic evaluation was performed on the seven most attractive advanced energy conversion systems. The evaluation maintains a cycle-to-cycle consistency in both performance and economic projections. The technical information base can be employed to make program decisions regarding the most attractive concept. A reference steam power plant was analyzed to the same detail and, under the same ground rules, was used as a comparison base. The power plants were all designed to utilize coal or coal-derived fuels and were targeted to meet an environmental standard. The systems evaluated were two advanced steam systems, a potassium topping cycle, a closed cycle helium system, two open cycle gas turbine combined cycles, and an open cycle MHD system.

  8. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel.

    PubMed

    Robinson, T; Bronson, B; Gogolek, P; Mehrani, P

    2016-02-01

    Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF.

  9. Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells.

    PubMed

    Wang, Huan; Lu, Lu; Liu, Dongmei; Cui, Fuyi; Wang, Peng

    2015-11-01

    The objective of this study was to investigate behavior of algal organic matter (AOM) during bioelectrochemical oxidation in microbial fuel cell in terms of compositions and structures. Study revealed that the AOM derived from blue-green algae Microcystis aeruginosa could be degraded more completely (82% COD removal) in microbial fuel cells (MFCs) than by anaerobic fermentation (24% COD removal) in a control reactor without closed-circuit electrode and electricity was produced simultaneously. A variety of techniques were used to characterize the changes in AOM compositions and structures during bioelectrochemical oxidation. The presence of syntrophic interactions between electrochemical active bacteria and fermentative bacteria to degrade large molecular organics into small molecular substances, which could be oxidized by electrode but not by fermentation. The dominant tryptophan protein-like substances, humic acid-like substances and Chlorophyll a in AOM were highly degraded during MFC treatment.

  10. The legalization of cannabis derivatives in Spain: Hypothesis on a potential emerging market.

    PubMed

    Álvarez, Arturo; Gamella, Juan F; Parra, Iván

    2016-10-07

    First, this paper estimates the dimensions of the market for cannabis in Spain using data on the extent of consumption and the main patterns of use of consumers. Then the paper reviews the hypothetical production and distribution costs of these drugs in different production regimes under different legal conditions. The review shows that current prices of cannabis in the illegal market could be notably reduced if production and distribution of cannabis were decriminalized and even more if they were performed by legal enterprises. Thirdly, we examine the relationship between prices and consumption levels by analysing the price elasticity of demand. A fall in the prices of cannabis products will likely result in an increase in the number of users and in the total amount consumed. Lastly we consider several alternatives for the taxation of cannabis derivatives to counteract the likely fall in prices, and their pros and cons.

  11. Behavior or Nonmetallic Materials in Shale Oil Derived Jet Fuels and in High Aromatic and High Sulfur Petroleum Fuels

    DTIC Science & Technology

    1978-07-01

    Sealants (Noncuring Type) 30 6. Elastomeric Marmon Clamp Seals 34 7. Elastomeric O-Ring Materials 38 8. Fuel Cell Baffle Materials 42 9. Internal Fuel Cell...fuel bladder materials, bladder repair adhesives, groove sealants, elastomeric o-ring materials, elasto- meric Marmon clamp seals, fuel tank coatings...a. EC-2216 EC-2216 is a room temperature curing epoxy- polyamide struc- tural adhesive manufactured by 3M Company. The initial test results have

  12. Hot Corrosion of Nickel-Base Alloys in Biomass-Derived Fuel Simulated Atmosphere

    SciTech Connect

    Leyens, C.; Pint, B.A.; Wright, I.G.

    1999-02-28

    Biomass fuels are considered to be a promising renewable source of energy. However, impurities present in the fuel may cause corrosion problems with the materials used in the hot sections of gas turbines and only limited data are available so far. As part of the Advanced Turbine Systems Program initiated by the U.S. Department of Energy, the present study provides initial data on the hot corrosion resistance of different nickel-base alloys against sodium sulfate-induced corrosion as a baseline, and against salt compositions simulating biomass-derived fuel deposits. Single crystal nickel-superalloy Rene N5, a cast NiCrAlY alloy, a NiCoCrAlY alloy representing industrially used overlay compositions, and a model {beta}NiAl+Hf alloy were tested in 1h thermal cycles at 950 C with different salt coatings deposited onto the surfaces. Whereas the NiCoCrAlY alloy exhibited reasonable resistance against pure sodium sulfate deposits, the NiCrAiY alloy and Rene N5 were attacked severely. Although considered to be an ideal alumina former in air and oxygen at higher temperatures, {beta}NiAl+Hf also suffered from rapid corrosion attack at 950 C when coated with sodium sulfate. The higher level of potassium present in biomass fuels compared with conventional fuels was addressed by testing a NiCoCrAlY alloy coated with salts of different K/Na atomic ratios. Starting at zero Na, the corrosion rate increased considerably when sodium was added to potassium sulfate. In an intermediate region the corrosion rate was initially insensitive to the K/Na ratio but accelerated when very Na-rich compositions were deposited. The key driver for corrosion of the NiCoCrAlY alloy was sodium sulfate rather than potassium sulfate, and no simple additive or synergistic effect of combining sodium and potassium was found.

  13. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  15. Hydrogen gas generation from refuse-derived fuel (RDF) under wet conditions.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Sakka, Kazuo; Ohmiya, Kunio

    2004-02-01

    An explosion has recently occurred at a silo containing refuse-derived fuels (RDF) in Japan. There is a possibility that microorganisms are involved in generation of combustible gas from RDF and this study was aimed at showing the presence of bacteria that can ferment RDF pellets. All RDF samples tested contained a relatively high number of viable bacterial cells, 1.4x10(5) to 3.2x10(6) viable cells/g. These bacteria in the RDF samples fermented them to generate heat and hydrogen gas.

  16. Carbon Nanohorn-Derived Graphene Nanotubes as a Platinum-Free Fuel Cell Cathode.

    PubMed

    Unni, Sreekuttan M; Illathvalappil, Rajith; Bhange, Siddheshwar N; Puthenpediakkal, Hasna; Kurungot, Sreekumar

    2015-11-04

    Current low-temperature fuel cell research mainly focuses on the development of efficient nonprecious electrocatalysts for the reduction of dioxygen molecule due to the reasons like exorbitant cost and scarcity of the current state-of-the-art Pt-based catalysts. As a potential alternative to such costly electrocatalysts, we report here the preparation of an efficient graphene nanotube based oxygen reduction electrocatalyst which has been derived from single walled nanohorns, comprising a thin layer of graphene nanotubes and encapsulated iron oxide nanoparticles (FeGNT). FeGNT shows a surface area of 750 m(2)/g, which is the highest ever reported among the metal encapsulated nanotubes. Moreover, the graphene protected iron oxide nanoparticles assist the system to attain efficient distribution of Fe-Nx and quaternary nitrogen based active reaction centers, which provides better activity and stability toward the oxygen reduction reaction (ORR) in acidic as well as alkaline conditions. Single cell performance of a proton exchange membrane fuel cell by using FeGNT as the cathode catalyst delivered a maximum power density of 200 mW cm(-2) with Nafion as the proton exchange membrane at 60 °C. The facile synthesis strategy with iron oxide encapsulated graphitic carbon morphology opens up a new horizon of hope toward developing Pt-free fuel cells and metal-air batteries along with its applicability in other energy conversion and storage devices.

  17. Single particle refuse-derived fuel devolatilization: Experimental measurements of reaction products

    SciTech Connect

    Lai, Weichuan; Krieger-Brockett, B. . Dept. of Chemical Engineering)

    1993-11-01

    The authors present experimentally measured devolatilization product yields from single particles of refuse-derived fuel (RDF), a more uniform, transportable municipal solid waste. Disposal costs and environmental concerns have stimulated interest in thermochemical conversion of this material to chemicals and fuels. The composition, reaction conditions, and particle properties were systematically varied over the range found in practice to develop quantitative measures that rank the process controllables' influence on altering the product slate. Specialized regression methods and experimental designs enhanced the accuracy in view of the feed heterogeneity and offer a general method to extract real effects from experimental and sample noise''. The results have been verified successfully using actual commercial RDF and fabricated compositions that surpass those normally found in municipal waste to anticipate the influence of trends in recycling. The results show that the reaction conditions have a greater influence on altering fuel utilization and the relative yields of char, condensibles, and gases than does the composition over the range found in MSW and RDF.

  18. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    SciTech Connect

    Paul A. Erickson

    2004-04-01

    Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

  19. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose

    PubMed Central

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-01-01

    For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL−1 and 0.91 g mL−1) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity. PMID:25826744

  20. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose.

    PubMed

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-03-31

    For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL(-1) and 0.91 g mL(-1)) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.

  1. Humboldt Goes to the Labour Market: How Academic Higher Education Fuels Labour Market Success in the Czech Republic

    ERIC Educational Resources Information Center

    Pabian, Petr; Sima, Karel; Kyncilova, Lucie

    2011-01-01

    The Czech Republic is one of the post-communist countries where the transformation from late industrial to knowledge economies and knowledge societies was complicated by the simultaneous transformations from communist centrally planned economies to democratic regimes and market economies. Furthermore, the transformation of higher education itself…

  2. Separation of harmful impurities from refuse derived fuels (RDF) by a fluidized bed.

    PubMed

    Krüger, B; Mrotzek, A; Wirtz, S

    2014-02-01

    In firing systems of cement production plants and coal-fired power plants, regular fossil fuels are increasingly substituted by alternative fuels. Rising energy prices and ambitious CO2-reduction goals promote the use of alternative fuels as a significant contribution to efficient energy recovery. One possibility to protect energy resources are refuse-derived fuels (RDF), which are produced during the treatment of municipal solid, commercial and industrial waste. The waste fractions suitable for RDF have a high calorific value and are often not suitable for material recycling. With current treatment processes, RDF still contains components which impede the utilization in firing systems or limit the degree of substitution. The content of these undesired components may amount to 4 wt%. These, in most cases incombustible particles which consist of mineral, ceramic and metallic materials can cause damages in the conveying systems (e. g. rotary feeder) or result in contaminations of the products (e. g. cement, chalk). Up-to-date separation processes (sieve machine, magnet separator or air classifier) have individual weaknesses that could hamper a secure separation of these particles. This article describes a new technology for the separation of impurities from refuse derived fuels based on a rotating fluidized bed. In this concept a rotating motion of the particle bed is obtained by the tangential injection of the fluidization gas in a static geometry. The RDF-particles experience a centrifugal force which fluidized the bed radially. The technical principle allows tearing up of particle clusters to single particles. Radially inwards the vertical velocity is much lower thus particles of every description can fall down there. For the subsequent separation of the particles by form and density an additionally cone shaped plate was installed in the centre. Impurities have a higher density and a compact form compared to combustible particles and can be separated with a high

  3. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    SciTech Connect

    Paul A. Erickson

    2005-06-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

  4. Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report

    SciTech Connect

    1980-10-01

    This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

  5. An approach to determining the economic feasibility of refuse-derived fuel and materials recovery processing

    NASA Astrophysics Data System (ADS)

    Gershman, H. W.

    1980-06-01

    An approach for determining the economic feasibility of refuse-derived fuel production and the recovery of materials is presented. This information is based on data developed for the metropolitan Washington, D.C. area as input for the consideration of a regional resource recovery program which would eventually encompass 4000 t/day of municipal solid waste; it is designed to recover refuse-derived fuel (RDF), ferrous and nonferrous metals, flint and color-mixed glass cullet, color-mixed glass fines, and waste newspapers. The planning process requires estimates of recovery product revenues and of process feasibility; since materials revenues can be predicted with a greater degree of certainty than RDF revenues, it becomes necessary to determine what revenues will be required from the sale of RDF so that predicted economics can be the same as the alternative disposal practice. A technique is described which will assist the decisionmaker in evaluating the economic feasibility of the proposed project by determining the RDF 'Indifference Value'.

  6. Radiocarbon-based assessment of fossil fuel-derived contaminant associations in sediments.

    PubMed

    White, Helen K; Reddy, Christopher M; Eglinton, Timothy I

    2008-08-01

    Hydrophobic organic contaminants (HOCs) are associated with natural organic matter (OM) in the environment via mechanisms such as sorption or chemical binding. The latter interactions are difficult to quantitatively constrain, as HOCs can reside in different OM pools outside of conventional analytical windows. Here, we exploited natural abundance variations in radiocarbon (14C) to trace various fossil fuel-derived HOCs (14C-free) within chemically defined fractions of contemporary OM (modern 14C content) in 13 samples including marine and freshwater sediments and one dust and one soil sample. Samples were sequentially treated by solvent extraction followed by saponification. Radiocarbon analysis of the bulk sample and resulting residues was then performed. Fossil fuel-derived HOCs released by these treatments were quantified from an isotope mass balance approach as well as by gas chromatography-mass spectrometry. For the majority of samples (n = 13), 98-100% of the total HOC pool was solvent extractable. Nonextracted HOCs are only significant (29% of total HOC pool)in one sample containing p,p-2,2-bis(chlorophenyl)-1,1,1-trichloroethane and its metabolites. The infrequency of significant incorporation of HOCs into nonextracted OM residues suggests that most HOCs are mobile and bioavailable in the environment and, as such, have a greater potential to exert adverse effects.

  7. Marketing.

    PubMed

    Chambers, David W

    2010-01-01

    There is not enough marketing of dentistry; but there certainly is too much selling of poor quality service that is being passed off as dentistry. The marketing concept makes the patient and the patients' needs the ultimate criteria of marketing efforts. Myths and good practices for effective marketing that will promote oral health are described under the traditional four "Ps" categories of "product" (best dental care), "place" (availability), "promotion" (advertising and other forms of making patients aware of available services and how to use them), and "price" (the total cost to patients of receiving care).

  8. Technological growth of fuel efficiency in european automobile market 1975–2015

    SciTech Connect

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuel consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.

  9. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  10. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    NASA Astrophysics Data System (ADS)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  11. Marketing.

    ERIC Educational Resources Information Center

    Appel, David L.

    This booklet suggests ways in which institutions--Catholic schools in particular--can move beyond public relations and advertising to engage in the broader arena of marketing with its focus on consumer satisfaction. The first of the book's three chapters reviews the concept of marketing, providing definitions of key terms, clarification of…

  12. Marketing.

    ERIC Educational Resources Information Center

    Maust, Robert N.

    1985-01-01

    Although college administrators may be committed to the concept and need for institutional marketing, even a well-developed marketing plan may not work if it is not clearly organized to address special needs. This article reviews management fads, how to make jargon operational, organizational dynamics, and monitoring fads. (MSE)

  13. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  14. Mathematics, Pricing, Market Risk Management and Trading Strategies for Financial Derivatives (2/3)

    ScienceCinema

    None

    2016-07-12

    Market Trading and Risk Management of Vanilla FX Options - Measures of Market Risk - Implied Volatility - FX Risk Reversals, FX Strangles - Valuation and Risk Calculations - Risk Management - Market Trading Strategies

  15. Technological growth of fuel efficiency in european automobile market 1975–2015

    DOE PAGES

    Hu, Kejia; Chen, Yuche

    2016-08-29

    This paper looks at the technological growth of new car fleet fuel efficiency in the European Union between 1975 and 2015. According to the analysis results, from1975 to 2006 the fuel efficiency technology improvements were largely offset by vehicles' increased weight, engine size, and consumer amenities such as acceleration capacity. After 2006, downsizing in weight and engine capacity was observed in new car fleet, while fuel consumption decreased by 32% between 2006 and 2015. We adopt a statistical method and find that from 1975 to 2015, a 1% increase in weight would result in 0.3 to 0.5% increments in fuelmore » consumption per 100 km, and a 1% reduction in 0-100 km/h acceleration time would increase fuel consumption by about 0.3%. Impacts of other attributes on fuel consumption are also assessed. To meet the European Union's 2021 fuel consumption target, downsizing of cars, as well as at least maintaining fuel efficiency technology growth trend observed between 2005 and 2015, are needed. Lastly, government policies on controlling improvement in acceleration performance or promoting alternative fuel vehicles are also important to achieve European Union 2021 target.« less

  16. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-04-01

    During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailed designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.

  17. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  18. Co-Combustion of Refuse Derived Fuel with Anthracites in a CFB Boiler

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Won; Lee, Jong-Min; Kim, Jae-Sung

    Combustion of Refuse derived fuel (RDF) is considered as a priority solution to energy recovery from municipal solid waste (MSW). The co-combustion characteristics of anthracite coals with RDF were determined in the commercial scale Tonghae CFB Power Plant. As the feeding ratio of the RDF to the anthracites increased to 5%, temperature and pressure were not changed in comparison with firing only anthracites. The amount of the required air was reduced due to high O2 content in RDF relative to the anthracites. The emissions of NOx, SOx, HCl and Dioxin were also measured. According to higher mixing ratio of the RDF to the anthracites, SOx, NOx emissions slightly decreased and HCl emissions increased, because RDF has relatively smaller S, N and higher CI than the anthracites. Heavy metals of the fly ash and bottom ash and the dioxin emissions were far below Korean maximum permissible concentration level at incinerator. The results showed that it is of great use and technically possible to co-combustion of RDF with the anthracites by 5% in the form of fuel recovery and energy production in commercial scale CFB boiler.

  19. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    SciTech Connect

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  20. Two stages catalytic pyrolysis of refuse derived fuel: production of biofuel via syncrude.

    PubMed

    Miskolczi, N; Buyong, F; Angyal, A; Williams, P T; Bartha, L

    2010-11-01

    Thermo-catalytic pyrolysis of refuse derived fuels with different catalysts had been conducted in a two stages process due to its important potential value as fuel. The first stage was a pure thermal pyrolysis in a horizontal tubular reactor with feed rate of 0.5kg hourly. The second stage was a semi-batch process in the presence of catalysts. Results showed that the tested catalysts significantly have affected the quantity of products. E.g. gas yield could be increased with 350% related to the catalyst free case using ZSM-5, while that of pyrolytic oil was 115% over Y-zeolite. Gases consisted of mainly CO and CO(2) obtained from the tubular reactor, while dominantly hydrocarbons from the second stage. Ni-Mo-catalyst and Co-Mo-catalyst had shown activity in pyrolytic oil upgrading via in-situ hydrogenation-dehydrogenation reactions. Sulphur, nitrogen and chlorine level in pyrolytic oils could be significantly declined by using of catalysts.

  1. Nonactivated and activated biochar derived from bananas as alternative cathode catalyst in microbial fuel cells.

    PubMed

    Yuan, Haoran; Deng, Lifang; Qi, Yujie; Kobayashi, Noriyuki; Tang, Jiahuan

    2014-01-01

    Nonactivated and activated biochars have been successfully prepared by bananas at different thermotreatment temperatures. The activated biochar generated at 900°C (Biochar-act900) exhibited improved oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performances in alkaline media, in terms of the onset potential and generated current density. Rotating disk electron result shows that the average of 2.65 electrons per oxygen molecule was transferred during ORR of Biochar-act900. The highest power density of 528.2 mW/m(2) and the maximum stable voltage of 0.47 V were obtained by employing Biochar-act900 as cathode catalyst, which is comparable to the Pt/C cathode. Owning to these advantages, it is expected that the banana-derived biochar cathode can find application in microbial fuel cell systems.

  2. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  3. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  4. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  5. Detection of hydrogen gas-producing anaerobes in refuse-derived fuel (RDF) pellets.

    PubMed

    Sakka, Makiko; Kimura, Tetsuya; Ohmiya, Kunio; Sakka, Kazuo

    2005-11-01

    Recently, we reported that refuse-derived fuel (RDF) pellets contain a relatively high number of viable bacterial cells and that these bacteria generate heat and hydrogen gas during fermentation under wet conditions. In this study we analyzed bacterial cell numbers of RDF samples manufactured with different concentrations of calcium hydroxide, which is usually added to waste materials for the prevention of rotting of food wastes and the acceleration of drying of solid wastes, and determined the amount of hydrogen gas produced by them under wet conditions. Furthermore, we analyzed microflora of the RDF samples before and during fermentation by denaturing gradient gel electrophoresis of 16S rDNA followed by sequencing. We found that the RDF samples contained various kinds of clostridia capable of producing hydrogen gas.

  6. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    NASA Astrophysics Data System (ADS)

    Kluska, Jacek; Klein, Marek; Kazimierski, Paweł; Kardaś, Dariusz

    2014-03-01

    The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  7. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    NASA Astrophysics Data System (ADS)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  8. Production of Jet Fuels from Coal-Derived Liquids. Volume 13. Evaluation of Storage and Thermal Stability of Jet Fuels Derived from Coal Liquids

    DTIC Science & Technology

    1990-05-01

    at the Great Plains Gasification Plant ( GPGP ) in Beulah, North Dakota. Funding was provided to the Department of Energy. (DOE), Pittsburgh Energy...Petroleum and Energy Research-(NIPER)>of the lIT Research Institute to study the storage and thermal stability of a JP-8 fuel produced from the GPGP liquid by...fuel produced from the GPGP liquid by-product streams. DOE/PETC was funded through Military Interdepartmental Purchase Request (MIPR) FY1455-86- N0657

  9. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  10. Alternative Fuels

    EPA Pesticide Factsheets

    Alternative fuels include gaseous fuels such as hydrogen, natural gas, and propane; alcohols such as ethanol, methanol, and butanol; vegetable and waste-derived oils; and electricity. Overview of alternative fuels is here.

  11. A preliminary assessment of the feasibility of deriving liquid and gaseous fuels from grown and waste organics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Reynolds, T. W.; Hsu, Y.-Y.

    1976-01-01

    An estimate is obtained of the yearly supply of organic material for conversion to fuels, the energy potential is evaluated, and the fermentation and pyrolysis conversion processes are discussed. An investigation is conducted of the estimated cost of fuel from organics and the conclusions of an overall evaluation are presented. It is found that climate, land availability and economics of agricultural production and marketing, food demand, fertilizer shortage, and water availability combine to cast doubts on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. Less controversial is the utilization of agricultural, industrial, and domestic waste as a conversion feedstock. The evaluation of a demonstration size system is recommended.

  12. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    PubMed

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  13. Activated carbons prepared from refuse derived fuel and their gold adsorption characteristics.

    PubMed

    Buah, William K; Williams, Paul T

    2010-02-01

    Activated carbons produced from refuse derived fuel (RDF), which had been prepared from municipal solid waste have been characterized and evaluated for their potential for gold adsorption from gold chloride solution. Pyrolysis of the RDF produced a char, which was then activated via steam gasification to produce activated carbons. Steam gasification of the char at 900 degrees C for 3 h yielded 73 wt% activated carbon. The derived activated carbon had a surface area of 500 m2 g(-1) and a total pore volume of 0.19 cm3 g(-1). The gold adsorption capacity of the activated carbon was 32.1 mg Au g(-1) of carbon when contacted with an acidified gold chloride solution. The gold adsorption capacity was comparable to that of a commercial activated carbon tested under the same conditions and was well in the range of values of activated carbons used in the gold industry. Demineralization of the RDF activated carbon in a 5 M HCl solution resulted in enhancement of its textural properties but a reduction in the gold adsorption rate, indicating that the metal content of the RDF activated carbon influenced its gold adsorption rate.

  14. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater

    NASA Astrophysics Data System (ADS)

    Mailloux, Brian J.; Trembath-Reichert, Elizabeth; Cheung, Jennifer; Watson, Marlena; Stute, Martin; Freyer, Greg A.; Ferguson, Andrew S.; Matin Ahmed, Kazi; Jahangir Alam, Md.; Buchholz, Bruce A.; Thomas, James; Layton, Alice C.; Zheng, Yan; Bostick, Benjamin C.; van Geen, Alexander

    2013-04-01

    Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction-carbon deposited with the sediments or exogenous carbon transported by groundwater-is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon (14C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb 14C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future.

  15. High performance liquid chromatographic hydrocarbon group-type analyses of mid-distillates employing fuel-derived fractions as standards

    NASA Technical Reports Server (NTRS)

    Seng, G. T.; Otterson, D. A.

    1983-01-01

    Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.

  16. Effect of fuel properties on performance of a single aircraft turbojet combustor. [from coal and oil-shale derived syncrudes

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  17. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.

    PubMed

    Wu, May; Wu, Ye; Wang, Michael

    2006-01-01

    We conducted a mobility chains, or well-to-wheels (WTW), analysis to assess the energy and emission benefits of cellulosic biomass for the U.S. transportation sector in the years 2015-2030. We estimated the life-cycle energy consumption and emissions associated with biofuel production and use in light-duty vehicle (LDV) technologies by using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. Analysis of biofuel production was based on ASPEN Plus model simulation of an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity. Our study revealed that cellulosic biofuels as E85 (mixture of 85% ethanol and 15% gasoline by volume), FTD, and DME offer substantial savings in petroleum (66-93%) and fossil energy (65-88%) consumption on a per-mile basis. Decreased fossil fuel use translates to 82-87% reductions in greenhouse gas emissions across all unblended cellulosic biofuels. In urban areas, our study shows net reductions for almost all criteria pollutants, with the exception of carbon monoxide (unchanged), for each of the biofuel production option examined. Conventional and hybrid electric vehicles, when fueled with E85, could reduce total sulfur oxide (SO(x)) emissions to 39-43% of those generated by vehicles fueled with gasoline. By using bio-FTD and bio-DME in place of diesel, SO(x) emissions are reduced to 46-58% of those generated by diesel-fueled vehicles. Six different fuel production options were compared. This study strongly suggests that integrated heat and power co-generation by means of gas turbine combined cycle is a crucial factor in the energy savings and emission reductions.

  18. Dependence of Fuel Properties During Blending of Iso-Paraffinic Kerosene and Petroleum-Derived Jet Fuel

    DTIC Science & Technology

    2008-11-01

    such as algae , grasses and organic wastes are of interest due to the potential reduction in associated carbon footprint when using these feedstocks...years storage. The ―failure‖ level is based upon the previous JP-5 peroxide specification limit of 1 mequiv/kg (~800 M, assuming fuel S.G. = 0.800...found in MIL-T-5624P. The peroxide specification limit was eliminated in 1995 update to the MIL Spec. Studies were conducted using the FT fuel, JP

  19. Investigation on the spontaneous combustion of refuse-derived fuels during storage using a chemiluminescence technique.

    PubMed

    Matunaga, Atsushi; Yasuhara, Akio; Shimizu, Yoshitada; Wakakura, Masahide; Shibamoto, Takayuki

    2008-12-01

    Refuse-derived fuel (RDF), a high-caloric material, is used by various combustion processes, such as power plants, as alternative fuel. Several explosion accidents, however, possibly initiated by the spontaneous combustion of stored RDF, have been reported in Japan. Therefore the spontaneous combustion of RDF prepared from domestic garbage was investigated using chemiluminescence. RDF samples were heated either under air or under nitrogen for 1, 2, or 4 h at 120 or 140 degrees C and then cooled by an air or nitrogen stream. All RDF samples exhibited chemiluminescence. In air-treated RDF samples (heated and cooled by air), chemiluminescence after ageing was shown to be slightly lower than before ageing, whereas in nitrogen-treated samples (both heated and cooled by nitrogen) chemiluminescence decreased significantly after ageing. When nitrogen was replaced with air during aging, however, a sudden increase of chemiluminescence was observed. On the other hand, when cooling was done with air, chemiluminescence increased. Higher chemiluminescence was also observed during high-temperature treatment. Further experiments on cellulose, one of the major components of domestic garbage, exhibited similar chemiluminescence patterns to those of RDF when treated by the same methods as those used for RDF ageing. Chemiluminescence from cellulose increased significantly when the atmospheric gas was changed from nitrogen to air, suggesting that oxygen in the air promoted the formation of hydroperoxide from cellulose. Therefore, it is hypothesized that cellulose plays an important role in the formation of chemiluminescence from RDF. The formation of chemiluminescence indicated that radicals are formed from RDF by oxidation or thermal degradation at room or atmospheric temperatures and may subsequently lead to spontaneous combustion.

  20. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    SciTech Connect

    Not Available

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  1. One-step catalytic conversion of biomass-derived carbohydrates to liquid fuels

    DOEpatents

    Sen, Ayusman; Yang, Weiran

    2014-03-18

    The invention relates to a method for manufacture of hydrocarbon fuels and oxygenated hydrocarbon fuels such as alkyl substituted tetrahydrofurans such as 2,5-dimethyltetrahydrofuran, 2-methyltetrahydrofuran, 5-methylfurfural and mixtures thereof. The method generally entails forming a mixture of reactants that includes carbonaceous material, water, a metal catalyst and an acid reacting that mixture in the presence of hydrogen. The reaction is performed at a temperature and for a time sufficient to produce a furan type hydrocarbon fuel. The process may be adapted to provide continuous manufacture of hydrocarbon fuels such as a furan type fuel.

  2. Comparing observations of fossil fuel-derived CO2 in California with predictions from bottom-up inventories

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Lueker, T.; Fischer, M. L.; Guilderson, T. P.; Keeling, R. F.; Brophy, K.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2015-12-01

    The US state of California has a progressive climate change mitigation policy, AB-32, enacted in 2006 to reduce greenhouse gas emissions 15% by 2020 and then a further 80% by 2050. Bottom-up inventories indicate California's fossil fuel CO2 emissions are currently about 100 Mt C per year, but different inventories show discrepancies of ±15% in the state-wide total, and some larger discrepancies in various sub-regions of the state. We are developing a top-down framework for investigating fossil fuel and biospheric CO2 fluxes in California using atmospheric observations and models. California has a relatively dense collaborative network of greenhouse gas observations run by several universities, government laboratories and Earth Networks. Using this collaborative network, we conducted three field campaigns in 2014-15 to sample flasks at 10 tower sites across the state. Flasks were analysed for atmospheric CO2 and CO concentrations and for stable isotopes and radiocarbon in CO2. The flask observations of radiocarbon in CO2 allow patterns of fossil fuel-derived and biospheric CO2 to be distinguished at relatively high resolution across the state. We will report initial results from the observations showing regional gradients in fossil fuel-derived CO2 and fluctuations from changing weather patterns. We will compare the observations of fossil fuel-derived CO2 to predictions from several bottom-up inventories and two atmospheric models. Linking the flask data with observations from OCO-2, TCCON, aircraft flights and ground-based in situ analyzers, we will examine the variation in total CO2 and its drivers over California. Further analysis is planned to integrate the data into an inversion framework for fossil fuel and biospheric CO2 fluxes over California.

  3. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater

    PubMed Central

    Mailloux, Brian J.; Trembath-Reichert, Elizabeth; Cheung, Jennifer; Watson, Marlena; Stute, Martin; Freyer, Greg A.; Ferguson, Andrew S.; Ahmed, Kazi Matin; Alam, Md. Jahangir; Buchholz, Bruce A.; Thomas, James; Layton, Alice C.; Zheng, Yan; Bostick, Benjamin C.; van Geen, Alexander

    2013-01-01

    Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction—carbon deposited with the sediments or exogenous carbon transported by groundwater—is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon (14C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb 14C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future. PMID:23487743

  4. Re-Evaluating Neptunium in Uranyl Phases Derived from Corroded Spent Fuel

    SciTech Connect

    Fortner, Jeffrey A.; Finch, Robert J.; Kropf, A. Jeremy; Cunnane, James C.

    2004-11-15

    Interest in mechanisms that may control radioelement release from corroded commercial spent nuclear fuel (CSNF) has been heightened by the selection of the Yucca Mountain site in Nevada as the repository for high-level nuclear waste in the United States. Neptunium is an important radionuclide in repository models owing to its relatively long half-life and its high aqueous mobility as neptunyl [Np(V)O{sub 2}{sup +}]. The possibility of neptunium sequestration into uranyl alteration phases produced by corroding CSNF would suggest a process for lowering neptunium concentration and subsequent migration from a geologic repository. However, there remains little experimental evidence that uranyl compounds will, in fact, serve as long-term host phases for the retention of neptunium under conditions expected in a deep geologic repository. To directly explore this possibility, we examined specimens of uranyl alteration phases derived from humid-air-corroded CSNF by X-ray absorption spectroscopy to better determine neptunium uptake in these phases. Although neptunium fluorescence was readily observed from as-received CSNF, it was not observed from the uranyl alteration rind. We establish upper limits for neptunium incorporation into CSNF alteration phases that are significantly below previously reported concentrations obtained by using electron energy loss spectroscopy (EELS). We attribute the discrepancy to a plural-scattering event that creates a spurious EELS peak at the neptunium-M{sub V} energy.

  5. Re-evaluating neptunium in uranyl phases derived from corroded spent fuel.

    SciTech Connect

    Fortner, J. A.; Finch, R. J.; Kropf, A. J.; Cunnane, J. C.; Chemical Engineering

    2004-11-01

    Interest in mechanisms that may control radioelement release from corroded commercial spent nuclear fuel (CSNF) has been heightened by the selection of the Yucca Mountain site in Nevada as the repository for high-level nuclear waste in the United States. Neptunium is an important radionuclide in repository models owing to its relatively long half-life and its high aqueous mobility as neptunyl [Np(V)O+2]. The possibility of neptunium sequestration into uranyl alteration phases produced by corroding CSNF would suggest-a process for lowering neptunium concentration and subsequent migration from a geologic repository. However, there remains little experimental evidence that uranyl compounds will, in fact, serve as long-term host phases for the retention of neptunium under conditions expected in a deep geologic repository. To directly explore this possibility, we examined specimens of uranyl alteration phases derived from humid-air-corroded CSNF by X-ray absorption spectroscopy to better determine neptunium uptake in these phases. Although neptunium fluorescence was readily observed from as-received CSNF, it was not observed from the uranyl alteration rind. We establish upper limits for neptunium incorporation into CSNF alteration phases that are significantly below previously reported concentrations obtained by using electron energy loss spectroscopy (EELS). We attribute the discrepancy to a plural-scattering event that creates a spurious EELS peak at the neptunium-MV energy.

  6. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    SciTech Connect

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  7. Tracking the spectroscopic and chromatographic changes of algal derived organic matter in a microbial fuel cell.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Choi, Kwang-Soon; Min, Booki

    2014-02-01

    Changes in the characteristics of algae-derived organic matter (AOM) were examined upon the operation of a microbial fuel cell (MFC) using multiple analytical methods. Temporal variations in the UV absorption and fluorescence excitation-emission matrix of the AOM revealed that less condensed humic-like components and large-sized protein-like fluorescent compounds were preferentially decomposed over the period of electricity generation. They also showed that low UV-absorbing extracellular organic matters (EOM) were produced at the end of the operation. SEC chromatograms demonstrated that smaller-sized UV-absorbing components were initially decomposed, followed by the net production of EOM with an intermediate molecular weight. Fourier transform infrared (FT-IR) spectra showed that proteins and polysaccharides were the two most dominant structures of the AOM in the MFC. Two-dimensional correlation spectroscopy combined with FT-IR provided additional valuable information on the sequential changes of the AOM, which occurred in the order of proteins → acidic functional groups → polysaccharides → amino acids/proteins.

  8. Design considerations and operating experience in firing refuse derived fuel in a circulating fluidized bed combustor

    SciTech Connect

    Piekos, S.J.; Matuny, M.

    1997-12-31

    The worldwide demand for cleaner, more efficient methods to dispose of municipal solid waste has stimulated interest in processing solid waste to produce refuse derived fuel (RDF) for use in circulating fluidized bed (CFB) boilers. The combination of waste processing and materials recovery systems and CFB boiler technology provides the greatest recovery of useful resources from trash and uses the cleanest combustion technology available today to generate power. Foster Wheeler Power Systems along with Foster Wheeler Energy Corporation and several other Foster Wheeler sister companies designed, built, and now operates a 1600 tons per day (TPD) (1450 metric tons) municipal waste-to-energy project located in Robbins, Illinois, a suburb of Chicago. This project incorporates waste processing systems to recover recyclable materials and produce RDF. It is the first project in the United States to use CFB boiler technology to combust RDF. This paper will provide an overview of the Robbins, Illinois waste-to-energy project and will examine the technical and environmental reasons for selecting RDF waste processing and CFB combustion technology. Additionally, this paper will present experience with handling and combusting RDF and review the special design features incorporated into the CFB boiler and waste processing system that make it work.

  9. Characterising the composition of waste-derived fuels using a novel image analysis tool.

    PubMed

    Peddireddy, S; Longhurst, P J; Wagland, S T

    2015-06-01

    An experimental study was completed using a previously developed and innovative image analysis approach, which has been applied here to shredded waste materials representative of waste-derived fuels. Waste components were collected from source-segregated recycling containers and shredded to <150 mm. These materials were then used to produce 3× samples of different composition. The samples were spread to represent materials on a conveyor belt, and multiple images of each sample were captured using 10×10 cm and 20×20 cm quadrats. The images were processed using ERDAS Imagine software to determine the area covered by each waste component. This coverage was converted into a mass using density data determined as part of this study, yielding a determined composition which was then compared with the known composition of the samples. The image analysis results indicated a strong correlation with the actual values (mean r=0.89). The area coverage of the sample (10×10 cm or 20×20 cm) contributes to the accuracy as the dot-grid approach used with the particle size within the samples may result in components not being sufficiently monitored. This manuscript presents initial results of the application of an adapted innovative image-based method, and critically assesses how the technique could be improved and developed in the future.

  10. Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects

    SciTech Connect

    1998-05-01

    Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

  11. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  12. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial

  13. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-01-01

    During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.

  14. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  15. Progress on Fuel Efficiency and Market Adoption - SuperTruck Factsheet

    SciTech Connect

    2016-06-30

    The Department of Energy (DOE) launched the SuperTruck initiative in 2009 with the goal of developing and demonstrating a 50 percent improvement in overall freight efficiency (expressed in a ton-mile per gallon metric) for a heavy-duty Class 8 tractor-trailer. To date, the industry teams participating in the initiative have successfully met or are on track to exceed this goal, leveraging suites of technologies that hold significant potential for market success.

  16. Densified refuse-derived fuel (d-RDF) burn at Marcy Psychiatric Center. Final report Mar 80-Nov 80

    SciTech Connect

    Galson, E.

    1980-11-01

    A densified refuse derived fuel (d-RDF) product was fired for approximately 50 hours as a supplemental fuel in a coal fired spreader stoker boiler at the Marcy Psychiatric Center in Marcy, New York. Observations were made and photographs were taken of plant operation during all phases of the test project. Opacity and particulate emission tests were performed while firing d-RDF in a ratio of 1:2 with coal (by volume) and while firing 100 percent coal at high and low loads to provide comparisons with State Department of Environmental Conservation emission standards. No significant disadvantages over coal were found in burning d-RDF/coal in ratios up to 2:1 (43 percent heat input by d-RDF). Fuel handling, boiler operation, boiler efficiency, particulate emissions and opacity were similar for the coal and d-RDF/coal mixtures.

  17. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste.

    PubMed

    Garg, A; Smith, R; Hill, D; Longhurst, P J; Pollard, S J T; Simms, N J

    2009-08-01

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ( approximately 2500 g CO(2) eqvt./kg DS SRF in co-fired cement kilns and approximately 1500 g CO(2) eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( 95 pounds/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  18. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-01-01

    During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.

  19. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas. Final technical report

    SciTech Connect

    Not Available

    1993-02-01

    Through the mid-1980s, Air Products has brought the liquid phase approach to a number of other synthesis gas reactions where effective heat management is a key issue. In 1989, in response to DOE`s PRDA No. DE-RA22-88PC88805, Air Products proposed a research and development program entitled ``Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal Derived Syngas.`` The proposal aimed at extending the LPMEOH experience to convert coal-derived synthesis gas to other useful fuels and chemicals. The work proposed included development of a novel one-step synthesis of dimethyl ether (DME) from syngas, and exploration of other liquid phase synthesis of alternative fuel directly from syngas. The one-step DME process, conceived in 1986 at Air Products as a means of increasing syngas conversion to liquid products, envisioned the concept of converting product methanol in situ to DME in a single reactor. The slurry reactor based liquid phase technology is ideally suited for such an application, since the second reaction (methanol to DME) can be accomplished by adding a second catalyst with dehydration activity to the methanol producing reactor. An area of exploration for other alternative fuels directly from syngas was single-step slurry phase synthesis of hydrocarbons via methanol and DME as intermediates. Other possibilities included the direct synthesis of mixed alcohols and mixed ethers in a slurry reactor.

  20. Development of alternative fuels from coal-derived syngas. Quarterly status report No. 6, January 1--March 31, 1992

    SciTech Connect

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products` laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively ``benign`` system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE`s program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  1. Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Sebastián, David; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen; Aricò, Antonino S.; Baglio, Vincenzo

    2016-07-01

    Highly active and durable non-platinum group metals (non-PGM) catalyst based on iron-nitrogen-carbon (Fe-N-C) for the oxygen reduction reaction (ORR) derived from pyrolyzed Fe-aminobenzimidazole (Fe-ABZIM) was synthesized by sacrificial support method (SSM), and characterized by several physical-chemical techniques: scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method and X-ray photoelectron spectroscopy. In half-cell electrochemical configuration, the Fe-ABZIM catalyst presented a significant improvement of ORR activity with respect to a recently reported non-PGM formulation based on Fe-aminoantipyrine, with an enhancement of half-wave potential of about 85 mV in O2-saturated sulfuric acid solution. To the moment, the gap with respect to a benchmark Pt/C catalyst was about 90 mV. The Fe-ABZIM catalyst showed a remarkably high tolerance to methanol, resulting in superior ORR performance compared to Pt/C at methanol concentrations higher than 0.02 M. In direct methanol fuel cell (DMFC) good performances were also obtained. A durability test (100 h) at 90 °C, feeding 5 M methanol, was carried out. A certain decrease of performance was recorded, amounting to -0.20 mW cm-2 h-1 at the very beginning of test and -0.05 mW cm-2 h-1 at the end. However, the Fe-ABZIM is more adequate than previously reported formulations in terms of both ORR activity and stability.

  2. Test and evaluation of shale derived jet fuel by the United States Air Force

    SciTech Connect

    Delaney, C.L.

    1985-01-01

    In June 1980, the United States Congress passed the Energy Security Act which provided for the formation of the United States Synthetic Fuels Corporation and amended the Defense Production Act of 1950 to provide for synthetic fuels for the Department of Defense (DOD). A subsequent law, P.L., 96-304, appropriated up to $20 billion for financial incentives to foster a national synthetic fuel industry. The initial synthetic fuel project funded under the Energy Security Act is the Unocal Parachute Creek Project in Colorado with an expected shale oil production of 10,000 bbls/day. The Defense Fuel Supply Center (DFSC) contracted with Gary Energy Refining Company, Fruita, Colorado to provide approximately 5,000 bbls/day of shale JP-4 for the United States Air Force (USAF) using crude from the Parachute Creek Project, with initial deliveries to begin in 1985.

  3. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.

    PubMed

    Serrano-Ruiz, Juan Carlos; Luque, Rafael; Sepúlveda-Escribano, Antonio

    2011-11-01

    Global warming issues and the medium-term depletion of fossil fuel reserves are stimulating researchers around the world to find alternative sources of energy and organic carbon. Biomass is considered by experts the only sustainable source of energy and organic carbon for our industrial society, and it has the potential to displace petroleum in the production of chemicals and liquid transportation fuels. However, the transition from a petroleum-based economy to one based on biomass requires new strategies since the petrochemical technologies, well-developed over the last century, are not valid to process the biomass-derived compounds. Unlike petroleum feedstocks, biomass derived platform molecules possess a high oxygen content that gives them low volatility, high solubility in water, high reactivity and low thermal stability, properties that favour the processing of these resources by catalytic aqueous-phase technologies at moderate temperatures. This tutorial review is aimed at providing a general overview of processes, technologies and challenges that lie ahead for a range of different aqueous-phase transformations of some of the key biomass-derived platform molecules into liquid fuels for the transportation sector and related high added value chemicals.

  4. 78 FR 62462 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... transportation fuels, including gasoline and diesel fuel, or renewable fuels such as ethanol and biodiesel, as... biodiesel) that were produced for the highway diesel market but were also suitable for other markets such...

  5. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a

  6. Evaluation of Exxon Donor Solvent (EDS) coal-derived liquid as utility diesel fuel. Final report

    SciTech Connect

    Heater, W.R.; Froh, T.W.; Ariga, S.; Baker, Q.A.; Piispanen, W.; Webb, P.; Trayser, D.; Keane, W.J.

    1983-10-01

    The program consisted of three phases: (I) characterization of the physical and chemical properties of EDS, (II) evaluation of EDS in a laboratory medium-speed diesel engine, and (III) evaluation of EDS in a low-speed diesel engine operating at a utility. The characteristics of high aromatic content and low cetane number that were found during Phase I made it unlikely that EDS could be used as a direct substitute for diesel fuel without engine modification to provide ignition assistance. Phase II was conducted on a 12-cylinder General Electric Company 7FDL diesel engine. Blends of up to 30% EDS and 70% 0.2 diesel fuel (DF-2) were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing engine fuel oil system and injecting DF-2 through an auxiliary nozzle as an ignition source. Acceptable operation was achieved using 5 to 10% pilot oil heat input. Phase III was conducted on a 16-cylinder Cooper-Bessemer LSV-16-GDT diesel engine at an EUC plant in Easton, Maryland. Blends of up to 66.7% EDS and 33.3% DF-2 were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing fuel oil system and using a natural-gas-fueled precombustion chamber as an ignition source. Acceptable operation was achieved using 3 to 6% pilot gas heat input. The program confirmed that it is feasible to consume significant proportions of EDS in a diesel engine, but more development is needed before EDS can be considered a viable alternative liquid fuel for diesel engines, and an industrial hygiene program is needed to assure safe handling of the fuel.

  7. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    SciTech Connect

    Chirone, R.; Scala, F.; Solimene, R.; Salatino, P.; Urciuolo, M.

    2008-10-15

    The fluidized bed combustion of three pelletized biogenic fuels (sewage sludge, wood, and straw) has been investigated with a combination of experimental techniques. The fuels have been characterized from the standpoints of patterns and rates of fuel devolatilization and char burnout, extent of attrition and fragmentation, and their relevance to the fuel particle size distribution and the amount and size distribution of primary ash particles. Results highlight differences and similarities among the three fuels tested. The fuels were all characterized by limited primary fragmentation and relatively long devolatilization times, as compared with the time scale of particle dispersion away from the fuel feeding ports in practical FBC. Both features are favorable to effective lateral distribution of volatile matter across the combustor cross section. The three fuels exhibited distinctively different char conversion patterns. The high-ash pelletized sludge burned according to the shrinking core conversion pattern with negligible occurrence of secondary fragmentation. The low-ash pelletized wood burned according to the shrinking particle conversion pattern with extensive occurrence of secondary fragmentation. The medium-ash pelletized straw yielded char particles with a hollow structure, resembling big cenospheres, characterized by a coherent inorganic outer layer strong enough to prevent particle fragmentation. Inert bed particles were permanently attached to the hollow pellets as they were incorporated into ash melts. Carbon elutriation rates were very small for all the fuels tested. For pelletized sludge and straw, this was mostly due to the shielding effect of the coherent ash skeleton. For the wood pellet, carbon attrition was extensive, but was largely counterbalanced by effective afterburning due to the large intrinsic reactivity of attrited char fines. The impact of carbon attrition on combustion efficiency was negligible for all the fuels tested. The size

  8. Further investigation of the impact of the co-combustion of tire-derived fuel and petroleum coke on the petrology and chemistry of coal combustion products

    SciTech Connect

    Hower, J.C.; Robertson, J.D.; Elswick, E.R.; Roberts, J.M.; Brandsteder, K.; Trimble, A.S.; Mardon, S.M.

    2007-07-01

    A Kentucky cyclone-fired unit burns coal and tire-derived fuel, sometimes in combination with petroleum coke. A parallel pulverized combustion (pc) unit at the same plant burns the same coal, without the added fuels. The petrology, chemistry, and sulfur isotope distribution in the fuel and resulting combustion products was investigated for several configurations of the fuel blend. Zinc and Cd in the combustion products are primarily contributed from the tire-derived fuel, the V and Ni are primarily from the petroleum coke, and the As and Hg are probably largely from the coal. The sulfur isotope distribution in the cyclone unit is complicated due to the varying fuel sources. The electrostatic precipitator (ESP) array in the pc unit shows a subtle trend towards heavier S isotopic ratios in the cooler end of the ESP.

  9. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  10. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  11. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  12. Applications study of advanced power generation systems utilizing coal-derived fuels. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    The technology status of phosphoric acid and molten carbon fuel cells, combined gas and steam turbine cycles, and magnetohydrodynamic energy conversion systems was assessed and the power performance of these systems when operating with medium-Btu fuel gas whether delivered by pipeline to the power plant or in an integrated mode in which the coal gasification process and power system are closely coupled as an overall power plant was evaluated. Commercially available combined-cycle gas turbine systems can reach projected required performance levels for advanced systems using currently available technology. The phosphoric acid fuel cell appears to be the next most likely candidate for commercialization. On pipeline delivery, the systems efficiency ranges from 40.9% for the phosphoric acid fuel cell to 63% for the molten carbonate fuel cell system. The efficiencies of the integrated power plants vary from approximately 39-40% for the combined cycle to 46-47% for the molden carbonate fuel cell systems. Conventional coal-fired steam stations with flue-gas desulfurization have only 33-35% efficiency.

  13. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  14. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  15. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents.

    PubMed

    Agon, N; Hrabovský, M; Chumak, O; Hlína, M; Kopecký, V; Masláni, A; Bosmans, A; Helsen, L; Skoblja, S; Van Oost, G; Vierendeels, J

    2016-01-01

    The renewable evolution in the energy industry and the depletion of natural resources are putting pressure on the waste industry to shift towards flexible treatment technologies with efficient materials and/or energy recovery. In this context, a thermochemical conversion method of recent interest is plasma gasification, which is capable of producing syngas from a wide variety of waste streams. The produced syngas can be valorized for both energetic (heat and/or electricity) and chemical (ammonia, hydrogen or liquid hydrocarbons) end-purposes. This paper evaluates the performance of experiments on a single-stage plasma gasification system for the treatment of refuse-derived fuel (RDF) from excavated waste. A comparative analysis of the syngas characteristics and process yields was done for seven cases with different types of gasifying agents (CO2+O2, H2O, CO2+H2O and O2+H2O). The syngas compositions were compared to the thermodynamic equilibrium compositions and the performance of the single-stage plasma gasification of RDF was compared to that of similar experiments with biomass and to the performance of a two-stage plasma gasification process with RDF. The temperature range of the experiment was from 1400 to 1600 K and for all cases, a medium calorific value syngas was produced with lower heating values up to 10.9 MJ/Nm(3), low levels of tar, high levels of CO and H2 and which composition was in good agreement to the equilibrium composition. The carbon conversion efficiency ranged from 80% to 100% and maximum cold gas efficiency and mechanical gasification efficiency of respectively 56% and 95%, were registered. Overall, the treatment of RDF proved to be less performant than that of biomass in the same system. Compared to a two-stage plasma gasification system, the produced syngas from the single-stage reactor showed more favourable characteristics, while the recovery of the solid residue as a vitrified slag is an advantage of the two-stage set-up.

  16. Alternative fuels and vehicles choice model

    SciTech Connect

    Greene, D.L.

    1994-10-01

    This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

  17. The economic production of alcohol fuels from coal-derived synthesis gas

    SciTech Connect

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K.

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  18. Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light.

    PubMed

    Zhang, Nan; Ciriminna, Rosaria; Pagliaro, Mario; Xu, Yi-Jun

    2014-08-07

    Low cost and easily made bismuth tungstate (Bi2WO6) could be one of the key technologies to make chemicals and fuels from biomass, atmospheric carbon dioxide and water at low cost using solar radiation as an energy source. Its narrow band gap (2.8 eV) enables ideal visible light (λ > 400 nm) absorption. Yet, it is the material's shape, namely the superstructure morphology wisely created via a nanochemistry approach, which leads to better electron-hole separation and much higher photoactivity. Recent results coupled to the versatile photochemistry of this readily available semiconductor suggest that the practical application of nanochemistry-derived Bi2WO6 nanostructures for the synthesis of value-added fine chemicals and fuel production is possible. We describe progress in this important field of chemical research from a nanochemistry viewpoint, and identify opportunities for further progress.

  19. Study of organic compounds evolved during the co-firing of coal and refuse derived fuel using TG/MS

    SciTech Connect

    Puroshothama, Shobha; Lu, R.; Yang, Xiaodong

    1996-10-01

    The evolution of organic compounds during the combustion of carbonaceous fuel coupled with solid waste disposal and limited landfill space has been a cause for concern. Co-firing high sulfur coal with refuse derived fuel seems an attractive alternative technique to tackle the dual problem of controlling SO{sub x} emissions as well as those of the chlorinated organic toxins. The TG serves to emulate the conditions of the fluidized bed combustor and the MS serves as the detector for evolved gases. This versatile combination is used to study the decomposition pathway as well as predict the conditions at which various compounds are formed and may serve as a means of reducing the formation of these chlorinated organic compounds.

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  1. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect

    Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

    2005-06-01

    Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

  2. Looking to the future of new media in health marketing: deriving propositions based on traditional theories.

    PubMed

    Della, Lindsay J; Eroglu, Dogan; Bernhardt, Jay M; Edgerton, Erin; Nall, Janice

    2008-01-01

    Market trend data show that the media marketplace continues to rapidly evolve. Recent research shows that substantial portions of the U.S. media population are "new media" users. Today, more than ever before, media consumers are exposed to multiple media at the same point in time, encouraged to participate in media content generation, and challenged to learn, access, and use the new media that are continually entering the market. These media trends have strong implications for how consumers of health information access, process, and retain health-related knowledge. In this article we review traditional information processing models and theories of interpersonal and mass media access and consumption. We make several theory-based propositions for how traditional information processing and media consumption concepts will function as new media usage continues to increase. These propositions are supported by new media usage data from the Centers for Disease Control and Prevention's entry into the new media market (e.g., podcasting, virtual events, blogging, and webinars). Based on these propositions, we conclude by presenting both opportunities and challenges that public health communicators and marketers will face in the future.

  3. 17 CFR 240.15c3-1f - Optional market and credit risk requirements for OTC derivatives dealers (Appendix F to 17 CFR...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... charges for market and credit risk pursuant to this Appendix F in lieu of computing securities haircuts...)(2)(vi). Credit Risk (d) The capital charge for credit risk arising from an OTC derivatives dealer's... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Optional market and...

  4. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.

    PubMed

    Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.

  5. Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example

    PubMed Central

    Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.

    2015-01-01

    Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453

  6. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  7. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.

    PubMed

    Li, Dekui; Han, Jieru; Han, Lina; Wang, Jiancheng; Chang, Liping

    2014-07-01

    Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon (AC) for H₂S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H₂S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N₂ adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N₂-H₂S-H₂-CO-Hg atmosphere (simulated coal gas) was higher than that in N₂-H₂S-Hg and N₂-Hg atmospheres, which showed that H₂ and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N₂-H₂S-Hg and N₂-Hg atmospheres.

  8. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  9. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  10. Biomass-derived Lignin to Jet Fuel Range Hydrocarbons via Aqueous Phase Hydrodeoxygenation

    SciTech Connect

    Wang, Hongliang; Ruan, Hao; Pei, Haisheng; Wang, Huamin; Chen, Xiaowen; Tucker, Melvin P.; Cort, John R.; Yang, Bin

    2015-09-14

    A catalytic process, involving the hydrodeoxygenation (HDO) of the dilute alkali extracted corn stover lignin catalysed by noble metal catalyst (Ru/Al2O3) and acidic zeolite (H+-Y), to produce lignin-substructure-based hydrocarbons (C7-C18), primarily C12-C18 cyclic structure hydrocarbons in the jet fuel range, was demonstrated.

  11. A mineral magnetic investigation into fuel derived deposits from Old Scatness Broch, Shetland

    NASA Astrophysics Data System (ADS)

    Dewar, I.; Batt, C. M.; Peters, C.

    There is increasing interest in the use of measurements of magnetic mineralogy to answer archaeological questions (e.g. R. Thompson, F. Oldfield, Environmental Magnetism, Allen & Unwin, London, 1986, p. 83; The IRM Quarterly 9(4) (2000) 2; Physics and Chemistry of the Earth (A) 25(5) (2000) 455; Archaeological Prospection 8(4) (2001) 227). The aim of the research presented here is to explain the distinctive magnetic signatures which characterise the fuel ash deposits encountered during excavation at Old Scatness Broch, Shetland, and to attempt to identify fuel sources used at the site by comparison with modern analogues. Archaeological deposits thought to contain fuel ash, from a variety of contexts and periods within the site were sampled and were supplemented by samples of modern fuel sources, including a variety of forms of peat, turf and wood. Magnetic investigations included mass specific magnetic susceptibility, high temperature variation in susceptibility, fractional conversion and laboratory imparted remanences. The archaeological deposits are shown to comprise complex mixtures of minerals with different thermal histories. Whilst most of the archaeological ash deposits were closest in magnetic characteristics to modern turf ash, some appeared to have close parallels with furnace residues obtained from reconstruction iron-smelting. The

  12. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  13. An Economic Model of Future Coal/Densified Refuse-Derived Fuel Use at Wright-Patterson AFB, Ohio.

    DTIC Science & Technology

    1981-09-01

    DCUMETATON PkGEREAD INSTRUCTIONS REPORT DOCUMAEHTAT1OH PAGE DE.Ri C0MsLrT1cGFoRs TBEFORE COMPLETING FORM 1. RPORTMUM--En-12. OVT CC7~j 1 3. ME ENT*S...CATA6OG NUMOER LSSR 97-81 4. TITLE (and Subeitle) S. TYPE OF REPORT a PERIOD COVIRED AN ECONOMIC MODEL OF FUTURE COAL/DENSIFIED Master’s thesis REFUSE...DERIVED FUEL USE AT WRIGHT- 6. PERFORMING OAG. REPORT NUMBER PATTERSON AFB OH 7. AUTMOR(a) U. CONTRACT OR GRANT NUMGR(s) Richard G. Fedors, Captain, USAF

  14. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  15. Index of the relative importance of fuel efficiency (IFE) in the motor vehicle market. Final report Sep 79-Jan 81

    SciTech Connect

    Hallaq, J.H.; Schaeffer, K.H.; Westenberg, D.

    1981-10-01

    The need for the National Highway Traffic Safety Administration to understand the importance of vehicle fuel economy in the marketplace has created the requirement for a quantitative measure of consumer attitudes toward fuel efficiency. This paper surveys the currently available measures of consumer attitudes toward fuel efficiency, concludes that they do not adequately meet NHTSA's needs, and develops the Index of the Relative Importance of Fuel Efficiency (IFE) to fill this void.

  16. Exploring Sustainable Rocket Fuels: [Imidazolyl-Amine-BH2](+)-Cation-Based Ionic Liquids as Replacements for Toxic Hydrazine Derivatives.

    PubMed

    Huang, Shi; Qi, Xiujuan; Zhang, Wenquan; Liu, Tianlin; Zhang, Qinghua

    2015-12-01

    The application of hypergolic ionic liquids as propellant fuels is a newly emerging area in the fields of chemistry and propulsion science. Herein, a new class of [imidazolyl-amine-BH2](+)-cation-based ionic liquids, which included fuel-rich anions, such as dicyanamide (N(CN)2(-)) and cyanoborohydride (BH3CN(-)) anions, were synthesized and characterized. As expected, all of the ionic liquids exhibited spontaneous combustion upon contact with the oxidizer 100 % HNO3. The densities of these ionic liquids varied from 0.99-1.12 g cm(-3), and the heats of formation, predicted based on Gaussian 09 calculations, were between -707.7 and 241.8 kJ mol(-1). Among them, the salt of compound 5, that is, (1-allyl-1H-imidazole-3-yl)-(trimethylamine)-dihydroboronium dicyanamide, exhibited the lowest viscosity (168 MPa s), good thermal properties (Tg <-70 °C, Td >130 °C), and the shortest ignition-delay time (18 ms) with 100 % HNO3. These ionic fuels, as "green" replacements for toxic hydrazine-derivatives, may have potential applications as bipropellant formulations.

  17. Aviation fuels outlook

    NASA Technical Reports Server (NTRS)

    Momenthy, A. M.

    1980-01-01

    Options for satisfying the future demand for commercial jet fuels are analyzed. It is concluded that the most effective means to this end are to attract more refiners to the jet fuel market and encourage development of processes to convert oil shale and coal to transportation fuels. Furthermore, changing the U.S. refineries fuel specification would not significantly alter jet fuel availability.

  18. RDF (Refuse Derived Fuel) Utilization in a Navy Stoker Coal-Fired Boiler.

    DTIC Science & Technology

    1984-10-01

    based upon the most practical and economical fuel mix. RDF-3 has a high degree of refinement and is best suited for use with pulverized coal where...thermally efficient way to convert waste to energy products. The factors contributing to this high conver- sion efficiency are the ability of the boiler...are also disadvantages with the RDF-to-energy conversion scheme, including the following: An MSW-to-RDF processing plant will require complex, high

  19. Production of Jet Fuels from Coal-Derived Liquids. Volume 8. Heteroatom Removal by Catalytic Processing

    DTIC Science & Technology

    1989-01-01

    distillation profiles of JP-4, JP-8, and GPGP tar oil stream ....................................... 7 2 Autoclave system used during tar oil upgrading...Table Title Page 1 Properties of JP-4, JP-8, and JP-8X aviation turbine fuels .... 3 2 Results of the elemental analyses of the GPGP liquid by...product streams ............................................ 4 3 Proton and carbon-13 NMR data for GPGP liquid streams ......... 5 4 Results of ASTM D86

  20. Preface to the Issue: Transformations of Biomass and its Derivatives to Fuels and Chemicals

    DOE PAGES

    Lin, Hongfei; Biddinger, Elizabeth J.; Mukarakate, Calvin; ...

    2016-07-01

    The research activities on biofuels and bio-products have been growing steadily regardless the volatility of the crude oil price in the past decade. The major driver is the imperative need of tackling the challenge of climate change. With the low carbon footprints, fuels and chemicals produced from renewable biomass resources, as the replacement of their petroleum counterparts, can contribute significantly on carbon emission reduction.

  1. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  2. Co-firing high sulfur coal with refuse derived fuels. Final report

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1997-11-30

    This project was designed to evaluate the combustion performance of and emissions from a fluidized bed combustor during the combustion of mixtures of high sulfur and/or high chlorine coals and municipal solid waste (MSW). The project included four major tasks, which were as follows: (1) Selection, acquisition, and characterization of raw materials for fuels and the determination of combustion profiles of combination fuels using thermal analytical techniques; (2) Studies of the mechanisms for the formation of chlorinated organics during the combustion of MSW using a tube furnace; (3) Investigation of the effect of sulfur species on the formation of chlorinated organics; and (4) Examination of the combustion performance of combination fuels in a laboratory scale fluidized bed combustor. Several kinds of coals and the major combustible components of the MSW, including PVC, newspaper, and cellulose were tested in this project. Coals with a wide range of sulfur and chlorine contents were used. TGA/MS/FTIR analyses were performed on the raw materials and their blends. The possible mechanism for the formation of chlorinated organics during combustion was investigated by conducting a series of experiments in a tube furnace. The effect of sulfur dioxide on the formation of molecular chlorine during combustion processes was examined in this study.

  3. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling.

    PubMed

    Hwang, I H; Matsuto, T; Tanaka, N; Sasaki, Y; Tanaami, K

    2007-01-01

    Carbonization is a kind of pyrolysis process to produce char from organic materials under an inert atmosphere. In this work, chars derived from various solid wastes were characterized from the standpoint of fuel recovery and pretreatment of waste before landfilling. Sixteen kinds of municipal and industrial solid wastes such as residential combustible wastes, non-combustible wastes, bulky wastes, construction and demolition wastes, auto shredder residue, and sludges were carbonized at 500 degrees C for 1h under nitrogen atmosphere. In order to evaluate the quality of char as fuel, proximate analysis and heating value were examined. The composition of raw waste had a significant influence on the quality of produced char. The higher the ratio of woody biomass in waste, the higher heating value of char produced. Moreover, an equation to estimate heating value of char was developed by using the weight fraction of fixed carbon and volatile matter in char. De-ashing and chlorine removal were performed to improve the quality of char. The pulverization and sieving method seems to be effective for separation of incombustibles such as metal rather than ash. Most char met a 0.5 wt% chlorine criterion for utilization as fuel in a shaft blast furnace after it was subjected to repeated water-washing. Carbonization could remove a considerable amount of organic matter from raw waste. In addition, the leaching of heavy metals such as chrome, cadmium, and lead appears to be significantly suppressed by carbonization regardless of the type of raw waste. From these results, carbonization could be considered as a pretreatment method for waste before landfilling, as well as for fuel recovery.

  4. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels.

    PubMed

    Borrok, David M; Gieré, Reto; Ren, Minghua; Landa, Edward R

    2010-12-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  5. Zinc isotopic composition of particulate matter generated during the combustion of coal and coal + tire-derived fuels

    USGS Publications Warehouse

    Borrok, D.M.; Gieré, R.; Ren, M.; Landa, E.R.

    2010-01-01

    Atmospheric Zn emissions from the burning of coal and tire-derived fuel (TDF) for power generation can be considerable. In an effort to lay the foundation for tracking these contributions, we evaluated the Zn isotopes of coal, a mixture of 95 wt % coal + 5 wt % TDF, and the particulate matter (PM) derived from their combustion in a power-generating plant. The average Zn concentrations and δ(66)Zn were 36 mg/kg and 183 mg/kg and +0.24‰ and +0.13‰ for the coal and coal + TDF, respectively. The δ(66)Zn of the PM sequestered in the cyclone-type mechanical separator was the lightest measured, -0.48‰ for coal and -0.81‰ for coal+TDF. The δ(66)Zn of the PM from the electrostatic precipitator showed a slight enrichment in the heavier Zn isotopes relative to the starting material. PM collected from the stack had the heaviest δ(66)Zn in the system, +0.63‰ and +0.50‰ for the coal and coal + TDF, respectively. Initial fractionation during the generation of a Zn-rich vapor is followed by temperature-dependent fractionation as Zn condenses onto the PM. The isotopic changes of the two fuel types are similar, suggesting that their inherent chemical differences have only a secondary impact on the isotopic fractionation process.

  6. Fuel cell systems program plan: Fiscal year 1988

    NASA Astrophysics Data System (ADS)

    1988-05-01

    The DOE fuel cell program supports high-risk, high-payoff technology development. This provides industry with the capability to develop and apply fuel cell systems that use conventional and alternative hydrocarbon fuels. The principal DOE fuel cell program goal is to develop cost effective, efficient, and environmentally benign fuel cell systems which will operate on coal-based fuels (and dual fuels: coal and gas) in multiple end use sectors. In the near-term, and as an interim step in achieving this goal, distillate fuel and natural fuel cell system technologies will also be developed. This interim step is a logical progression to the more complex coal-fueled systems and provides a marketable gas-fueled technology. The specific near- to mid-term (mid-1990s) objectives are to develop the key fuel cell technology for phosphoric acid, molten carbonate, and solid oxide fuel cell systems, and to evaluate and conduct research on more advanced fuel cell concepts that would further improve technical and economic performance. Advanced fuel cell concepts may in the long-term (post 2000) offer potential for use in additional applications such as in the transportation and residential sectors. In these applications oil could be displaced by fuel cell systems using fuels derived from coal.

  7. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    SciTech Connect

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  8. Mathematics, Pricing, Market Risk Management and Trading Strategies for Financial Derivatives (3/3)

    ScienceCinema

    None

    2016-07-12

    IR and Long Term FX Derivatives - Stochastic Martingales for IR Curves - Implied Volatility Along the IR Curve - IR Libor Bonds - Vanilla IR Options: Caplets, Floorlets - Long Term FX Options: Interaction of Stochastic FX and Stochastic IR - $-Yen Bermudan Power Reverse Duals

  9. Marketable products from gypsum, a coal combustion byproduct derived from a wet flue gas desulfurization process

    SciTech Connect

    Chou, M.I.M.; Ghiassi, K.; Lytle, J.M.; Chou, S.J.; Banerjee, D.D.

    1998-07-01

    For two years the authors have been developing a process to produce two marketable products, ammonium sulfate fertilizer and precipitated calcium carbonate (PCC), from wet limestone flue gas desulfurization (FGD) by-product gypsum. Phase 1 of the project focused on the process for converting FGD-gypsum to ammonium sulfate fertilizer with PCC produced as a by-product during the conversion. Early cost estimates suggested that the process was economically feasible when granular size ammonium sulfate crystals were produced. However, sale of the by-product PCC for high-value commercial application could further improve the economics of the process. The results of their evaluation of the market potential of the PCC by-product are reported in this paper. The most significant attributes of carbonate fillers that determine their usefulness in industry are particle size (i.e, fineness) and shape, whiteness (brightness), and mineralogical and chemical purity. The PCC produced from the FGD dypsum obtained from the Abbott Power Plant at the University of Illinois Urbana-Champaign campus are pure calcite with a CaCO{sub 3} content greater than 98%, 3% higher than the minimum requirement of 95%. However, the size, shape, and brightness of the PCC particles are suitable only for certain applications. Impurities in the gypsum from Abbott power plant influence the whiteness of the PCC products. Test results suggested that, to obtain gypsum that is pure enough to produce a high whiteness PCC for high value commercial applications, limestone with minimum color impurities should be used during the FGD process. Alternatively, purification procedures to obtain the desired whiteness of the FGD-gypsum can be used. Further improvement in the overall qualities of the PCC products should lead to a product that is adequate for high-value paper applications.

  10. Marketable products from gypsum, a coal combustion byproduct derived from a wet flue gas desulfurization process

    SciTech Connect

    Chou, M.I.M.; Ghiassi, K.; Lytle, J.M.; Chou, S.J.; Banerjee, D.D.

    1998-04-01

    For two years the authors have been developing a process to produce two marketable products, ammonium sulfate fertilizer and precipitated calcium carbonate (PCC), from wet limestone flue gas desulfurization (FGD) by-product gypsum. Phase I of the project focused on the process for converting FGD-gypsum to ammonium sulfate fertilizer with PCC produced as a by-product during the conversion. Early cost estimates suggested that the process was economically feasible when granular size ammonium sulfate crystals were produced. However, sale of the by-product PCC for high-value commercial application could further improve the economics of the process. The results of our evaluation of the market potential of the PCC by-product are reported in this paper. The most significant attributes of carbonate fillers that determine their usefulness in industry are particle size (i.e. fineness) and shape, whiteness (brightness), and mineralogical and chemical purity. The PCC produced from the FGD gypsum obtained from the Abbott Power Plant at the University of Illinois Urbana-Champaign campus are pure calcite with a CaCO{sub 3} content greater than 98%, 3% higher than the minimum requirement of 95%. However, the size, shape, and brightness of the PCC particles are suitable only for certain applications. Impurities in the gypsum from Abbott power plant influence the whiteness of the PCC products. Test results suggested that, to obtain gypsum that is pure enough to produce a high whiteness PCC for high value commercial applications, limestone with minimum color impurities should be used during the FGD process. Alternatively, purification procedures to obtain the desired whiteness of the FGD-gypsum can be used. Further improvement in the overall qualities of the PCC products should lead to a product that is adequate for high-value paper applications.

  11. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  12. The Comparison of Hydrotreated Vegetable Oils With Respect to Petroleum Derived Fuels and the Effects of Transient Plasma Ignition in a Compression-Ignition Engine

    DTIC Science & Technology

    2012-09-01

    algae and camelina derived biofuels as well as the effects of Transient Plasma Ignition in a Compression-Ignition Engine. Testing was conducted for...Hydrotreated Renewable Diesel, algae , and benchmarked against F-76 and Diesel #2 fuels as well as Hydrotreated Renewable Jet, camelina, benchmarked...analysis were performed at each matrix point. The algae and camelina fuels averaged 1.4 Crank Angle Degrees earlier ignition, 2 Crank Angle Degrees

  13. Combustion studies of coal-derived solid fuels. Part IV. Correlation of ignition temperatures from thermogravimetry and free-floating experiments

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1992-01-01

    The usefulness of TG as an efficient and practical method to characterize the combustion properties of fuels used in large-scale combustors is of considerable interest. Relative ignition temperatures of a lignite, an anthracite, a bituminous coal and three chars derived from this coal were measured by a free-floating technique. These temperatures were correlated with those estimated from TG burning profiles of the fuels. ?? 1992.

  14. Electrochemical Coupling of Biomass-Derived Acids: New C8 Platforms for Renewable Polymers and Fuels.

    PubMed

    Wu, Linglin; Mascal, Mark; Farmer, Thomas J; Arnaud, Sacha Pérocheau; Wong Chang, Maria-Angelica

    2017-01-10

    Electrolysis of biomass-derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C6 for biofuels and renewable materials production. Kolbe coupling of biomass-derived levulinic acid is used to obtain 2,7-octanedione, a new platform molecule only two low process-intensity steps removed from raw biomass. Hydrogenation to 2,7-octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high-octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid-derived methylsuccinic monoester yields a chiral 2,5-dimethyladipic acid diester, another underutilized monomer owing to lack of availability.

  15. Electrochemical Coupling of Biomass‐Derived Acids: New C8 Platforms for Renewable Polymers and Fuels

    PubMed Central

    Wu, Linglin; Farmer, Thomas J.; Arnaud, Sacha Pérocheau; Wong Chang, Maria‐Angelica

    2016-01-01

    Abstract Electrolysis of biomass‐derived carbonyl compounds is an alternative to condensation chemistry for supplying products with chain length >C6 for biofuels and renewable materials production. Kolbe coupling of biomass‐derived levulinic acid is used to obtain 2,7‐octanedione, a new platform molecule only two low process‐intensity steps removed from raw biomass. Hydrogenation to 2,7‐octanediol provides a chiral secondary diol largely unknown to polymer chemistry, whereas intramolecular aldol condensation followed by hydrogenation yields branched cycloalkanes suitable for use as high‐octane, cellulosic gasoline. Analogous electrolysis of an itaconic acid‐derived methylsuccinic monoester yields a chiral 2,5‐dimethyladipic acid diester, another underutilized monomer owing to lack of availability. PMID:27873475

  16. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have

  17. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    PubMed

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  18. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  19. Effects of coal-derived trace species on the performance of carbonate fuel cells

    SciTech Connect

    Pigeaud, A. ); Wilemski, G. )

    1992-01-01

    NH{sub 3} Cd, Hg, and Sn have no noticeable effects on carbonate fuel cell performance. Zn and Pb (the latter in the presence of Se) had minor effects, while the interactions of H{sub 2}S, HC{ell}, H{sub 2}Se and As are more significant. Because H{sub 2}S had already been extensively investigated earlier by various groups, the focus in this study was centered on the latter three elements. It appears that HC{ell}, H{sub 2}Se, and As need to be limited to sub-ppM levels in a manner similar to H{sub 2}S. These findings, of course, should be considered qualitative because they were obtained in single, isothermally operated, bench-sale cells, and are applicable for individual contaminants.

  20. Effects of coal-derived trace species on the performance of carbonate fuel cells

    SciTech Connect

    Pigeaud, A.; Wilemski, G.

    1992-09-01

    NH{sub 3} Cd, Hg, and Sn have no noticeable effects on carbonate fuel cell performance. Zn and Pb (the latter in the presence of Se) had minor effects, while the interactions of H{sub 2}S, HC{ell}, H{sub 2}Se and As are more significant. Because H{sub 2}S had already been extensively investigated earlier by various groups, the focus in this study was centered on the latter three elements. It appears that HC{ell}, H{sub 2}Se, and As need to be limited to sub-ppM levels in a manner similar to H{sub 2}S. These findings, of course, should be considered qualitative because they were obtained in single, isothermally operated, bench-sale cells, and are applicable for individual contaminants.

  1. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  2. Chemicals derived from pyrolysis bio-oils as antioxidants in fuels and lubricants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Softwood and hardwood lignins and hardwood were pyrolyzed to produce bio-oils to produce lignin-derived bio-oils of which phenols were the major component. These bio-oils were extracted with alkali to yield a range of lignin-related phenols having molecular weights (MWs) from 110 to 344. When tested...

  3. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  4. Particulate Emissions from a Stationary Engine Fueled with Ultra-Low-Sulfur Diesel and Waste-Cooking-Oil-Derived Biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. [Box: see text].

  5. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (PHB) from a Process Relevant Lignocellulosic Derived Sugar (Poster)

    SciTech Connect

    Wang, W.; Mittal, A.; Mohagheghi, A.; Johnson, D. K.

    2014-04-01

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. Cupriavidus necator is the microorganism that has been most extensively studied and used for PHB production on an industrial scale; However the substrates used for producing PHB are mainly fructose, glucose, sucrose, fatty acids, glycerol, etc., which are expensive. In this study, we demonstrate production of PHB from a process relevant lignocellulosic derived sugar stream, i.e., saccharified slurry from pretreated corn stover. The strain was first investigated in shake flasks for its ability to utilize glucose, xylose and acetate. In addition, the strain was also grown on pretreated lignocellulose hydrolyzate slurry and evaluated in terms of cell growth, sugar utilization, PHB accumulation, etc. The mechanism of inhibition in the toxic hydrolysate generated by the pretreatment and saccharification process of biomass, was also studied.

  6. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    SciTech Connect

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  7. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 1: Executive summary. [using coal or coal derived fuels

    NASA Technical Reports Server (NTRS)

    Corman, J. C.

    1976-01-01

    A data base for the comparison of advanced energy conversion systems for utility applications using coal or coal-derived fuels was developed. Estimates of power plant performance (efficiency), capital cost, cost of electricity, natural resource requirements, and environmental intrusion characteristics were made for ten advanced conversion systems. Emphasis was on the energy conversion system in the context of a base loaded utility power plant. All power plant concepts were premised on meeting emission standard requirements. A steam power plant (3500 psig, 1000 F) with a conventional coal-burning furnace-boiler was analyzed as a basis for comparison. Combined cycle gas/steam turbine system results indicated competitive efficiency and a lower cost of electricity compared to the reference steam plant. The Open-Cycle MHD system results indicated the potential for significantly higher efficiency than the reference steam plant but with a higher cost of electricity.

  8. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    PubMed

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions.

  9. Glass and glass-derivative seals for use in energy-efficient fuel cells and lamps

    SciTech Connect

    Scott Misture; Arun Varshineya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

    2005-07-28

    For solid oxide fuel cells (SOFC), a series of 18 sealing glasses have been prepared and characterized. From the whole design space, several glasses were ''downselected'' and studied in detail to describe their behaviors in simulated fuel cell environments. One of the glasses was found to outperform all others, including the well-known G18 sealant developed at Pacific Northwest National Laboratory. The new glass composition showed lower bulk electrical conductivity, excellent sealing and wetting behavior when sealing under applied load, and qualitatively superior performance when exposed to wet hydrogen for 800 hours. Traditional melting was used to prepare all of the glasses that were studied in detail. The sol-gel approach was used to synthesize several compositions, but it was found that the glasses crystallized very rapidly during heating, precluding sealing. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. The body of fundamental data provides a platform for future developments for high temperature sealants, and the newly-developed glass compositions appear promising for large-scale testing. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria-alumina-silica system at various silica levels. Functional testing of one of the candidate sealants demonstrated that it performs well in current HID lighting applications. Further testing is required to evaluate its performance

  10. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    SciTech Connect

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

    2009-02-11

    The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

  11. Estimating the early household market for light-duty hydrogen-fuel-cell vehicles and other "Mobile Energy" innovations in California: A constraints analysis

    NASA Astrophysics Data System (ADS)

    Williams, Brett D.; Kurani, Kenneth S.

    Facing stiff competition from conventional and gasoline-hybrid vehicles, the commercialization prospects for hydrogen-fuel-cell vehicles (H 2FCVs) are uncertain. Starting from the premise that new consumer value must drive their adoption, early markets for H 2FCVs are explored in the context of a group of promising opportunities collectively called mobile energy (ME) innovation. An estimate of the initial market potential for ME-enabled vehicles is produced by applying various constraints that eliminate unlikely households from consideration for early adoption of H 2FCVs and other ME technologies (such as plug-in hybrids). Currently 5.2 million of 33.9 million Californians live in households pre-adapted to ME-enabled vehicles, 3.9 million if natural gas is required for home refueling. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H 2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing H 2FCVs and related ME innovations.

  12. Co-firing high sulfur coal with refuse derived fuels. Technical report {number_sign}4

    SciTech Connect

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1995-08-03

    In order to study combustion performance under conditions similar to that in the AFBC system, the authors conducted a series of experiments at a heating rate of 100 C/min using the TGA/FTIR/MS system. Results indicate that more hydrocarbons are evolved at the faster heating rate, owing to incomplete combustion of the fuel. Chlorinated organic compounds can be formed at high heating rates. Certain oxidation products such as organic acids and alcohols are obtained at the slow heating rate. To simulate the conditions used in the atmospheric fluidized bed combustor (AFBC) at Western Kentucky University, studies were also conducted using a quartz tube in a tube furnace. The temperature conditions were kept identical to those of the combustor. The products evolved from the combustion of coal, PVC, and mixtures of the two were trapped in suitable solvents at different temperatures, and analyzed using the Shimadzu GC/MS system. The detection limits and the GC/MS analytical parameters were also established. The experiments were conducted keeping in mind the broader perspective; that of studying conditions conducive to the formation of chlorinated organic compounds from the combustion of coal/MSW blends. 32 figs., 16 tabs.

  13. Fuel dehazers

    SciTech Connect

    Lyons, W.R.

    1986-03-01

    Hazy fuels can be caused by the emulsification of water into the fuel during refining, blending, or transportation operations. Detergent additive packages used in gasoline tend to emulsify water into the fuel. Fuels containing water haze can cause corrosion and contamination, and support microbiological growth. This results in problems. As the result of these problems, refiners, marketers, and product pipeline companies customarily have haze specifications. The haze specification may be a specific maximum water content or simply ''bright and clear'' at a specified temperature.

  14. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    SciTech Connect

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; Dutta, Abhijit; Jones, Susanne; Ramasamy, Karthikeyan K.; Gray, Michel; Dagle, Robert; Padmaperuma, Asanga; Gerber, Mark; Sahir, Asad H.; Tao, Ling; Zhang, Yanan

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  15. GLASS AND GLASS-DERIVATIVE SEALS FOR USE IN ENERGY-EFFICIENT FUEL CELLS AND LAMPS

    SciTech Connect

    Scott Misture; Arun Varshneya; Matthew Hall; Sylvia DeCarr; Steve Bancheri

    2004-08-15

    As the project approaches the end of the first year, the materials screening components of the work are ahead of schedule, while all other tasks are on schedule. For solid oxide fuel cells (SOFC), a series of 16 sealing glasses have been prepared and characterized. Traditional melting was used to prepare all of the glasses, and the sol-gel approach has been used to prepare some of the glasses as well as other compositions that might be viable because of the low processing temperatures afforded by the sol-gel method. The glass characterization included measurements of the viscosity and thermal expansion of the glasses, as well as the thermal expansion of the partly crystalline glass ceramics. In addition, the wetting and sintering behavior of all glasses has been measured, as well as the crystallization behavior. The time and temperature at which crystalline phases form from the glasses has been determined for all of the glasses. Each glass ceramic contains at least two crystalline phases, and most of the crystalline phases have been positively identified. Room temperature leak testing has been completed for all sealants, and experiments are in progress to determine the DC electrochemical degradation and degradation in wet hydrogen. The second component of the work, focused on seals for higher-temperature discharge lighting, has focused on determining the phase relations in the yttria--alumina--silica system at various silica levels. Again, traditional melting and sol-gel synthesis have been employed, and the sol-gel method was successful for preparing new phases that were discovered during the work. High temperature diffraction and annealing studies have clarified the phase relations for the samples studies, although additional work remains. Four new phases have been identified and synthesized in pure form, from which full structure solutions were obtained as well as the anisotropic thermal expansion for each phase. Functional testing of lamps are on on-going and

  16. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  17. Organic derivatives of hydrazine and hydroxylamine and future reprocessing of irradiated nuclear fuel

    SciTech Connect

    Koltunov, V.S.; Baranov, S.M.

    1994-07-01

    Reductants of Pu and Np that are used in extraction suffer from a number of deficiencies such as the formation of Fe(III), Fe(II), and ammonium (hydrazine) nitrates. This increases the amount of salts in the radioactive waste solutions, the instability of U(IV) in the organic phase, and the potential explosiveness owing to the formation of azides (hydrazine) and others. Therefore, the search for and investigation of new highly efficient reductants of Pu and Np that do not form salts should become an important thrust for improving thrust extraction in the near future. Organic derivatives of hydrazine and hydroxylamine are the first step in this direction. These comparatively rapidly convert Np(VI) to Np(V) and Pu(IV) to Pu(III), thereby stabilizing the pair Pu(III)-Np(V). This is most convenient for separating Pu and Np from U by reductive back-extraction in the first extraction cycle.

  18. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect

    Paul Chin; George W. Roberts; James J. Spivey

    2003-12-31

    Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal

  19. Post-marketing assessment of content and efficacy of preservatives in artemisinin-derived antimalarial dry suspensions for paediatric use

    PubMed Central

    Atemnkeng, Magnus A; De Cock, Katelijne; Plaizier-Vercammen, Jacqueline

    2007-01-01

    Background Artemisinin-derivative formulations are now widely used to treat falciparum malaria. However, the dry powder suspensions developed for children are few and/or are of poor quality. In addition to the active compound, the presence of a suitable preservative in these medicines is essential. In this study, an evaluation of the preservative content and efficacy in some dry suspensions available on the Kenyan market was performed. Method UV spectrophotometry was used to identify the preservatives in each sample while HPLC-UV was used for quantification. After reconstitution of the powders in water, the dissolution of the preservatives was followed for 7 days. Antimicrobial efficacy of the preservatives was assessed by conducting a preservative efficacy test (PET) following the European pharmacopoeia standards. Results Four different preservatives were identified namely methylparahydroxybenzoate (MP), propylparahydroxybenzoate (PP), benzoic acid and sorbic acid. MP and PP were identified in Artesiane® (artemether 300 mg/100 ml), Alaxin® (dihydroartemisinin 160 mg/80 ml) andGvither ® (artemether 300 mg/100 ml) respectively. Sorbic acid was presentin Artenam® (artemether 180 mg/60 ml) while benzoic acid was identified in Santecxin® (dihydroartemisinin 160 mg/80 ml) andArtexin® (dihydroartemisinin 160 mg/80 ml) respectively. Cotecxin® (dihydroartemisinin 160 mg/80 ml) did not contain any of the above preservatives. After reconstitution in water, preservativesin 50%(3/6) of the products did not completely dissolve and the PET results revealed that only Artenam® and Gvither® met the requirements for antimicrobial efficacy. The other products did not conform. Conclusion These results show that paediatric antimalarial dry powder formulations on the market may contain ineffective or incorrect amounts of preservatives. This is a potential risk to the patient. Studies conducted on the dry powder suspensions should include the analysis of both the active

  20. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, RE- FUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME I: SUMMARY OF RESULTS

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. ontrol efficiency of the SD/FF emission control system wa...

  1. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME II: APPENDICES A-F

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  2. MUNICIPAL WASTE COMBUSTION MULTIPOLLUTANT STUDY EMISSION TEST REPORT, MAINE ENERGY RECOVERY COMPANY, REFUSE DERIVED FUEL FACILITY, BIDDEFORD, MAINE - VOLUME III: APPENDICES G-N

    EPA Science Inventory

    The report gives results of an emission test of a new municipal solid waste combustor, in Biddeford, ME, that burns refuse-derived fuel and is equipped with a lime spray dryer fabric filter (SD/FF) emission control system. Control efficiency of the SD/FF emission control system ...

  3. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas

    SciTech Connect

    Bhatt, B.L.

    1992-09-01

    As part of the DOE-sponsored contract for the Synthesis of Dimethyl Ether (DME) and Alternative Fuels in the Liquid Phase from Coal- Derived Syngas, the single-step, slurry phase DME synthesis process was developed. The development involved screening of catalyst systems, process variable studies, and catalyst life studies in two 300 ml stirred autoclaves. As a spin-off of the Liquid Phase Methanol (LPMEOH*) process, the new process significantly improves the syngas conversion efficiency of the LPMEOH process. This improvement can be achieved by replacing a portion of methanol catalyst with a dehydration catalyst in the reactor, resulting in the product methanol being converted to DME, thus avoiding the thermodynamic equilibrium constraint of the methanol reaction. Overall, this increases syngas conversion per-pass. The selectivity and productivity of DME and methanol are affected by the catalyst system employed as well as operating conditions. A preferred catalyst system, consisting of a physical mixture of a methanol catalyst and a gamma alumina, was identified. An improvement of about 50% in methanol equivalent productivity was achieved compared to the LPMEOH process. Results from the process variable study indicate that higher pressure and CO[sub 2] removal benefit the process significantly. Limited life studies performed on the preferred catalyst system suggest somewhat higher than expected deactivation rate for the methanol catalyst. Several DME/methanol mixtures were measured for their key properties as transportation fuels. With small amounts of DME added, significant improvements in both flash points and Reid Vapor Pressure (RVP) were observed over the corresponding values of methanol alone.

  4. The carnivorous Venus flytrap uses prey-derived amino acid carbon to fuel respiration.

    PubMed

    Fasbender, Lukas; Maurer, Daniel; Kreuzwieser, Jürgen; Kreuzer, Ines; Schulze, Waltraud X; Kruse, Jörg; Becker, Dirk; Alfarraj, Saleh; Hedrich, Rainer; Werner, Christiane; Rennenberg, Heinz

    2017-04-01

    The present study was performed to elucidate the fate of carbon (C) and nitrogen (N) derived from protein of prey caught by carnivorous Dionaea muscipula. For this, traps were fed (13) C/(15) N-glutamine (Gln). The release of (13) CO2 was continuously monitored by isotope ratio infrared spectrometry. After 46 h, the allocation of C and N label into different organs was determined and tissues were subjected to metabolome, proteome and transcriptome analyses. Nitrogen of Gln fed was already separated from its C skeleton in the decomposing fluid secreted by the traps. Most of the Gln-C and Gln-N recovered inside plants were localized in fed traps. Among nonfed organs, traps were a stronger sink for Gln-C compared to Gln-N, and roots were a stronger sink for Gln-N compared to Gln-C. A significant amount of the Gln-C was respired as indicated by (13) C-CO2 emission, enhanced levels of metabolites of respiratory Gln degradation and increased abundance of proteins of respiratory processes. Transcription analyses revealed constitutive expression of enzymes involved in Gln metabolism in traps. It appears that prey not only provides building blocks of cellular constituents of carnivorous Dionaea muscipula, but also is used for energy generation by respiratory amino acid degradation.

  5. Effects of subchronic inhalation exposure of rats to emissions from a diesel engine burning soybean oil-derived biodiesel fuel.

    PubMed

    Finch, G L; Hobbs, C H; Blair, L F; Barr, E B; Hahn, F F; Jaramillo, R J; Kubatko, J E; March, T H; White, R K; Krone, J R; Ménache, M G; Nikula, K J; Mauderly, J L; Van Gerpen, J; Merceica, M D; Zielinska, B; Stankowski, L; Burling, K; Howell, S

    2002-10-01

    There is increasing interest in diesel fuels derived from plant oils or animal fats ("biodiesel"), but little information on the toxicity of biodiesel emissions other than bacterial mutagenicity. F344 rats were exposed by inhalation 6 h/day, 5 days/wk for 13 wk to 1 of 3 dilutions of emissions from a diesel engine burning 100% soybean oil-derived fuel, or to clean air as controls. Whole emissions were diluted to nominal NO(x) concentrations of 5, 25, or 50 ppm, corresponding to approximately 0.04, 0.2, and 0.5 mg particles/m(3), respectively. Biologically significant, exposure-related effects were limited to the lung, were greater in females than in males, and were observed primarily at the highest exposure level. There was a dose-related increase in the numbers of alveolar macrophages and the numbers of particles in the macrophages, as expected from repeated exposure, but no neutrophil response even at the highest exposure level. The macrophage response was reduced 28 days after cessation of the exposure. Among the high-level females, the group mean lung weight/body weight ratio was increased, and minimal, multifocal bronchiolar metaplasia of alveolar ducts was observed in 4 of 30 rats. Lung weights were not significantly increased, and metaplasia of the alveolar ducts was not observed in males. An increase in particle-laden macrophages was the only exposure-related finding in lungs at the intermediate and low levels, with fewer macrophages and fewer particles per macrophage at the low level. Alveolar histiocytosis was observed in a few rats in both exposed and control groups. There were statistically significant, but minor and not consistently exposure-related, differences in body weight, nonpulmonary organ weights, serum chemistry, and glial fibrillary acidic protein in the brain. There were no significant exposure-related effects on survival, clinical signs, feed consumption, ocular toxicity, hematology, neurohistology, micronuclei in bone marrow, sister

  6. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile electricity" technologies, early California household markets, and innovation management

    NASA Astrophysics Data System (ADS)

    Williams, Brett David

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" (Me-) is characterized. Me- redefines H2 FCVs as innovative products able to provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. It uses a new model to estimate zero-emission-power vs. zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me- enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today's internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuel-cell zero-sum game and towards the

  7. Studies of the combustion of coal/refuse derived fuels using thermogravimetric-Fourier transform infrared-mass spectrometry

    SciTech Connect

    Lu, Huagang; Li, Jigui; Lloyd, W.G.

    1995-11-01

    According to a report of the Environmental Protection Agency (EPA), `Characterization of Municipal Solid Waste (MSW) in the United States`, the total MSW produced in the U.S. increased from 179 million tons in 1988 to 195 million tons in 1990. The EPA predicted that the country would produce about 216 million tons of garbage in the year 2000. The amount of waste generated and the rapidly declining availability of sanitary landfills has forced most municipalities to evaluate alternative waste management technologies for reducing the volume of waste sent to landfills. The fraction of MSW that is processed by such technologies as separation and recycling, composting, and waste-to-energy was forecast to increase from a few percent today to 30-40% by the year 2000. Waste-to-energy conversion of MSW can appear to be attractive because of the energy recovered, the economic value of recycled materials, and the cost savings derived from reduced landfill usage. However, extra care needs to be taken in burning MSW or refuse-derived fuel (RDF) to optimize the operating conditions of a combustor so that the combustion takes place in an environmentally acceptable manner. For instance, polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have been found in the precipitator fly ash and flue gas of some incinerator facilities in the United States and Europe. The amount of PCDDs and PCDFs occurs only in the parts-per-billion to parts-per-trillion range, but these chlorinated organics exhibit very high toxicity (LD{sub 50} < 10 {mu}g/Kg). The compound 2,3,7,8-tetrachlorodibenzodioxin has been found to be acnegenic, carcinogenic, and teratogenic. This has slowed or even stopped the construction and operation of waste-to-energy plants.

  8. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  9. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  10. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system.

    PubMed

    Chiemchaisri, Chart; Charnnok, Boonya; Visvanathan, Chettiyappan

    2010-03-01

    An effort to utilize solid wastes at dumpsite as refuse-derived fuel (RDF) was carried out. The produced RDF briquette was then utilized in the gasification system. These wastes were initially examined for their physical composition and chemical characteristics. The wastes contained high plastic content of 24.6-44.8%, majority in polyethylene plastic bag form. The plastic wastes were purified by separating them from other components through manual separation and trommel screen after which their content increased to 82.9-89.7%. Subsequently, they were mixed with binding agent (cassava root) and transformed into RDF briquette. Maximum plastic content in RDF briquette was limit to 55% to maintain physical strength and maximum chlorine content. The RDF briquette was tested in a down-draft gasifier. The produced gas contained average energy content of 1.76 MJ/m(3), yielding cold gas efficiency of 66%. The energy production cost from this RDF process was estimated as USD0.05 perkWh.

  11. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  12. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2001-10-01

    During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

  13. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    NASA Technical Reports Server (NTRS)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  14. Development of OTM Syngas Process and Testing of Syngas Derived Ulta-clean Fuels in Diesel Engines and Fuel Cells Budget Period 3

    SciTech Connect

    E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; Siv Aasland; Kjersti Kleveland; Ann Hooper; Leo Bonnell; John Hemmings; Jack Chen; Bart A. Van Hassel

    2004-12-31

    This topical report summarizes work accomplished for the Program from January 1, 2003 through December 31,2004 in the following task areas: Task 1--Materials Development; Task 2--Composite Development; Task 4--Reactor Design and Process Optimization; Task 8--Fuels and Engine Testing; 8.1 International Diesel Engine Program; and Task IO: Program Management. Most of the key technical objectives for this budget period were achieved. Only partial success was achieved relative to cycle testing under pressure Major improvements in material performance and element reliability have been achieved. A breakthrough material system has driven the development of a compact planar reactor design capable of producing either hydrogen or syngas. The planar reactor shows significant advantages in thermal efficiency and costs compared to either steam methane reforming with CO{sub 2} recovery or autothermal reforming. The fuel and engine testing program is complete The single cylinder test engine evaluation of UCTF fuels begun in Budget Period 2 was finished this budget period. In addition, a study to evaluate new fuel formulations for an HCCl engine was completed.

  15. Proposed draft document for GSA office waste removal and procurement of densified refuse derived fuel for use as a supplemental fuel in GAS operated boilers

    NASA Astrophysics Data System (ADS)

    Campbell, J. A.

    1981-09-01

    A contract specifying waste collection and disposal from buildings managed by Government Services Administration (GSA) in the Washington, D. C. area and the production and delivery of pelletized fuel for burning with coal in one or two GSA steam generating plants is given.

  16. DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS

    SciTech Connect

    E.T. Robinson; James P. Meagher; Ravi Prasad

    2001-10-31

    This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

  17. Refuse-derived fuels

    SciTech Connect

    Krause, H.H.

    1980-10-01

    The rationale for energy recovery from municipal refuse is discussed, and planning for future installations for this purpose is cited. The composition and energy content of bulk waste, shredded refuse, and pelletized material are compared. Potential problems encountered with refuse combustion in the areas of slagging, corrosion, and stack emissions are outlined.

  18. Refuse-derived fuels

    NASA Astrophysics Data System (ADS)

    Krause, H. H.

    1980-09-01

    The rationale for energy recovery from municipal refuse is discussed, and planning for future installations for this purpose is cited. The composition and energy content of bulk waste, shredded refuse, and pelletized material are compared. Potential problems encountered with refuse combustion in the areas of slagging, corrosion, and stack emissions are outlined.

  19. Liquid-phase penetration under unsteady in-cylinder conditions: Soy- and Cuphea-derived biodiesel fuels vs. conventional diesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerated dilution of engine-lubrication oil is a significant potential issue when fueling with biodiesel. Biodiesel produced from some feedstocks is less volatile than conventional diesel, which makes wall-impingement of liquid fuel more likely, a problem that could be exacerbated by advanced in...

  20. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    PubMed

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach.

  1. Well-to-Wheels Greenhouse Gas Emissions Analysis of High-Octane Fuels with Various Market Shares and Ethanol Blending Levels

    SciTech Connect

    Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael; Divita, Vincent

    2015-07-14

    In this study, we evaluated the impacts of producing HOF with a RON of 100, using a range of ethanol blending levels (E10, E25, and E40), vehicle efficiency gains, and HOF market penetration scenarios (3.4% to 70%), on WTW petroleum use and GHG emissions. In particular, we conducted LP modeling of petroleum refineries to examine the impacts of different HOF production scenarios on petroleum refining energy use and GHG emissions. We compared two cases of HOF vehicle fuel economy gains of 5% and 10% in terms of MPGGE to baseline regular gasoline vehicles. We incorporated three key factors in GREET — (1) refining energy intensities of gasoline components for the various ethanol blending options and market shares, (2) vehicle efficiency gains, and (3) upstream energy use and emissions associated with the production of different crude types and ethanol — to compare the WTW GHG emissions of various HOF/vehicle scenarios with the business-as-usual baseline regular gasoline (87 AKI E10) pathway.

  2. Determination of aflatoxins in air samples of refuse-derived fuel by thin-layer chromatography with laser-induced fluorescence spectrometric detection

    SciTech Connect

    Bicking, M.K.L.; Kniseley, R.N.; Svec, H.J.

    1983-02-01

    An analytical method is described which allows determination of aflatoxins in a complex matrix. An apparatus has been developed that quantitates fluorescent compounds on thin-layer chromatography plates. A nitrogen laser excitation source produces a detection limit of 10 pg for four aflatoxins. Aflatoxin B1 has been found at levels up to 17 ppb in solid samples collected from the air at a plant which produces refuse-derived fuel. 7 figures, 1 table.

  3. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Technical Reports Server (NTRS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  4. Gas turbine demonstration of pyrolysis: derived fuels. Third technical progress report, July 1, 1979-December 31, 1981

    SciTech Connect

    Jasas, G.; Kasper, J.

    1982-01-01

    The objective of this program is to demonstrate the feasibility of utilizing pyrolytic oil and char as a fuel for a combustion turbine engine. This is the first phase of an extended program with the ultimate goal of commercializing a gas turbine engine and electrical generating system which is independent of petroleum-based fuels. Maximum use of existing technology and current production engine hardware (Teledyne CAE Model J69-T-29 Turbojet Engine) is being incorporated for a sequence of test evaluations rating from isolated combustor component tests to full scale engine demonstration tests. The technical goals to be achieved during the course of this project are: pyrolytic fuel characterization in terms of its properties and constituents; pyrolytic fuel combustion technology in gas turbine application in terms of pyrolytic oil atomization, quantity of char burned, emissions, performance and associated combustion system aerothermodynamics; pyrolytic fuel (oil and char slurry) handling, mixing, and storage technology; and engine materials compatibility with the the pyrolytic fuel and its combustion products. Progress achieved during the period from July 1979 through Deember 1981 in design, analysis, an project management hardware fabrication and procurement, fuel chemistry and properties, and combustor rig tests are summarized.

  5. Fuels and chemicals from biomass using solar thermal energy

    NASA Technical Reports Server (NTRS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-01-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  6. Fuels and chemicals from biomass using solar thermal energy

    NASA Astrophysics Data System (ADS)

    Giori, G.; Leitheiser, R.; Wayman, M.

    1981-05-01

    The significant nearer term opportunities for the application of solar thermal energy to the manufacture of fuels and chemicals from biomass are summarized, with some comments on resource availability, market potential and economics. Consideration is given to the production of furfural from agricultural residues, and the role of furfural and its derivatives as a replacement for petrochemicals in the plastics industry.

  7. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-04-30

    During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  8. Alternative Fuels Infrastructure Development

    SciTech Connect

    Bloyd, Cary N.

    2010-06-30

    This summary reviews the status of alternate transportation fuels development and utilization in Thailand. An understanding of the issues and experiences associated with the introduction of alternative fuels in other countries can help the US in anticipation potential problems as it introduces new automotive fuels. Thailand is of particular interest since it introduced E20 to its commercial market in 2007 and the US is now considering introducing E20 into the US market.

  9. Detection of the arylpropionamide-derived selective androgen receptor modulator (SARM) S-4 (Andarine) in a black-market product.

    PubMed

    Thevis, Mario; Geyer, Hans; Kamber, Matthias; Schänzer, Wilhelm

    2009-08-01

    Non-steroidal and tissue-selective anabolic agents such as selective androgen receptor modulators (SARMs) represent a promising class of therapeutics for the treatment of various diseases such as sarcopenia or cancer cachexia. Advanced compounds of SARMs are based on an arylpropionamide-derived structure and leading drug candidates have successfully completed phase-II-clinical trials. Although none of these therapeutics have been approved, their performance-enhancing qualities and the black-market availability of these products makes them a viable target for misuse in the athletic community. In 2008, SARMs were added to the Prohibited List established by the World Anti-Doping Agency (WADA). That SARMs are the subject of misuse even without clinical approval was proved for the first time by the detection of the drug candidate Andarine (also referred to as S-4, S-3-(4-acetylamino-phenoxy)-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-propionamide), advertised, sold and supplied via the Internet. The oily liquids, declared as green tea extracts and face moisturizer, were assayed using state-of-the-art analytical procedures and S-4 was found at concentrations of approximately 150 mg/mL. The authenticity of the product was demonstrated in comparison to reference material by liquid chromatography, high resolution/high accuracy (tandem) mass spectrometry using positive and negative electrospray ionization, and comparison to reference material. Moreover, an impurity resulting from poor product purification was detected, accounting for approximately 10% of S-4. This consisted of 2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl-phenyl)-3-(4-nitro-3-trifluoromethyl-phenylamino)-propionamide. The ease of purchasing non-approved drug candidates that could potentially increase athletic performance demonstrates the need to operate proactively in the continued fight against doping. The early inclusion of emerging drugs into routine sports drug testing procedures is a key

  10. Inhalation health effects of fine particles from the co-combustion of coal and refuse derived fuel.

    PubMed

    Fernandez, Art; Wendt, Jost O L; Wolski, Natacha; Hein, Klaus R G; Wang, Shengjun; Witten, Mark L

    2003-06-01

    This paper is concerned with health effects from the inhalation of particulate matter (PM) emitted from the combustion of coal, and from the co-combustion of refuse derived fuel (RDF) and pulverized coal mixtures, under both normal and low NO(x) conditions. Specific issues focus on whether the addition of RDF to coal has an effect on PM toxicity, and whether the application of staged combustion (for low NO(x)) may also be a factor in this regard. Ash particles were sampled and collected from a pilot scale combustion unit and then re-suspended and diluted to concentrations of approximately 1000 microg/m(3). These particles were inhaled by mice, which were held in a nose-only exposure configuration. Exposure tests were for 1 h per day, and involved three sets (eight mice per set) of mice. These three sets were exposed over 8, 16, and 24 consecutive days, respectively. Pathological lung damage was measured in terms of increases in lung permeability. Results show that the re-suspended coal/RDF ash appeared to cause very different effects on lung permeability than did coal ash alone. In addition, it was also shown that a "snapshot" of lung properties after a fixed number of daily 1-h exposures, can be misleading, since apparent repair mechanisms cause lung properties to change over a period of time. For the coal/RDF, the greatest lung damage (in terms of lung permeability increase) occurred at the short exposure period of 8 days, and thereafter appeared to be gradually repaired. Ash from staged (low NO(x)) combustion of coal/RDF appeared to cause greater lung injury than that from unstaged (high NO(x)) coal/RDF combustion, although the temporal behavior and (apparent) repair processes in each case were similar. In contrast to this, coal ash alone showed a slight decrease of lung permeability after 1 and 3 days, and this disappeared after 12 days. These observations are interpreted in the light of mechanisms proposed in the literature. The results all suggest that the

  11. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2004-01-01

    During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  12. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-07-01

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  13. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  14. Microstructural changes in NiFe2O4 ceramics prepared with powders derived from different fuels in sol-gel auto-combustion technique

    NASA Astrophysics Data System (ADS)

    Chauhan, Lalita; Bokolia, Renuka; Sreenivas, K.

    2016-05-01

    Structural properties of Nickel ferrite (NiFe2O4) ceramics prepared from powders derived from sol gel auto-combustion method using different fuels (citric acid, glycine and Dl-alanine) are compared. Changes in the structural properties at different sintering temperatures are investigated. X-ray diffraction (XRD) confirms the formation of single phase material with cubic structure. Ceramics prepared using the different powders obtained from different fuels show that that there are no significant changes in lattice parameters. However increasing sintering temperatures show significant improvement in density and grain size. The DL-alanine fuel is found to be the most effective fuel for producing NIFe2O4 powders by the sol-gel auto combustion method and yields highly crystalline powders in the as-burnt stage itself at a low temperature (80 °C). Subsequent use of the powders in ceramic manufacturing produces dense NiFe2O4 ceramics with a uniform microstructure and a large grain size.

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  16. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  17. Fuel cells seminar

    SciTech Connect

    1996-12-01

    This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

  18. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    PubMed

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination.

  19. Evaluation of Ultra Clean Fuels from Natural Gas

    SciTech Connect

    Robert Abbott; Edward Casey; Etop Esen; Douglas Smith; Bruce Burke; Binh Nguyen; Samuel Tam; Paul Worhach; Mahabubul Alam; Juhun Song; James Szybist; Ragini Acharya; Vince Zello; David Morris; Patrick Flynn; Stephen Kirby; Krishan Bhatia; Jeff Gonder; Yun Wang; Wenpeng Liu; Hua Meng; Subramani Velu; Jian-Ping Shen, Weidong Gu; Elise Bickford; Chunshan Song; Chao-Yang Wang; Andre' Boehman

    2006-02-28

    ConocoPhillips, in conjunction with Nexant Inc., Penn State University, and Cummins Engine Co., joined with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) in a cooperative agreement to perform a comprehensive study of new ultra clean fuels (UCFs) produced from remote sources of natural gas. The project study consists of three primary tasks: an environmental Life Cycle Assessment (LCA), a Market Study, and a series of Engine Tests to evaluate the potential markets for Ultra Clean Fuels. The overall objective of DOE's Ultra Clean Transportation Fuels Initiative is to develop and deploy technologies that will produce ultra-clean burning transportation fuels for the 21st century from both petroleum and non-petroleum resources. These fuels will: (1) Enable vehicles to comply with future emission requirements; (2) Be compatible with the existing liquid fuels infrastructure; (3) Enable vehicle efficiencies to be significantly increased, with concomitantly reduced CO{sub 2} emissions; (4) Be obtainable from a fossil resource, alone or in combination with other hydrocarbon materials such as refinery wastes, municipal wastes, biomass, and coal; and (5) Be competitive with current petroleum fuels. The objectives of the ConocoPhillips Ultra Clean Fuels Project are to perform a comprehensive life cycle analysis and to conduct a market study on ultra clean fuels of commercial interest produced from natural gas, and, in addition, perform engine tests for Fisher-Tropsch diesel and methanol in neat, blended or special formulations to obtain data on emissions. This resulting data will be used to optimize fuel compositions and engine operation in order to minimize the release of atmospheric pollutants resulting from the fuel combustion. Development and testing of both direct and indirect methanol fuel cells was to be conducted and the optimum properties of a suitable fuel-grade methanol was to be defined. The results of the study are also applicable

  20. The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics

    SciTech Connect

    1995-10-01

    This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

  1. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2003-10-01

    During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  2. Production of Jet Fuels from Coal Derived Liquids. Volume 9. Results of Bench-Scale and Pilot Plant Testing

    DTIC Science & Technology

    1989-06-01

    Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal ... Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task I are not severe enough to saturate the

  3. Toxicity of water-soluble fractions of biodiesel fuels derived from castor oil, palm oil, and waste cooking oil.

    PubMed

    Leite, Maria Bernadete Neiva Lemos; de Araújo, Milena Maria Sampaio; Nascimento, Iracema Andrade; da Cruz, Andrea Cristina Santos; Pereira, Solange Andrade; do Nascimento, Núbia Costa

    2011-04-01

    Concerns over the sustained availability of fossil fuels and their impact on global warming and pollution have led to the search for fuels from renewable sources to address worldwide rising energy demands. Biodiesel is emerging as one of the possible solutions for the transport sector. It shows comparable engine performance to that of conventional diesel fuel, while reducing greenhouse gas emissions. However, the toxicity of products and effluents from the biodiesel industry has not yet been sufficiently investigated. Brazil has a very high potential as a biodiesel producer, in view of its climatic conditions and vast areas for cropland, with consequent environmental risks because of possible accidental biodiesel spillages into water bodies and runoff to coastal areas. This research determined the toxicity to two marine organisms of the water-soluble fractions (WSF) of three different biodiesel fuels obtained by methanol transesterification of castor oil (CO), palm oil (PO), and waste cooking oil (WCO). Microalgae and sea urchins were used as the test organisms, respectively, for culture-growth-inhibition and early-life-stage-toxicity tests. The toxicity levels of the analyzed biodiesel WSF showed the highest toxicity for the CO, followed by WCO and the PO. Methanol was the most prominent contaminant; concentrations increased over time in WSF samples stored up to 120 d.

  4. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  5. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect

    K. Payette; D. Tillman

    2002-01-01

    During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

  6. The Influence of Fuel Moisture, Charge Size, Burning Rate and Air Ventilation Conditions on Emissions of PM, OC, EC, Parent PAHs, and Their Derivatives from Residential Wood Combustion

    PubMed Central

    Shen, Guofeng; Xue, Miao; Wei, Siye; Chen, Yuanchen; Wang, Bin; Wang, Rong; Lv, Yan; Shen, Huizhong; Li, Wei; Zhang, Yanyan; Huang, Ye; Chen, Han; Wei, Wen; Zhao, Qiuyue; Li, Bin; Wu, Haisuo; TAO, Shu

    2014-01-01

    Controlled combustion experiments were conducted to investigate the influence of fuel charge size, moisture, air ventilation and burning rate on the emission factors (EFs) of carbonaceous particulate matter, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives from residential wood combustion in a typical brick cooking stove. Measured EFs were found to be independent of fuel charge size, but increased with increasing fuel moisture. Pollution emissions from a normal burning under an adequate air supply condition were the lowest for most pollutants, while more pollutants were emitted when the oxygen deficient atmosphere was formed in stove chamber during fast burning. The impact of these 4 factors on particulate matter size distribution was also studied. Modified combustion efficiency and the four investigated factors explained 68, 72, and 64% of total variations in EFs of PM, organic carbon, and oxygenated PAHs, respectively, but only 36, 38 and 42% of the total variations in EFs of elemental carbon, pPAHs and nitro-PAHs, respectively. PMID:24520723

  7. Development of Detailed and Reduced Kinetics Mechanisms for Surrogates of Petroleum-Derived and Synthetic Jet Fuels

    DTIC Science & Technology

    2014-12-04

    shock waves, in flow reactors, as well as in laminar and turbulent flames . The measurements included ignition delays and species time evolutions in...shock tubes, species profiles in flow reactors, and propagation speeds and ignition/extinction limits of laminar flames . Additionally, a facility...was constructed that allows for the study of turbulent flames at very high Re numbers and fuels as heavy as n-dodecane. The main goal of the completed

  8. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    SciTech Connect

    Not Available

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  9. Outlook for alternative transportation fuels

    SciTech Connect

    Gushee, D.E.

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  10. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  11. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals.

    PubMed

    Xia, Chen; Cai, Yixiao; Ma, Yue; Wang, Baoyuan; Zhang, Wei; Karlsson, Mikael; Wu, Yan; Zhu, Bin

    2016-08-17

    Solid oxide fuel cells (SOFCs) have attracted much attention worldwide because of their potential for providing clean and reliable electric power. However, their commercialization is subject to the high operating temperatures and costs. To make SOFCs more competitive, here we report a novel and attractive nanocomposite hematite-LaCePrOx (hematite-LCP) synthesized from low-cost natural hematite and LaCePr-carbonate mineral as an electrolyte candidate. This heterogeneous composite exhibits a conductivity as high as 0.116 S cm(-1) at 600 °C with an activation energy of 0.50 eV at 400-600 °C. For the first time, a fuel cell using such a natural mineral-based composite demonstrates a maximum power density of 625 mW cm(-2) at 600 °C and notable power output of 386 mW cm(-2) at 450 °C. The extraordinary ionic conductivity and device performances are primarily attributed to the heterophasic interfacial conduction effect of the hematite-LCP composite. These superior properties, along with the merits of ultralow cost, abundant storage, and eco-friendliness, make the new composite a highly promising material for commercial SOFCs.

  12. Conversion of Biomass Derivatives to Electricity in Photo Fuel Cells using Undoped and Tungsten-doped Bismuth Vanadate Photoanodes.

    PubMed

    Zhang, Bingqing; Shi, Jingying; Ding, Chunmei; Chong, Ruifeng; Zhang, Bao; Wang, Zhiliang; Li, Ailong; Liang, Zhenxing; Liao, Shijun; Li, Can

    2015-12-07

    The photo fuel cell (PFC) is a promising technology for simultaneously converting solar energy and bioenergy into electricity. Here, we present a miniature air-breathing PFC that uses either BiVO4 or W-doped BiVO4 as the photoanode and a Pt/C catalyst as the air-breathing cathode. The PFC exhibited excellent performance under solar illumination and when fed with several types of biomaterial. We found the PFC performance could be significantly enhanced using W-doping into the BiVO4 photoanode. With glucose as the fuel and simulated sunlight (AM 1.5 G) as the light source, the open-circuit voltage increased from 0.74 to 0.92 V, the short-circuit current density rose from 0.46 to 1.62 mA cm(-2) , and the maximum power density was boosted from 0.05 to 0.38 mW cm(-2) , compared to a PFC using undoped BiVO4 as the anode.

  13. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  14. Guide to fuel suppliers

    SciTech Connect

    Not Available

    1992-10-01

    This article is a directory of fuel suppliers to the electric power industry. The directory contains the company name, address, telephone and FAX numbers, contact person and a description of the fuels and services offered by the companies and their market areas. The directory's scope covers North America.

  15. Health and environmental effects of refuse derived fuel (RDF) production and RDF/coal co-firing technologies

    SciTech Connect

    O'Toole, J.J.; Wessels, T.E.; Lynch, J.F.; Fassel, V.A.; Lembke, L.L.; Kniseley, R.N.; Norton, G.A.; Junk, G.A.; Richard, J.J.; Dekalb, E.L.; Dobosy, R.J.

    1981-10-01

    Six facilities, representing the scope of different co-firing techniques with their associated RDF production systems were reviewed in detail for combustion equipment, firing modes, emission control systems, residue handling/disposal, and effluent wastewater treatment. These facilities encompass all currently operational or soon to be operational co-firing plants and associated RDF production systems. Occupational health and safety risks for these plants were evaluated on the basis of fatal and nonfatal accidents and disease arising from the respective fuel cycles, coal and RDF. Occupational risks include exposure to pathogenic organisms in the workplace. Unusual events that are life threatening in the RDF processing industry (e.g., explosions) are also discussed and remedial and safety measures reviewed. 80 refs., 4 figs., 30 tabs.

  16. Development of alcohol-based synthetic transportation fuels from coal-derived synthesis gases. First quarterly progress report, September 14-December 31, 1979

    SciTech Connect

    1980-04-08

    Chem Systems is carrying out an experimental program for the conversion of coal-derived synthesis gases to a mixture of C/sub 1/-C/sub 4/ alcohols. The objectives of this contract are to: (1) develop a catalyst and reactor system for producing a mixture of C/sub 1/-C/sub 4/ alcohols, which we call Alkanol fuel, to be used as a synthetic transportation fuel and (2) assess the technical and economic feasibility of scaling the process concept to a commercial-scale application. Some of the accomplishments made this quarter were: (1) a small (75cc) fixed-bed, plug-flow, vapor phase reaction system was set up and operated utilizing catalyst bed dilution with inert media to help limit the large exotherm associated with the synthesis gas conversion reactions; (2) a total of fifteen (15) catalysts containing varying amounts of Cu, Co, Zn, Cr and K were prepared and seven of these catalysts were tested; (3) we have identified at least one promising catalyst composition which has resulted in a 30% conversion of carbon monoxide per pass (synthesis gas had a 3.5 H/sub 2//CO ratio) with a carbon selectivity to alcohols of about 80%.

  17. Production of a refined biooil derived by fast pyrolysis of chicken manure with chemical and physical characteristics close to those of fossil fuels.

    PubMed

    Monreal, Carlos M; Schnitzer, Morris

    2011-01-01

    The chemical and physical properties of raw biooils prevent their direct use in combustion engines. We processed raw pyrolytic biooil derived from chicken manure to yield a colorless refined biooil with diesel qualities. Chemical characterization of the refined biooil involved elemental and several spectroscopic analyses. The physical measurements employed were viscosity, density and heat of combustion. The elemental composition (% wt/wt) of the refined biooil was 82.7 % C, 15.3 % H, 0.2 % N and 1.8 % O, no S. Its viscosity was 0.006 Pa.s and a heat of combustion of 43 MJ kg(-1). The refined biooil fraction contains n-alkanes, ranging from n-C(14) to n-C(27), alkenes varying from C(10:1) to C(22:1), and long-chain alcohols. The refined biooil makes a good diesel fuel due to its chemical and physical properties.

  18. The effects of trace impurities in coal-derived liquid fuels on deposition and accelerated high temperature corrosion of cast superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.

    1981-01-01

    The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.

  19. Grove Fuel Cell Symposium - Progress in Fuel Cell Commercialisation, 2nd, London, England, Sept. 24-27, 1991, Proceedings

    NASA Astrophysics Data System (ADS)

    Appleby, A. J.; Lovering, D. G.

    1992-01-01

    Consideration is given to American fuel cell market development, a gas utility approach to fuel cell commercialization, solid oxide fuel cell developments, proton exchange membrane fuel cell systems engineering, and high temperature fuel cell development. Electric vehicle drive systems, solid polymer fuel cell developments, the role of fuel cells in California clean air initiatives, fuel cell energy recovery from landfill gas, and fuel cells and the city of the future are also considered.

  20. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  1. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect

    Chen, Kevin P.

    2015-02-13

    operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  2. Alternative aircraft fuels

    NASA Technical Reports Server (NTRS)

    Longwell, J. P.; Grobman, J.

    1978-01-01

    In connection with the anticipated impossibility to provide on a long-term basis liquid fuels derived from petroleum, an investigation has been conducted with the objective to assess the suitability of jet fuels made from oil shale and coal and to develop a data base which will allow optimization of future fuel characteristics, taking energy efficiency of manufacture and the tradeoffs in aircraft and engine design into account. The properties of future aviation fuels are examined and proposed solutions to problems of alternative fuels are discussed. Attention is given to the refining of jet fuel to current specifications, the control of fuel thermal stability, and combustor technology for use of broad specification fuels. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source.

  3. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell

    SciTech Connect

    Borole, Abhijeet P; Hamilton, Choo Yieng; Schell, Daniel J

    2012-01-01

    A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

  4. Concentrations of bisphenol a, bisphenol a diglycidyl ether, and their derivatives in canned foods in Japanese markets.

    PubMed

    Yonekubo, Jun; Hayakawa, Kazuichi; Sajiki, Junko

    2008-03-26

    Bisphenol A (BPA), bisphenol A diglycidyl ether (BADGE), and their derivatives in 38 canned foods sold in Japan were measured using high-performance liquid chromatography-mass spectrometry (LC-MS) and LC-tandem mass spectrometry (LC-MS/MS). BPA, BADGE, BADGE.2H 2O, BADGE.HCl.H2O, BADGE.HCl, and BADGE.2HCl were 0-235.4, 0-3.4, 0-247.2, 0.2-196.4, 0-3.0, and 0-25.7 ng/g, respectively, which did not exceed acceptable daily intake for BPA and specific migration limit for BADGEs. BADGE was degraded by 58, 100, 46, and 58% in water (pH 7), 0.01 N HCl (pH 2), 0.01 N NaCl (pH 6.8), and 0.01 N NaCl with acetic acid (pH 2.5), respectively, when it was allowed to stand at 120 degrees C for 30 min. The prominent derivatives formed were BADGE.2H 2O and BADGE.HCl.H2O, which was formed not only in BADGE with added HCl but also in that with NaCl. Acetic acid accelerated the formation of both BADGE.2H2O and BADGE.HCl.H2O in NaCl. No BPA was detected in any simulation samples started from BADGE. The results suggest that BPA and BADGE are independently leached into canned foods and that BADGE is easily changed to more stable compounds such as BADGE.2H2O and BADGE.HCl.H2O by sterilization.

  5. Fuel cell cogeneration

    SciTech Connect

    Wimer, J.G.; Archer, D.

    1995-08-01

    The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) sponsors the research and development of engineered systems which utilize domestic fuel supplies while achieving high standards of efficiency, economy, and environmental performance. Fuel cell systems are among the promising electric power generation systems that METC is currently developing. Buildings account for 36 percent of U.S. primary energy consumption. Cogeneration systems for commercial buildings represent an early market opportunity for fuel cells. Seventeen percent of all commercial buildings are office buildings, and large office buildings are projected to be one of the biggest, fastest-growing sectors in the commercial building cogeneration market. The main objective of this study is to explore the early market opportunity for fuel cells in large office buildings and determine the conditions in which they can compete with alternative systems. Some preliminary results and conclusions are presented, although the study is still in progress.

  6. The dieselization of America: An integrated strategy for future transportation fuels

    SciTech Connect

    Eberhardt, J.J.

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  7. [Marketing for hospitals--an issue?].

    PubMed

    Schindler, Achim W; Schindler, Nicola; Vagts, Dierk

    2007-09-01

    Since economization of medicine continues, marketing is becoming more and more important. To shape marketing activities in correspondence with their professional ethics, physicians need some basic knowledge about marketing. The process of marketing consists of SWOT-analysis, market segmentation, market differentiation, positioning and the marketing-mix with ist most important component, the marketing communication. Specific aspects in the marketing of medical services derive from their nature as a service and the determinants of perceived service quality.

  8. Bioconversion of coal derived synthesis gas to liquid fuels. Quarterly technical progress report, October 1, 1994--December 27, 1994

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, A.

    1995-01-16

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) Development/isolation of superior strains for fermentation of syngas; (2) Evaluation of bioreactor configuration for improved mass transfer of syngas, specifically gas lift; (3) Pervaporation for recovery of solvents; (4) Write and submit final report.

  9. Municipal sludge-derived carbon anode with nitrogen- and oxygen-containing functional groups for high-performance microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxiao; Feng, Chunhua; Zhou, Weijia; Yu, Hui

    2016-03-01

    The demand for efficient and cost-effective anode materials in microbial fuel cells (MFCs) provides the impetus to use carbon derived from solid waste to support bacterial growth and proliferation. Here we show that the municipal sludge-derived carbon (SC) with a porous structure and abundant surface functional groups is effective in improving performance of MFCs. The SC is coated on the 3-D graphite felt (GF) surface by pyrrole electropolymerization in order to increase the surface cites that are interacted with bacteria, resulting in the formation of PPy/SC-modified GF anode. The scanning electron microscopy analysis indicates that the PPy/SC-modified GF can substantially increase anode surface area. The X-ray photoelectron spectroscopy (XPS) results suggest that the PPy/SC-modified GF anode possesses higher surface N/C ratio and higher relative contents of Odbnd C-NH2 and Odbnd C-O functional groups than other counterpart anodes. These characteristics are essential for increasing bacterial attachment to the anode surface, electron-transfer rate and thus anode performance and power performance. The maximum power density resulting from the PPy/SC-modified GF anode was 568.5 mW m-2 (13.6 W m-3) increased by 1.9, 2.7 and 3.5 times as compared to the PPy/AC-modified GF anode, the PPy alone-modified GF anode and the unmodified GF anode, respectively.

  10. A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range

    SciTech Connect

    S. D. Brandes; R. A. Winschel

    1999-12-30

    This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

  11. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading

    SciTech Connect

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; Dutta, Abhijit; Jones, Susanne; Ramasamy, Karthikeyan K.; Gray, Michel; Dagle, Robert; Padmaperuma, Asanga; Gerber, Mark; Sahir, Asad H.; Tao, Ling; Zhang, Yanan

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixed alcohols over a MoS2 catalyst, (ii) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  12. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading

    DOE PAGES

    Tan, Eric C. D.; Snowden-Swan, Lesley J.; Talmadge, Michael; ...

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with a specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include biomass-to-syngas via indirect gasification, syngas clean-up, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: (i) mixedmore » alcohols over a MoS2 catalyst, (ii) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and (iii) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: (i) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and (ii) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2000 tonnes/day (2205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from 3.40 dollars to 5.04 dollars per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Altogether, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.« less

  13. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E. C. D.; Laurens, L. M. L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  14. Bioconversion of coal derived synthesis gas to liquid fuels. Final quarterly technical progress report, July 1, 1993--September 30, 1993

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, H.

    1993-10-25

    The overall objective of the project is to develop an integrated two stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: (1) development/isolation of superior strains for fermentation of syngas, (2) optimization of process conditions for fermentation of syngas, (3) evaluation of bioreactor configuration for improved mass transfer of syngas, (4) development of a membrane-based pervaporation system, (5) optimization of process conditions for reducing carbon and electron loss by H{sub 2}-CO{sub 2} fermentation, and (6) synthesis gas fermentation in single-stage by co-culture. Progress is reported in isolation of CO utilizing anaerobic strains; investigating the product profile for the fermentation of syngas by B. methylotrophicum; and determining the effect of carbon monoxide on growth of C. acetobutylicum.

  15. Bioconversion of coal derived synthesis gas to liquid fuels. Quarterly technical progress report, 1 April--30 June 1994

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, A.

    1994-07-18

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H{sub 2}-CO{sub 2}; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following. Butyrate production was enhanced during H{sub 2}/CO{sub 2} (50/50) batch fermentation. Isolation of CO-utilizing anaerobic strains is in progress. Pressure (15 psig) fermentation was evaluated as a means of increasing CO availability. Polyurethane foam packing material was selected for trickle bed solid support. Cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8. Trickle bed and gas lift fermentor designs were modified after initial water testing. Pervaporation system was constructed. No alcohol selectivity was shown with the existing membranes during initial start-up.

  16. Bioconversion of coal-derived synthesis gas to liquid fuels. Annual report, September 29, 1992--September 28, 1993

    SciTech Connect

    Jain, M.K.; Worden, R.M.; Grethlein, H.E.

    1993-10-21

    The overall objective of the project is to develop and optimize a two-stage fermentation process for the conversion of coal derived synthesis gas in an mixture of alcohols. The goals include the development of superior strains with high product tolerance and productivity, optimization of process conditions for high volumetric productivity and product concentrations, integration and optimization of two stage syngas fermentation, evaluation of bioreactor configurations for enhanced mass transfer, evaluation of syngas conversion by a culture of Butyribacterium methyltrophicum and Clostridium acetobutylicum, development of a membrane based pervaporation system for in situ removal of alcohols, and development of a process for reduction of carbon and electron loss. The specific goals for year one (September 1992 - September 1993) were (1) development of a project work plan, (2) development of superior CO-utilizing strains, (3) optimization of process conditions for conversion of synthesis gas to a mixture of acids in a continuously stirred reactor (CSTR), (4) evaluation of different bioreactor configurations for maximization of mass transfer of synthesis gas, (5) development of a membrane based pervaporation system, and (6) reduction of carbon and electron loss via H{sub 2}CO{sub 2} fermentation. Experimentation and progress toward these goals are described in this report.

  17. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    NASA Astrophysics Data System (ADS)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  18. LDC gas buyers adjusting to vastly changed market

    SciTech Connect

    Share, J.

    1997-11-01

    In a just-released study, RKS Research and Consulting reported that while power and gas marketing firms may become key players in the deregulated energy business, few of their customers and seeing a national leader emerge. The report said while 75% of large customers interviewed already use energy marketers, only 25% evidence a clear understanding of these firms` skills and product /offerings. The study found that the energy users considered reliable energy supply, service dependability and quality/reliability of fuel sources their top three criteria and apply that to utilities and energy marketing firms. The marketers may offer some unique services, such as a commanding market presence, fuel diversity, skill in using financial derivatives and record of successful risk management, but those offerings are generally at the bottom of the list that energy users use when considering power and gas marketers, the study said. What does this all mean to the gas utilities, both in terms of buying supplies as well as providing gas against their newly emerging competitors? The author asked gas buyers from five LDCs to discuss the challenges they face in doing their jobs today. Their comments are relevant because it is not only an example of a new way of doing business, but is also indicative of the choices and problems one will endure in buying energy in an increasingly deregulated environment. And remember this: the utilities are still the predominant buyers of gas.

  19. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 4, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1993-10-01

    A base case flow sheet for the production of higher alcohols from coal derived synthesis gas has been completed, including an economic analysis. The details of the flow sheet and economics are in Appendix 1. The pay back period for the capital investment for the plant has been calculated as a function of the market price of the product, and this figure is also shown as Figure I in Appendix 1. The estimated installed cost is almost $500 MM, and the estimated annual operating cost is $64 MM. At a price in the vicinity of $1.00/gal for the alcohol product, the pay back period for construction of the plant is four years. These values should be considered preliminary, since many of the capital costs were obtained from other paper studies sponsored by DOE and TVA and very few values could be found from actual plants which were built. This issue is currently being addressed. The most expensive capital costs were found to be the gasifier, the cryogenic air separation plant, the steam/power generation plant and the acid gas/sulfur removal processes taken as a whole. It is planned to focus attention on alternatives to the base case. The problem is that it is less expensive to make syngas from natural gas. Therefore, it is essential to reduce the cost of syngas from coal. This is where the energy park concept becomes important. In order for this process to be economical (at current market and political conditions) a method must be found to reduce the cost of syngas manufacture either by producing energy or by-products. Energy is produced in the base case, but the amount and method has not been optimized. The economic arguments for this concept are detailed in Appendix 2.

  20. Evidence of fueling of the 2000 new economy bubble by foreign capital inflow: implications for the future of the US economy and its stock market

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Zhou, Wei-Xing

    2004-02-01

    Previous analyses of a large ensemble of stock markets have demonstrated that a log-periodic power law (LPPL) behavior of the prices constitutes a qualifying signature of speculative bubbles that often land with a crash. We detect such a LPPL signature in the foreign capital inflow during the bubble on the US markets culminating in March 2000. We detect a weak synchronization and lag with the NASDAQ LPPL pattern. We propose to rationalize these observations by the existence of positive feedback loops between market-appreciation/increased-spending/increased-deficit-of-balance-of-payment/larger-foreign-surplus/increased-foreign-capital-inflows and so on. Our analysis suggests that foreign capital inflow has been following rather than causing the bubble. We then combine a macroeconomic analysis of feedback processes occurring between the economy and the stock market with a technical analysis of more than 200 years of the DJIA to investigate possible scenarios for the future, three years after the end of the bubble and deep into a bearish regime. We conclude that the low interest rates and depreciating dollar are the indispensable ingredients for a lower sustainable burden of the global US debt structure and for allowing the slow rebuilding of an internationally competitive economy. This will probably be accompanied by a weak stock market on the medium term as the growing Federal deficit is consuming a large part of the foreign surplus dollars and the stock market is remaining a very risky and unattractive investment. Notwithstanding strong surge of liquidity in recent months orchestrated by the Federal Reserve, this macroeconomic analysis which incorporates an element of collective behavior is in line with our recent analyses of the bearish market that started in 2000 in terms of a LPPL “anti-bubble”. We project this LPPL anti-bubble to continue at least for another year. On the short term, increased availability of liquidity (M1) and self-fulfilling bullish

  1. California's Low-Carbon Fuel Standard - Compliance Trends

    NASA Astrophysics Data System (ADS)

    Witcover, J.; Yeh, S.

    2013-12-01

    Policies to incentivize lower carbon transport fuels have become more prevalent even as they spark heated debate over their cost and feasibility. California's approach - performance-based regulation called the Low Carbon Fuel Standard (LCFS) - has proved no exception. The LCFS aims to achieve 10% reductions in state transport fuel carbon intensity (CI) by 2020, by setting declining annual CI targets, and rewarding fuels for incremental improvements in CI beyond the targets while penalizing those that fail to meet requirements. Even as debate continues over when new, lower carbon fuels will become widely available at commercial scale, California's transport energy mix is shifting in gradual but noticeable ways under the LCFS. We analyze the changes using available data on LCFS fuels from the California Air Resources Board and other secondary sources, beginning in 2011 (the first compliance year). We examine trends in program compliance (evaluated through carbon credits and deficits generated), and relative importance of various transport energy pathways (fuel types and feedstocks, and their CI ratings, including new pathways added since the program's start). We document a roughly 2% decline in CI for gasoline and diesel substitutes under the program, with compliance achieved through small shifts toward greater reliance on fuels with lower CI ratings within a relatively stable amount of transport energy derived from alternatives to fossil fuel gasoline and diesel. We also discuss price trends in the nascent LCFS credit market. The results are important to the broader policy debate about transportation sector response to market-based policies aimed at reducing the sector's greenhouse gas emissions.

  2. Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells.

    PubMed

    Cao, Chun; Wei, Liling; Su, Min; Wang, Gang; Shen, Jianquan

    2016-08-01

    A novel low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon (N/Fe-C) with three-dimensional porous structure is employed as efficient oxygen reduction catalyst in microbial fuel cells (MFCs). The electrochemical active area is significantly improved to 617.19m(2)g(-1) in N/Fe-C by Fe-doping. And N/Fe-C (4.21at.% N, 0.11at.% Fe) exhibits excellent electrocatalytic activity with the oxygen reduction potential of -0.07V (vs. Ag/AgCl) which is comparable to commercial Pt/C. In MFCs tests, the maximum power density and output voltage with N/Fe-C are enhanced to 745mWm(-2) and 562mV (external resistance 1kΩ), which are 11% and 0.72% higher than Pt/C (0.5mgPtcm(-2)), respectively. Besides, the long-term stability of N/Fe-C retains better for more than one week. Moreover, the charge transfer resistance (Rct) values are recorded by the impedance measurements, and the low Rct of N/Fe-C is also result in better catalytic activity.

  3. Impact of supplemental firing of tire-derived fuel (TDF) on mercury species and mercury capture with the advanced hybrid filter in a western subbituminous coal flue gas

    SciTech Connect

    Ye Zhuang; Stanley J. Miller

    2006-05-15

    Pilot-scale experimental studies were carried out to evaluate the impacts of cofiring tire-derived fuel and a western subbituminous coal on mercury species in flue gas. Mercury samples were collected at the inlet and outlet of the Advanced Hybrid filter to determine mercury concentrations in the flue gas with and without TDF cofiring, respectively. Cofiring of TDF with a subbituminous coal had a significant effect on mercury speciation in the flue gas. With 100% coal firing, there was only 16.8% oxidized mercury in the flue gas compared to 47.7% when 5% TDF (mass basis) was fired and 84.8% when 10% TDF was cofired. The significantly enhanced mercury oxidation may be the result of additional homogeneous gas reactions between Hg{sup 0} and the reactive chlorine generated in the TDF-cofiring flue gas and the in situ improved reactivity of unburned carbon in ash by the reactive chlorine species. Although the cofiring of TDF demonstrated limited improvement on mercury-emission control with the Advanced Hybrid filter, it proved to be a very cost-effective mercury control approach for power plants equipped with wet or dry flue gas desulfurization (FGD) systems because of the enhanced mercury oxidation. 15 refs., 4 figs., 4 tabs.

  4. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  5. Solid and Gaseous Fuels.

    ERIC Educational Resources Information Center

    Schultz, Hyman; And Others

    1989-01-01

    This review covers methods of sampling, analyzing, and testing coal, coke, and coal-derived solids and methods for the chemical, physical, and instrumental analyses of gaseous fuels. The review covers from October 1986, to September 1988. (MVL)

  6. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  7. Aviation turbine fuels, 1982

    SciTech Connect

    Shelton, E.M.; Dickson, C.L.

    1983-03-01

    Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

  8. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  9. Alternative fuel transit buses

    SciTech Connect

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  10. Livestock Marketing.

    ERIC Educational Resources Information Center

    Futrell, Gene; And Others

    This marketing unit focuses on the seasonal and cyclical patterns of livestock markets. Cash marketing, forward contracting, hedging in the futures markets, and the options markets are examined. Examples illustrate how each marketing tool may be useful in gaining a profit on livestock and cutting risk exposure. The unit is organized in the…

  11. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model). Quarterly technical progress report, November 1, 1979-January 31, 1980

    SciTech Connect

    Ahn, Y.K.; Chen, Y.C.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields, K.J.; Stringer, R.P.; Bailie, R.C.

    1980-01-01

    The biomass allocation model has been developed and is undergoing testing. Data bases for biomass feedstock and thermochemical products are complete. Simulated data on process efficiency and product costs are being used while more accurate data are being developed. Market analyses data are stored for the biomass allocation model. The modeling activity will assist in providing process efficiency information required for the allocation model. Process models for entrained bed and fixed bed gasifiers based on coal have been adapted to biomass. Fuel product manufacturing costs will be used as inputs for the data banks of the biomass allocations model. Conceptual economics have been generated for seven of the fourteen process configurations via a biomass economic computer program. The PDU studies are designed to demonstrate steady state thermochemical conversions of biomass to fuels in fluidized, moving and entrained bed reactor configurations. Pulse tests in a fluidized bed to determine the effect of particle size on reaction rates and product gas composition have been completed. Two hour shakedown tests using peanut hulls and wood as the biomass feedstock and the fluidized bed reactor mode have been carried out. A comparison was made of the gas composition using air and steam - O/sub 2/. Biomass thermal profiles and biomass composition information shall be provided. To date approximately 70 biomass types have been collected. Chemical characterization of this material has begun. Thermal gravimetric, pyrogaschromatographic and effluent gas analysis has begun on pelletized samples of these biomass species.

  12. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  13. Bystander Effect Fuels Human Induced Pluripotent Stem Cell-Derived Neural Stem Cells to Quickly Attenuate Early Stage Neurological Deficits After Stroke

    PubMed Central

    Eckert, Auston; Huang, Lei; Gonzalez, Rodolfo; Kim, Hye-Sun; Hamblin, Milton H.

    2015-01-01

    Present therapies for stroke rest with tissue plasminogen activator (tPA), the sole licensed antithrombotic on the market; however, tPA’s effectiveness is limited in that the drug not only must be administered less than 3–5 hours after stroke but often exacerbates blood-brain barrier (BBB) leakage and increases hemorrhagic incidence. A potentially promising therapy for stroke is transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs). To date, the effects of iPSCs on injuries that take place during early stage ischemic stroke have not been well studied. Consequently, we engrafted iPSC-NSCs into the ipsilesional hippocampus, a natural niche of NSCs, at 24 hours after stroke (prior to secondary BBB opening and when inflammatory signature is abundant). At 48 hours after stroke (24 hours after transplant), hiPSC-NSCs had migrated to the stroke lesion and quickly improved neurological function. Transplanted mice showed reduced expression of proinflammatory factors (tumor necrosis factor-α, interleukin 6 [IL-6], IL-1β, monocyte chemotactic protein 1, macrophage inflammatory protein 1α), microglial activation, and adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1) and attenuated BBB damage. We are the first to report that engrafted hiPSC-NSCs rapidly improved neurological function (less than 24 hours after transplant). Rapid hiPSC-NSC therapeutic activity is mainly due to a bystander effect that elicits reduced inflammation and BBB damage. Significance Clinically, cerebral vessel occlusion is rarely permanent because of spontaneous or thrombolytic therapy-mediated reperfusion. These results have clinical implications indicating a much extended therapeutic window for transplantation of human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs; 24 hours after stroke as opposed to the 5-hour window with tissue plasminogen activator [tPA]). In addition, there is potential for a

  14. Production of Jet Fuels from Coal Derived Liquids. Volume 1. Market Assessment for Liquid By-Products from the Great Plains Gasification Plant.

    DTIC Science & Technology

    1987-08-01

    4 u z 4 0 .1c Z x4c CO E-0 06u F ~W - a- 40q # W4 0 0 1.4 to e.0- "I wcor 00 0#4 a4 w 0 0 o a Coco - 0. 0 1 ’q0 - 0 4 0 e 0!I 11 . 1: C I t V...Oil Ashland, KY 90 Petroleum Getty Oil Delaware City, DE 100 Petroleum Koppers Co. Follansbee, WV 190 Coal tar Monsanto Chocolate Bayou, TX 90

  15. Future Synthetic Fuels. A Scientific and Technical Applications Forecast

    DTIC Science & Technology

    1975-09-01

    what pace a transition from crude oil derived fuels to synthetic derived fuels will occur are difficult to make. In June of 1974, the Alternate Fuel...the synthetic crude to a commercial fuel. Since the transition from petroleum derived fuels to synthetic fuel will necessarily be gradual and...depleted, the timing and exact nature of the transition remains unclear at the present. In the presence of such a complex situation, it would

  16. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  17. 2012 Vehicle Technologies Market Report

    SciTech Connect

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  18. Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge.

    PubMed

    Van Caneghem, J; Vermeulen, I; Block, C; Van Brecht, A; Van Royen, P; Jaspers, M; Wauters, G; Vandecasteele, C

    2012-03-15

    During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain "PCDD/F fingerprints". The ASR contained approximately 9000 ng PCDD/Fs/kg(DW), six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kg(DW), respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kg (DW). From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25-10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the FBCs outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD

  19. Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station

    SciTech Connect

    Not Available

    1982-03-01

    A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

  20. Fuel cells: Trends in research and applications

    NASA Astrophysics Data System (ADS)

    Appleby, A. J.

    Various aspects of fuel cells are discussed. The subjects addressed include: fuel cells for electric power production; phosphoric acid fuel cells; long-term testing of an air-cooled 2.5 kW PAFC stack in Italy; status of fuel cell research and technology in the Netherlands, Bulgaria, PRC, UK, Sweden, India, Japan, and Brazil; fuel cells from the manufacturer's viewpoint; and fuel cells using biomass-derived fuels. Also examined are: solid oxide electrolye fuel cells; aluminum-air batteries with neutral chloride electrolyte; materials research for advanced solid-state fuel cells at the Energy Research Laboratory in Denmark; molten carbonate fuel cells; the impact of the Siemens program; fuel cells at Sorapec; impact of fuel cells on the electric power generation systems in industrial and developing countries; and application of fuel cells to large vehicles.

  1. Study of combustion and emission characteristics of fuel derived from waste plastics by various waste to energy (W-t-E) conversion processes

    NASA Astrophysics Data System (ADS)

    Hazrat, M. A.; Rasul, M. G.; Khan, M. M. K.

    2016-07-01

    Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

  2. Discussion of and reply to ``Processing of scrap tires: Technology and market applications``

    SciTech Connect

    Cosulich, J.; Smisko, J.; Niessen, W.R.; Blumenthal, M.H.

    1995-11-01

    Publication of this paper by Michael H. Blumenthal provides an excellent overview of scrap tire market opportunities, processing options, and some legislative background. The authors present some comments and areas that need addition coverage or clarification. These include the following: durability of new tires made from recycled rubber; cost data; tire derived fuel; landfilling of tires; composition of tires; processing equipment; and processing problems. This article also contains Mr. Blumenthal`s reply to the comments and questions.

  3. Petroleum marketing annual 1994

    SciTech Connect

    1995-08-24

    The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

  4. Limitations of Commercializing Fuel Cell Technologies

    NASA Astrophysics Data System (ADS)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  5. Fuel Cell Handbook, Fifth Edition

    SciTech Connect

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  6. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel pin

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Fuel pin

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  9. Natural gas marketing and transportation

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  10. Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel

    SciTech Connect

    1981-04-01

    The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per

  11. Fuel Cell Technologies: State And Perspectives

    NASA Astrophysics Data System (ADS)

    Sammes, Nigel; Smirnova, Alevtina; Vasylyev, Oleksandr

    Fuel Cells have become a potentially highly efficient sustainable source of energy and electricity for an ever-demanding power hungry world. The two main types of fuel cells ripe for commercialisation are the high temperature solid oxide fuel cell (SOFC) and the low temperature polymer electrolyte membrane fuel cell (PEM). The commercial uses of which include, but are not limited to, military, stand-by power, commercial and industrial, and remoter power. However, all aspects of the electricity market are being considered.

  12. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2012-03-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  13. Petroleum marketing monthly

    SciTech Connect

    1995-11-01

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data.

  14. Fuel additives from SO/sub 2/ treated mixtures of amides and esters derived from vegetable oil, tall oil acid, or aralkyl acid

    SciTech Connect

    Efner, H. F.; Schiff, S.

    1985-03-12

    Vegetable oils, particularly soybean oil, tall oil acid, or aralkyl acids, particularly phenylstearic acid, are reacted with multiamines, particularly tetraethylenepentamine, to form a product mixture for subsequent reaction with SO/sub 2/ to produce a product mix that has good detergent properties in fuels.

  15. Fuel pump

    SciTech Connect

    Bellis, P.D.; Nesselrode, F.

    1991-04-16

    This patent describes a fuel pump. It includes: a fuel reservoir member, the fuel reservoir member being formed with fuel chambers, the chambers comprising an inlet chamber and an outlet chamber, means to supply fuel to the inlet chamber, means to deliver fuel from the outlet chamber to a point of use, the fuel reservoir member chambers also including a bypass chamber, means interconnecting the bypass chamber with the outlet chamber; the fuel pump also comprising pump means interconnecting the inlet chamber and the outlet chamber and adapted to suck fuel from the fuel supply means into the inlet chamber, through the pump means, out the outlet chamber, and to the fuel delivery means; the bypass chamber and the pump means providing two substantially separate paths of fuel flow in the fuel reservoir member, bypass plunger means normally closing off the flow of fuel through the bypass chamber one of the substantially separate paths including the fuel supply means and the fuel delivery means when the bypass plunger means is closed, the second of the substantially separate paths including the bypass chamber when the bypass plunger means is open, and all of the chambers and the interconnecting means therebetween being configured so as to create turbulence in the flow of any fuel supplied to the outlet chamber by the pump means and bypassed through the bypass chamber and the interconnecting means.

  16. Jet Fuel Thermal Stability

    NASA Technical Reports Server (NTRS)

    Taylor, W. F. (Editor)

    1979-01-01

    Various aspects of the thermal stability problem associated with the use of broadened-specification and nonpetroleum-derived turbine fuels are addressed. The state of the art is reviewed and the status of the research being conducted at various laboratories is presented. Discussions among representatives from universities, refineries, engine and airframe manufacturers, airlines, the Government, and others are presented along with conclusions and both broad and specific recommendations for future stability research and development. It is concluded that significant additional effort is required to cope with the fuel stability problems which will be associated with the potentially poorer quality fuels of the future such as broadened specification petroleum fuels or fuels produced from synthetic sources.

  17. Research on aviation fuel instability

    NASA Technical Reports Server (NTRS)

    Baker, C. E.; Bittker, D. A.; Cohen, S. M.; Seng, G. T.

    1984-01-01

    Current aircraft turbine fuels do not present a significant problem with fuel thermal stability. However, turbine fuels with broadened properties or nonpetroleum derived fuels may have reduced thermal stability because of their higher content of olefins, heteroatoms, and trace metals. Moreover, advanced turbine engines will increase the thermal stress on fuels because of their higher pressure ratios and combustion temperature. In recognition of the importance of this problem, NASA Lewis is currently engaged in a broadly based research effort to better understand the underlying causes of fuel thermal degradation. The progress and status of our various activities in this area are discussed. Topics covered include: nature of fuel instability and its temperature dependence, methods of measuring the instability, chemical mechanisms involved in deposit formation, and instrumental methods for characterizing fuel deposits. Finally, some preliminary thoughts on design approaches for minimizing the effects of lowered thermal stability are briefly discussed.

  18. 17 CFR 240.15c3-1f - Optional market and credit risk requirements for OTC derivatives dealers (Appendix F to 17 CFR...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... firm's daily risk management process; (ii) The OTC derivatives dealer must conduct appropriate stress... enough segments of the yield curve to capture differences in volatility and less-than-perfect correlation of rates along the yield curve. An OTC derivatives dealer must provide the Commission with...

  19. Myths and Realities of Academic Labor Markets.

    ERIC Educational Resources Information Center

    Fairweather, James S.

    1995-01-01

    Examines national data on 4,481 full-time college and university faculty to develop a pay model derived from competing propositions (market segmentation, single national market, and incentive-based perspectives) concerning salary's role in faculty rewards. Findings suggest a blend of market segmentation with a national market perspective rewarding…

  20. Flex fuel polygeneration: Integrating renewable natural gas

    NASA Astrophysics Data System (ADS)

    Kieffer, Matthew

    Flex Fuel Polygeneration (FFPG) is the use of multiple primary energy sources for the production of multiple energy carriers to achieve increased market opportunities. FFPG allows for adjustments in energy supply to meet market fluctuations and increase resiliency to contingencies such as weather disruptions, technological changes, and variations in supply of energy resources. In this study a FFPG plant is examined that uses a combination of the primary energy sources natural gas and renewable natural gas (RNG) derived from MSW and livestock manure and converts them into energy carriers of electricity and fuels through anaerobic digestion (AD), Fischer-Tropsch synthesis (FTS), and gas turbine cycles. Previous techno-economic analyses of conventional energy production plants are combined to obtain equipment and operating costs, and then the 20-year NPVs of the FFPG plant designs are evaluated by static and stochastic simulations. The effects of changing operating parameters are investigated, as well as the number of anaerobic digestion plants on the 20-year NPV of the FTS and FFPG systems.

  1. Hospital marketing.

    PubMed

    Carter, Tony

    2003-01-01

    This article looks at a prescribed academic framework for various criteria that serve as a checklist for marketing performance that can be applied to hospital marketing organizations. These guidelines are drawn from some of Dr. Noel Capon of Columbia University's book Marketing Management in the 21st Century and applied to actual practices of hospital marketing organizations. In many ways this checklist can act as a "marketing" balanced scorecard to verify performance effectiveness and develop opportunities for innovation.

  2. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid- and Carbohydrate-Derived Fuel Products

    SciTech Connect

    Davis, R.; Kinchin, C.; Markham, J.; Tan, E.; Laurens, L.; Sexton, D.; Knorr, D.; Schoen, P.; Lukas, J.

    2014-09-01

    Beginning in 2013, NREL began transitioning from the singular focus on ethanol to a broad slate of products and conversion pathways, ultimately to establish similar benchmarking and targeting efforts. One of these pathways is the conversion of algal biomass to fuels via extraction of lipids (and potentially other components), termed the 'algal lipid upgrading' or ALU pathway. This report describes in detail one potential ALU approach based on a biochemical processing strategy to selectively recover and convert select algal biomass components to fuels, namely carbohydrates to ethanol and lipids to a renewable diesel blendstock (RDB) product. The overarching process design converts algal biomass delivered from upstream cultivation and dewatering (outside the present scope) to ethanol, RDB, and minor coproducts, using dilute-acid pretreatment, fermentation, lipid extraction, and hydrotreating.

  3. Biodegradability of new engineered fuels compared to conventional petroleum fuels and alternative fuels in current use.

    PubMed

    Speidel, H K; Lightner, R L; Ahmed, I

    2000-01-01

    Concern with environmental issues such as global climate change has stimulated research into the development of more environmentally friendly technologies and energy sources. One critical area of our economy is liquid transportation fuels. This article presents the results of the biodegradability potential of newly developed engineered fuels and compares the results to the biodegradability of conventional fuels and alternative fuels in current use. Biodegradability potential was determined under both aerobic and anaerobic conditions. Fuels that have a high degree of components derived from renewable sources proved to have a higher degradability potential than those composed of petroleum components.

  4. Preliminary Screening - Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals With Emphasis on the Potential for Biomass-Derived Syngas

    DTIC Science & Technology

    2003-12-01

    know as the Formox process. The methanol conversion for this process is 98-99%. Formaldehyde is used to make resins with phenol, urea, or melamine ...MeOH ( formaldehyde , acetic acid, DME, MTBE, MTG, MTO, MOGD) Fuel used as M100 and M85 Possible source of H2 & MeOH reforming is a practiced... Formaldehyde Largest consumer of MeOH Demand driven by construction industry MTBE 95% used in gasoline pool North America consumes 65% of

  5. Clean-burning fuels produced from low-grade coal

    SciTech Connect

    1995-03-01

    Under the acid rain program, operators of large combustion units are required to reduce their emissions of sulfur oxides (SO{sub x}) and nitrogen oxides (NO{sub x}). Although the program provides significant flexibility through its system of marketable emission allowances, regulated sources needing to reduce SO{sub x} emissions typically choose one of the following two options: (1) switch to a low-sulfur fuel, or (2) add end-of-pipe controls. Because it is naturally low in sulfur, one good candidate for fuel switching is coal mined from the Powder River basin in northeast Wyoming. The Encoal Corporation (Gillette, Wyoming) has attempted to improve the economics of using Powder River coal by installing a coal liquification plant at an existing mine near Gillette. The plant, cofunded by the Department of Energy (DOE) and Zeigler Coal Holding Company (the parent company to Encoal), has demonstrated commercial-scale application of a liquids-from-coal (LFC) process developed by SGI International. The LFC process represents a middle-of-the-road approach to coal treatment. As described, here, the process converts high-moisture, low-grade coal into process-derived fuel (PDF-an upgraded solid coal product) and coal-derived liquids (CDL-fuel-oil type liquids). The LFC process also produces an organic gas stream, which is burned internally as an energy source. Finally, the LFC process can be adapted, if necessary, to remove sulfur from high-sulfur coal. 1 ref., 1 fig.

  6. Electricity Market Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Documents the Electricity Market Module as it was used for the Annual Energy Outlook 2013. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The EMM represents the generation, transmission, and pricing of electricity. It consists of four submodules: the Electricity Capacity Planning (ECP) Submodule, the Electricity Fuel Dispatch (EFD) Submodule, the Electricity Finance and Pricing (EFP) Submodule, and the Electricity Load and Demand (ELD) Submodule.

  7. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    DTIC Science & Technology

    2013-01-31

    general trend toward a more uniform diesel around the world but the use of alternative fuels, such as biodiesel , has introduced additional variations...reduce sulfur; however, there are still areas with high sulfur, poor stability fuel. The primary source of alternate diesel fuel is Biodiesel , more...US FAME Fatty Acid Methyl Ester, aka Biodiesel FIA Fluorescent Indicator Adsorption FT SPK Fischer Tropsch derived Synthetic Paraffinic Kerosene

  8. Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems

    SciTech Connect

    Wolk, R

    2004-04-23

    Small-scale experimental work at Lawrence Livermore National Laboratory (LLNL) has confirmed that a direct carbon fuel cell (DCFC) containing a molten carbonate electrolyte completely reacts solid elemental carbon with atmospheric oxygen contained in ambient air at a temperature of 650-800 C. The efficiency of conversion of the chemical energy in the fuel to DC electricity is 75-80% and is a result of zero entropy change for this reaction and the fixed chemical potentials of C and CO{sub 2}. This is about twice as efficient as other forms power production processes that utilize solid fuels such as petroleum coke or coal. These range from 30-40% for coal fired conventional subcritical or supercritical boilers to 38-42% for IGCC plants. A wide range of carbon-rich solids including activated carbons derived from natural gas, petroleum coke, raw coal, and deeply de-ashed coal have been evaluated with similar conversion results. The rate of electricity production has been shown to correlate with disorder in the carbon structure. This report provides a preliminary independent assessment of the economic potential of DCFC for competitive power generation. This assessment was conducted as part of a Director's Research Committee Review of DCFC held at Lawrence Livermore National Laboratory (LLNL) on April 9, 2004. The key question that this assessment addresses is whether this technology, which appears to be very promising from a scientific standpoint, has the potential to be successfully scaled up to a system that can compete with currently available power generation systems that serve existing electricity markets. These markets span a wide spectrum in terms of the amount of power to be delivered and the competitive cost in that market. For example, DCFC technology can be used for the personal power market where the current competition for delivery of kilowatts of electricity is storage batteries, for the distributed generation market where the competition for on-site power

  9. Can fuel cells compete? A study of the competition

    SciTech Connect

    Hooie, D.T.; Parsons, E.L.

    1996-12-31

    As fuel cells enter the early stages of commercialization, other manufacturers and packages of power generation equipment are beginning see fuel cells as potential competition as well as an opportunity to collaborate to increase market share. Most fuel cell market studies, however, portray fuel cells as being able to compete {open_quotes}because the market opportunity is so large.{close_quotes} This paper addresses what the competition for fuel cells will be in the power generation/cogeneration market segments, how they can collaborate, as well as some of the advantages and disadvantages of each for capturing significant market share. In particular, the advanced gas turbine and tandem cycles will be compared to phosphoric acid, molten carbonate, and solid oxide fuel cells.

  10. Checklist for transition to new highway fuel(s).

    SciTech Connect

    Risch, C.; Santini, D.J.

    2011-12-15

    Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

  11. Diesel engine combustion of sunflower oil fuels

    SciTech Connect

    Zubik, J.; Sorenson, S.C.; Goering, C.E.

    1984-09-01

    The performance, combustion, and exhaust emissions of diesel fuel, a blend of 25% sunflower oil in diesel fuel, and sunflower oil methyl ester have been compared. All fuels performed satisfactorily in a direct injection diesel engine, with the fuels derived from sunflower oil giving somewhat higher cylinder pressures and rates of pressure rise due to a higher percentage of 'premixed' burning than the diesel fuel. General performance and emissions characteristics of the two fuels were comparable, with the oil based fuels giving lower smoke readings. 15 references.

  12. Marketing fundamentals.

    PubMed

    Redmond, W H

    2001-01-01

    This chapter outlines current marketing practice from a managerial perspective. The role of marketing within an organization is discussed in relation to efficiency and adaptation to changing environments. Fundamental terms and concepts are presented in an applied context. The implementation of marketing plans is organized around the four P's of marketing: product (or service), promotion (including advertising), place of delivery, and pricing. These are the tools with which marketers seek to better serve their clients and form the basis for competing with other organizations. Basic concepts of strategic relationship management are outlined. Lastly, alternate viewpoints on the role of advertising in healthcare markets are examined.

  13. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    PubMed Central

    2011-01-01

    Background The trichothecene mycotoxin deoxynivalenol (DON) may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation) when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm) in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON), and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201) were cloned and expressed in yeast (Saccharomyces cerevisiae) during a series of small-scale ethanol fermentations using barley (Hordeum vulgare). DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation. PMID:21888629

  14. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  15. 17 CFR 240.15c3-1f - Optional market and credit risk requirements for OTC derivatives dealers (Appendix F to 17 CFR...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conduct appropriate stress tests of the VAR model, and develop appropriate procedures to follow in... enough segments of the yield curve to capture differences in volatility and less-than-perfect correlation of rates along the yield curve. An OTC derivatives dealer must provide the Commission with...

  16. 17 CFR 240.15c3-1f - Optional market and credit risk requirements for OTC derivatives dealers (Appendix F to 17 CFR...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conduct appropriate stress tests of the VAR model, and develop appropriate procedures to follow in... enough segments of the yield curve to capture differences in volatility and less-than-perfect correlation of rates along the yield curve. An OTC derivatives dealer must provide the Commission with...

  17. 17 CFR 240.15c3-1f - Optional market and credit risk requirements for OTC derivatives dealers (Appendix F to 17 CFR...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conduct appropriate stress tests of the VAR model, and develop appropriate procedures to follow in... enough segments of the yield curve to capture differences in volatility and less-than-perfect correlation of rates along the yield curve. An OTC derivatives dealer must provide the Commission with...

  18. Alternative transportation fuels

    SciTech Connect

    Askew, W. S.; McNamara, T. M.; Maxfield, D. P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  19. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  20. Synthetic Fuel

    ScienceCinema

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2016-07-12

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  1. Synthetic Fuel

    SciTech Connect

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2008-03-26

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  2. Fuel cells

    NASA Astrophysics Data System (ADS)

    1984-12-01

    The US Department of Energy (DOE), Office of Fossil Energy, has supported and managed a fuel cell research and development (R and D) program since 1976. Responsibility for implementing DOE's fuel cell program, which includes activities related to both fuel cells and fuel cell systems, has been assigned to the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The total United States effort of the private and public sectors in developing fuel cell technology is referred to as the National Fuel Cell Program (NFCP). The goal of the NFCP is to develop fuel cell power plants for base-load and dispersed electric utility systems, industrial cogeneration, and on-site applications. To achieve this goal, the fuel cell developers, electric and gas utilities, research institutes, and Government agencies are working together. Four organized groups are coordinating the diversified activities of the NFCP. The status of the overall program is reviewed in detail.

  3. Production of Jet Fuels from Coal-Derived Liquids. Volume 12. Preliminary Process Design and Cost Estimate and Production Run Recommendation

    DTIC Science & Technology

    1989-12-01

    methanol in the Rectisol unit. The naphtha is produced at a rate of 650 B/D. -4- C a - * t-4 ~4a a ==1-4 Ol =P 4 a I 2S D-V13t SECTION IV TASK 4 RESULTS 1...produces correspondingly less BTX and naphtha ( reformer feed). A tar oil distillation unit is required for preseparation of the 300°F- fraction before...pursued and a marketing strategy should be developed. The naphtha stream =ust be desulfurized and saturated via catalytic hydrogenaticn in order to make

  4. Task 4 -- Conversion to a coal-fueled advanced turbine system (CFATS)

    SciTech Connect

    1996-04-15

    Solar is developing the technologies for a highly efficient, recuperated, Advanced Turbine System (ATS) that is aimed at the dispersed power generation market. With ultra-low-emissions in mind the primary fuel selected for this engine system is natural gas. Although this gas fired ATS (GFATS) will primarily employ natural gas the use of other fuels particular those derived from coal and renewable resources cannot be overlooked. The enabling technologies necessary to direct fire coal in gas turbines were developed during the 1980`s. This Solar development co-sponsored by the US Department of Energy (DOE) resulted in the testing of a full size coal-water-slurry fired combustion system. In parallel with this program the DOE funded the development of integrated gasification combined cycle systems (IGCC). This report describes the limitations of the Solar ATs (recuperated engine) and how these lead to a recommended series of modifications that will allow the use of these alternate fuels. Three approaches have been considered: direct-fired combustion using either a slagging combustor, or a pressurized fluidized bed (PFBC), externally or indirectly fired approaches using pulverized fuel, and external gasification of the fuel with subsequent direct combustion of the secondary fuel. Each of these approaches requires substantial hardware and system modifications for efficient fuel utilization. The integration issues are discussed in the sections below and a recommended approach for gasification is presented.

  5. Marketing 101.

    ERIC Educational Resources Information Center

    Henderson, Karla A.

    1997-01-01

    A marketing model for camps includes a mix of services, presentation, and communication elements that promote the virtues of camp, convince potential campers and their families of the benefits of camp, and successfully distinguish the camp from others. Includes resources related to marketing strategies, theme merchandise, and market trends…

  6. Petroleum marketing monthly, May 1994

    SciTech Connect

    Not Available

    1994-05-26

    The Petroleum Marketing Monthly (PMM) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysts, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the f.o.b. and landed cost of imported crude oil, petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Monthly.

  7. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes.

  8. Future Fuels

    DTIC Science & Technology

    2005-10-04

    tactical ground mobility and increasing operational reach • Identify, review, and assess – Technologies for reducing fuel consumption, including...T I O N S A C T I O N S TOR Focus - Tactical ground mobility - Operational reach - Not A/C, Ships, or troops Hybrid Electric Vehicle Fuel Management...Fuel Management During Combat Operations Energy Fundamentals • Energy Density • Tactical Mobility • Petroleum Use • Fuel Usage (TWV) • TWV OP TEMPO TOR

  9. Status of the US Fuel Cell Program

    SciTech Connect

    Williams, M.C.

    1996-04-01

    The U.S. Department of Energy (DOE) is sponsoring major programs to develop high efficiency fuel cell technologies to produce electric power from natural gas and other hydrogen sources. Fuel cell systems offer attractive potential for future electric power generation and are expected to have worldwide markets. They offer ultra-high energy conversion efficiency and extremely low environmental emissions. As modular units for distributed power generation, fuel cells are expected to be particularly beneficial where their by-product, heat, can be effectively used in cogeneration applications. Advanced fuel cell power systems fueled with natural gas are expected to be commercially available after the turn of the century.

  10. Fuel cell commercialization issues for light-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Borroni-Bird, Christopher E.

    The major challenges facing fuel cells in light-duty vehicle applications relate to the high cost of the fuel cell stack components (membrane, electro-catalyst and bipolar plate) which dictate that new manufacturing processes and materials must be developed. Initially, the best fuel for a mass market light-duty vehicle will probably not be the best fuel for the fuel cell (hydrogen); refueling infrastructure and energy density concerns may demand the use of an on-board fuel processor for petroleum-based fuels since this will increase customer acceptance. The use of fuel processors does, however, reduce the fuel cell system's efficiency. Moreover, if such fuels are used then the emissions benefit associated with fuel cells may come with a significant penalty in terms of added complexity, weight, size and cost. However, ultimately, fuel cells powered by hydrogen do promise to be the most efficient and cleanest of automotive powertrains.

  11. Mind Map Marketing: A Creative Approach in Developing Marketing Skills

    ERIC Educational Resources Information Center

    Eriksson, Lars Torsten; Hauer, Amie M.

    2004-01-01

    In this conceptual article, the authors describe an alternative course structure that joins learning key marketing concepts to creative problem solving. The authors describe an approach using a convergent-divergent-convergent (CDC) process: key concepts are first derived from case material to be organized in a marketing matrix, which is then used…

  12. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  13. Capacity Markets and Market Stability

    SciTech Connect

    Stauffer, Hoff

    2006-04-15

    The good news is that market stability can be achieved through a combination of longer-term contracts, auctions for far enough in the future to permit new entry, a capacity management system, and a demand curve. The bad news is that if and when stable capacity markets are designed, the markets may seem to be relatively close to where we started - with integrated resource planning. Market ideologues will find this anathema. (author)

  14. Laboratory scale studies of Pd/y-Al2O3 sorbents for the removal of trace contaminents from coal-derived fuel gas at elevated temperatures

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-12-31

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150-540 C) to hot (>540 C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/{gamma}-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  15. NATIONAL INCINERATOR TESTING AND EVALUATION PROGRAM: THE ENVIRONMENTAL CHARACTERIZATION OF REFUSE-DERIVED FUEL (RDF) COMBUSTION TECHNOLOGY - MID-CONNECTICUT FACILITY,

    EPA Science Inventory

    The report gives results of an environmental characterization of refuse-derived, semi-suspension burning technology at a facility in Hartford, CT, that represents state-of-the-art technology, including a spray dryer/fabric filter flue gas cleaning (FGC) system for each unit. The ...

  16. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  17. Coal liquefaction to increase jet fuel production

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Processing concept that increases supply of jet fuel has been developed as part of study on methods for converting coal to hydrogen, methane, and jet fuel. Concept takes advantage of high aromatic content of coal-derived liquids to make high-octane gasoline, instead of destroying aromatics to make jet fuel.

  18. Alternative fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.; Butze, H. F.; Friedman, R.; Antoine, A. C.; Reynolds, T. W.

    1977-01-01

    Potential problems related to the use of alternative aviation turbine fuels are discussed and both ongoing and required research into these fuels is described. This discussion is limited to aviation turbine fuels composed of liquid hydrocarbons. The advantages and disadvantages of the various solutions to the problems are summarized. The first solution is to continue to develop the necessary technology at the refinery to produce specification jet fuels regardless of the crude source. The second solution is to minimize energy consumption at the refinery and keep fuel costs down by relaxing specifications.

  19. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  20. Effect of sodium, potassium, magnesium, calcium, and chlorine on the high temperature corrosion of IN-100, U-700, IN-792, and Mar M-509. [coal-derived liquid fuel combustion in turbines

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Sidik, S. M.; Deadmore, D. L.

    1980-01-01

    The effects of potential impurities such as Na, K, Mg, Ca, and Cl, in coal-derived liquid fuels on accelerated corrosion of IN-100, U-700, IN-792, and Mar M-509 were investigated using a Mach 0.3 burner rig for times to 200 hours in one hour cycles. These impurities were injected in combination as aqueous solutions into the combustor. Other variables were time, temperature, and fuel-to-air ratio. The experimental matrix was a central composite fractional fractorial design divided into blocks to allow modification of the design as data was gathered. The extent of corrosion was determined by metal consumption. The time exponent was near 1.0 for the least corrosion resistant alloys, U-700 and IN-100; near 0.8 for the moderately resistant IN-792; and close to Mar M-509, the most corrosion resistant alloy. As anticipated, corrosion rapidly increased with increasing temperature as well as Na and K concentrations, while corrosion decreased somewhat as the Ca concentration increased for all alloys. Mg was beneficial for the Ni-base alloys but had little effect on the Co-base alloy. Surprisingly, the effect of increasing Cl was to decrease the corrosion of all alloys. Little interaction among the dopants was noted.