Sample records for derived interaction parameters

  1. Molybdenum disulfide and water interaction parameters

    NASA Astrophysics Data System (ADS)

    Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.

    2017-09-01

    Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.

  2. Derivatives of Horn hypergeometric functions with respect to their parameters

    NASA Astrophysics Data System (ADS)

    Ancarani, L. U.; Del Punta, J. A.; Gasaneo, G.

    2017-07-01

    The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn's functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction.

  3. Hexagonal boron nitride and water interaction parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less

  4. qPIPSA: Relating enzymatic kinetic parameters and interaction fields

    PubMed Central

    Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C

    2007-01-01

    Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes

  5. Deriving stellar parameters with the SME software package

    NASA Astrophysics Data System (ADS)

    Piskunov, N.

    2017-09-01

    Photometry and spectroscopy are complementary tools for deriving accurate stellar parameters. Here I present one of the popular packages for stellar spectroscopy called SME with the emphasis on the latest developments and error assessment for the derived parameters.

  6. Statistical mechanics of neocortical interactions. Derivation of short-term-memory capacity

    NASA Astrophysics Data System (ADS)

    Ingber, Lester

    1984-06-01

    A theory developed by the author to describe macroscopic neocortical interactions demonstrates that empirical values of chemical and electrical parameters of synaptic interactions establish several minima of the path-integral Lagrangian as a function of excitatory and inhibitory columnar firings. The number of possible minima, their time scales of hysteresis and probable reverberations, and their nearest-neighbor columnar interactions are all consistent with well-established empirical rules of human short-term memory. Thus, aspects of conscious experience are derived from neuronal firing patterns, using modern methods of nonlinear nonequilibrium statistical mechanics to develop realistic explicit synaptic interactions.

  7. Intramolecular cation-π interactions in protonated phenylalanine derivatives.

    PubMed

    Fu, Weiqiang; Carr, Patrick J J; Lecours, Michael J; Burt, Michael; Marta, Rick A; Steinmetz, Vincent; Fillion, Eric; McMahon, Terrance B; Hopkins, W Scott

    2016-12-21

    The structures and properties of a series of phenylalanine (Phe) derivatives have been investigated in a joint computational and experimental infrared multiple photon dissociation (IRMPD) study. IRMPD spectra in the 1000-2000 cm -1 region show that protonation is localized on the amine group in all cases. Intramolecular cation-π interactions between the ammonium group and the phenyl ring heavily influence molecular geometries and properties such as gas phase basicity and proton affinity. By varying substituents on the phenyl ring, one can sensitively tune the cation-π interaction and, therefore, the molecular structure and properties. Variations in molecular structures and properties as a function of phenyl ring substitution are shown to correlate with substituent Hammett parameters.

  8. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of

  9. Holographic dark energy in higher derivative gravity with time varying model parameter c2

    NASA Astrophysics Data System (ADS)

    Borah, B.; Ansari, M.

    2015-01-01

    Purpose of this paper is to study holographic dark energy in higher derivative gravity assuming the model parameter c2 as a slowly time varying function. Since dark energy emerges as combined effect of linear as well as non-linear terms of curvature, therefore it is important to see holographic dark energy at higher derivative gravity, where action contains both linear as well as non-linear terms of Ricci curvature R. We consider non-interacting scenario of the holographic dark energy with dark matter in spatially flat universe and obtain evolution of the equation of state parameter. Also, we determine deceleration parameter as well as the evolution of dark energy density to explain expansion of the universe. Further, we investigate validity of generalized second law of thermodynamics in this scenario. Finally, we find out a cosmological application of our work by evaluating a relation for the equation of state of holographic dark energy for low red-shifts containing c2 correction.

  10. Validating a large geophysical data set: Experiences with satellite-derived cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Knighton, James E.; Pursch, Andrew; Granger-Gallegos, Stephanie

    1992-01-01

    We are validating the global cloud parameters derived from the satellite-borne HIRS2 and MSU atmospheric sounding instrument measurements, and are using the analysis of these data as one prototype for studying large geophysical data sets in general. The HIRS2/MSU data set contains a total of 40 physical parameters, filling 25 MB/day; raw HIRS2/MSU data are available for a period exceeding 10 years. Validation involves developing a quantitative sense for the physical meaning of the derived parameters over the range of environmental conditions sampled. This is accomplished by comparing the spatial and temporal distributions of the derived quantities with similar measurements made using other techniques, and with model results. The data handling needed for this work is possible only with the help of a suite of interactive graphical and numerical analysis tools. Level 3 (gridded) data is the common form in which large data sets of this type are distributed for scientific analysis. We find that Level 3 data is inadequate for the data comparisons required for validation. Level 2 data (individual measurements in geophysical units) is needed. A sampling problem arises when individual measurements, which are not uniformly distributed in space or time, are used for the comparisons. Standard 'interpolation' methods involve fitting the measurements for each data set to surfaces, which are then compared. We are experimenting with formal criteria for selecting geographical regions, based upon the spatial frequency and variability of measurements, that allow us to quantify the uncertainty due to sampling. As part of this project, we are also dealing with ways to keep track of constraints placed on the output by assumptions made in the computer code. The need to work with Level 2 data introduces a number of other data handling issues, such as accessing data files across machine types, meeting large data storage requirements, accessing other validated data sets, processing speed

  11. Interaction-induced effects on Bose-Hubbard parameters

    NASA Astrophysics Data System (ADS)

    Kremer, Mark; Sachdeva, Rashi; Benseny, Albert; Busch, Thomas

    2017-12-01

    We study the effects of repulsive on-site interactions on the broadening of the localized Wannier functions used for calculating the parameters to describe ultracold atoms in optical lattices. For this, we replace the common single-particle Wannier functions, which do not contain any information about the interactions, by two-particle Wannier functions obtained from an exact solution which takes the interactions into account. We then use these interaction-dependent basis functions to calculate the Bose-Hubbard model parameters, showing that they are substantially different both at low and high lattice depths from the ones calculated using single-particle Wannier functions. Our results suggest that density effects are not negligible for many parameter ranges and need to be taken into account in metrology experiments.

  12. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  13. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tari, Mostafa Talebi

    2017-04-01

    A density functional theory (DFT) calculations using B3LYP/6-311++G( d,p) method were carried out to investigate the relative stability of the molecules of β-carboline derivatives such as harmaline, harmine, harmalol, harmane and norharmane. Calculated nuclear quadrupole resonance (NQR) parameters were used to determine the 14N nuclear quadrupole coupling constant χ, asymmetry parameter η and EFG tensor ( q zz ). For better understanding of the electronic structure of β-carboline derivatives, natural bond orbital (NBO) analysis, isotropic and anisotropic NMR chemical shieldings were calculated for 14N nuclei using GIAO method for the optimized structures. The NBO analysis shows that pyrrole ring nitrogen (N9) atom has greater tendency than pyridine ring nitrogen (N2) atom to participate in resonance interactions and aromaticity development in the all of these structures. The NMR and NQR parameters were studied in order to find the correlations between electronic structure and the structural stability of the studied molecules.

  14. Studies on the interactions of 3,6-diaminoacridine derivatives with human serum albumin by fluorescence spectroscopy.

    PubMed

    Gökoğlu, Elmas; Kıpçak, Fulya; Seferoğlu, Zeynel

    2014-11-01

    This study reports the preparation and investigation of the modes of binding of the two symmetric 3,6-diaminoacridine derivatives obtained from proflavine, which are 3,6-diphenoxycarbonyl aminoacridine and 3,6-diethoxycarbonyl aminoacridine to human serum albumin (HSA). The interaction of HSA with the derivatives was investigated using fluorescence quenching and ultraviolet-visible absorption spectra at pH 7.2 and different temperatures. The results suggest that the derivatives used can interact strongly with HSA and are the formation of HSA-derivative complexes and hydrophobic interactions as the predominant intermolecular forces in stabilizing for each complex. The Stern-Volmer quenching constants, binding constants, binding sites and corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The binding distance (r) ~ 3 nm between the donor (HSA) and acceptors (3,6-diethoxycarbonyl aminoacridine, 3,6-diphenoxycarbonyl aminoacridine and proflavine) was obtained according to Förster's non-radiative energy transfer theory. Moreover, the limit of detection and limit of quantification of derivatives were calculated in the presence of albumin. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2015-01-01

    Published two-body bond-valence parameters for cation–oxygen bonds have been evaluated via the root mean-square deviation (RMSD) from the valence-sum rule for 128 cations, using 180 194 filtered bond lengths from 31 489 coordination polyhedra. Values of the RMSD range from 0.033–2.451 v.u. (1.1–40.9% per unit of charge) with a weighted mean of 0.174 v.u. (7.34% per unit of charge). The set of best published parameters has been determined for 128 ions and used as a benchmark for the determination of new bond-valence parameters in this paper. Two common methods for the derivation of bond-valence parameters have been evaluated: (1) fixing B and solving for R o; (2) the graphical method. On a subset of 90 ions observed in more than one coordination, fixing B at 0.37 Å leads to a mean weighted-RMSD of 0.139 v.u. (6.7% per unit of charge), while graphical derivation gives 0.161 v.u. (8.0% per unit of charge). The advantages and disadvantages of these (and other) methods of derivation have been considered, leading to the conclusion that current methods of derivation of bond-valence parameters are not satisfactory. A new method of derivation is introduced, the GRG (generalized reduced gradient) method, which leads to a mean weighted-RMSD of 0.128 v.u. (6.1% per unit of charge) over the same sample of 90 multiple-coordination ions. The evaluation of 19 two-parameter equations and 7 three-parameter equations to model the bond-valence–bond-length relation indicates that: (1) many equations can adequately describe the relation; (2) a plateau has been reached in the fit for two-parameter equations; (3) the equation of Brown & Altermatt (1985 ▸) is sufficiently good that use of any of the other equations tested is not warranted. Improved bond-valence parameters have been derived for 135 ions for the equation of Brown & Altermatt (1985 ▸) in terms of both the cation and anion bond-valence sums using the GRG method and our complete data set. PMID

  16. Effect of molecular parameters on the binding of phenoxyacetic acid derivatives to albumins.

    PubMed

    Cserháti, T; Forgács, E; Deyl, Z; Miksík, I

    2001-03-25

    The interaction of 12 phenoxyacetic acid derivatives with human and serum albumin as well as with egg albumin was studied by charge-transfer reversed-phase (RP) thin-layer chromatography (TLC) and the relative strength of interaction was calculated. Each phenoxyacetic acid derivative interacted with human and bovine serum albumins whereas no interaction was observed with egg albumin. Stepwise regression analysis proved that the lipophilicity of the derivatives exert a significant impact on their capacity to bind to serum albumins. This result supports the hypothesis that the binding of phenoxyacetic acid derivatives to albumins may involve hydrophobic forces occurring between the corresponding apolar substructures of these derivatives and the amino acid side chains.

  17. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors

    NASA Astrophysics Data System (ADS)

    Fales, B. Scott; Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2017-09-01

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  18. Complete active space configuration interaction from state-averaged configuration interaction singles natural orbitals: Analytic first derivatives and derivative coupling vectors.

    PubMed

    Fales, B Scott; Shu, Yinan; Levine, Benjamin G; Hohenstein, Edward G

    2017-09-07

    A new complete active space configuration interaction (CASCI) method was recently introduced that uses state-averaged natural orbitals from the configuration interaction singles method (configuration interaction singles natural orbital CASCI, CISNO-CASCI). This method has been shown to perform as well or better than state-averaged complete active space self-consistent field for a variety of systems. However, further development and testing of this method have been limited by the lack of available analytic first derivatives of the CISNO-CASCI energy as well as the derivative coupling between electronic states. In the present work, we present a Lagrangian-based formulation of these derivatives as well as a highly efficient implementation of the resulting equations accelerated with graphical processing units. We demonstrate that the CISNO-CASCI method is practical for dynamical simulations of photochemical processes in molecular systems containing hundreds of atoms.

  19. Effects of Ignoring Item Interaction on Item Parameter Estimation and Detection of Interacting Items

    ERIC Educational Resources Information Center

    Chen, Cheng-Te; Wang, Wen-Chung

    2007-01-01

    This study explores the effects of ignoring item interaction on item parameter estimation and the efficiency of using the local dependence index Q[subscript 3] and the SAS NLMIXED procedure to detect item interaction under the three-parameter logistic model and the generalized partial credit model. Through simulations, it was found that ignoring…

  20. Deriving physical parameters of unresolved star clusters. V. M 31 PHAT star clusters

    NASA Astrophysics Data System (ADS)

    de Meulenaer, P.; Stonkutė, R.; Vansevičius, V.

    2017-06-01

    Context. This study is the fifth of a series that investigates the degeneracy and stochasticity problems present in the determination of physical parameters such as age, mass, extinction, and metallicity of partially resolved or unresolved star cluster populations in external galaxies when using HST broad-band photometry. Aims: In this work we aim to derive parameters of star clusters using models with fixed and free metallicity based on the HST WFC3+ACS photometric system. The method is applied to derive parameters of a subsample of 1363 star clusters in the Andromeda galaxy observed with the HST. Methods: Following Paper III, we derive the star cluster parameters using a large grid of stochastic models that are compared to the six observed integrated broad-band WFC3+ACS magnitudes of star clusters. Results: We show that the age, mass, and extinction of the M 31 star clusters, derived assuming fixed solar metallicity, are in agreement with previous studies. We also demonstrate the ability of the WFC3+ACS photometric system to derive metallicity of star clusters older than 1 Gyr. We show that the metallicity derived using broad-band photometry of 36 massive M 31 star clusters is in good agreement with the metallicity derived using spectroscopy. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A112

  1. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    PubMed

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  2. Application of lab derived kinetic biodegradation parameters at the field scale

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Barker, J. F.; Butler, B. J.; Frind, E. O.

    2003-04-01

    Estimating the intrinsic remediation potential of an aquifer typically requires the accurate assessment of the biodegradation kinetics, the level of available electron acceptors and the flow field. Zero- and first-order degradation rates derived at the laboratory scale generally overpredict the rate of biodegradation when applied to the field scale, because limited electron acceptor availability and microbial growth are typically not considered. On the other hand, field estimated zero- and first-order rates are often not suitable to forecast plume development because they may be an oversimplification of the processes at the field scale and ignore several key processes, phenomena and characteristics of the aquifer. This study uses the numerical model BIO3D to link the laboratory and field scale by applying laboratory derived Monod kinetic degradation parameters to simulate a dissolved gasoline field experiment at Canadian Forces Base (CFB) Borden. All additional input parameters were derived from laboratory and field measurements or taken from the literature. The simulated results match the experimental results reasonably well without having to calibrate the model. An extensive sensitivity analysis was performed to estimate the influence of the most uncertain input parameters and to define the key controlling factors at the field scale. It is shown that the most uncertain input parameters have only a minor influence on the simulation results. Furthermore it is shown that the flow field, the amount of electron acceptor (oxygen) available and the Monod kinetic parameters have a significant influence on the simulated results. Under the field conditions modelled and the assumptions made for the simulations, it can be concluded that laboratory derived Monod kinetic parameters can adequately describe field scale degradation processes, if all controlling factors are incorporated in the field scale modelling that are not necessarily observed at the lab scale. In this way

  3. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com; Sun, Dong-Xue; Cao, Yun-Feng

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for themore » compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.« less

  4. Deriving percentage study weights in multi-parameter meta-analysis models: with application to meta-regression, network meta-analysis and one-stage individual participant data models.

    PubMed

    Riley, Richard D; Ensor, Joie; Jackson, Dan; Burke, Danielle L

    2017-01-01

    Many meta-analysis models contain multiple parameters, for example due to multiple outcomes, multiple treatments or multiple regression coefficients. In particular, meta-regression models may contain multiple study-level covariates, and one-stage individual participant data meta-analysis models may contain multiple patient-level covariates and interactions. Here, we propose how to derive percentage study weights for such situations, in order to reveal the (otherwise hidden) contribution of each study toward the parameter estimates of interest. We assume that studies are independent, and utilise a decomposition of Fisher's information matrix to decompose the total variance matrix of parameter estimates into study-specific contributions, from which percentage weights are derived. This approach generalises how percentage weights are calculated in a traditional, single parameter meta-analysis model. Application is made to one- and two-stage individual participant data meta-analyses, meta-regression and network (multivariate) meta-analysis of multiple treatments. These reveal percentage study weights toward clinically important estimates, such as summary treatment effects and treatment-covariate interactions, and are especially useful when some studies are potential outliers or at high risk of bias. We also derive percentage study weights toward methodologically interesting measures, such as the magnitude of ecological bias (difference between within-study and across-study associations) and the amount of inconsistency (difference between direct and indirect evidence in a network meta-analysis).

  5. Intermolecular interactions between imidazole derivatives intercalated in layered solids. Substituent group effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, M.; Lemus-Santana, A.A.; Rodríguez-Hernández, J.

    2013-08-15

    This study sheds light on the intermolecular interactions between imidazole derive molecules (2-methyl-imidazole, 2-ethyl-imidazole and benzimidazole) intercalated in T[Ni(CN){sub 4}] layers to form a solid of formula unit T(ImD){sub 2}[Ni(CN){sub 4}]. These hybrid inorganic–organic solids were prepared by soft chemical routes and their crystal structures solved and refined from X-ray powder diffraction data. The involved imidazole derivative molecules were found coordinated through the pyridinic N atom to the axial positions for the metal T in the T[Ni(CN){sub 4}] layer. In the interlayers region ligand molecules from neighboring layers remain stacked in a face-to-face configuration through dipole–dipole and quadrupole–quadrupole interactions. Thesemore » intermolecular interactions show a pronounced dependence on the substituent group and are responsible for an ImD-pillaring concatenation of adjacent layers. This is supported by the structural information and the recorded magnetic data in the 2–300 K temperature range. The samples containing Co and Ni are characterized by presence of spin–orbit coupling and pronounced temperature dependence for the effective magnetic moment except for 2-ethyl-imidazole related to the local distortion for the metal coordination environment. For this last one ligand a weak ferromagnetic ordering ascribed to a super-exchange interaction between T metals from neighboring layers through the ligands π–π interaction was detected. - Graphical abstract: In the interlayers region imidazole derivative molecules are oriented according to their dipolar and quadrupolar interactions and minimizing the steric impediment. Highlights: • Imidazole derivatives intercalation compounds. • Intermolecular interaction between intercalated imidazole derivatives. • Hybrid inorganic–organic solids. • Pi–pi interactions and ferromagnetic coupling. • Dipolar and quadrupolar interactions between intercalated imidazole derivatives.« less

  6. Derivation of the spin-glass order parameter from stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Crisanti, A.; Picco, M.; Ritort, F.

    2018-05-01

    A fluctuation relation is derived to extract the order parameter function q (x ) in weakly ergodic systems. The relation is based on measuring and classifying entropy production fluctuations according to the value of the overlap q between configurations. For a fixed value of q , entropy production fluctuations are Gaussian distributed allowing us to derive the quasi-FDT so characteristic of aging systems. The theory is validated by extracting the q (x ) in various types of glassy models. It might be generally applicable to other nonequilibrium systems and experimental small systems.

  7. Higgs potential from derivative interactions

    NASA Astrophysics Data System (ADS)

    Quadri, A.

    2017-06-01

    A formulation of the linear σ model with derivative interactions is studied. The classical theory is on-shell equivalent to the σ model with the standard quartic Higgs potential. The mass of the scalar mode only appears in the quadratic part and not in the interaction vertices, unlike in the ordinary formulation of the theory. Renormalization of the model is discussed. A nonpower-counting renormalizable extension, obeying the defining functional identities of the theory, is presented. This extension is physically equivalent to the tree-level inclusion of a dimension-six effective operator ∂μ(Φ†Φ)∂μ(Φ†Φ). The resulting UV divergences are arranged in a perturbation series around the power-counting renormalizable theory. The application of the formalism to the Standard Model in the presence of the dimension-six operator ∂μ(Φ†Φ)∂μ(Φ†Φ) is discussed.

  8. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao

    2013-04-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.

  9. Inpatient-Derived Vital Sign Parameters Implementation: An Initiative to Decrease Alarm Burden.

    PubMed

    Kipps, Alaina K; Poole, Sarah F; Slaney, Cheryl; Feehan, Shannon; Longhurst, Christopher A; Sharek, Paul J; Goel, Veena V

    2017-08-01

    To implement data-driven vital sign parameters to reduce bedside monitor alarm burden. Single-center, quality-improvement initiative with historical controls assessing the impact of age-based, inpatient-derived heart rate (HR) and respiratory rate (RR) parameters on a 20-bed acute care ward that serves primarily pediatric cardiology patients. The primary outcome was the number of alarms per monitored bed day (MBD) with the aim to decrease the alarms per MBD. Balancing measures included the frequency of missed rapid response team activations, acute respiratory code events, and cardiorespiratory arrest events in the unit with the new vital sign parameters. The median number of all cardiorespiratory monitor alarms per MBD decreased by 21% from 52 (baseline period) to 41 (postintervention period) ( P < .001). This included a 17% decrease in the median HR alarms (9-7.5 per MBD) and a 53% drop in RR alarms (16.8-8.0 per MBD). There were 57 rapid response team activations, 8 acute respiratory code events, and no cardiorespiratory arrest events after the implementation of the new parameters. An evaluation of HRs and RRs recorded at the time of the event revealed that all patients with HRs and/or RRs out of range per former default parameters would also be out of range with the new parameters. Implementation of data-driven HR and iteratively derived RR parameters safely decreased the total alarm frequency by 21% in a pediatric acute care unit. Copyright © 2017 by the American Academy of Pediatrics.

  10. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    NASA Astrophysics Data System (ADS)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  11. VLBI-derived troposphere parameters during CONT08

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.

    2011-07-01

    Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two

  12. Interactions of acylated methylglucoside derivatives with CO2: simulation and calculations.

    PubMed

    Chang, H H; Cao, R X; Yang, C C; Wei, W L; Pang, X Y; Qiao, Y

    2016-01-01

    Carbohydrates have drawn considerable interest from researchers recently due to their affinity for CO2. However, most of the research in this field has focused on peracetylated derivatives. Compared with acetylated carbohydrates, which have already been studied in depth, methyl D-glucopyranoside derivatives are more stable and could have additional applications. Thus, in the present work, ab initio calculations were performed to elucidate the characteristics of the interactions of methylglucoside derivatives with CO2, and to investigate how the binding energy (ΔE) is affected by isomerization or the introduction of various acyl groups. Four methyl D-glucopyranosides (each with two anomers) bearing acetyl, propionyl, butyryl, and isobutyryl moieties, respectively, were designed as substrates, and the 1:1 complexes of a CO2 molecule with each of these sugar substrates were modeled. The results indicate that ΔE is mainly influenced by interaction distance and the number of negatively charged donors or interacting pairs in the complex; the structure of the acyl group present in the substrate is a secondary influence. Except in the case of methyl 2-O-acetyl-D-glucopyranose, the ΔE values of the α- and β-anomers of each methylglucoside were found to be almost the same. Therefore, we would expect the CO2 affinities of the four derivatives studied here to be as strong as or even stronger than that of peracetylated D-glucopyranose. Graphical Abstract The binding energy between methyl D-glucopyranoside derivatives with various substituted acyl groups and CO2 are evaluated by ab initio calculations. The strong interaction between these methyl dglucopyranoside derivatives and CO2 showed the potential of their application for CO2 capture.

  13. Scaling of hydrologic and erosion parameters derived from rainfall simulation

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Lane, Patrick; Noske, Philip; Sherwin, Christopher

    2010-05-01

    Rainfall simulation experiments conducted at the temporal scale of minutes and the spatial scale of meters are often used to derive parameters for erosion and water quality models that operate at much larger temporal and spatial scales. While such parameterization is convenient, there has been little effort to validate this approach via nested experiments across these scales. In this paper we first review the literature relevant to some of these long acknowledged issues. We then present rainfall simulation and erosion plot data from a range of sources, including mining, roading, and forestry, to explore the issues associated with the scaling of parameters such as infiltration properties and erodibility coefficients.

  14. Derivatives of buckling loads and vibration frequencies with respect to stiffness and initial strain parameters

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon

    1990-01-01

    A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.

  15. Simple model for deriving sdg interacting boson model Hamiltonians: 150Nd example

    NASA Astrophysics Data System (ADS)

    Devi, Y. D.; Kota, V. K. B.

    1993-07-01

    A simple and yet useful model for deriving sdg interacting boson model (IBM) Hamiltonians is to assume that single-boson energies derive from identical particle (pp and nn) interactions and proton, neutron single-particle energies, and that the two-body matrix elements for bosons derive from pn interaction, with an IBM-2 to IBM-1 projection of the resulting p-n sdg IBM Hamiltonian. The applicability of this model in generating sdg IBM Hamiltonians is demonstrated, using a single-j-shell Otsuka-Arima-Iachello mapping of the quadrupole and hexadecupole operators in proton and neutron spaces separately and constructing a quadrupole-quadrupole plus hexadecupole-hexadecupole Hamiltonian in the analysis of the spectra, B(E2)'s, and E4 strength distribution in the example of 150Nd.

  16. Systematic study of rapidity dispersion parameter in high energy nucleus-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Swarnapratim; Haiduc, Maria; Neagu, Alina Tania; Firu, Elena

    2014-03-01

    A systematic study of rapidity dispersion parameter as a quantitative measure of clustering of particles has been carried out in the interactions of 16O, 28Si and 32S projectiles at 4.5 A GeV/c with heavy (AgBr) and light (CNO) groups of targets present in the nuclear emulsion. For all the interactions, the total ensemble of events has been divided into four overlapping multiplicity classes depending on the number of shower particles. For all the interactions and for each multiplicity class, the rapidity dispersion parameter values indicate the occurrence of clusterization during the multiparticle production at Dubna energy. The measured rapidity dispersion parameter values are found to decrease with the increase of average multiplicity for all the interactions. The dependence of rapidity dispersion parameter on the average multiplicity can be successfully described by a relation D(η) = a + b + c2. The experimental results have been compared with the results obtained from the analysis of Monte Carlo simulated (MC-RAND) events. MC-RAND events show weaker clusterization among the pions in comparison to the experimental data.

  17. Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel

    NASA Astrophysics Data System (ADS)

    Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin

    2014-09-01

    The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.

  18. Association of pharmacokinetic and metabolic parameters derived using simultaneous PET/MRI: Initial findings and impact on response evaluation in breast cancer.

    PubMed

    Jena, Amarnath; Taneja, Sangeeta; Singh, Aru; Negi, Pradeep; Mehta, Shashi Bhushan; Ahuja, Aashim; Singhal, Manish; Sarin, Ramesh

    2017-07-01

    To study relationships among pharmacokinetic and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET parameters obtained through simultaneous PET/MRI in breast cancer patients and evaluate their combined potential for response evaluation. The study included 41 breast cancer patients for correlation study and 9 patients (pre and post therapy) for response evaluation. All patients underwent simultaneous PET/MRI with dedicated breast imaging. Pharmacokinetic parameters and PET parameters for tumor were derived using an in- house developed and vendor provided softwares respectively. Relationships between SUV and pharmacokinetic parameters and clinical as well as histopathologic parameters were evaluated using Spearman correlation analysis. Response to chemotherapy was derived as percentage reduction in size and in parameters post therapy. Significant correlations were observed between SUVmean, max, peak, TLG with K trans (ρ=0.446, 0.417, 0.491, 0.430; p≤0.01); with Kep(ρ=0.303, ρ=0.315, ρ=0.319; p≤0.05); and with iAUC(ρ=0.401, ρ=0.410, ρ=0.379; p≤0.05, p≤0.01). The ratio of ve/iAUC showed significant negative correlation to SUVmean, max, peak and TLG (ρ=0.420, 0.446, 0.443, 0.426; p≤0.01). Ability of SUV as well as pharmacokinetic parameters to predict response to therapy matched the RECIST criteria in 9 out of 11 lesions in 9 patients. Maximum post therapy quantitative reduction was observed in SUVpeak, TLG and K trans . Simultaneous PET/MRI enables illustration of close interactions between glucose metabolism and pharmacokinetic parameters in breast cancer patients and potential of their simultaneity in response assessment to therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bead-bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension

    NASA Astrophysics Data System (ADS)

    Maiti, Amitesh; McGrother, Simon

    2004-01-01

    Dissipative particle dynamics (DPD) is a mesoscale modeling method for simulating equilibrium and dynamical properties of polymers in solution. The basic idea has been around for several decades in the form of bead-spring models. A few years ago, Groot and Warren [J. Chem. Phys. 107, 4423 (1997)] established an important link between DPD and the Flory-Huggins χ-parameter theory for polymer solutions. We revisit the Groot-Warren theory and investigate the DPD interaction parameters as a function of bead size. In particular, we show a consistent scheme of computing the interfacial tension in a segregated binary mixture. Results for three systems chosen for illustration are in excellent agreement with experimental results. This opens the door for determining DPD interactions using interfacial tension as a fitting parameter.

  20. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study

    NASA Astrophysics Data System (ADS)

    Singh, T. Sanjoy; Mitra, Sivaprasad

    2011-03-01

    Cinnamic acid (CA) derivatives are known to possess broad therapeutic applications including anti-tumor activity. The present study was designed to determine the underlying mechanism and thermodynamic parameters for the binding of two CA based intramolecular charge transfer (ICT) fluorescent probes, namely, 4-(dimethylamino) cinnamic acid (DMACA) and trans-ethyl p-(dimethylamino) cinnamate (EDAC), with albumins by fluorescence spectroscopy. Stern-Volmer analysis of the tryptophan fluorescence quenching data in presence of the added ligand reveals fluorescence quenching constant ( κq), Stern-Volmer constant ( KSV) and also the ligand-protein association constant ( Ka). The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated. The results show that the ligands bind into the sub-domain IIA of the proteins in 1:1 stoichiometry with an apparent binding constant value in the range of 10 4 dm 3 mol -1. In both the cases, the spontaneous ligand binding to the proteins occur through entropy driven mechanism, although the interaction of DMACA is relatively stronger in comparison with EDAC. The temperature dependence of the binding constant indicates the induced change in protein secondary structure.

  1. An investigation of using an RQP based method to calculate parameter sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    Estimation of the sensitivity of problem functions with respect to problem variables forms the basis for many of our modern day algorithms for engineering optimization. The most common application of problem sensitivities has been in the calculation of objective function and constraint partial derivatives for determining search directions and optimality conditions. A second form of sensitivity analysis, parameter sensitivity, has also become an important topic in recent years. By parameter sensitivity, researchers refer to the estimation of changes in the modeling functions and current design point due to small changes in the fixed parameters of the formulation. Methods for calculating these derivatives have been proposed by several authors (Armacost and Fiacco 1974, Sobieski et al 1981, Schmit and Chang 1984, and Vanderplaats and Yoshida 1985). Two drawbacks to estimating parameter sensitivities by current methods have been: (1) the need for second order information about the Lagrangian at the current point, and (2) the estimates assume no change in the active set of constraints. The first of these two problems is addressed here and a new algorithm is proposed that does not require explicit calculation of second order information.

  2. Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay

    2011-01-01

    A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.

  3. TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig

    NASA Astrophysics Data System (ADS)

    Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco

    2018-03-01

    Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.

  4. Site-Specific Reference Person Parameters and Derived Concentration Standards for the Savannah River Site

    DOE PAGES

    Stone, Daniel K.; Higley, Kathryn A.; Jannik, G. Timothy

    2014-05-01

    The U.S. Department of Energy Order 458.1 states that the compliance with the 1 mSv annual dose constraint to a member of the public may be demonstrated by calculating dose to the maximally exposed individual (MEI) or to a representative person. Historically, the MEI concept was used for dose compliance at the Savannah River Site (SRS) using adult dose coefficients and adult male usage parameters. For future compliance, SRS plans to use the representative person concept for dose estimates to members of the public. The representative person dose will be based on the reference person dose coefficients from the U.S.more » DOE Derived Concentration Technical Standard and on usage parameters specific to SRS for the reference and typical person. Usage parameters and dose coefficients were determined for inhalation, ingestion and external exposure pathways. The parameters for the representative person were used to calculate and tabulate SRS-specific derived concentration standards (DCSs) for the pathways not included in DOE-STD-1196-2011.« less

  5. Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications

    NASA Astrophysics Data System (ADS)

    Doungmo Goufo, Emile Franc

    2016-08-01

    After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function E α , β ( z ) , z ∈ ℂ ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89, 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on Eα,β(z). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β. Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of Eα,β(z), certainly opening new doors to modeling with two-parameter derivatives.

  6. Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications.

    PubMed

    Doungmo Goufo, Emile Franc

    2016-08-01

    After having the issues of singularity and locality addressed recently in mathematical modelling, another question regarding the description of natural phenomena was raised: How influent is the second parameter β of the two-parameter Mittag-Leffler function Eα,β(z), z∈ℂ? To answer this question, we generalize the newly introduced one-parameter derivative with non-singular and non-local kernel [A. Atangana and I. Koca, Chaos, Solitons Fractals 89, 447 (2016); A. Atangana and D. Bealeanu (e-print)] by developing a similar two-parameter derivative with non-singular and non-local kernel based on Eα , β(z). We exploit the Agarwal/Erdelyi higher transcendental functions together with their Laplace transforms to explicitly establish the Laplace transform's expressions of the two-parameter derivatives, necessary for solving related fractional differential equations. Explicit expression of the associated two-parameter fractional integral is also established. Concrete applications are done on atmospheric convection process by using Lorenz non-linear simple system. Existence result for the model is provided and a numerical scheme established. As expected, solutions exhibit chaotic behaviors for α less than 0.55, and this chaos is not interrupted by the impact of β. Rather, this second parameter seems to indirectly squeeze and rotate the solutions, giving an impression of twisting. The whole graphics seem to have completely changed its orientation to a particular direction. This is a great observation that clearly shows the substantial impact of the second parameter of Eα , β(z), certainly opening new doors to modeling with two-parameter derivatives.

  7. Direct Determination of Site-Specific Noncovalent Interaction Strengths of Proteins from NMR-Derived Fast Side Chain Motional Parameters.

    PubMed

    Rajeshwar T, Rajitha; Krishnan, Marimuthu

    2017-05-25

    A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O axis 2 ) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O axis 2 , conformational entropy (S conf ), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O axis 2 ∼ 0) to highly restricted (with O axis 2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.

  8. Reconstituting protein interaction networks using parameter-dependent domain-domain interactions

    PubMed Central

    2013-01-01

    Background We can describe protein-protein interactions (PPIs) as sets of distinct domain-domain interactions (DDIs) that mediate the physical interactions between proteins. Experimental data confirm that DDIs are more consistent than their corresponding PPIs, lending support to the notion that analyses of DDIs may improve our understanding of PPIs and lead to further insights into cellular function, disease, and evolution. However, currently available experimental DDI data cover only a small fraction of all existing PPIs and, in the absence of structural data, determining which particular DDI mediates any given PPI is a challenge. Results We present two contributions to the field of domain interaction analysis. First, we introduce a novel computational strategy to merge domain annotation data from multiple databases. We show that when we merged yeast domain annotations from six annotation databases we increased the average number of domains per protein from 1.05 to 2.44, bringing it closer to the estimated average value of 3. Second, we introduce a novel computational method, parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts a small set of domain pairs that can reconstruct the original set of protein interactions, while attempting to minimize false positives. Based on a set of PPIs from multiple organisms, our method extracted 27% more experimentally detected DDIs than existing computational approaches. Conclusions We have provided a method to merge domain annotation data from multiple sources, ensuring large and consistent domain annotation for any given organism. Moreover, we provided a method to extract a small set of DDIs from the underlying set of PPIs and we showed that, in contrast to existing approaches, our method was not biased towards DDIs with low or high occurrence counts. Finally, we used these two methods to highlight the influence of the underlying annotation density on the characteristics of extracted DDIs. Although

  9. The physical and biological basis of quantitative parameters derived from diffusion MRI

    PubMed Central

    2012-01-01

    Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

  10. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals.

    PubMed

    Jeyhani, Vala; Mahdiani, Shadi; Peltokangas, Mikko; Vehkaoja, Antti

    2015-01-01

    Heart rate variability (HRV) has become a useful tool in analysis of cardiovascular system in both research and clinical fields. HRV has been also used in other applications such as stress level estimation in wearable devices. HRV is normally obtained from ECG as the time interval of two successive R waves. Recently PPG has been proposed as an alternative for ECG in HRV analysis to overcome some difficulties in measurement of ECG. In addition, PPG-HRV is also used in some commercial devices such as modern optical wrist-worn heart rate monitors. However, some researches have shown that PPG is not a surrogate for heart rate variability analysis. In this work, HRV analysis was applied on beat-to-beat intervals obtained from ECG and PPG in 19 healthy male subjects. Some important HRV parameters were calculated from PPG-HRV and ECG-HRV. Maximum of PPG and its second derivative were considered as two methods for obtaining the beat-to-beat signals from PPG and the results were compared with those achieved from ECG-HRV. Our results show that the smallest error happens in SDNN and SD2 with relative error of 2.46% and 2%, respectively. The most affected parameter is pNN50 with relative error of 29.89%. In addition, in our trial, using the maximum of PPG gave better results than its second derivative.

  11. Higher derivative theories for interacting massless gravitons in Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Bai, Dong; Xing, Yu-Hang

    2018-07-01

    We study a novel class of higher derivative theories for interacting massless gravitons in Minkowski spacetime. These theories were first discussed by Wald decades ago, and are characterized by scattering amplitudes essentially different from general relativity and many of its modifications. We discuss various aspects of these higher derivative theories, including the Lagrangian construction, violation of asymptotic causality, scattering amplitudes, non-renormalization, and possible implications in emergent gravitons from condensed matter systems.

  12. All-Atom MD Simulation of DNA Condensation Using Ab Initio Derived Force Field Parameters of Cobalt(III)-Hexammine.

    PubMed

    Sun, Tiedong; Mirzoev, Alexander; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2017-08-24

    It is well established that the presence of the trivalent cobalt(III)-hexammine cation (CoHex 3+ ) at submillimolar concentrations leads to bundling (condensation) of double-stranded DNA molecules, which is caused by DNA-DNA attraction induced by the multivalent counterions. However, the detailed mechanism of this process is still not fully understood. Furthermore, in all-atom molecular dynamics (MD) simulations, spontaneous aggregation of several DNA oligonucleotides in the presence of CoHex 3+ has previously not been demonstrated. In order to obtain a rigorous description of CoHex 3+ -nucleic acid interactions and CoHex 3+ -induced DNA condensation to be used in MD simulations, we have derived optimized force field parameters of the CoHex 3+ ion. They were obtained from Car-Parrinello molecular dynamics simulation of a single CoHex 3+ ion in the presence of 125 water molecules. The new set of force field parameters reproduces the experimentally known transition of DNA from B- to A-form, and qualitatively describes changes of DNA and RNA persistence lengths. We then carried out a 2 μs long atomistic simulation of four DNA oligomers each consisting of 36 base pairs in the presence of CoHex 3+ . We demonstrate that, in this system, DNA molecules display attractive interactions and aggregate into bundle-like structures. This behavior depends critically on the details of the CoHex 3+ interaction with DNA. A control simulation with a similar setup but in the presence of Mg 2+ does not induce DNA-DNA attraction, which is also in agreement with experiment.

  13. BRST Formalism for Systems with Higher Order Derivatives of Gauge Parameters

    NASA Astrophysics Data System (ADS)

    Nirov, Kh. S.

    For a wide class of mechanical systems, invariant under gauge transformations with arbitrary higher order time derivatives of gauge parameters, the equivalence of Lagrangian and Hamiltonian BRST formalisms is proved. It is shown that the Ostrogradsky formalism establishes the natural rules to relate the BFV ghost canonical pairs with the ghosts and antighosts introduced by the Lagrangian approach. Explicit relation between corresponding gauge-fixing terms is obtained.

  14. Epistasis interaction of QTL effects as a genetic parameter influencing estimation of the genetic additive effect.

    PubMed

    Bocianowski, Jan

    2013-03-01

    Epistasis, an additive-by-additive interaction between quantitative trait loci, has been defined as a deviation from the sum of independent effects of individual genes. Epistasis between QTLs assayed in populations segregating for an entire genome has been found at a frequency close to that expected by chance alone. Recently, epistatic effects have been considered by many researchers as important for complex traits. In order to understand the genetic control of complex traits, it is necessary to clarify additive-by-additive interactions among genes. Herein we compare estimates of a parameter connected with the additive gene action calculated on the basis of two models: a model excluding epistasis and a model with additive-by-additive interaction effects. In this paper two data sets were analysed: 1) 150 barley doubled haploid lines derived from the Steptoe × Morex cross, and 2) 145 DH lines of barley obtained from the Harrington × TR306 cross. The results showed that in cases when the effect of epistasis was different from zero, the coefficient of determination was larger for the model with epistasis than for the one excluding epistasis. These results indicate that epistatic interaction plays an important role in controlling the expression of complex traits.

  15. Quantifying Parameter Sensitivity, Interaction and Transferability in Hydrologically Enhanced Versions of Noah-LSM over Transition Zones

    NASA Technical Reports Server (NTRS)

    Rosero, Enrique; Yang, Zong-Liang; Wagener, Thorsten; Gulden, Lindsey E.; Yatheendradas, Soni; Niu, Guo-Yue

    2009-01-01

    We use sensitivity analysis to identify the parameters that are most responsible for shaping land surface model (LSM) simulations and to understand the complex interactions in three versions of the Noah LSM: the standard version (STD), a version enhanced with a simple groundwater module (GW), and version augmented by a dynamic phenology module (DV). We use warm season, high-frequency, near-surface states and turbulent fluxes collected over nine sites in the US Southern Great Plains. We quantify changes in the pattern of sensitive parameters, the amount and nature of the interaction between parameters, and the covariance structure of the distribution of behavioral parameter sets. Using Sobol s total and first-order sensitivity indexes, we show that very few parameters directly control the variance of the model output. Significant parameter interaction occurs so that not only the optimal parameter values differ between models, but the relationships between parameters change. GW decreases parameter interaction and appears to improve model realism, especially at wetter sites. DV increases parameter interaction and decreases identifiability, implying it is overparameterized and/or underconstrained. A case study at a wet site shows GW has two functional modes: one that mimics STD and a second in which GW improves model function by decoupling direct evaporation and baseflow. Unsupervised classification of the posterior distributions of behavioral parameter sets cannot group similar sites based solely on soil or vegetation type, helping to explain why transferability between sites and models is not straightforward. This evidence suggests a priori assignment of parameters should also consider climatic differences.

  16. Usefulness of Derived Frank Lead Parameters in Screening for Coronary Artery Disease and Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    DePalma, J. L.; Schlegel, T. T.; Arenare, B.; Greco, E. C.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several known as well as newly-introduced derived Frank-lead ECG parameters in differentiating healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following derived Frank lead parameters were studied for their accuracy in detecting CAD and CM: the spatial ventricular gradient (VG), including its beat-to-beat coefficient of variability (VG CV); the spatial mean QRS (SM-QRS) and T-waves (SM-T) and their beat-to-beat coefficients of variability; the spatial ventricular activation time (VAT); the mean and maximum spatial QRS-T angles; and standard late potentials parameters (RMS40, fQRSD and LAS). Several of these parameters were accurate in discriminating between the control group and both diseased groups at p less than 0.0001. For example the fQRSD, VG CV, mean spatial QRS-T angle and VG minus SM-QRS (which is similar to the SM-T) had retrospective areas under the ROC curve of 0.78, 0.78, 0.80, and 0.84 (CAD vs. controls) and 0.93, 0.88, 0.98 and 0.99 (CM vs. controls), respectively. The single most effective parameter in discriminating between the CAD and CM groups was the spatial VAT (44 plus or minus 5.8 vs. 53 plus or minus 9.9 ms, p less than 0.0001), with an area under the ROC curve of 0.80. Since subsequent prospective analyses using new groups of patients and healthy subjects have yielded only slightly less accurate results, we conclude that derived Frank-lead parameters show great promise for potentially contributing to the development of a rapid and inexpensive resting ECG-based screening test for heart disease.

  17. SP_Ace: a new code to derive stellar parameters and elemental abundances

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  18. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    PubMed Central

    2012-01-01

    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions. PMID:23151272

  19. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    PubMed

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  20. Investigation of the Dirac Equation by Using the Conformable Fractional Derivative

    NASA Astrophysics Data System (ADS)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper,the Dirac equation is constructed using the conformable fractional derivative so that in its limit for the fractional parameter, the normal version is recovered. Then, the Cornell potential is considered as the interaction of the system. In this case, the wave function and the energy eigenvalue equation are derived with the aim of the bi-confluent Heun functions. use of the conformable fractional derivative is proven to lead to a branching treatment for the energy of the system. Such a treatment is obvious for small values of the fractional parameter, and a united value as the fractional parameter approaches unity.

  1. Attaining insight into interactions between hydrologic model parameters and geophysical attributes for national-scale model parameter estimation

    NASA Astrophysics Data System (ADS)

    Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.

    2017-12-01

    Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.

  2. Derivation of hydrous pyrolysis kinetic parameters from open-system pyrolysis

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Hsin; Huang, Wuu-Liang

    2010-05-01

    Kinetic information is essential to predict the temperature, timing or depth of hydrocarbon generation within a hydrocarbon system. The most common experiments for deriving kinetic parameters are mainly by open-system pyrolysis. However, it has been shown that the conditions of open-system pyrolysis are deviant from nature by its low near-ambient pressure and high temperatures. Also, the extrapolation of heating rates in open-system pyrolysis to geological conditions may be questionable. Recent study of Lewan and Ruble shows hydrous-pyrolysis conditions can simulate the natural conditions better and its applications are supported by two case studies with natural thermal-burial histories. Nevertheless, performing hydrous pyrolysis experiment is really tedious and requires large amount of sample, while open-system pyrolysis is rather convenient and efficient. Therefore, the present study aims at the derivation of convincing distributed hydrous pyrolysis Ea with only routine open-system Rock-Eval data. Our results unveil that there is a good correlation between open-system Rock-Eval parameter Tmax and the activation energy (Ea) derived from hydrous pyrolysis. The hydrous pyrolysis single Ea can be predicted from Tmax based on the correlation, while the frequency factor (A0) is estimated based on the linear relationship between single Ea and log A0. Because the Ea distribution is more rational than single Ea, we modify the predicted single hydrous pyrolysis Ea into distributed Ea by shifting the pattern of Ea distribution from open-system pyrolysis until the weight mean Ea distribution equals to the single hydrous pyrolysis Ea. Moreover, it has been shown that the shape of the Ea distribution is very much alike the shape of Tmax curve. Thus, in case of the absence of open-system Ea distribution, we may use the shape of Tmax curve to get the distributed hydrous pyrolysis Ea. The study offers a new approach as a simple method for obtaining distributed hydrous pyrolysis

  3. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    NASA Astrophysics Data System (ADS)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  4. Photon Interaction Parameters for Some Borate Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  5. Concerted Mitigation of O···H and C(π)···H Interactions Prospects Sixfold Gain in Optical Nonlinearity of Ionic Stilbazolium Derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Jacqueline M.; Lin, Tze-Chia; Edwards, Alison J.

    2015-03-04

    DAST (4-dimethylamino-N-methyl-4-stilbazolium tosylate) is the most commercially successful organic nonlinear optical (NLO) material for frequency-doubling, integrated optics, and THz wave applications. Its success is predicated on its high optical nonlinearity with concurrent sufficient thermal stability. Many chemical derivatives of DAST have therefore been developed to optimize their properties; yet, to date, none have surpassed the overall superiority of DAST for NLO photonic applications. This is perhaps because DAST is an ionic salt wherein its NLO-active cation is influenced by multiple types of subtle intermolecular forces that are hard to quantify, thus, making difficult the molecular engineering of better functioning DASTmore » derivatives. Here, we establish a model parameter, ηinter, that isolates the influence of intermolecular interactions on second-order optical nonlinearity in DAST and its derivatives, using second-harmonic generation (SHG) as a qualifier; by systematically mapping intercorrelations of all possible pairs of intermolecular interactions to ηinter, we uncover a relationship between concerted intermolecular interactions and SHG output. This correlation reveals that a sixfold gain in the intrinsic second-order NLO performance of DAST is possible, by eliminating the identified interactions. This prediction offers the first opportunity to systematically design next-generation DAST-based photonic device nanotechnology to realize such a prospect.« less

  6. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    PubMed Central

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505

  7. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    PubMed

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  8. Understanding Variability in the AVIRIS-Derived Parameters from Vegetation Cover

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.

    2000-01-01

    This project was carried out in two phases, the first was an investigation of the possible sources of variability in the canopy leaf chemistry parameters derived from AVERJS data on a year-to-year basis, and the second was a follow-on effort to improve the atmospheric correction program ATREM as well as to provide support to the community on the use of ATREM. This final report embodies a general review of the results obtained over the life of the contract as well as detailed interim reports and copies of the six papers published in AVIRIS Workshop Proceedings over the last 3 years.

  9. Interactions between butterfly-shaped pulses in the inhomogeneous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Jun; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Huang, Long-Gang

    2014-10-15

    Pulse interactions affect pulse qualities during the propagation. Interactions between butterfly-shaped pulses are investigated to improve pulse qualities in the inhomogeneous media. In order to describe the interactions between butterfly-shaped pulses, analytic two-soliton solutions are derived. Based on those solutions, influences of corresponding parameters on pulse interactions are discussed. Methods to control the pulse interactions are suggested. - Highlights: • Interactions between butterfly-shaped pulses are investigated. • Methods to control the pulse interactions are suggested. • Analytic two-soliton solutions for butterfly-shaped pulses are derived.

  10. Interaction of free arginine and guanidine with glucose under thermal processing conditions and formation of Amadori-derived imidazolones.

    PubMed

    Zhu, Yuchen; Yaylayan, Varoujan A

    2017-04-01

    To investigate the reactivity of free guanidine and arginine in the formation of imidazolinone derivatives, model systems of guanidine or arginine/glucose or 13 [C-6]-glucose were heated in aqueous solutions at110°C for 3h and the residues were analyzed by ESI/qTOF/MS using MS/MS and isotope labeling techniques. The analysis of the data indicated that guanidine and arginine formed both covalent and non-covalent interaction products. Covalent interactions included Amadori rearrangement at the α-nitrogen with glucose and imidazolinone formation with 3-deoxy-glucosone at the guanidine side-chain. Non-covalent interactions, such as self-interaction and interaction with free guanidine or arginine and glucose, were also observed. Guanidine underwent three sequential Amadori rearrangements and the free and mono-glycated guanidine also formed imidazolinone derivatives and their corresponding dehydration products and at the same time exhibiting various non-covalent interactions. On the other hand, arginine formed free Amadori product, free imidazolinone and Amadori-derived imidazolinone derivative in addition to methylglyoxal-derived hydroimidazolones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes

    PubMed Central

    Sharp, Kim A.; O’Brien, Evan; Kasinath, Vignesh; Wand, A. Joshua

    2015-01-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O2NH) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O2NH < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O2axis. A calibration curve for backbone entropy vs. O2NH is developed which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O2NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, e.g. upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O2axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. PMID:25739366

  12. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    PubMed

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  < 0.8) shows that these report both on the local flexibility of the protein and on a different component of the conformational entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  13. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brauchler, R.; Doetsch, J.; Dietrich, P.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. Themore » experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.« less

  14. Using seismic derived lithology parameters for hydrocarbon indication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Riel, P.; Sisk, M.

    1996-08-01

    The last two decades have shown a strong increase in the use of seismic amplitude information for direct hydrocarbon indication. However, working with seismic amplitudes (and seismic attributes) has several drawbacks: tuning effects must be handled; quantitative analysis is difficult because seismic amplitudes are not directly related to lithology; and seismic amplitudes are reflection events, making it is unclear if amplitude changes relate to lithology variations above or below the interface. These drawbacks are overcome by working directly on seismic derived lithology data, lithology being a layer property rather than an interface property. Technology to extract lithology from seismic datamore » has made great strides, and a large range of methods are now available to users including: (1) Bandlimited acoustic impedance (AI) inversion; (2) Reconstruction of the low AI frequencies from seismic velocities, from spatial well log interpolation, and using constrained sparse spike inversion techniques; (3) Full bandwidth reconstruction of multiple lithology properties (porosity, sand fraction, density etc.,) in time and depth using inverse modeling. For these technologies to be fully leveraged, accessibility by end users is critical. All these technologies are available as interactive 2D and 3D workstation applications, integrated with seismic interpretation functionality. Using field data examples, we will demonstrate the impact of these different approaches on deriving lithology, and in particular show how accuracy and resolution is increased as more geologic and well information is added.« less

  15. Automated optimization of water-water interaction parameters for a coarse-grained model.

    PubMed

    Fogarty, Joseph C; Chiu, See-Wing; Kirby, Peter; Jakobsson, Eric; Pandit, Sagar A

    2014-02-13

    We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment.

  16. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    PubMed

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  17. Reconstructed historical land cover and biophysical parameters for studies of land-atmosphere interactions within the eastern United States

    USGS Publications Warehouse

    Steyaert, Louis T.; Knox, R.G.

    2008-01-01

    Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.

  18. Analysis of pressure-flow data in terms of computer-derived urethral resistance parameters.

    PubMed

    van Mastrigt, R; Kranse, M

    1995-01-01

    The simultaneous measurement of detrusor pressure and flow rate during voiding is at present the only way to measure or grade infravesical obstruction objectively. Numerous methods have been introduced to analyze the resulting data. These methods differ in aim (measurement of urethral resistance and/or diagnosis of obstruction), method (manual versus computerized data processing), theory or model used, and resolution (continuously variable parameters or a limited number of classes, the so-called monogram). In this paper, some aspects of these fundamental differences are discussed and illustrated. Subsequently, the properties and clinical performance of two computer-based methods for deriving continuous urethral resistance parameters are treated.

  19. Analysis of Toxic Amyloid Fibril Interactions at Natively Derived Membranes by Ellipsometry

    PubMed Central

    Smith, Rachel A. S.; Nabok, Aleksey; Blakeman, Ben J. F.; Xue, Wei-Feng; Abell, Benjamin; Smith, David P.

    2015-01-01

    There is an ongoing debate regarding the culprits of cytotoxicity associated with amyloid disorders. Although small pre-fibrillar amyloid oligomers have been implicated as the primary toxic species, the fibrillar amyloid material itself can also induce cytotoxicity. To investigate membrane disruption and cytotoxic effects associated with intact and fragmented fibrils, the novel in situ spectroscopic technique of Total Internal Reflection Ellipsometry (TIRE) was used. Fibril lipid interactions were monitored using natively derived whole cell membranes as a model of the in vivo environment. We show that fragmented fibrils have an increased ability to disrupt these natively derived membranes by causing a loss of material from the deposited surface when compared with unfragmented fibrils. This effect was corroborated by observations of membrane disruption in live cells, and by dye release assay using synthetic liposomes. Through these studies we demonstrate the use of TIRE for the analysis of protein-lipid interactions on natively derived lipid surfaces, and provide an explanation on how amyloid fibrils can cause a toxic gain of function, while entangled amyloid plaques exert minimal biological activity. PMID:26172440

  20. A derivation of the Cramer-Rao lower bound of euclidean parameters under equality constraints via score function

    NASA Astrophysics Data System (ADS)

    Susyanto, Nanang

    2017-12-01

    We propose a simple derivation of the Cramer-Rao Lower Bound (CRLB) of parameters under equality constraints from the CRLB without constraints in regular parametric models. When a regular parametric model and an equality constraint of the parameter are given, a parametric submodel can be defined by restricting the parameter under that constraint. The tangent space of this submodel is then computed with the help of the implicit function theorem. Finally, the score function of the restricted parameter is obtained by projecting the efficient influence function of the unrestricted parameter on the appropriate inner product spaces.

  1. Derivation of Cinnamon Blocks Leukocyte Attachment by Interacting with Sialosides

    PubMed Central

    Lin, Wei-Ling; Guu, Shih-Yun; Tsai, Chan-Chuan; Prakash, Ekambaranellore; Viswaraman, Mohan; Chen, Hsing-Bao; Chang, Chuan-Fa

    2015-01-01

    Molecules derived from cinnamon have demonstrated diverse pharmacological activities against infectious pathogens, diabetes and inflammatory diseases. This study aims to evaluate the effect of the cinnamon-derived molecule IND02 on the adhesion of leukocytes to host cells. The anti-inflammatory ability of IND02, a pentameric procyanidin type A polyphenol polymer isolated from cinnamon alcohol extract, was examined. Pretreatment with IND02 significantly reduced the attachment of THP-1 cells or neutrophils to TNF-α-activated HUVECs or E-selectin/ICAM-1, respectively. IND02 also reduced the binding of E-, L- and P-selectins with sialosides. Furthermore, IND02 could agglutinate human red blood cells (RBC), and the agglutination could be disrupted by sialylated glycoprotein. Our findings demonstrate that IND02, a cinnamon-derived compound, can interact with sialosides and block the binding of selectins and leukocytes with sialic acids. PMID:26076445

  2. Hemodynamic and clinical impact of ultrasound-derived venous reflux parameters.

    PubMed

    Neglén, Peter; Egger, John F; Olivier, Jake; Raju, Seshadri

    2004-08-01

    This study was undertaken to assess which ultrasound-derived parameter was superior for measuring venous reflux quantitatively and to evaluate the importance of popliteal vein valve reflux. A retrospective analysis was performed of 244 refluxive limbs in 182 patients who underwent ultrasound scanning, venous pressure measurement, air plethysmography, and clinical classification of severity according to the CEAP score. Reflux time (RT, s), peak reflux velocity (PRV, m/s), time of average rate of reflux (TAF, mL/min), absolute displaced volume retrogradely (ADV, mL) were compared to clinical class, ambulatory venous pressure (% drop), venous filling time (s), and venous filling index (mL/s) using nonparametric statistical tests. A P value of <.05 was considered significant. Limbs were divided into 3 groups: (A) axial great saphenous vein reflux only (n = 68); (B) axial deep reflux including popliteal vein incompetence with or without concomitant gastrocnemius or great or small saphenous vein reflux (all ultrasound reflux parameters of each refluxive vein added at the knee level) (n = 79); and (C) all limbs with popliteal vein reflux (the ultrasound data of the refluxive popliteal vein exclusively was used in comparison regardless of concomitant associated reflux) (n = 103). Limbs were also stratified into limbs with skin changes and ulcer (C-class 4-6) and those without (C-class 1-3) and subsequently compared. No meaningful significant correlation was found between RT and the clinical and hemodynamic results in groups A and B. The PRV and TAF correlated significantly with the hemodynamic parameters. The PRV and TAF and clinical severity trended towards correlation in group A (P =.0554 and P =.0998, respectively), but was significantly correlated in group B. The poor hemodynamic condition in the subset of C-class 4-6 limbs in groups A and B was reflected in a greater PRV, TAF, and ADV in this subset as compared with the limbs in C-class 1-3. RT was not significantly

  3. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a

  4. The Atlas of Vesta Spectral Parameters derived from Dawn/VIR data

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Tosi, F.; Zambon, F.; Capaccioni, F.; Capria, M. T.; Palomba, E.; Longobardo, A.; Fonte, S.; Giardino, M.; Magni, G.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-09-01

    The Dawn mission mapped Vesta from three different orbital heights during Survey orbit (2700 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. From these orbits the Dawn's Visible and Infrared Mapping Spectrometer (VIR) acquired infrared and visible spectra from 0.2 to 5 microns, sampled in 864 channels with a spatial resolution reaching about 150 m/pixel. Studies of the comparison of spectra from remote sensed data and spectra from laboratory allows to synthesize spectral parameters, which can be combined to identify specific physical and compositional states. VIR spectra of Vesta, stored in about 4300 Planetary Data System (PDS) cubes, have been analyzed to derive spectral parameters, each of which is diagnostic of the associated mineralogy on the surface of the asteroid being observed [2]. Maps of spectral parameters show terrain units compositions in their stratigraphic context. Band centers and band depths are among the most important diagnostic parameters of the mineralogy in a spectrum. In most pyroxenes and in the basaltic achondrites there is a strong correlation between the position of BI center and BII center and the associated mineralogy. For example, orthopyroxene bands shift towards longer wavelengths with increasing amounts of iron, whereas clinopyroxene bands shift towards longer wavelengths with increasing calcium content. Band depth is related to scattering effects, thus can be related to the physical state of the material.

  5. Deriving adaptive operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF

    NASA Astrophysics Data System (ADS)

    Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo

    2017-08-01

    Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.

  6. Theoretical studies of weak interactions of formamide with methanol and its derivates

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Wen; Wang, Lu; Han, Shu-Min; Cui, Xiang-Yang; Du, Chong-Yang; Liu, Tao

    2015-08-01

    Theoretical calculations have been performed for the complexes of formamide (FA) with methanol and its derivates (MAX, X = F, Cl, Br, NO2, H, OH, CH3, and NH2) to study their structures and properties. Substituent effects on the hydrogen bond (H-bond) strength and cooperative effect by using water and its derivatives (HOZ, Z = H, NH2, and Br) as weak interaction probe were also explored. The calculation results show that electron-donating groups strengthen the weak interaction between formamide with methanol whereas electron-withdrawing groups weaken it. The cooperativity is present for the N-HïO H-bond in MAX-FA-HOZ and the cooperative effect increases in a series HONH2, HOH, and HOBr. In addition, we investigated the interaction between FA with hypohalous acids HOY (Y = F, Cl, and Br). It was found that the weak interaction between FA and HOY became stronger with the increase of the size of halogen atom. The nature of the halogen atom has negligible impact on the strength of the H-bond in MAX-FA (X = F, Cl, and Br), whereas it has an obvious influence on the strength of the H-bond in HOY-FA (Y = F, Cl, and Br).

  7. Deriving Heterospecific Self-Assembling Protein-Protein Interactions Using a Computational Interactome Screen.

    PubMed

    Crooks, Richard O; Baxter, Daniel; Panek, Anna S; Lubben, Anneke T; Mason, Jody M

    2016-01-29

    Interactions between naturally occurring proteins are highly specific, with protein-network imbalances associated with numerous diseases. For designed protein-protein interactions (PPIs), required specificity can be notoriously difficult to engineer. To accelerate this process, we have derived peptides that form heterospecific PPIs when combined. This is achieved using software that generates large virtual libraries of peptide sequences and searches within the resulting interactome for preferentially interacting peptides. To demonstrate feasibility, we have (i) generated 1536 peptide sequences based on the parallel dimeric coiled-coil motif and varied residues known to be important for stability and specificity, (ii) screened the 1,180,416 member interactome for predicted Tm values and (iii) used predicted Tm cutoff points to isolate eight peptides that form four heterospecific PPIs when combined. This required that all 32 hypothetical off-target interactions within the eight-peptide interactome be disfavoured and that the four desired interactions pair correctly. Lastly, we have verified the approach by characterising all 36 pairs within the interactome. In analysing the output, we hypothesised that several sequences are capable of adopting antiparallel orientations. We subsequently improved the software by removing sequences where doing so led to fully complementary electrostatic pairings. Our approach can be used to derive increasingly large and therefore complex sets of heterospecific PPIs with a wide range of potential downstream applications from disease modulation to the design of biomaterials and peptides in synthetic biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Effects of two successive parity-invariant point interactions on one-dimensional quantum transmission: Resonance conditions for the parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konno, Kohkichi, E-mail: kohkichi@tomakomai-ct.ac.jp; Nagasawa, Tomoaki, E-mail: nagasawa@tomakomai-ct.ac.jp; Takahashi, Rohta, E-mail: takahashi@tomakomai-ct.ac.jp

    We consider the scattering of a quantum particle by two independent, successive parity-invariant point interactions in one dimension. The parameter space for the two point interactions is given by the direct product of two tori, which is described by four parameters. By investigating the effects of the two point interactions on the transmission probability of plane wave, we obtain the conditions for the parameter space under which perfect resonant transmission occur. The resonance conditions are found to be described by symmetric and anti-symmetric relations between the parameters.

  9. Spectroscopic studies on the interaction of cinnamic acid and its hydroxyl derivatives with human serum albumin

    NASA Astrophysics Data System (ADS)

    Min, Jiang; Meng-Xia, Xie; Dong, Zheng; Yuan, Liu; Xiao-Yu, Li; Xing, Chen

    2004-04-01

    Cinnamic acid and its derivatives possess various biological effects in remedy of many diseases. Interaction of cinnamic acid and its hydroxyl derivatives, p-coumaric acid and caffeic acid, with human serum albumin (HSA), and concomitant changes in its conformation were studied using fluorescence and Fourier transform infrared spectroscopic methods. Fluorescence data revealed the presence of one binding site on HSA for cinnamic acid and its hydroxyl derivatives, and their binding constants ( KA) are caffeic acid> p-coumaric acid> cinnamic acid when Cdrug/ CHSA ranging from 1 to 10. The changes of the secondary structure of HSA after interacting with the three drugs are estimated, respectively by combining the curve-fitting results of amid I and amid III bands. The α-helix structure has a decrease of ≈9, 5 and 3% after HSA interacted with caffeic acid, p-coumaric acid and cinnamic acid, respectively. It was found that the hydroxyls substituted on aromatic ring of the drugs play an important role in the changes of protein's secondary structure. Combining the result of fluorescence quenching and the changes of secondary structure of HSA after interaction with the three drugs, the drug-HSA interaction mode was discussed.

  10. Studies on the interaction of a synthetic nitro-flavone derivative with DNA: A multi-spectroscopic and molecular docking approach.

    PubMed

    Mitra, A; Saikh, F; Das, J; Ghosh, S; Ghosh, R

    2018-05-22

    Interaction of a ligand with DNA is often the basis of drug action of many molecules. Flavones are important in this regard as their structural features confer them the ability to bind to DNA. 2-(4-Nitrophenyl)-4H-chromen-4-one (4NCO) is an important biologically active synthetic flavone derivative. We are therefore interested in studying its interaction with DNA. Absorption spectroscopy studies included standard and reverse titration, effect of ionic strength on titration, determination of stoichiometry of binding and thermal denaturation. Spectrofluorimetry techniques included fluorimetric titration, quenching studies and fluorescence displacement assay. Assessment of relative viscosity and estimation of thermodynamic parameters from CD spectral studies were also undertaken. Furthermore, molecular docking analyses were also done with different short DNA sequences. The fluorescent flavone 4NCO reversibly interacted with DNA through partial intercalation as well as minor-groove binding. The binding constant and the number of binding sites were of the order 10 4  M -1 and 1 respectively. The binding stoichiometry with DNA was found to be 1:1. The nature of the interaction of 4NCO with DNA was hydrophobic in nature and the process of binding was spontaneous, endothermic and entropy-driven. The flavone also showed a preference for binding to GC rich sequences. The study presents a profile for structural and thermodynamic parameters, for the binding of 4NCO with DNA. DNA is an important target for ligands that are effective against cell proliferative disorders. In this regard, the molecule 4NCO is important since it can exert its biological activity through its DNA binding ability and can be a potential drug candidate. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Using radar-derived parameters to forecast lightning cessation for nonisolated storms

    NASA Astrophysics Data System (ADS)

    Davey, Matthew J.; Fuelberg, Henry E.

    2017-03-01

    Lightning impacts operations at the Kennedy Space Center (KSC) and other outdoor venues leading to injuries, inconvenience, and detrimental economic impacts. This research focuses on cases of "nonisolated" lightning which we define as one cell whose flashes have ceased although it is still embedded in weak composite reflectivity (Z ≥ 15 dBZ) with another cell that is still producing flashes. The objective is to determine if any radar-derived parameters provide useful information about the occurrence of lightning cessation in remnant storms. The data set consists of 50 warm season (May-September) nonisolated storms near KSC during 2013. The research utilizes the National Lightning Detection Network, the second generation Lightning Detection and Ranging network, and polarized radar data. These data are merged and analyzed using the Warning Decision Support System-Integrated Information at 1 min intervals. Our approach only considers 62 parameters, most of which are related to the noninductive charging mechanism. They included the presence of graupel at various thermal altitudes, maximum reflectivity of the decaying storm at thermal altitudes, maximum connecting composite reflectivity between the decaying cell and active cell, minutes since the previous flash, and several others. Results showed that none of the parameters reliably indicated lightning cessation for even our restrictive definition of nonisolated storms. Additional research is needed before cessation can be determined operationally with the high degree of accuracy required for safety.

  12. Non-Abelian monopole in the parameter space of point-like interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohya, Satoshi, E-mail: ohyasato@fjfi.cvut.cz

    2014-12-15

    We study non-Abelian geometric phase in N=2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry’s connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. - Highlights: • Supersymmetric quantum mechanics is an ideal playground for studying geometric phase. • We determine the parameter space of supersymmetric point-like interactions. • Berry’s connection is given by a Wu–Yang-like magnetic monopole in SU(2) Yang–Mills.

  13. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    PubMed

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are

  14. Differential Interaction of Platelet-Derived Extracellular Vesicles with Leukocyte Subsets in Human Whole Blood.

    PubMed

    Weiss, René; Gröger, Marion; Rauscher, Sabine; Fendl, Birgit; Eichhorn, Tanja; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria

    2018-04-26

    Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14 ++ CD16 + ) monocytes in whole blood.

  15. Optimizing Performance Parameters of Chemically-Derived Graphene/p-Si Heterojunction Solar Cell.

    PubMed

    Batra, Kamal; Nayak, Sasmita; Behura, Sanjay K; Jani, Omkar

    2015-07-01

    Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

  16. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    NASA Astrophysics Data System (ADS)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  17. Lens Epithelium-derived Growth Factor/p75 Interacts with the Transposase-derived DDE Domain of PogZ*S⃞

    PubMed Central

    Bartholomeeusen, Koen; Christ, Frauke; Hendrix, Jelle; Rain, Jean-Christophe; Emiliani, Stéphane; Benarous, Richard; Debyser, Zeger; Gijsbers, Rik; De Rijck, Jan

    2009-01-01

    Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function. PMID:19244240

  18. Visual exploration of parameter influence on phylogenetic trees.

    PubMed

    Hess, Martin; Bremm, Sebastian; Weissgraeber, Stephanie; Hamacher, Kay; Goesele, Michael; Wiemeyer, Josef; von Landesberger, Tatiana

    2014-01-01

    Evolutionary relationships between organisms are frequently derived as phylogenetic trees inferred from multiple sequence alignments (MSAs). The MSA parameter space is exponentially large, so tens of thousands of potential trees can emerge for each dataset. A proposed visual-analytics approach can reveal the parameters' impact on the trees. Given input trees created with different parameter settings, it hierarchically clusters the trees according to their structural similarity. The most important clusters of similar trees are shown together with their parameters. This view offers interactive parameter exploration and automatic identification of relevant parameters. Biologists applied this approach to real data of 16S ribosomal RNA and protein sequences of ion channels. It revealed which parameters affected the tree structures. This led to a more reliable selection of the best trees.

  19. DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives.

    PubMed

    Dixit, Ritu B; Patel, Tarosh S; Vanparia, Satish F; Kunjadiya, Anju P; Keharia, Harish R; Dixit, Bharat C

    2011-01-01

    Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.

  20. Deriving aerosol parameters from in-situ spectrometer measurements for validation of remote sensing products

    NASA Astrophysics Data System (ADS)

    Riedel, Sebastian; Janas, Joanna; Gege, Peter; Oppelt, Natascha

    2017-10-01

    Uncertainties of aerosol parameters are the limiting factor for atmospheric correction over inland and coastal waters. For validating remote sensing products from these optically complex and spatially inhomogeneous waters the spatial resolution of automated sun photometer networks like AERONET is too coarse and additional measurements on the test site are required. We have developed a method which allows the derivation of aerosol parameters from measurements with any spectrometer with suitable spectral range and resolution. This method uses a pair of downwelling irradiance and sky radiance measurements for the extraction of the turbidity coefficient and aerosol Ångström exponent. The data can be acquired fast and reliable at almost any place during a wide range of weather conditions. A comparison to aerosol parameters measured with a Cimel sun photometer provided by AERONET shows a reasonable agreement for the Ångström exponent. The turbidity coefficient did not agree well with AERONET values due to fit ambiguities, indicating that future research should focus on methods to handle parameter correlations within the underlying model.

  1. Chemical and molecular aspects on interactions of galanthamine and its derivatives with cholinesterases.

    PubMed

    Gulcan, Hayrettin O; Orhan, Ilkay E; Sener, Bilge

    2015-01-01

    Dual action of galanthamine as potent cholinesterase inhibitor and nicotinic modulator has attracted a great attention to be used in the treatment of AD. Consequently, galanthamine, a natural alkaloid isolated from a Galanthus species (snowdrop, Amaryllidaceae), has become an attractive model compound for synthesis of its novel derivatives to discover new drug candidates. Numerous studies have been done to elucidate interactions between galanthamine and its different derivatives and the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using in vitro and in silico experimental models. The in vitro studies revealed that galanthamine inhibits AChE in strong, competitive, long-acting, and reversible manner as well as BChE, although its selectivity towards AChE is much higher than BChE. The in silico studies carried out by employing molecular docking experiments as well as molecular dynamics simulations pointed out to existence of strong interactions of galanthamine with the active gorge of AChE, mostly of Torpedo californica (the Pasific electric ray) origin. In this review, we evaluate the mainstays of cholinesterase inhibitory action of galanthamine and its various derivatives from the point of view of chemical and molecular aspects.

  2. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  3. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    NASA Astrophysics Data System (ADS)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  4. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    PubMed

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Derivation of WECC Distributed PV System Model Parameters from Quasi-Static Time-Series Distribution System Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Boemer, Jens C.; Vittal, Eknath

    The response of low voltage networks with high penetration of PV systems to transmission network faults will, in the future, determine the overall power system performance during certain hours of the year. The WECC distributed PV system model (PVD1) is designed to represent small-scale distribution-connected systems. Although default values are provided by WECC for the model parameters, tuning of those parameters seems to become important in order to accurately estimate the partial loss of distributed PV systems for bulk system studies. The objective of this paper is to describe a new methodology to determine the WECC distributed PV system (PVD1)more » model parameters and to derive parameter sets obtained for six distribution circuits of a Californian investor-owned utility with large amounts of distributed PV systems. The results indicate that the parameters for the partial loss of distributed PV systems may differ significantly from the default values provided by WECC.« less

  6. Enthalpic parameters of interaction between diglycylglycine and polyatomic alcohols in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2015-12-01

    Integral enthalpies of solution Δsol H m of diglycylglycine in aqueous solutions of glycerol, ethylene glycol, and 1,2-propylene glycol are measured via solution calorimetry. The experimental data are used to calculate the standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of the tripeptide from water to aqueous solutions of polyatomic alcohols. The enthalpic pairwise coefficients h xy of interactions between the tripeptide and polyatomic alcohol molecules are calculated using the McMillan-Mayer solution theory and are found to have positive values. The findings are discussed using the theory of estimating various types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical parameters of diglycylglycine dissolution.

  7. Interaction between grape-derived proanthocyanidins and cell wall material. 2. Implications for vinification.

    PubMed

    Bindon, Keren A; Smith, Paul A; Holt, Helen; Kennedy, James A

    2010-10-13

    Proanthocyanidins (PAs) were isolated from the skins, seeds and flesh of commercially ripe grapes, and from wine and marc produced from the same source. In the grape berry, skin PAs accounted for 54% of the total extractable PA, while seed and flesh-derived PA accounted for 30% and 15% of the total, respectively. Following fermentation, 25% of the fruit PA was found in the wine, while 27% was found in the pericarp isolated from marc, and 48% was unaccounted for (either remaining in the seed or adsorbed to lees). To investigate the role that cell wall material (CWM) has on PA extraction during fermentation, CWM isolated from skin and flesh were combined with PA in model suspensions. In general, the affinity of flesh CWM for PA increased with increasing PA molecular mass (MM); however, this relationship was not observed for the interaction of skin CWM with skin PA. Subsequent experiments suggest that the differences in the interaction of flesh and skin CWM with PA of higher MM (>15000 g/mol) may be limited by the structure of the CWM. Observed variations in the composition between skin and flesh CWM may explain the differences in PA interaction at high MM. Among wine-derived PA, no higher MM material was detected, suggesting that, during vinification, higher MM PA are nonextractable and/or are removed from the wine by interaction with CWM.

  8. Interactive effects of aging parameters of AA6056

    NASA Astrophysics Data System (ADS)

    Dehghani, Kamran; Nekahi, Atiye

    2012-10-01

    The effect of thermomechanical treatment on the aging behavior of AA6056 aluminum alloy was modeled using response surface methodology (RSM). Two models were developed to predict the final yield stress (FYS) and elongation amounts as well as the optimum conditions of aging process. These were done based on the interactive effects of applied thermomechanical parameters. The optimum condition predicted by the model to attain the maximum strength was pre-aging at 80 °C for 15 h, followed by 70% cold work and subsequent final aging at 165 °C for 4 h, which resulted in the FYS of about 480 MPa. As for the elongation, the optimum condition was pre-aging at 80 °C for 15 h, followed by 30% cold work and final-aging at 165 °C for 4 h, which led to 21% elongation. To verify the suggested optimum conditions, the tests were carried out confirming the high accuracy (above 94%) of the RSM technique as well as the developed models. It is shown that the RSM can be used successfully to optimize the aging process, to determine the significance of aging parameters and to model the combination effect of process variables on the aging behavior of AA6056.

  9. New Equilibrium Models of Drug-Receptor Interactions Derived from Target-Mediated Drug Disposition.

    PubMed

    Peletier, Lambertus A; Gabrielsson, Johan

    2018-05-14

    In vivo analyses of pharmacological data are traditionally based on a closed system approach not incorporating turnover of target and ligand-target kinetics, but mainly focussing on ligand-target binding properties. This study incorporates information about target and ligand-target kinetics parallel to binding. In a previous paper, steady-state relationships between target- and ligand-target complex versus ligand exposure were derived and a new expression of in vivo potency was derived for a circulating target. This communication is extending the equilibrium relationships and in vivo potency expression for (i) two separate targets competing for one ligand, (ii) two different ligands competing for a single target and (iii) a single ligand-target interaction located in tissue. The derived expressions of the in vivo potencies will be useful both in drug-related discovery projects and mechanistic studies. The equilibrium states of two targets and one ligand may have implications in safety assessment, whilst the equilibrium states of two competing ligands for one target may cast light on when pharmacodynamic drug-drug interactions are important. The proposed equilibrium expressions for a peripherally located target may also be useful for small molecule interactions with extravascularly located targets. Including target turnover, ligand-target complex kinetics and binding properties in expressions of potency and efficacy will improve our understanding of within and between-individual (and across species) variability. The new expressions of potencies highlight the fact that the level of drug-induced target suppression is very much governed by target turnover properties rather than by the target expression level as such.

  10. Using climate derivatives for assessment of meteorological parameter relationships in RCM and observations

    NASA Astrophysics Data System (ADS)

    Timuhins, Andrejs; Bethers, Uldis; Bethers, Peteris; Klints, Ilze; Sennikovs, Juris; Frishfelds, Vilnis

    2017-04-01

    In a changing climate it is essential to estimate its impacts on different economic fields. In our study we tried to create a framework for climate change assessment and climate change impact estimation for the territory of Latvia and to create results which are also understandable for non-scientists (stakeholder, media and public). This approach allowed us to more carefully assess the presentation and interpretation of results and their validation, for public viewing. For the presentation of our work a website was created (www.modlab.lv/klimats) containing two types of documents in a unified framework, meteorological parameter analysis of different easily interpretable derivative values. Both of these include analysis of the current situation as well as illustrate the projection for future time periods. Derivate values are calculated using two data sources: the bias corrected regional climate data and meteorological observation data. Derivative documents contain description of derived value, some interesting facts and conclusions. Additionally, all results may be viewed in temporal and spatial graphs and maps, for different time periods as well as different seasons. Bias correction (Sennikovs and Bethers, 2009) for the control period 1961-1990 is applied to RCM data series. Meteorological observation data of the Latvian Environment, Geology, and Meteorology Agency and ENSEMBLES project daily data of 13 RCM runs for the period 1960-2100 are used. All the documents are prepared in python notebooks, which allow for flexible changes. At the moment following derivative values have been published: forest fire risk index, wind energy, phenology (Degree days), road condition (friction, ice conditions), daily minimal meteorological visibility, headache occurrence rate, firs snow date and meteorological parameter analysis: temperature, precipitation, wind speed, relative humidity, and cloudiness. While creating these products RCM ability to represent the actual climate was

  11. Parametrization of free ion levels of four isoelectronic 4f2 systems: Insights into configuration interaction parameters

    NASA Astrophysics Data System (ADS)

    Yeung, Yau Yuen; Tanner, Peter A.

    2013-12-01

    The experimental free ion 4f2 energy level data sets comprising 12 or 13 J-multiplets of La+, Ce2+, Pr3+ and Nd4+ have been fitted by a semiempirical atomic Hamiltonian comprising 8, 10, or 12 freely-varying parameters. The root mean square errors were 16.1, 1.3, 0.3 and 0.3 cm-1, respectively for fits with 10 parameters. The fitted inter-electronic repulsion and magnetic parameters vary linearly with ionic charge, i, but better linear fits are obtained with (4-i)2, although the reason is unclear at present. The two-body configuration interaction parameters α and β exhibit a linear relation with [ΔE(bc)]-1, where ΔE(bc) is the energy difference between the 4f2 barycentre and that of the interacting configuration, namely 4f6p for La+, Ce2+, and Pr3+, and 5p54f3 for Nd4+. The linear fit provides the rationale for the negative value of α for the case of La+, where the interacting configuration is located below 4f2.

  12. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual

  13. Markov Chain Monte Carlo Used in Parameter Inference of Magnetic Resonance Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hock, Kiel; Earle, Keith

    2016-02-06

    In this paper, we use Boltzmann statistics and the maximum likelihood distribution derived from Bayes’ Theorem to infer parameter values for a Pake Doublet Spectrum, a lineshape of historical significance and contemporary relevance for determining distances between interacting magnetic dipoles. A Metropolis Hastings Markov Chain Monte Carlo algorithm is implemented and designed to find the optimum parameter set and to estimate parameter uncertainties. In conclusion, the posterior distribution allows us to define a metric on parameter space that induces a geometry with negative curvature that affects the parameter uncertainty estimates, particularly for spectra with low signal to noise.

  14. Ecophysiological interactions and water-related physicochemical parameters among freshwater stingrays.

    PubMed

    Oliveira, A T; Araújo, M L G; Lemos, J R G; Santos, M Q C; Pantoja-Lima, J; Aride, P H R; Tavares-Dias, M; Marcon, J L

    2017-01-01

    The objective of this study was to compare and correlate the ecology of neonates and young individuals of Potamotrygon wallacei, Potamotrygon motoro and Paratrygon aiereba with regard to their hematological profile and the physicochemical parameters of the water that they inhabit. Principal component analysis (PCA) on the complete blood count revealed total variation of 72.92%, thus demonstrating a differentiation system for oxygen demand. On the other hand, P. motoro was considered to be an intermediate species, given that its complete blood count characteristics interacted with both P. wallacei and with P. aiereba. The interaction among the biochemical variables was shown to total 64.67% of the factors. This allowed differentiation of P. wallacei from P. aiereba, while P. motoro maintained an intermediate position. These characteristics of differentiation within the preferred environment corroborate the PCA of the present study and confirm that these species can be differentiated through considering the complete blood count and biochemical parameters. The PCA on water properties showed 68.57% differentiation, mainly comprising the x axis (49.44%). It can be affirmed that P. motoro has the capacity to inhabit the preferential areas of P. wallacei and P. aiereba, as well as occupying localities in which other stingrays are not found. In conclusion, P. wallacei presents patterns differentiating it from P. aiereba, while P. motoro is a species that presents intermediate characteristics. The latter can be considered to be a more broadly distributed species regarding its ecophysiological characteristics.

  15. ShinyKGode: an interactive application for ODE parameter inference using gradient matching.

    PubMed

    Wandy, Joe; Niu, Mu; Giurghita, Diana; Daly, Rónán; Rogers, Simon; Husmeier, Dirk

    2018-07-01

    Mathematical modelling based on ordinary differential equations (ODEs) is widely used to describe the dynamics of biological systems, particularly in systems and pathway biology. Often the kinetic parameters of these ODE systems are unknown and have to be inferred from the data. Approximate parameter inference methods based on gradient matching (which do not require performing computationally expensive numerical integration of the ODEs) have been getting popular in recent years, but many implementations are difficult to run without expert knowledge. Here, we introduce ShinyKGode, an interactive web application to perform fast parameter inference on ODEs using gradient matching. ShinyKGode can be used to infer ODE parameters on simulated and observed data using gradient matching. Users can easily load their own models in Systems Biology Markup Language format, and a set of pre-defined ODE benchmark models are provided in the application. Inferred parameters are visualized alongside diagnostic plots to assess convergence. The R package for ShinyKGode can be installed through the Comprehensive R Archive Network (CRAN). Installation instructions, as well as tutorial videos and source code are available at https://joewandy.github.io/shinyKGode. Supplementary data are available at Bioinformatics online.

  16. Sensitivity derivatives for advanced CFD algorithm and viscous modelling parameters via automatic differentiation

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Newman, Perry A.; Haigler, Kara J.

    1993-01-01

    The computational technique of automatic differentiation (AD) is applied to a three-dimensional thin-layer Navier-Stokes multigrid flow solver to assess the feasibility and computational impact of obtaining exact sensitivity derivatives typical of those needed for sensitivity analyses. Calculations are performed for an ONERA M6 wing in transonic flow with both the Baldwin-Lomax and Johnson-King turbulence models. The wing lift, drag, and pitching moment coefficients are differentiated with respect to two different groups of input parameters. The first group consists of the second- and fourth-order damping coefficients of the computational algorithm, whereas the second group consists of two parameters in the viscous turbulent flow physics modelling. Results obtained via AD are compared, for both accuracy and computational efficiency with the results obtained with divided differences (DD). The AD results are accurate, extremely simple to obtain, and show significant computational advantage over those obtained by DD for some cases.

  17. Resolution dependence of petrophysical parameters derived from X-ray tomography of chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müter, D.; Sørensen, H. O.; Jha, D.

    2014-07-28

    X-ray computed tomography data from chalk drill cuttings were taken over a series of voxel dimensions, ranging from 320 to 25 nm. From these data sets, standard petrophysical parameters (porosity, surface area, and permeability) were derived and we examined the effect of the voxel dimension (i.e., image resolution) on these properties. We found that for the higher voxel dimensions, they are severely over or underestimated, whereas for 50 and 25 nm voxel dimension, the resulting values (5%–30% porosity, 0.2–2 m{sup 2}/g specific surface area, and 0.06–0.34 mD permeability) are within the expected range for this type of rock. We compared our resultsmore » to macroscopic measurements and in the case of surface area, also to measurements using the Brunauer-Emmett-Teller (BET) method and found that independent of the degree of compaction, the results from tomography amount to about 30% of the BET method. Finally, we concluded that at 25 nm voxel dimension, the essential features of the nanoscopic pore network in chalk are captured but better resolution is still needed to derive surface area.« less

  18. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site

    NASA Astrophysics Data System (ADS)

    Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology

  19. Annonalide and derivatives: Semisynthesis, cytotoxic activities and studies on interaction of annonalide with DNA.

    PubMed

    Marques, Ricardo A; Gomes, Akenaton O C V; de Brito, Maria V; Dos Santos, Ana L P; da Silva, Gladyane S; de Lima, Leandro B; Nunes, Fátima M; de Mattos, Marcos C; de Oliveira, Fátima C E; do Ó Pessoa, Cláudia; de Moraes, Manoel O; de Fátima, Ângelo; Franco, Lucas L; Silva, Marina de M; Dantas, Maria Dayanne de A; Santos, Josué C C; Figueiredo, Isis M; da Silva-Júnior, Edeíldo F; de Aquino, Thiago M; de Araújo-Júnior, João X; de Oliveira, Maria C F; Leslie Gunatilaka, A A

    2018-02-01

    The cytotoxic activity of the pimarane diterpene annonalide (1) and nine of its semisynthetic derivatives (2-10) was investigated against the human tumor cell lines HL-60 (leukemia), PC-3 (prostate adenocarcinoma), HepG2 (hepatocellular carcinoma), SF-295 (glioblastoma) and HCT-116 (colon cancer), and normal mouse fibroblast (L929) cells. The preparation of 2-10 involved derivatization of the side chain of 1 at C-13. Except for 2, all derivatives are being reported for the first time. Most of the tested compounds presented IC 50 s below 4.0 μM, being considered potential antitumor agents. The structures of all new compounds were elucidated by spectroscopic analyses including 2D NMR and HRMS. Additionally, the interaction of annonalide (1) with ctDNA was evaluated using spectroscopic techniques, and the formation of a supramolecular complex with the macromolecule was confirmed. Competition assays with fluorescent probes (Hoechst and ethidium bromide) and theoretical studies confirmed that 1 interacts preferentially via DNA intercalation with stoichiometric ratio of 1:1 (1:ctDNA). The ΔG value was calculated as -28.24 kJ mol -1 , and indicated that the interaction process occurs spontaneously. Docking studies revealed that van der Walls is the most important interaction in 1-DNA and EB-DNA complexes, and that both ligands (1 and EB) interact with the same DNA residues (DA6, DA17 and DT19). Copyright © 2018. Published by Elsevier B.V.

  20. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R., E-mail: mark.pederson@science.doe.gov

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeitmore » slightly too low.« less

  1. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO{sub 3} content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, Yukina; Shinozaki, Kenji; Honma, Tsuyoshi

    2014-12-15

    Glasses with the compositions of 25Gd{sub 2}O{sub 3}–xWO{sub 3}–(75−x)B{sub 2}O{sub 3} with x=25–65 were prepared by using a conventional melt quenching method, and their electronic polarizabilities, optical basicities Λ(n{sub o}), and interaction parameters A(n{sub o}) were estimated from density and refractive index measurements in order to clarify the feature of electronic polarizability and bonding states in the glasses with high WO{sub 3} contents. The optical basicity of the glasses increases monotonously with the substitution of WO{sub 3} for B{sub 2}O{sub 3}, and contrary the interaction parameter decreases monotonously with increasing WO{sub 3} content. A good linear correlation was observed betweenmore » Λ(n{sub o}) and A(n{sub o}) and between the glass transition temperature and A(n{sub o}). It was proposed that Gd{sub 2}O{sub 3} oxide belongs to the category of basic oxide with a value of A(n{sub o})=0.044 Å{sup −3} as similar to WO{sub 3}. The relationship between the glass formation and electronic polarizability in the glasses was discussed, and it was proposed that the glasses with high WO{sub 3} and Gd{sub 2}O{sub 3} contents would be a floppy network system consisting of mainly basic oxides. - Graphical abstract: This figure shows the correlation between the optical basicity and interaction parameter in borate-based glasses. The data obtained in the present study for Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses are locating in the correlation line for other borate glasses. These results shown in Fig. 8 clearly demonstrate that Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses having a wide range of optical basicity and interaction parameter are regarded as glasses consisting of acidic and basic oxides. - Highlights: • Gd{sub 2}O{sub 3}–WO{sub 3}–B{sub 2}O{sub 3} glasses with high WO{sub 3} contents were prepared. • Electronic polarizability and interaction parameter were estimated. • Optical basicity

  2. Sensor-derived physical activity parameters can predict future falls in people with dementia

    PubMed Central

    Schwenk, Michael; Hauer, Klaus; Zieschang, Tania; Englert, Stefan; Mohler, Jane; Najafi, Bijan

    2014-01-01

    Background There is a need for simple clinical tools that can objectively assess fall risk in people with dementia. Wearable sensors seem to have potential for fall prediction, however, there has been limited work performed in this important area. Objective To explore the validity of sensor-derived physical activity (PA) parameters for predicting future falls in people with dementia. To compare sensor-based fall risk assessment with conventional fall risk measures. Methods A cohort study of people with confirmed dementia discharged from a geriatric rehabilitation ward. PA was quantified using 24-hour motion-sensor monitoring at the beginning of the study. PA parameters (percentage of walking, standing, sitting, lying; duration of single walking, standing, and sitting bouts) were extracted using specific algorithms. Conventional assessment included performance-based tests (Timed-up-and-go test, Performance-Oriented-Mobility-Assessment, 5-chair stand) and questionnaires (cognition, ADL-status, fear of falling, depression, previous faller). Outcome measures were fallers (at least one fall in the 3-month follow-up period) versus non-fallers. Results Seventy-seven people were included in the study (age 81.8 ± 6.3; community dwelling 88%, institutionalized 12%). Surprisingly, fallers and non-fallers did not differ on any conventional assessment (p= 0.069–0.991), except for ‘previous faller’ (p= 0.006). Interestingly, several PA parameters discriminated between groups. The ‘walking bouts average duration’, ‘longest walking bout duration’ and ‘walking bouts duration variability’ were lower in fallers, compared to non-fallers (p= 0.008–0.027). The ‘standing bouts average duration’ was higher in fallers (p= 0.050). Two variables, ‘walking bouts average duration’ [odds ratio (OR) 0.79, p= 0.012] and ‘previous faller’ [OR 4.44, p= 0.007] were identified as independent predictors for falls. The OR for a ‘walking bouts average duration’ of

  3. Sensor-derived physical activity parameters can predict future falls in people with dementia.

    PubMed

    Schwenk, Michael; Hauer, Klaus; Zieschang, Tania; Englert, Stefan; Mohler, Jane; Najafi, Bijan

    2014-01-01

    There is a need for simple clinical tools that can objectively assess the fall risk in people with dementia. Wearable sensors seem to have the potential for fall prediction; however, there has been limited work performed in this important area. To explore the validity of sensor-derived physical activity (PA) parameters for predicting future falls in people with dementia. To compare sensor-based fall risk assessment with conventional fall risk measures. This was a cohort study of people with confirmed dementia discharged from a geriatric rehabilitation ward. PA was quantified using 24-hour motion-sensor monitoring at the beginning of the study. PA parameters (percentage of walking, standing, sitting, and lying; duration of single walking, standing, and sitting bouts) were extracted using specific algorithms. Conventional assessment included performance-based tests (Timed Up and Go Test, Performance-Oriented Mobility Assessment, 5-chair stand) and questionnaires (cognition, ADL status, fear of falling, depression, previous faller). Outcome measures were fallers (at least one fall in the 3-month follow-up period) versus non-fallers. 77 people were included in the study (age 81.8 ± 6.3; community-dwelling 88%, institutionalized 12%). Surprisingly, fallers and non-fallers did not differ on any conventional assessment (p = 0.069-0.991), except for 'previous faller' (p = 0.006). Interestingly, several PA parameters discriminated between the groups. The 'walking bout average duration', 'longest walking bout duration' and 'walking bout duration variability' were lower in fallers, compared to non-fallers (p = 0.008-0.027). The 'standing bout average duration' was higher in fallers (p = 0.050). Two variables, 'walking bout average duration' [odds ratio (OR) 0.79, p = 0.012] and 'previous faller' (OR 4.44, p = 0.007) were identified as independent predictors for falls. The OR for a 'walking bout average duration' <15 s for predicting fallers was 6.30 (p = 0.020). Combining

  4. Application of Statistically Derived CPAS Parachute Parameters

    NASA Technical Reports Server (NTRS)

    Romero, Leah M.; Ray, Eric S.

    2013-01-01

    The Capsule Parachute Assembly System (CPAS) Analysis Team is responsible for determining parachute inflation parameters and dispersions that are ultimately used in verifying system requirements. A model memo is internally released semi-annually documenting parachute inflation and other key parameters reconstructed from flight test data. Dispersion probability distributions published in previous versions of the model memo were uniform because insufficient data were available for determination of statistical based distributions. Uniform distributions do not accurately represent the expected distributions since extreme parameter values are just as likely to occur as the nominal value. CPAS has taken incremental steps to move away from uniform distributions. Model Memo version 9 (MMv9) made the first use of non-uniform dispersions, but only for the reefing cutter timing, for which a large number of sample was available. In order to maximize the utility of the available flight test data, clusters of parachutes were reconstructed individually starting with Model Memo version 10. This allowed for statistical assessment for steady-state drag area (CDS) and parachute inflation parameters such as the canopy fill distance (n), profile shape exponent (expopen), over-inflation factor (C(sub k)), and ramp-down time (t(sub k)) distributions. Built-in MATLAB distributions were applied to the histograms, and parameters such as scale (sigma) and location (mu) were output. Engineering judgment was used to determine the "best fit" distribution based on the test data. Results include normal, log normal, and uniform (where available data remains insufficient) fits of nominal and failure (loss of parachute and skipped stage) cases for all CPAS parachutes. This paper discusses the uniform methodology that was previously used, the process and result of the statistical assessment, how the dispersions were incorporated into Monte Carlo analyses, and the application of the distributions in

  5. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements

    NASA Astrophysics Data System (ADS)

    Kougioumtzoglou, Ioannis A.; dos Santos, Ketson R. M.; Comerford, Liam

    2017-09-01

    Various system identification techniques exist in the literature that can handle non-stationary measured time-histories, or cases of incomplete data, or address systems following a fractional calculus modeling. However, there are not many (if any) techniques that can address all three aforementioned challenges simultaneously in a consistent manner. In this paper, a novel multiple-input/single-output (MISO) system identification technique is developed for parameter identification of nonlinear and time-variant oscillators with fractional derivative terms subject to incomplete non-stationary data. The technique utilizes a representation of the nonlinear restoring forces as a set of parallel linear sub-systems. In this regard, the oscillator is transformed into an equivalent MISO system in the wavelet domain. Next, a recently developed L1-norm minimization procedure based on compressive sensing theory is applied for determining the wavelet coefficients of the available incomplete non-stationary input-output (excitation-response) data. Finally, these wavelet coefficients are utilized to determine appropriately defined time- and frequency-dependent wavelet based frequency response functions and related oscillator parameters. Several linear and nonlinear time-variant systems with fractional derivative elements are used as numerical examples to demonstrate the reliability of the technique even in cases of noise corrupted and incomplete data.

  6. The PRo3D View Planner - interactive simulation of Mars rover camera views to optimise capturing parameters

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Ortner, Thomas; Hesina, Gerd; Barnes, Robert; Gupta, Sanjeev; Paar, Gerhard

    2017-04-01

    High resolution Digital Terrain Models (DTM) and Digital Outcrop Models (DOM) are highly useful for geological analysis and mission planning in planetary rover missions. PRo3D, developed as part of the EU-FP7 PRoViDE project, is a 3D viewer in which orbital DTMs and DOMs derived from rover stereo imagery can be rendered in a virtual environment for exploration and analysis. It allows fluent navigation over planetary surface models and provides a variety of measurement and annotation tools to complete an extensive geological interpretation. A key aspect of the image collection during planetary rover missions is determining the optimal viewing positions of rover instruments from different positions ('wide baseline stereo'). For the collection of high quality panoramas and stereo imagery the visibility of regions of interest from those positions, and the amount of common features shared by each stereo-pair, or image bundle is crucial. The creation of a highly accurate and reliable 3D surface, in the form of an Ordered Point Cloud (OPC), of the planetary surface, with a low rate of error and a minimum of artefacts, is greatly enhanced by using images that share a high amount of features and a sufficient overlap for wide baseline stereo or target selection. To support users in the selection of adequate viewpoints an interactive View Planner was integrated into PRo3D. The users choose from a set of different rovers and their respective instruments. PRo3D supports for instance the PanCam instrument of ESA's ExoMars 2020 rover mission or the Mastcam-Z camera of NASA's Mars2020 mission. The View Planner uses a DTM obtained from orbiter imagery, which can also be complemented with rover-derived DOMs as the mission progresses. The selected rover is placed onto a position on the terrain - interactively or using the current rover pose as known from the mission. The rover's base polygon and its local coordinate axes, and the chosen instrument's up- and forward vectors are

  7. Towards construction of ghost-free higher derivative gravity from bigravity

    NASA Astrophysics Data System (ADS)

    Akagi, Satoshi

    2018-06-01

    In this paper, the ghost-freeness of the higher derivative theory proposed by Hassan et al. in [Universe 1, 92 (2015), 10.3390/universe1020092] is investigated. Hassan et al. believed the ghost-freeness of the higher derivative theory based on the analysis in the linear approximation. However, in order to obtain the complete correspondence, we have to analyze the model without any approximations. In this paper, we analyze the two-scalar model proposed in [Universe 1, 92 (2015), 10.3390/universe1020092] with arbitrary nonderivative interaction terms. In any order with respect to perturbative parameters, we prove that we can eliminate the ghost for the model with any nonderivative interaction terms.

  8. Non-covalent interaction between Cu-phthalocyanine and methanato borondifluoride derivatives in two different medium

    NASA Astrophysics Data System (ADS)

    Pal, Chiranjit; Chaudhuri, Tandrima; Chattopdhyay, Subrata; Banerjee, Manas

    2017-04-01

    This study sort out chemical physics of non-covalent interaction between Copper phthalocyanine (CuPC) with Methanato borondifluoride derivatives (MBDF) in chloroform and ethanol. Formation of isosbestic points indicated stable ground state equilibrium between CuPC and MBDF, association ability were more pronounced in less polar chloroform. Interesting overall parallel orientation of MBDF over CuPC in gas phase geometries indicated that fluorine centre of MBDF lying just above the Cu-centre of CuPC. Thus strong interaction between Cu(II)- and F- centre could not be overruled and was also established by NBO calculation. TDDFT along with FMO features and heat of reaction values clearly designated the existence of π-π interaction and effect of solvent polarity on that interaction.

  9. Chlorophyll-Derivative Modulation of Rhodopsin Signaling Properties through Evolutionarily Conserved Interaction Pathways

    PubMed Central

    Woods, Kristina N.; Pfeffer, Jürgen; Klein-Seetharaman, Judith

    2017-01-01

    Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs. PMID:29312953

  10. A Discontinuous Potential Model for Protein-Protein Interactions.

    PubMed

    Shao, Qing; Hall, Carol K

    2016-01-01

    Protein-protein interactions play an important role in many biologic and industrial processes. In this work, we develop a two-bead-per-residue model that enables us to account for protein-protein interactions in a multi-protein system using discontinuous molecular dynamics simulations. This model deploys discontinuous potentials to describe the non-bonded interactions and virtual bonds to keep proteins in their native state. The geometric and energetic parameters are derived from the potentials of mean force between sidechain-sidechain, sidechain-backbone, and backbone-backbone pairs. The energetic parameters are scaled with the aim of matching the second virial coefficient of lysozyme reported in experiment. We also investigate the performance of several bond-building strategies.

  11. Banding of NMR-derived Methyl Order Parameters: Implications for Protein Dynamics

    PubMed Central

    Sharp, Kim A.; Kasinath, Vignesh; Wand, A. Joshua

    2014-01-01

    Our understanding of protein folding, stability and function has begun to more explicitly incorporate dynamical aspects. Nuclear magnetic resonance has emerged as a powerful experimental method for obtaining comprehensive site-resolved insight into protein motion. It has been observed that methyl-group motion tends to cluster into three “classes” when expressed in terms of the popular Lipari-Szabo model-free squared generalized order parameter. Here the origins of the three classes or bands in the distribution of order parameters are examined. As a first step, a Bayesian based approach, which makes no a priori assumption about the existence or number of bands, is developed to detect the banding of O2axis values derived either from NMR experiments or molecular dynamics simulations. The analysis is applied to seven proteins with extensive molecular dynamics simulations of these proteins in explicit water to examine the relationship between O2 and fine details of the motion of methyl bearing side chains. All of the proteins studied display banding, with some subtle differences. We propose a very simple yet plausible physical mechanism for banding. Finally, our Bayesian method is used to analyze the measured distributions of methyl group motions in the catabolite activating protein and several of its mutants in various liganded states and discuss the functional implications of the observed banding to protein dynamics and function. PMID:24677353

  12. 68Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer.

    PubMed

    Schmidkonz, Christian; Cordes, Michael; Schmidt, Daniela; Bäuerle, Tobias; Goetz, Theresa Ida; Beck, Michael; Prante, Olaf; Cavallaro, Alexander; Uder, Michael; Wullich, Bernd; Goebell, Peter; Kuwert, Torsten; Ritt, Philipp

    2018-05-03

    We aimed at evaluating the role of 68 Ga-PSMA-11 PET/CT-derived metabolic parameters for assessment of whole-body tumor burden and its capability to determine therapeutic response in patients with prostate cancer. A total of 142 patients with biochemical recurrence of prostate cancer underwent PET/CT with [ 68 Ga]Ga-PSMA-HBED-CC ( 68 Ga-PSMA-11). Quantitative assessment of all 641 68 Ga-PSMA-11-positive lesions in the field of view was performed to calculate PSMA-derived parameters, including whole-body PSMA tumor volume (PSMA-TV) and whole-body total lesion PSMA (TL-PSMA), as well as the established SUVmax and SUVmean values. All PET-derived parameters were tested for correlation with serum PSA levels and for association with Gleason scores. In 23 patients who underwent 68 Ga-PSMA-11 PET/CT before and after therapy with either external beam radiation, androgen deprivation, or docetaxel chemotherapy, SUVmax and TL-PSMA were compared to radiographic response assessment of CT images based on RECIST 1.1 criteria and to biochemical response determined by changes of serum PSA levels. PSMA-TV and TL-PSMA demonstrated a significant correlation with serum PSA levels (P < 0.0001) and TL-PSMA was significantly different for different Gleason scores. The agreement rate between TL-PSMA derived from PET and biochemical response was 87% (95% confidence interval, 0.66-0.97; Cohen's κ = 0.78; P < 0.01) and, thus, higher than for SUVmax, which was 74% (95% CI, 0.52-0.90; κ = 0.55; P < 0.01). Furthermore, agreement with PSA was higher for TL-PSMA and SUVmax than for CT-based response evaluation. Discordant findings between PET and CT were most likely due to limitations of CT and RECIST in rating small lymph nodes as metastases, as well as bone involvement, which was sometimes not detectable in CT. 68 Ga-PSMA-11 PET/CT-derived metabolic tumor parameters showed promising results for evaluation of treatment response. Especially, TL-PSMA demonstrated higher agreement

  13. Lipophilicity indices derived from the liquid chromatographic behavior observed under bimodal retention conditions (reversed phase/hydrophilic interaction): application to a representative set of pyridinium oximes.

    PubMed

    Voicu, Victor; Sârbu, Costel; Tache, Florentin; Micăle, Florina; Rădulescu, Ştefan Flavian; Sakurada, Koichi; Ohta, Hikoto; Medvedovici, Andrei

    2014-05-01

    The liquid chromatographic behavior observed under bimodal retention conditions (reversed phase and hydrophilic interaction) offers a new basis for the determination of some derived lipophilicity indices. The experiments were carried out on a representative group (30 compounds) of pyridinium oximes, therapeutically tested in acetylcholinesterase reactivation, covering a large range of lipophilic character. The chromatographic behavior was observed on a mixed mode acting stationary phase, resulting from covalent functionalization of high purity spherical silica with long chain alkyl groups terminated by a polar environment created through the vicinal diol substitution at the lasting carbon atoms (Acclaim Mixed Mode HILIC 1 column). Elution was achieved by combining different proportions of 5 mM ammonium formiate solutions in water and acetonitrile. The derived lipophilicity indices were compared with logP values resulting from different computational algorithms. The correlations between experimental and computed data sets are significant. To obtain a better insight on the transition from reversed phase to hydrophilic interaction retention mechanisms, the variation of the thermodynamic parameters determined through the van׳t Hoff approach was also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions

    PubMed Central

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely

  15. Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions.

    PubMed

    Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo

    2015-01-01

    Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely

  16. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, Wenjun; Qin, Jun; Yang, Kun; Liu, Shaomin; Lu, Ning; Niu, Xiaolei

    2016-03-01

    Cloud parameters (cloud mask, effective particle radius, and liquid/ice water path) are the important inputs in estimating surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy, but their temporal resolution is too low to obtain high-temporal-resolution SSR retrievals. In order to obtain hourly cloud parameters, an artificial neural network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multifunctional Transport Satellite (MTSAT) geostationary satellite signals. In addition, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone) are input to the model, we can derive SSR at high spatiotemporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (or 5.4 %); the RMSEs in daily and monthly mean SSR estimates are 34.2 W m-2 (or 19.1 %) and 22.1 W m-2 (or 12.3 %), respectively. The accuracy is comparable to or even higher than two other radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  17. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data

    NASA Astrophysics Data System (ADS)

    Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X.

    2015-12-01

    Cloud parameters (cloud mask, effective particle radius and liquid/ice water path) are the important inputs in determining surface solar radiation (SSR). These parameters can be derived from MODIS with high accuracy but their temporal resolution is too low to obtain high temporal resolution SSR retrievals. In order to obtain hourly cloud parameters, the Artificial Neural Network (ANN) is applied in this study to directly construct a functional relationship between MODIS cloud products and Multi-functional Transport Satellite (MTSAT) geostationary satellite signals. Meanwhile, an efficient parameterization model for SSR retrieval is introduced and, when driven with MODIS atmospheric and land products, its root mean square error (RMSE) is about 100 W m-2 for 44 Baseline Surface Radiation Network (BSRN) stations. Once the estimated cloud parameters and other information (such as aerosol, precipitable water, ozone and so on) are input to the model, we can derive SSR at high spatio-temporal resolution. The retrieved SSR is first evaluated against hourly radiation data at three experimental stations in the Haihe River Basin of China. The mean bias error (MBE) and RMSE in hourly SSR estimate are 12.0 W m-2 (or 3.5 %) and 98.5 W m-2 (or 28.9 %), respectively. The retrieved SSR is also evaluated against daily radiation data at 90 China Meteorological Administration (CMA) stations. The MBEs are 9.8 W m-2 (5.4 %); the RMSEs in daily and monthly-mean SSR estimates are 34.2 W m-2 (19.1 %) and 22.1 W m-2 (12.3 %), respectively. The accuracy is comparable or even higher than other two radiation products (GLASS and ISCCP-FD), and the present method is more computationally efficient and can produce hourly SSR data at a spatial resolution of 5 km.

  18. Derivation of Delaware Bay tidal parameters from Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Zheng, Quanan; Yan, Xiao-Hai; Klemas, Vic

    1993-01-01

    The tide-related parameters of the Delaware Bay are derived from Space Shuttle time-series photographs. The water areas in the bay are measured from interpretation maps of the photographs with a CALCOMP 9100 digitizer and ERDAS Image Processing System. The corresponding tidal levels are calculated using the exposure time annotated on the photographs. From these data, an approximate function relating the water area to the tidal level at a reference point is determined. Based on the function, the water areas of the Delaware Bay at mean high water (MHW) and mean low water (MLW), below 0 m, and for the tidal zone are inferred. With MHW and MLW areas and the mean tidal range, we calculate the tidal influx of the Delaware Bay, which is 2.76 x 10 exp 9 cu m. The velocity of flood tide at the bay mouth is determined using the tidal flux and an integral of the velocity distribution function at the cross section between Cape Henlopen and Cape May. The result is 132 cm/s, which compares well with the data on tidal current charts.

  19. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  20. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.

    PubMed

    Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental

  1. Poromechanics Parameters of Fluid-Saturated Chemically Active Fibrous Media Derived from a Micromechanical Approach.

    PubMed

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2013-01-01

    The authors have derived macroscale poromechanics parameters for chemically active saturated fibrous media by combining microstructure-based homogenization with Hill's volume averaging. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's Lemmas. The advantage of this approach is that the resultant continuum model assumes a form suited to study porous materials, while retaining the effect of discrete fiber deformation. As a result, the model is able to predict the influence of microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the poromechanics constants. The significance of the approach is demonstrated using the effect of drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model predictions conform to the experimental observations for articular cartilage. The method can potentially be extended to other porous materials such as bone, clays, foams, and concrete.

  2. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; ...

    2015-12-24

    Our study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Moreover, quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Aminated pores, unlike hydrogenatedmore » pores, do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.« less

  3. A comparison between two powder compaction parameters of plasticity: the effective medium A parameter and the Heckel 1/K parameter.

    PubMed

    Mahmoodi, Foad; Klevan, Ingvild; Nordström, Josefina; Alderborn, Göran; Frenning, Göran

    2013-09-10

    The purpose of the research was to introduce a procedure to derive a powder compression parameter (EM A) representing particle yield stress using an effective medium equation and to compare the EM A parameter with the Heckel compression parameter (1/K). 16 pharmaceutical powders, including drugs and excipients, were compressed in a materials testing instrument and powder compression profiles were derived using the EM and Heckel equations. The compression profiles thus obtained could be sub-divided into regions among which one region was approximately linear and from this region, the compression parameters EM A and 1/K were calculated. A linear relationship between the EM A parameter and the 1/K parameter was obtained with a strong correlation. The slope of the plot was close to 1 (0.84) and the intercept of the plot was small in comparison to the range of parameter values obtained. The relationship between the theoretical EM A parameter and the 1/K parameter supports the interpretation of the empirical Heckel parameter as being a measure of yield stress. It is concluded that the combination of Heckel and EM equations represents a suitable procedure to derive a value of particle plasticity from powder compression data. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. LEOrbit: A program to calculate parameters relevant to modeling Low Earth Orbit spacecraft-plasma interaction

    NASA Astrophysics Data System (ADS)

    Marchand, R.; Purschke, D.; Samson, J.

    2013-03-01

    Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft

  5. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A derivation of the stable cavitation threshold accounting for bubble-bubble interactions.

    PubMed

    Guédra, Matthieu; Cornu, Corentin; Inserra, Claude

    2017-09-01

    The subharmonic emission of sound coming from the nonlinear response of a bubble population is the most used indicator for stable cavitation. When driven at twice their resonance frequency, bubbles can exhibit subharmonic spherical oscillations if the acoustic pressure amplitude exceeds a threshold value. Although various theoretical derivations exist for the subharmonic emission by free or coated bubbles, they all rest on the single bubble model. In this paper, we propose an analytical expression of the subharmonic threshold for interacting bubbles in a homogeneous, monodisperse cloud. This theory predicts a shift of the subharmonic resonance frequency and a decrease of the corresponding pressure threshold due to the interactions. For a given sonication frequency, these results show that an optimal value of the interaction strength (i.e. the number density of bubbles) can be found for which the subharmonic threshold is minimum, which is consistent with recently published experiments conducted on ultrasound contrast agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Vernisse, Loranne; Guillermet, Olivier; Gourdon, André; Coratger, Roland

    2018-03-01

    Derivative perylene molecules deposited on Ag(111) and on NaCl(001) ultrathin layers have been investigated using low temperature STM and NC-AFM. When the metallic substrate is held at ambient temperature during evaporation, the molecules form characteristic trimers on the Ag(111) surface and interact through their polar groups. Close to the steps, the molecules form linear structures and seems to stand side by side. On the other hand, after deposition on a substrate cooled at liquid helium temperature, single molecules are observed both on metal and on NaCl. On the ultrathin insulator layers, the STM images present characteristic contrasts related to the molecular orbitals which favors the localization of aldehyde groups. In this case, the lateral molecular interactions may induce the formation of small assemblies in which the electronic levels are slightly shifted. A possible interpretation of this phenomenon is to take into account polar interactions and charge transfer between neighboring molecules.

  8. Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine.

    PubMed

    Blois, Anna; Holmsen, Holm; Martino, Guglielmo; Corti, Angelo; Metz-Boutigue, Marie-Hélène; Helle, Karen B

    2006-03-15

    Vasostatin-I (CgA1-76) is a naturally occurring and biologically active N-terminal peptide derived from chromogranin A (CgA), produced and secreted at high concentrations by neuroendocrine tissues and also from a range of neuroendocrine tumors. This study aims to examine the hypothesis that in the absence of classical protein receptors CgA1-76 may, like its two derived peptides CgA1-40 and CgA47-66, perturb the lipid microenvironment of other membrane receptors, as a basis for the largely inhibitory activities of these CgA peptides. The nature of the interactions between phospholipids and vasostatin-derived fragments was studied in the Langmuir film balance apparatus at 37 degrees C. The synthetic peptides CgA1-40 and CgA47-66 and a recombinant fragment (VS-I) containing vasostatin-I (Ser-Thr-Ala-CgA1-78) were compared for their effects on monolayers of phosphatidylcholine and phosphatidylethanolamine from pig brain and defined species of phosphatidylserine. Marked differences in surface pressure-area isotherms and phase-transition plateaus were apparent with the three classes of phospholipids on VS-I, CgA1-40 and CgA47-66 in physiological buffer or pure water. The results indicate that VS-I and CgA47-66 at 5-10 nM concentrations may engage in electrostatic as well as hydrophobic interactions with membrane-relevant phospholipids at physiological conditions, VS-I in particular enhancing the fluidity of saturated species of phosphatidylserine.

  9. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    PubMed Central

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  10. Energy dependence of radiation interaction parameters of some organic compounds

    NASA Astrophysics Data System (ADS)

    Singh, Mohinder; Tondon, Akash; Sandhu, B. S.; Singh, Bhajan

    2018-04-01

    Gamma rays interact with a material through photoelectric absorption, Compton scattering, Rayleigh scattering and Pair production in the intermediate energy range. The probability of occurrence of a particular type of process depends on the energy of incident gamma rays, atomic number of the material, scattering angle and geometrical conditions. Various radiological parameters for organic compounds, namely ethylene glycol (C2H6O2), propylene glycol (C3H8O2), glycerin (C3H8O3), isoamyl alcohol (C5H12O), butanone (C4H8O), acetophenone (C8H8O2), cyclohexanone (C6H10O), furfural (C5H4O2), benzaldehyde (C7H6O), cinnamaldehyde (C9H8O), glutaraldehyde (C5H8O2), aniline (C6H7N), benzyl amine (C6H7N), nitrobenzene (C6H5NO2), ethyl benzene (C8H10), ethyl formate (C3H6O2) and water (H2O) are presented at 81, 122, 356 and 511 keV energies employing NaI(Tl) scintillation detector in narrow-beam transmission geometry. The radiation interaction parameters such as mass attenuation, molar extinction and mass energy absorption coefficients, half value layer, total atomic and effective electronic cross-sections and CT number have been evaluated for these organic compounds. The general trend of values of mass attenuation coefficients, half value layer, molar extinction coefficients, total atomic and effective electronic cross-sections and mass energy absorption coefficients shows a decrease with increase in incident gamma photon energy. The values of CT number are found to increases linearly with increase of effective atomic number (Zeff). The variation in CT number around Zeff ≈ 3.3 shows the peak like structure with respect to water and the correlation between CT number and linear attenuation coefficient is about 0.99. Appropriate equations are fitted to these experimentally determined parameters for the organic compounds at incident photon energy ranging from 81 keV to 511 keV used in the present study. Experimental values are compared with the theoretical data obtained using Win

  11. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    PubMed

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

  12. PLASS: Protein-ligand affinity statistical score a knowledge-based force-field model of interaction derived from the PDB

    NASA Astrophysics Data System (ADS)

    Ozrin, V. D.; Subbotin, M. V.; Nikitin, S. M.

    2004-04-01

    We have developed PLASS (Protein-Ligand Affinity Statistical Score), a pair-wise potential of mean-force for rapid estimation of the binding affinity of a ligand molecule to a protein active site. This scoring function is derived from the frequency of occurrence of atom-type pairs in crystallographic complexes taken from the Protein Data Bank (PDB). Statistical distributions are converted into distance-dependent contributions to the Gibbs free interaction energy for 10 atomic types using the Boltzmann hypothesis, with only one adjustable parameter. For a representative set of 72 protein-ligand structures, PLASS scores correlate well with the experimentally measured dissociation constants: a correlation coefficient R of 0.82 and RMS error of 2.0 kcal/mol. Such high accuracy results from our novel treatment of the volume correction term, which takes into account the inhomogeneous properties of the protein-ligand complexes. PLASS is able to rank reliably the affinity of complexes which have as much diversity as in the PDB.

  13. Computation of energy interaction parameters as well as electric dipole intensity parameters for the absorption spectral study of the interaction of Pr(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents

    NASA Astrophysics Data System (ADS)

    Moaienla, T.; Singh, Th. David; Singh, N. Rajmuhon; Devi, M. Indira

    2009-10-01

    Studying the absorption difference and comparative absorption spectra of the interaction of Pr(III) and Nd(III) with L-phenylalanine, L-glycine, L-alanine and L-aspartic acid in the presence and absence of Ca 2+ in organic solvents, various energy interaction parameters like Slater-Condon ( FK), Racah ( Ek), Lande factor ( ξ4f), nephelauxetic ratio ( β), bonding ( b1/2), percentage-covalency ( δ) have been evaluated applying partial and multiple regression analysis. The values of oscillator strength ( P) and Judd-Ofelt electric dipole intensity parameter Tλ ( λ = 2, 4, 6) for different 4f-4f transitions have been computed. On analysis of the variation of the various energy interaction parameters as well as the changes in the oscillator strength ( P) and Tλ values reveal the mode of binding with different ligands.

  14. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    NASA Astrophysics Data System (ADS)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  15. Estimating Dbh of Trees Employing Multiple Linear Regression of the best Lidar-Derived Parameter Combination Automated in Python in a Natural Broadleaf Forest in the Philippines

    NASA Astrophysics Data System (ADS)

    Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.

    2016-06-01

    Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).

  16. Comment on ''Equivalence between the Thirring model and a derivative-coupling model''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, R.

    1988-06-15

    An operator equivalence between the Thirring model and the fermionic sector of a Dirac field interacting via derivative coupling with two scalar fields is established in the path-integral framework. Relations between the coupling parameters of the two models, as found by Gomes and da Silva, can be reproduced.

  17. Urban thermal environment and its biophysical parameters derived from satellite remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2013-10-01

    In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.

  18. Synthesis and description of intermolecular interactions in new sulfonamide derivatives of tranexamic acid

    NASA Astrophysics Data System (ADS)

    Ashfaq, Muhammad; Arshad, Muhammad Nadeem; Danish, Muhammad; Asiri, Abdullah M.; Khatoon, Sadia; Mustafa, Ghulam; Zolotarev, Pavel N.; Butt, Rabia Ayub; Şahin, Onur

    2016-01-01

    Tranexamic acid (4-aminomethyl-cyclohexanecarboxylic acid) was reacted with sulfonyl chlorides to produce structurally related four sulfonamide derivatives using simple and environmental friendly method to check out their three-dimensional behavior and van der Walls interactions. The molecules were crystallized in different possibilities, as it is/after alkylation at its O and N atoms/along with a co-molecule. All molecules were crystallized in monoclinic crystal system with space group P21/n, P21/c and P21/a. X-ray studies reveal that the molecules stabilized themselves by different kinds of hydrogen bonding interactions. The molecules are getting connected through O-H⋯O hydrogen bonds to form inversion dimers which are further connected through N-H⋯O interactions. The molecules in which N and O atoms were alkylated showed non-classical interaction and generated centro-symmetric R22(24) ring motif. The co-crystallized host and guest molecules are connected to each other via O-H⋯O interactions to generate different ring motifs. By means of the ToposPro software an analysis of the topologies of underlying nets that correspond to molecular packings and hydrogen-bonded networks in structures under consideration was carried out.

  19. Spin and orbital exchange interactions from Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Lichtenstein, A. I.; Katsnelson, M. I.

    2016-02-01

    We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Green's functions and self-energies. This allows to establish a mapping between the initial electronic system and a spin model including up to quadratic interactions between the effective spins, with a general interaction (exchange) tensor that accounts for anisotropic exchange, Dzyaloshinskii-Moriya interaction and other symmetric terms such as dipole-dipole interaction. We present the formulas in a format that can be used for computations via Dynamical Mean Field Theory algorithms.

  20. Quantitative relations between interaction parameter, miscibility and function in organic solar cells

    NASA Astrophysics Data System (ADS)

    Ye, Long; Hu, Huawei; Ghasemi, Masoud; Wang, Tonghui; Collins, Brian A.; Kim, Joo-Hyun; Jiang, Kui; Carpenter, Joshua H.; Li, Hong; Li, Zhengke; McAfee, Terry; Zhao, Jingbo; Chen, Xiankai; Lai, Joshua Lin Yuk; Ma, Tingxuan; Bredas, Jean-Luc; Yan, He; Ade, Harald

    2018-03-01

    Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative `constant-kink-saturation' relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.

  1. Interacting resident epicardium-derived fibroblasts and recruited bone marrow cells form myocardial infarction scar.

    PubMed

    Ruiz-Villalba, Adrián; Simón, Ana M; Pogontke, Cristina; Castillo, María I; Abizanda, Gloria; Pelacho, Beatriz; Sánchez-Domínguez, Rebeca; Segovia, José C; Prósper, Felipe; Pérez-Pomares, José M

    2015-05-19

    Although efforts continue to find new therapies to regenerate infarcted heart tissue, knowledge of the cellular and molecular mechanisms involved remains poor. This study sought to identify the origin of cardiac fibroblasts (CFs) in the infarcted heart to better understand the pathophysiology of ventricular remodeling following myocardial infarction (MI). Permanent genetic tracing of epicardium-derived cell (EPDC) and bone marrow-derived blood cell (BMC) lineages was established using Cre/LoxP technology. In vivo gene and protein expression studies, as well as in vitro cell culture assays, were developed to characterize EPDC and BMC interaction and properties. EPDCs, which colonize the cardiac interstitium during embryogenesis, massively differentiate into CFs after MI. This response is disease-specific, because angiotensin II-induced pressure overload does not trigger significant EPDC fibroblastic differentiation. The expansion of epicardial-derived CFs follows BMC infiltration into the infarct site; the number of EPDCs equals that of BMCs 1 week post-infarction. BMC-EPDC interaction leads to cell polarization, packing, massive collagen deposition, and scar formation. Moreover, epicardium-derived CFs display stromal properties with respect to BMCs, contributing to the sustained recruitment of circulating cells to the damaged zone and the cardiac persistence of hematopoietic progenitors/stem cells after MI. EPDCs, but not BMCs, are the main origin of CFs in the ischemic heart. Adult resident EPDC contribution to the CF compartment is time- and disease-dependent. Our findings are relevant to the understanding of post-MI ventricular remodeling and may contribute to the development of new therapies to treat this disease. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Non-equilibrium magnetic interactions in strongly correlated systems

    NASA Astrophysics Data System (ADS)

    Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.

    2013-06-01

    We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.

  3. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    PubMed

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  4. A quantitative analysis of weak intermolecular interactions & quantum chemical calculations (DFT) of novel chalcone derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavda, Bhavin R., E-mail: chavdabhavin9@gmail.com; Dubey, Rahul P.; Patel, Urmila H.

    The novel chalcone derivatives have widespread applications in material science and medicinal industries. The density functional theory (DFT) is used to optimized the molecular structure of the three chalcone derivatives (M-I, II, III). The observed discrepancies between the theoretical and experimental (X-ray data) results attributed to different environments of the molecules, the experimental values are of the molecule in solid state there by subjected to the intermolecular forces, like non-bonded hydrogen bond interactions, where as isolated state in gas phase for theoretical studies. The lattice energy of all the molecules have been calculated using PIXELC module in Coulomb –London –Paulimore » (CLP) package and is partitioned into corresponding coulombic, polarization, dispersion and repulsion contributions. Lattice energy data confirm and strengthen the finding of the X-ray results that the weak but significant intermolecular interactions like C-H…O, Π- Π and C-H… Π plays an important role in the stabilization of crystal packing.« less

  5. Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm

    PubMed Central

    Huang, Lei; Liao, Li; Wu, Cathy H.

    2016-01-01

    Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273

  6. Assessment of the significance of patent-derived information for the early identification of compound-target interaction hypotheses.

    PubMed

    Senger, Stefan

    2017-04-21

    Patents are an important source of information for effective decision making in drug discovery. Encouragingly, freely accessible patent-chemistry databases are now in the public domain. However, at present there is still a wide gap between relatively low coverage-high quality manually-curated data sources and high coverage data sources that use text mining and automated extraction of chemical structures. To secure much needed funding for further research and an improved infrastructure, hard evidence is required to demonstrate the significance of patent-derived information in drug discovery. Surprisingly little such evidence has been reported so far. To address this, the present study attempts to quantify the relevance of patents for formulating and substantiating hypotheses for compound-target interactions. A manually-curated set of 130 compound-target interaction pairs annotated with what are considered to be the earliest patent and publication has been produced. The analysis of this set revealed that in stark contrast to what has been reported for novel chemical structures, only about 10% of the compound-target interaction pairs could be found in publications in the scientific literature within one year of being reported in patents. The average delay across all interaction pairs is close to 4 years. In an attempt to benchmark current capabilities, it was also examined how much of the benefit of using patent-derived information can be retained when a bioannotated version of SureChEMBL is used as secondary source for the patent literature. Encouragingly, this approach found the patents in the annotated set for 72% of the compound-target interaction pairs. Similarly, the effect of using the bioactivity database ChEMBL as secondary source for the scientific literature was studied. Here, the publications from the annotated set were only found for 46% of the compound-target interaction pairs. Patent-derived information is a significant enabler for formulating compound

  7. Comparison of Atmospheric Parameters Derived from In-Situ and Hyper-/Multispectral Remote Sensing Data of Beautiful Bavarian Lakes

    NASA Astrophysics Data System (ADS)

    Riedel, S.; Gege, P.; Schneider, M.; Pfug, B.; Oppelt, N.

    2016-08-01

    Atmospheric correction is a critical step and can be a limiting factor in the extraction of aquatic ecosystem parameters from remote sensing data of coastal and lake waters. Atmospheric correction models commonly in use for open ocean water and land surfaces can lead to large errors when applied to hyperspectral images taken from satellite or aircraft. The main problems arise from uncertainties in aerosol parameters and neglecting the adjacency effect, which originates from multiple scattering of upwelling radiance from the surrounding land. To better understand the challenges for developing an atmospheric correction model suitable for lakes, we compare atmospheric parameters derived from Sentinel- 2A and airborne hyperspectral data (HySpex) of two Bavarian lakes (Klostersee, Lake Starnberg) with in-situ measurements performed with RAMSES and Ibsen spectrometer systems and a Microtops sun photometer.

  8. Interferometric modulation of quantum cascade interactions

    NASA Astrophysics Data System (ADS)

    Cusumano, Stefano; Mari, Andrea; Giovannetti, Vittorio

    2018-05-01

    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e., a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam splitters and phase shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.

  9. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  10. Assessing composition and structure of soft biphasic media from Kelvin-Voigt fractional derivative model parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.

    2017-03-01

    Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.

  11. The recovery of microwave scattering parameters from scatterometric measurements with special application to the sea

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Fung, A. K.

    1975-01-01

    As part of an effort to demonstrate the value of the microwave scatterometer as a remote sea wind sensor, the interaction between an arbitrarily polarized scatterometer antenna and a noncoherent distributive target was derived and applied to develop a measuring technique to recover all the scattering parameters. The results are helpful for specifying antenna polarization properties for accurate retrieval of the parameters not only for the sea but also for other distributive scenes.

  12. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limitmore » of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water

  13. Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn

    We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less

  14. The application of parameter estimation to flight measurements to obtain lateral-directional stability derivatives of an augmented jet-flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Stephenson, J. D.

    1983-01-01

    Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.

  15. Structural and functional characterization of the interaction between cyclophilin B and a heparin-derived oligosaccharide.

    PubMed

    Hanoulle, Xavier; Melchior, Aurélie; Sibille, Nathalie; Parent, Benjamin; Denys, Agnès; Wieruszeski, Jean-Michel; Horvath, Dragos; Allain, Fabrice; Lippens, Guy; Landrieu, Isabelle

    2007-11-23

    The chemotaxis and integrin-mediated adhesion of T lymphocytes triggered by secreted cyclophilin B (CypB) depend on interactions with both cell surface heparan sulfate proteoglycans (HSPG) and the extracellular domain of the CD147 membrane receptor. Here, we use NMR spectroscopy to characterize the interaction of CypB with heparin-derived oligosaccharides. Chemical shift perturbation experiments allowed the precise definition of the heparan sulfate (HS) binding site of CypB. The N-terminal extremity of CypB, which contains a consensus sequence for heparin-binding proteins was modeled on the basis of our experimental NMR data. Because the HS binding site extends toward the CypB catalytic pocket, we measured its peptidyl-prolyl cis-trans isomerase (PPIase) activity in the absence or presence of a HS oligosaccharide toward a CD147-derived peptide. We report the first direct evidence that CypB is enzymatically active on CD147, as it is able to accelerate the cis/trans isomerization of the Asp(179)-Pro(180) bond in a CD147-derived peptide. However, HS binding has no significant influence on this PPIase activity. We thus conclude that the glycanic moiety of HSPG serves as anchor for CypB at the cell surface, and that the signal could be transduced by CypB via its PPIase activity toward CD147.

  16. IGGy: An interactive environment for surface grid generation

    NASA Technical Reports Server (NTRS)

    Prewitt, Nathan C.

    1992-01-01

    A graphically interactive derivative of the EAGLE boundary code is presented. This code allows the user to interactively build and execute commands and immediately see the results. Strong ties with a batch oriented script language are maintained. A generalized treatment of grid definition parameters allows a more generic definition of the grid generation process and allows the generation of command scripts which can be applied to topologically similar configurations. The use of the graphical user interface is outlined and example applications are presented.

  17. Problems of low-parameter equations of state

    NASA Astrophysics Data System (ADS)

    Petrik, G. G.

    2017-11-01

    The paper focuses on the system approach to problems of low-parametric equations of state (EOS). It is a continuation of the investigations in the field of substantiated prognosis of properties on two levels, molecular and thermodynamic. Two sets of low-parameter EOS have been considered based on two very simple molecular-level models. The first one consists of EOS of van der Waals type (a modification of van der Waals EOS proposed for spheres). The main problem of these EOS is a weak connection with the micro-level, which raise many uncertainties. The second group of EOS has been derived by the author independently of the ideas of van der Waals based on the model of interacting point centers (IPC). All the parameters of the EOS have a meaning and are associated with the manifestation of attractive and repulsive forces. The relationship between them is found to be the control parameter of the thermodynamic level. In this case, EOS IPC passes into a one-parameter family. It is shown that many EOS of vdW-type can be included in the framework of the PC model. Simultaneously, all their parameters acquire a physical meaning.

  18. Weak Interactions Govern the Viscosity of Concentrated Antibody Solutions: High-Throughput Analysis Using the Diffusion Interaction Parameter

    PubMed Central

    Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.

    2012-01-01

    Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333

  19. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  20. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.

    PubMed

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D

    2016-01-22

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions*

    PubMed Central

    Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A.; Brown, Elizabeth E.; Sanderson, Ralph D.

    2016-01-01

    Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. PMID:26601950

  2. Structural Interface Parameters Are Discriminatory in Recognising Near-Native Poses of Protein-Protein Interactions

    PubMed Central

    Malhotra, Sony; Sankar, Kannan; Sowdhamini, Ramanathan

    2014-01-01

    Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native) structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets. PMID:24498255

  3. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    PubMed

    Malhotra, Sony; Sankar, Kannan; Sowdhamini, Ramanathan

    2014-01-01

    Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native) structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  4. On the Relationship Between Transfer Function-derived Response Times and Hydrograph Analysis Timing Parameters: Are there Similarities?

    NASA Astrophysics Data System (ADS)

    Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.

    2017-12-01

    The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.

  5. Evaluation of potential interactions between mycophenolic acid derivatives and proton pump inhibitors.

    PubMed

    Gabardi, Steven; Olyaei, Ali

    2012-01-01

    To evaluate the incidence of gastrointestinal (GI) complications in solid organ transplant (SOT) recipients, impact of the complications on transplant outcomes, and the potential interactions between mycophenolic acid (MPA) derivatives and proton pump inhibitors (PPIs). An unrestricted literature search (1980-January 2012) was performed with MEDLINE and EMBASE using the following key words: drug-drug interaction, enteric-coated mycophenolic acid, GI complications, mycophenolate mofetil, solid organ transplant, and proton pump inhibitor, including individual agents within the class. Abstracts from scientific meetings were also evaluated. Additionally, reference citations from identified publications were reviewed. Relevant English-language, original research articles and review articles were evaluated if they focused on any of the topics identified in the search or included substantial content addressing GI complications in SOT recipients or drug interactions. GI complications are frequent among SOT recipients, with some studies showing prevalence rates as high as 70%. Transplant outcomes among renal transplant recipients are significantly impacted by GI complications, especially in patients requiring immunosuppressant dosage reductions or premature discontinuation. To this end, PPI use among patients receiving transplants is common. Recent data demonstrate that PPIs significantly reduce the overall exposure to MPA after oral administration of mycophenolate mofetil. Similar studies show this interaction does not exist between PPIs and enteric-coated mycophenolic acid (EC-MPA). Unfortunately, most of the available data evaluating this interaction are pharmacokinetic analyses that do not investigate the clinical impact of this interaction. A significant interaction exists between PPIs and mycophenolate mofetil secondary to reduced dissolution of mycophenolate mofetil in higher pH environments. EC-MPA is not absorbed in the stomach; therefore, low intragastric acidity

  6. Including gauge-group parameters into the theory of interactions: an alternative mass-generating mechanism for gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldaya, V.; Lopez-Ruiz, F. F.; Sanchez-Sastre, E.

    2006-11-03

    We reformulate the gauge theory of interactions by introducing the gauge group parameters into the model. The dynamics of the new 'Goldstone-like' bosons is accomplished through a non-linear {sigma}-model Lagrangian. They are minimally coupled according to a proper prescription which provides mass terms to the intermediate vector bosons without spoiling gauge invariance. The present formalism is explicitly applied to the Standard Model of electroweak interactions.

  7. Getting a feel for parameters: using interactive parallel plots as a tool for parameter identification in the new rainfall-runoff model WALRUS

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Torfs, Paul; Teuling, Ryan; Uijlenhoet, Remko

    2015-04-01

    Recently, we developed the Wageningen Lowland Runoff Simulator (WALRUS) to fill the gap between complex, spatially distributed models often used in lowland catchments and simple, parametric models which have mostly been developed for mountainous catchments (Brauer et al., 2014ab). This parametric rainfall-runoff model can be used all over the world in both freely draining lowland catchments and polders with controlled water levels. The open source model code is implemented in R and can be downloaded from www.github.com/ClaudiaBrauer/WALRUS. The structure and code of WALRUS are simple, which facilitates detailed investigation of the effect of parameters on all model variables. WALRUS contains only four parameters requiring calibration; they are intended to have a strong, qualitative relation with catchment characteristics. Parameter estimation remains a challenge, however. The model structure contains three main feedbacks: (1) between groundwater and surface water; (2) between saturated and unsaturated zone; (3) between catchment wetness and (quick/slow) flowroute division. These feedbacks represent essential rainfall-runoff processes in lowland catchments, but increase the risk of parameter dependence and equifinality. Therefore, model performance should not only be judged based on a comparison between modelled and observed discharges, but also based on the plausibility of the internal modelled variables. Here, we present a method to analyse the effect of parameter values on internal model states and fluxes in a qualitative and intuitive way using interactive parallel plotting. We applied WALRUS to ten Dutch catchments with different sizes, slopes and soil types and both freely draining and polder areas. The model was run with a large number of parameter sets, which were created using Latin Hypercube Sampling. The model output was characterised in terms of several signatures, both measures of goodness of fit and statistics of internal model variables (such as the

  8. Evidence for a strong sulfur-aromatic interaction derived from crystallographic data.

    PubMed

    Zauhar, R J; Colbert, C L; Morgan, R S; Welsh, W J

    2000-03-01

    We have uncovered new evidence for a significant interaction between divalent sulfur atoms and aromatic rings. Our study involves a statistical analysis of interatomic distances and other geometric descriptors derived from entries in the Cambridge Crystallographic Database (F. H. Allen and O. Kennard, Chem. Design Auto. News, 1993, Vol. 8, pp. 1 and 31-37). A set of descriptors was defined sufficient in number and type so as to elucidate completely the preferred geometry of interaction between six-membered aromatic carbon rings and divalent sulfurs for all crystal structures of nonmetal-bearing organic compounds present in the database. In order to test statistical significance, analogous probability distributions for the interaction of the moiety X-CH(2)-X with aromatic rings were computed, and taken a priori to correspond to the null hypothesis of no significant interaction. Tests of significance were carried our pairwise between probability distributions of sulfur-aromatic interaction descriptors and their CH(2)-aromatic analogues using the Smirnov-Kolmogorov nonparametric test (W. W. Daniel, Applied Nonparametric Statistics, Houghton-Mifflin: Boston, New York, 1978, pp. 276-286), and in all cases significance at the 99% confidence level or better was observed. Local maxima of the probability distributions were used to define a preferred geometry of interaction between the divalent sulfur moiety and the aromatic ring. Molecular mechanics studies were performed in an effort to better understand the physical basis of the interaction. This study confirms observations based on statistics of interaction of amino acids in protein crystal structures (R. S. Morgan, C. E. Tatsch, R. H. Gushard, J. M. McAdon, and P. K. Warme, International Journal of Peptide Protein Research, 1978, Vol. 11, pp. 209-217; R. S. Morgan and J. M. McAdon, International Journal of Peptide Protein Research, 1980, Vol. 15, pp. 177-180; K. S. C. Reid, P. F. Lindley, and J. M. Thornton, FEBS

  9. Neutrino oscillations and Non-Standard Interactions

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Tórtola, Mariam

    2018-02-01

    Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant oscillation effects that can give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase, the mass ordering and the octant of θ_{23}. Determining the exact values of neutrino mass and mixing parameters is crucial to test neutrino models and flavor symmetries designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar experiments and the atmospheric data from Super-Kamiokande, IceCube and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO and Double Chooz as well as the long baseline neutrino data from MINOS, T2K and NOvA. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will be mainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass ≲ 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already

  10. New fundamental parameters for attitude representation

    NASA Astrophysics Data System (ADS)

    Patera, Russell P.

    2017-08-01

    A new attitude parameter set is developed to clarify the geometry of combining finite rotations in a rotational sequence and in combining infinitesimal angular increments generated by angular rate. The resulting parameter set of six Pivot Parameters represents a rotation as a great circle arc on a unit sphere that can be located at any clocking location in the rotation plane. Two rotations are combined by linking their arcs at either of the two intersection points of the respective rotation planes. In a similar fashion, linking rotational increments produced by angular rate is used to derive the associated kinematical equations, which are linear and have no singularities. Included in this paper is the derivation of twelve Pivot Parameter elements that represent all twelve Euler Angle sequences, which enables efficient conversions between Pivot Parameters and any Euler Angle sequence. Applications of this new parameter set include the derivation of quaternions and the quaternion composition rule, as well as, the derivation of the analytical solution to time dependent coning motion. The relationships between Pivot Parameters and traditional parameter sets are included in this work. Pivot Parameters are well suited for a variety of aerospace applications due to their effective composition rule, singularity free kinematic equations, efficient conversion to and from Euler Angle sequences and clarity of their geometrical foundation.

  11. Histogram analysis derived from apparent diffusion coefficient (ADC) is more sensitive to reflect serological parameters in myositis than conventional ADC analysis.

    PubMed

    Meyer, Hans Jonas; Emmer, Alexander; Kornhuber, Malte; Surov, Alexey

    2018-05-01

    Diffusion-weighted imaging (DWI) has the potential of being able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize tissues on MRI. The aim of this study was to correlate histogram parameters derived from apparent diffusion coefficient (ADC) maps with serological parameters in myositis. 16 patients with autoimmune myositis were included in this retrospective study. DWI was obtained on a 1.5 T scanner by using the b-values of 0 and 1000 s mm - 2 . Histogram analysis was performed as a whole muscle measurement by using a custom-made Matlab-based application. The following ADC histogram parameters were estimated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, and the following percentiles ADCp10, ADCp25, ADCp75, ADCp90, as well histogram parameters kurtosis, skewness, and entropy. In all patients, the blood sample was acquired within 3 days to the MRI. The following serological parameters were estimated: alanine aminotransferase, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, C-reactive protein (CRP) and myoglobin. All patients were screened for Jo1-autobodies. Kurtosis correlated inversely with CRP (p = -0.55 and 0.03). Furthermore, ADCp10 and ADCp90 values tended to correlate with creatine kinase (p = -0.43, 0.11, and p = -0.42, = 0.12 respectively). In addition, ADCmean, p10, p25, median, mode, and entropy were different between Jo1-positive and Jo1-negative patients. ADC histogram parameters are sensitive for detection of muscle alterations in myositis patients. Advances in knowledge: This study identified that kurtosis derived from ADC maps is associated with CRP in myositis patients. Furthermore, several ADC histogram parameters are statistically different between Jo1-positive and Jo1-negative patients.

  12. Identification of dominant interactions between climatic seasonality, catchment characteristics and agricultural activities on Budyko-type equation parameter estimation

    NASA Astrophysics Data System (ADS)

    Xing, Wanqiu; Wang, Weiguang; Shao, Quanxi; Yong, Bin

    2018-01-01

    Quantifying precipitation (P) partition into evapotranspiration (E) and runoff (Q) is of great importance for global and regional water availability assessment. Budyko framework serves as a powerful tool to make simple and transparent estimation for the partition, using a single parameter, to characterize the shape of the Budyko curve for a "specific basin", where the single parameter reflects the overall effect by not only climatic seasonality, catchment characteristics (e.g., soil, topography and vegetation) but also agricultural activities (e.g., cultivation and irrigation). At the regional scale, these influencing factors are interconnected, and the interactions between them can also affect the single parameter of Budyko-type equations' estimating. Here we employ the multivariate adaptive regression splines (MARS) model to estimate the Budyko curve shape parameter (n in the Choudhury's equation, one form of the Budyko framework) of the selected 96 catchments across China using a data set of long-term averages for climatic seasonality, catchment characteristics and agricultural activities. Results show average storm depth (ASD), vegetation coverage (M), and seasonality index of precipitation (SI) are three statistically significant factors affecting the Budyko parameter. More importantly, four pairs of interactions are recognized by the MARS model as: The interaction between CA (percentage of cultivated land area to total catchment area) and ASD shows that the cultivation can weaken the reducing effect of high ASD (>46.78 mm) on the Budyko parameter estimating. Drought (represented by the value of Palmer drought severity index < -0.74) and uneven distribution of annual rainfall (represented by the value of coefficient of variation of precipitation > 0.23) tend to enhance the Budyko parameter reduction by large SI (>0.797). Low vegetation coverage (34.56%) is likely to intensify the rising effect on evapotranspiration ratio by IA (percentage of irrigation area to

  13. Scaling of plasma-body interactions in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Capon, C. J.; Brown, M.; Boyce, R. R.

    2017-04-01

    This paper derives the generalised set of dimensionless parameters that scale the interaction of an unmagnetised multi-species plasma with an arbitrarily charged object - the application in this work being to the interaction of the ionosphere with Low Earth Orbiting (LEO) objects. We find that a plasma with K ion species can be described by 1 + 4 K independent dimensionless parameters. These parameters govern the deflection and coupling of ion species k , the relative electrical shielding of the body, electron energy, and scaling of temporal effects. The general shielding length λ ϕ is introduced, which reduces to the Debye length in the high-temperature (weakly coupled) limit. The ability of the scaling parameters to predict the self-similar transformations of single and multi-species plasma interactions is demonstrated numerically using pdFOAM, an electrostatic Particle-in-Cell—Direct Simulation Monte Carlo code. The presented scaling relationships represent a significant generalisation of past work, linking low and high voltage plasma phenomena. Further, the presented parameters capture the scaling of multi-species plasmas with multiply charged ions, demonstrating previously unreported scaling relationship transformations. The implications of this work are not limited to LEO plasma-body interactions but apply to processes governed by the Vlasov-Maxwell equations and represent a framework upon which to incorporate the scaling of additional phenomena, e.g., magnetism and charging.

  14. Landuse/Landcover and Climate Change Interaction in the Derived Savannah Region of Nigeria

    NASA Astrophysics Data System (ADS)

    Akintuyi, A. O.; Fasona, M.; Soneye, A. S. O.

    2016-12-01

    The interaction of landuse/Landcover (LULC) and climate change, to a large extent, involves anthropogenic activities. This study was carried out in the derived savannah of Nigeria, a delicate ecological zone where the interaction of LULC and climate change could be well appreciated. The study evaluated coupled interaction between LULC and climate change and assessed the changes in the landuse/landcover patterns for the periods 1972, 1986, 2002 and 2010, evaluated the present (1941 - 2010) and future (2011 - 2050) variability in rainfall patterns and an attempt was made to predict the interaction between LULC and climate change during future climate. The study adopted remote sensing and GIS techniques, land change modeller and multivariate statistics The results suggest that the built up area, farmland, waterbody and woodland experienced a rapid increase of about 1,134.69%, 1,202.85%, 631.51% and 188.09%, respectively, while the forest cover, degraded surfaces and grassland lost about 19.32%, 72.76% and 0.05% respectively between 1972 and 2010. Furthermore, the study predicted 40.28% and 37.84% reduction in the forested area between 1986 and 2050 and 2010 and 2050 respectively. The study concludes that rainfall will be the major driver of LULC change within the study area under a future climate.

  15. Photofragmentation, state interaction, and energetics of Rydberg and ion-pair states: Resonance enhanced multiphoton ionization of HI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hróðmarsson, Helgi Rafn; Wang, Huasheng; Kvaran, Ágúst, E-mail: agust@hi.is

    2014-06-28

    Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69 600–72 400 cm{sup −1} region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.

  16. Soil erosion modelled with USLE and PESERA using QuickBird derived vegetation parameters in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Meusburger, K.; Konz, N.; Schaub, M.; Alewell, C.

    2010-06-01

    The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km 2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed "hotspots" of high erosion of up to 16 t ha -1 a -1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data.

  17. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  18. Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions.

    PubMed

    Mus, Roel D; Borelli, Cristina; Bult, Peter; Weiland, Elisabeth; Karssemeijer, Nico; Barentsz, Jelle O; Gubern-Mérida, Albert; Platel, Bram; Mann, Ritse M

    2017-04-01

    To investigate time to enhancement (TTE) as novel dynamic parameter for lesion classification in breast magnetic resonance imaging (MRI). In this retrospective study, 157 women with 195 enhancing abnormalities (99 malignant and 96 benign) were included. All patients underwent a bi-temporal MRI protocol that included ultrafast time-resolved angiography with stochastic trajectory (TWIST) acquisitions (1.0×0.9×2.5mm, temporal resolution 4.32s), during the inflow of contrast agent. TTE derived from TWIST series and relative enhancement versus time curve type derived from volumetric interpolated breath-hold examination (VIBE) series were assessed and combined with basic morphological information to differentiate benign from malignant lesions. Receiver operating characteristic analysis and kappa statistics were applied. TTE had a significantly better discriminative ability than curve type (p<0.001 and p=0.026 for reader 1 and 2, respectively). Including morphology, sensitivity of TWIST and VIBE assessment was equivalent (p=0.549 and p=0.344, respectively). Specificity and diagnostic accuracy were significantly higher for TWIST than for VIBE assessment (p<0.001). Inter-reader agreement in differentiating malignant from benign lesions was almost perfect for TWIST evaluation (κ=0.86) and substantial for conventional assessment (κ=0.75). TTE derived from ultrafast TWIST acquisitions is a valuable parameter that allows robust differentiation between malignant and benign breast lesions with high accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. On the CH...Cu agostic interaction: chiral copper(II) compounds with ephedrine and pseudoephedrine derivatives.

    PubMed

    Castro, Miguel; Cruz, Julián; López-Sandoval, Horacio; Barba-Behrens, Norah

    2005-08-14

    The ephedrine derivative, (H2ceph), yields [Cu(Hceph)2], showing a CH...Cu(II) agostic interaction; while in the analogous compound [Cu(Hcpse)2], with pseudoephedrine (H2cpse), that interaction is absent, despite the fact that these two diasteromers differ only in the orientation of the methyl and phenyl groups: erythro in H2ceph and threo in H2cpse. The X-ray crystal structure of [Cu(Hceph)2], indicates a Cu...HC length of 2.454 A and the theoretical study reveals the formation of a Cu...HC bond since the associated electronic density shows both a bond critical point and a bond ring critical point.

  20. Zinc Interactions With Brain-Derived Neurotrophic Factor and Related Peptide Fragments.

    PubMed

    Travaglia, A; La Mendola, D

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal development and survival, synaptic plasticity, and cognitive function. Dysregulation of BDNF signaling is involved in several neurodegenerative disorders, including Alzheimer's disease. Alteration of metal ion homeostasis is observed both in normal aging and in many neurodegenerative diseases. Interestingly, there is a significant overlap between brain areas characterized by metal ion dyshomeostasis and those where BDNF exerts its biological activity. Therefore, it is reasonable to speculate that metal ions, especially zinc, can modulate the activity of BDNF. The synthesis of BDNF peptidomimetic can be helpful both to understand the molecular interaction of BDNF with metal ions and to develop new drugs for neurodegenerative diseases. © 2017 Elsevier Inc. All rights reserved.

  1. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    PubMed

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach

  2. Killing of melanoma cells and their metastases by human lactoferricin derivatives requires interaction with the cancer marker phosphatidylserine.

    PubMed

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2014-10-01

    Despite favorable advancements in therapy cancer is still not curative in many cases, which is often due to inadequate specificity for tumor cells. In this study derivatives of a short cationic peptide derived from the human host defense peptide lactoferricin were optimized in their selective toxicity towards cancer cells. We proved that the target of these peptides is the negatively charged membrane lipid phosphatidylserine (PS), specifically exposed on the surface of cancer cells. We have studied the membrane interaction of three peptides namely LF11-322, its N-acyl derivative 6-methyloctanoyl-LF11-322 and its retro repeat derivative R(etro)-DIM-P-LF11-322 with liposomes mimicking cancerous and non-cancerous cell membranes composed of PS and phosphatidylcholine (PC), respectively. Calorimetric and permeability studies showed that N-acylation and even more the repeat derivative of LF11-322 leads to strongly improved interaction with the cancer mimic PS, whereas only the N-acyl derivative also slightly affects PC. Tryptophan fluorescence of selective peptide R-DIM-P-LF11-322 revealed specific peptide penetration into the PS membrane interface and circular dichroism showed change of its secondary structure by increase of proportion of β-sheets just in the presence of the cancer mimic. Data correlated with in vitro studies with cell lines of human melanomas, their metastases and melanocytes, revealing R-DIM-P-LF11-322 to exhibit strongly increased specificity for cancer cells. This indicates the need of high affinity to the target PS, a minimum length and net positive charge, an adequate but moderate hydrophobicity, and capability of adoption of a defined structure exclusively in presence of the target membrane for high antitumor activity.

  3. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  4. Role of dbnd NOH intermolecular interactions in oxime derivatives via Crystal structure, Hirshfeld surface, PIXELC and DFT calculations

    NASA Astrophysics Data System (ADS)

    Purushothaman, Gayathri; Thiruvenkatam, Vijay

    2017-11-01

    Oximes are building block of organic synthesis and they have wide range applications in laboratories, industries, and pharmaceutical as antidotes. Herein we report the crystal structures of oxime derivative Beta-p-Dimethylaminodeoxybenzionoxime (I) and o-Chloro-p-dimethylaminodeoxybenzion (II) the precursor molecule of o-Chloro-p-dimethylaminodeoxybenzionoxime and their intermolecular interactions studies through Hirshfeld surface & 2D-fingerprint plot analysis along with PIXELC and DFT calculations. The packing arrangements in I and II are driven by Osbnd H⋯N and Osbnd H⋯C interactions respectively. The Osbnd H⋯N hydrogen bonding in I facilitates the formation of the dimer with the motif of R (22(6)), whereas in II absence of oxime moiety (dbnd NOH) restricts the dimer formation. The 2D-fingerprint plot shows the close contacts for the intermolecular interactions in I & II. The PIXELC calculation of II suggests Osbnd H⋯C contributes for intermolecular interaction that stabilizes the crystal packing with the total energy value of 60.4 kcal/mol. The DFT calculation using B3LYP with 6-311G (d, p) functional set for both the derivatives shows a small deviation in the benzene ring (I) and chlorobenzene ring (II) with the RMSD value of 0.5095 Å and 0.8472 Å respectively.

  5. Nonperturbative derivation of the interaction potential of static nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izmailov, A.F.; Kessel', A.R.; Fainberg, V.Y.

    1989-05-01

    A new approach is used to calculate the interaction potential of nucleons which describes virtual processes of exchange of scalar and pseudoscalar mesons in all orders in the nucleon{endash}meson local coupling constant. The theory contains a natural parameter---a limiting momentum {ital p}{sub {ital m}}. The nucleon{endash}nucleon potential of scalar mesodynamics for various values of {ital p}{sub {ital m}} reproduces accurately the well known phenomenological potentials, such as the Hamada{endash}Johnston potential, the Reid soft-core potential, and the de Toureil{endash}Sprung supersoft-core potential.{sup 15} In pseudoscalar mesodynamics, it has been possible to reproduce completely the behavior of the empirical tensor potential. The shapemore » of the central potential at all distances is reproduced in the states {tau}=0, {sigma}=0 and {tau}=0, {sigma}=1, and at intermediate and large distances in the states {tau}=1, {sigma}=0 and {tau}=1, {sigma}=1.« less

  6. Measurement of interaction between antiprotons

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2015-11-04

    In this paper, one of the primary goals of nuclear physics is to understand the force between nucleons, which is a necessary step for understanding the structure of nuclei and how nuclei interact with each other. Rutherford discovered the atomic nucleus in 1911, and the large body of knowledge about the nuclear force that has since been acquired was derived from studies made on nucleons or nuclei. Although antinuclei up to antihelium-4 have been discovered and their masses measured, little is known directly about the nuclear force between antinucleons. Here, we study antiproton pair correlations among data collected by themore » STAR experiment at the Relativistic Heavy Ion Collider (RHIC), where gold ions are collided with a centre-of-mass energy of 200 gigaelectronvolts per nucleon pair. Antiprotons are abundantly produced in such collisions, thus making it feasible to study details of the antiproton–antiproton interaction. By applying a technique similar to Hanbury Brown and Twiss intensity interferometry, we show that the force between two antiprotons is attractive. In addition, we report two key parameters that characterize the corresponding strong interaction: the scattering length and the effective range of the interaction. Our measured parameters are consistent within errors with the corresponding values for proton–proton interactions. Our results provide direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, and so are fundamental to understanding the structure of more-complex antinuclei and their properties.« less

  7. Kir Channel Blockages by Proflavine Derivatives via Multiple Modes of Interaction.

    PubMed

    Inanobe, Atsushi; Itamochi, Hideaki; Kurachi, Yoshihisa

    2018-06-01

    Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K + (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors. Copyright © 2018 by The Author(s).

  8. Interacting Effects Induced by Two Neighboring Pits Considering Relative Position Parameters and Pit Depth

    PubMed Central

    Huang, Yongfang; Gang, Tieqiang; Chen, Lijie

    2017-01-01

    For pre-corroded aluminum alloy 7075-T6, the interacting effects of two neighboring pits on the stress concentration are comprehensively analyzed by considering various relative position parameters (inclination angle θ and dimensionless spacing parameter λ) and pit depth (d) with the finite element method. According to the severity of the stress concentration, the critical corrosion regions, bearing high susceptibility to fatigue damage, are determined for intersecting and adjacent pits, respectively. A straightforward approach is accordingly proposed to conservatively estimate the combined stress concentration factor induced by two neighboring pits, and a concrete application example is presented. It is found that for intersecting pits, the normalized stress concentration factor Ktnor increases with the increase of θ and λ and always reaches its maximum at θ = 90°, yet for adjacent pits, Ktnor decreases with the increase of λ and the maximum value appears at a slight asymmetric location. The simulations reveal that Ktnor follows a linear and an exponential relationship with the dimensionless depth parameter Rd for intersecting and adjacent cases, respectively. PMID:28772758

  9. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  10. Interactive effects of dietary leucine and isoleucine on growth, blood parameters, and amino acid profile of Japanese flounder Paralichthys olivaceus.

    PubMed

    Wang, Liping; Han, Yuzhe; Jiang, Zhiqiang; Sun, Menglei; Si, Bin; Chen, Fei; Bao, Ning

    2017-10-01

    A 60-day feeding trial was conducted to assess the interactions of dietary leucine (Leu) and isoleucine (Ile) on Japanese flounder. Fish of 2.69 ± 0.04 g were fed experimental diets containing two levels of Leu (2.58 and 5.08% of diet) combined with three levels of Ile (1.44, 2.21, and 4.44% of diet), respectively. After the feeding trial, growth, proximate composition, muscle total amino acid profile, blood parameters, mucus lysozyme activity, and stress tolerance to freshwater were measured. Statistically significant (P < 0.05) interactive effects of Leu and Ile were found on growth parameters (final body weight, body weight gain, and special growth rate) of Japanese flounder. Antagonism was discovered in high dietary Leu groups, while stimulatory effects were obtained for increased dietary Ile in low Leu groups. Interactive effects of these two branched-chain amino acids were also found on hepatosomatic index of test fish. In addition, crude lipid content of fish whole body was significantly altered by various diets, with antagonism observed in low dietary Leu groups. Interactive effects also existed in muscle amino acid profiles for low fish meal diets, but no interactive impacts were observed on blood parameters. Furthermore, lysozyme activities and freshwater stress were significantly affected by different diets. And antagonism was found on lysozyme activities in low Leu groups. Moreover, high Leu and high Ile levels of diet significantly altered freshwater stress tolerance of Japanese flounder. These findings suggested that dietary Leu and Ile can effect interactively, and fish fed with diets containing 2.58% Leu with 4.44% Ile and 5.08% Leu with 1.44% Ile showed better growth performance.

  11. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions.

    PubMed

    Kashefolgheta, Sadra; Vila Verde, Ana

    2017-08-09

    We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.

  12. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction.

    PubMed

    Andreeva, Elena; Andrianova, Irina; Rylova, Julia; Gornostaeva, Aleksandra; Bobyleva, Polina; Buravkova, Ludmila

    2015-08-01

    The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence

    PubMed Central

    Urban, Laurent; Aarrouf, Jawad; Bidel, Luc P. R.

    2017-01-01

    Water deficit (WD) is expected to increase in intensity, frequency and duration in many parts of the world as a consequence of global change, with potential negative effects on plant gas exchange and growth. We review here the parameters that can be derived from measurements made on leaves, in the field, and that can be used to assess the effects of WD on the components of plant photosynthetic rate, including stomatal conductance, mesophyll conductance, photosynthetic capacity, light absorbance, and efficiency of absorbed light conversion into photosynthetic electron transport. We also review some of the parameters related to dissipation of excess energy and to rerouting of electron fluxes. Our focus is mainly on the techniques of gas exchange measurements and of measurements of chlorophyll a fluorescence (ChlF), either alone or combined. But we put also emphasis on some of the parameters derived from analysis of the induction phase of maximal ChlF, notably because they could be used to assess damage to photosystem II. Eventually we briefly present the non-destructive methods based on the ChlF excitation ratio method which can be used to evaluate non-destructively leaf contents in anthocyanins and flavonols. PMID:29312367

  14. Assessing the Effects of Water Deficit on Photosynthesis Using Parameters Derived from Measurements of Leaf Gas Exchange and of Chlorophyll a Fluorescence.

    PubMed

    Urban, Laurent; Aarrouf, Jawad; Bidel, Luc P R

    2017-01-01

    Water deficit (WD) is expected to increase in intensity, frequency and duration in many parts of the world as a consequence of global change, with potential negative effects on plant gas exchange and growth. We review here the parameters that can be derived from measurements made on leaves, in the field, and that can be used to assess the effects of WD on the components of plant photosynthetic rate, including stomatal conductance, mesophyll conductance, photosynthetic capacity, light absorbance, and efficiency of absorbed light conversion into photosynthetic electron transport. We also review some of the parameters related to dissipation of excess energy and to rerouting of electron fluxes. Our focus is mainly on the techniques of gas exchange measurements and of measurements of chlorophyll a fluorescence (ChlF), either alone or combined. But we put also emphasis on some of the parameters derived from analysis of the induction phase of maximal ChlF, notably because they could be used to assess damage to photosystem II. Eventually we briefly present the non-destructive methods based on the ChlF excitation ratio method which can be used to evaluate non-destructively leaf contents in anthocyanins and flavonols.

  15. Study of the interaction of antiplasmodial strychnine derivatives with the glycine receptor.

    PubMed

    Philippe, Geneviève; Nguyen, Laurent; Angenot, Luc; Frédérich, Michel; Moonen, Gustave; Tits, Monique; Rigo, Jean-Michel

    2006-01-13

    Strychnos icaja Baill. (Loganiaceae) is a liana found in Central Africa known to be an arrow and ordeal poison but also used by traditional medicine to treat malaria. Recently, many dimeric or trimeric indolomonoterpenic alkaloids with antiplasmodial properties have been isolated from its rootbark. Since these alkaloids are derivatives of strychnine, it was important, in view of their potential use as antimalarial drugs, to assess their possible convulsant strychnine-like properties. In that regard, their interaction with the strychnine-sensitive glycine receptor was investigated by whole-cell patch-clamp recordings on glycine-gated currents in mouse spinal cord neurons in culture and by [(3)H]strychnine competition assays on membranes from adult rat spinal cord. These experiments were carried out on sungucine (leading compound of the chemical class) and on the antiplasmodial strychnogucine B (dimeric) and strychnohexamine (trimeric). In comparison with strychnine, all compounds interact with a very poor efficacy and only at concentrations >1 microM with both [(3)H]strychnine binding and glycine-gated currents. Furthermore, the effects of strychnine and protostrychnine, a monomeric alkaloid (without antiplasmodial activity) also isolated from S. icaja and differing from strychnine only by a cycle opening, were compared in the same way. The weak interaction of protostrychnine confirms the importance of the G cycle ring structure in strychnine for its binding to the glycine receptor and its antagonist properties.

  16. Parameter estimation of qubit states with unknown phase parameter

    NASA Astrophysics Data System (ADS)

    Suzuki, Jun

    2015-02-01

    We discuss a problem of parameter estimation for quantum two-level system, qubit system, in presence of unknown phase parameter. We analyze trade-off relations for mean square errors (MSEs) when estimating relevant parameters with separable measurements based on known precision bounds; the symmetric logarithmic derivative (SLD) Cramér-Rao (CR) bound and Hayashi-Gill-Massar (HGM) bound. We investigate the optimal measurement which attains the HGM bound and discuss its properties. We show that the HGM bound for relevant parameters can be attained asymptotically by using some fraction of given n quantum states to estimate the phase parameter. We also discuss the Holevo bound which can be attained asymptotically by a collective measurement.

  17. Peptides derived from human galectin-3 N-terminal tail interact with its carbohydrate recognition domain in a phosphorylation-dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berbís, M. Álvaro; André, Sabine; Cañada, F. Javier

    2014-01-03

    Highlights: •Galectin-3 is composed of a carbohydrate recognition domain and an N-terminal tail. •Synthetic peptides derived from the tail are shown to interact with the CRD. •This interaction is modulated by Ser- and Tyr-phosphorylation of the peptides. -- Abstract: Galectin-3 (Gal-3) is a multi-functional effector protein that functions in the cytoplasm and the nucleus, as well as extracellularly following non-classical secretion. Structurally, Gal-3 is unique among galectins with its carbohydrate recognition domain (CRD) attached to a rather long N-terminal tail composed mostly of collagen-like repeats (nine in the human protein) and terminating in a short non-collagenous terminal peptide sequence uniquemore » in this lectin family and not yet fully explored. Although several Ser and Tyr sites within the N-terminal tail can be phosphorylated, the physiological significance of this post-translational modification remains unclear. Here, we used a series of synthetic (phospho)peptides derived from the tail to assess phosphorylation-mediated interactions with {sup 15}N-labeled Gal-3 CRD. HSQC-derived chemical shift perturbations revealed selective interactions at the backface of the CRD that were attenuated by phosphorylation of Tyr 107 and Tyr 118, while phosphorylation of Ser 6 and Ser 12 was essential. Controls with sequence scrambling underscored inherent specificity. Our studies shed light on how phosphorylation of the N-terminal tail may impact on Gal-3 function and prompt further studies using phosphorylated full-length protein.« less

  18. Levels and interactions of plasma xanthine oxidase, catalase and liver function parameters in Nigerian children with Plasmodium falciparum infection.

    PubMed

    Iwalokun, B A; Bamiro, S B; Ogunledun, A

    2006-12-01

    Elevated plasma levels of xanthine oxidase and liver function parameters have been associated with inflammatory events in several human diseases. While xanthine oxidase provides in vitro protection against malaria, its pathophysiological functions in vivo and interactions with liver function parameters remain unclear. This study examined the interactions and plasma levels of xanthine oxidase (XO) and uric acid (UA), catalase (CAT) and liver function parameters GOT, GPT and bilirubin in asymptomatic (n=20), uncomplicated (n=32), and severe (n=18) falciparum malaria children aged 3-13 years. Compared to age-matched control (n=16), significant (p<0.05) elevation in xanthine oxidase by 100-550%, uric acid by 15.4-153.8%, GOT and GPT by 22.1-102.2%, and total bilirubin by 2.3-86% according to parasitaemia (geometric mean parasite density (GMPD)=850-87100 parasites/microL) was observed in the malarial children. Further comparison with control revealed higher CAT level (16.2+/-0.5 vs 14.6+/-0.4 U/L; p<0.05) lacking significant (p>0.05) correlation with XO, but lower CAT level (13.4-5.4 U/L) with improved correlations (r=-0.53 to -0.91; p<0.05) with XO among the asymptomatic and symptomatic malaria children studied. 75% of control, 45% of asymptomatic, 21.9% of uncomplicated, and none of severe malaria children had Hb level>11.0 g/dL. Multivariate analyses further revealed significant (p<0.05) correlations between liver function parameters and xanthine oxidase (r=0.57-0.64) only in the severe malaria group. We conclude that elevated levels of XO and liver enzymes are biochemical features of Plasmodium falciparum parasitaemia in Nigerian children, with both parameters interacting differently to modulate the catalase response in asymptomatic and symptomatic falciparum malaria.

  19. New Amphiphilic Neamine Derivatives Active against Resistant Pseudomonas aeruginosa and Their Interactions with Lipopolysaccharides

    PubMed Central

    Sautrey, Guillaume; Zimmermann, Louis; Deleu, Magali; Delbar, Alicia; Souza Machado, Luiza; Jeannot, Katy; Van Bambeke, Françoise; Buyck, Julien M.; Decout, Jean-Luc

    2014-01-01

    The development of novel antimicrobial agents is urgently required to curb the widespread emergence of multidrug-resistant bacteria like colistin-resistant Pseudomonas aeruginosa. We previously synthesized a series of amphiphilic neamine derivatives active against bacterial membranes, among which 3′,6-di-O-[(2″-naphthyl)propyl]neamine (3′,6-di2NP), 3′,6-di-O-[(2″-naphthyl)butyl]neamine (3′,6-di2NB), and 3′,6-di-O-nonylneamine (3′,6-diNn) showed high levels of activity and low levels of cytotoxicity (L. Zimmermann et al., J. Med. Chem. 56:7691–7705, 2013). We have now further characterized the activity of these derivatives against colistin-resistant P. aeruginosa and studied their mode of action; specifically, we characterized their ability to interact with lipopolysaccharide (LPS) and to alter the bacterial outer membrane (OM). The three amphiphilic neamine derivatives were active against clinical colistin-resistant strains (MICs, about 2 to 8 μg/ml), The most active one (3′,6-diNn) was bactericidal at its MIC and inhibited biofilm formation at 2-fold its MIC. They cooperatively bound to LPSs, increasing the outer membrane permeability. Grafting long and linear alkyl chains (nonyl) optimized binding to LPS and outer membrane permeabilization. The effects of amphiphilic neamine derivatives on LPS micelles suggest changes in the cross-bridging of lipopolysaccharides and disordering in the hydrophobic core of the micelles. The molecular shape of the 3′,6-dialkyl neamine derivatives induced by the nature of the grafted hydrophobic moieties (naphthylalkyl instead of alkyl) and the flexibility of the hydrophobic moiety are critical for their fluidifying effect and their ability to displace cations bridging LPS. Results from this work could be exploited for the development of new amphiphilic neamine derivatives active against colistin-resistant P. aeruginosa. PMID:24867965

  20. Betulin derivatives impair Leishmania braziliensis viability and host-parasite interaction.

    PubMed

    Alcazar, Wilmer; López, Adrian Silva; Alakurtti, Sami; Tuononen, Maija-Liisa; Yli-Kauhaluoma, Jari; Ponte-Sucre, Alicia

    2014-11-01

    Leishmaniasis is a public health problem in tropical and subtropical areas of the world, including Venezuela. The incidence of treatment failure and the number of cases with Leishmania-HIV co-infection underscore the importance of developing alternative, economical and effective therapies against this disease. The work presented here analyzed whether terpenoids derived from betulin are active against New World Leishmania parasites. Initially we determined the concentration that inhibits the growth of these parasites by 50% or IC50, and subsequently evaluated the chemotactic effect of four compounds with leishmanicidal activity in the sub-micromolar and micromolar range. That is, we measured the migratory capacity of Leishmania (V.) braziliensis in the presence of increasing concentrations of compounds. Finally, we evaluated their cytotoxicity against the host cell and their effect on the infectivity of L. (V.) braziliensis. The results suggest that (1) compounds 14, 17, 18, 25 and 27 are active at concentrations lower than 10 μM; (2) compound 26 inhibits parasite growth with an IC50 lower than 1 μM; (3) compounds 18, 26 and 27 inhibit parasite migration at pico- to nanomolar concentrations, suggesting that they impair host-parasite interaction. None of the tested compounds was cytotoxic against J774.A1 macrophages thus indicating their potential as starting points to develop compounds that might affect parasite-host cell interaction, as well as being leishmanicidal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Interaction of glucocorticoids and progesterone derivatives with human serum albumin.

    PubMed

    Abboud, Rola; Akil, Mohammad; Charcosset, Catherine; Greige-Gerges, Hélène

    2017-10-01

    Glucocorticoids (GCs) and progesterone derivatives (PGDs) are steroid hormones with well-known biological activities. Their interaction with human serum albumin (HSA) may control their distribution. Their binding to albumin is poorly studied in literature. This paper deals with the interaction of a series of GCs (cortisol, cortisone, prednisolone, prednisone, 6-methylprednisolone and 9-fluorocortisol acetate) and PGDs (progesterone, hydroxylated PGDs, methylated PGDs and dydrogesterone) with HSA solution (pH 7.4) at molar ratios steroid to HSA varying from 0 to 10. Similar titrations were conducted using Trp aqueous solution. Fluorescence titration method and Fourier transform infrared spectroscopy (FTIR) are used. PGDs (except dydrogesterone), cortisone and 9-fluorocortisol acetate affected weakly the fluorescence of Trp in buffer solution while they decreased in a dose-dependent manner that of HSA. Their binding constants to HSA were then calculated. Moreover, displacement experiment was performed using bilirubin as a site marker. The binding constant of bilirubin to albumin was determined in the absence and presence of a steroid at a molar ratio steroid to HSA of 1. The results indicate that the steroids bind to HSA at site I in a pocket different from that of bilirubin. Furthermore, the peak positions of amide I and amide II bands of HSA were shifted in the presence of progesterone, dydrogesterone and GCs. Also a variation was observed in amide I region indicating the formation of hydrogen bonding between albumin and steroids. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Selection of operating parameters on the basis of hydrodynamics in centrifugal partition chromatography for the purification of nybomycin derivatives.

    PubMed

    Adelmann, S; Baldhoff, T; Koepcke, B; Schembecker, G

    2013-01-25

    The selection of solvent systems in centrifugal partition chromatography (CPC) is the most critical point in setting up a separation. Therefore, lots of research was done on the topic in the last decades. But the selection of suitable operating parameters (mobile phase flow rate, rotational speed and mode of operation) with respect to hydrodynamics and pressure drop limit in CPC is still mainly driven by experience of the chromatographer. In this work we used hydrodynamic analysis for the prediction of most suitable operating parameters. After selection of different solvent systems with respect to partition coefficients for the target compound the hydrodynamics were visualized. Based on flow pattern and retention the operating parameters were selected for the purification runs of nybomycin derivatives that were carried out with a 200 ml FCPC(®) rotor. The results have proven that the selection of optimized operating parameters by analysis of hydrodynamics only is possible. As the hydrodynamics are predictable by the physical properties of the solvent system the optimized operating parameters can be estimated, too. Additionally, we found that dispersion and especially retention are improved if the less viscous phase is mobile. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  3. Specific interactions between amyloid-β peptide and curcumin derivatives: Ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Ishimura, Hiromi; Kadoya, Ryushi; Suzuki, Tomoya; Murakawa, Takeru; Shulga, Sergiy; Kurita, Noriyuki

    2015-07-01

    Alzheimer's disease is caused by accumulation of amyloid-β (Aβ) peptides in a brain. To suppress the production of Aβ peptides, it is effective to inhibit the cleavage of amyloid precursor protein (APP) by secretases. However, because the secretases also play important roles to produce vital proteins for human body, inhibitors for the secretases may have side effects. To propose new agents for protecting the cleavage site of APP from the attacking of the γ-secretase, we have investigated here the specific interactions between a short APP peptide and curcumin derivatives, using protein-ligand docking as well as ab initio molecular simulations.

  4. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  5. Hydrodynamic interaction between two vesicles in a linear shear flow: asymptotic study.

    PubMed

    Gires, P Y; Danker, G; Misbah, C

    2012-07-01

    Interactions between two vesicles in an imposed linear shear flow are studied theoretically, in the limit of almost spherical vesicles, with a large intervesicle distance, in a strong flow, with a large inner to outer viscosity ratio. This allows to derive a system of ordinary equations describing the dynamics of the two vesicles. We provide an analytic expression for the interaction law. We find that when the vesicles are in the same shear plane, the hydrodynamic interaction leads to a repulsion. When they are not, the interaction may turn into attraction instead. The interaction law is discussed and analyzed as a function of relevant parameters.

  6. Volumetrically Derived Thermodynamic Profile of Interactions of Urea with a Native Protein.

    PubMed

    Son, Ikbae; Chalikian, Tigran V

    2016-11-29

    We report the first experimental characterization of the full thermodynamic profile for binding of urea to a native protein. We measured the volumetric parameters of lysozyme at pH 7.0 as a function of urea within a temperature range of 18-45 °C. At neutral pH, lysozyme retains its native conformation between 0 and 8 M urea over the entire range of temperatures studied. Consequently, our measured volumetric properties reflect solely the interactions of urea with the native protein and do not involve contributions from urea-induced conformational transitions. We analyzed our data within the framework of a statistical thermodynamic analytical model in which urea-protein interactions are viewed as solvent exchange in the vicinity of the protein. The analysis produced the equilibrium constant, k, for an elementary reaction of urea-protein binding with a change in standard state free energy (ΔG° = -RT ln k) at each experimental temperature. We used the van't Hoff equation to compute from the temperature dependence of the equilibrium constant, k, changes in enthalpy, ΔH°, and entropy, ΔS°, accompanying binding. The thermodynamic profile of urea-protein interactions, in conjunction with published molecular dynamics simulation results, is consistent with the picture in which urea molecules, being underhydrated in the bulk, form strong, enthalpically favorable interactions with the surface protein groups while paying a high entropic price. We discuss ramifications of our results for providing insights into the combined effects of urea, temperature, and pressure on the conformational preferences of proteins.

  7. Systematic Improvement of Potential-Derived Atomic Multipoles and Redundancy of the Electrostatic Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2014-12-09

    We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.

  8. Majorana Kramers pairs in Rashba double nanowires with interactions and disorder

    NASA Astrophysics Data System (ADS)

    Thakurathi, Manisha; Simon, Pascal; Mandal, Ipsita; Klinovaja, Jelena; Loss, Daniel

    2018-01-01

    We analyze the effects of electron-electron interactions and disorder on a Rashba double-nanowire setup coupled to an s -wave superconductor, which has been recently proposed as a versatile platform to generate Kramers pairs of Majorana bound states in the absence of magnetic fields. We identify the regime of parameters for which these Kramers pairs are stable against interaction and disorder effects. We use bosonization, perturbative renormalization group, and replica techniques to derive the flow equations for various parameters of the model and evaluate the corresponding phase diagram with topological and disorder-dominated phases. We confirm aforementioned results by considering a more microscopic approach, which starts from the tunneling Hamiltonian between the three-dimensional s -wave superconductor and the nanowires. We find again that the interaction drives the system into the topological phase and, as the strength of the source term coming from the tunneling Hamiltonian increases, strong electron-electron interactions are required to reach the topological phase.

  9. K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution

    DOE PAGES

    DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...

    2017-06-09

    The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less

  10. Non-Synonymous Single-Nucleotide Polymorphisms and Physical Activity Interactions on Adiposity Parameters in Malaysian Adolescents.

    PubMed

    Zaharan, Nur Lisa; Muhamad, Nor Hanisah; Jalaludin, Muhammad Yazid; Su, Tin Tin; Mohamed, Zahurin; Mohamed, M N A; A Majid, Hazreen

    2018-01-01

    Several non-synonymous single-nucleotide polymorphisms (nsSNPs) have been shown to be associated with obesity. Little is known about their associations and interactions with physical activity (PA) in relation to adiposity parameters among adolescents in Malaysia. We examined whether (a) PA and (b) selected nsSNPs are associated with adiposity parameters and whether PA interacts with these nsSNPs on these outcomes in adolescents from the Malaysian Health and Adolescents Longitudinal Research Team study ( n  = 1,151). Body mass indices, waist-hip ratio, and percentage body fat (% BF) were obtained. PA was assessed using Physical Activity Questionnaire for Older Children (PAQ-C). Five nsSNPs were included: beta-3 adrenergic receptor (ADRB3) rs4994, FABP2 rs1799883, GHRL rs696217, MC3R rs3827103, and vitamin D receptor rs2228570, individually and as combined genetic risk score (GRS). Associations and interactions between nsSNPs and PAQ-C scores were examined using generalized linear model. PAQ-C scores were associated with % BF (β = -0.44 [95% confidence interval -0.72, -0.16], p  = 0.002). The CC genotype of ADRB3 rs4994 (β = -0.16 [-0.28, -0.05], corrected p  = 0.01) and AA genotype of MC3R rs3827103 (β = -0.06 [-0.12, -0.00], p  = 0.02) were significantly associated with % BF compared to TT and GG genotypes, respectively. Significant interactions with PA were found between ADRB3 rs4994 (β = -0.05 [-0.10, -0.01], p  = 0.02) and combined GRS (β = -0.03 [-0.04, -0.01], p  = 0.01) for % BF. Higher PA score was associated with reduced % BF in Malaysian adolescents. Of the nsSNPs, ADRB3 rs4994 and MC3R rs3827103 were associated with % BF. Significant interactions with PA were found for ADRB3 rs4994 and combined GRS on % BF but not on measurements of weight or circumferences. Targeting body fat represent prospects for molecular studies and lifestyle intervention in this population.

  11. Higher derivative extensions of 3 d Chern-Simons models: conservation laws and stability

    NASA Astrophysics Data System (ADS)

    Kaparulin, D. S.; Karataeva, I. Yu.; Lyakhovich, S. L.

    2015-11-01

    We consider the class of higher derivative 3 d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability.

  12. A novel method for deriving the aerosol hygroscopicity parameter based only on measurements from a humidified nephelometer system

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chunsheng; Tao, Jiangchuan; Bian, Yuxuan; Ma, Nan; Zhao, Gang

    2017-06-01

    Aerosol hygroscopicity is crucial for understanding roles of aerosol particles in atmospheric chemistry and aerosol climate effects. Light-scattering enhancement factor f(RH, λ) is one of the parameters describing aerosol hygroscopicity, which is defined as f(RH, λ) = σsp(RH, λ)/σsp(dry, λ), where σsp(RH, λ) or σsp(dry, λ) represents σsp at wavelength λ under certain relative humidity (RH) or dry conditions. Traditionally, an overall hygroscopicity parameter κ can be retrieved from measured f(RH, λ), hereinafter referred to as κf(RH), by combining concurrently measured particle number size distribution (PNSD) and mass concentration of black carbon. In this paper, a new method is proposed to directly derive κf(RH) based only on measurements from a three-wavelength humidified nephelometer system. The advantage of this newly proposed approach is that κf(RH) can be estimated without any additional information about PNSD and black carbon. This method is verified with measurements from two different field campaigns. Values of κf(RH) estimated from this new method agree very well with those retrieved by using the traditional method: all points lie near the 1 : 1 line and the square of correlation coefficient between them is 0.99. The verification results demonstrate that this newly proposed method of deriving κf(RH) is applicable at different sites and in seasons of the North China Plain and might also be applicable in other regions around the world.

  13. Specific interactions between mycobacterial FtsZ protein and curcumin derivatives: Molecular docking and ab initio molecular simulations

    NASA Astrophysics Data System (ADS)

    Fujimori, Mitsuki; Sogawa, Haruki; Ota, Shintaro; Karpov, Pavel; Shulga, Sergey; Blume, Yaroslav; Kurita, Noriyuki

    2018-01-01

    Filamentous temperature-sensitive Z (FtsZ) protein plays essential role in bacteria cell division, and its inhibition prevents Mycobacteria reproduction. Here we adopted curcumin derivatives as candidates of novel inhibitors and investigated their specific interactions with FtsZ, using ab initio molecular simulations based on protein-ligand docking, classical molecular mechanics and ab initio fragment molecular orbital (FMO) calculations. Based on FMO calculations, we specified the most preferable site of curcumin binding to FtsZ and highlighted the key amino acid residues for curcumin binding at an electronic level. The result will be useful for proposing novel inhibitors against FtsZ based on curcumin derivatives.

  14. Long-range interacting systems in the unconstrained ensemble.

    PubMed

    Latella, Ivan; Pérez-Madrid, Agustín; Campa, Alessandro; Casetti, Lapo; Ruffo, Stefano

    2017-01-01

    Completely open systems can exchange heat, work, and matter with the environment. While energy, volume, and number of particles fluctuate under completely open conditions, the equilibrium states of the system, if they exist, can be specified using the temperature, pressure, and chemical potential as control parameters. The unconstrained ensemble is the statistical ensemble describing completely open systems and the replica energy is the appropriate free energy for these control parameters from which the thermodynamics must be derived. It turns out that macroscopic systems with short-range interactions cannot attain equilibrium configurations in the unconstrained ensemble, since temperature, pressure, and chemical potential cannot be taken as a set of independent variables in this case. In contrast, we show that systems with long-range interactions can reach states of thermodynamic equilibrium in the unconstrained ensemble. To illustrate this fact, we consider a modification of the Thirring model and compare the unconstrained ensemble with the canonical and grand-canonical ones: The more the ensemble is constrained by fixing the volume or number of particles, the larger the space of parameters defining the equilibrium configurations.

  15. Variability of DTM-derived, morphometric parameters versus cell size. An example of application in Calabria (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Rago, Valeria; Caloiero, Paola; Pellegrino, Annamaria Daniela; Iovine, Giulio G. R.; Terranova, Oreste G.; Pascale, Stefania

    2016-04-01

    Applications of DTM-derived morphometry are nowadays common in many fields of land-use planning, including the protection from natural hazards (cf. e.g. Iovine et al. 2013; 2014). For example, the mathematical modelling of physical processes that occur at slope or basin scales makes extensive use of quantitative parameters that describe the shape of Earth surface. Unfortunately, the values of these parameters depend on the detail with which the territory is represented. Therefore, different relationships must be adopted to describe the same physical processes at different scales. In this study, as part of a wide-ranging research aimed at modelling of geo-hydrological processes, a systematic and rigorous assessment of variability of the morphometric parameters against cell sizes is addressed. The study area under consideration is the whole Calabrian territory, extended about 15075 square kilometres. The region has recently been zoned into eleven homogeneous geomorphological sectors (Antronico et al., 2010). For each geomorphological sector, DTMs have been derived from topographic maps at 1:5000 scale, with cell sizes of 5, 10, 20 and 40 m. The following morphometric parameters - among those most frequently used in land management - have then been evaluated for the above DTMs: altitude, steepness of slope, aspect, plan and profile curvatures, slope length, topographical wetness index, stream power index, topographic position index, terrain ruggedness index, slope length factor. The first results show a marked dependence on cell size for some of the considered parameters. In other cases, such dependence seems not significant. Mathematical relationships are proposed between cell size and considered parameters, also taking into account the geomorphological contexts examined. Based on the above relationships, the most suitable scale to be used for modelling physical processes in a given area of interest can be selected. References Antronico L., L. Borselli, R. Coscarelli

  16. The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na.

    PubMed

    Bustamante, P; Pena, M A; Barra, J

    2000-01-20

    Sodium salts are often used in drug formulation but their partial solubility parameters are not available. Sodium alters the physical properties of the drug and the knowledge of these parameters would help to predict adhesion properties that cannot be estimated using the solubility parameters of the parent acid. This work tests the applicability of the modified extended Hansen method to determine partial solubility parameters of sodium salts of acidic drugs containing a single hydrogen bonding group (ibuprofen, sodium ibuprofen, benzoic acid and sodium benzoate). The method uses a regression analysis of the logarithm of the experimental mole fraction solubility of the drug against the partial solubility parameters of the solvents, using models with three and four parameters. The solubility of the drugs was determined in a set of solvents representative of several chemical classes, ranging from low to high solubility parameter values. The best results were obtained with the four parameter model for the acidic drugs and with the three parameter model for the sodium derivatives. The four parameter model includes both a Lewis-acid and a Lewis-base term. Since the Lewis acid properties of the sodium derivatives are blocked by sodium, the three parameter model is recommended for these kind of compounds. Comparison of the parameters obtained shows that sodium greatly changes the polar parameters whereas the dispersion parameter is not much affected. Consequently the total solubility parameters of the salts are larger than for the parent acids in good agreement with the larger hydrophilicity expected from the introduction of sodium. The results indicate that the modified extended Hansen method can be applied to determine the partial solubility parameters of acidic drugs and their sodium salts.

  17. Estimating turbulent electrovortex flow parameters hear the dynamo cycle bifurcation point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimin, V.D.; Kolpakov, N.Yu.; Khripchenko, S.Yu.

    1988-07-01

    Models for estimating turbulent electrovortex flow parameters, derived in earlier studies, were delineated and extended in this paper to express those parameters near the dynamo cycle bifurcation point in a spherical cavity. Toroidal and poloidal fields rising from the induction currents within the liquid metal and their electrovortex interactions were calculated. Toroidal field strengthening by the poloidal electrovortex flow, the first part of the dynamo loop, was determined by the viscous dissipation in the liquid metal. The second part of the loop, in which the toroidal field localized in the liquid metal is converted to a poloidal field and emergesmore » from the sphere, was also established. The dissipative effects near the critical magnetic Reynolds number were estimated.« less

  18. Interaction of Benzimidazoles and Benzotriazole: Its Corrosion Protection Properties on Mild Steel in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Ramya, K.; Mohan, Revathi; Joseph, Abraham

    2014-11-01

    Synergistic hydrogen-bonded interaction of alkyl benzimidazoles and 1,2,3-benzotrizole and its corrosion protection properties on mild steel in hydrochloric acid at different temperatures have been studied using polarization, EIS, adsorption, surface studies, and computational methods. The extent of synergistic interaction increases with temperature. Quantum chemical approach is used to calculate some electronic properties of the molecules and to ascertain the synergistic interaction, inhibitive effect, and molecular structures. The corrosion inhibition efficiencies and the global chemical reactivity relate to some parameters, such as total energy, E HOMO, E LUMO, and gap energy (Δ E). 1,2,3-Benzotrizole interacts with benzimidazoles derivatives up to a bond length of approximately 1.99 Å. This interaction represents the formation of a hydrogen bond between the 1,2,3-benzotrizole and benzimidazoles. This synergistic interaction of 1,2,3-benzotrizole and benzimidazole derivatives offers extended inhibition efficiency toward mild steel in hydrochloric acid.

  19. Towards Improving our Understanding on the Retrievals of Key Parameters Characterising Land Surface Interactions from Space: Introduction & First Results from the PREMIER-EO Project

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona

    2015-04-01

    Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER

  20. Plasma-derived microparticles in polycythaemia vera.

    PubMed

    Ahadon, M; Abdul Aziz, S; Wong, C L; Leong, C F

    2018-04-01

    Microparticles are membrane bound vesicles, measuring less than 1.0 um, which are released during cellular activation or during apoptosis. Studies have shown that these circulating microparticles play a role in coagulation, cell signaling and cellular interactions. Increased levels of circulating microparticles have been observed in a number of conditions where there is vascular dysfunction, thrombosis and inflammation. The objective of this study was to determine the various plasma-derived microparticles in patients with polycythaemia vera (PV) in Universiti Kebangsaan Malaysia Medical Centre and to compare them with normal control. A total of 15 patients with PV and 15 healthy volunteers were included in this cross-sectional descriptive study. Plasma samples from both patients and healthy volunteers were prepared and further processed for isolation of microparticles. Flow cytometry analyses were then carried out in all samples to determine the cellular origin of the microparticles. Full blood count parameters for both groups were also collected. Data collected were analyzed using SPSS version 12.0. Patients with PV had a significantly higher percentage of platelet derived microparticles compared to healthy controls (P <0.05). The control group had a higher level of endothelial derived microparticles but the differences were not statistically significant (P > 0.05). The median percentage of positive events for platelet derived microparticles was higher in patients with PV compared to normal healthy controls.

  1. Dynamical vanishing of the order parameter in a confined Bardeen-Cooper-Schrieffer Fermi gas after an interaction quench

    NASA Astrophysics Data System (ADS)

    Hannibal, S.; Kettmann, P.; Croitoru, M. D.; Axt, V. M.; Kuhn, T.

    2018-01-01

    We present a numerical study of the Higgs mode in an ultracold confined Fermi gas after an interaction quench and find a dynamical vanishing of the superfluid order parameter. Our calculations are done within a microscopic density-matrix approach in the Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confinement explicitly into account. In this framework, we study the amplitude mode of the order parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover close to the transition and ending in the BCS regime. We demonstrate the emergence of a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a three-dimensional trap. Further, we show that the signal averaged over the whole trap mirrors the spatiotemporal behavior and allows us to systematically study the effects of the system size and aspect ratio on the observed dynamics. Our analysis enables us to connect the confinement-induced modifications of the dynamics to the pairing properties of the system. Finally, we demonstrate that the signature of the Higgs mode is contained in the dynamical signal of the condensate fraction, which, therefore, might provide a new experimental access to the nonadiabatic regime of the Higgs mode.

  2. Settling of dilbit-derived oil-mineral aggregates (OMAs) & transport parameters for oil spill modelling.

    PubMed

    O'Laughlin, Casey M; Law, Brent A; Zions, Vanessa S; King, Thomas L; Robinson, Brian; Wu, Yongsheng

    2017-11-15

    The size and settling velocity of oil-mineral aggregates (OMAs) derived from diluted bitumen are primary constituents in predictive models for evaluating the potential fate of oil spilled in the aquatic environment. A series of low sediment concentration (15mg·L -1 ), colder water (<10°C) wave tank experiments designed to measure variability in these parameters in naturally-formed OMAs in response the presence or absence of chemical dispersant are discussed. Corresponding lab experiments revealed settling velocities of artificially formed OMAs on the order of 0.1-0.4mm·s -1 . High-resolution imagery of settling particles were analyzed for particle size, density and settling velocity. In situ formation of OMAs in the wave tank was unsuccessful. Possible effects of chemical dispersant on natural sediment flocculation, the size of suspended oil droplets and clearance rates of suspended particles are discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Interactive Visual Analytics Approch for Exploration of Geochemical Model Simulations with Different Parameter Sets

    NASA Astrophysics Data System (ADS)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2015-04-01

    Many geoscience applications can benefit from testing many combinations of input parameters for geochemical simulation models. It is, however, a challenge to screen the input and output data from the model to identify the significant relationships between input parameters and output variables. For addressing this problem we propose a Visual Analytics approach that has been developed in an ongoing collaboration between computer science and geoscience researchers. Our Visual Analytics approach uses visualization methods of hierarchical horizontal axis, multi-factor stacked bar charts and interactive semi-automated filtering for input and output data together with automatic sensitivity analysis. This guides the users towards significant relationships. We implement our approach as an interactive data exploration tool. It is designed with flexibility in mind, so that a diverse set of tasks such as inverse modeling, sensitivity analysis and model parameter refinement can be supported. Here we demonstrate the capabilities of our approach by two examples for gas storage applications. For the first example our Visual Analytics approach enabled the analyst to observe how the element concentrations change around previously established baselines in response to thousands of different combinations of mineral phases. This supported combinatorial inverse modeling for interpreting observations about the chemical composition of the formation fluids at the Ketzin pilot site for CO2 storage. The results indicate that, within the experimental error range, the formation fluid cannot be considered at local thermodynamical equilibrium with the mineral assemblage of the reservoir rock. This is a valuable insight from the predictive geochemical modeling for the Ketzin site. For the second example our approach supports sensitivity analysis for a reaction involving the reductive dissolution of pyrite with formation of pyrrothite in presence of gaseous hydrogen. We determine that this reaction

  4. Personalized Nutrition-Genes, Diet, and Related Interactive Parameters as Predictors of Cancer in Multiethnic Colorectal Cancer Families.

    PubMed

    Shiao, S Pamela K; Grayson, James; Lie, Amanda; Yu, Chong Ho

    2018-06-20

    To personalize nutrition, the purpose of this study was to examine five key genes in the folate metabolism pathway, and dietary parameters and related interactive parameters as predictors of colorectal cancer (CRC) by measuring the healthy eating index (HEI) in multiethnic families. The five genes included methylenetetrahydrofolate reductase ( MTHFR ) 677 and 1298, methionine synthase ( MTR ) 2756, methionine synthase reductase ( MTRR 66), and dihydrofolate reductase ( DHFR ) 19bp , and they were used to compute a total gene mutation score. We included 53 families, 53 CRC patients and 53 paired family friend members of diverse population groups in Southern California. We measured multidimensional data using the ensemble bootstrap forest method to identify variables of importance within domains of genetic, demographic, and dietary parameters to achieve dimension reduction. We then constructed predictive generalized regression (GR) modeling with a supervised machine learning validation procedure with the target variable (cancer status) being specified to validate the results to allow enhanced prediction and reproducibility. The results showed that the CRC group had increased total gene mutation scores compared to the family members ( p < 0.05). Using the Akaike's information criterion and Leave-One-Out cross validation GR methods, the HEI was interactive with thiamine (vitamin B1), which is a new finding for the literature. The natural food sources for thiamine include whole grains, legumes, and some meats and fish which HEI scoring included as part of healthy portions (versus limiting portions on salt, saturated fat and empty calories). Additional predictors included age, as well as gender and the interaction of MTHFR 677 with overweight status (measured by body mass index) in predicting CRC, with the cancer group having more men and overweight cases. The HEI score was significant when split at the median score of 77 into greater or less scores, confirmed through

  5. Structural analysis and antimicrobial activity of 2[1H]-pyrimidinethione/selenone derivatives

    NASA Astrophysics Data System (ADS)

    Żesławska, Ewa; Korona-Głowniak, Izabela; Szczesio, Małgorzata; Olczak, Andrzej; Żylewska, Alicja; Tejchman, Waldemar; Malm, Anna

    2017-08-01

    Four new crystal structures of sulfur and selenium analogues of 2[1H]-pyrimidinone derivatives were determined with the use of X-ray diffraction method. The molecular geometry and intermolecular interactions of the investigated molecules were analyzed in order to find the structural features and geometrical parameters, which can be responsible for antimicrobial activities. The influence of chalcogen substituents (sulfur and selenium) on the crystal packing was also studied. The main differences in the molecular structures exist in mutual arrangement of two aromatic rings. The intermolecular interactions in all investigated compounds are similar. Furthermore, the in vitro antibacterial and antifungal activities for these compounds were evaluated. Preliminary investigations have identified two highly potent antibacterial compounds containing selenium atom, which display selectivity towards staphylococci and micrococci. This selectivity was not observed for a control compound used as a drug, namely vancomycin. These compounds possess also good antifungal activity. This is the first report of biological activities of 2[1H]-pyrimidineselenone derivatives.

  6. Antimicrobial activities, DNA interactions, spectroscopic (FT-IR and UV-Vis) characterizations, and DFT calculations for pyridine-2-carboxylic acid and its derivates

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Tamer, Sevil Arabacı; İdil, Önder; Avcı, Davut; Vural, Hatice; Atalay, Yusuf

    2018-01-01

    In this paper, pyridine- 2- carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4- methoxy-pyridine- 2- carboxylic acid (4-Mpic) and 4- chloro-pyridine- 2- carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyperpolarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4Clpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic.

  7. Nano Cu interaction with single amino acid tyrosine derived self-assemblies; study through XRD, AFM, confocal Raman microscopy, SERS and DFT methods

    NASA Astrophysics Data System (ADS)

    Govindhan, Raman; Karthikeyan, Balakrishnan

    2017-12-01

    3,5-Bis(trifluoromethyl)benzylamine derivatives of single amino acid tyrosine produced self-assembled nanotubes (BTTNTs) as simple Phe-Phe. It has been observed that tyrosine derivative gives exclusively micro and nano tubes irrespective of the concentration of the precursor monomer. However, the introduced xenobiotic trifluoromethyl group (TFM) present in key backbone positionsof the self assembly gives the specific therapeutic function has been highlighted. Herein this work study of such self assembled nanotubes were studied through experimental and theoretical methods. The interaction of nanocopper cluster with the nanotubes (Cu@BTTNTs) were extensively studied by various methods like XRD, AFM, confocal Raman microscopy, SERS and theoretical methods like Mulliken's atomic charge analysis. SERS reveals that the interactions of Cu cluster with NH2, OH, NH and phenyl ring π-electrons system of BTTNTs. DFT studies gave the total dipole moment values of Cu@BTTNTs and explained the nature of interaction.

  8. Effect of thermal history on Mossbauer signature and hyperfine interaction parameters of copper ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, K. B., E-mail: kunalbmodi2003@yahoo.com; Raval, P. Y.; Dulera, S. V.

    Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.

  9. Hexylitaconic acid: a new inhibitor of p53-HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp.

    PubMed

    Tsukamoto, Sachiko; Yoshida, Takushi; Hosono, Hidetaka; Ohta, Tomihisa; Yokosawa, Hideyoshi

    2006-01-01

    A new inhibitor of p53-HDM2 interaction was isolated from a culture of marine-derived fungus, Arthrinium sp. The structure was identified to be (-)-hexylitaconic acid (1) by spectroscopic analysis. The inhibition of p53-HDM2 binding was tested by the ELISA method, and 1 inhibited the binding with an IC(50) value of 50 microg/mL. Although a number of synthetic inhibitors of p53-HDM2 interaction have been reported so far, 1 is the second inhibitor isolated from natural resources.

  10. A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins.

    PubMed

    Soares, Joana; Raimundo, Liliana; Pereira, Nuno A L; dos Santos, Daniel J V A; Pérez, Maria; Queiroz, Glória; Leão, Mariana; Santos, Maria M M; Saraiva, Lucília

    2015-01-01

    Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53(+/+)) and its p53-null isogenic derivative (HCT116 p53(-/-)), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53(+/+), but not in p53(-/-), HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMX-overexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53(+/+) cells, the disruption of the p53 interaction with MDMs by OXAZ-1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual

  11. Glionitrin A, an antibiotic-antitumor metabolite derived from competitive interaction between abandoned mine microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.B.; Kown, H.C.; Lee, C.H.

    The nutrient conditions present in abandoned coal mine drainages create an extreme environment where defensive and offensive microbial interactions could be critical for survival and fitness. Coculture of a mine drainage-derived Sphingomonas bacterial strain, KMK-001, and a mine drainage-derived Aspergillus fumigatus fungal strain, KMC-901, resulted in isolation of a new diketopiperazine disulfide, glionitrin A (1). Compound 1 was not detected in monoculture broths of KMK-001 or KMC-901. The structure of 1, a (3S,10aS) diketopiperazine disulfide containing a nitro aromatic ring, was based on analysis of MS, NMR, and circular dichroism spectra and confirmed by X-ray crystal data. Glionitrin A displayedmore » significant antibiotic activity against a series of microbes including methicillin-resistant Staphylococcus aureus. An in vitro MTT cytotoxicity assay revealed that 1 had potent submicromolar cytotoxic activity against four human cancer cell lines: HCT-116, A549, AGS, and DU145. The results provide further evidence that microbial coculture can produce novel biologically relevant molecules.« less

  12. Characterizing plant cell wall derived oligosaccharides using hydrophilic interaction chromatography with mass spectrometry detection.

    PubMed

    Leijdekkers, A G M; Sanders, M G; Schols, H A; Gruppen, H

    2011-12-23

    Analysis of complex mixtures of plant cell wall derived oligosaccharides is still challenging and multiple analytical techniques are often required for separation and characterization of these mixtures. In this work it is demonstrated that hydrophilic interaction chromatography coupled with evaporative light scattering and mass spectrometry detection (HILIC-ELSD-MS(n)) is a valuable tool for identification of a wide range of neutral and acidic cell wall derived oligosaccharides. The separation potential for acidic oligosaccharides observed with HILIC is much better compared to other existing techniques, like capillary electrophoresis, reversed phase and porous-graphitized carbon chromatography. Important structural information, such as presence of methyl esters and acetyl groups, is retained during analysis. Separation of acidic oligosaccharides with equal charge yet with different degrees of polymerization can be obtained. The efficient coupling of HILIC with ELSD and MS(n)-detection enables characterization and quantification of many different oligosaccharide structures present in complex mixtures. This makes HILIC-ELSD-MS(n) a versatile and powerful additional technique in plant cell wall analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Atmospheric circulation and sounding-derived parameters associated with thunderstorm occurrence in Central Europe

    NASA Astrophysics Data System (ADS)

    Kolendowicz, Leszek; Taszarek, Mateusz; Czernecki, Bartosz

    2017-07-01

    The main objective of this study is to examine the influence of atmospheric circulation patterns and sounding-derived parameters on thunderstorm occurrence in Central Europe. Thunderstorm activity tends to increase as one moves from the north to the south of the research area. Maximal thunderstorm occurrence is observed in the summer months, while between October and March such activity is much lower. Thunderstorms are also more frequent in spring than in autumn. In the warm season, the occurrence of thunderstorm is associated with the presence of a trough associated with a low located over the North Sea and Scandinavia. In the cold season, the synoptic pattern indicates a strong zonal flow from the west with significantly higher horizontal pressure gradient compared to the warm season. Thunderstorms are more likely to form when the boundary layer's mixing ratios are higher than 8 g kg- 1. Deep convection is also more likely to occur when the vertical temperature lapse rates (between 800 and 500 hPa pressure layers) exceed 6 °C km- 1. During the cold season, considerably higher lapse rates are needed to produce thunderstorms. The values obtained for the convective available potential energy indicate that at least 50 J kg- 1 is needed to produce a thunderstorm during wintertime and 125 J kg- 1 during summertime. Cold season thunderstorms are formed with a lower instability but with a more dynamic wind field having an average value of deep layer shear that exceeds 20 ms- 1. The best parameter to distinguish thunderstorm from non-thunderstorm days for both winter and summer months is a combination of the square root of the convective available potential energy multiplied by the deep layer shear.

  14. Study of parameter of nonlinearity in 2-chloroethanol with 2-dimethylethanolamine/2-diethylethanolamine at different temperatures

    NASA Astrophysics Data System (ADS)

    Awasthi, Anjali; Awasthi, Aashees

    2017-06-01

    The acoustic non-linearity parameter (B/A) for binary mixtures of 2-chloroethanol with 2-dimethylethanolamine (2-DMAE) and 2-diethylethanolamine (2-DEAE) are evaluated using Tong Dong, Beyer and Beyer-Tong Dong coefficients at varying concentrations and temperatures ranging from 293.15 to 313.15 K. The nonlinearity parameter is used to calculate various molecular properties such as internal pressure, cohesive energy density, Van der waals' constant, distance of closest approach, diffusion coefficient and rotational correlation time. Additionally, the intermediate quantities like temperature and pressure derivatives of sound velocity and phase shift parameter as a function of temperature are also deduced. The extent of intermolecular interactions, anharmonicity and structural configuration of the binaries under investigation are discussed in terms of excess non-linearity parameter (B/A)E.

  15. Mathematical modeling of tetrahydroimidazole benzodiazepine-1-one derivatives as an anti HIV agent

    NASA Astrophysics Data System (ADS)

    Ojha, Lokendra Kumar

    2017-07-01

    The goal of the present work is the study of drug receptor interaction via QSAR (Quantitative Structure-Activity Relationship) analysis for 89 set of TIBO (Tetrahydroimidazole Benzodiazepine-1-one) derivatives. MLR (Multiple Linear Regression) method is utilized to generate predictive models of quantitative structure-activity relationships between a set of molecular descriptors and biological activity (IC50). The best QSAR model was selected having a correlation coefficient (r) of 0.9299 and Standard Error of Estimation (SEE) of 0.5022, Fisher Ratio (F) of 159.822 and Quality factor (Q) of 1.852. This model is statistically significant and strongly favours the substitution of sulphur atom, IS i.e. indicator parameter for -Z position of the TIBO derivatives. Two other parameter logP (octanol-water partition coefficient) and SAG (Surface Area Grid) also played a vital role in the generation of best QSAR model. All three descriptor shows very good stability towards data variation in leave-one-out (LOO).

  16. Direct Interaction between Scaffolding Proteins RACK1 and 14-3-3ζ Regulates Brain-derived Neurotrophic Factor (BDNF) Transcription*

    PubMed Central

    Neasta, Jérémie; Kiely, Patrick A.; He, Dao-Yao; Adams, David R.; O'Connor, Rosemary; Ron, Dorit

    2012-01-01

    RACK1 is a scaffolding protein that spatially and temporally regulates numerous signaling cascades. We previously found that activation of the cAMP signaling pathway induces the translocation of RACK1 to the nucleus. We further showed that nuclear RACK1 is required to promote the transcription of the brain-derived neurotrophic factor (BDNF). Here, we set out to elucidate the mechanism underlying cAMP-dependent RACK1 nuclear translocation and BDNF transcription. We identified the scaffolding protein 14-3-3ζ as a direct binding partner of RACK1. Moreover, we found that 14-3-3ζ was necessary for the cAMP-dependent translocation of RACK1 to the nucleus. We further observed that the disruption of RACK1/14-3-3ζ interaction with a peptide derived from the RACK1/14-3-3ζ binding site or shRNA-mediated 14-3-3ζ knockdown inhibited cAMP induction of BDNF transcription. Together, these data reveal that the function of nuclear RACK1 is mediated through its interaction with 14-3-3ζ. As RACK1 and 14-3-3ζ are two multifunctional scaffolding proteins that coordinate a wide variety of signaling events, their interaction is likely to regulate other essential cellular functions. PMID:22069327

  17. Prediction of kinase-inhibitor binding affinity using energetic parameters

    PubMed Central

    Usha, Singaravelu; Selvaraj, Samuel

    2016-01-01

    The combination of physicochemical properties and energetic parameters derived from protein-ligand complexes play a vital role in determining the biological activity of a molecule. In the present work, protein-ligand interaction energy along with logP values was used to predict the experimental log (IC50) values of 25 different kinase-inhibitors using multiple regressions which gave a correlation coefficient of 0.93. The regression equation obtained was tested on 93 kinase-inhibitor complexes and an average deviation of 0.92 from the experimental log IC50 values was shown. The same set of descriptors was used to predict binding affinities for a test set of five individual kinase families, with correlation values > 0.9. We show that the protein-ligand interaction energies and partition coefficient values form the major deterministic factors for binding affinity of the ligand for its receptor. PMID:28149052

  18. Spectroscopic studies on the interactions of 5-ethyl-6-phenyl-3,8-bis((3-aminoalkyl)propanamido)phenanthridin-5-ium derivatives with G-quadruplex DNA

    NASA Astrophysics Data System (ADS)

    Yalçın, Ergin; Duyar, Halil; Ihmels, Heiko; Seferoğlu, Zeynel

    2018-05-01

    An improved microwave-induced synthesis of five ethidium derivatives (Ethidium derivatives, 2a-d) is presented. As the derivatives 2a-d have been proposed previously to be telomerase inhibitors, the binding interactions of these ethidium derivatives with G-quadruplex DNA were evaluated by means of photometric and fluorimetric titration, thermal DNA denaturation, CD and 1H NMR spectroscopy. In particular, the compound bearing 3,8-bis(pyrrolidin-1-yl)propanamido substituent 2a exhibits high selectivity for G-quadruplex DNA relative to duplex DNA.

  19. Electronic structure and the origin of the Dzyaloshinskii-Moriya interaction in MnSi

    DOE PAGES

    Satpathy, S.; Shanavas, K. V.

    2016-05-02

    Here, the metallic helimagnet MnSi has been found to exhibit skyrmionic spin textures when subjected to magnetic fields at low temperatures. The Dzyaloshinskii-Moriya (DM) interaction plays a key role in stabilizing the skyrmion state. With the help of first-principles calculations, crystal field theory and a tight-binding model we study the electronic structure and the origin of the DM interaction in the B20 phase of MnSi. The strength ofmore » $$\\vec{D}$$ parameter is determined by the magnitude of the spin-orbit interaction and the degree of orbital mixing, induced by the symmetry-breaking distortions in the B20 phase. We find that, strong coupling between Mn-$d$ and Si-$p$ states lead to a mixed valence ground state $$|d^{7-x}p^{2+x}\\rangle$$ configuration. The experimental magnetic moment of $$0.4~\\mu_B$$ is consistent with the Coulomb-corrected DFT+$U$ calculations, which redistributes electrons between the majority and minority spin channels. We derive the magnetic interaction parameters $J$ and $$\\vec{D}$$ for Mn-Si-Mn superexchange paths using Moriya's theory assuming the interaction to be mediated by $$e_g$$ electrons near the Fermi level. Finally, using parameters from our calculations, we get reasonable agreement with the observations.« less

  20. New antineoplastic agent based on a dibenzoylmethane derivative: Cytotoxic effect and direct interaction with DNA.

    PubMed

    Nascimento, Fernanda R; Moura, Tiago A; Baeta, Jefferson V P B; Publio, Bruno C; Ferreira, Pollyanna M F; Santos, Anésia A; França, Andressa A P; Rocha, Marcio S; Diaz-Muñoz, Gaspar; Diaz, Marisa A N

    2018-08-01

    Melanoma accounts for only 4% of all skin cancers but is among the most lethal cutaneous neoplasms. Dacarbazine is the drug of choice for the treatment of melanoma in Brazil through the public health system mainly because of its low cost. However, it is an alkylating agent of low specificity and elicits a therapeutic response in only 20% of cases. Other drugs available for the treatment of melanoma are expensive, and tumor cells commonly develop resistance to these drugs. The fight against melanoma demands novel, more specific drugs that are effective in killing drug-resistant tumor cells. Dibenzoylmethane (1,3-diphenylpropane-1,3-dione) derivatives are promising antitumor agents. In this study, we investigated the cytotoxic effect of 1,3-diphenyl-2-benzyl-1,3-propanedione (DPBP) on B16F10 melanoma cells as well as its direct interaction with the DNA molecule using optical tweezers. DPBP showed promising results against tumor cells and had a selectivity index of 41.94. Also, we demonstrated the ability of DPBP to interact directly with the DNA molecule. The fact that DPBP can interact with DNA in vitro allows us to hypothesize that such an interaction may also occur in vivo and, therefore, that DPBP may be an alternative to treat patients with drug-resistant melanomas. These findings can guide the development of new and more effective drugs. Published by Elsevier B.V.

  1. Realistic sampling of anisotropic correlogram parameters for conditional simulation of daily rainfields

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Yeboah

    2018-01-01

    This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.

  2. Measuring directional urban spatial interaction in China: A migration perspective

    PubMed Central

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China’s urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities. PMID:28141853

  3. Measuring directional urban spatial interaction in China: A migration perspective.

    PubMed

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China's urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities.

  4. Hydrophobic folding units derived from dissimilar monomer structures and their interactions.

    PubMed

    Tsai, C J; Nussinov, R

    1997-01-01

    We have designed an automated procedure to cut a protein into compact hydrophobic folding units. The hydrophobic units are large enough to contain tertiary non-local interactions, reflecting potential nucleation sites during protein folding. The quality of a hydrophobic folding unit is evaluated by four criteria. The first two correspond to visual characterization of a structural domain, namely, compactness and extent of isolation. We use the definition of Zehfus and Rose (Zehfus MH, Rose GD, 1986, Biochemistry 25:35-340) to calculate the compactness of a cut protein unit. The isolation of a unit is based on the solvent accessible surface area (ASA) originally buried in the interior and exposed to the solvent after cutting. The third quantity is the hydrophobicity, equivalent to the fraction of the buried non-polar ASA with respect to the total non-polar ASA. The last criterion in the evaluation of a folding unit is the number of segments it includes. To conform with the rationale of obtaining hydrophobic units, which may relate to early folding events, the hydrophobic interactions are implicitly and explicitly applied in their generation and assessment. We follow Holm and Sander (Holm L, Sander C, 1994, Proteins 19:256-268) to reduce the multiple cutting-point problem to a one-dimensional search for all reasonable trial cuts. However, as here we focus on the hydrophobic cores, the contact matrix used to obtain the first non-trivial eigenvector contains only hydrophobic contracts, rather than all, hydrophobic and hydrophilic, interactions. This dataset of hydrophobic folding units, derived from structurally dissimilar single chain monomers, is particularly useful for investigations of the mechanism of protein folding. For cases where there are kinetic data, the one or more hydrophobic folding units generated for a protein correlate with the two or with the three-state folding process observed. We carry out extensive amino acid sequence order independent structural

  5. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    NASA Astrophysics Data System (ADS)

    Mrugalla, Florian; Kast, Stefan M.

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  6. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory.

    PubMed

    Mrugalla, Florian; Kast, Stefan M

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  7. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  8. Investigation on interaction and sonodynamic damage of fluorescein derivants to bovine serum albumin (BSA) under ultrasonic irradiation

    NASA Astrophysics Data System (ADS)

    Zou, Mingming; Zhang, Lei; Wang, Jun; Wang, Qi; Gao, Jingqun; Fan, Ping

    2013-06-01

    The fluorescein derivants (Fluorescein: (2-(6-Hydroxy-3-oxo-(3H)-xanthen-9-yl) benzoic acid), Fluorescein-DA: (Bis [N,N-bis (carboxymethyl) aminomethyl] fluorescein) and Fluorescein-DAsbnd Fe(III): (Bis [N,N-bis (carboxymethyl) aminomethyl] fluoresceinsbnd Ferrous(III)) with a tricyclic plane structure were used to study the interaction and sonodynamic damage to bovine serum albumin (BSA) under ultrasonic irradiation through fluorospectrometry and UV-vis spectrophotometry. Besides, because of the existence of Fe(III) ion in Fluorescein-DAsbnd Fe(III), under ultrasonic irradiation the sonocatalytic activity in the damage of BSA molecules was also found. Three-dimensional fluorescence spectra and three-dimensional fluorescence contour profile spectra were mentioned to determine the fluorescence quenching and the conformation change of BSA in the absence and presence of these fluorescein derivants. As judged from the experimental results, the fluorescence quenching of BSA in aqueous solution caused by these fluorescein derivants were all attributed to static quenching process. The damage degree and mode were related to some factors such as ultrasonic irradiation time, fluorescein derivant concentration and ionic strength. Finally, several quenchers were used to determine the amount and kind of generated reactive oxygen species (ROS) during sonodynamic and sonocatalytic reaction processes. It suggests that these fluorescein derivants induce protein damage via various ROS, at least, including singlet oxygen (1O2) and hydroxyl radicals (rad OH). Perhaps, this paper may offer some important subjects for broadening the application of these fluorescein derivants in sonodynamic therapy (SDT) and sonocatalytic therapy (SCT) technologies for tumor treatment.

  9. Multiscale Asymptotics for the Skeleton of the Madden-Julian Oscillation and Tropical-Extratropical Interactions (Open Access)

    DTIC Science & Technology

    2015-11-30

    equatorial baroclinic dynamics, and (iii) the interactive effects of moisture and convection. More specifically, the model integrates the dry...interactions 5 Par. Derivation Dim. val. Description β 2.3× 10−11 m−1s−1 Variation of Coriolis parameter with latitude θ0 300 K Potential temperature...tropical Coriolis force, and x and y denote the zonal and meridional coordinates. Without the moisture q and convection envelope a, system (1) is the two

  10. Multipole-Based Force Fields from ab Initio Interaction Energies and the Need for Jointly Refitting All Intermolecular Parameters.

    PubMed

    Kramer, Christian; Gedeck, Peter; Meuwly, Markus

    2013-03-12

    Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).

  11. Prediction of the binding mode of N2-phenylguanine derivative inhibitors to herpes simplex virus type 1 thymidine kinase

    NASA Astrophysics Data System (ADS)

    Gaudio, Anderson Coser; Takahata, Yuji; Richards, William Graham

    1998-01-01

    The probable binding mode of the herpes simplex virus thymidine kinase (HSV1 TK) N2-[substituted]-phenylguanine inhibitors is proposed. A computational experiment was designed to check some qualitative binding parameters and to calculate the interaction binding energies of alternative binding modes of N2-phenylguanines. The known binding modes of the HSV1 TK natural substrate deoxythymidine and one of its competitive inhibitors ganciclovir were used as templates. Both the qualitative and quantitative parts of the computational experiment indicated that the N2-phenylguanine derivatives bind to the HSV1 TK active site in the deoxythymidine-like binding mode. An experimental observation that N2-phenylguanosine derivatives are not phosphorylated during the interaction with the HSV1 TK gives support to the proposed binding mode.

  12. Interaction of an Fe derivative of TMAP (Fe(TMAP)OAc) with DNA in comparison with free-base TMAP.

    PubMed

    Ghaderi, Masoumeh; Bathaie, S Zahra; Saboury, Ali-Akbar; Sharghi, Hashem; Tangestaninejad, Shahram

    2007-07-01

    We investigated the interaction of meso-tetrakis (N-para-methylanilium) porphyrin (TMAP) in its free base and Fe(II) form (Fe(TMAP)OAc) as a new derivative, with high molecular weight DNA at different ionic strengths, using various spectroscopic methods and microcalorimetry. The data obtained by spectrophotometery, circular dichroism (CD), fluorescence quenching and resonance light scattering (RLS) have demonstrated that TMAP association with DNA is via outside binding with self-stacking manner, which is accompanied with the "end-on" type complex formation in low ionic strength. However, in the case of Fe(TMAP)OAc, predominant mode of interaction is groove binding and after increasing in DNA concentration, unstable stacking-type aggregates are formed. In addition, isothermal titration calorimetric measurements have indicated the exothermic process of porphyrins binding to DNA, but the exothermisity in metal derivative of porphyrin is less than the free base. It confirmed the formation of a more organized aggregate of TMAP on DNA surface. Interactions of both porphyrins with DNA show high sensitivity to ionic strength. By addition of salt, the downfield CD signal of TMAP aggregates is shifted to a higher wavelength, which indicates some changes in the aggregates position. In the case of Fe(TMAP)OAc, addition of salt leads to changes in the mode of binding from groove binding to outside binding with self-stacking, which is accompanied with major changes in CD spectra, possibly indicating the formation of "face-on" type complex.

  13. Kinetic rate laws as derived from order parameter theory I: Theoretical concepts

    NASA Astrophysics Data System (ADS)

    Salje, Ekhard

    1988-03-01

    A theoretical concept is outlined, which links the kinetics of structural transformations with thermodynamic theories of structural phase transitions. Starting from Landau theory and Markovian processes, the general rate laws for crystals with long correlation lengths are derived. The rate laws in Ginzburg-Landau theory are 269_2004_Article_BF00311038_TeX2GIFE1.gif 1{text{n }}Δ Q - 1{text{n }}fleft( Q right) ∝ - t/tau {text{ for }}T ≪ T_c {text{ and }}T ≫ T_c and Q 2∝ for T ≈ T c . The physical meaning of the time constant τ and the correction term f( Q) are explained. Fluctuations of the order parameter lead to damping behaviour with explicit dependence on the wavelength of the fluctuation wave and modulation-dependent variations of the lattice strain. Lattice relaxations and activation processes are discussed. Typical rate laws are found to follow 269_2004_Article_BF00311038_TeX2GIFE2.gif begin{gathered} ln Δ Q = rlnΔ t, \\ lnQ/Q + {1\\varepsilon }/{2k_B T}left( {Q^2 - Q_0^2 } right) = {Δ t}/{tau *} \\ which leads for short time intervals to a linear rate law 269_2004_Article_BF00311038_TeX2GIFE3.gif Δ Q ∝ Δ t It is shown that linear terms in the Landau potential are equivalent to a logarithmic decay of the excess entropy Δ S ∝ ln Δ t which is also expected to be the dominant rate law in field-induced pseudo-spin glasses: 269_2004_Article_BF00311038_TeX2GIFE4.gif Δ Q ∝ 1{text{n }}Δ t{text{ and }}1{text{n}}left( {Δ {text{Q}} \\cdot Δ {text{t}}} right) = A{text{ }}Δ t + B Fluctuations lead to spatially heterogeneous distributions of the order parameter. A two phase field is found in this case where the nucleation energy is overcome by fluctuation processes. Random fields, arising, for example, from lattice imperfections, lead also to spacially inhomogeneous material. The dominant microstructure is the lattice modulation mostly in the form of a cross hatched pattern (tweed) but also in the form of incommensurate modulations.

  14. Interaction between Marine-Derived n-3 Long Chain Polyunsaturated Fatty Acids and Uric Acid on Glucose Metabolism and Risk of Type 2 Diabetes Mellitus: A Case-Control Study.

    PubMed

    Li, Kelei; Wu, Kejian; Zhao, Yimin; Huang, Tao; Lou, Dajun; Yu, Xiaomei; Li, Duo

    2015-08-26

    The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = -0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.

  15. Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling

    NASA Astrophysics Data System (ADS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2018-04-01

    Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.

  16. [Determination of solubility parameters of high density polyethylene by inverse gas chromatography].

    PubMed

    Wang, Qiang; Chen, Yali; Liu, Ruiting; Shi, Yuge; Zhang, Zhengfang; Tang, Jun

    2011-11-01

    Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of high density polyethylene (HDPE) at the absolute temperatures from 303.15 to 343.15 K. Six solvents were applied as test probes including hexane (n-C6), heptane (n-C7), octane (n-C8), nonane (n-C9), chloroform (CHCl3) and ethyl acetate (EtAc). Some thermodynamic parameters were obtained by IGC data analysis such as the specific retention volumes of the solvents (V(0)(g)), the molar enthalpy of sorption (delta H(S)(1)), the partial molar enthalpy of mixing at infinite dilution (delta H(1)(infinity)), the molar enthalpy of vaporization (delta H(v)), the activity coefficients at infinite dilution (omega (1)(infinity)), and Flow-Huggins interaction parameters (X(1,2)(infinity)) between HDPE and probe solvents. The results showed that the above six probes are poor solvents for HDPE. The solubility parameter of HDPE at room temperature (298.15 K) was also derived as 19.00 (J/cm3)(0.5).

  17. Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:

    NASA Astrophysics Data System (ADS)

    Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.

    In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.

  18. Interaction of Hurricane Katrina with Optically Complex Water in the Gulf of Mexico: Interpretation Using Satellite-Derived Inherent Optical Properties and Chlorophyll Concentration

    DTIC Science & Technology

    2009-04-01

    Shelf, and into the Gulf of Mexico, empirically derived chl ; increases were observed in the Tortugas Gyre circulation feature, and in adjacent...Mexico, empirically derived chl a increases were observed in the Tortugas Gyre circulation feature, and in adjacent waters. Analy- sis of the...hurricane interaction also influenced the Tortugas Gyre, a recognized circulation feature in the southern Gulf of Mexico induced by the flow of the

  19. Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases

    NASA Astrophysics Data System (ADS)

    Maitarad, Phornphimon; Kamchonwongpaisan, Sumalee; Vanichtanankul, Jarunee; Vilaivan, Tirayut; Yuthavong, Yongyuth; Hannongbua, Supa

    2009-04-01

    Comparative molecular field analysis (CoMFA) and quantum chemical calculations were performed on cycloguanil (Cyc) derivatives of the wild type and the quadruple mutant (Asn51Ile, Cys59Arg, Ser108Asn, Ile164Leu) of Plasmodium falciparum dihydrofolate reductase ( PfDHFR). The represented CoMFA models of wild type ( r_{{cv}}2 = 0.727 and r 2 = 0.985) and mutant type ( r_{{cv}}2 = 0.786 and r 2 = 0.979) can describe the differences of the Cyc structural requirements for the two types of PfDHFR enzymes and can be useful to guide the design of new inhibitors. Moreover, the obtained particular interaction energies between the Cyc and the surrounding residues in the binding pocket indicated that Asn108 of mutant enzyme was the cause of Cyc resistance by producing steric clash with p-Cl of Cyc. Consequently, comparing the energy contributions with the potent flexible WR99210 inhibitor, it was found that the key mutant residue, Asn108, demonstrates attractive interaction with this inhibitor and some residues, Leu46, Ile112, Pro113, Phe116, and Leu119, seem to perform as second binding site with WR99210. Therefore, quantum chemical calculations can be useful for investigating residue interactions to clarify the cause of drug resistance.

  20. Optimal Linking Design for Response Model Parameters

    ERIC Educational Resources Information Center

    Barrett, Michelle D.; van der Linden, Wim J.

    2017-01-01

    Linking functions adjust for differences between identifiability restrictions used in different instances of the estimation of item response model parameters. These adjustments are necessary when results from those instances are to be compared. As linking functions are derived from estimated item response model parameters, parameter estimation…

  1. Interactive model evaluation tool based on IPython notebook

    NASA Astrophysics Data System (ADS)

    Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet

    2015-04-01

    In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the

  2. Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987

    NASA Technical Reports Server (NTRS)

    Sovers, O. J.; Fanselow, J. L.

    1987-01-01

    This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.

  3. Observation model and parameter partials for the JPL VLBI parameter estimation software MASTERFIT-1987

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Fanselow, J. L.

    1987-12-01

    This report is a revision of the document of the same title (1986), dated August 1, which it supersedes. Model changes during 1986 and 1987 included corrections for antenna feed rotation, refraction in modelling antenna axis offsets, and an option to employ improved values of the semiannual and annual nutation amplitudes. Partial derivatives of the observables with respect to an additional parameter (surface temperature) are now available. New versions of two figures representing the geometric delay are incorporated. The expressions for the partial derivatives with respect to the nutation parameters have been corrected to include contributions from the dependence of UTI on nutation. The authors hope to publish revisions of this document in the future, as modeling improvements warrant.

  4. A Case Study on the Application of a Structured Experimental Method for Optimal Parameter Design of a Complex Control System

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This report documents a case study on the application of Reliability Engineering techniques to achieve an optimal balance between performance and robustness by tuning the functional parameters of a complex non-linear control system. For complex systems with intricate and non-linear patterns of interaction between system components, analytical derivation of a mathematical model of system performance and robustness in terms of functional parameters may not be feasible or cost-effective. The demonstrated approach is simple, structured, effective, repeatable, and cost and time efficient. This general approach is suitable for a wide range of systems.

  5. Influence of excitons interaction with charge carriers on photovoltaic parameters in organic solar cells

    NASA Astrophysics Data System (ADS)

    Głowienka, Damian; Szmytkowski, Jędrzej

    2018-03-01

    We report on theoretical analysis of excitons annihilation on charge carriers in organic solar cells. Numerical calculations based on transient one-dimensional drift-diffusion model have been carried out. An impact of three quantities (an annihilation rate constant, an exciton mobility and a recombination reduction factor) on current density and concentrations of charge carriers and excitons is investigated. Finally, we discuss the influence of excitons interaction with electrons and holes on four photovoltaic parameters (a short-circuit current, an open-circuit voltage, a fill factor and a power conversion efficiency). The conclusion is that the annihilation process visibly decreases the efficiency of organic photocells, if the annihilation rate constant is greater than 10-15m3s-1 .

  6. Interacting dark sector and precision cosmology

    NASA Astrophysics Data System (ADS)

    Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs

    2018-01-01

    We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.

  7. Deriving and Constraining 3D CME Kinematic Parameters from Multi-Viewpoint Coronagraph Images

    NASA Astrophysics Data System (ADS)

    Thompson, B. J.; Mei, H. F.; Barnes, D.; Colaninno, R. C.; Kwon, R.; Mays, M. L.; Mierla, M.; Moestl, C.; Richardson, I. G.; Verbeke, C.

    2017-12-01

    Determining the 3D properties of a coronal mass ejection using multi-viewpoint coronagraph observations can be a tremendously complicated process. There are many factors that inhibit the ability to unambiguously identify the speed, direction and shape of a CME. These factors include the need to separate the "true" CME mass from shock-associated brightenings, distinguish between non-radial or deflected trajectories, and identify asymmetric CME structures. Additionally, different measurement methods can produce different results, sometimes with great variations. Part of the reason for the wide range of values that can be reported for a single CME is due to the difficulty in determining the CME's longitude since uncertainty in the angle of the CME relative to the observing image planes results in errors in the speed and topology of the CME. Often the errors quoted in an individual study are remarkably small when compared to the range of values that are reported by different authors for the same CME. For example, two authors may report speeds of 700 +- 50 km/sec and 500+-50 km/sec for the same CME. Clearly a better understanding of the accuracy of CME measurements, and an improved assessment of the limitations of the different methods, would be of benefit. We report on a survey of CME measurements, wherein we compare the values reported by different authors and catalogs. The survey will allow us to establish typical errors for the parameters that are commonly used as inputs for CME propagation models such as ENLIL and EUHFORIA. One way modelers handle inaccuracies in CME parameters is to use an ensemble of CMEs, sampled across ranges of latitude, longitude, speed and width. The CMEs simulated in order to determine the probability of a "direct hit" and, for the cases with a "hit," derive a range of possible arrival times. Our study will provide improved guidelines for generating CME ensembles that more accurately sample across the range of plausible values.

  8. Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2018-05-01

    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector.OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09° N, 11.28° E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30° N, 13.02° E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar.In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.

  9. Hot HB Stars in Globular Clusters: Physical Parameters and Consequences for Theory. VI; The Second Parameter Pair M 3 and M 13

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Landsman, W. B.; Sweigart, A. V.; Grundahl, F.

    2003-01-01

    We present the results of spectroscopic analyses of hot horizontal branch (HB) stars in M 13 and M 3, which form a famous "second parameter" pair. F rom the spectra and Stromgren photometry we derived - for the first time in M 13 - atmospheric parameters (effective temperature and surface gravity). For stars with Stromgren temperatures between 10,000 and 12,000 K we found excellent agreement between the atmospheric parameters derived from Stromgren photometry and those derived from Balmer line profile fits. However, for cooler stars there is a disagreement in the parameters derived by the two methods, for which we have no satisfactory explanation. Stars hotter than 12,000 K show evidence for helium depletion and iron enrichment, both in M 3 and M 13. Accounting for the iron enrichment substantially improves the agreement with canonical evolutionary models, although the derived gravities and masses are still somewhat too low. This remaining discrepancy may be an indication that scaled-solar metal-rich model atmospheres do not adequately represent the highly non-solar abundance ratios found in blue HB stars affected by diffusion. We discuss the effects of an enhancement in the envelope helium abundance on the atmospheric parameters of the blue HB stars, as might be caused by deep mixing on the red giant branch or primordial pollution from an earlier generation of intermediate mass asymptotic giant branch stars. Key words. Stars: atmospheres - Stars: evolution - Stars: horizontal branch - Globular clusters: individual: M 3 - Globular clusters: individual: M 13

  10. Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.

    2017-08-01

    The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.

  11. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  12. Interactions of surfactants with lipid membranes.

    PubMed

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.

  13. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ling; Xiong, Yi; Gao, Hongyun

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  14. dbAMEPNI: a database of alanine mutagenic effects for protein–nucleic acid interactions

    DOE PAGES

    Liu, Ling; Xiong, Yi; Gao, Hongyun; ...

    2018-04-02

    Protein–nucleic acid interactions play essential roles in various biological activities such as gene regulation, transcription, DNA repair and DNA packaging. Understanding the effects of amino acid substitutions on protein–nucleic acid binding affinities can help elucidate the molecular mechanism of protein–nucleic acid recognition. Until now, no comprehensive and updated database of quantitative binding data on alanine mutagenic effects for protein–nucleic acid interactions is publicly accessible. Thus, we developed a new database of Alanine Mutagenic Effects for Protein-Nucleic Acid Interactions (dbAMEPNI). dbAMEPNI is a manually curated, literature-derived database, comprising over 577 alanine mutagenic data with experimentally determined binding affinities for protein–nucleic acidmore » complexes. Here, it contains several important parameters, such as dissociation constant (Kd), Gibbs free energy change (ΔΔG), experimental conditions and structural parameters of mutant residues. In addition, the database provides an extended dataset of 282 single alanine mutations with only qualitative data (or descriptive effects) of thermodynamic information.« less

  15. Aerodynamic Parameters of a UK City Derived from Morphological Data

    NASA Astrophysics Data System (ADS)

    Millward-Hopkins, J. T.; Tomlin, A. S.; Ma, L.; Ingham, D. B.; Pourkashanian, M.

    2013-03-01

    Detailed three-dimensional building data and a morphometric model are used to estimate the aerodynamic roughness length z 0 and displacement height d over a major UK city (Leeds). Firstly, using an adaptive grid, the city is divided into neighbourhood regions that are each of a relatively consistent geometry throughout. Secondly, for each neighbourhood, a number of geometric parameters are calculated. Finally, these are used as input into a morphometric model that considers the influence of height variability to predict aerodynamic roughness length and displacement height. Predictions are compared with estimations made using standard tables of aerodynamic parameters. The comparison suggests that the accuracy of plan-area-density based tables is likely to be limited, and that height-based tables of aerodynamic parameters may be more accurate for UK cities. The displacement heights in the standard tables are shown to be lower than the current predictions. The importance of geometric details in determining z 0 and d is then explored. Height variability is observed to greatly increase the predicted values. However, building footprint shape only has a significant influence upon the predictions when height variability is not considered. Finally, we develop simple relations to quantify the influence of height variation upon predicted z 0 and d via the standard deviation of building heights. The difference in these predictions compared to the more complex approach highlights the importance of considering the specific shape of the building-height distributions. Collectively, these results suggest that to accurately predict aerodynamic parameters of real urban areas, height variability must be considered in detail, but it may be acceptable to make simple assumptions about building layout and footprint shape.

  16. Regionalization of subsurface stormflow parameters of hydrologic models: Derivation from regional analysis of streamflow recession curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Sheng; Li, Hongyi; Huang, Maoyi

    2014-07-21

    Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep terrain. Its contribution to total runoff is, however, poorly represented in the current generation of land surface models. The lack of physical basis of these common parameterizations precludes a priori estimation of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data analysis of streamflow recession curves extracted from 50 eastern United Statesmore » catchments. Detailed regression analyses were performed between parameters of the empirical storage–discharge relationships and the controlling climate, soil and topographic characteristics. The regression analyses performed on empirical recession curves at catchment scale indicated that the coefficient of the power-law form storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with climate.« less

  17. Second derivative in the model of classical binary system

    NASA Astrophysics Data System (ADS)

    Abubekerov, M. K.; Gostev, N. Yu.

    2016-06-01

    We have obtained an analytical expression for the second derivatives of the light curve with respect to geometric parameters in the model of eclipsing classical binary systems. These expressions are essentially efficient algorithm to calculate the numerical values of these second derivatives for all physical values of geometric parameters. Knowledge of the values of second derivatives of the light curve at some point provides additional information about asymptotical behaviour of the function near this point and can significantly improve the search for the best-fitting light curve through the use of second-order optimization method. We write the expression for the second derivatives in a form which is most compact and uniform for all values of the geometric parameters and so make it easy to write a computer program to calculate the values of these derivatives.

  18. The influence of the nature of a substituent on the parameters of the intra- and intermolecular interactions in molecules of cross-conjugated ketones

    NASA Astrophysics Data System (ADS)

    Kompaneets, V. V.; Vasilieva, I. A.

    2017-08-01

    We have quantitatively analyzed the vibronic parameters of two cross-conjugated δ-dimethylaminoketones. The presence of the -N(CH3)2, C=O, and -NO2 groups in the benzene ring has been shown to affect the manifestation of the vibronic parameters of characteristic bands that describe the state (vibrations, types of deformation upon excitation) of polyene systems with aromatic rings. Data on the influence of the nature of the substituent on the parameters of intra- and intermolecular interactions in the examined compounds have been presented.

  19. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    NASA Astrophysics Data System (ADS)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  20. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.

    PubMed

    Xie, Tian; Chen, Xiao; Fang, Jingqin; Kang, Houyi; Xue, Wei; Tong, Haipeng; Cao, Peng; Wang, Sumei; Yang, Yizeng; Zhang, Weiguo

    2018-04-01

    Presurgical glioma grading by dynamic contrast-enhanced MRI (DCE-MRI) has unresolved issues. The aim of this study was to investigate the ability of textural features derived from pharmacokinetic model-based or model-free parameter maps of DCE-MRI in discriminating between different grades of gliomas, and their correlation with pathological index. Retrospective. Forty-two adults with brain gliomas. 3.0T, including conventional anatomic sequences and DCE-MRI sequences (variable flip angle T1-weighted imaging and three-dimensional gradient echo volumetric imaging). Regions of interest on the cross-sectional images with maximal tumor lesion. Five commonly used textural features, including Energy, Entropy, Inertia, Correlation, and Inverse Difference Moment (IDM), were generated. All textural features of model-free parameters (initial area under curve [IAUC], maximal signal intensity [Max SI], maximal up-slope [Max Slope]) could effectively differentiate between grade II (n = 15), grade III (n = 13), and grade IV (n = 14) gliomas (P < 0.05). Two textural features, Entropy and IDM, of four DCE-MRI parameters, including Max SI, Max Slope (model-free parameters), vp (Extended Tofts), and vp (Patlak) could differentiate grade III and IV gliomas (P < 0.01) in four measurements. Both Entropy and IDM of Patlak-based K trans and vp could differentiate grade II (n = 15) from III (n = 13) gliomas (P < 0.01) in four measurements. No textural features of any DCE-MRI parameter maps could discriminate between subtypes of grade II and III gliomas (P < 0.05). Both Entropy and IDM of Extended Tofts- and Patlak-based vp showed highest area under curve in discriminating between grade III and IV gliomas. However, intraclass correlation coefficient (ICC) of these features revealed relatively lower inter-observer agreement. No significant correlation was found between microvascular density and textural features, compared with a moderate correlation found

  1. Molecular dissection of the interactions of an antitumor interleukin-2-derived mutein on a phage display-based platform.

    PubMed

    Rojas, Gertrudis; Carmenate, Tania; Leon, Kalet

    2015-04-01

    A mutein with stronger antitumor activity and lower toxicity than wild-type human interleukin-2 (IL-2) has been recently described. The rationale behind its design was to reinforce the immunostimulatory potential through the introduction of four mutations that would selectively disrupt the interaction with the IL-2 receptor alpha chain (thought to be critical for both IL-2-driven expansion of T regulatory cells and IL-2-mediated toxic effects). Despite the successful results of the mutein in several tumor models, characterization of its interactions was still to be performed. The current work, based on phage display of IL-2-derived variants, showed the individual contribution of each mutation to the impairment of alpha chain binding. A more sensitive assay, based on the ability of phage-displayed IL-2 variants to induce proliferation of the IL-2-dependent CTLL-2 cell line, revealed differences between the mutated variants. The results validated the mutein design, highlighting the importance of the combined effects of the four mutations. The developed phage display-based platform is robust and sensitive, allows a fast comparative evaluation of multiple variants, and could be broadly used to engineer IL-2 and related cytokines, accelerating the development of cytokine-derived therapeutics. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Parameter identifiability of linear dynamical systems

    NASA Technical Reports Server (NTRS)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  3. Highly efficient cyclosarin degradation mediated by a β-cyclodextrin derivative containing an oxime-derived substituent.

    PubMed

    Zengerle, Michael; Brandhuber, Florian; Schneider, Christian; Worek, Franz; Reiter, Georg; Kubik, Stefan

    2011-01-01

    The potential of appropriately substituted cyclodextrins to act as scavengers for neurotoxic organophosphonates under physiological conditions was evaluated. To this end, a series of derivatives containing substituents with an aldoxime or a ketoxime moiety along the narrow opening of the β-cyclodextrin cavity was synthesized, and the ability of these compounds to reduce the inhibitory effect of the neurotoxic organophosphonate cyclosarin on its key target, acetylcholinesterase, was assessed in vitro. All compounds exhibited a larger effect than native β-cyclodextrin, and characteristic differences were noted. These differences in activity were correlated with the structural and electronic parameters of the substituents. In addition, the relatively strong effect of the cyclodextrin derivatives on cyclosarin degradation and, in particular, the observed enantioselectivity are good indications that noncovalent interactions between the cyclodextrin ring and the substrate, presumably involving the inclusion of the cyclohexyl moiety of cyclosarin into the cyclodextrin cavity, contribute to the mode of action. Among the nine compounds investigated, one exhibited remarkable activity, completely preventing acetylcholinesterase inhibition by the (-)-enantiomer of cyclosarin within seconds under the conditions of the assay. Thus, these investigations demonstrate that decoration of cyclodextrins with appropriate substituents represents a promising approach for the development of scavengers able to detoxify highly toxic nerve agents.

  4. Highly efficient cyclosarin degradation mediated by a β-cyclodextrin derivative containing an oxime-derived substituent

    PubMed Central

    Zengerle, Michael; Brandhuber, Florian; Schneider, Christian; Worek, Franz; Reiter, Georg

    2011-01-01

    Summary The potential of appropriately substituted cyclodextrins to act as scavengers for neurotoxic organophosphonates under physiological conditions was evaluated. To this end, a series of derivatives containing substituents with an aldoxime or a ketoxime moiety along the narrow opening of the β-cyclodextrin cavity was synthesized, and the ability of these compounds to reduce the inhibitory effect of the neurotoxic organophosphonate cyclosarin on its key target, acetylcholinesterase, was assessed in vitro. All compounds exhibited a larger effect than native β-cyclodextrin, and characteristic differences were noted. These differences in activity were correlated with the structural and electronic parameters of the substituents. In addition, the relatively strong effect of the cyclodextrin derivatives on cyclosarin degradation and, in particular, the observed enantioselectivity are good indications that noncovalent interactions between the cyclodextrin ring and the substrate, presumably involving the inclusion of the cyclohexyl moiety of cyclosarin into the cyclodextrin cavity, contribute to the mode of action. Among the nine compounds investigated, one exhibited remarkable activity, completely preventing acetylcholinesterase inhibition by the (−)-enantiomer of cyclosarin within seconds under the conditions of the assay. Thus, these investigations demonstrate that decoration of cyclodextrins with appropriate substituents represents a promising approach for the development of scavengers able to detoxify highly toxic nerve agents. PMID:22238531

  5. On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Shulyak, D.

    2015-04-01

    During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.

  6. Effects of aortic tortuosity on left ventricular diastolic parameters derived from gated myocardial perfusion single photon emission computed tomography in patients with normal myocardial perfusion.

    PubMed

    Kurisu, Satoshi; Nitta, Kazuhiro; Sumimoto, Yoji; Ikenaga, Hiroki; Ishibashi, Ken; Fukuda, Yukihiro; Kihara, Yasuki

    2018-06-01

    Aortic tortuosity is often found on chest radiograph, especially in aged patients. We tested the hypothesis that aortic tortuosity was associated with LV diastolic parameters derived from gated SPECT in patients with normal myocardial perfusion. One-hundred and twenty-two patients with preserved LV ejection fraction and normal myocardial perfusion were enrolled. Descending aortic deviation was defined as the horizontal distance from the left line of the aortic knob to the most prominent left line of the descending aorta. This parameter was measured for the quantitative assessment of aortic tortuosity. Peak filling rate (PFR) and one-third mean filling rate (1/3 MFR) were obtained from redistribution images as LV diastolic parameters. Descending aortic deviation ranged from 0 to 22 mm with a mean distance of 4.5 ± 6.3 mm. Descending aortic deviation was significantly correlated with age (r = 0.38, p < 0.001) and estimated glomerular filtration rate (eGFR) (r = - 0.21, p = 0.02). Multivariate linear regression analysis revealed that eGFR (β = 0.23, p = 0.02) and descending aortic deviation (β = - 0.23, p = 0.01) were significantly associated with PFR, and that only descending aortic deviation (β = - 0.21, p = 0.03) was significantly associated with 1/3 MFR. Our data suggest that aortic tortuosity is associated with LV diastolic parameters derived from gated SPECT in patients with normal myocardial perfusion.

  7. Non-covalent interactions between thio-caffeine derivatives and water-soluble porphyrin in ethanol-water environment

    NASA Astrophysics Data System (ADS)

    Lipke, Agnieszka; Makarska-Bialokoz, Magdalena; Sierakowska, Arleta; Jasiewicz, Beata

    2018-03-01

    To determine the binding interactions and ability to form the non-covalent systems, the association process between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H2TTMePP) and a series of five structurally diverse thio-caffeine analogues has been studied in ethanol and ethanol-water solutions, analyzing its absorption and steady-state fluorescence spectra. The porphyrin fluorescence lifetimes in the systems studied were established as well. During the titration with thio-caffeine compounds the slight bathochromic effect and considerable hypochromicity of the porphyrin Soret band maximum can be noted. The fluorescence quenching effect observed for interactions in H2TTMePP - thio-caffeine derivative systems, as well as the order of binding and fluorescence quenching constants (of 105-103 mol- 1) suggest the existence of the mechanism of static quenching due to the formation of non-covalent and non-fluorescent stacking complexes. In all the systems studied the phenomenon of the fractional accessibility of the fluorophore for the quencher was observed as well. Additionally, the specific binding interactions, due to the changes in reaction environment polarity, can be observed. It was found that thio-caffeine compounds can quench the porphyrin fluorescence according to the structure of thio-substituent in caffeine molecule. The obtained results can be potentially useful from scientific, therapeutic or environmental points of view.

  8. Noise in NC-AFM measurements with significant tip–sample interaction

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density D Δ f(f m) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f(f m) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops. PMID:28144538

  9. Noise in NC-AFM measurements with significant tip-sample interaction.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rahe, Philipp; Reichling, Michael

    2016-01-01

    The frequency shift noise in non-contact atomic force microscopy (NC-AFM) imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip-sample interactions. The total noise power spectral density D Δ f ( f m ) is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip-sample interaction, by the coupling between the amplitude and tip-sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL) detector used for frequency demodulation. Here, we measure D Δ f ( f m ) for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip-sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.

  10. Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development.

    PubMed

    Casey, B J; Glatt, C E; Tottenham, N; Soliman, F; Bath, K; Amso, D; Altemus, M; Pattwell, S; Jones, R; Levita, L; McEwen, B; Magariños, A M; Gunnar, M; Thomas, K M; Mezey, J; Clark, A G; Hempstead, B L; Lee, F S

    2009-11-24

    There has been a dramatic rise in gene x environment studies of human behavior over the past decade that have moved the field beyond simple nature versus nurture debates. These studies offer promise in accounting for more variability in behavioral and biological phenotypes than studies that focus on genetic or experiential factors alone. They also provide clues into mechanisms of modifying genetic risk or resilience in neurodevelopmental disorders. Yet, it is rare that these studies consider how these interactions change over the course of development. In this paper, we describe research that focuses on the impact of a polymorphism in a brain-derived neurotrophic factor (BDNF) gene, known to be involved in learning and development. Specifically we present findings that assess the effects of genotypic and environmental loadings on neuroanatomic and behavioral phenotypes across development. The findings illustrate the use of a genetic mouse model that mimics the human polymorphism, to constrain the interpretation of gene-environment interactions across development in humans.

  11. IVS Pilot Project - Tropospheric Parameters

    NASA Astrophysics Data System (ADS)

    Boehm, J.; Schuh, H.; Engelhardt, G.; MacMillan, D.; Lanotte, R.; Tomasi, P.; Vereshchagina, I.; Haas, R.; Negusini, M.; Gubanov, V.

    2003-04-01

    In April 2002 the IVS (International VLBI Service for Geodesy and Astrometry) set up the IVS Pilot Project - Tropospheric Parameters and the Institute of Geodesy and Geophysics (IGG), Vienna, was asked to coordinate the project. After a call for participation six IVS Analysis Centers have joined the project and submitted their estimates of tropospheric parameters (wet and total zenith delays, horizontal gradients) for all IVS-R1 and IVS-R4 sessions since January 1st, 2002, on a regular basis. Using a two-step procedure the individual submissions are combined to stable and robust tropospheric parameters with 1h resolution and high accuracy. The zenith delays derived by VLBI are also compared with those provided by IGS (International GPS Service). At collocated sites (VLBI and GPS antennas at the same station) rather constant biases are found between the GPS and VLBI derived zenith delays, although both techniques are subject to the same tropospheric delays. Possible reasons for these biases are discussed.

  12. Determination of the parameters of binding between lipopolysaccharide and chitosan and its N-acetylated derivative using a gravimetric piezoquartz biosensor.

    PubMed

    Naberezhnykh, G A; Gorbach, V I; Kalmykova, E N; Solov'eva, T F

    2015-03-01

    The interaction of endotoxin (lipopolysaccharide - LPS) with low molecular weight chitosan (5.5 kDa), its N-acylated derivative and chitoliposomes was studied using a gravimetric piezoelectric quartz crystal microbalance biosensor. The optimal conditions for the formation of a biolayer based on immobilized LPS on the resonator surface and its regeneration were elaborated. The association and dissociation rate constants for LPS binding to chitosans were determined and the affinity constants (Kaf) were calculated based on the data on changes in the oscillation frequency of the quartz crystal resonator. The Kaf values correlated with the ones obtained using other methods. The affinity of N-acylated chitosan binding to LPS was higher than that of the parent chitosan binding to LPS. Based on the results obtained, we suggest that water-soluble N-acylated derivatives of chitosan with low degree of substitution of amino groups could be useful compounds for endotoxin binding and neutralization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Generalized Grueneisen tensor from solid nonlinearity parameters

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H., Jr.

    1980-01-01

    Anharmonic effects in solids are often described in terms of generalized Grueneisen parameters which measure the strain dependence of the lattice vibrational frequencies. The relationship between these parameters and the solid nonlinearity parameters measured directly in ultrasonic harmonic generation experiments is derived using an approach valid for normal-mode elastic wave propagation in any crystalline direction. The resulting generalized Grueneisen parameters are purely isentropic in contrast to the Brugger-Grueneisen parameters which are of a mixed thermodynamic state. Experimental data comparing the isentropic generalized Grueneisen parameters and the Brugger-Grueneisen parameters are presented.

  14. A fresh look into the interacting dark matter scenario

    NASA Astrophysics Data System (ADS)

    Escudero, Miguel; Lopez-Honorez, Laura; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo

    2018-06-01

    The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of σγ DM < 8 × 10‑10 σT (mDM/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.

  15. Interactions between pyrazole derived enantiomers and Chiralcel OJ: Prediction of enantiomer absolute configurations and elution order by molecular dynamics simulations.

    PubMed

    Hu, Guixiang; Huang, Meilan; Luo, Chengcai; Wang, Qi; Zou, Jian-Wei

    2016-05-01

    The separation of enantiomers and confirmation of their absolute configurations is significant in the development of chiral drugs. The interactions between the enantiomers of chiral pyrazole derivative and polysaccharide-based chiral stationary phase cellulose tris(4-methylbenzoate) (Chiralcel OJ) in seven solvents and under different temperature were studied using molecular dynamics simulations. The results show that solvent effect has remarkable influence on the interactions. Structure analysis discloses that the different interactions between two isomers and chiral stationary phase are dependent on the nature of solvents, which may invert the elution order. The computational method in the present study can be used to predict the elution order and the absolute configurations of enantiomers in HPLC separations and therefore would be valuable in development of chiral drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Theoretical insights into the π-hole interactions in the complexes containing triphosphorus hydride (P3H3) and its derivatives.

    PubMed

    Wang, Yuehong; Li, Xiaoyan; Zeng, Yanli; Meng, Lingpeng; Zhang, Xueying

    2017-04-01

    The π-hole of triphosphorus hydride (P 3 H 3 ) and its derivatives Z 3 X 3 (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...Z 3 X 3 complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...Z 3 X 3 and HCN...Z 3 X 3 ...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (V S,max ) and the interaction energy. Moreover, the V S,max of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...Z 3 X 3 complexes is greater than that in the HCN...Z 3 X 3 ...HCN complexes.

  17. Comparative study of the interaction of meso-tetrakis (N-para-trimethyl-anilium) porphyrin (TMAP) in its free base and Fe derivative form with oligo(dA.dT)15 and oligo(dG.dC)15.

    PubMed

    Bathaie, S Zahra; Ajloo, Davood; Daraie, Marzieh; Ghadamgahi, Maryam

    2015-01-01

    Interaction between a cationic porphyrin and its ferric derivative with oligo(dA.dT)15 and oligo(dG.dC)15 was studied by UV-vis spectroscopy, resonance light scattering (RLS), and circular dichroism (CD) at different ionic strengths; molecular docking and molecular dynamics simulation were also used for completion. Followings are the observed changes in the spectral properties of meso-tetrakis (N-para-trimethyl-anilium) porphyrin (TMAP), as a free-base porphyrin with no axial ligand, and its Fe derivative (FeTMAP) upon interaction with oligo(dA.dT)15 and oligo(dG.dC)15: (1) the substantial red shift and hypochromicity at the Soret maximum in the UV-vis spectra; (2) the increased RLS intensity by increasing the ionic strength; and (3) an intense bisignate excitonic CD signal. All of them are the reasons for TMAP and FeTMAP binding to oligo(dA.dT)15 and oligo(dG.dC)15 with the outside binding mode, accompanied by the self-stacking of the ligands along the oligonucleotide helix. The CD results demonstrated a drastic change from excitonic in monomeric behavior at higher ionic strengths, which indicates the groove binding of the ligands with oligonucleotides. Molecular docking also confirmed the groove binding mode of the ligands and estimated the binding constants and energies of the interactions. Their interaction trend was further confirmed by molecular dynamics technique and structure parameters obtained from simulation. It showed that TMAP reduced the number of intermolecular hydrogen bonds and increased the solvent accessible surface area in the oligonucleotide. The self-aggregation of ligands at lower concentrations was also confirmed.

  18. Exact solution of CKP equation and formation and interaction of two solitons in pair-ion-electron plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batool, Nazia; Jahangir, R.; National Center of Physics

    In the present investigation, cylindrical Kadomstev-Petviashvili (CKP) equation is derived in pair-ion-electron plasmas to study the propagation and interaction of two solitons. Using a novel gauge transformation, two soliton solutions of CKP equation are found analytically by using Hirota's method and to the best of our knowledge have been used in plasma physics for the first time. Interestingly, it is observed that unlike the planar Kadomstev-Petviashvili (KP) equation, the CKP equation admits horseshoe-like solitary structures. Another non-trivial feature of CKP solitary solution is that the interaction parameter gets modified by the plasma parameters contrary to the one obtained for Korteweg–demore » Vries equation. The importance of the present investigation to understand the formation and interaction of solitons in laboratory produced pair plasmas is also highlighted.« less

  19. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  20. Electro-optical parameters of bond polarizability model for aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel; Tandon, Poonam

    2006-04-06

    Electro-optical parameters (EOPs) of bond polarizability model (BPM) for aluminosilicate structures were derived from quantum-chemical DFT calculations of molecular models. The tensor of molecular polarizability and the derivatives of the tensor with respect to the bond length are well reproduced with the BPM, and the EOPs obtained are in a fair agreement with available experimental data. The parameters derived were found to be transferable to larger molecules. This finding suggests that the procedure used can be applied to systems with partially ionic chemical bonds. The transferability of the parameters to periodic systems was tested in molecular dynamics simulation of the polarized Raman spectra of alpha-quartz. It appeared that the molecular Si-O bond EOPs failed to reproduce the intensity of peaks in the spectra. This limitation is due to large values of the longitudinal components of the bond polarizability and its derivative found in the molecular calculations as compared to those obtained from periodic DFT calculations of crystalline silica polymorphs by Umari et al. (Phys. Rev. B 2001, 63, 094305). It is supposed that the electric field of the solid is responsible for the difference of the parameters. Nevertheless, the EOPs obtained can be used as an initial set of parameters for calculations of polarizability related characteristics of relevant systems in the framework of BPM.

  1. On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal

    NASA Astrophysics Data System (ADS)

    Fortunelli, Alessandro; Painelli, Anna

    1997-05-01

    A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.

  2. Interaction of spatially separated oscillating solitons in biased two-photon photorefractive materials

    NASA Astrophysics Data System (ADS)

    Asif, Noushin; Biswas, Anjan; Jovanoski, Z.; Konar, S.

    2015-01-01

    This paper presents the dynamics of two spatially separated optical solitons in two-photon photorefractive materials. The variational formalism has been employed to derive evolution equations of different parameters which characterize the dynamics of two interacting solitons. This approach yields a system of coupled ordinary differential equations for evolution of different parameters characterizing solitons such as amplitude, spatial width, chirp, center of gravity, etc., which have been subsequently solved adopting numerical method to extract information on their dynamics. Depending on their initial separation and power, solitons are shown to either disperse or compresses individually and attract each other. Dragging and trapping of a probe soliton by another pump have been discussed.

  3. Influence of nonlinear interactions on the development of instability in hydrodynamic wave systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanova, N. N.; Chkhetiani, O. G., E-mail: ochkheti@mx.iki.rssi.ru, E-mail: ochkheti@gmail.ru; Yakushkin, I. G.

    2016-05-15

    The problem of the development of shear instability in a three-layer medium simulating the flow of a stratified incompressible fluid is considered. The hydrodynamic equations are solved by expanding the Hamiltonian in a small parameter. The equations for three interacting waves, one of which is unstable, have been derived and solved numerically. The three-wave interaction is shown to stabilize the instability. Various regimes of the system’s dynamics, including the stochastic ones dependent on one of the invariants in the problem, can arise in this case. It is pointed out that the instability development scenario considered differs from the previously consideredmore » scenario of a different type, where the three-wave interaction does not stabilize the instability. The interaction of wave packets is considered briefly.« less

  4. Interaction phenomenon to dimensionally reduced p-gBKP equation

    NASA Astrophysics Data System (ADS)

    Zhang, Runfa; Bilige, Sudao; Bai, Yuexing; Lü, Jianqing; Gao, Xiaoqing

    2018-02-01

    Based on searching the combining of quadratic function and exponential (or hyperbolic cosine) function from the Hirota bilinear form of the dimensionally reduced p-gBKP equation, eight class of interaction solutions are derived via symbolic computation with Mathematica. The submergence phenomenon, presented to illustrate the dynamical features concerning these obtained solutions, is observed by three-dimensional plots and density plots with particular choices of the involved parameters between the exponential (or hyperbolic cosine) function and the quadratic function. It is proved that the interference between the two solitary waves is inelastic.

  5. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy.

    PubMed

    Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G

    2016-03-07

    This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.

  6. Estimation of Filling and Afterload Conditions by Pump Intrinsic Parameters in a Pulsatile Total Artificial Heart.

    PubMed

    Cuenca-Navalon, Elena; Laumen, Marco; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-07-01

    A physiological control algorithm is being developed to ensure an optimal physiological interaction between the ReinHeart total artificial heart (TAH) and the circulatory system. A key factor for that is the long-term, accurate determination of the hemodynamic state of the cardiovascular system. This study presents a method to determine estimation models for predicting hemodynamic parameters (pump chamber filling and afterload) from both left and right cardiovascular circulations. The estimation models are based on linear regression models that correlate filling and afterload values with pump intrinsic parameters derived from measured values of motor current and piston position. Predictions for filling lie in average within 5% from actual values, predictions for systemic afterload (AoPmean , AoPsys ) and mean pulmonary afterload (PAPmean ) lie in average within 9% from actual values. Predictions for systolic pulmonary afterload (PAPsys ) present an average deviation of 14%. The estimation models show satisfactory prediction and confidence intervals and are thus suitable to estimate hemodynamic parameters. This method and derived estimation models are a valuable alternative to implanted sensors and are an essential step for the development of a physiological control algorithm for a fully implantable TAH. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Compost mixture influence of interactive physical parameters on microbial kinetics and substrate fractionation.

    PubMed

    Mohajer, Ardavan; Tremier, Anne; Barrington, Suzelle; Teglia, Cecile

    2010-01-01

    Composting is a feasible biological treatment for the recycling of wastewater sludge as a soil amendment. The process can be optimized by selecting an initial compost recipe with physical properties that enhance microbial activity. The present study measured the microbial O(2) uptake rate (OUR) in 16 sludge and wood residue mixtures to estimate the kinetics parameters of maximum growth rate mu(m) and rate of organic matter hydrolysis K(h), as well as the initial biodegradable organic matter fractions present. The starting mixtures consisted of a wide range of moisture content (MC), waste to bulking agent (BA) ratio (W/BA ratio) and BA particle size, which were placed in a laboratory respirometry apparatus to measure their OUR over 4 weeks. A microbial model based on the activated sludge process was used to calculate the kinetic parameters and was found to adequately reproduced OUR curves over time, except for the lag phase and peak OUR, which was not represented and generally over-estimated, respectively. The maximum growth rate mu(m), was found to have a quadratic relationship with MC and a negative association with BA particle size. As a result, increasing MC up to 50% and using a smaller BA particle size of 8-12 mm was seen to maximize mu(m). The rate of hydrolysis K(h) was found to have a linear association with both MC and BA particle size. The model also estimated the initial readily biodegradable organic matter fraction, MB(0), and the slower biodegradable matter requiring hydrolysis, MH(0). The sum of MB(0) and MH(0) was associated with MC, W/BA ratio and the interaction between these two parameters, suggesting that O(2) availability was a key factor in determining the value of these two fractions. The study reinforced the idea that optimization of the physical characteristics of a compost mixture requires a holistic approach. 2010 Elsevier Ltd. All rights reserved.

  8. Analysis of photogem (hematoporphyrin derivative) and blood interaction

    NASA Astrophysics Data System (ADS)

    Corrêa, Thaila Quatrini; Pratavieira, Sebastião.; Bagnato, Vanderlei Salvador

    2017-07-01

    Sepsis is a potentially fatal condition that occurs when an infectious agent, such as bacteria, gets in a person's bloodstream. The infection affects the immune system, which then triggers a reaction that can cause uncontrolled inflammation in the body1 . All blood components may present the contamination. Once inoculated bacteria in a blood component, it can proliferate rapidly reaching high levels within few hours and, in a short period, it may lead to several basal changes in the individual and even death2 . Studies have shown an increase in the incidence of sepsis over the years, and it is mainly due to the growing resistance of microorganisms to antibiotics since these drugs are still sold and used improperly3 . The photodynamic inactivation (PDI) has been one of the most promising alternatives for microbiological control and other diseases. Its principle of action is based on a photosensitizer (PS) activated by light at the correct wavelength to oxidize organic substrates, resulting in cytotoxic effects4,5. The technique is being applied to a large variety of microorganisms and decontaminating blood. Some studies have investigated the action of PDI in blood6-9, and even then, there is a need to understand better what happens when we apply PS and light in blood in an attempt to eliminate the microorganisms. Photogem is a hematoporphyrin derivative that has been used with success in many clinical cases such as skin cancer and inactivation of bacteria10,11. Previous studies have shown that PDI using Photogem as a photosensitizing molecule is a good alternative for blood decontamination12,13. In the previous studies were observed hemolysis when red blood cells (RBCs) were submitted to PS concentration and light dose tested. This study has been conducted to further understand through absorption spectroscopy and fluorescence confocal microscope the PS-blood interaction. This is important because the PDI damage needs to be restricted to the bacteria and the blood

  9. Polymerase/DNA interactions and enzymatic activity: multi-parameter analysis with electro-switchable biosurfaces

    NASA Astrophysics Data System (ADS)

    Langer, Andreas; Schräml, Michael; Strasser, Ralf; Daub, Herwin; Myers, Thomas; Heindl, Dieter; Rant, Ulrich

    2015-07-01

    The engineering of high-performance enzymes for future sequencing and PCR technologies as well as the development of many anticancer drugs requires a detailed analysis of DNA/RNA synthesis processes. However, due to the complex molecular interplay involved, real-time methodologies have not been available to obtain comprehensive information on both binding parameters and enzymatic activities. Here we introduce a chip-based method to investigate polymerases and their interactions with nucleic acids, which employs an electrical actuation of DNA templates on microelectrodes. Two measurement modes track both the dynamics of the induced switching process and the DNA extension simultaneously to quantitate binding kinetics, dissociation constants and thermodynamic energies. The high sensitivity of the method reveals previously unidentified tight binding states for Taq and Pol I (KF) DNA polymerases. Furthermore, the incorporation of label-free nucleotides can be followed in real-time and changes in the DNA polymerase conformation (finger closing) during enzymatic activity are observable.

  10. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    NASA Astrophysics Data System (ADS)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic

  11. Interactions of galaxies outside clusters and massive groups

    NASA Astrophysics Data System (ADS)

    Yadav, Jaswant K.; Chen, Xuelei

    2018-06-01

    We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.

  12. A Combined Experimental and Computational Study of Vam3, a Derivative of Resveratrol, and Syk Interaction

    PubMed Central

    Jiang, Ming; Liu, Renping; Chen, Ying; Zheng, Qisheng; Fan, Saijun; Liu, Peixun

    2014-01-01

    Spleen tyrosine kinase (Syk) plays an indispensable role through preliminary extracellular antigen-induced crosslinking of Fc receptor (FcR) in the pathogenesis of autoimmune disorders, such as rheumatoid arthritis. In this study, we identify Vam3, a dimeric derivative of resveratrol isolated from grapes, as an ATP-competitive inhibitor of Syk with an IC50 of 62.95 nM in an in vitro kinase assay. Moreover, docking and molecular dynamics simulation approaches were performed to get more detailed information about the binding mode of Vam3 and Syk. The results show that 11b-OH on ring-C and 4b-OH on ring-D could form two hydrogen bonds with Glu449 and Phe382 of Syk, respectively. In addition, arene-cation interaction between ring-D of Vam3 and Lys402 of Syk was also observed. These results indicate that ring-C and D play an essential role in Vam3–Syk interaction. Our studies may be helpful in the structural optimization of Vam3, and also aid the design of novel Syk inhibitors in the future. PMID:25257535

  13. Interaction of solitons for obliquely propagating magnetoacoustic waves in stellar atmosphere

    NASA Astrophysics Data System (ADS)

    Jahangir, R.; Masood, W.; Siddiq, M.; Batool, Nazia

    2016-12-01

    We study here the nonlinear oblique propagation of magnetoacoustic waves in dense plasmas with degenerate electrons by deriving Kadomtsev-Petviashvili (KP) equation for small but finite amplitude perturbations. The two soliton interaction has been studied by finding the solution of the KP equation using the Hirota bilinear formalism. For illustrative purposes, we have used the plasma parameters typically found in white dwarf stars for both the fast and slow modes of magnetoacoustic waves. It has been observed that the soliton interaction in the fast and slow modes is strongly influenced by the predominant and weak dispersive coefficients of the KP equation. The single soliton behavior has also been explained for the fast and slow magnetoacoustic modes.

  14. Experts' understanding of partial derivatives using the partial derivative machine

    NASA Astrophysics Data System (ADS)

    Roundy, David; Weber, Eric; Dray, Tevian; Bajracharya, Rabindra R.; Dorko, Allison; Smith, Emily M.; Manogue, Corinne A.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Partial derivatives are used in a variety of different ways within physics. Thermodynamics, in particular, uses partial derivatives in ways that students often find especially confusing. We are at the beginning of a study of the teaching of partial derivatives, with a goal of better aligning the teaching of multivariable calculus with the needs of students in STEM disciplines. In this paper, we report on an initial study of expert understanding of partial derivatives across three disciplines: physics, engineering, and mathematics. We report on the central research question of how disciplinary experts understand partial derivatives, and how their concept images of partial derivatives differ, with a focus on experimentally measured quantities. Using the partial derivative machine (PDM), we probed expert understanding of partial derivatives in an experimental context without a known functional form. In particular, we investigated which representations were cued by the experts' interactions with the PDM. Whereas the physicists and engineers were quick to use measurements to find a numeric approximation for a derivative, the mathematicians repeatedly returned to speculation as to the functional form; although they were comfortable drawing qualitative conclusions about the system from measurements, they were reluctant to approximate the derivative through measurement. On a theoretical front, we found ways in which existing frameworks for the concept of derivative could be expanded to include numerical approximation.

  15. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other

  16. On the ψ-Hilfer fractional derivative

    NASA Astrophysics Data System (ADS)

    Vanterler da C. Sousa, J.; Capelas de Oliveira, E.

    2018-07-01

    In this paper we introduce a new fractional derivative with respect to another function the so-called ψ-Hilfer fractional derivative. We discuss some properties and important results of the fractional calculus. In this sense, we present some results involving uniformly convergent sequence of function, uniformly continuous function and examples including the Mittag-Leffler function with one parameter. Finally, we present a wide class of integrals and fractional derivatives, by means of the fractional integral with respect to another function and the ψ-Hilfer fractional derivative.

  17. Glial Cell Line-Derived Neurotrophic Factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters.

    PubMed

    Skibinska, Maria; Kapelski, Pawel; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Dmitrzak-Weglarz, Monika; Szczepankiewicz, Aleksandra; Czerski, Piotr; Twarowska-Hauser, Joanna

    2017-10-01

    Neurotrophic factors have been implicated in neuropsychiatric disorders, including schizophrenia and depression. Glial Cell Line-Derived Neurotrophic Factor (GDNF) promotes development, differentiation, and protection of dopaminergic, serotonergic, GABAergic and noradrenergic neurons as well as glial cells in different brain regions. This study examined serum levels of GDNF in schizophrenia and depression and its correlation with metabolic parameters during 8 weeks of treatment. Serum GDNF level, fasting serum glucose and lipid profile were measured at baseline and week 8 in 133 women: 55 with schizophrenia, 30 with a first episode depression and 48 healthy controls. The severity of the symptoms was evaluated using Positive and Negative Syndrome Scale (PANSS), 17-item Hamilton Depression Rating Scale (HDRS) and Beck Depression Inventory (BDI). There was statistically significant higher GDNF level in schizophrenia at baseline when compared with week 8. Correlations of GDNF with PANSS in schizophrenia and cholesterol level in depression have also been detected. To our knowledge, this is the first study which correlates GDNF levels with metabolic parameters. Our results show no differences in GDNF serum level between schizophrenia, a first depressive episode, and healthy controls. GDNF serum level did not correlate with metabolic parameters except for total cholesterol in depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice.

    PubMed

    Bellasio, Chandra; Beerling, David J; Griffiths, Howard

    2016-06-01

    Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. © 2015 John Wiley & Sons Ltd.

  19. Shuttle derived atmospheric density model. Part 1: Comparisons of the various ambient atmospheric source data with derived parameters from the first twelve STS entry flights, a data package for AOTV atmospheric development

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Troutman, P. A.

    1984-01-01

    The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments.

  20. Evaluation of FEM engineering parameters from insitu tests

    DOT National Transportation Integrated Search

    2001-12-01

    The study looked critically at insitu test methods (SPT, CPT, DMT, and PMT) as a means for developing finite element constitutive model input parameters. The first phase of the study examined insitu test derived parameters with laboratory triaxial te...

  1. Magnetic End States in a Strongly Interacting One-Dimensional Topological Kondo Insulator

    DOE PAGES

    Lobos, Alejandro M.; Dobry, Ariel O.; Galitski, Victor

    2015-05-22

    Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative bosonization and renormalization-group techniques to study theoretically a one-dimensional topological Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated version of the prototypical Tamm-Schockley model).We derive and solve renormalization-group equations at two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the Hubbard chainmore » acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter U = 0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/2 end states for chains with open boundary conditions. In conclusion, our analysis allows us to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.« less

  2. New Generation of Satellite-Derived Ocean Thermal Structure for the Western North Pacific Typhoon Intensity Forecasting

    DTIC Science & Technology

    2013-10-26

    took 35% of error as a threshold to deter- mine whether the parameters derived by the REGWNP are of acceptable accuracy. Fig. 13 shows the applicable...2000. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Monthly Weather Review 128, 1347–1365. Jacob, S.D...Hurricane Opal . Monthly Weather Review 128, 1366–1383. Stephens, C., Antonov, J.I., Boyer, T.P., Conkright, M.E., Locarnini, R.A., O’Brien, T.D., Carcia

  3. Emergent Learning and Interactive Media Artworks: Parameters of Interaction for Novice Groups

    ERIC Educational Resources Information Center

    Kawka, Marta; Larkin, Kevin; Danaher, P. A.

    2011-01-01

    Emergent learning describes learning that occurs when participants interact and distribute knowledge, where learning is self-directed, and where the learning destination of the participants is largely unpredictable (Williams, Karousou, & Mackness, 2011). These notions of learning arise from the topologies of social networks and can be applied to…

  4. Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.

    PubMed

    Bürger, Vincent; Briesen, Heiko

    2016-10-05

    For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal

  5. Dependence of the average spatial and energy characteristics of the hadron-lepton cascade on the strong interaction parameters at superhigh energies

    NASA Technical Reports Server (NTRS)

    Boyadjian, N. G.; Dallakyan, P. Y.; Garyaka, A. P.; Mamidjanian, E. A.

    1985-01-01

    A method for calculating the average spatial and energy characteristics of hadron-lepton cascades in the atmosphere is described. The results of calculations for various strong interaction models of primary protons and nuclei are presented. The sensitivity of the experimentally observed extensive air showers (EAS) characteristics to variations of the elementary act parameters is analyzed.

  6. Toward a better understanding of helicopter stability derivatives

    NASA Technical Reports Server (NTRS)

    Hansen, R. S.

    1982-01-01

    An amended six degree of freedom helicopter stability and control derivative model was developed in which body acceleration and control rate derivatives were included in the Taylor series expansion. These additional derivatives were derived from consideration of the effects of the higher order rotor flapping dynamics, which are known to be inadequately represented in the conventional six degree of freedom, quasistatic stability derivative model. The amended model was a substantial improvement over the conventional model, effectively doubling the unsable bandwidth and providing a more accurate representation of the short period and cross axis characteristics. Further investigations assessed the applicability of the two stability derivative model structures for flight test parameter identification. Parameters were identified using simulation data generated from a higher order base line model having sixth order rotor tip path plane dynamics. Three lower order models were identified: one using the conventional stability derivative model structure, a second using the amended six degree of freedom model structure, and a third model having eight degrees of freedom that included a simplified rotor tip path plane tilt representation.

  7. Registering parameters and granules of wave observations: IMAGE RPI success story

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.

    2015-12-01

    Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science

  8. Cosmology with interaction in the dark sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.

    2009-06-15

    Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter {epsilon}. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z).more » For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.« less

  9. Redox and complexation interactions of neptunium(V) with quinonoid-enriched humic derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcherbina, Natalia S.; Perminova, Irina V.; Kalmykov, Stephan N.

    2007-01-01

    Actinides in their higher valence states (e.g., MO{sub 2}{sup +} and MO{sub 2}{sup 2+}, where M can be Np, Pu, etc) possess a higher potential for migration and in turn pose a substantial environmental threat. To minimize this potential for migration, reducing them to lower oxidation states (e.g., their tetravalent state) can be an attractive and efficient remedial process. These lower oxidation states are often much less soluble in natural aqueous media and are, therefore, less mobile in the environment. The research presented here focuses on assessing the performance of quinonoid-enriched humic derivatives with regards to complexing and/or reducing Np(V)more » present in solution. These 'designer' humics are essentially derived reducing agents that can serve as reactive components of a novel humic-based remediation technology. The derivatives are obtained by incorporating different quinonoid-moieties into leonardite humic acids. Five quinonoid-derivatives are tested in this work and all five prove more effective as reducing agents for selected actinides than the parent leonardite humic acid, and the hydroquinone derivatives are better than the catechol derivatives. The reduction kinetics and the Np(V) species formed with the different derivatives are studied via a batch mode using near-infrared (NIR)-spectroscopy. Np(V) reduction by the humic derivatives under anoxic conditions at 293 K and at pH 4.7 obeys first-order kinetics. Rate constants range from 1.70 x 10{sup -6} (parent humic acid) to 1.06 x 10{sup -5} sec{sup -1} (derivative with maximum hydroquinone content). Stability constants for Np(V)-humic complexes calculated from spectroscopic data produce corresponding Log{beta} values of 2.3 for parent humic acid and values ranging from 2.5 to 3.2 at pH 4.7 and from 3.3 to 3.7 at pH 7.4 for humic derivatives. Maximum constants are observed for hydroquinone-enriched derivatives. It is concluded that among the humic derivatives tested, the hydroquinone

  10. Derivatives of 2-(dipropylamino)tetralin: effect of the C8-substituent on the interaction with 5-HT1A receptors.

    PubMed

    Liu, Y; Yu, H; Svensson, B E; Cortizo, L; Lewander, T; Hacksell, U

    1993-12-24

    A series of 2-(dipropylamino)tetralin derivatives in which the C8 substituent is varied has been prepared and evaluated pharmacologically to explore the importance of the C8 substituent in the interaction of 2-aminotetralin-based ligands with serotonin (5-HT1A) receptors. Enantiopure derivatives were prepared by facile palladium-catalyzed reactions of the triflates of the enantiomers of 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT, 1). The affinity of the compounds for the 5-HT1A receptors was evaluated by competition experiments with [3H]-8-OH-DPAT in rat hippocampal and cortical tissue. In addition, the compounds were evaluated for central 5-HT and dopamine receptor stimulating activity in vivo by use of biochemical and behavioral assays in rats. With the exception of the carboxy-substituted derivative which is devoid of 5-HT1A receptor affinity, the compounds have moderate to high affinities (K(i) values range from 0.7 to 130 nM) for 5-HT1A receptors. Surprisingly, several of the derivatives do not produce any apparent effects in vivo although they have fairly high 5-HT1A receptor affinities. However, the methoxycarbonyl- and acetyl-substituted derivatives are potent 5-HT1A receptor agonists in vivo and exhibit in vitro affinities in the same range as the enantiomers of 1.

  11. Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores.

    PubMed

    Malkin, B Z; Lummen, T T A; van Loosdrecht, P H M; Dhalenne, G; Zakirov, A R

    2010-07-14

    The experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R(2)Ti(2)O(7) (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.

  12. A practical iterative PID tuning method for mechanical systems using parameter chart

    NASA Astrophysics Data System (ADS)

    Kang, M.; Cheong, J.; Do, H. M.; Son, Y.; Niculescu, S.-I.

    2017-10-01

    In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.

  13. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less

  14. Interaction between calcium and phosphate adsorption on goethite.

    PubMed

    Rietra, R P; Hiemstra, T; van Riemsdijk, W H

    2001-08-15

    Quantitatively, little is known about the ion interaction processes that are responsible for the binding of phosphate in soil, water, and sediment, which determine the bioavailability and mobility of phosphate. Studies have shown that metal hydroxides are often responsible for the binding of PO4 in soils and sediments, but the binding behavior of PO4 in these systems often differs significantly from adsorption studies on metal hydroxides in laboratory. The interaction between PO4 and Ca adsorption was studied on goethite because Ca can influence the PO4 adsorption equilibria. Since adsorption interactions are very difficult to discriminate from precipitation reactions, conditions were chosen to prevent precipitation of Ca-PO4 solids. Adsorption experiments of PO4 and Ca, individually and in combination, show a strong interaction between adsorbed Ca and PO4 on goethite for conditions below the saturation index of apatite. It is shown that it is possible to predict the adsorption and interaction of PO4 and Ca on electrostatic arguments using the model parameter values derived from the single-ion systems and without invoking ternary complex formation or precipitation. The model enables the prediction of the Ca-PO4 interaction for environmentally relevant calcium and phosphate concentrations.

  15. Estimating crop net primary production using inventory data and MODIS-derived parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois inmore » years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.« less

  16. New positron emission tomography derived parameters as predictive factors for recurrence in resected stage I non-small cell lung cancer.

    PubMed

    Melloni, G; Gajate, A M S; Sestini, S; Gallivanone, F; Bandiera, A; Landoni, C; Muriana, P; Gianolli, L; Zannini, P

    2013-11-01

    The recurrence rate for stage I non-small cell lung cancer is high, with 20-40% of patients that relapse after surgery. The aim of this study was to evaluate new F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) derived parameters, such as standardized uptake value index (SUVindex), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), as predictive factors for recurrence in resected stage I non-small cell lung cancer. We retrospectively reviewed 99 resected stage I non-small cell lung cancer patients that were grouped by SUVindex, TLG and MTV above or below their median value. Disease free survival was evaluated as primary end point. The 5-year overall survival and the 5-year disease free survival rates were 62% and 73%, respectively. The median SUVindex, MTL and TLG were 2.73, 2.95 and 9.61, respectively. Patients with low SUVindex, MTV and TLG were more likely to have smaller tumors (p ≤ 0.001). Univariate analysis demonstrated that SUVindex (p = 0.027), MTV (p = 0.014) and TLG (p = 0.006) were significantly related to recurrence showing a better predictive performance than SUVmax (p = 0.031). The 5-year disease free survival rates in patients with low and high SUVindex, MTV and TLG were 84% and 59%, 86% and 62% and 88% and 60%, respectively. The multivariate analysis showed that only TLG was an independent prognostic factor (p = 0.014) with a hazard ratio of 4.782. Of the three PET-derived parameters evaluated, TLG seems to be the most accurate in stratifying surgically treated stage I non-small cell lung cancer patients according to their risk of recurrence. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions

    PubMed Central

    Eckhardt, Manon; Anders, Maria; Muranyi, Walter; Heilemann, Mike; Krijnse-Locker, Jacomine; Müller, Barbara

    2011-01-01

    Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches. Here we describe the construction and characterization of the HIV derivative HIVSNAP, which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIVSNAP represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy. PMID:21799764

  18. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    NASA Astrophysics Data System (ADS)

    Reif, Maria M.; Hünenberger, Philippe H.

    2011-04-01

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Hünenberger, J. Chem. Phys. 124, 224501 (2006), 10.1529/biophysj.106.083667; M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li+, Na+, K+, Rb+, Cs+) and halide (F-, Cl-, Br-, I-) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998), 10.1021/jp982638r; Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, Δ G_hyd^{ominus }[H+] = -1100, -1075 or -1050 kJ mol-1, resulting in three sets L, M, and H for the SPC water model and three sets LE, ME, and HE for the SPC/E water model (alternative sets can easily be interpolated to intermediate Δ G_hyd^{ominus }[H+] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is

  19. Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip–surface interactions

    DOE PAGES

    Borysov, Stanislav S.; Forchheimer, Daniel; Haviland, David B.

    2014-10-29

    Here we present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip–surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip–surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

  20. Interactions of praseodymium and neodymium with nucleosides and nucleotides: absorption difference and comparative absorption spectral study.

    PubMed

    Misra, S N; Anjaiah, K; Joseph, G; Abdi, S H

    1992-02-01

    The interactions of praseodymium(III) and neodymium(III) with nucleosides and nucleotides have been studied in different stoichiometry in water and water-DMF mixtures by employing absorption difference and comparative absorption spectrophotometry. The 4f-4f bands were analysed by linear curve analysis followed by gaussian curve analysis, and various spectral parameters were computed, using partial and multiple regression method. The magnitude of changes in both energy interaction and intensity were used to explore the degree of outer and inner sphere coordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Crystalline complexes of the type [Ln(nucleotide)2(H2O)2]- (where nucleotide--GMP or IMP) were characterized by IR, 1H NMR, 31P NMR data. These studies indicated that the binding of the nucleotide is through phosphate oxygen in a bidentate manner and the complexes undergo substantial ionisation in aqueous medium, thereby supporting the observed weak 4f-4f bands and lower values for nephelauxetic effect (1-beta), bonding (b) and covalency (delta) parameters derived from coulombic and spin orbit interaction parameters.

  1. Analysis of derived optical parameters of atmospheric particles during a biomass burning event. Comparison with fossil fuel burning

    NASA Astrophysics Data System (ADS)

    Costa, A.; Mogo, S.; Cachorro, V.; de Frutos, A.; Medeiros, M.; Martins, R.; López, J. F.; Marcos, A.; Marcos, N.; Bizarro, S.; Mano, F.

    2015-12-01

    During the day November 26, 2014, a scheduled cleanup of the woods took place around the GOA-UVa aerosol measurement station located at the campus of the University of Beira Interior (40° 16’30”N, 7°30’35”W, 704m a.s.l.), Covilhã, Portugal. This cleanup included excessive vegetation removal during the morning, using fossil fuel-burning machinery, and burning of the vegetation during the afternoon. In situ measurements of aerosol optical properties were made and this study aims the characterization of the evolution of aerosol properties during the day. The optical parameters were monitored using a 3-wavelength nephelometer and a 3-wavelength particle soot absorption photometer. Selective sampling/exclusion of the coarse particles was done each 5 minutes. The scattering and absorption Ångström exponents as well as the single scattering albedo were derived and fully analyzed. The scattering and absorption coefficients increased dramatically during the event, reaching values as high as 720.3 Mm-1 and 181.9 Mm-1, respectively, for the green wavelength and PM10 size fraction. The spectral behavior of these parameters also changed wildly along the day and an inversion of the slope from positive to negative in the case of the single scattering albedo was observed.

  2. Understanding the stereospecific interactions of 3-deoxyphosphatidylinositol derivatives with the PTEN phosphatase domain

    PubMed Central

    Wang, Qin; Wei, Yang; Mottamal, Madhusoodanan; Roberts, Mary F.; Krilov, Goran

    2011-01-01

    PTEN is an important control element of PI3K/AKT signaling involved in controlling the processes of embryonic development, cell migration and apoptosis. While its dysfunction is implicated in a large fraction of cancers, PTEN activity in the same pathway may also contribute to metabolic syndromes such as diabetes. In those cases, selective inhibitors of PTEN may be useful. A new class of chiral PTEN inhibitors based on the 3-deoxy-phosphatidylinositol derivatives was recently identified [Wang et al. (2008) J. Am. Chem. Soc. 130, 7746]. However, lack of detailed understanding of protein-ligand interactions has hampered efforts to develop effective agonists or antagonists of PTEN. Here, we use computational modeling to characterize the interactions of the diverse 3-deoxyphosphatidylinositol inhibitors with the PTEN protein. We show that, while each of the compounds binds with the inositol headgroup inserting into the proposed active site of the PTEN phosphatase domain, hydrogen bonding restrictions lead to distinct binding geometries for ligand pairs of opposite chirality. We furthermore demonstrate that the binding modes differ primarily in the orientation of acyl tails of the ligands and that the activity of the compounds is primarily controlled by the effectiveness of tail-protein contacts. These findings are confirmed by binding affinity calculations which are in good agreement with experiment. Finally, we show that while more potent D-series ligands bind in a manner similar to that of the native substrate, an alternate hydrophobic pocket suitable for binding the opposite chirality L-series inhibitors exists, offering the possibility of designing highly selective PTEN- targeting compounds. PMID:20538496

  3. Ultrasonic studies of intermolecular interactions in binary mixtures of 4-methoxy benzoin with various solvents: Excess molar functions of ultrasonic parameters at different concentrations and in different solvents.

    PubMed

    Thanuja, B; Nithya, G; Kanagam, Charles C

    2012-11-01

    Density (ρ), ultrasonic velocity (U), for the binary mixtures of 4-methoxy benzoin (4MB) with ethanol, chloroform, acetonitrile, benzene, and di-oxane were measured at 298K. The solute-solvent interactions and the effect of the polarity of the solvent on the type of intermolecular interactions are discussed here. From the above data, adiabatic compressibility (β), intermolecular free length (L(f)), acoustic impedance (Z), apparent molar volume (Ø), relative association (RA) have been calculated. Other useful parameters such as excess density, excess velocity and excess adiabatic compressibility have also been calculated. These parameters were used to study the nature and extent of intermolecular interactions between component molecules in the binary mixtures. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Two-parameter asymptotics in magnetic Weyl calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lein, Max

    2010-12-15

    This paper is concerned with small parameter asymptotics of magnetic quantum systems. In addition to a semiclassical parameter {epsilon}, the case of small coupling {lambda} to the magnetic vector potential naturally occurs in this context. Magnetic Weyl calculus is adapted to incorporate both parameters, at least one of which needs to be small. Of particular interest is the expansion of the Weyl product which can be used to expand the product of operators in a small parameter, a technique which is prominent to obtain perturbation expansions. Three asymptotic expansions for the magnetic Weyl product of two Hoermander class symbols aremore » proven as (i) {epsilon}<< 1 and {lambda}<< 1, (ii) {epsilon}<< 1 and {lambda}= 1, as well as (iii) {epsilon}= 1 and {lambda}<< 1. Expansions (i) and (iii) are impossible to obtain with ordinary Weyl calculus. Furthermore, I relate the results derived by ordinary Weyl calculus with those obtained with magnetic Weyl calculus by one- and two-parameter expansions. To show the power and versatility of magnetic Weyl calculus, I derive the semirelativistic Pauli equation as a scaling limit from the Dirac equation up to errors of fourth order in 1/c.« less

  5. Comprehensive Two-Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of Anthocyanins and Derived Pigments in Red Wine.

    PubMed

    Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André

    2015-12-15

    Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.

  6. The triel bond: a potential force for tuning anion-π interactions

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2018-02-01

    Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.

  7. Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico.

    PubMed

    Macías-Pérez, Martha Edith; Martínez-Ramos, Federico; Padilla-Martínez, Itzia Irene; Correa-Basurto, José; Kispert, Lowell; Mendieta-Wejebe, Jessica Elena; Rosales-Hernández, Martha Cecilia

    2013-08-02

    NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2•-), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2•- production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2's p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin.

  8. Determination of the Fracture Parameters in a Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Lin, Chung-Yi

    2000-01-01

    A modified J-integral, namely the equivalent domain integral, is derived for a three-dimensional anisotropic cracked solid to evaluate the stress intensity factor along the crack front using the finite element method. Based on the equivalent domain integral method with auxiliary fields, an interaction integral is also derived to extract the second fracture parameter, the T-stress, from the finite element results. The auxiliary fields are the two-dimensional plane strain solutions of monoclinic materials with the plane of symmetry at x(sub 3) = 0 under point loads applied at the crack tip. These solutions are expressed in a compact form based on the Stroh formalism. Both integrals can be implemented into a single numerical procedure to determine the distributions of stress intensity factor and T-stress components, T11, T13, and thus T33, along a three-dimensional crack front. The effects of plate thickness and crack length on the variation of the stress intensity factor and T-stresses through the thickness are investigated in detail for through-thickness center-cracked plates (isotropic and orthotropic) and orthotropic stiffened panels under pure mode-I loading conditions. For all the cases studied, T11 remains negative. For plates with the same dimensions, a larger size of crack yields larger magnitude of the normalized stress intensity factor and normalized T-stresses. The results in orthotropic stiffened panels exhibit an opposite trend in general. As expected, for the thicker panels, the fracture parameters evaluated through the thickness, except the region near the free surfaces, approach two-dimensional plane strain solutions. In summary, the numerical methods presented in this research demonstrate their high computational effectiveness and good numerical accuracy in extracting these fracture parameters from the finite element results in three-dimensional cracked solids.

  9. Predicting Protein-Protein Interactions by Combing Various Sequence-Derived.

    PubMed

    Zhao, Xiao-Wei; Ma, Zhi-Qiang; Yin, Ming-Hao

    2011-09-20

    Knowledge of protein-protein interactions (PPIs) plays an important role in constructing protein interaction networks and understanding the general machineries of biological systems. In this study, a new method is proposed to predict PPIs using a comprehensive set of 930 features based only on sequence information, these features measure the interactions between residues a certain distant apart in the protein sequences from different aspects. To achieve better performance, the principal component analysis (PCA) is first employed to obtain an optimized feature subset. Then, the resulting 67-dimensional feature vectors are fed to Support Vector Machine (SVM). Experimental results on Drosophila melanogaster and Helicobater pylori datasets show that our method is very promising to predict PPIs and may at least be a useful supplement tool to existing methods.

  10. Alkylating derivative of oxotremorine interacts irreversibly with the muscarinic receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlert, F.J.; Jenden, D.J.; Ringdahl, B.

    A 2-chloroethylamine derivative of oxotremorine was studied in pharmacological experiments and muscarinic receptor binding assays. The compound, N-(4-(2-chloroethylmethylamino)-2-butynyl)-2-pyrrolidone (BM 123), forms an aziridinium ion in aqueous solution at neutral pH that stimulates contractions of guinea pig ileum with a potency similar to that of oxotremorine. Following the initial stimulation, there is a long lasting period of lack of sensitivity of the guinea pig ileum to muscarinic agonists. BM 123 also produces muscarinic effects in vivo. When homogenates of the rat cerebral cortex were incubated with BM 123 and assayed subsequently in muscarinic receptor binding assays, a loss of binding capacitymore » for the muscarinic antagonist, (/sup 3/H)N-methylscopolamine ((/sup 3/H)NMS), was noted without a change in affinity. Similar observations were made in (/sup 3/H)1-3-quinuclidinyl benzilate ((/sup 3/H)-QNB) binding assays on the forebrains of mice that had been injected with BM 123 24 hr earlier. The loss in receptor capacity for both (/sup 3/H)NMS and (/sup 3/H)-QNB was prevented by atropine treatment. Kinetic studies of the interaction of BM 123 with homogenates of the rat cerebral cortex in vitro showed that the half-time for the loss of (/sup 3/H)-QNB binding sites increased from 10 to 45 min as the concentration of BM 123 decreased from 10 to 1 ..mu..M. In contrast to the aziridinium ion, the parent 2-chloroethylamine compound and the alcoholic hydrolysis product were largely devoid of pharmacological and binding activity.« less

  11. Estimation of dynamic stability parameters from drop model flight tests

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Iliff, K. W.

    1981-01-01

    A recent NASA application of a remotely-piloted drop model to studies of the high angle-of-attack and spinning characteristics of a fighter configuration has provided an opportunity to evaluate and develop parameter estimation methods for the complex aerodynamic environment associated with high angles of attack. The paper discusses the overall drop model operation including descriptions of the model, instrumentation, launch and recovery operations, piloting concept, and parameter identification methods used. Static and dynamic stability derivatives were obtained for an angle-of-attack range from -20 deg to 53 deg. The results of the study indicated that the variations of the estimates with angle of attack were consistent for most of the static derivatives, and the effects of configuration modifications to the model (such as nose strakes) were apparent in the static derivative estimates. The dynamic derivatives exhibited greater uncertainty levels than the static derivatives, possibly due to nonlinear aerodynamics, model response characteristics, or additional derivatives.

  12. Research of interaction between technological and material parameters during densification of sunflower hulls

    NASA Astrophysics Data System (ADS)

    Križan, Peter; Matúš, Miloš; Beniak, Juraj; Šooš, Ľubomír

    2018-01-01

    During the biomass densification can be recognized various technological variables and also material parameters which significantly influences the final solid biofuels (pellets) quality. In this paper, we will present the research findings concerning relationships between technological and material variables during densification of sunflower hulls. Sunflower hulls as an unused source is a typical product of agricultural industry in Slovakia and belongs to the group of herbaceous biomass. The main goal of presented experimental research is to determine the impact of compression pressure, compression temperature and material particle size distribution on final biofuels quality. Experimental research described in this paper was realized by single-axis densification, which was represented by experimental pressing stand. The impact of mentioned investigated variables on the final briquettes density and briquettes dilatation was determined. Mutual interactions of these variables on final briquettes quality are showing the importance of mentioned variables during the densification process. Impact of raw material particle size distribution on final biofuels quality was also proven by experimental research on semi-production pelleting plant.

  13. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  14. Applications of the solvation parameter model in reversed-phase liquid chromatography.

    PubMed

    Poole, Colin F; Lenca, Nicole

    2017-02-24

    The solvation parameter model is widely used to provide insight into the retention mechanism in reversed-phase liquid chromatography, for column characterization, and in the development of surrogate chromatographic models for biopartitioning processes. The properties of the separation system are described by five system constants representing all possible intermolecular interactions for neutral molecules. The general model can be extended to include ions and enantiomers by adding new descriptors to encode the specific properties of these compounds. System maps provide a comprehensive overview of the separation system as a function of mobile phase composition and/or temperature for method development. The solvation parameter model has been applied to gradient elution separations but here theory and practice suggest a cautious approach since the interpretation of system and compound properties derived from its use are approximate. A growing application of the solvation parameter model in reversed-phase liquid chromatography is the screening of surrogate chromatographic systems for estimating biopartitioning properties. Throughout the discussion of the above topics success as well as known and likely deficiencies of the solvation parameter model are described with an emphasis on the role of the heterogeneous properties of the interphase region on the interpretation and understanding of the general retention mechanism in reversed-phase liquid chromatography for porous chemically bonded sorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rajan; Heim, Andrew J.; Li, Zhijun

    2015-05-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

  16. An error analysis of tropical cyclone divergence and vorticity fields derived from satellite cloud winds on the Atmospheric and Oceanographic Information Processing System (AOIPS)

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Rodgers, E. B.

    1977-01-01

    An advanced Man-Interactive image and data processing system (AOIPS) was developed to extract basic meteorological parameters from satellite data and to perform further analyses. The errors in the satellite derived cloud wind fields for tropical cyclones are investigated. The propagation of these errors through the AOIPS system and their effects on the analysis of horizontal divergence and relative vorticity are evaluated.

  17. Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony

    1992-01-01

    Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.

  18. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions

    PubMed Central

    Momeni, Babak; Xie, Li; Shou, Wenying

    2017-01-01

    Pairwise models are commonly used to describe many-species communities. In these models, an individual receives additive fitness effects from pairwise interactions with each species in the community ('additivity assumption'). All pairwise interactions are typically represented by a single equation where parameters reflect signs and strengths of fitness effects ('universality assumption'). Here, we show that a single equation fails to qualitatively capture diverse pairwise microbial interactions. We build mechanistic reference models for two microbial species engaging in commonly-found chemical-mediated interactions, and attempt to derive pairwise models. Different equations are appropriate depending on whether a mediator is consumable or reusable, whether an interaction is mediated by one or more mediators, and sometimes even on quantitative details of the community (e.g. relative fitness of the two species, initial conditions). Our results, combined with potential violation of the additivity assumption in many-species communities, suggest that pairwise modeling will often fail to predict microbial dynamics. DOI: http://dx.doi.org/10.7554/eLife.25051.001 PMID:28350295

  19. AMOEBA Polarizable Force Field Parameters of the Heme Cofactor in Its Ferrous and Ferric Forms.

    PubMed

    Wu, Xiaojing; Clavaguera, Carine; Lagardère, Louis; Piquemal, Jean-Philip; de la Lande, Aurélien

    2018-05-08

    We report the first parameters of the heme redox cofactors for the polarizable AMOEBA force field in both the ferric and ferrous forms. We consider two types of complexes, one with two histidine side chains as axial ligands and one with a histidine and a methionine side chain as ligands. We have derived permanent multipoles from second-order Møller-Plesset perturbation theory (MP2). The sets of parameters have been validated in a first step by comparison of AMOEBA interaction energies of heme and a collection of biologically relevant molecules with MP2 and Density Functional Theory (DFT) calculations. In a second validation step, we consider interaction energies with large aggregates comprising around 80 H 2 O molecules. These calculations are repeated for 30 structures extracted from semiempirical PM7 DM simulations. Very encouraging agreement is found between DFT and the AMOEBA force field, which results from an accurate treatment of electrostatic interactions. We finally report long (10 ns) MD simulations of cytochromes in two redox states with AMOEBA testing both the 2003 and 2014 AMOEBA water models. These simulations have been carried out with the TINKER-HP (High Performance) program. In conclusion, owing to their ubiquity in biology, we think the present work opens a wide array of applications of the polarizable AMOEBA force field on hemeproteins.

  20. Current interactions from the one-form sector of nonlinear higher-spin equations

    NASA Astrophysics Data System (ADS)

    Gelfond, O. A.; Vasiliev, M. A.

    2018-06-01

    The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp ⁡ iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.

  1. Hydrodynamic dispersion in porous media with macroscopic disorder of parameters

    NASA Astrophysics Data System (ADS)

    Goldobin, D. S.; Maryshev, B. S.

    2017-10-01

    We present an analytical derivation of the macroscopic hydrodynamic dispersion for flows in porous media with frozen disorder of macroscopic parameters: porosity and permeability. The parameter inhomogeneities generate inhomogeneities of filtration flow which perform fluid mixing and, on the large spacial scale, act as an additional effective diffusion (eddy diffusivity or hydrodynamic dispersion). The derivation is performed for the general case, where the only restrictions are (i) the spatial autocorrelation functions of parameter inhomogeneities decay with the distance r not slower than 1/rn with n > 1, and (ii) the amplitudes of inhomogeneities are small compared to the mean value of parameters. Our analytical findings are confirmed with the results of direct numerical simulation for the transport of a passive scalar in inhomogeneous filtration flow.

  2. Analysis and validation of severe storm parameters derived from TITAN in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Gomes, Ana Maria; Held, Gerhard; Vernini, Rafael; Demetrio Souza, Caio

    2014-05-01

    The implementation of TITAN (Thundestorm Identification, Tracking and Nowcasting) System at IPMet in December 2005 has provided real-time access to the storm severity parameters derived from radar reflectivity, which are being used to identify and alert of potentially severe storms within the 240 km quantitative ranges of the Bauru and Presidente Prudente S-band radars. The potential of these tools available with the TITAN system is being evaluated by using the hail reports received from voluntary hail observers to cross-check the occurrence of hail within the radar range against the TITAN predictions. Part of the ongoing research at IPMet aims to determine "signatures" in severe events and therefore, as from 2008, an online standard form was introduced, allowing for greater detail on the occurrence of a severe event within the 240 km ranges of both radars. The model for the hail report was based on the one initially deployed by the Alberta Hail Program, in Canada, and also by the Hail Observer Network established by the CSIR (Council for Scientific and Industrial Research), in Pretoria, South Africa, where it was used for more than 25 years. The TITAN system was deployed to obtain the tracking properties of storms for this analysis. A cell was defined by the thresholds of 40 dBZ for the reflectivity and 16 km3 for the volume, observed at least in two consecutive volume scans (15 minutes). Besides tracking and Nowcasting the movement of storm cells, TITAN comprises algorithms that allow the identification of potentially severe storm "signatures", such as the hail metrics, to indicate the probability of hail (POH), based on a combination of radar data and the knowledge of the vertical temperature distribution of the atmosphere. Another two parameters, also related to hail producing storms, called FOKR (Foote-Krauss) index and HMA (Hail Mass Aloft) index is also included. The period from 2008 to 2013 was used to process all available information about storm

  3. IC-tagged proteins are able to interact with each other and perform complex reactions when integrated into muNS-derived inclusions.

    PubMed

    Brandariz-Nuñez, Alberto; Otero-Romero, Iria; Benavente, Javier; Martinez-Costas, Jose M

    2011-09-20

    We have recently developed a versatile tagging system (IC-tagging) that causes relocation of the tagged proteins to ARV muNS-derived intracellular globular inclusions. In the present study we demonstrate (i) that the IC-tag can be successfully fused either to the amino or carboxyl terminus of the protein to be tagged and (ii) that IC-tagged proteins are able to interact between them and perform complex reactions that require such interactions while integrated into muNS inclusions, increasing the versatility of the IC-tagging system. Also, our studies with the DsRed protein add some light on the structure/function relationship of the evolution of DsRed chromophore. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A novel methodological approach for the analysis of host-ligand interactions.

    PubMed

    Strat, Daniela; Missailidis, Sotiris; Drake, Alex F

    2007-02-02

    Traditional analysis of drug-binding data relies upon the Scatchard formalism. These methods rely upon the fitting of a linear equation providing intercept and gradient data that relate to physical properties, such as the binding constant, cooperativity coefficients and number of binding sites. However, the existence of different binding modes with different binding constants makes the implementation of these models difficult. This article describes a novel approach to the binding model of host-ligand interactions by using a derived analytical function describing the observed signal. The benefit of this method is that physically significant parameters, that is, binding constants and number of binding sites, are automatically derived by the use of a minimisation routine. This methodology was utilised to analyse the interactions between a novel antitumour agent and DNA. An optical spectroscopy study confirms that the pentacyclic acridine derivative (DH208) binds to nucleic acids. Two binding modes can be identified: a stronger one that involves intercalation and a weaker one that involves oriented outer-sphere binding. In both cases the plane of the bound acridine ring is parallel to the nucleic acid bases, orthogonal to the phosphate backbone. Ultraviolet (UV) and circular dichroism (CD) data were fitted using the proposed model. The binding constants and the number of binding sites derived from the model remained consistent across the different techniques used. The different wavelengths at which the measurements were made maintained the coherence of the results.

  5. Optimization for minimum sensitivity to uncertain parameters

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Sobieszczanski-Sobieski, Jaroslaw

    1994-01-01

    A procedure to design a structure for minimum sensitivity to uncertainties in problem parameters is described. The approach is to minimize directly the sensitivity derivatives of the optimum design with respect to fixed design parameters using a nested optimization procedure. The procedure is demonstrated for the design of a bimetallic beam for minimum weight with insensitivity to uncertainties in structural properties. The beam is modeled with finite elements based on two dimensional beam analysis. A sequential quadratic programming procedure used as the optimizer supplies the Lagrange multipliers that are used to calculate the optimum sensitivity derivatives. The method was perceived to be successful from comparisons of the optimization results with parametric studies.

  6. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome.

    PubMed

    Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I; Kahn, C Ronald

    2015-09-01

    Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effects of long-range interactions on curvature energies of viral shells

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamid R.; Božič, Anže Lošdorfer; Muthukumar, Murugappan; Podgornik, Rudolf

    2016-05-01

    We formulate a theory of the effects of long-range interactions on the surface tension and spontaneous curvature of proteinaceous shells based on the general Deryaguin-Landau-Verwey-Overbeek mesoscale approach to colloid stability. We derive the full renormalization formulas for the elastic properties of the shell and consider in detail the renormalization of the spontaneous curvature as a function of the corresponding Hamaker coefficient, inner and outer capsid charges, and bathing solution properties. The renormalized spontaneous curvature is found to be a nonmonotonic function of several parameters describing the system.

  8. Short peptides derived from the BAG-1 C-terminus inhibit the interaction between BAG-1 and HSC70 and decrease breast cancer cell growth.

    PubMed

    Sharp, Adam; Cutress, Ramsey I; Johnson, Peter W M; Packham, Graham; Townsend, Paul A

    2009-11-03

    BAG-1, a multifunctional protein, interacts with a plethora of cellular targets where the interaction with HSC70 and HSP70, is considered vital. Structural studies have demonstrated the C-terminal of BAG-1 forms a bundle of three alpha-helices of which helices 2 and 3 are directly involved in binding to the chaperones. Here we found peptides derived from helices 2 and 3 of BAG-1 interfered with BAG-1:HSC70 binding. We confirmed that a 12 amino-acid peptide from helix 2 directly interacted with HSC70 and when introduced into MCF-7 and ZR-75-1 cells, these peptides inhibited their growth. In conclusion, we have identified a small domain within BAG-1 which appears to play a critical role in the interaction with HSC70.

  9. User's manual for MMLE3, a general FORTRAN program for maximum likelihood parameter estimation

    NASA Technical Reports Server (NTRS)

    Maine, R. E.; Iliff, K. W.

    1980-01-01

    A user's manual for the FORTRAN IV computer program MMLE3 is described. It is a maximum likelihood parameter estimation program capable of handling general bilinear dynamic equations of arbitrary order with measurement noise and/or state noise (process noise). The theory and use of the program is described. The basic MMLE3 program is quite general and, therefore, applicable to a wide variety of problems. The basic program can interact with a set of user written problem specific routines to simplify the use of the program on specific systems. A set of user routines for the aircraft stability and control derivative estimation problem is provided with the program.

  10. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector

    NASA Astrophysics Data System (ADS)

    Pan, Supriya; Mukherjee, Ankan; Banerjee, Narayan

    2018-06-01

    Non-gravitational interaction between two barotropic dark fluids, namely the pressureless dust and the dark energy in a spatially flat Friedmann-Lemaître-Robertson-Walker model, has been discussed. It is shown that for the interactions that are linear in terms the energy densities of the dark components and their first order derivatives, the net energy density is governed by a second-order differential equation with constant coefficients. Taking a generalized interaction, which includes a number of already known interactions as special cases, the dynamics of the universe is described for three types of the dark energy equation of state, namely that of interacting quintessence, interacting vacuum energy density, and interacting phantom. The models have been constrained using the standard cosmological probes, Supernovae Type Ia data from joint light curve analysis and the observational Hubble parameter data. Two geometric tests, the cosmographic studies, and the Om diagnostic have been invoked so as to ascertain the behaviour of the present model vis-a-vis the Λ-cold dark matter model. We further discussed the interacting scenarios taking into account the thermodynamic considerations.

  11. Parameter estimating state reconstruction

    NASA Technical Reports Server (NTRS)

    George, E. B.

    1976-01-01

    Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.

  12. Thin Film Evaporation Model with Retarded Van Der Waals Interaction (Postprint)

    DTIC Science & Technology

    2013-11-01

    Waals interaction. The retarded van der Waals interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules...interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules for a given geometry. When combined, the governing...interaction force is the negative derivative with respect to distance of the interaction energy. The method due to Hamaker essentially sums all pair

  13. Observing continuous change in heart rate variability and photoplethysmography-derived parameters during the process of pain production/relief with thermal stimuli.

    PubMed

    Ye, Jing-Jhao; Lee, Kuan-Ting; Lin, Jing-Siang; Chuang, Chiung-Cheng

    2017-01-01

    Continuously monitoring and efficiently managing pain has become an important issue. However, no study has investigated a change in physiological parameters during the process of pain production/relief. This study modeled the process of pain production/relief using ramped thermal stimulation (no pain: 37°C water, process of pain production: a heating rate of 1°C/min, and subject feels pain: water kept at the painful temperature for each subject, with each segment lasting 10 min). In this duration, the variation of the heat rate variability and photoplethysmography-derived parameters was observed. A total of 40 healthy individuals participated: 30 in the trial group (14 males and 16 females with a mean age of 22.5±1.9 years) and 10 in the control group (7 males and 3 females with a mean age of 22.5±1.3 years). The results showed that the numeric rating scale value was 5.03±1.99 when the subjects felt pain, with a temperature of 43.54±1.70°C. Heart rate, R-R interval, low frequency, high frequency, photoplethysmography amplitude, baseline, and autonomic nervous system state showed significant changes during the pain production process, but these changes differed during the period Segment D (painful temperature 10: min). In summary, the study observed that physiological parameters changed qualitatively during the process of pain production and relief and found that the high frequency, low frequency, and photoplethysmography parameters seemed to have different responses in four situations (no pain, pain production, pain experienced, and pain relief). The trends of these variations may be used as references in the clinical setting for continuously observing pain intensity.

  14. Aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.

    1987-01-01

    The aircraft parameter estimation problem is used to illustrate the utility of parameter estimation, which applies to many engineering and scientific fields. Maximum likelihood estimation has been used to extract stability and control derivatives from flight data for many years. This paper presents some of the basic concepts of aircraft parameter estimation and briefly surveys the literature in the field. The maximum likelihood estimator is discussed, and the basic concepts of minimization and estimation are examined for a simple simulated aircraft example. The cost functions that are to be minimized during estimation are defined and discussed. Graphic representations of the cost functions are given to illustrate the minimization process. Finally, the basic concepts are generalized, and estimation from flight data is discussed. Some of the major conclusions for the simulated example are also developed for the analysis of flight data from the F-14, highly maneuverable aircraft technology (HiMAT), and space shuttle vehicles.

  15. Holographic superconductivity from higher derivative theory

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Pin; Liu, Peng

    2017-11-01

    We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.

  16. A modified Leslie-Gower predator-prey interaction model and parameter identifiability

    NASA Astrophysics Data System (ADS)

    Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed

    2018-01-01

    In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.

  17. Conformable derivative approach to anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Zhou, H. W.; Yang, S.; Zhang, S. Q.

    2018-02-01

    By using a new derivative with fractional order, referred to conformable derivative, an alternative representation of the diffusion equation is proposed to improve the modeling of anomalous diffusion. The analytical solutions of the conformable derivative model in terms of Gauss kernel and Error function are presented. The power law of the mean square displacement for the conformable diffusion model is studied invoking the time-dependent Gauss kernel. The parameters related to the conformable derivative model are determined by Levenberg-Marquardt method on the basis of the experimental data of chloride ions transportation in reinforced concrete. The data fitting results showed that the conformable derivative model agrees better with the experimental data than the normal diffusion equation. Furthermore, the potential application of the proposed conformable derivative model of water flow in low-permeability media is discussed.

  18. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters.

    PubMed

    György, Bence; Módos, Károly; Pállinger, Eva; Pálóczi, Krisztina; Pásztói, Mária; Misják, Petra; Deli, Mária A; Sipos, Aron; Szalai, Anikó; Voszka, István; Polgár, Anna; Tóth, Kálmán; Csete, Mária; Nagy, György; Gay, Steffen; Falus, András; Kittel, Agnes; Buzás, Edit I

    2011-01-27

    Numerous diseases, recently reported to associate with elevated microvesicle/microparticle (MP) counts, have also long been known to be characterized by accelerated immune complex (IC) formation. The goal of this study was to investigate the potential overlap between parameters of protein complexes (eg, ICs or avidin-biotin complexes) and MPs, which might perturb detection and/or isolation of MPs. In this work, after comprehensive characterization of MPs by electron microscopy, atomic force microscopy, dynamic light-scattering analysis, and flow cytometry, for the first time, we drive attention to the fact that protein complexes, especially insoluble ICs, overlap in biophysical properties (size, light scattering, and sedimentation) with MPs. This, in turn, affects MP quantification by flow cytometry and purification by differential centrifugation, especially in diseases in which IC formation is common, including not only autoimmune diseases, but also hematologic disorders, infections, and cancer. These data may necessitate reevaluation of certain published data on patient-derived MPs and contribute to correct the clinical laboratory assessment of the presence and biologic functions of MPs in health and disease.

  19. Statistical analysis of electric field parameters for negative lightning in Malaysia

    NASA Astrophysics Data System (ADS)

    Wooi, Chin-Leong; Abdul-Malek, Zulkurnain; Ahmad, Noor-Azlinda; El Gayar, Ali I.

    2016-08-01

    This paper presents a comparative study on the electric field and its derivative parameters of negative lightning in Malaysia and other regions. This study is the first in Malaysia where the parameters of negative electric field and its derivative are thoroughly analyzed. 104 negative lightning flashes containing 277 negative return strokes occurring within 10-100 km from the measuring station and recorded during monsoon period in the state of Johor, Malaysia had been analyzed. It was found that 73% of the recorded flashes are multiple strokes with an average multiplicity of 2.6 strokes per flash. For first return strokes, the arithmetic mean (AM) of initial peak electric field and the AM of initial peak electric field derivative are 21.8 V/m and 11.3 V/m/μs, respectively. The initial peaks of electric field and its derivative for first return strokes are larger than those for the subsequent return strokes. Comparison of overall results with those obtained earlier in Sri Lanka, Germany, Sweden, Japan, Florida indicates that several electric field and its derivative parameters are affected by propagation media and geographical region. Similarity of results with other countries having the same climatic condition is also observed.

  20. Planning Robot-Control Parameters With Qualitative Reasoning

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.

    1993-01-01

    Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.

  1. Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT.

    PubMed

    Soto-Rojo, Rody; Baldenebro-López, Jesús; Glossman-Mitnik, Daniel

    2015-06-07

    A group of dyes derived from coumarin was studied, which consisted of nine molecules using a very similar manufacturing process of dye sensitized solar cells (DSSCs). Optimized geometries, energy levels of the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and ultraviolet-visible spectra were obtained using theoretical calculations, and they were also compared with experimental conversion efficiencies of the DSSC. The representation of an excited state in terms of natural transition orbitals (NTOs) was studied. Chemical reactivity parameters were calculated and correlated with the experimental data linked to the efficiency of the DSSC. A new proposal was obtained to design new molecular systems and to predict their potential use as a dye in DSSCs.

  2. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  3. Social Anxiety, Acute Social Stress, and Reward Parameters Interact to Predict Risky Decision-Making among Adolescents

    PubMed Central

    Richards, Jessica M.; Patel, Nilam; Daniele, Teresa; MacPherson, Laura; Lejuez, C.W.; Ernst, Monique

    2014-01-01

    Risk-taking behavior increases during adolescence, leading to potentially disastrous consequences. Social anxiety emerges in adolescence and may compound risk-taking propensity, particularly during stress and when reward potential is high. However, the manner in which social anxiety, stress, and reward parameters interact to impact adolescent risk-taking is unclear. To clarify this question, a community sample of 35 adolescents (15 to 18 yo), characterized as having high or low social anxiety, participated in a 2-day study, during each of which they were exposed to either a social stress or a control condition, while performing a risky decision-making task. The task manipulated, orthogonally, reward magnitude and probability across trials. Three findings emerged. First, reward magnitude had a greater impact on the rate of risky decisions in high social anxiety (HSA) than low social anxiety (LSA) adolescents. Second, reaction times (RTs) were similar during the social stress and the control conditions for the HSA group, whereas the LSA group’s RTs differed between conditions. Third, HSA adolescents showed the longest RTs on the most negative trials. These findings suggest that risk-taking in adolescents is modulated by context and reward parameters differentially as a function of social anxiety. PMID:25465884

  4. Energy profile of maltooligosaccharide permeation through maltoporin as derived from the structure and from a statistical analysis of saccharide-protein interactions.

    PubMed Central

    Meyer, J. E.; Schulz, G. E.

    1997-01-01

    The crystal structure of the maltodextrin-specific porin from Salmonella typhimurium ligated with a maltotrioside at the pore eyelet is known at 2.4 A resolution. The three glucose units assume a conformation close to the natural amylose helix. The pore eyelet fits exactly the cross-section of a maltooligosaccharide chain and thus functions as a constraining orifice. The oligomer permeates the membrane by screwing along the amylose helix through this orifice. Because each glucose glides along the given helix, its interactions can be sampled at any point along the pathway. The interactions are mostly hydrogen bonds, but also contacts to aromatic rings at one side of the pore. We have derived the energy profile of a gliding maltooligosaccharide by following formation and breakage of hydrogen bonds and by assessing the saccharide-aromatics interactions from a statistical analysis of saccharide binding sites in proteins. The resulting profile indicates smooth permeation despite extensive hydrogen bonding at the orifice. PMID:9144780

  5. Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhiping; Yang, Zhenjun, E-mail: zjyang@vip.163.com; Ling, Xiaohui

    2016-03-15

    The interaction trajectory of solitons in nonlocal nonlinear media is investigated. A simple differential equation describing the interaction trajectories is derived based on the light ray equation. Numerical calculations are carried out to illustrate the interaction trajectories with different parameters. The results show that the degree of nonlocality greatly affects the interaction of solitons. For a strongly nonlocal case, the interaction trajectory can be described by a cosine function. Analytical expressions describing the trajectory and the oscillation period are obtained. For generally and weakly nonlocal cases, the interaction trajectories still oscillate periodically, however it is no longer sinusoidal and themore » oscillation period increases with the nonlocal degree decreasing. In addition, the trajectory of two solitons launched with a relative angle at the entrance plane is investigated. It is found that there exists a critical angle. When the initial relative angle is larger than the critical angle, the two solitons do not collide on propagation. The influence of the degree of nonlocality on the critical angle is also discussed.« less

  6. Structure-affinity relationship of the interaction between phenolic acids and their derivatives and β-lactoglobulin and effect on antioxidant activity.

    PubMed

    Wu, Simin; Zhang, Yunyue; Ren, Fazheng; Qin, Yinghui; Liu, Jiaxin; Liu, Jingwen; Wang, Qingyu; Zhang, Hao

    2018-04-15

    In this study, 71 phenolic acids and their derivatives were used to investigate the structure-affinity relationship of β-lactoglobulin binding, and the effect of this interaction on antioxidant activity. Based on a fluorescence quenching method, an improved mathematical model was adopted to calculate the binding constants, with a correction for the inner-filter effect. Hydroxylation at the 3-position increased the affinity of the phenolic acids for β-lactoglobulin, while hydroxylation at the 2- or 4-positions had a negative effect. Complete methylation of all hydroxy groups, except at the 3-position, enhanced the binding affinity. Replacing the hydroxy groups with methyl groups at the 2-position also had a positive effect. Hydrogen bonding was one of the binding forces for the interaction. The antioxidant activity of phenolic acid-β-lactoglobulin complexes was higher than that of phenolic acids alone. These findings provide an understanding of the structure-activity relationship of the interaction between β-lactoglobulin and phenolic acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  8. Nonperturbative theory of atom-surface interaction: corrections at short separations

    NASA Astrophysics Data System (ADS)

    Bordag, M.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2018-02-01

    The nonperturbative expressions for the free energy and force of interaction between a ground-state atom and a real-material surface at any temperature are presented. The transition to the Matsubara representation is performed, whereupon the comparison is made with the commonly used perturbative results based on the standard Lifshitz theory. It is shown that the Lifshitz formulas for the free energy and force of an atom-surface interaction follow from the nonperturbative ones in the lowest order of the small parameter. Numerical computations of the free energy and force for the atoms of He{\\hspace{0pt}}\\ast and Na interacting with a surface of an Au plate have been performed using the frequency-dependent dielectric permittivity of Au and highly accurate dynamic atomic polarizabilities in the framework of both the nonperturbative and perturbative theories. According to our results, the maximum deviations between the two theories are reached at the shortest atom-surface separations of about 1 nm. Simple analytic expressions for the atom-surface free energy are derived in the classical limit and for an ideal-metal plane. In the lowest order of the small parameter, they are found in agreement with the perturbative ones following from the standard Lifshitz theory. Possible applications of the obtained results in the theory of van der Waals adsorption are discussed.

  9. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    NASA Astrophysics Data System (ADS)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  10. The interaction between cytotrophoblasts and their derived tumor cells.

    PubMed

    Rachmilewitz, J; Goshen, R; Elkin, M; Gonik, B; Neaman, Z; Giloh, H; Strauss, B; Komitowsky, D; de Groot, N; Hochberg, A

    1995-06-01

    Previous experiments demonstrated that human cytotrophoblasts and cells of the choriocarcinoma cell line JAr interact in vitro. As a result of this interaction there is an increased synthesis of CG and hPL, probably as a result of the increased CG and hPL synthesis by the cytotrophoblasts. In the present investigation we studied this interaction in greater detail and found that both cytotrophoblasts and JAr cells undergo changes in their biological properties as a result of this interaction. JAr cells and cytotrophoblasts cocultured for 72 hr were fractionated according to their size by centrifugal elutriation. The number of cells in the fraction which contain the largest cells was very significantly increased as a result of the coculture. This increase was due to an increase in the number of cells of both cell types. This fraction was the most active one in the synthesis of CG and hPL. The synthesis of DNA by the JAr nuclei in this fraction of the cocultured cells was almost completely inhibited but in the parallel fraction of the JAr cells cultivated alone the level of DNA synthesis was equal to that of all other JAr cell fractions. Heterokaryons are formed in the coculture. In these heterokaryons a factor which inhibits DNA synthesis in the cytotrophoblasts may inhibit DNA synthesis in JAr nuclei and at least be partly responsible for the inhibition of DNA synthesis observed.

  11. Chiral self-discrimination of the enantiomers of alpha-phenylethylamine derivatives in proton NMR.

    PubMed

    Huang, Shao-Hua; Bai, Zheng-Wu; Feng, Ji-Wen

    2009-05-01

    Two types of chiral analytes, the urea and amide derivatives of alpha-phenylethylamine, were prepared. The effect of inter-molecular hydrogen-bonding interaction on self-discrimination of the enantiomers of analytes has been investigated using high-resolution (1)H NMR. It was found that the urea derivatives with double-hydrogen-bonding interaction exhibit not only the stronger hydrogen-bonding interaction but also better self-recognition abilities than the amide derivatives (except for one bearing two NO(2) groups). The present results suggest that double-hydrogen-bonding interaction promotes the self-discrimination ability of the chiral compounds. Copyright (c) 2009 John Wiley & Sons, Ltd.

  12. The heterodimerization of platelet-derived chemokines.

    PubMed

    Carlson, James; Baxter, Sarah A; Dréau, Didier; Nesmelova, Irina V

    2013-01-01

    Chemokines encompass a large family of proteins that act as chemoattractants and are involved in many biological processes. In particular, chemokines guide the migration of leukocytes during normal and inflammatory conditions. Recent studies reveal that the heterophilic interactions between chemokines significantly affect their biological activity, possibly representing a novel regulatory mechanism of the chemokine activities. The co-localization of platelet-derived chemokines in vivo allows them to interact. Here, we used nano-spray ionization mass spectrometry to screen eleven different CXC and CC platelet-derived chemokines for possible interactions with the two most abundant chemokines present in platelets, CXCL4 and CXCL7. Results indicate that many screened chemokines, although not all of them, form heterodimers with CXCL4 and/or CXCL7. In particular, a strong heterodimerization was observed between CXCL12 and CXCL4 or CXCL7. Compared to other chemokines, the main structural difference of CXCL12 is in the orientation and packing of the C-terminal alpha-helix in relation to the beta-sheet. The analysis of one possible structure of the CXCL4/CXCL12 heterodimer, CXC-type structure, using molecular dynamics (MD) trajectory reveals that CXCL4 may undergo a conformational transition to alter the alpha helix orientation. In this new orientation, the alpha-helix of CXCL4 aligns in parallel with the CXCL12 alpha-helix, an energetically more favorable conformation. Further, we determined that CXCL4 and CXCL12 physically interact to form heterodimers by co-immunoprecipitations from human platelets. Overall, our results highlight that many platelet-derived chemokines are capable of heterophilic interactions and strongly support future studies of the biological impact of these interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Molecular interactions between fenoterol stereoisomers and derivatives and the β₂-adrenergic receptor binding site studied by docking and molecular dynamics simulations.

    PubMed

    Plazinska, Anita; Kolinski, Michal; Wainer, Irving W; Jozwiak, Krzysztof

    2013-11-01

    The β2 adrenergic receptor (β2-AR) has become a model system for studying the ligand recognition process and mechanism of the G protein coupled receptors activation. In the present study stereoisomers of fenoterol and some of its derivatives (N = 94 molecules) were used as molecular probes to identify differences in stereo-recognition interactions between β2-AR and structurally similar agonists. The present study aimed at determining the 3D molecular models of the fenoterol derivative-β2-AR complexes. Molecular models of β2-AR have been developed by using the crystal structure of the human β2-AR T4 lysozyme fusion protein with bound (S)-carazolol (PDB ID: 2RH1) and more recently reported structure of a nanobody-stabilized active state of the β2-AR with the bound full agonist BI-167107 (PDB ID: 3P0G). The docking procedure allowed us to study the similarities and differences in the recognition binding site(s) for tested ligands. The agonist molecules occupied the same binding region, between TM III, TM V, TM VI and TM VII. The residues identified by us during docking procedure (Ser203, Ser207, Asp113, Lys305, Asn312, Tyr308, Asp192) were experimentally indicated in functional and biophysical studies as being very important for the agonist-receptor interactions. Moreover, the additional space, an extension of the orthosteric pocket, was identified and described. Furthermore, the molecular dynamics simulations were used to study the molecular mechanism of interaction between ligands ((R,R')- and (S,S')-fenoterol) and β2-AR. Our research offers new insights into the ligand stereoselective interaction with one of the most important GPCR member. This study may also facilitate the design of improved selective medications, which can be used to treat, prevent and control heart failure symptoms.

  14. Development of AHPDST Vulnerability Indexing Model for Groundwater Vulnerability Assessment Using Hydrogeophysical Derived Parameters and GIS Application

    NASA Astrophysics Data System (ADS)

    Mogaji, K. A.

    2017-04-01

    Producing a bias-free vulnerability assessment map model is significantly needed for planning a scheme of groundwater quality protection. This study developed a GIS-based AHPDST vulnerability index model for producing groundwater vulnerability model map in the hard rock terrain, Nigeria by exploiting the potentials of analytic hierarchy process (AHP) and Dempster-Shafer theory (DST) data mining models. The acquired borehole and geophysical data in the study area were processed to derive five groundwater vulnerability conditioning factors (GVCFs), namely recharge rate, aquifer transmissivity, hydraulic conductivity, transverse resistance and longitudinal conductance. The produced GVCFs' thematic maps were multi-criterially analyzed by employing the mechanisms of AHP and DST models to determine the normalized weight ( W) parameter for the GVCFs and mass function factors (MFFs) parameter for the GVCFs' thematic maps' class boundaries, respectively. Based on the application of the weighted linear average technique, the determined W and MFFs parameters were synthesized to develop groundwater vulnerability potential index (GVPI)-based AHPDST model algorithm. The developed model was applied to establish four GVPI mass/belief function indices. The estimates based on the applied GVPI belief function indices were processed in GIS environment to create prospective groundwater vulnerability potential index maps. The most representative of the resulting vulnerability maps (the GVPIBel map) was considered for producing the groundwater vulnerability potential zones (GVPZ) map for the area. The produced GVPZ map established 48 and 52% of the areal extent to be covered by the lows/moderate and highs vulnerable zones, respectively. The success and the prediction rates of the produced GVPZ map were determined using the relative operating characteristics technique to give 82.3 and 77.7%, respectively. The analyzed results reveal that the developed GVPI-based AHPDST model algorithm is

  15. Comparison of CME three-dimensional parameters derived from single and multi-spacecraft

    NASA Astrophysics Data System (ADS)

    LEE, Harim; Moon, Yong-Jae; Na, Hyeonock; Jang, Soojeong

    2014-06-01

    Several geometrical models (e.g., cone and flux rope models) have been suggested to infer three-dimensional parameters of CMEs using multi-view observations (STEREO/SECCHI) and single-view observations (SOHO/LASCO). To prepare for when only single view observations are available, we have made a test whether the cone model parameters from single-view observations are consistent with those from multi-view ones. For this test, we select 35 CMEs which are identified as CMEs, whose angular widths are larger than 180 degrees, by one spacecraft and as limb CMEs by the other ones. For this we use SOHO/LASCO and STEREO/SECCHI data during the period from 2010 December to 2011 July when two spacecraft were separated by 90±10 degrees. In this study, we compare the 3-D parameters of these CMEs from three different methods: (1) a triangulation method using STEREO/SECCHI and SOHO/LASCO data, (2) a Graduated Cylindrical Shell (GCS) flux rope model using STEREO/SECCHI data, and (3) an ice cream cone model using SOHO/LASCO data. The parameters used for comparison are radial velocities, angular widths and source location (angle γ between the propagation direction and the plan of the sky). We find that the radial velocities and the γ-values from three methods are well correlated with one another (CC > 0.8). However, angular widths from the three methods are somewhat different with the correlation coefficients of CC > 0.4. We also find that the correlation coefficients between the locations from the three methods and the active region locations are larger than 0.9, implying that most of the CMEs are radially ejected.

  16. Whole lesion histogram analysis of meningiomas derived from ADC values. Correlation with several cellularity parameters, proliferation index KI 67, nucleic content, and membrane permeability.

    PubMed

    Surov, Alexey; Hamerla, Gordian; Meyer, Hans Jonas; Winter, Karsten; Schob, Stefan; Fiedler, Eckhard

    2018-09-01

    To analyze several histopathological features and their possible correlations with whole lesion histogram analysis derived from ADC maps in meningioma. The retrospective study involved 36 patients with primary meningiomas. For every tumor, the following histogram analysis parameters of apparent diffusion coefficient (ADC) were calculated: ADC mean , ADC max , ADC min , ADC median , ADC mode , ADC percentiles: P10, P25, P75, P90, as well kurtosis, skewness, and entropy. All measures were performed by two radiologists. Proliferation index KI 67, minimal, maximal and mean cell count, total nucleic area, and expression of water channel aquaporin 4 (AQP4) were estimated. Spearman's correlation coefficient was used to analyze associations between investigated parameters. A perfect interobserver agreement for all ADC values (0.84-0.97) was identified. All ADC values correlated inversely with tumor cellularity with the strongest correlation between P10, P25 and mean cell count (-0.558). KI 67 correlated inversely with all ADC values except ADC min . ADC parameters did not correlate with total nucleic area. All ADC values correlated statistically significant with expression of AQP4. ADC histogram analysis is a valid method with an excellent interobserver agreement. Cellularity parameters and proliferation potential are associated with different ADC values. Membrane permeability may play a greater role for water diffusion than cell count and proliferation activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Interaction between paliperidone extended release and TS-1(®), an oral anticancer drug containing a 5-fluorouracil derivative, in a schizophrenic patient.

    PubMed

    Yasui-Furukori, Norio; Hashimoto, Kojiro; Kubo, Kazutoshi; Tomita, Tetsu

    2013-01-01

    Until now there has been no information available on drug interaction between paliperidone and TS-1(®), an oral anticancer drug containing a 5-fluorouracil derivative. The patient in the case presented here was a 39-year-old man with a 15-year history of schizophrenia. The patient's usual treatment of 2 mg/day of risperidone was changed to 3 mg/day of paliperidone extended release. He experienced worsening psychotic symptoms after switching from risperidone to paliperidone while he was also receiving TS-1. Retrospective analyses showed plasma concentration of paliperidone was consistently lower during the treatment with TS-1 than without TS-1. This case suggests there is drug interaction between paliperidone extended-release tablets and TS-1.

  18. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression.

    PubMed

    Ignácio, Z M; Réus, G Z; Abelaira, H M; Quevedo, J

    2014-09-05

    Epidemiological studies have shown significant results in the interaction between the functions of brain-derived neurotrophic factor (BDNF) and 5-HT in mood disorders, such as major depressive disorder (MDD). The latest research has provided convincing evidence that gene transcription of these molecules is a target for epigenetic changes, triggered by stressful stimuli that starts in early childhood and continues throughout life, which are subsequently translated into structural and functional phenotypes culminating in depressive disorders. The short variants of 5-HTTLPR and BDNF-Met are seen as forms which are predisposed to epigenetic aberrations, which leads individuals to a susceptibility to environmental adversities, especially when subjected to stress in early life. Moreover, the polymorphic variants also feature epistatic interactions in directing the functional mechanisms elicited by stress and underlying the onset of depressive disorders. Also emphasized are works which show some mediators between stress and epigenetic changes of the 5-HTT and BDNF genes, such as the hypothalamic-pituitary-adrenal (HPA) axis and the cAMP response element-binding protein (CREB), which is a cellular transcription factor. Both the HPA axis and CREB are also involved in epistatic interactions between polymorphic variants of 5-HTTLPR and Val66Met. This review highlights some research studying changes in the epigenetic patterns intrinsic to genes of 5-HTT and BDNF, which are related to lifelong environmental adversities, which in turn increases the risks of developing MDD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. A Molecular Dynamic Modeling of Hemoglobin-Hemoglobin Interactions

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Yang, Ye; Sheldon Wang, X.; Cohen, Barry; Ge, Hongya

    2010-05-01

    In this paper, we present a study of hemoglobin-hemoglobin interaction with model reduction methods. We begin with a simple spring-mass system with given parameters (mass and stiffness). With this known system, we compare the mode superposition method with Singular Value Decomposition (SVD) based Principal Component Analysis (PCA). Through PCA we are able to recover the principal direction of this system, namely the model direction. This model direction will be matched with the eigenvector derived from mode superposition analysis. The same technique will be implemented in a much more complicated hemoglobin-hemoglobin molecule interaction model, in which thousands of atoms in hemoglobin molecules are coupled with tens of thousands of T3 water molecule models. In this model, complex inter-atomic and inter-molecular potentials are replaced by nonlinear springs. We employ the same method to get the most significant modes and their frequencies of this complex dynamical system. More complex physical phenomena can then be further studied by these coarse grained models.

  20. Identification of polyproline II regions derived from the proline-rich nuclear receptor coactivators PNRC and PNRC2: new insights for ERα coactivator interactions.

    PubMed

    Byrne, C; Miclet, E; Broutin, I; Gallo, D; Pelekanou, V; Kampa, M; Castanas, E; Leclercq, G; Jacquot, Y

    2013-10-01

    Protein-protein interactions are crucial for signal transductions required for cell differentiation and proliferation. Their modulation is therefore key to the development of therapeutic alternatives, particularly in the context of cancer. According to literature data, the polyproline-rich nuclear receptor coactivators PNRC and PNRC2 interact with estrogen receptor (ERα) through their PxxP SH3-binding motifs. In a search to identify the molecular features governing this interaction, we explored using electronic circular dichroism (ECD) spectroscopy and molecular dynamics (MD) calculations, the capacity of a range of putative biologically active peptides derived from these proteins and containing this PxxP motif(s) to form polyproline II (PPII) domains. An additional more exhaustive structural study on a lead PPII peptide was also performed using 2D nuclear magnetic resonance (NMR) spectroscopy. With the exception of one of all the investigated peptides (PNRC-D), binding assays failed to detect any affinity for Grb2 SH3 domains, suggesting that PPII motifs issued from Grb2 antagonists have a binding mode distinct from those derived from Grb2 agonists. Instead, the peptides revealed a competitive binding ability against a synthetic peptide (ERα17p) with a putative PPII-cognate domain located within a coregulator recruitment region of ERα (AF-2 site). Our work, which constitutes the first structure-related interaction study concerning PNRC and PNRC2, supports not only the existence of PxxP-induced PPII sequences in these coregulators, but also confirms the presence of a PPII recognition site in the AF-2 of the steroid receptor ERα, a region important for transcription regulation. © 2013 Wiley Periodicals, Inc.

  1. Estimation and Simulation of Slow Crack Growth Parameters from Constant Stress Rate Data

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Weaver, Aaron S.

    2003-01-01

    Closed form, approximate functions for estimating the variances and degrees-of-freedom associated with the slow crack growth parameters n, D, B, and A(sup *) as measured using constant stress rate ('dynamic fatigue') testing were derived by using propagation of errors. Estimates made with the resulting functions and slow crack growth data for a sapphire window were compared to the results of Monte Carlo simulations. The functions for estimation of the variances of the parameters were derived both with and without logarithmic transformation of the initial slow crack growth equations. The transformation was performed to make the functions both more linear and more normal. Comparison of the Monte Carlo results and the closed form expressions derived with propagation of errors indicated that linearization is not required for good estimates of the variances of parameters n and D by the propagation of errors method. However, good estimates variances of the parameters B and A(sup *) could only be made when the starting slow crack growth equation was transformed and the coefficients of variation of the input parameters were not too large. This was partially a result of the skewered distributions of B and A(sup *). Parametric variation of the input parameters was used to determine an acceptable range for using closed form approximate equations derived from propagation of errors.

  2. A Four-parameter Budyko Equation for Mean Annual Water Balance

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Wang, D.

    2016-12-01

    In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.

  3. Computational Algorithms or Identification of Distributed Parameter Systems

    DTIC Science & Technology

    1993-04-24

    delay-differential equations, Volterra integral equations, and partial differential equations with memory terms . In particular we investigated a...tested for estimating parameters in a Volterra integral equation arising from a viscoelastic model of a flexible structure with Boltzmann damping. In...particular, one of the parameters identified was the order of the derivative in Volterra integro-differential equations containing fractional

  4. Computational Study Exploring the Interaction Mechanism of Benzimidazole Derivatives as Potent Cattle Bovine Viral Diarrhea Virus Inhibitors.

    PubMed

    Wang, Jinghui; Yang, Yinfeng; Li, Yan; Wang, Yonghua

    2016-07-27

    Bovine viral diarrhea virus (BVDV) infections are prevailing in cattle populations on a worldwide scale. The BVDV RNA-dependent RNA polymerase (RdRp), as a promising target for new anti-BVDV drug development, has attracted increasing attention. To explore the interaction mechanism of 65 benzimidazole scaffold-based derivatives as BVDV inhibitors, presently, a computational study was performed based on a combination of 3D-QSAR, molecular docking, and molecular dynamics (MD) simulations. The resultant optimum CoMFA and CoMSIA models present proper reliabilities and strong predictive abilities (with Q(2) = 0. 64, R(2)ncv = 0.93, R(2)pred = 0.80 and Q(2) = 0. 65, R(2)ncv = 0.98, R(2)pred = 0.86, respectively). In addition, there was good concordance between these models, molecular docking, and MD results. Moreover, the MM-PBSA energy analysis reveals that the major driving force for ligand binding is the polar solvation contribution term. Hopefully, these models and the obtained findings could offer better understanding of the interaction mechanism of BVDV inhibitors as well as benefit the new discovery of more potent BVDV inhibitors.

  5. NMR characterization of the interaction between the C-terminal domain of interferon-γ and heparin-derived oligosaccharides

    PubMed Central

    Vanhaverbeke, Cécile; Simorre, Jean-Pierre; Sadir, Rabia; Gans, Pierre; Lortat-Jacob, Hugues

    2004-01-01

    Interferons are cytokines that play a complex role in the resistance of mammalian hosts to pathogens. IFNγ (interferon-γ) is secreted by activated T-cells and natural killer cells. IFNγ is involved in a wide range of physiological processes, including antiviral activity, immune response, cell proliferation and apoptosis, as well as the stimulation and repression of a variety of genes. IFNγ activity is modulated by the binding of its C-terminal domain to HS (heparan sulphate), a glycosaminoglycan found in the extracellular matrix and at the cell surface. In the present study, we analysed the interaction of isolated heparin-derived oligosaccharides with the C-terminal peptide of IFNγ by NMR, in aqueous solution. We observed marked changes in the chemical shifts of both peptide and oligosaccharide compared with the free state. Our results provide evidence of a binding through electrostatic interactions between the charged side chains of the protein and the sulphate groups of heparin that does not induce specific conformation of the C-terminal part of IFNγ. Our data also indicate that an oligosaccharide size of at least eight residues displays the most efficient binding. PMID:15270718

  6. [Spectral and fluorescent study of the interaction of squarylium dyes, derivatives of 3H-indolium, with albumins].

    PubMed

    Tatikolov, A S; Panova, I G; Ishchenko, A A; Kudinova, M A

    2010-01-01

    Noncovalent interactions of intraionic squarylium dyes, derivatives of 3H-indolium, as well as the structurally analogous ionic indodicarbocyanine dye with serum albumins (human, bovine, rat) and, for comparison, with ovalbumin has been studied by spectral and fluorescent methods. The hydrophilic squarylium dye with sulfonate groups was found to interact with albumins more efficiently, which is probably due to the double negative charge on the dye molecule at the expense of the sulfonate groups and the ability to form hydrogen bonds with albumin. The hydrophilic indodicarbocyanine dye without the squarylium group in its structure binds to albumins much more weaker than the structurally analogous squarylium dye. The dyes bind to ovalbumin less efficiently than to serum albumins. Along with the binding of monomeric dye molecules, the aggregation of the dyes on albumins is also observed. The hydrophobic squarylium dye without sulfonate groups tends to form aggregates in aqueous solutions, which partially decompose upon the introduction of albumin into the solution. The hydrophilic squarylium dye with sulfonate groups can be recommended for tests as a spectral-fluorescent probe for serum albumins in extracellular media of living organisms.

  7. Regularized estimation of Euler pole parameters

    NASA Astrophysics Data System (ADS)

    Aktuğ, Bahadir; Yildirim, Ömer

    2013-07-01

    Euler vectors provide a unified framework to quantify the relative or absolute motions of tectonic plates through various geodetic and geophysical observations. With the advent of space geodesy, Euler parameters of several relatively small plates have been determined through the velocities derived from the space geodesy observations. However, the available data are usually insufficient in number and quality to estimate both the Euler vector components and the Euler pole parameters reliably. Since Euler vectors are defined globally in an Earth-centered Cartesian frame, estimation with the limited geographic coverage of the local/regional geodetic networks usually results in highly correlated vector components. In the case of estimating the Euler pole parameters directly, the situation is even worse, and the position of the Euler pole is nearly collinear with the magnitude of the rotation rate. In this study, a new method, which consists of an analytical derivation of the covariance matrix of the Euler vector in an ideal network configuration, is introduced and a regularized estimation method specifically tailored for estimating the Euler vector is presented. The results show that the proposed method outperforms the least squares estimation in terms of the mean squared error.

  8. Estimating cropland NPP using national crop inventory and MODIS derived crop specific parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, V.; West, T. O.; Ricciuto, D. M.

    2011-12-01

    Estimates of cropland net primary production (NPP) are needed as input for estimates of carbon flux and carbon stock changes. Cropland NPP is currently estimated using terrestrial ecosystem models, satellite remote sensing, or inventory data. All three of these methods have benefits and problems. Terrestrial ecosystem models are often better suited for prognostic estimates rather than diagnostic estimates. Satellite-based NPP estimates often underestimate productivity on intensely managed croplands and are also limited to a few broad crop categories. Inventory-based estimates are consistent with nationally collected data on crop yields, but they lack sub-county spatial resolution. Integrating these methods will allow for spatial resolution consistent with current land cover and land use, while also maintaining total biomass quantities recorded in national inventory data. The main objective of this study was to improve cropland NPP estimates by using a modification of the CASA NPP model with individual crop biophysical parameters partly derived from inventory data and MODIS 8day 250m EVI product. The study was conducted for corn and soybean crops in Iowa and Illinois for years 2006 and 2007. We used EVI as a linear function for fPAR, and used crop land cover data (56m spatial resolution) to extract individual crop EVI pixels. First, we separated mixed pixels of both corn and soybean that occur when MODIS 250m pixel contains more than one crop. Second, we substituted mixed EVI pixels with nearest pure pixel values of the same crop within 1km radius. To get more accurate photosynthetic active radiation (PAR), we applied the Mountain Climate Simulator (MTCLIM) algorithm with the use of temperature and precipitation data from the North American Land Data Assimilation System (NLDAS-2) to generate shortwave radiation data. Finally, county specific light use efficiency (LUE) values of each crop for years 2006 to 2007 were determined by application of mean county inventory

  9. Some Interaction Solutions of a Reduced Generalised (3+1)-Dimensional Shallow Water Wave Equation for Lump Solutions and a Pair of Resonance Solitons

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chen, Mei-Dan; Li, Xian; Li, Biao

    2017-05-01

    Through Hirota bilinear transformation and symbolic computation with Maple, a class of lump solutions, rationally localised in all directions in the space, to a reduced generalised (3+1)-dimensional shallow water wave (SWW) equation are prensented. The resulting lump solutions all contain six parameters, two of which are free due to the translation invariance of the SWW equation and the other four of which must satisfy a nonzero determinant condition guaranteeing analyticity and rational localisation of the solutions. Then we derived the interaction solutions for lump solutions and one stripe soliton and the result shows that the particular lump solutions with specific values of the involved parameters will be drowned or swallowed by the stripe soliton. Furthermore, we extend this method to a more general combination of positive quadratic function and hyperbolic functions. Especially, it is interesting that a rogue wave is found to be aroused by the interaction between lump solutions and a pair of resonance stripe solitons. By choosing the values of the parameters, the dynamic properties of lump solutions, interaction solutions for lump solutions and one stripe soliton and interaction solutions for lump solutions and a pair of resonance solitons, are shown by dynamic graphs.

  10. Microphysically derived expressions for rate-and-state friction and fault stability parameters

    NASA Astrophysics Data System (ADS)

    Chen, Jianye; Niemeijer, Andre; Spiers, Christopher

    2017-04-01

    Rate-and-state friction (RSF) laws and associated parameters are extensively applied to fault mechanics, mainly on an empirical basis with a limited understanding of the underlying physical mechanisms. We recently established a general microphysical model [Chen and Spiers, 2016], for describing both steady-state and transient frictional behavior of any granular fault gouge material undergoing deformation by granular flow plus an arbitrary creep mechanism at grain contacts, such as pressure solution. We further showed that the model is able to reproduce typical experimental frictional results, namely "velocity stepping" and "slide-hold-slide" sequences, in satisfactory agreement with the main features and trends observed. Here, we extend our model, which we explored only numerically thus far, to obtain analytical solutions for the classical rate and state friction parameters from a purely microphysical modelling basis. By analytically solving the constitutive equations of the model under various boundary conditions, physically meaningful, theoretical expressions for the RSF parameters, i.e. a, b and Dc, are obtained. We also apply linear stability analysis to a spring-slider system, describing interface friction using our model, to yield analytical expressions of the critical stiffness (Kc) and critical recurrence wavelength (Wc) of the system. The values of a , b and Dc, as well as Kc and Wc, predicted by these expressions agree well with the numerical modeling results and acceptably with values obtained from experiments, on calcite for instance. Inserting the parameters obtained into classical RSF laws (slowness and slip laws) and conducting forward modelling gives simulated friction behavior that is fully consistent with the direct predictions of our numerically implemented model. Numerical tests with friction obeying our model show that the slip stability of fault motion exhibits a transition from stable sliding, via self-sustained oscillations, to stick slips

  11. Short peptides derived from the interaction domain of SARS coronavirus nonstructural protein nsp10 can suppress the 2'-O-methyltransferase activity of nsp10/nsp16 complex.

    PubMed

    Ke, Min; Chen, Yu; Wu, Andong; Sun, Ying; Su, Ceyang; Wu, Hao; Jin, Xu; Tao, Jiali; Wang, Yi; Ma, Xiao; Pan, Ji-An; Guo, Deyin

    2012-08-01

    Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Development of non-bonded interaction parameters between graphene and water using particle swarm optimization.

    PubMed

    Bejagam, Karteek K; Singh, Samrendra; Deshmukh, Sanket A

    2018-05-05

    New Lennard-Jones parameters have been developed to describe the interactions between atomistic model of graphene, represented by REBO potential, and five commonly used all-atom water models, namely SPC, SPC/E, SPC/Fw, SPC/Fd, and TIP3P/Fs by employing particle swarm optimization (PSO) method. These new parameters were optimized to reproduce the macroscopic contact angle of water on a graphene sheet. The calculated line tension was in the order of 10 -11 J/m for the droplets of all water models. Our molecular dynamics simulations indicate the preferential orientation of water molecules near graphene-water interface with one OH bond pointing toward the graphene surface. Detailed analysis of simulation trajectories reveals the presence of water molecules with ≤∼1, ∼2, and ∼4 hydrogen bonds at the surface of air-water interface, graphene-water interface, and bulk region of the water droplet, respectively. Presence of water molecules with ≤∼1 and ∼2 hydrogen bonds suggest the existence of water clusters of different sizes at these interfaces. The trends observed in the libration, bending, and stretching bands of the vibrational spectra are closely associated with these structural features of water. The inhomogeneity in hydrogen bond network of water at the air-water and graphene-water interface is manifested by broadening of the peaks in the libration band for water present at these interfaces. The stretching band for the molecules in water droplet shows a blue shift as compared to the pure bulk water, which conjecture the presence of weaker hydrogen bond network in a droplet. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia).

    PubMed

    Chatelain, M; Gasparini, J; Frantz, A

    2016-04-01

    Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds' immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host-parasite interactions.

  14. Comparison of patient-derived high and low phosphatidylserine-exposing colorectal carcinoma cells in their interaction with anti-cancer peptides.

    PubMed

    Wilms, Dominik; Andrä, Jörg

    2017-01-01

    Current cancer treatment is frequently compromised by severe adverse effects on healthy cells and tissues as well as by the increasing burden of (multi-)drug resistances. Some representatives of small, amphipathic peptides known as host defense peptides possess the potential to overcome these limitations and to evolve as future anti-cancer therapeutics. Peptide NK-2, derived from porcine NK-lysin, was originally discovered due to its broad-spectrum antimicrobial activities. Today, also potent anti-cancer activity is proven and accompanied by low toxicity towards normal human cells. The molecular basis underlying this target selectivity remains rather elusive. Nevertheless, it is presumptive that preferential peptide interactions with surface factors non-abundant on healthy human cells play a key role. Here, we investigated the cytotoxicity of peptide NK-2 and structurally improved anti-cancer variants thereof against two patient-derived colorectal cancer cell lines, exposing high and low levels of phosphatidylserine on their cell surfaces, respectively. Concluding from a range of in vitro tests involving cellular as well as lipid vesicle-based methods, it is proposed that the magnitude of the accessible membrane surface charge is not a primarily decisive factor for selective peptide interactions. Instead, it is suggested that the level of membrane surface-exposed phosphatidylserine is of crucial importance for the activity of peptide NK-2 and enhanced variants thereof in terms of their cancer cell selectivity, the overall efficacy, as well as the underlying mode of action and kinetics. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  15. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling.

    PubMed

    Pichert, Annelie; Samsonov, Sergey A; Theisgen, Stephan; Thomas, Lars; Baumann, Lars; Schiller, Jürgen; Beck-Sickinger, Annette G; Huster, Daniel; Pisabarro, M Teresa

    2012-01-01

    The interactions between glycosaminoglycans (GAGs), important components of the extracellular matrix, and proteins such as growth factors and chemokines play critical roles in cellular regulation processes. Therefore, the design of GAG derivatives for the development of innovative materials with bio-like properties in terms of their interaction with regulatory proteins is of great interest for tissue engineering and regenerative medicine. Previous work on the chemokine interleukin-8 (IL-8) has focused on its interaction with heparin and heparan sulfate, which regulate chemokine function. However, the extracellular matrix contains other GAGs, such as hyaluronic acid (HA), dermatan sulfate (DS) and chondroitin sulfate (CS), which have so far not been characterized in terms of their distinct molecular recognition properties towards IL-8 in relation to their length and sulfation patterns. NMR and molecular modeling have been in great part the methods of choice to study the structural and recognition properties of GAGs and their protein complexes. However, separately these methods have challenges to cope with the high degree of similarity and flexibility that GAGs exhibit. In this work, we combine fluorescence spectroscopy, NMR experiments, docking and molecular dynamics simulations to study the configurational and recognition properties of IL-8 towards a series of HA and CS derivatives and DS. We analyze the effects of GAG length and sulfation patterns in binding strength and specificity, and the influence of GAG binding on IL-8 dimer formation. Our results highlight the importance of combining experimental and theoretical approaches to obtain a better understanding of the molecular recognition properties of GAG-protein systems.

  16. Calculating second derivatives of population growth rates for ecology and evolution

    PubMed Central

    Shyu, Esther; Caswell, Hal

    2014-01-01

    1. Second derivatives of the population growth rate measure the curvature of its response to demographic, physiological or environmental parameters. The second derivatives quantify the response of sensitivity results to perturbations, provide a classification of types of selection and provide one way to calculate sensitivities of the stochastic growth rate. 2. Using matrix calculus, we derive the second derivatives of three population growth rate measures: the discrete-time growth rate λ, the continuous-time growth rate r = log λ and the net reproductive rate R0, which measures per-generation growth. 3. We present a suite of formulae for the second derivatives of each growth rate and show how to compute these derivatives with respect to projection matrix entries and to lower-level parameters affecting those matrix entries. 4. We also illustrate several ecological and evolutionary applications for these second derivative calculations with a case study for the tropical herb Calathea ovandensis. PMID:25793101

  17. Determination of optimum process parameters for peroxidase-catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives.

    PubMed

    Yamada, Kazunori; Ikeda, Naoya; Takano, Yoko; Kashiwada, Ayumi; Matsuda, Kiyomi; Hirata, Mitsuo

    2010-03-01

    Systematic investigations were carried out to determine the optimum process parameters such as the hydrogen peroxide (H2O2) concentration, concentration and molar mass of poly(ethylene glycol) (PEG) as an additive, pH value, temperature and enzyme dose for treatment of bisphenol A (BPA) with horseradish peroxidase (HRP). The HRP-catalysed treatment of BPA was effectively enhanced by adding PEG, and BPA was completely converted into phenoxy radicals by HRP dose of 0.10 U/cm3. The optimum conditions for HRP-catalysed treatment of BPA at 0.3 mM was determined to be 0.3 mM for H2O2 and 0.10 mg/cm3 for PEG with a molar mass of 1.0 x 10(4) in a pH 6.0 buffer at 30 degrees C. Different kinds of bisphenol derivatives were completely or effectively treated by HRP under the optimum conditions determined for treatment of BPA, although the HRP dose was further increased as necessary for some of them. The aggregation of water-insoluble oligomers generated by the enzymatic radicalization and radical coupling reaction was enhanced by decreasing the pH values to 4.0 with HCl after the enzymatic treatment, and BPA and bisphenol derivatives were removed from aqueous solutions by filtering out the oligomer precipitates.

  18. Searching the Force Field Electrostatic Multipole Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2016-04-12

    We show by tensor decomposition analyses that the molecular electrostatic potential for amino acid peptide models has an effective rank less than twice the number of atoms. This rank indicates the number of parameters that can be derived from the electrostatic potential in a statistically significant way. Using this as a guideline, we investigate different strategies for deriving a reduced set of atomic charges, dipoles, and quadrupoles capable of reproducing the reference electrostatic potential with a low error. A full combinatorial search of selected parameter subspaces for N-methylacetamide and a cysteine peptide model indicates that there are many different parameter sets capable of providing errors close to that of the global minimum. Among the different reduced multipole parameter sets that have low errors, there is consensus that atoms involved in π-bonding require higher order multipole moments. The possible correlation between multipole parameters is investigated by exhaustive searches of combinations of up to four parameters distributed in all possible ways on all possible atomic sites. These analyses show that there is no advantage in considering combinations of multipoles compared to a simple approach where the importance of each multipole moment is evaluated sequentially. When combined with possible weighting factors related to the computational efficiency of each type of multipole moment, this may provide a systematic strategy for determining a computational efficient representation of the electrostatic component in force field calculations.

  19. Anisotropic inflation with derivative couplings

    NASA Astrophysics Data System (ADS)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  20. Renormalization of Coulomb interactions in a system of two-dimensional tilted Dirac fermions

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Wen; Lee, Yu-Li

    2018-01-01

    We investigate the effects of long-ranged Coulomb interactions in a tilted Dirac semimetal in two dimensions by using the perturbative renormalization-group (RG) method. Depending on the magnitude of the tilting parameter, the undoped system can have either Fermi points (type I) or Fermi lines (type II). Previous studies usually performed the renormalization-group transformations by integrating out the modes with large momenta. This is problematic when the Fermi surface is open, like type-II Dirac fermions. In this work we study the effects of Coulomb interactions, following the spirit of Shankar [Rev. Mod. Phys. 66, 129 (1994), 10.1103/RevModPhys.66.129], by introducing a cutoff in the energy scale around the Fermi surface and integrating out the high-energy modes. For type-I Dirac fermions, our result is consistent with that of the previous work. On the other hand, we find that for type-II Dirac fermions, the magnitude of the tilting parameter increases monotonically with lowering energies. This implies the stability of type-II Dirac fermions in the presence of Coulomb interactions, in contrast with previous results. Furthermore, for type-II Dirac fermions, the velocities in different directions acquire different renormalization even if they have the same bare values. By taking into account the renormalization of the tilting parameter and the velocities due to the Coulomb interactions, we show that while the presence of a charged impurity leads only to charge redistribution around the impurity for type-I Dirac fermions, for type-II Dirac fermions, the impurity charge is completely screened, albeit with a very long screening length. The latter indicates that the temperature dependence of physical observables are essentially determined by the RG equations we derived. We illustrate this by calculating the temperature dependence of the compressibility and specific heat of the interacting tilted Dirac fermions.

  1. Derivation of Improved Surface and TOA Broadband Fluxes Using CERES-derived Narrowband-to-Broadband Coefficients

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Doelling, David R.; Chan, Pui K.; Nordeen, MIchele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick

    2006-01-01

    Satellites can provide global coverage of a number of climatically important radiative parameters, including broadband (BB) shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA) and surface. These parameters can be estimated from narrowband (NB) Geostationary Operational Environmental Satellite (GOES) data, but their accuracy is highly dependent on the validity of the narrowband-to-broadband (NB-BB) conversion formulas that are used to convert the NB fluxes to broadband values. The formula coefficients have historically been derived by regressing matched polarorbiting satellite BB fluxes or radiances with their NB counterparts from GOES (e.g., Minnis et al., 1984). More recently, the coefficients have been based on matched Earth Radiation Budget Experiment (ERBE) and GOES-6 data (Minnis and Smith, 1998). The Clouds and the Earth's Radiant Energy Budget (CERES see Wielicki et al. 1998)) project has recently developed much improved Angular Distribution Models (ADM; Loeb et al., 2003) and has higher resolution data compared to ERBE. A limited set of coefficients was also derived from matched GOES-8 and CERES data taken on Topical Rainfall Measuring Mission (TRMM) satellite (Chakrapani et al., 2003; Doelling et al., 2003). The NB-BB coefficients derived from CERES and the GOES suite should yield more accurate BB fluxes than from ERBE, but are limited spatially and seasonally. With CERES data taken from Terra and Aqua, it is now possible to derive more reliable NB-BB coefficients for any given area. Better TOA fluxes should translate to improved surface radiation fluxes derived using various algorithms. As part of an ongoing effort to provide accurate BB flux estimates for the Atmospheric Radiation Measurement (ARM) Program, this paper documents the derivation of new NB-BB coefficients for the ARM Southern Great Plains (SGP) domain and for the Darwin region of the Tropical Western Pacific (DTWP) domain.

  2. Antagonistic and synergistic interactions among predators.

    PubMed

    Huxel, Gary R

    2007-08-01

    The structure and dynamics of food webs are largely dependent upon interactions among consumers and their resources. However, interspecific interactions such as intraguild predation and interference competition can also play a significant role in the stability of communities. The role of antagonistic/synergistic interactions among predators has been largely ignored in food web theory. These mechanisms influence predation rates, which is one of the key factors regulating food web structure and dynamics, thus ignoring them can potentially limit understanding of food webs. Using nonlinear models, it is shown that critical aspects of multiple predator food web dynamics are antagonistic/synergistic interactions among predators. The influence of antagonistic/synergistic interactions on coexistence of predators depended largely upon the parameter set used and the degree of feeding niche differentiation. In all cases when there was no effect of antagonism or synergism (a ( ij )=1.00), the predators coexisted. Using the stable parameter set, coexistence occurred across the range of antagonism/synergism used. However, using the chaotic parameter strong antagonism resulted in the extinction of one or both species, while strong synergism tended to coexistence. Whereas using the limit cycle parameter set, coexistence was strongly dependent on the degree of feeding niche overlap. Additionally increasing the degree of feeding specialization of the predators on the two prey species increased the amount of parameter space in which coexistence of the two predators occurred. Bifurcation analyses supported the general pattern of increased stability when the predator interaction was synergistic and decreased stability when it was antagonistic. Thus, synergistic interactions should be more common than antagonistic interactions in ecological systems.

  3. Synergy of irofulven in combination with other DNA damaging agents: synergistic interaction with altretamine, alkylating, and platinum-derived agents in the MV522 lung tumor model.

    PubMed

    Kelner, Michael J; McMorris, Trevor C; Rojas, Rafael J; Estes, Leita A; Suthipinijtham, Pharnuk

    2008-12-01

    Irofulven (MGI 114, NSC 683863) is a semisynthetic derivative of illudin S, a natural product present in the Omphalotus illudins (Jack O'Lantern) mushroom. This novel agent produces DNA damage, that in contrast to other agents, is predominately ignored by the global genome repair pathway of the nucleotide excision repair (NER)(2) system. The aim of this study was to determine the antitumor activity of irofulven when administered in combination with 44 different DNA damaging agents, whose damage is in general detected and repaired by the genome repair pathway. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with different DNA damaging agents. Two main classes of DNA damaging agents, platinum-derived agents, and select bifunctional alkylating agents, demonstrated in vivo synergistic or super-additive interaction with irofulven. DNA helicase inhibiting agents also demonstrated synergy in vitro, but an enhanced interaction with irofulven could not be demonstrated in vivo. There was no detectable synergistic activity between irofulven and agents capable of inducing DNA cleavage or intercalating into DNA. These results indicate that the antitumor activity of irofulven is enhanced when combined with platinum-derived agents, altretamine, and select alkylating agents such as melphalan or chlorambucil. A common factor between these agents appears to be the production of intrastrand DNA crosslinks. The synergistic interaction between irofulven and other agents may stem from the nucleotide excision repair system being selectively overwhelmed at two distinct points in the pathway, resulting in prolonged stalling of transcription forks, and subsequent initiation of apoptosis.

  4. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  5. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    PubMed

    Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L

    2010-07-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty liver disease, to test this hypothesis. Five transcutaneous and five intraoperative US liver images were acquired in each animal and a liverbiopsy was taken. In liver tissue samples, triacylglycerol (TAG) was measured by biochemical analysis and hepatic diseases other than hepatic lipidosis were excluded by histopathologic examination. Ultrasonic tissue characterization (UTC) parameters--Mean echo level, standard deviation (SD) of echo level, signal-to-noise ratio (SNR), residual attenuation coefficient (ResAtt) and axial and lateral speckle size--were derived using a computer-aided US (CAUS) protocol and software package. First, the liver tissue was interactively segmented by two observers. With increasing fat content, fewer hepatic vessels were visible in the ultrasound images and, therefore, a smaller proportion of the liver needed to be excluded from these images. Automatic-segmentation algorithms were implemented and it was investigated whether better results could be achieved than with the subjective and time-consuming interactive-segmentation procedure. The automatic-segmentation algorithms were based on both fixed and adaptive thresholding techniques in combination with a 'speckle'-shaped moving-window exclusion technique. All data were analyzed with and without postprocessing as contained in CAUS and with different automated-segmentation techniques. This enabled us to study the effect of the applied postprocessing steps on single and multiple linear regressions ofthe various UTC parameters with TAG. Improved correlations for all US parameters were found by using automatic-segmentation techniques. Stepwise multiple linear-regression formulas where derived and used

  6. Exploring molecular insights into the interaction mechanism of cholesterol derivatives with the Mce4A: A combined spectroscopic and molecular dynamic simulation studies.

    PubMed

    Khan, Shagufta; Khan, Faez Iqbal; Mohammad, Taj; Khan, Parvez; Hasan, Gulam Mustafa; Lobb, Kevin A; Islam, Asimul; Ahmad, Faizan; Imtaiyaz Hassan, Md

    2018-05-01

    Mammalian cell entry protein (Mce4A) is a member of MCE-family, and is being considered as a potential drug target of Mycobacterium tuberculosis infection because it is required for invasion and latent survival of pathogen by utilizing host's cholesterol. In the present study, we performed molecular docking followed by 100 ns MD simulation studies to understand the mechanism of interaction of Mce4A to the cholesterol derivatives and probucol. The selected ligands, cholesterol, 25-hydroxycholesterol, 5-cholesten-3β-ol-7-one and probucol bind to the predicted active site cavity of Mce4A, and complexes remain stable during entire simulation of 100 ns. In silico studies were further validated by fluorescence-binding studies to calculate actual binding affinity and number of binding site(s). The non-toxicity of all ligands was confirmed on human monocytic cell (THP1) by MTT assay. This work provides a deeper insight into the mechanism of interaction of Mce4A to cholesterol derivatives, which may be further exploited to design potential and specific inhibitors to ameliorate the Mycobacterium pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Marrow-derived mesenchymal stem cells: role in epithelial tumor cell determination.

    PubMed

    Fierro, Fernando A; Sierralta, Walter D; Epuñan, Maria J; Minguell, José J

    2004-01-01

    Marrow stroma represents an advantageous environment for development of micrometastatic cells. Within the cellular structure of marrow stroma, mesenchymal stem cells (MSC) have been postulated as an interacting target for disseminated cancer cells. The studies reported here were performed to gain more information on the interaction of the human breast cancer cell line MCF-7 with human bone marrow-derived MSC cells and to investigate whether this interaction affects tumor cell properties. The results showed that after co-culture with MSC, changes were detected in the morphology, proliferative capacity and aggregation pattern of MCF-7 cells, but these parameters were not affected after the co-culture of MSC cells with a non-tumorigenic breast epithelial cell line, MCF-10. Since the indirect culture of MCF-7 with MSC or its products also resulted in functional changes in the tumor cells, we evaluated whether these effects could be attributed to growth factors produced by MSC cells. It was found that VEGF and IL-6 mimic the effects produced by MSC or its products on the proliferation and aggregation properties of MCF-7, cells, respectively. Thus, it seems that after entry of disseminated tumor cells into the marrow space, their proliferative and morphogenetic organization patterns are modified after interaction with distinct stromal cells and/or with specific signals from the marrow microenvironment.

  8. Material parameter determination from scattering measurements

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.; Peters, L., Jr.

    1988-01-01

    The electrical, macroscopic performance of isotropic material can generally be described through their constitutive scalar parameters, permittivity and permeability which are symbolically represented by epsilon and mu, respectively. These parameters relate the electric and magnetic flux densities to the electric and magnetic fields through the following relationships: (1) D=epsilonE; and (2) B=muH. It is through these parameters that the interaction of electromagnetic waves with material can be quantized in terms of reflection and transmission coefficients, and propagation and attenuation factors.

  9. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results.

    PubMed

    Nketiah, Gabriel; Elschot, Mattijs; Kim, Eugene; Teruel, Jose R; Scheenen, Tom W; Bathen, Tone F; Selnæs, Kirsten M

    2017-07-01

    To evaluate the diagnostic relevance of T2-weighted (T2W) MRI-derived textural features relative to quantitative physiological parameters derived from diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) MRI in Gleason score (GS) 3+4 and 4+3 prostate cancers. 3T multiparametric-MRI was performed on 23 prostate cancer patients prior to prostatectomy. Textural features [angular second moment (ASM), contrast, correlation, entropy], apparent diffusion coefficient (ADC), and DCE pharmacokinetic parameters (K trans and V e ) were calculated from index tumours delineated on the T2W, DW, and DCE images, respectively. The association between the textural features and prostatectomy GS and the MRI-derived parameters, and the utility of the parameters in differentiating between GS 3+4 and 4+3 prostate cancers were assessed statistically. ASM and entropy correlated significantly (p < 0.05) with both GS and median ADC. Contrast correlated moderately with median ADC. The textural features correlated insignificantly with K trans and V e . GS 4+3 cancers had significantly lower ASM and higher entropy than 3+4 cancers, but insignificant differences in median ADC, K trans , and V e . The combined texture-MRI parameters yielded higher classification accuracy (91%) than the individual parameter sets. T2W MRI-derived textural features could serve as potential diagnostic markers, sensitive to the pathological differences in prostate cancers. • T2W MRI-derived textural features correlate significantly with Gleason score and ADC. • T2W MRI-derived textural features differentiate Gleason score 3+4 from 4+3 cancers. • T2W image textural features could augment tumour characterization.

  10. Evaluation of Mineral Content and Photon Interaction Parameters of Dental Enamel After Phosphoric Acid and Er:YAG Laser Treatment.

    PubMed

    Simsek, Huseyin; Gurbuz, Taskın; Buyuk, Suleyman Kutalmış; Ozdemir, Yuksel

    2017-05-01

    The purpose of this study was to evaluate the effects of laser and acid etching on the mineral content and photon interaction parameters of dental enamel in human teeth. The composition of dental enamel may vary, especially at the surface, depending on the reactions that occur during dental treatment. Forty maxillary premolars were divided randomly into 2 groups of 20 teeth. In the first group, half of teeth crowns were etched by using 37% phosphoric acid; in the second group, half of teeth crowns were etched by using an erbium:yttrium-aluminum-garnet (Er:YAG) laser. The remaining half crowns in each group were used as untreated controls. We characterized the calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na), and potassium (K) contents in each specimen by using wavelength dispersive X-ray fluorescence spectrometry. The total atomic cross-section ([Formula: see text]), effective atomic number ([Formula: see text]), and electron density (N e ) of the tooth samples were determined at photon energies of 22.1, 25, 59.5, and 88 keV by using a narrow beam transmission method. Data were analyzed statistically by using the Mann-Whitney U test. The mineral contents after Er:YAG laser and phosphoric acid etching did not differ significantly (p > 0.05), and no significant variation in [Formula: see text], [Formula: see text], or N e was observed. Therefore, we conclude that the Er:YAG laser and phosphoric acid systems used in this study did not affect mineral composition or photon interaction parameters of dental enamel.

  11. Interaction-component analysis of the effects of urea and its alkylated derivatives on the structure of T4-lysozyme

    NASA Astrophysics Data System (ADS)

    Yamamori, Yu; Matubayasi, Nobuyuki

    2017-06-01

    The effects of urea and its alkylated derivatives on the structure of T4-lysozyme were analyzed from the standpoint of energetics. Molecular dynamics simulations were conducted with explicit solvent, and the energy-representation method was employed to compute the free energy of transfer of the protein from pure-water solvent to the mixed solvents of water with urea, methylurea, 1,1-dimethylurea, and isopropylurea. Through the decomposition of the transfer free energy into the cosolvent and water contributions, it was observed that the former is partially cancelled by the latter and governs the total free energy of transfer. To determine the interaction component responsible for the transfer energetics, the correlations of the transfer free energy were also examined against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components. It was then found over the set of protein structures ranging from native to (partially) unfolded ones that the transfer free energy changes in parallel with the van der Waals component even when the cosolvent is alkylated. The electrostatic and excluded-volume components play minor roles in the structure modification of the protein, and the denaturing ability of alkylurea is brought by the van der Waals interaction.

  12. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer's disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin

    NASA Astrophysics Data System (ADS)

    Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki

    2017-10-01

    Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.

  13. Atmospheric interaction with nanosatellites from observed orbital decay

    NASA Astrophysics Data System (ADS)

    Macario-Rojas, A.; Smith, K. L.; Crisp, N. H.; Roberts, P. C. E.

    2018-06-01

    Nanosatellites have gained considerable presence in low Earth orbits wherein the atmospheric interaction with exposed surfaces plays a fundamental role in the evolution of motion. These aspects become relevant with the increasing applicability of nanosatellites to a broader range of missions objectives. This investigation sets out to determine distinctive drag coefficient development and attributes of atmospheric gas-surface interactions in nanosatellites in the common form of standard 3U CubeSats from observed orbital decay. As orbital decay can be measured with relative accuracy, and its mechanism broken down into its constituent sources, the value of drag-related coefficients can be inferred by fitting modelled orbit predictions to observed data wherein the coefficient of interest is the adjusted parameter. The analysis uses the data of ten historical missions with documented passive attitude stabilisation strategies to reduce uncertainties. Findings indicate that it is possible to estimate fitted drag coefficients in CubeSats with physical representativeness. Assessment of atomic oxygen surface coverage derived from the fitted drag coefficients is broadly consistent with theoretical trends. The proposed methodology opens the possibility to assess atmospheric interaction characteristics by using the unprecedented opportunity arising from the numerous observed orbital decay of nanosatellites.

  14. Lacosamide derivatives with anticonvulsant activity as carbonic anhydrase inhibitors. Molecular modeling, docking and QSAR analysis.

    PubMed

    Garro Martinez, Juan C; Vega-Hissi, Esteban G; Andrada, Matías F; Duchowicz, Pablo R; Torrens, Francisco; Estrada, Mario R

    2014-01-01

    Lacosamide is an anticonvulsant drug which presents carbonic anhydrase inhibition. In this paper, we analyzed the apparent relationship between both activities performing a molecular modeling, docking and QSAR studies on 18 lacosamide derivatives with known anticonvulsant activity. Docking results suggested the zinc-binding site of carbonic anhydrase is a possible target of lacosamide and lacosamide derivatives making favorable Van der Waals interactions with Asn67, Gln92, Phe131 and Thr200. The mathematical models revealed a poor relationship between the anticonvulsant activity and molecular descriptors obtained from DFT and docking calculations. However, a QSAR model was developed using Dragon software descriptors. The statistic parameters of the model are: correlation coefficient, R=0.957 and standard deviation, S=0.162. Our results provide new valuable information regarding the relationship between both activities and contribute important insights into the essential molecular requirements for the anticonvulsant activity.

  15. The assessment of body sway and the choice of the stability parameter(s).

    PubMed

    Raymakers, J A; Samson, M M; Verhaar, H J J

    2005-01-01

    This methodological study aims at comparison of the practical usefulness of several parameters of body sway derived from recordings of the center of pressure (CoP) with the aid of a static force platform as proposed in the literature. These included: mean displacement velocity, maximal range of movement along x- and y-co-ordinates, movement area, planar deviation, phase plane parameter of Riley and the parameters of the diffusion stabilogram according to Collins. They were compared in over 850 experiments in a group of young healthy subjects (n = 10, age 21-45 years), a group of elderly healthy (n = 38, age 61-78 years) and two groups of elderly subjects (n = 10 and n = 21, age 65-89 years) with stability problems under different conditions known to interfere with stability as compared to standing with open eyes fixing a visual anchoring point: closing the eyes, standing on plastic foam in stead of a firm surface and performing a cognitive task: the modified stroop test. A force platform (Kistler) was used and co-ordinates of the body's center of pressure were recorded during 60 s of quiet barefoot standing with a sampling frequency of 10 Hz. In general, the results show important overlapping among groups and test conditions. Mean displacement velocity shows the most consistent differences between test situations, health conditions and age ranges, but is not affected by an extra cognitive task in healthy old people. Mean maximal sideways sway range is different among groups and test conditions except for the cognitive task in young and elderly subjects. Standardised displacement parameters such as standard deviations of displacements and planar deviation discriminate less well than the actual range of motion or the velocity. The critical time interval derived from the diffusion stabilogram according to Collins et al. seems to add a specific type of information since it shows significant influence from addition of a cognitive task in old subjects standing on a firm

  16. “Immune Gate” of Psychopathology—The Role of Gut Derived Immune Activation in Major Psychiatric Disorders

    PubMed Central

    Rudzki, Leszek; Szulc, Agata

    2018-01-01

    Interaction between the gastrointestinal tract (GI) and brain functions has recently become a topic of growing interest in psychiatric research. These multidirectional interactions take place in the so-called gut-brain axis or more precisely, the microbiota-gut-brain axis. The GI tract is the largest immune organ in the human body and is also the largest surface of contact with the external environment. Its functions and permeability are highly influenced by psychological stress, which are often a precipitating factor in the first episode, reoccurrence and/or deterioration of symptoms of psychiatric disorders. In recent literature there is growing evidence that increased intestinal permeability with subsequent immune activation has a major role in the pathophysiology of various psychiatric disorders. Numerous parameters measured in this context seem to be aftermaths of those mechanisms, yet at the same time they may be contributing factors for immune mediated psychopathology. For example, immune activation related to gut-derived bacterial lipopolysaccharides (LPS) or various food antigens and exorphins were reported in major depression, schizophrenia, bipolar disorder, alcoholism and autism. In this review the authors will summarize the evidence and roles of such parameters and their assessment in major psychiatric disorders. PMID:29896124

  17. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.

    PubMed

    Hilton, Harry H

    2012-01-18

    Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  18. Alfvén ionization in an MHD-gas interactions code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A. D.; Diver, D. A.

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less

  19. Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters

    PubMed Central

    Shang, Yu; Sikorski, Johannes; Bonkowski, Michael; Fiore-Donno, Anna-Maria; Kandeler, Ellen; Marhan, Sven; Boeddinghaus, Runa S.; Solly, Emily F.; Schrumpf, Marion; Schöning, Ingo; Wubet, Tesfaye; Buscot, Francois; Overmann, Jörg

    2017-01-01

    Interactions occur between two or more organisms affecting each other. Interactions are decisive for the ecology of the organisms. Without direct experimental evidence the analysis of interactions is difficult. Correlation analyses that are based on co-occurrences are often used to approximate interaction. Here, we present a new mathematical model to estimate the interaction strengths between taxa, based on changes in their relative abundances across environmental gradients. PMID:28288199

  20. Hydrogeological controls of groundwater - land surface interactions

    NASA Astrophysics Data System (ADS)

    Bresciani, Etienne; Batelaan, Okke; Goderniaux, Pascal

    2017-04-01

    Interaction of groundwater with the land surface impacts a wide range of climatic, hydrologic, ecologic and geomorphologic processes. Many site-specific studies have successfully focused on measuring and modelling groundwater-surface water interaction, but upscaling or estimation at catchment or regional scale appears to be challenging. The factors controlling the interaction at regional scale are still poorly understood. In this contribution, a new 2-D (cross-sectional) analytical groundwater flow solution is used to derive a dimensionless criterion that expresses the conditions under which the groundwater outcrops at the land surface (Bresciani et al., 2016). The criterion gives insights into the functional relationships between geology, topography, climate and the locations of groundwater discharge along river systems. This sheds light on the debate about the topographic control of groundwater flow and groundwater-surface water interaction, as effectively the topography only influences the interaction when the groundwater table reaches the land surface. The criterion provides a practical tool to predict locations of groundwater discharge if a limited number of geomorphological and hydrogeological parameters (recharge, hydraulic conductivity and depth to impervious base) are known, and conversely it can provide regional estimates of the ratio of recharge over hydraulic conductivity if locations of groundwater discharge are known. A case study with known groundwater discharge locations located in South-West Brittany, France shows the feasibility of regional estimates of the ratio of recharge over hydraulic conductivity. Bresciani, E., Goderniaux, P. and Batelaan, O., 2016, Hydrogeological controls of water table-land surface interactions. Geophysical Research Letters 43(18): 9653-9661. http://dx.doi.org/10.1002/2016GL070618

  1. Identifying Drug-Drug Interactions by Data Mining: A Pilot Study of Warfarin-Associated Drug Interactions.

    PubMed

    Hansen, Peter Wæde; Clemmensen, Line; Sehested, Thomas S G; Fosbøl, Emil Loldrup; Torp-Pedersen, Christian; Køber, Lars; Gislason, Gunnar H; Andersson, Charlotte

    2016-11-01

    Knowledge about drug-drug interactions commonly arises from preclinical trials, from adverse drug reports, or based on knowledge of mechanisms of action. Our aim was to investigate whether drug-drug interactions were discoverable without prior hypotheses using data mining. We focused on warfarin-drug interactions as the prototype. We analyzed altered prothrombin time (measured as international normalized ratio [INR]) after initiation of a novel prescription in previously INR-stable warfarin-treated patients with nonvalvular atrial fibrillation. Data sets were retrieved from clinical work. Random forest (a machine-learning method) was set up to predict altered INR levels after novel prescriptions. The most important drug groups from the analysis were further investigated using logistic regression in a new data set. Two hundred and twenty drug groups were analyzed in 61 190 novel prescriptions. We rediscovered 2 drug groups having known interactions (β-lactamase-resistant penicillins [dicloxacillin] and carboxamide derivatives) and 3 antithrombotic/anticoagulant agents (platelet aggregation inhibitors excluding heparin, direct thrombin inhibitors [dabigatran etexilate], and heparins) causing decreasing INR. Six drug groups with known interactions were rediscovered causing increasing INR (antiarrhythmics class III [amiodarone], other opioids [tramadol], glucocorticoids, triazole derivatives, and combinations of penicillins, including β-lactamase inhibitors) and two had a known interaction in a closely related drug group (oripavine derivatives [buprenorphine] and natural opium alkaloids). Antipropulsives had an unknown signal of increasing INR. We were able to identify known warfarin-drug interactions without a prior hypothesis using clinical registries. Additionally, we discovered a few potentially novel interactions. This opens up for the use of data mining to discover unknown drug-drug interactions in cardiovascular medicine. © 2016 American Heart Association

  2. Direct detection signatures of self-interacting dark matter with a light mediator

    DOE PAGES

    Nobile, Eugenio Del; Kaplinghat, Manoj; Yu, Hai-Bo

    2015-10-27

    Self-interacting dark matter (SIDM) is a simple and well-motivated scenario that could explain long-standing puzzles in structure formation on small scales. If the required self-interaction arises through a light mediator (with mass ~ 10 MeV) in the dark sector, this new particle must be unstable to avoid overclosing the universe. The decay of the light mediator could happen due to a weak coupling of the hidden and visible sectors, providing new signatures for direct detection experiments. The SIDM nuclear recoil spectrum is more peaked towards low energies compared to the usual case of contact interactions, because the mediator mass ismore » comparable to the momentum transfer of nuclear recoils. We show that the SIDM signal could be distinguished from that of DM particles with contact interactions by considering the time-average energy spectrum in experiments employing different target materials, or the average and modulated spectra in a single experiment. Using current limits from LUX and SuperCDMS, we also derive strong bounds on the mixing parameter between hidden and visible sector.« less

  3. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives.

    PubMed

    Witaicenis, Aline; Seito, Leonardo Noboru; da Silveira Chagas, Alexandre; de Almeida, Luiz Domingues; Luchini, Ana Carolina; Rodrigues-Orsi, Patrícia; Cestari, Silvia Helena; Di Stasi, Luiz Claudio

    2014-02-15

    Coumarins, also known as benzopyrones, are plant-derived products with several pharmacological properties, including antioxidant and anti-inflammatory activities. Based on the wide distribution of coumarin derivatives in plant-based foods and beverages in the human diet, our objective was to evaluate both the antioxidant and intestinal anti-inflammatory activities of six coumarin derivatives of plant origin (scopoletin, scoparone, fraxetin, 4-methyl-umbeliferone, esculin and daphnetin) to verify if potential intestinal anti-inflammatory activity was related to antioxidant properties. Intestinal inflammation was induced by intracolonic instillation of TNBS in rats. The animals were treated with coumarins by oral route. The animals were killed 48 h after colitis induction. The colonic segments were obtained after laparotomy and macroscopic and biochemical parameters (determination of glutathione level and myeloperoxidase and alkaline phosphatase activities) were evaluated. The antioxidant properties of these coumarins were examined by lipid peroxidation and DPPH assays. Treatment with esculin, scoparone and daphnetin produced the best protective effects. All coumarin derivatives showed antioxidant activity in the DPPH assay, while daphnetin and fraxetin also showed antioxidant activity by inhibiting lipid peroxidation. Coumarins, except 4-methyl-umbeliferone, also showed antioxidant activity through the counteraction of glutathione levels or through the inhibition of myeloperoxidase activity. The intestinal anti-inflammatory activity of coumarin derivatives were related to their antioxidant properties, suggesting that consumption of coumarins and/or foods rich in coumarin derivatives, particularly daphnetin, esculin and scoparone, could prevent intestinal inflammatory disease. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. MontePython 3: Parameter inference code for cosmology

    NASA Astrophysics Data System (ADS)

    Brinckmann, Thejs; Lesgourgues, Julien; Audren, Benjamin; Benabed, Karim; Prunet, Simon

    2018-05-01

    MontePython 3 provides numerous ways to explore parameter space using Monte Carlo Markov Chain (MCMC) sampling, including Metropolis-Hastings, Nested Sampling, Cosmo Hammer, and a Fisher sampling method. This improved version of the Monte Python (ascl:1307.002) parameter inference code for cosmology offers new ingredients that improve the performance of Metropolis-Hastings sampling, speeding up convergence and offering significant time improvement in difficult runs. Additional likelihoods and plotting options are available, as are post-processing algorithms such as Importance Sampling and Adding Derived Parameter.

  5. Parameter-space metric of semicoherent searches for continuous gravitational waves

    NASA Astrophysics Data System (ADS)

    Pletsch, Holger J.

    2010-08-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical “semicoherent” search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  6. Association between penile dynamic contrast-enhanced MRI-derived quantitative parameters and self-reported sexual function in patients with newly diagnosed prostate cancer.

    PubMed

    Vargas, Hebert Alberto; Donati, Olivio F; Wibmer, Andreas; Goldman, Debra A; Mulhall, John P; Sala, Evis; Hricak, Hedvig

    2014-10-01

    The high incidence of prostate cancer, coupled with excellent prostate cancer control rates, has resulted in growing interest in nononcological survivorship issues such as sexual function. Multiparametric magnetic resonance imaging (MRI) is increasingly being performed for local staging of prostate cancer, and due to the close anatomical relationship to the prostate, penile enhancement is often depicted in prostate MRI. To evaluate the associations between quantitative perfusion-related parameters derived from dynamic contrast-enhanced (DCE)-MRI of the penis and self-reported sexual function in patients with newly diagnosed prostate cancer. This retrospective study included 50 patients who underwent DCE-MRI for prostate cancer staging before prostatectomy. The following perfusion-related parameters were calculated: volume transfer constant (K(trans)), rate constant (k(ep)), extracellular-extravascular volume fraction (v(e)), contrast enhancement ratio (CER), area under the gadolinium curve after 180 seconds (AUC180), and slope of the time/signal intensity curve of the corpora cavernosa. Associations between perfusion-related parameters and self-reported sexual function were evaluated using the Wilcoxon Rank-Sum test. Patient responses to the sexual function domain of the Prostate Quality of Life survey. Five of the six DCE-MRI parameters (K(trans), v(e), CER, AUC180, and slope) were significantly associated with the overall score from the sexual domain of the survey (P = 0.0020-0.0252). CER, AUC180, and slope were significantly associated with the answers to all six questions (P = 0.0020-0.0483), ve was significantly associated with the answers to five of six questions (P = 0.0036-0.1029), and K(trans) was significantly associated with the answers to three of six questions (P = 0.0252-0.1023). k(ep) was not significantly associated with the overall survey score (P = 0.7665) or the answers to any individual questions (P = 0

  7. Interactions of donor sources and media influence the histo-morphological quality of full-thickness skin models.

    PubMed

    Lange, Julia; Weil, Frederik; Riegler, Christoph; Groeber, Florian; Rebhan, Silke; Kurdyn, Szymon; Alb, Miriam; Kneitz, Hermann; Gelbrich, Götz; Walles, Heike; Mielke, Stephan

    2016-10-01

    Human artificial skin models are increasingly employed as non-animal test platforms for research and medical purposes. However, the overall histopathological quality of such models may vary significantly. Therefore, the effects of manufacturing protocols and donor sources on the quality of skin models built-up from fibroblasts and keratinocytes derived from juvenile foreskins is studied. Histo-morphological parameters such as epidermal thickness, number of epidermal cell layers, dermal thickness, dermo-epidermal adhesion and absence of cellular nuclei in the corneal layer are obtained and scored accordingly. In total, 144 full-thickness skin models derived from 16 different donors, built-up in triplicates using three different culture conditions were successfully generated. In univariate analysis both media and donor age affected the quality of skin models significantly. Both parameters remained statistically significant in multivariate analyses. Performing general linear model analyses we could show that individual medium-donor-interactions influence the quality. These observations suggest that the optimal choice of media may differ from donor to donor and coincides with findings where significant inter-individual variations of growth rates in keratinocytes and fibroblasts have been described. Thus, the consideration of individual medium-donor-interactions may improve the overall quality of human organ models thereby forming a reproducible test platform for sophisticated clinical research. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Breathing dynamics based parameter sensitivity analysis of hetero-polymeric DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukder, Srijeeta; Sen, Shrabani; Chaudhury, Pinaki, E-mail: pinakc@rediffmail.com

    We study the parameter sensitivity of hetero-polymeric DNA within the purview of DNA breathing dynamics. The degree of correlation between the mean bubble size and the model parameters is estimated for this purpose for three different DNA sequences. The analysis leads us to a better understanding of the sequence dependent nature of the breathing dynamics of hetero-polymeric DNA. Out of the 14 model parameters for DNA stability in the statistical Poland-Scheraga approach, the hydrogen bond interaction ε{sub hb}(AT) for an AT base pair and the ring factor ξ turn out to be the most sensitive parameters. In addition, the stackingmore » interaction ε{sub st}(TA-TA) for an TA-TA nearest neighbor pair of base-pairs is found to be the most sensitive one among all stacking interactions. Moreover, we also establish that the nature of stacking interaction has a deciding effect on the DNA breathing dynamics, not the number of times a particular stacking interaction appears in a sequence. We show that the sensitivity analysis can be used as an effective measure to guide a stochastic optimization technique to find the kinetic rate constants related to the dynamics as opposed to the case where the rate constants are measured using the conventional unbiased way of optimization.« less

  9. Molecular Insights into the Potential Insecticidal Interaction of β-Dihydroagarofuran Derivatives with the H Subunit of V-ATPase.

    PubMed

    Wei, Jielu; Li, Ding; Xi, Xin; Liu, Lulu; Zhao, Ximei; Wu, Wenjun; Zhang, Jiwen

    2017-10-11

    Celangulin V (CV), one of dihydroagarofuran sesquiterpene polyesters isolated from Chinese bittersweet ( Celastrus angulatus Maxim), is famous natural botanical insecticide. Decades of research suggests that is displays excellent insecticidal activity against some insects, such as Mythimna separata Walker. Recently, it has been validated that the H subunit of V-ATPase is one of the target proteins of the insecticidal dihydroagarofuran sesquiterpene polyesters. As a continuation of the development of new pesticides from these natural products, a series of β-dihydroagarofuran derivatives have been designed and synthesized. The compound JW-3, an insecticidal derivative of CV with a p -fluorobenzyl group, exhibits higher insecticidal activity than CV. In this study, the potential inhibitory effect aused by the interaction of JW-3 with the H subunit of V-ATPase c was verified by confirmatory experiments at the molecular level. Both spectroscopic techniques and isothermal titration calorimetry measurements showed the binding of JW-3 to the subunit H of V-ATPase was specific and spontaneous. In addition, the possible mechanism of action of the compound was discussed. Docking results indicated compound JW-3 could bind well in 'the interdomain cleft' of the V-ATPase subunit H by the hydrogen bonding and make conformation of the ligand-protein complex become more stable. All results are the further validations of the hypothesis, that the target protein of insecticidal dihydroagarofuran sesquiterpene polyesters and their β-dihydroagarofuran derivatives is the subunit H of V-ATPase. The results also provide new ideas for developing pesticides acting on V-ATPase of insects.

  10. Factorial experimental design for the culture of human embryonic stem cells as aggregates in stirred suspension bioreactors reveals the potential for interaction effects between bioprocess parameters.

    PubMed

    Hunt, Megan M; Meng, Guoliang; Rancourt, Derrick E; Gates, Ian D; Kallos, Michael S

    2014-01-01

    Traditional optimization of culture parameters for the large-scale culture of human embryonic stem cells (ESCs) as aggregates is carried out in a stepwise manner whereby the effect of varying each culture parameter is investigated individually. However, as evidenced by the wide range of published protocols and culture performance indicators (growth rates, pluripotency marker expression, etc.), there is a lack of systematic investigation into the true effect of varying culture parameters especially with respect to potential interactions between culture variables. Here we describe the design and execution of a two-parameter, three-level (3(2)) factorial experiment resulting in nine conditions that were run in duplicate 125-mL stirred suspension bioreactors. The two parameters investigated here were inoculation density and agitation rate, which are easily controlled, but currently, poorly characterized. Cell readouts analyzed included fold expansion, maximum density, and exponential growth rate. Our results reveal that the choice of best case culture parameters was dependent on which cell property was chosen as the primary output variable. Subsequent statistical analyses via two-way analysis of variance indicated significant interaction effects between inoculation density and agitation rate specifically in the case of exponential growth rates. Results indicate that stepwise optimization has the potential to miss out on the true optimal case. In addition, choosing an optimum condition for a culture output of interest from the factorial design yielded similar results when repeated with the same cell line indicating reproducibility. We finally validated that human ESCs remain pluripotent in suspension culture as aggregates under our optimal conditions and maintain their differentiation capabilities as well as a stable karyotype and strong expression levels of specific human ESC markers over several passages in suspension bioreactors.

  11. Self-association of caffeine in aqueous solution. Study of dilute solutions by normal and second derivative UV absorption spectroscopy.

    NASA Astrophysics Data System (ADS)

    Iza, N.; Gil, M.; Montero, J. L.; Morcillo, J.

    1988-05-01

    The concentration dependence of the spectral parameters of caffeine bands at ˜205 and 273 nm has been studied in aqueous solution by normal and second derivative spectroscopy. The concentration range was 5 x 10 -6 - 5 x 10 -3 M and thirty-five different concentrations were used. Discontinuities in parameter variation of these two bands at ˜7.5 x 10 -5, ˜2 x 10 -4, and ˜1 x 10 -3M were observed as concentration was increased. These "limiting" concentrations define three quite differenciated hyper- or hipochromic effects: the first one can be explained as caffeine-water molecule interaction and the second and third as dimer and (dimer + polymer) stacking, respectively. Apparent self-association constants using the isodesmic model have been obtained K= 160 M -1 (for the second hypochromic effect) and K= 13.6 M -1 (for the third hypochromic effect), for the 273 nm band. It is noteworthy that the three "limiting" concentrations coincide with changes in DNA-caffeine interaction modes (H. Lang , 1976) and biological activity (I.B. Syed , 1976).

  12. Derivation of Hunt equation for suspension distribution using Shannon entropy theory

    NASA Astrophysics Data System (ADS)

    Kundu, Snehasis

    2017-12-01

    In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.

  13. The interaction of intense subpicosecond laser pulses with underdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coverdale, Christine Ann

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10 16 W/cm 2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L plasma ≥ 2L Rayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n o ≤ 0.05n cr). Specifically, themore » parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.« less

  14. Interaction of Low Frequency External Electric Fields and Pancreatic β-Cell: A Mathematical Modeling Approach to Identify the Influence of Excitation Parameters.

    PubMed

    Farashi, Sajjad; Sasanpour, Pezhman; Rafii-Tabar, Hashem

    2018-05-24

    Purpose-Although the effect of electromagnetic fields on biological systems has attracted attraction in recent years, there has not been any conclusive result concerning the effects of interaction and the underlying mechanisms involved. Besides the complexity of biological systems, the parameters of the applied electromagnetic field have not been estimated in most of the experiments. Material and Method-In this study, we have used computational approach in order to find the excitation parameters of an external electric field which produces sensible effects in the function of insulin secretory machinery, whose failure triggers the diabetes disease. A mathematical model of the human β-cell has been used and the effects of external electric fields with different amplitudes, frequencies and wave shapes have been studied. Results-The results from our simulations show that the external electric field can influence the membrane electrical activity and perhaps the insulin secretion when its amplitude exceeds a threshold value. Furthermore, our simulations reveal that different waveforms have distinct effects on the β-cell membrane electrical activity and the characteristic features of the excitation like frequency would change the interaction mechanism. Conclusion-The results could help the researchers to investigate the possible role of the environmental electromagnetic fields on the promotion of diabetes disease.

  15. Parental brain-derived neurotrophic factor genotype, child prosociality, and their interaction as predictors of parents' warmth.

    PubMed

    Avinun, Reut; Knafo-Noam, Ariel

    2017-05-01

    Parental warmth has been associated with various child behaviors, from effortful control to callous-unemotional traits. Factors that have been shown to affect parental warmth include heritability and child behavior. However, there is limited knowledge about which specific genes are involved, how they interact with child behavior, how they affect differential parenting, and how they affect fathers. We examined what affects paternal and maternal warmth by focusing on the child's prosocial behavior and parents' genotype, specifically a Valine to Methionine substitution at codon 66 in the brain-derived neurotrophic factor (BDNF) gene. Data was available from a sample of 6.5 year-old twins, consisting of 369 mothers and 663 children and 255 fathers and 458 children. Self-reports were used to assess mothers' and fathers' warmth. Child prosociality was assessed with the other-parent report and experimental assessments. Mothers' warmth was not affected by their BDNF genotype, neither as a main effect nor in an interaction with child prosociality. Fathers with the Met allele scored higher on warmth. Additionally, there was a significant interaction between fathers' BDNF genotype and child prosociality. For fathers with the Met allele there was a positive association between warmth and child prosociality. Conversely, for fathers with the Val/Val genotype there was no association between warmth and child prosociality. Results were repeated longitudinally in a subsample with data on age 8-9 years. A direct within family analysis showed that fathers with the Met allele were more likely than Val/Val carriers to exhibit differential parenting toward twins who differed in their prosocial behavior. The same pattern of findings was found with mother-rated and experimentally assessed prosociality. These results shed light on the genetic and environmental underpinnings of paternal behavior and differential parenting.

  16. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives.

    PubMed

    Liyanage, Wathsala; Nilsson, Bradley L

    2016-01-26

    Supramolecular hydrogels derived from the self-assembly of organic molecules have been exploited for applications ranging from drug delivery to tissue engineering. The relationship between the structure of the assembly motif and the emergent properties of the resulting materials is often poorly understood, impeding rational approaches for the creation of next-generation materials. Aromatic π-π interactions play a significant role in the self-assembly of many supramolecular hydrogelators, but the exact nature of these interactions lacks definition. Conventional models that describe π-π interactions rely on quadrupolar electrostatic interactions between neighboring aryl groups in the π-system. However, recent experimental and computational studies reveal the potential importance of local dipolar interactions between elements of neighboring aromatic rings in stabilizing π-π interactions. Herein, we examine the nature of π-π interactions in the self- and coassembly of Fmoc-Phe-derived hydrogelators by systematically varying the electron-donating or electron-withdrawing nature of the side chain benzyl substituents and correlating these effects to the emergent assembly and gelation properties of the systems. These studies indicate a significant role for stabilizing dipolar interactions between neighboring benzyl groups in the assembled materials. Additional evidence for specific dipolar interactions is provided by high-resolution crystal structures obtained from dynamic transition of gel fibrils to crystals for several of the self-assembled/coassembled Fmoc-Phe derivatives. In addition to electronic effects, steric properties also have a significant effect on the interaction between neighboring benzyl groups in these assembled systems. These findings provide significant insight into the structure-function relationship for Fmoc-Phe-derived hydrogelators and give cues for the design of next-generation materials with desired emergent properties.

  17. Theory of domain patterns in systems with long-range interactions of Coulomb type.

    PubMed

    Muratov, C B

    2002-12-01

    We develop a theory of the domain patterns in systems with competing short-range attractive interactions and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are considered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this functional takes on a universal form, allowing us to treat a number of diverse physical situations within a unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an interfacial representation of the pattern's free energy which remains valid in the fluctuating system, with a suitable renormalization of the Coulomb interaction's coupling constant. We also derive integro-differential equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming from the first and second variations of the interfacial free energy. We show that the length scale of a stable domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the existence and stability of localized (spots, stripes, annuli) and periodic (lamellar, hexagonal) patterns in two dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches. We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under consideration.

  18. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics.

    PubMed

    Pandith, Anup; Hazra, Giridhari; Kim, Hong-Seok

    2017-05-05

    A novel simple fluorescent probe was designed for the recognition of electron-rich salicylic acid derivatives (SAs). The imidazole-appended aminomethyl perylene probe 1 selectively differentiated between electron-rich amino-SAs and electron-deficient nitro-SAs in EtOH, exhibiting the highest selectivity and sensitivity toward 5-aminosalicylic acid (5-ASA) and showing strong 1:1 binding (K a =1.37×10 7 M -1 ). This high selectivity and sensitivity resulted from the synergistic multiple hydrogen bonding interactions of secondary amine and imidazole units and π-π interactions between electron-rich and electron-deficient rings, along with the unusual NH-π interactions between 5-ASA and the perylene moiety of 1. The limit of detection (LOD) for 5-ASA in EtOH was 0.012ppb. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Facile synthesis, single crystal analysis, and computational studies of sulfanilamide derivatives

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad Nawaz; Khalid, Muhammad; Islam, Ayesha; Ali Mashhadi, Syed Muddassir; Braga, Ataualpa A. C.

    2017-01-01

    Antibacterial resistance is a worldwide problem. Sulfanilamide is widely used antibacterial. For the first time, we report here a simple method for the derivative synthesis of the title drugs, single crystal XRD and density functional theory (DFT) studies. The optimized molecular structure, natural bond orbital (NBO), frontier molecular orbitals (FMOs) molecular electrostatic potential studies (MEP) and Mulliken population analysis (MPA) have been performed using M06-2X/6-31G(d, p). The FT-IR spectra and thermodynamic parameters were calculated at M06-2X/6-311 + G(2d,p) and B3LYP/6-31G(d, p) levels respectively, while, the UV-Vis analysis was performed using TD-DFT/B3LYP/6-31G(d, p) method. The experimental FT-IR spectra of both compounds were also carried out to reconfirm sbnd H⋯Osbnd hydrogen bonds. The DFT optimized parameters exhibiting good agreement with the experimental data. NBO analysis explored the hyper conjugative interaction and stability of title crystals, especially, reconfirmed the existence of sbnd H⋯Osbnd hydrogen bonds between the dimers. The FT-IR, thermodynamic parameters, MEP and MPA also revealed the hydrogen bonding detail is harmonious to XRD data. As a matter of the fact, the hydrogen bonding is a significant parameter for the understanding and design of molecular crystals, subsequently; it can also play a vital role in the supramolecular chemistry. Moreover, the global reactivity descriptors suggest that title compounds might be bioactive.

  20. Attitude determination and parameter estimation using vector observations - Theory

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1989-01-01

    Procedures for attitude determination based on Wahba's loss function are generalized to include the estimation of parameters other than the attitude, such as sensor biases. Optimization with respect to the attitude is carried out using the q-method, which does not require an a priori estimate of the attitude. Optimization with respect to the other parameters employs an iterative approach, which does require an a priori estimate of these parameters. Conventional state estimation methods require a priori estimates of both the parameters and the attitude, while the algorithm presented in this paper always computes the exact optimal attitude for given values of the parameters. Expressions for the covariance of the attitude and parameter estimates are derived.

  1. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1988-01-01

    Parameter sensitivity is defined as the estimation of changes in the modeling functions and the design variables due to small changes in the fixed parameters of the formulation. There are currently several methods for estimating parameter sensitivities requiring either difficult to obtain second order information, or do not return reliable estimates for the derivatives. Additionally, all the methods assume that the set of active constraints does not change in a neighborhood of the estimation point. If the active set does in fact change, than any extrapolations based on these derivatives may be in error. The objective here is to investigate more efficient new methods for estimating parameter sensitivities when the active set changes. The new method is based on the recursive quadratic programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RPQ algorithm. Inital testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity. To handle changes in the active set, a deflection algorithm is proposed for those cases where the new set of active constraints remains linearly independent. For those cases where dependencies occur, a directional derivative is proposed. A few simple examples are included for the algorithm, but extensive testing has not yet been performed.

  2. Interactions between sodium dodecyl sulphate and non-ionic cellulose derivatives studied by size exclusion chromatography with online multi-angle light scattering and refractometric detection.

    PubMed

    Wittgren, Bengt; Stefansson, Morgan; Porsch, Bedrich

    2005-08-05

    The novel approach described allows to characterise the surfactant-polymer interaction under several sodium dodecyl sulphate (SDS) concentrations (0-20 mM) using size exclusion chromatography (SEC) with online multi-angle light scattering (MALS) and refractometric (RI) detection. Three different cellulose derivatives, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC) and hydroxyethyl cellulose (HEC), have been studied in solution containing 10 mM NaCl and various concentrations of sodium dodecyl sulphate. It is shown that this approach is well suited for successful application of both Hummel-Dreyer and multi-component light scattering principles and yields reliable molecular masses of both the polymer complex and the polymer itself within the complex, the amount of surfactant bound into the complex as well as appropriate values of the refractive index increment (dn/dc)micro, of both the complex and the polymer in question. The more hydrophobic derivatives HPC and HPMC adsorbed significantly more SDS than HEC. The inter-chain interactions close to critical aggregation concentration (cac) were clearly seen for HPC and HPMC as an almost two-fold average increase in polymer molecular mass contained in the complex.

  3. Wh-Questions in Child L2 French: Derivational Complexity and Its Interactions with L1 Properties, Length of Exposure, Age of Exposure, and the Input

    ERIC Educational Resources Information Center

    Prévost, Philippe; Strik, Nelleke; Tuller, Laurie

    2014-01-01

    This study investigates how derivational complexity interacts with first language (L1) properties, second language (L2) input, age of first exposure to the target language, and length of exposure in child L2 acquisition. We compared elicited production of "wh"-questions in French in two groups of 15 participants each, one with L1 English…

  4. Design of novel quinazolinone derivatives as inhibitors for 5HT7 receptor.

    PubMed

    Chitta, Aparna; Jatavath, Mohan Babu; Fatima, Sabiha; Manga, Vijjulatha

    2012-02-01

    To study the pharmacophore properties of quinazolinone derivatives as 5HT(7) inhibitors, 3D QSAR methodologies, namely Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied, partial least square (PLS) analysis was performed and QSAR models were generated. The derived model showed good statistical reliability in terms of predicting the 5HT(7) inhibitory activity of the quinazolione derivative, based on molecular property fields like steric, electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor fields. This is evident from statistical parameters like q(2) (cross validated correlation coefficient) of 0.642, 0.602 and r(2) (conventional correlation coefficient) of 0.937, 0.908 for CoMFA and CoMSIA respectively. The predictive ability of the models to determine 5HT(7) antagonistic activity is validated using a test set of 26 molecules that were not included in the training set and the predictive r(2) obtained for the test set was 0.512 & 0.541. Further, the results of the derived model are illustrated by means of contour maps, which give an insight into the interaction of the drug with the receptor. The molecular fields so obtained served as the basis for the design of twenty new ligands. In addition, ADME (Adsorption, Distribution, Metabolism and Elimination) have been calculated in order to predict the relevant pharmaceutical properties, and the results are in conformity with required drug like properties.

  5. The theory and measurement of noncoherent microwave scattering parameters. [for remote sensing of scenes via radar scatterometry

    NASA Technical Reports Server (NTRS)

    Claassen, J. P.; Fung, A. K.

    1977-01-01

    The radar equation for incoherent scenes is derived and scattering coefficients are introduced in a systematic way to account for the complete interaction between the incident wave and the random scene. Intensity (power) and correlation techniques similar to that for coherent targets are proposed to measure all the scattering parameters. The sensitivity of the intensity technique to various practical realizations of the antenna polarization requirements is evaluated by means of computer simulated measurements, conducted with a scattering characteristic similar to that of the sea. It was shown that for scenes satisfying reciprocity one must admit three new cross-correlation scattering coefficients in addition to the commonly measured autocorrelation coefficients.

  6. Development of a gluten-free rice noodle by utilizing protein-polyphenol interaction between soy protein isolate and extract of Acanthopanax sessiliflorus.

    PubMed

    Lee, Da-Som; Kim, Yang; Song, Youngwoon; Lee, Ji-Hye; Lee, Suyong; Yoo, Sang-Ho

    2016-02-01

    The potential of the protein-polyphenol interaction was applied to crosslinking reinforced protein networks in gluten-free rice noodles. Specifically, inter-component interaction between soy protein isolate and extract of Acanthopanax sessiliflorus fruit (ogaja) was examined with a view to improving its quality. In a components-interacting model system, a mixture of soy protein isolate (SPI) and ogaja extract (OE) induced a drastic increase in absorbance at 660 nm by haze formation, while the major anthocyanin of ogaja, cyanidin-3-O-sambubioside, sparsely interacted with SPI or gelatin. Individual or combined treatment of SPI and OE on rice dough decreased all the viscosity parameters in rapid visco analysis. However, SPI-OE treatment significantly increased all the texture parameters of rice dough derived from Mixolab(®) analysis (P < 0.05). Incorporation of SPI in rice dough significantly reduced endothermic ΔH, and SPI-OE treatment further decreased this value. SPI-OE interaction significantly increased the tensile properties of cooked noodle and decreased 53.7% of cooking loss compared to the untreated rice noodle. SPI-OE treatment caused a considerable reinforcement of the network as shown by reducing cooking loss and suggested the potential for utilizing protein-polyphenol interaction for gluten-free rice noodle production. © 2015 Society of Chemical Industry.

  7. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP ) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.; Bennett, C. L.; Gold, B.

    2011-02-01

    The WMAP mission has produced sky maps from seven years of observations at L2. We present the angular power spectra derived from the seven-year maps and discuss the cosmological conclusions that can be inferred from WMAP data alone. With the seven-year data, the temperature (TT) spectrum measurement has a signal-to-noise ratio per multipole that exceeds unity for l < 919; and in band powers of width {Delta}l = 10, the signal-to-noise ratio exceeds unity up to l = 1060. The third acoustic peak in the TT spectrum is now well measured by WMAP. In the context of a flat {Lambda}CDMmore » model, this improvement allows us to place tighter constraints on the matter density from WMAP data alone, {Omega}{sub m} h {sup 2} = 0.1334{sup +0.0056}{sub -0.0055}, and on the epoch of matter-radiation equality, z{sub eq} = 3196{sup +134}{sub -133}. The temperature-polarization (TE) spectrum is detected in the seven-year data with a significance of 20{sigma}, compared to 13{sigma} with the five-year data. We now detect the second dip in the TE spectrum near l {approx} 450 with high confidence. The TB and EB spectra remain consistent with zero, thus demonstrating low systematic errors and foreground residuals in the data. The low-l EE spectrum, a measure of the optical depth due to reionization, is detected at 5.5{sigma} significance when averaged over l = 2-7: l(l + 1)C {sup EE}{sub l}/(2{pi}) = 0.074{sup +0.034}{sub -0.025} {mu}K{sup 2} (68% CL). We now detect the high-l, 24 {<=} l {<=} 800, EE spectrum at over 8{sigma}. The BB spectrum, an important probe of gravitational waves from inflation, remains consistent with zero; when averaged over l = 2-7, l(l + 1)C {sup BB}{sub l}/(2{pi}) < 0.055 {mu}K{sup 2} (95% CL). The upper limit on tensor modes from polarization data alone is a factor of two lower with the seven-year data than it was using the five-year data. The data remain consistent with the simple {Lambda}CDM model: the best-fit TT spectrum has an effective {chi}{sup 2} of

  8. Local and nonlocal order parameters in the Kitaev chain

    NASA Astrophysics Data System (ADS)

    Chitov, Gennady Y.

    2018-02-01

    We have calculated order parameters for the phases of the Kitaev chain with interaction and dimerization at a special symmetric point applying the Jordan-Wigner and other duality transformations. We use string order parameters (SOPs) defined via the correlation functions of the Majorana string operators. The SOPs are mapped onto the local order parameters of some dual Hamiltonians and easily calculated. We have shown that the phase diagram of the interacting dimerized chain comprises the phases with the conventional local order as well as the phases with nonlocal SOPs. From the results for the critical indices, we infer the two-dimensional Ising universality class of criticality at the particular symmetry point where the model is exactly solvable.

  9. Expression of domains for protein-protein interaction of nucleotide excision repair proteins modifies cancer cell sensitivity to platinum derivatives and genomic stability.

    PubMed

    Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles

    2014-10-01

    Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions. © 2014 Wiley Publishing Asia Pty Ltd.

  10. Inference of directional selection and mutation parameters assuming equilibrium.

    PubMed

    Vogl, Claus; Bergman, Juraj

    2015-12-01

    In a classical study, Wright (1931) proposed a model for the evolution of a biallelic locus under the influence of mutation, directional selection and drift. He derived the equilibrium distribution of the allelic proportion conditional on the scaled mutation rate, the mutation bias and the scaled strength of directional selection. The equilibrium distribution can be used for inference of these parameters with genome-wide datasets of "site frequency spectra" (SFS). Assuming that the scaled mutation rate is low, Wright's model can be approximated by a boundary-mutation model, where mutations are introduced into the population exclusively from sites fixed for the preferred or unpreferred allelic states. With the boundary-mutation model, inference can be partitioned: (i) the shape of the SFS distribution within the polymorphic region is determined by random drift and directional selection, but not by the mutation parameters, such that inference of the selection parameter relies exclusively on the polymorphic sites in the SFS; (ii) the mutation parameters can be inferred from the amount of polymorphic and monomorphic preferred and unpreferred alleles, conditional on the selection parameter. Herein, we derive maximum likelihood estimators for the mutation and selection parameters in equilibrium and apply the method to simulated SFS data as well as empirical data from a Madagascar population of Drosophila simulans. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Gravitational Stokes parameters. [for electromagnetic and gravitational radiation in relativity

    NASA Technical Reports Server (NTRS)

    Anile, A. M.; Breuer, R. A.

    1974-01-01

    The electromagnetic and gravitational Stokes parameters are defined in the general theory of relativity. The general-relativistic equation of radiative transfer for polarized radiation is then derived in terms of the Stokes parameters for both high-frequency electromagnetic and gravitational waves. The concept of Stokes parameters is generalized for the most general class of metric theories of gravity, where six (instead of two) independent states of polarization are present.

  12. Extrapolation of sonic boom pressure signatures by the waveform parameter method

    NASA Technical Reports Server (NTRS)

    Thomas, C. L.

    1972-01-01

    The waveform parameter method of sonic boom extrapolation is derived and shown to be equivalent to the F-function method. A computer program based on the waveform parameter method is presented and discussed, with a sample case demonstrating program input and output.

  13. FY2014 Parameters for Helions and Gold Ions in Booster, AGS, and RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    The nominal parameters for helions (helion is the bound state of two protons and one neutron, the nucleus of a helium-3 atom) and gold ions in Booster, AGS, and RHIC are given for the FY2014 running period. The parameters are found using various formulas to derive mass, helion anomalous g-factor, kinetic parameters, RF parameters, ring parameters, etc..

  14. Mean-field behavior in coupled oscillators with attractive and repulsive interactions.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2012-05-01

    We consider a variant of the Kuramoto model of coupled oscillators in which both attractive and repulsive pairwise interactions are allowed. The sign of the coupling is assumed to be a characteristic of a given oscillator. Specifically, some oscillators repel all the others, thus favoring an antiphase relationship with them. Other oscillators attract all the others, thus favoring an in-phase relationship. The Ott-Antonsen ansatz is used to derive the exact low-dimensional dynamics governing the system's long-term macroscopic behavior. The resulting analytical predictions agree with simulations of the full system. We explore the effects of changing various parameters, such as the width of the distribution of natural frequencies and the relative strengths and proportions of the positive and negative interactions. For the particular model studied here we find, unexpectedly, that the mixed interactions produce no new effects. The system exhibits conventional mean-field behavior and displays a second-order phase transition like that found in the original Kuramoto model. In contrast to our recent study of a different model with mixed interactions [Phys. Rev. Lett. 106, 054102 (2011)], the π state and traveling-wave state do not appear for the coupling type considered here.

  15. Azadirachtin, a neem-derived biopesticide, impairs behavioral and hematological parameters in carp (Cyprinus carpio).

    PubMed

    Murussi, Camila R; Menezes, Charlene C; Nunes, Mauro E M; Araújo, Maria do Carmo S; Quadros, Vanessa A; Rosemberg, Denis B; Loro, Vania L

    2016-11-01

    Azadirachtin (Aza) is a promisor biopesticide used in organic production and aquaculture. Although this compound is apparently safe, there is evidence that it may have deleterious effects on fish. Behavioral and hematological tests are grouped into a set of parameters that may predict potential toxicity of chemical compounds. Here, we investigate the effects of Aza, in the commercial formulation Neenmax ™ , on carp (Cyprinus carpio) by defining LC 50 (96 h), and testing behavioral and hematological parameters. In our study, LC 50 was estimated at 80 μL/L. We exposed carp to Aza at 20, 40, and 60 μL/L, values based on 25, 50, and 75% of LC 50 , respectively. At 60 μL/L, Aza promoted significant changes in several parameters, increasing the distance traveled and absolute turn angle. In addition, the same concentration decreased the time spent immobile and the number of immobile episodes. Hematological parameters, such as hematocrit, hemoglobin, hematimetrics index, and red cell distribution, were decreased at 60 μL/L Aza exposure. In conclusion, our study demonstrates that 60 μL/L Aza altered locomotor activity, motor pattern, and hematological parameters, suggesting potential toxicity to carp after acute exposure. In addition, this is the first report that evaluates the actions of a chemical contaminant using automated behavioral tracking of carp, which may be a useful tool for assessing the potential toxicity of biopesticides in conjunction with hematological tests. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1381-1388, 2016. © 2015 Wiley Periodicals, Inc.

  16. Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.

    PubMed

    Wang, Jing

    2018-03-28

    We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.

  17. Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    2018-03-01

    We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.

  18. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages.

    PubMed

    Choi, Youn-Kyung; Kim, Jinmi; Yamaguchi, Tetsutaro; Maki, Koutaro; Ko, Ching-Chang; Kim, Yong-Il

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5-18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level.

  19. Cervical Vertebral Body's Volume as a New Parameter for Predicting the Skeletal Maturation Stages

    PubMed Central

    Choi, Youn-Kyung; Kim, Jinmi; Maki, Koutaro; Ko, Ching-Chang

    2016-01-01

    This study aimed to determine the correlation between the volumetric parameters derived from the images of the second, third, and fourth cervical vertebrae by using cone beam computed tomography with skeletal maturation stages and to propose a new formula for predicting skeletal maturation by using regression analysis. We obtained the estimation of skeletal maturation levels from hand-wrist radiographs and volume parameters derived from the second, third, and fourth cervical vertebrae bodies from 102 Japanese patients (54 women and 48 men, 5–18 years of age). We performed Pearson's correlation coefficient analysis and simple regression analysis. All volume parameters derived from the second, third, and fourth cervical vertebrae exhibited statistically significant correlations (P < 0.05). The simple regression model with the greatest R-square indicated the fourth-cervical-vertebra volume as an independent variable with a variance inflation factor less than ten. The explanation power was 81.76%. Volumetric parameters of cervical vertebrae using cone beam computed tomography are useful in regression models. The derived regression model has the potential for clinical application as it enables a simple and quantitative analysis to evaluate skeletal maturation level. PMID:27340668

  20. The 27-28 October 1986 FIRE IFO Cirrus Case Study: Cirrus Parameter Relationships Derived from Satellite and Lidar Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1990-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the FIRE Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used with rawinsonde data to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4-km visible (0.65 micro-m) and 8-km infrared window (11.5 micro-m) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance model. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8.0 km for the 71 scenes. Mean vertical beam emittances derived from cloud-center temperatures were 0.62 for all scenes compared to 0.33 for the case study (27-28 October) reflecting the thinner clouds observed for the latter scenes. Relationships between cloud emittance, extinction coefficients, and temperature for the case study are very similar to those derived from earlier surface- based studies. The thicker clouds seen during the other IFO days yield different results. Emittances derived using cloud-top temperature were ratioed to those determined from cloud-center temperature. A nearly linear relationship between these ratios and cloud-center temperature holds promise for determining actual cloud-top temperatures and cloud thicknesses from visible and infrared radiance pairs. The mean ratio of the visible scattering optical depth to the infrared absorption optical depth was 2.13 for these data. This scattering efficiency ratio shows a significant dependence on cloud temperature. Values of mean scattering efficiency as high as 2.6 suggest the presence of small ice