Estimating the extent of impervious surfaces and turf grass across large regions
Claggett, Peter; Irani, Frederick M.; Thompson, Renee L.
2013-01-01
The ability of researchers to accurately assess the extent of impervious and pervious developed surfaces, e.g., turf grass, using land-cover data derived from Landsat satellite imagery in the Chesapeake Bay watershed is limited due to the resolution of the data and systematic discrepancies between developed land-cover classes, surface mines, forests, and farmlands. Estimates of impervious surface and turf grass area in the Mid-Atlantic, United States that were based on 2006 Landsat-derived land-cover data were substantially lower than estimates based on more authoritative and independent sources. New estimates of impervious surfaces and turf grass area derived using land-cover data combined with ancillary information on roads, housing units, surface mines, and sampled estimates of road width and residential impervious area were up to 57 and 45% higher than estimates based strictly on land-cover data. These new estimates closely approximate estimates derived from authoritative and independent sources in developed counties.
NASA Astrophysics Data System (ADS)
de Beurs, K.; Henebry, G. M.; Owsley, B.; Sokolik, I. N.
2016-12-01
Land surface phenology metrics allow for the summarization of long image time series into a set of annual observations that describe the vegetated growing season. These metrics have been shown to respond to both large scale climatic and anthropogenic impacts. In this study we assemble a time series (2001 - 2014) of Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance data and land surface temperature data at 0.05º spatial resolution. We then derive land surface phenology metrics focusing on the peak of the growing season by fitting quadratic regression models using NDVI and Accumulated Growing Degree-Days (AGDD) derived from land surface temperature. We link the annual information on the peak timing, the thermal time to peak and the maximum of the growing season with five of the most important large scale climate oscillations: NAO, AO, PDO, PNA and ENSO. We demonstrate several significant correlations between the climate oscillations and the land surface phenology peak metrics for a range of different bioclimatic regions in both dryland Central Asia and the northern Polar Regions. We will then link the correlation results with trends derived by the seasonal Mann-Kendall trend detection method applied to several satellite derived vegetation and albedo datasets.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, Z.; Wang, J.; Ishikawa, H.
2011-05-01
Land surface heat fluxes are essential measures of the strengths of land-atmosphere interactions involving energy, heat and water. Correct parameterization of these fluxes in climate models is critical. Despite their importance, state-of-the-art observation techniques cannot provide representative areal averages of these fluxes comparable to the model grid. Alternative methods of estimation are thus required. These alternative approaches use (satellite) observables of the land surface conditions. In this study, the Surface Energy Balance System (SEBS) algorithm was evaluated in a cold and arid environment, using land surface parameters derived from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Field observations and estimates from SEBS were compared in terms of net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λE) over a heterogeneous land surface. As a case study, this methodology was applied to the experimental area of the Watershed Allied Telemetry Experimental Research (WATER) project, located on the mid-to-upstream sections of the Heihe River in northwest China. ASTER data acquired between 3 May and 4 June 2008, under clear-sky conditions were used to determine the surface fluxes. Ground-based measurements of land surface heat fluxes were compared with values derived from the ASTER data. The results show that the derived surface variables and the land surface heat fluxes furnished by SEBS in different months over the study area are in good agreement with the observed land surface status under the limited cases (some cases looks poor results). So SEBS can be used to estimate turbulent heat fluxes with acceptable accuracy in areas where there is partial vegetation cover in exceptive conditions. It is very important to perform calculations using ground-based observational data for parameterization in SEBS in the future. Nevertheless, the remote-sensing results can provide improved explanations of land surface fluxes over varying land coverage at greater spatial scales.
NASA Astrophysics Data System (ADS)
Geiger, B.; Carrer, D.; Meurey, C.; Roujean, J.-L.
2006-08-01
The Satellite Application Facility for Land Surface Anal- ysis hosted by the Portuguese Meteorological Institute in Lisbon generates and distributes value added satellite products for numerical weather prediction and environ- mental applications in near-real time. Within the project consortium M´et´eo-France is responsible for the land sur- face albedo and down-welling short-wave radiation flux products. Since the beginning of the year 2005 Meteosat Second Generation data are routinely processed by the Land-SAF operational system. In general the validation studies carried out so far show a good consistency with in-situ observations or equivalent products derived from other satellites. After one year of operations a summary of the product characteristics and performances is given. Key words: Surface Albedo; Down-welling Radiation; Land-SAF.
NASA Technical Reports Server (NTRS)
Mintz, Y.; Walker, G. K.
1993-01-01
The global fields of normal monthly soil moisture and land surface evapotranspiration are derived with a simple water budget model that has precipitation and potential evapotranspiration as inputs. The precipitation is observed and the potential evapotranspiration is derived from the observed surface air temperature with the empirical regression equation of Thornthwaite (1954). It is shown that at locations where the net surface radiation flux has been measured, the potential evapotranspiration given by the Thornthwaite equation is in good agreement with those obtained with the radiation-based formulations of Priestley and Taylor (1972), Penman (1948), and Budyko (1956-1974), and this provides the justification for the use of the Thornthwaite equation. After deriving the global fields of soil moisture and evapotranspiration, the assumption is made that the potential evapotranspiration given by the Thornthwaite equation and by the Priestley-Taylor equation will everywhere be about the same; the inverse of the Priestley-Taylor equation is used to obtain the normal monthly global fields of net surface radiation flux minus ground heat storage. This and the derived evapotranspiration are then used in the equation for energy conservation at the surface of the earth to obtain the global fields of normal monthly sensible heat flux from the land surface to the atmosphere.
Use of GLOBE Observations to Derive a Landsat 8 Split Window Algorithm for Urban Heat Island
NASA Astrophysics Data System (ADS)
Fagerstrom, L.; Czajkowski, K. P.
2017-12-01
Surface temperature has been studied to investigate the warming of urban climates, also known as urban heat islands, which can impact urban planning, public health, pollution levels, and energy consumption. However, the full potential of remotely sensed images is limited when analyzing land surface temperature due to the daunting task of correcting for atmospheric effects. Landsat 8 has two thermal infrared sensors. With two bands in the infrared region, a split window algorithm (SWA), can be applied to correct for atmospheric effects. This project used in situ surface temperature measurements from NASA's ground observation program, the Global Learning and Observations to Benefit the Environment (GLOBE), to derive the correcting coefficients for use in the SWA. The GLOBE database provided land surface temperature data that coincided with Landsat 8 overpasses. The land surface temperature derived from Landsat 8 SWA can be used to analyze for urban heat island effect.
NASA Astrophysics Data System (ADS)
Bohn, T. J.; Vivoni, E. R.
2017-12-01
Land cover variability and change have been shown to influence the terrestrial hydrologic cycle by altering the partitioning of moisture and energy fluxes. However, the magnitude and directionality of the relationship between land cover and surface hydrology has been shown to vary substantially across regions. Here, we provide an assessment of the impacts of land cover change on hydrologic processes at seasonal (vegetation phenology) to decadal scales (land cover conversion) in the United States and Mexico. To this end, we combine time series of remotely-sensed land surface characteristics with land cover maps for different decades as input to the Variable Infiltration Capacity hydrologic model. Land surface characteristics (leaf area index, surface albedo, and canopy fraction derived from normalized difference vegetation index) were obtained from the Moderate Resolution Imaging Spectrometer (MODIS) at 8-day intervals over the period 2000-2016. Land cover maps representing conditions in 1992, 2001, and 2011 were derived by homogenizing the National Land Cover Database over the US and the INEGI Series I through V maps over Mexico. An additional map covering all of North America was derived from the most frequent land cover class observed in each pixel of the MODIS MOD12Q1 product during 2001-2013. Land surface characteristics were summarized over land cover fractions at 1/16 degree (6 km) resolution. For each land cover map, hydrologic simulations were conducted that covered the period 1980-2013, using the best-available, hourly meteorological forcings at a similar spatial resolution. Based on these simulations, we present a comparison of the contributions of land cover change and climate variability at seasonal to decadal scales on the hydrologic and energy budgets, identifying the dominant components through time and space. This work also offers a valuable dataset on land cover variability and its hydrologic response for continental-scale assessments and modeling.
Physical Properties of the MER and Beagle II Landing Sites on Mars
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.
2003-12-01
The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.
Estimating surface fluxes over middle and upper streams of the Heihe River Basin with ASTER imagery
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Su, B.; Wang, J.; Ishikawa, H.
2009-06-01
Surface fluxes are important boundary conditions for climatological modeling and the Asian monsoon system. Recent availability of high-resolution, multi-band imagery from the ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer) sensor has enabled us to estimate surface fluxes to bridge the gap between local scale flux measurements using micrometeorological instruments and regional scale land-atmosphere exchanges of water and heat fluxes that are fundamental for the understanding of the water cycle in the Asian monsoon system. A Surface Energy Balance System (SEBS) method based on ASTER data and field observations has been proposed and tested for deriving net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E) over heterogeneous land surface in this paper. As a case study, the methodology was applied to the experimental area of the WATER (Watershed Allied Telemetry Experimental Research), located at the mid-to-upstream sections of the Heihe River, northwest China. The ASTER data of 3 May and 4 June in 2008 was used in this paper for the case of mid-to-upstream sections of the Heihe River Basin. To validate the proposed methodology, the ground-measured land surface heat fluxes (net radiation flux (Rn), soil heat flux (G0), sensible heat flux (H) and latent heat flux (λ E)) were compared to the ASTER derived values. The results show that the derived surface variables and land surface heat fluxes in different months over the study area are in good accordance with the land surface status. It is therefore concluded that the proposed methodology is successful for the retrieval of land surface heat fluxes using the ASTER data and filed observation over the study area.
Generation of High Resolution Land Surface Parameters in the Community Land Model
NASA Astrophysics Data System (ADS)
Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.
2010-12-01
The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.;
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
NASA Astrophysics Data System (ADS)
de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.
2013-12-01
Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of reverting to civil war. Finally, the patchy and heterogeneous arrangement of vegetation in dryland areas sometimes complicates the extraction of phenological signals using existing remote sensing data. We conclude by demonstrating how the phenological analysis of a range of dryland land cover classes benefits from the availability of synthetic images at Landsat spatial resolution and MODIS time intervals.
The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania
NASA Astrophysics Data System (ADS)
Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina
2017-11-01
Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.
NASA Astrophysics Data System (ADS)
Heinemann, S.
2015-12-01
The land surface temperature (LST) is an extremely significant parameter in order to understand the processes of energetic interactions between Earth's surface and atmosphere. This knowledge is significant for various environmental research questions, particularly with regard to the recent climate change. This study shows an innovative approach to retrieve land surface emissivity (LSE) and LST by using thermal infrared (TIR) data from satellite sensors, such as SEVIRI and AATSR. So far there are no methods to derive LSE/LST particularly in areas of highly dynamic emissivity changes. Therefore especially for regions with large surface temperature amplitude in the diurnal cycle such as bare and uneven soil surfaces but also for regions with seasonal changes in vegetation cover including various surface areas such as grassland, mixed forests or agricultural land different methods were investigated to identify the most appropriate one. The LSE is retrieved by using the day/night Temperature-Independent Spectral Indices (TISI) method, and the Generalised Split-Window (GSW) method is used to retrieve the LST. Nevertheless different GSW algorithms show that equal LSEs lead to large LST differences. Additionally LSE is also measured using a NDVI-based threshold method (NDVITHM) to distinguish between soil, dense vegetation cover and pixel composed of soil and vegetation. The data used for this analysis were derived from MODIS TIR. The analysis is implemented with IDL and an intercomparison is performed to determine the most effective methods. To compensate temperature differences between derived and ground truth data appropriate correction terms by comparing derived LSE/LST data with ground-based measurements are developed. One way to calibrate LST retrievals is by comparing the canopy leaf temperature of conifers derived from TIR data with the surrounding air temperature (e.g. from synoptic stations). Prospectively, the derived LSE/LST data become validated with near infrared data obtained from an UVA with a TIR camera (TIRC) onboard, and also compared with ground-based measurements. This study aims to generate an appropriate method by integrating developed correction terms to eventually obtain a high correlation between all, LSE/LST, TIRC and ground truth data.
Extreme Rock Distributions on Mars and Implications for Landing Safety
NASA Technical Reports Server (NTRS)
Golombek, M. P.
2001-01-01
Prior to the landing of Mars Pathfinder, the size-frequency distribution of rocks from the two Viking landing sites and Earth analog surfaces was used to derive a size-frequency model, for nomimal rock distributions on Mars. This work, coupled with extensive testing of the Pathfinder airbag landing system, allowed an estimate of what total rock abundances derived from thermal differencing techniques could be considered safe for landing. Predictions based on this model proved largely correct at predicting the size-frequency distribution of rocks at the Mars Pathfinder site and the fraction of potentially hazardous rocks. In this abstract, extreme rock distributions observed in Mars Orbiter Camera (MOC) images are compared with those observed at the three landing sites and model distributions as an additional constraint on potentially hazardous surfaces on Mars.
Using GIS to produce impervious surface coefficients from National Land Cover Data
National Laud Cover Data (NLCD) and county level planimetric impervious surface data were utilized to derive an impervious coefficient per NLCD class. Results show that coefficients fall in...
We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...
Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode
NASA Astrophysics Data System (ADS)
Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna
2016-07-01
Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after assimilation of soil moisture and soil temperature at the initial condition which helped to improve the exchange fluxes at lower atmospheric level. Mixing ratio were increased along with elevated theta-e at lower level giving a signature of improvement in LDAS experiment leading to a suitable condition for convection. In the analysis, moisture convergence, mixing ratio and vertical velocities have improved significantly in terms of intensity and time lag. Surface variables like soil moisture, soil temperature, sensible heat flux and latent heat flux have progressed in a possible realistic pattern. Above discussion suggests that assimilation of soil moisture and soil temperature improves the overall simulations significantly.
Scaling, soil moisture and evapotranspiration in runoff models
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The effects of small-scale heterogeneity in land surface characteristics on the large-scale fluxes of water and energy in the land-atmosphere system has become a central focus of many of the climatology research experiments. The acquisition of high resolution land surface data through remote sensing and intensive land-climatology field experiments (like HAPEX and FIFE) has provided data to investigate the interactions between microscale land-atmosphere interactions and macroscale models. One essential research question is how to account for the small scale heterogeneities and whether 'effective' parameters can be used in the macroscale models. To address this question of scaling, the probability distribution for evaporation is derived which illustrates the conditions for which scaling should work. A correction algorithm that may appropriate for the land parameterization of a GCM is derived using a 2nd order linearization scheme. The performance of the algorithm is evaluated.
NASA Astrophysics Data System (ADS)
Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour
2012-03-01
Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.
NASA Astrophysics Data System (ADS)
Hu, Y.; Jia, G.
2009-12-01
Change vector analysis (CVA) is an effective approach for detecting and characterizing land-cover change by comparing pairs of multi-spectral and multi-temporal datasets over certain area derived from various satellite platforms. NDVI is considered as an effective detector for biophysical changes due to its sensitivity to red and near infrared signals, while land surface temperature (LST) is considered as a valuable indicator for changes of ground thermal conditions. Here we try to apply CVA over satellite derived LST datasets to detect changes of land surface thermal properties parallel to climate change and anthropogenic influence in a city cluster since 2001. In this study, monthly land surface temperature datasets from 2001-2008 derived from MODIS collection 5 were used to examine change pattern of thermal environment over the Bohai coastal region by using spectral change vector analysis. The results from principle component analysis (PCA) for LST show that the PC 1-3 contain over 80% information on monthly variations and these PCA components represent the main processes of land thermal environment change over the study area. Time series of CVA magnitude combined with land cover information show that greatest change occurred in urban and heavily populated area, featured with expansion of urban heat island, while moderate change appeared in grassland area in the north. However few changes were observed over large plain area and forest area. Strong signals also are related to economy level and especially the events of surface cover change, such as emergence of railway and port. Two main processes were also noticed about the changes of thermal environment. First, weak signal was detected in mostly natural area influenced by interannual climate change in temperate broadleaf forest area. Second, land surface temperature changes were controlled by human activities as 1) moderate change of LST happened in grassland influenced by grazing and 2) urban heat island was intensifier in major cities, such as Beijing and Tianjin. Further, the continual drier climate combined with human actions over past fifties years have intensified land thermal pattern change and the continuation will be an important aspects to understand land surface processes and local climate change. Land surface temperature trends from 2000-2008 over the Bohai coastal region
Gellis, Allen; Fuller, Christopher C.; Van Metre, Peter C.
2017-01-01
Fallout radionuclides, 7Be and 210Pbex, sampled in bed sediment for 99 watersheds in the Midwestern region of the United States and in 15 samples of suspended sediment from 3 of these watersheds were used to partition upland from channel sources and to estimate the age or the time since the surface-derived portion of sediment was on the land surface (0–∼1 year). Channel sources dominate: 78 of the 99 bed material sites (79%) have >50% channel-derived sediment, and 9 of the 15 suspended-sediment samples (60%) have >50% channel-derived sediment. 7Be was detected in 82 bed sediment samples and all 15 suspended-sediment samples. The surface-derived portion of 54 of the 80 (68%) streams with detectable 7Be and 210Pbex were ≤ 100 days old and the surface-derived portion of all suspended-sediment samples were ≤ 100 days old, indicating that surface-derived fine-grained sediment moves rapidly though these systems. The concentrations of two hydrophobic pesticides–DDE and bifenthrin–are correlated with the proportion of surface-derived sediment, indicating a link between geomorphic processes and particle-associated contaminants in streams. Urban areas had the highest pesticide concentrations and the largest percentage of surface-derived sediment. Although the percentage of surface-derived sediment is less than channel sources at most of the study sites, the relatively young age of the surface-derived sediment might indicate that management actions to reduce sediment contamination where the land surface is an important source could have noticeable effects.
Comparative Study of Lunar Roughness from Multi - Source Data
NASA Astrophysics Data System (ADS)
Lou, Y.; Kang, Z.
2017-07-01
The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe.
Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan
NASA Astrophysics Data System (ADS)
Yen-Ti, C.; Hwang, C.
2017-12-01
Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.
The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models
NASA Astrophysics Data System (ADS)
Yang, Z.
2011-12-01
I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.
Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data
NASA Technical Reports Server (NTRS)
King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven
2006-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.
Evaluation of MuSyQ land surface albedo based on LAnd surface Parameters VAlidation System (LAPVAS)
NASA Astrophysics Data System (ADS)
Dou, B.; Wen, J.; Xinwen, L.; Zhiming, F.; Wu, S.; Zhang, Y.
2016-12-01
satellite derived Land surface albedo is an essential climate variable which controls the earth energy budget and it can be used in applications such as climate change, hydrology, and numerical weather prediction. However, the accuracy and uncertainty of surface albedo products should be evaluated with a reliable reference truth data prior to applications. A new comprehensive and systemic project of china, called the Remote Sensing Application Network (CRSAN), has been launched recent years. Two subjects of this project is developing a Multi-source data Synergized Quantitative Remote Sensin g Production System ( MuSyQ ) and a Web-based validation system named LAnd surface remote sensing Product VAlidation System (LAPVAS) , which aims to generate a quantitative remote sensing product for ecosystem and environmental monitoring and validate them with a reference validation data and a standard validation system, respectively. Land surface BRDF/albedo is one of product datasets of MuSyQ which has a pentad period with 1km spatial resolution and is derived by Multi-sensor Combined BRDF Inversion ( MCBI ) Model. In this MuSyQ albedo evaluation, a multi-validation strategy is implemented by LAPVAS, including directly and multi-scale validation with field measured albedo and cross validation with MODIS albedo product with different land cover. The results reveal that MuSyQ albedo data with a 5-day temporal resolution is in higher sensibility and accuracy during land cover change period, e.g. snowing. But results without regard to snow or changed land cover, MuSyQ albedo generally is in similar accuracy with MODIS albedo and meet the climate modeling requirement of an absolute accuracy of 0.05.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Nicholson, Sharon E.
1987-01-01
How much of the interannual variation in the satellite derived radiation balance can be purely attributed to changes taking place at the land surface, was examined. The role of surface latent heating was examined in relation to its control of the precipitation pattern from one year to the next.
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Wigneron, Jean-Pierre; Rossow, William B.; Pardo-Carrion, Juan R.
1999-01-01
To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
NASA Astrophysics Data System (ADS)
Mugo, R. M.; Limaye, A. S.; Nyaga, J. W.; Farah, H.; Wahome, A.; Flores, A.
2016-12-01
The water quality of inland lakes is largely influenced by land use and land cover changes within the lake's catchment. In Africa, some of the major land use changes are driven by a number of factors, which include urbanization, intensification of agricultural practices, unsustainable farm management practices, deforestation, land fragmentation and degradation. Often, the impacts of these factors are observable on changes in the land cover, and eventually in the hydrological systems. When the natural vegetation cover is reduced or changed, the surface water flow patterns, water and nutrient retention capacities are also changed. This can lead to high nutrient inputs into lakes, leading to eutrophication, siltation and infestation of floating aquatic vegetation. To assess the relationship between land use and land cover changes in part of the Lake Victoria Basin, a series of land cover maps were derived from Landsat imagery. Changes in land cover were identified through change maps and statistics. Further, the surface water chlorophyll-a concentration and turbidity were derived from MODIS-Aqua data for Lake Victoria. Chlrophyll-a and turbidity are good proxy indicators of nutrient inputs and siltation respectively. The trends in chlorophyll-a and turbidity concentrations were analyzed and compared to the land cover changes over time. Certain land cover changes related to agriculture and urban development were clearly identifiable. While these changes might not be solely responsible for variability in chlrophyll-a and turbidity concentrations in the lake, they are potentially contributing factors to this problem. This work illustrates the importance of addressing watershed degradation while seeking to solve water quality related problems.
Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan
2014-04-01
The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research.
Muiti-Sensor Historical Climatology of Satellite-Derived Global Land Surface Moisture
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Richard; Holmes, Thomas
2007-01-01
A historical climatology of continuous satellite derived global land surface soil moisture is being developed. The data set consists of surface soil moisture retrievals from observations of both historical and currently active satellite microwave sensors, including Nimbus-7 SMMR, DMSP SSM/I, TRMM TMI, and AQUA AMSR-E. The data sets span the period from November 1978 through the end of 2006. The soil moisture retrievals are made with the Land Parameter Retrieval Model, a physically-based model which was developed jointly by researchers from the above institutions. These data are significant in that they are the longest continuous data record of observational surface soil moisture at a global scale. Furthermore, while previous reports have intimated that higher frequency sensors such as on SSM/I are unable to provide meaningful information on soil moisture, our results indicate that these sensors do provide highly useful soil moisture data over significant parts of the globe, and especially in critical areas located within the Earth's many arid and semi-arid regions.
Multi-temporal analysis of land surface temperature in highly urbanized districts
NASA Astrophysics Data System (ADS)
Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.
2017-12-01
Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.
Global discrimination of land cover types from metrics derived from AVHRR pathfinder data
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFries, R.; Hansen, M.; Townshend, J.
1995-12-01
Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less
Geographical Applications of Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Qihao; Zhou, Yuyu; Quattrochi, Dale
2013-02-28
Data and Information derived through Earth observation technology have been extensively used in geographic studies, such as in the areas of natural and human environments, resources, land use and land cover, human-environment interactions, and socioeconomic issues. Land-use and land-cover change (LULCC), affecting biodiversity, climate change, watershed hydrology, and other surface processes, is one of the most important research topics in geography.
NASA Astrophysics Data System (ADS)
Zeng, Chao; Long, Di; Shen, Huanfeng; Wu, Penghai; Cui, Yaokui; Hong, Yang
2018-07-01
Land surface temperature (LST) is one of the most important parameters in land surface processes. Although satellite-derived LST can provide valuable information, the value is often limited by cloud contamination. In this paper, a two-step satellite-derived LST reconstruction framework is proposed. First, a multi-temporal reconstruction algorithm is introduced to recover invalid LST values using multiple LST images with reference to corresponding remotely sensed vegetation index. Then, all cloud-contaminated areas are temporally filled with hypothetical clear-sky LST values. Second, a surface energy balance equation-based procedure is used to correct for the filled values. With shortwave irradiation data, the clear-sky LST is corrected to the real LST under cloudy conditions. A series of experiments have been performed to demonstrate the effectiveness of the developed approach. Quantitative evaluation results indicate that the proposed method can recover LST in different surface types with mean average errors in 3-6 K. The experiments also indicate that the time interval between the multi-temporal LST images has a greater impact on the results than the size of the contaminated area.
NASA Technical Reports Server (NTRS)
Vermote, E.; Roger, J. C.; Justice, C. O.; Franch, B.; Claverie, M.
2016-01-01
This paper presents a generic approach developed to derive surface reflectance over land from a variety of sensors. This technique builds on the extensive dataset acquired by the Terra platform by combining MODIS and MISR to derive an explicit and dynamic map of band ratio's between blue and red channels and is a refinement of the operational approach used for MODIS and LANDSAT over the past 15 years. We will present the generic approach and the application to MODIS and LANDSAT data and its validation using the AERONET data.
A new map of global ecological land units—An ecophysiographic stratification approach
Sayre, Roger; Dangermond, Jack; Frye, Charlie; Vaughan, Randy; Aniello, Peter; Breyer, Sean P.; Cribbs, Douglas; Hopkins, Dabney; Nauman, Richard; Derrenbacher, William; Wright, Dawn J.; Brown, Clint; Convis, Charles; Smith, Jonathan H.; Benson, Laurence; Van Sistine, Darren; Warner, Harumi; Cress, Jill Janene; Danielson, Jeffrey J.; Hamann, Sharon L.; Cecere, Thomas; Reddy, Ashwan D.; Burton, Devon; Grosse, Andrea; True, Diane; Metzger, Marc; Hartmann, Jens; Moosdorf, Nils; Durr, Hans; Paganini, Marc; Defourny, Pierre; Arino, Olivier; Maynard, Simone; Anderson, Mark; Comer, Patrick
2014-01-01
In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterized in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs. This subdivision of the Earth’s surface into relatively fine, ecological land areas is designed to be useful for various types of ecosystem research and management applications, including assessments of climate change impacts to ecosystems, economic and non-economic valuation of ecosystem services, and conservation planning.
NASA Technical Reports Server (NTRS)
Ozdogan, Mutlu; Rodell, Matthew; Beaudoing, Hiroko Kato; Toll, David L.
2009-01-01
A novel method is introduced for integrating satellite derived irrigation data and high-resolution crop type information into a land surface model (LSM). The objective is to improve the simulation of land surface states and fluxes through better representation of agricultural land use. Ultimately, this scheme could enable numerical weather prediction (NWP) models to capture land-atmosphere feedbacks in managed lands more accurately and thus improve forecast skill. Here we show that application of the new irrigation scheme over the continental US significantly influences the surface water and energy balances by modulating the partitioning of water between the surface and the atmosphere. In our experiment, irrigation caused a 12% increase in evapotranspiration (QLE) and an equivalent reduction in the sensible heat flux (QH) averaged over all irrigated areas in the continental US during the 2003 growing season. Local effects were more extreme: irrigation shifted more than 100 W/m from QH to QLE in many locations in California, eastern Idaho, southern Washington, and southern Colorado during peak crop growth. In these cases, the changes in ground heat flux (QG), net radiation (RNET), evapotranspiration (ET), runoff (R), and soil moisture (SM) were more than 3 W/m(sup 2), 20 W/m(sup 2), 5 mm/day, 0.3 mm/day, and 100 mm, respectively. These results are highly relevant to continental- to global-scale water and energy cycle studies that, to date, have struggled to quantify the effects of agricultural management practices such as irrigation. Based on the results presented here, we expect that better representation of managed lands will lead to improved weather and climate forecasting skill when the new irrigation scheme is incorporated into NWP models such as NOAA's Global Forecast System (GFS).
MOLA-Based Landing Site Characterization
NASA Technical Reports Server (NTRS)
Duxbury, T. C.; Ivanov, A. B.
2001-01-01
The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) data provide the basis for site characterization and selection never before possible. The basic MOLA information includes absolute radii, elevation and 1 micrometer albedo with derived datasets including digital image models (DIM's illuminated elevation data), slopes maps and slope statistics and small scale surface roughness maps and statistics. These quantities are useful in downsizing potential sites from descent engineering constraints and landing/roving hazard and mobility assessments. Slope baselines at the few hundred meter level and surface roughness at the 10 meter level are possible. Additionally, the MOLA-derived Mars surface offers the possibility to precisely register and map project other instrument datasets (images, ultraviolet, infrared, radar, etc.) taken at different resolution, viewing and lighting geometry, building multiple layers of an information cube for site characterization and selection. Examples of direct MOLA data, data derived from MOLA and other instruments data registered to MOLA arc given for the Hematite area.
NASA Astrophysics Data System (ADS)
Sure, A.; Dikshit, O.
2017-12-01
Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.
Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression
NASA Astrophysics Data System (ADS)
Anand, J.; Monks, P.
2016-12-01
Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.
Poppenga, Sandra K.; Worstell, Bruce B.; Stoker, Jason M.; Greenlee, Susan K.
2010-01-01
Digital elevation data commonly are used to extract surface flow features. One source for high-resolution elevation data is light detection and ranging (lidar). Lidar can capture a vast amount of topographic detail because of its fine-scale ability to digitally capture the surface of the earth. Because elevation is a key factor in extracting surface flow features, high-resolution lidar-derived digital elevation models (DEMs) provide the detail needed to consistently integrate hydrography with elevation, land cover, structures, and other geospatial features. The U.S. Geological Survey has developed selective drainage methods to extract continuous surface flow from high-resolution lidar-derived digital elevation data. The lidar-derived continuous surface flow network contains valuable information for water resource management involving flood hazard mapping, flood inundation, and coastal erosion. DEMs used in hydrologic applications typically are processed to remove depressions by filling them. High-resolution DEMs derived from lidar can capture much more detail of the land surface than courser elevation data. Therefore, high-resolution DEMs contain more depressions because of obstructions such as roads, railroads, and other elevated structures. The filling of these depressions can significantly affect the DEM-derived surface flow routing and terrain characteristics in an adverse way. In this report, selective draining methods that modify the elevation surface to drain a depression through an obstruction are presented. If such obstructions are not removed from the elevation data, the filling of depressions to create continuous surface flow can cause the flow to spill over an obstruction in the wrong location. Using this modified elevation surface improves the quality of derived surface flow and retains more of the true surface characteristics by correcting large filled depressions. A reliable flow surface is necessary for deriving a consistently connected drainage network, which is important in understanding surface water movement and developing applications for surface water runoff, flood inundation, and erosion. Improved methods are needed to extract continuous surface flow features from high-resolution elevation data based on lidar.
Impact of Land Cover Characterization and Properties on Snow Albedo in Climate Models
NASA Astrophysics Data System (ADS)
Wang, L.; Bartlett, P. A.; Chan, E.; Montesano, P.
2017-12-01
The simulation of winter albedo in boreal and northern environments has been a particular challenge for land surface modellers. Assessments of output from CMIP3 and CMIP5 climate models have revealed that many simulations are characterized by overestimation of albedo in the boreal forest. Recent studies suggest that inaccurate representation of vegetation distribution, improper simulation of leaf area index, and poor treatment of canopy-snow processes are the primary causes of albedo errors. While several land cover datasets are commonly used to derive plant functional types (PFT) for use in climate models, new land cover and vegetation datasets with higher spatial resolution have become available in recent years. In this study, we compare the spatial distribution of the dominant PFTs and canopy cover fractions based on different land cover datasets, and present results from offline simulations of the latest version Canadian Land Surface Scheme (CLASS) over the northern Hemisphere land. We discuss the impact of land cover representation and surface properties on winter albedo simulations in climate models.
NASA Astrophysics Data System (ADS)
Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.
2016-06-01
The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.
Forest inventory with LiDAR and stereo DSM on Washington department of natural resources lands
Jacob L. Strunk; Peter J. Gould
2015-01-01
DNRâs forest inventory group has completed its first version of a new remote-sensing based forest inventory system covering 1.4 million acres of DNR forest lands. We use a combination of field plots, lidar, NAIP, and a NAIP-derived canopy surface DSM. Given that height drives many key inventory variables (e.g. height, volume, biomass, carbon), remote-sensing derived...
Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data
NASA Technical Reports Server (NTRS)
King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.
2005-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.
Hou, Ying-Yu; He, Yan-Bo; Wang, Jian-Lin; Tian, Guo-Liang
2009-10-01
Based on the time series 10-day composite NOAA Pathfinder AVHRR Land (PAL) dataset (8 km x 8 km), and by using land surface energy balance equation and "VI-Ts" (vegetation index-land surface temperature) method, a new algorithm of land surface evapotranspiration (ET) was constructed. This new algorithm did not need the support from meteorological observation data, and all of its parameters and variables were directly inversed or derived from remote sensing data. A widely accepted ET model of remote sensing, i. e., SEBS model, was chosen to validate the new algorithm. The validation test showed that both the ET and its seasonal variation trend estimated by SEBS model and our new algorithm accorded well, suggesting that the ET estimated from the new algorithm was reliable, being able to reflect the actual land surface ET. The new ET algorithm of remote sensing was practical and operational, which offered a new approach to study the spatiotemporal variation of ET in continental scale and global scale based on the long-term time series satellite remote sensing images.
Light Detection and Ranging (LIDAR) is a powerful resource for coastal and wetland managers and its use is increasing. Vegetation density and other land cover characteristics influence the accuracy of LIDAR-derived ground surface digital elevation models; however the degree to wh...
Regional scale hydrology with a new land surface processes model
NASA Technical Reports Server (NTRS)
Laymon, Charles; Crosson, William
1995-01-01
Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.
NASA Astrophysics Data System (ADS)
Chatterjee, R. S.; Singh, Narendra; Thapa, Shailaja; Sharma, Dravneeta; Kumar, Dheeraj
2017-06-01
The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.
Real Time Land-Surface Hydrologic Modeling Over Continental US
NASA Technical Reports Server (NTRS)
Houser, Paul R.
1998-01-01
The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.
Land use planning and surface heat island formation: A parcel-based radiation flux approach
NASA Astrophysics Data System (ADS)
Stone, Brian; Norman, John M.
This article presents a study of residential parcel design and surface heat island formation in a major metropolitan region of the southeastern United States. Through the integration of high-resolution multispectral data (10 m) with property tax records for over 100,000 single-family residential parcels in the Atlanta, Georgia, metropolitan region, the influence of the size and material composition of residential land use on an indicator of surface heat island formation is reported. In contrast to previous work on the urban heat island, this study derives a parcel-based indicator of surface warming to permit the impact of land use planning regulations governing the density and design of development on the excess surface flux of heat energy to be measured. The results of this study suggest that the contribution of individual land parcels to regional surface heat island formation could be reduced by approximately 40% through the adoption of specific land use planning policies, such as zoning and subdivision regulations, and with no modifications to the size or albedo of the residential structure.
The impact of land-surface wetness heterogeneity on mesoscale heat fluxes
NASA Technical Reports Server (NTRS)
Chen, Fei; Avissar, Roni
1994-01-01
Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.
NASA Astrophysics Data System (ADS)
Rivalland, Vincent; Gascoin, Simon; Etchanchu, Jordi; Coustau, Mathieu; Cros, Jérôme; Tallec, Tiphaine
2016-04-01
The Sentinel-2 mission will enable to monitor the land cover and the vegetation phenology at high-resolution (HR) every 5 days. However, current Land Surface Models (LSM) typically use land cover and vegetation parameters derived from previous low to mid resolution satellite missions. Here we studied the effect of introducing Sentinel-2-like data in the simulation of the land surface energy and water fluxes in a region dominated by cropland. Simulations were performed with the ISBA-SURFEX LSM, which is used in the operational hydrometeorological chain of Meteo-France for hydrological forecasts and drought monitoring. By default, SURFEX vegetation land surface parameters and temporal evolution are from the ECOCLIMAP II European database mostly derived from MODIS products at 1 km resolution. The model was applied to an experimental area of 30 km by 30 km in south west France. In this area the resolution of ECOCLIMAP is coarser than the typical size of a crop field. This means that several crop types can be mixed in a pixel. In addition ECOCLIMAP provides a climatology of the vegetation phenology and thus does not account for the interannual effects of the climate and land management on the crop growth. In this work, we used a series of 26 Formosat-2 images at 8-m resolution acquired in 2006. From this dataset, we derived a land cover map and a leaf area index map (LAI) at each date, which were substituted to the ECOCLIMAP land cover map and the LAI maps. The model output water and energy fluxes were compared to a standard simulation using ECOCLIMAP only and to in situ measurements of soil moisture, latent and sensible heat fluxes. The results show that the introduction of the HR products improved the timing of the evapotranspiration. The impact was the most visible on the crops having a growing season in summer (maize, sunflower), because the growth period is more sensitive to the climate.
Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng
2017-10-01
As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.
A two stream radiative transfer model for scaling solar induced fluorescence from leaf to canopy
NASA Astrophysics Data System (ADS)
Quaife, T. L.
2017-12-01
Solar induced fluorescence (SIF) is becoming widely used as a proxy for gross primary productivity (GPP), in particular with the advent of its measurement by Earth Observation satellites such as OCO and GOSAT. A major attraction of SIF is that it is independent of the assumptions embedded in light use efficiency based GPP products derived from satellite missions such as MODIS. The assumptions in such products are likely not compatible with any given land surface model and hence comparing the two is problematic. On the other hand to compare land surface model predictions of GPP to satellite based SIF data requires either (a) translation of SIF into estimates of GPP, or (b) direct predictions of SIF from the land surface model itself. The former typically relies on empirical relationships, whereas the latter can make direct use of our physiological understanding of the link between photosynthesis and fluorescence at the leaf scale and is therefore preferable. Here I derive a two stream model for fluorescence that is capable of translating between leaf scale models of SIF and the canopy leaving radiance taking into account all levels of photon scattering. Other such models have been developed previously but the model described here is physically consistent with the Sellers' two stream radiative transfer scheme which is widely used in modern land surface models. Consequently any model that already employs the Sellers's scheme can use the new model without requiring modification. This includes, for example, JULES, the land surface model of the new UK Earth System Model (UKESM) and CLM, the US Community Land Model (part of the NCAR Earth System Model). The new canopy SIF model is extremely computationally efficient and can be applied to vertically inhomogeneous canopies.
Impacts of land cover transitions on surface temperature in China based on satellite observations
NASA Astrophysics Data System (ADS)
Zhang, Yuzhen; Liang, Shunlin
2018-02-01
China has experienced intense land use and land cover changes during the past several decades, which have exerted significant influences on climate change. Previous studies exploring related climatic effects have focused mainly on one or two specific land use changes, or have considered all land use and land cover change types together without distinguishing their individual impacts, and few have examined the physical processes of the mechanism through which land use changes affect surface temperature. However, in this study, we considered satellite-derived data of multiple land cover changes and transitions in China. The objective was to obtain observational evidence of the climatic effects of land cover transitions in China by exploring how they affect surface temperature and to what degree they influence it through the modification of biophysical processes, with an emphasis on changes in surface albedo and evapotranspiration (ET). To achieve this goal, we quantified the changes in albedo, ET, and surface temperature in the transition areas, examined their correlations with temperature change, and calculated the contributions of different land use transitions to surface temperature change via changes in albedo and ET. Results suggested that land cover transitions from cropland to urban land increased land surface temperature (LST) during both daytime and nighttime by 0.18 and 0.01 K, respectively. Conversely, the transition of forest to cropland tended to decrease surface temperature by 0.53 K during the day and by 0.07 K at night, mainly through changes in surface albedo. Decreases in both daytime and nighttime LST were observed over regions of grassland to forest transition, corresponding to average values of 0.44 and 0.20 K, respectively, predominantly controlled by changes in ET. These results highlight the necessity to consider the individual climatic effects of different land cover transitions or conversions in climate research studies. This short-term analysis of land cover transitions in China means our estimates should represent local temperature effects. Changes in ET and albedo explained <60% of the variation in LST change caused by land cover transitions; thus, additional factors that affect surface climate need consideration in future studies.
NASA Astrophysics Data System (ADS)
Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.
2014-01-01
Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.
Retrieval of the Land Surface Reflectance for Landsat-8 and Sentinel-2 and its validation.
NASA Astrophysics Data System (ADS)
Roger, J. C.; Vermote, E.; Skakun, S.; Franch, B.; Holben, B. N.; Justice, C. O.
2017-12-01
The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. For 25 years, Vermote and al. develop atmospheric corrections methods to define a land surface reflectance product for various satellites (AVHRR, MODIS, VIIRS…). This presentation highlights the algorithms developed both for Landsant-8 and Sentinel-2. We also emphasize the validation of the "Land surface reflectance" satellite products, which is a very important step to be done. For that purpose, we compared the surface reflectance products to a reference determined by using the accurate radiative transfer code 6S and very detailed measurements of the atmosphere obtained over the AERONET network (which allows to test for a large range of aerosol characteristics); formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. We describe here the protocol we have been working on based on our experience with the AERONET data and its application to Landsat-8 and Sentinel-2). We also derive a detailed error budget in relation to this approach. For a mean loaded atmosphere, t550 less than 0.25, the maximum uncertainty is 0.0025 corresponding to a relative uncertainty (in the RED channels): U < 1% for rsurf > 0.10, and 1% < U <2% for 0.10 >rsurf > 0.04.
Global Land Surface Temperature From the Along-Track Scanning Radiometers
NASA Astrophysics Data System (ADS)
Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.
2017-11-01
The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).
Challenges for continuity of L-Band observations over land
USDA-ARS?s Scientific Manuscript database
Over land, L-band observations are primarily used for the detection of soil freeze/thaw events and the quantification of surface soil moisture content. Both products have important science, climate and decision support applications and would benefit from longer historical data records derived from s...
NASA Astrophysics Data System (ADS)
Hong, Seungbum
Land and atmosphere interactions have long been recognized for playing a key role in climate and weather modeling. However their quantification has been challenging due to the complex nature of the land surface amongst various other reasons. One of the difficult parts in the quantification is the effect of vegetation which are related to land surface processes such soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examined the effects of vegetation and its relationship with soil moisture on the simulated land-atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Then, this study evaluates the model improvements for each simulation method.
Steyaert, Louis T.; Knox, R.G.
2008-01-01
Over the past 350 years, the eastern half of the United States experienced extensive land cover changes. These began with land clearing in the 1600s, continued with widespread deforestation, wetland drainage, and intensive land use by 1920, and then evolved to the present-day landscape of forest regrowth, intensive agriculture, urban expansion, and landscape fragmentation. Such changes alter biophysical properties that are key determinants of land-atmosphere interactions (water, energy, and carbon exchanges). To understand the potential implications of these land use transformations, we developed and analyzed 20-km land cover and biophysical parameter data sets for the eastern United States at 1650, 1850, 1920, and 1992 time slices. Our approach combined potential vegetation, county-level census data, soils data, resource statistics, a Landsat-derived land cover classification, and published historical information on land cover and land use. We reconstructed land use intensity maps for each time slice and characterized the land cover condition. We combined these land use data with a mutually consistent set of biophysical parameter classes, to characterize the historical diversity and distribution of land surface properties. Time series maps of land surface albedo, leaf area index, a deciduousness index, canopy height, surface roughness, and potential saturated soils in 1650, 1850, 1920, and 1992 illustrate the profound effects of land use change on biophysical properties of the land surface. Although much of the eastern forest has returned, the average biophysical parameters for recent landscapes remain markedly different from those of earlier periods. Understanding the consequences of these historical changes will require land-atmosphere interactions modeling experiments.
Advancing land surface model development with satellite-based Earth observations
NASA Astrophysics Data System (ADS)
Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo
2017-04-01
The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628
NASA Astrophysics Data System (ADS)
Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad
2015-12-01
Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Edgett, Kenneth S.
1994-01-01
Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.
Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen
2013-01-01
We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...
NASA Astrophysics Data System (ADS)
Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.
2013-05-01
Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.
Surface Soil Moisture Memory Estimated from Models and SMAP Observations
NASA Astrophysics Data System (ADS)
He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.
2017-12-01
Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data Product, 2014
Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping
2010-01-01
Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.
Urban Density Indices Using Mean Shift-Based Upsampled Elevetion Data
NASA Astrophysics Data System (ADS)
Charou, E.; Gyftakis, S.; Bratsolis, E.; Tsenoglou, T.; Papadopoulou, Th. D.; Vassilas, N.
2015-04-01
Urban density is an important factor for several fields, e.g. urban design, planning and land management. Modern remote sensors deliver ample information for the estimation of specific urban land classification classes (2D indicators), and the height of urban land classification objects (3D indicators) within an Area of Interest (AOI). In this research, two of these indicators, Building Coverage Ratio (BCR) and Floor Area Ratio (FAR) are numerically and automatically derived from high-resolution airborne RGB orthophotos and LiDAR data. In the pre-processing step the low resolution elevation data are fused with the high resolution optical data through a mean-shift based discontinuity preserving smoothing algorithm. The outcome is an improved normalized digital surface model (nDSM) is an upsampled elevation data with considerable improvement regarding region filling and "straightness" of elevation discontinuities. In a following step, a Multilayer Feedforward Neural Network (MFNN) is used to classify all pixels of the AOI to building or non-building categories. For the total surface of the block and the buildings we consider the number of their pixels and the surface of the unit pixel. Comparisons of the automatically derived BCR and FAR indicators with manually derived ones shows the applicability and effectiveness of the methodology proposed.
NASA Astrophysics Data System (ADS)
Hoffman, F. M.; Kumar, J.; Hargrove, W. W.
2013-12-01
Vegetated ecosystems typically exhibit unique phenological behavior over the course of a year, suggesting that remotely sensed land surface phenology may be useful for characterizing land cover and ecoregions. However, phenology is also strongly influenced by temperature and water stress; insect, fire, and storm disturbances; and climate change over seasonal, interannual, decadal and longer time scales. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a useful proxy for land surface phenology. We used NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) at 250 m resolution to develop phenological signatures of emergent ecological regimes called phenoregions. By applying a unsupervised, quantitative data mining technique to NDVI measurements for every eight days over the entire MODIS record, annual maps of phenoregions were developed. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. To reduce the impact of short-term disturbances, we derived a single map of the mode of annual phenological states for the CONUS, assigning each map cell to the state with the largest integrated NDVI in cases where multiple states tie for the highest frequency. Since the data mining technique is unsupervised, individual phenoregions are not associated with an ecologically understandable label. To add automated supervision to the process, we applied the method of Mapcurves, developed by Hargrove and Hoffman, to associate individual phenoregions with labeled polygons in expert-derived maps of biomes, land cover, and ecoregions. Utilizing spatial overlays with multiple expert-derived maps, this "label-stealing"' technique exploits the knowledge contained in a collection of maps to identify biome characteristics of our statistically derived phenoregions. Generalized land cover maps were produced by combining phenoregions according to their degree of spatial coincidence with expert-developed land cover or biome regions. Goodness-of-fit maps, which show the strength the spatial correspondence, were also generated.
NASA Technical Reports Server (NTRS)
Koster, Rindal D.; Milly, P. C. D.
1997-01-01
The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.
Koster, R.D.; Milly, P.C.D.
1997-01-01
The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMs) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snowcover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: 1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and 2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.
Nosrati, Kazem
2013-04-01
Soil degradation associated with soil erosion and land use is a critical problem in Iran and there is little or insufficient scientific information in assessing soil quality indicator. In this study, factor analysis (FA) and discriminant analysis (DA) were used to identify the most sensitive indicators of soil quality for evaluating land use and soil erosion within the Hiv catchment in Iran and subsequently compare soil quality assessment using expert opinion based on soil surface factors (SSF) form of Bureau of Land Management (BLM) method. Therefore, 19 soil physical, chemical, and biochemical properties were measured from 56 different sampling sites covering three land use/soil erosion categories (rangeland/surface erosion, orchard/surface erosion, and rangeland/stream bank erosion). FA identified four factors that explained for 82 % of the variation in soil properties. Three factors showed significant differences among the three land use/soil erosion categories. The results indicated that based upon backward-mode DA, dehydrogenase, silt, and manganese allowed more than 80 % of the samples to be correctly assigned to their land use and erosional status. Canonical scores of discriminant functions were significantly correlated to the six soil surface indices derived of BLM method. Stepwise linear regression revealed that soil surface indices: soil movement, surface litter, pedestalling, and sum of SSF were also positively related to the dehydrogenase and silt. This suggests that dehydrogenase and silt are most sensitive to land use and soil erosion.
Experiment of Rain Retrieval over Land Using Surface Emissivity Map Derived from TRMM TMI and JRA25
NASA Astrophysics Data System (ADS)
Furuzawa, Fumie; Masunaga, Hirohiko; Nakamura, Kenji
2010-05-01
We are developing a data-set of global land surface emissivity calculated from TRMM TMI brightness temperature (TB) and atmospheric profile data of Japanese 25-year Reanalysis Project (JRA-25) for the region identified as no-rain by TRMM PR, assuming zero cloud liquid water beyond 0-C level. For the evaluation, some characteristics of global monthly emissivity maps, for example, dependency of emissivity on each TMI frequency or each local time or seasonal/annual variation are checked. Moreover, these data are classified based on JRA25 land type or soilwetness and compared. Histogram of polarization difference of emissivity is similar to that of TB and mostly reflects the variability of land type or soil wetness, while histogram of vertical emissivity show a small difference. Next, by interpolating this instantaneous dataset with Gaussian function weighting, we derive an emissivity over neighboring rainy region and assess the interpolated emissivity by running radiative transfer model using PR rain profile and comparing with observed TB. Preliminary rain retrieval from the emissivities for some frequencies and TBs is evaluated based on PR rain profile and TMI rain rate. Moreover, another method is tested to estimate surface temperature from two emissivities, based on their statistical relation for each land type. We will show the results for vertical and horizontal emissivities of each frequency.
National Satellite Land Remote Sensing Data Archive
Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.
2013-01-01
The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.
NASA Astrophysics Data System (ADS)
Wilson, John P.
2012-01-01
This article examines how the methods and data sources used to generate DEMs and calculate land surface parameters have changed over the past 25 years. The primary goal is to describe the state-of-the-art for a typical digital terrain modeling workflow that starts with data capture, continues with data preprocessing and DEM generation, and concludes with the calculation of one or more primary and secondary land surface parameters. The article first describes some of ways in which LiDAR and RADAR remote sensing technologies have transformed the sources and methods for capturing elevation data. It next discusses the need for and various methods that are currently used to preprocess DEMs along with some of the challenges that confront those who tackle these tasks. The bulk of the article describes some of the subtleties involved in calculating the primary land surface parameters that are derived directly from DEMs without additional inputs and the two sets of secondary land surface parameters that are commonly used to model solar radiation and the accompanying interactions between the land surface and the atmosphere on the one hand and water flow and related surface processes on the other. It concludes with a discussion of the various kinds of errors that are embedded in DEMs, how these may be propagated and carried forward in calculating various land surface parameters, and the consequences of this state-of-affairs for the modern terrain analyst.
NOAA AVHRR Land Surface Albedo Algorithm Development
NASA Technical Reports Server (NTRS)
Toll, D. L.; Shirey, D.; Kimes, D. S.
1997-01-01
The primary objective of this research is to develop a surface albedo model for the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR). The primary test site is the Konza prairie, Kansas (U.S.A.), used by the International Satellite Land Surface Climatology Project (ISLSCP) in the First ISLSCP Field Experiment (FIFE). In this research, high spectral resolution field spectrometer data was analyzed to simulate AVHRR wavebands and to derive surface albedos. Development of a surface albedo algorithm was completed by analysing a combination of satellite, field spectrometer, and ancillary data. Estimated albedos from the field spectrometer data were compared to reference albedos derived using pyranometer data. Variations from surface anisotropy of reflected solar radiation were found to be the most significant albedo-related error. Additional error or sensitivity came from estimation of a shortwave mid-IR reflectance (1.3-4.0 micro-m) using the AVHRR red and near-IR bands. Errors caused by the use of AVHRR spectral reflectance to estimate both a total visible (0.4-0.7 micro-m) and near-IR (0.7-1.3 micro-m) reflectance were small. The solar spectral integration, using the derived ultraviolet, visible, near-IR and SW mid-IR reflectivities, was not sensitive to many clear-sky changes in atmospheric properties and illumination conditions.
Quantifying the impact of human activity on temperatures in Germany
NASA Astrophysics Data System (ADS)
Benz, Susanne A.; Bayer, Peter; Blum, Philipp
2017-04-01
Human activity directly influences ambient air, surface and groundwater temperatures. Alterations of surface cover and land use influence the ambient thermal regime causing spatial temperature anomalies, most commonly heat islands. These local temperature anomalies are primarily described within the bounds of large and densely populated urban settlements, where they form so-called urban heat islands (UHI). This study explores the anthropogenic impact not only for selected cities, but for the thermal regime on a countrywide scale, by analyzing mean annual temperature datasets in Germany in three different compartments: measured surface air temperature (SAT), measured groundwater temperature (GWT), and satellite-derived land surface temperature (LST). As a universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat intensity (AHI) is introduced. It is closely related to the urban heat island intensity, but determined for each pixel (for satellite-derived LST) or measurement point (for SAT and GWT) of a large, even global, dataset individually, regardless of land use and location. Hence, it provides the unique opportunity to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) to find main instances of anthropogenic temperature anomalies within the study area, in this case Germany, and c) to study the impact of smaller settlements or industrial sites on temperatures. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1 km × 1 km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5 K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities > 4 K. Overall, surface anthropogenic heat intensities > 0 K and therefore urban heat islands are observed in communities down to a population of 5,000.
Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data
NASA Technical Reports Server (NTRS)
King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.
2004-01-01
Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which cutails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and statistics. These products are stored on 1'(approximately 10 km) and coarser resolution equal-angle grids, and are computed for the first seven MODIS wavelengths, ranging from 0.47 through 2.1 microns, and for three broadband wavelengths, 0.3-0.7,0.3-5.0 and 0.7-5.0 microns.
Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images
NASA Technical Reports Server (NTRS)
Diner, D.; Paradise, S.; Martonchik, J.
1994-01-01
In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.
NASA Astrophysics Data System (ADS)
Zhou, Bo; He, Hong S.; Nigh, Timothy A.; Schulz, John H.
2012-08-01
Human population growth and associated sprawl has rapidly converted open lands to developed use and affected their distinctive ecological characteristics. Missouri reflects a full range of sprawl characteristics that include large metropolitan centers, which led growth in 1980s, and smaller metropolitan and rural areas, which led growth in 1990s. In order to study the historical patterns of sprawl, there is a need to quantitatively and geographically depict the extent and density of impervious surface for three time periods of 1980, 1990, and 2000 for the entire state of Missouri. We mapped impervious surface using Sub-pixel Classifier™, an add-on module of Erdas Imagine for the three time periods, where impervious surface growth was derived as the subtraction of impervious surface mapped from the different time periods. Accuracy assessment was performed by comparing satellite derived impervious surface images with ground-truth acquired from high resolution air photos. Results show that during 1980-2000, 129,853 ha of land were converted to impervious surface. Sprawl was prominent on urban fringe (within the urban boundaries) during 1980s with 23,674 ha of land converted to impervious surface compared to 22,918 ha in 1990s. There was a temporal shift in the rural landscapes (outside the urban boundaries) in the 1990s with 48,079 ha of land converted to impervious surface compared to 35,180 ha in 1980s. Major findings based on analysis of the impervious surface growth include: (i) new growth of impervious surfaces are concentrated on areas with 0.5-1.0% road cover; (ii) most new growths are either inside or close to urban watersheds; and (iii) most new growths are either inside or close to counties with metropolitan cities. This research goes beyond the usual hot spots of metropolitan areas to include rural landscapes where negative impact was exerted to the ecosystem due to the low density development and larger affected areas.
NASA Astrophysics Data System (ADS)
Huang, Min; Carmichael, Gregory R.; Crawford, James H.; Wisthaler, Armin; Zhan, Xiwu; Hain, Christopher R.; Lee, Pius; Guenther, Alex B.
2017-08-01
Land and atmospheric initial conditions of the Weather Research and Forecasting (WRF) model are often interpolated from a different model output. We perform case studies during NASA's SEAC4RS and DISCOVER-AQ Houston airborne campaigns, demonstrating that using land initial conditions directly downscaled from a coarser resolution dataset led to significant positive biases in the coupled NASA-Unified WRF (NUWRF, version 7) surface and near-surface air temperature and planetary boundary layer height (PBLH) around the Missouri Ozarks and Houston, Texas, as well as poorly partitioned latent and sensible heat fluxes. Replacing land initial conditions with the output from a long-term offline Land Information System (LIS) simulation can effectively reduce the positive biases in NUWRF surface air temperature by ˜ 2 °C. We also show that the LIS land initialization can modify surface air temperature errors almost 10 times as effectively as applying a different atmospheric initialization method. The LIS-NUWRF-based isoprene emission calculations by the Model of Emissions of Gases and Aerosols from Nature (MEGAN, version 2.1) are at least 20 % lower than those computed using the coarser resolution data-initialized NUWRF run, and are closer to aircraft-observation-derived emissions. Higher resolution MEGAN calculations are prone to amplified discrepancies with aircraft-observation-derived emissions on small scales. This is possibly a result of some limitations of MEGAN's parameterization and uncertainty in its inputs on small scales, as well as the representation error and the neglect of horizontal transport in deriving emissions from aircraft data. This study emphasizes the importance of proper land initialization to the coupled atmospheric weather modeling and the follow-on emission modeling. We anticipate it to also be critical to accurately representing other processes included in air quality modeling and chemical data assimilation. Having more confidence in the weather inputs is also beneficial for determining and quantifying the other sources of uncertainties (e.g., parameterization, other input data) of the models that they drive.
Mars Exploration Rovers Entry, Descent, and Landing Trajectory Analysis
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Knocke, Philip C.
2007-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
A multitemporal (1979-2009) land-use/land-cover dataset of the binational Santa Cruz Watershed
2011-01-01
Trends derived from multitemporal land-cover data can be used to make informed land management decisions and to help managers model future change scenarios. We developed a multitemporal land-use/land-cover dataset for the binational Santa Cruz watershed of southern Arizona, United States, and northern Sonora, Mexico by creating a series of land-cover maps at decadal intervals (1979, 1989, 1999, and 2009) using Landsat Multispectral Scanner and Thematic Mapper data and a classification and regression tree classifier. The classification model exploited phenological changes of different land-cover spectral signatures through the use of biseasonal imagery collected during the (dry) early summer and (wet) late summer following rains from the North American monsoon. Landsat images were corrected to remove atmospheric influences, and the data were converted from raw digital numbers to surface reflectance values. The 14-class land-cover classification scheme is based on the 2001 National Land Cover Database with a focus on "Developed" land-use classes and riverine "Forest" and "Wetlands" cover classes required for specific watershed models. The classification procedure included the creation of several image-derived and topographic variables, including digital elevation model derivatives, image variance, and multitemporal Kauth-Thomas transformations. The accuracy of the land-cover maps was assessed using a random-stratified sampling design, reference aerial photography, and digital imagery. This showed high accuracy results, with kappa values (the statistical measure of agreement between map and reference data) ranging from 0.80 to 0.85.
Estimating the Longwave Radiation Underneath the Forest Canopy in Snow-dominated Setting
NASA Astrophysics Data System (ADS)
Zhou, Y.; Kumar, M.; Link, T. E.
2017-12-01
Forest canopies alter incoming longwave radiation at the land surface, thus influencing snow cover energetics. The snow surface receives longwave radiation from the sky as well as from surrounding vegetation. The longwave radiation from trees is determined by its skin temperature, which shows significant heterogeneity depending on its position and morphometric attributes. Here our goal is to derive an effective tree temperature that can be used to estimate the longwave radiation received by the land surface pixel. To this end, we implement these three steps: 1) derive a relation between tree trunk surface temperature and the incident longwave radiation, shortwave radiation, and air temperature; 2) develop an inverse model to calculate the effective temperature by establishing a relationship between the effective temperature and the actual tree temperature; and 3) estimate the effective temperature using widely measured variables, such as solar radiation and forest density. Data used to derive aforementioned relations were obtained at the University of Idaho Experimental Forest, in northern Idaho. Tree skin temperature, incoming longwave radiation, solar radiation received by the tree surface, and air temperature were measured at an isolated tree and a tree within a homogeneous forest stand. Longwave radiation received by the land surface and the sky view factors were also measured at the same two locations. The calculated effective temperature was then compared with the measured tree trunk surface temperature. Additional longwave radiation measurements with pyrgeometer arrays were conducted under forests with different densities to evaluate the relationship between effective temperature and forest density. Our preliminary results show that when exposed to direct shortwave radiation, the tree surface temperature shows a significant difference from the air temperature. Under cloudy or shaded conditions, the tree surface temperature closely follows the air temperature. The effective tree temperature follows the air temperature in a dense forest stand, although it is significantly larger than the air temperature near the isolated tree. This discrepancy motivates us to explore ways to represent the effective tree temperature for stands with different densities.
Assessment of Mars Exploration Rover Landing Site Predictions
NASA Astrophysics Data System (ADS)
Golombek, M. P.
2005-05-01
Comprehensive analyses of remote sensing data during the 3-year effort to select the Mars Exploration Rover landing sites at Gusev crater and Meridiani Planum correctly predicted the safe and trafficable surfaces explored by the two rovers. Gusev crater was predicted to be a relatively low relief surface that was comparably dusty, but less rocky than the Viking landing sites. Available data for Meridiani Planum indicated a very flat plain composed of basaltic sand to granules and hematite that would look completely unlike any of the existing landing sites with a dark, low albedo surface, little dust and very few rocks. Orbital thermal inertia measurements of 315 J m-2 s-0.5 K-1 at Gusev suggested surfaces dominated by duricrust to cemented soil-like materials or cohesionless sand or granules, which is consistent with observed soil characteristics and measured thermal inertias from the surface. THEMIS thermal inertias along the traverse at Gusev vary from 285 at the landing site to 330 around Bonneville rim and show systematic variations that can be related to the observed increase in rock abundance (5-30%). Meridiani has an orbital bulk inertia of ~200, similar to measured surface inertias that correspond to observed surfaces dominated by 0.2 mm sand size particles. Rock abundance derived from orbital thermal differencing techniques suggested that Meridiani Planum would have very low rock abundance, consistent with the rock free plain traversed by Opportunity. Spirit landed in an 8% orbital rock abundance pixel, consistent with the measured 7% of the surface covered by rocks >0.04 m diameter at the landing site, which is representative of the plains away from craters. The orbital albedo of the Spirit traverse varies from 0.19 to 0.30, consistent with surface measurements in and out of dust devil tracks. Opportunity is the first landing in a low albedo portion of Mars as seen from orbit, which is consistent with the dark, dust-free surface and measured albedos. The close correspondence between surface characteristics inferred from orbital remote sensing data and that found at the landing sites argues that future efforts to select safe landing sites will be successful. Linking the five landing sites to their remote sensing signatures suggests that they span most of the important, likely safe surfaces available for landing on Mars.
Bektaş Balçik, Filiz
2014-02-01
For the past 60 years, Istanbul has been experiencing an accelerated urban expansion. This urban expansion is leading to the replacement of natural surfaces by various artificial materials. This situation has a critical impact on the environment due to the alteration of heat energy balance. In this study, the effect upon the urban heat island (UHI) of Istanbul was analyzed using 2009 dated Landsat 5 Thematic Mapper (TM) data. An Index Based Built-up Index (IBI) was used to derive artificial surfaces in the study area. To produce the IBI index, Soil-Adjusted Vegetation Index, Normalized Difference Built-up Index, and Modified Normalized Difference Water Index were calculated. Land surface temperature (LST) distribution was derived from Landsat 5 TM images using a mono-window algorithm. In addition, 24 transects were selected, and different regression models were applied to explore the correlation between LST and IBI index. The results show that artificial surfaces have a positive exponential relationship with LST rather than a simple linear one. An ecological evaluation index of the region was calculated to explore the impact of both the vegetated land and the artificial surfaces on the UHI. Therefore, the quantitative relationship of urban components (artificial surfaces, vegetation, and water) and LST was examined using multivariate statistical analysis, and the correlation coefficient was obtained as 0.829. This suggested that the areas with a high rate of urbanization will accelerate the rise of LST and UHI in Istanbul.
NASA Astrophysics Data System (ADS)
Lague, M. M.; Swann, A. L. S.; Bonan, G. B.
2017-12-01
Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).
Land, Cryosphere, and Nighttime Environmental Products from Suomi NPP VIIRS: Overview and Status
NASA Technical Reports Server (NTRS)
Roman, Miguel O.; Justice, Chris; Csiszar, Ivan
2014-01-01
The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-orbiting Partnership (S-NPP: http://npp.gsfc.nasa.gov/). VIIRS was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provide observation continuity with NASA's Earth Observing System's (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA and NOAA funded scientists have been working to evaluate the instrument performance and derived products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the former National Polar-orbiting Environmental Satellite System (NPOESS). The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs and providing MODIS data product continuity. This paper will present to-date findings of the NASA Science Team's evaluation of the VIIRS Land and Cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization (http://viirsland.gsfc.nasa.gov/index.html). The paper will also discuss new capabilities being developed at NASA's Land Product Evaluation and Test Element (http://landweb.nascom.nasa.gov/NPP_QA/); including downstream data and products derived from the VIIRS Day/Night Band (DNB).
NASA Astrophysics Data System (ADS)
Candy, B.; Saunders, R. W.; Ghent, D.; Bulgin, C. E.
2017-09-01
Land surface temperature (LST) observations from a variety of satellite instruments operating in the infrared have been compared to estimates of surface temperature from the Met Office operational numerical weather prediction (NWP) model. The comparisons show that during the day the NWP model can underpredict the surface temperature by up to 10 K in certain regions such as the Sahel and southern Africa. By contrast at night the differences are generally smaller. Matchups have also been performed between satellite LSTs and observations from an in situ radiometer located in Southern England within a region of mixed land use. These matchups demonstrate good agreement at night and suggest that the satellite uncertainties in LST are less than 2 K. The Met Office surface analysis scheme has been adapted to utilize nighttime LST observations. Experiments using these analyses in an NWP model have shown a benefit to the resulting forecasts of near-surface air temperature, particularly over Africa.
Hanes, Jonathan M.; Liang, Liang; Morisette, Jeffrey T.
2013-01-01
Certain vegetation types (e.g., deciduous shrubs, deciduous trees, grasslands) have distinct life cycles marked by the growth and senescence of leaves and periods of enhanced photosynthetic activity. Where these types exist, recurring changes in foliage alter the reflectance of electromagnetic radiation from the land surface, which can be measured using remote sensors. The timing of these recurring changes in reflectance is called land surface phenology (LSP). During recent decades, a variety of methods have been used to derive LSP metrics from time series of reflectance measurements acquired by satellite-borne sensors. In contrast to conventional phenology observations, LSP metrics represent the timing of reflectance changes that are driven by the aggregate activity of vegetation within the areal unit measured by the satellite sensor and do not directly provide information about the phenology of individual plants, species, or their phenophases. Despite the generalized nature of satellite sensor-derived measurements, they have proven useful for studying changes in LSP associated with various phenomena. This chapter provides a detailed overview of the use of satellite remote sensing to monitor LSP. First, the theoretical basis for the application of satellite remote sensing to the study of vegetation phenology is presented. After establishing a theoretical foundation for LSP, methods of deriving and validating LSP metrics are discussed. This chapter concludes with a discussion of major research findings and current and future research directions.
Comparison of global cloud liquid water path derived from microwave measurements with CERES-MODIS
NASA Astrophysics Data System (ADS)
Yi, Y.; Minnis, P.; Huang, J.; Lin, B.; Ayers, K.; Sun-Mack, S.; Fan, A.
Cloud liquid water path LWP is a crucial parameter for climate studies due to the link that it provides between the atmospheric hydrological and radiative budgets Satellite-based visible infrared techniques such as the Visible Infrared Solar Split-Window Technique VISST can retrieve LWP for water clouds assumes single-layer over a variety of surfaces If the water clouds are overlapped by ice clouds the LWP of the underlying clouds can not be retrieved by such techniques However microwave techniques may be used to retrieve the LWP underneath ice clouds due to the microwave s insensitivity to cloud ice particles LWP is typically retrieved from satellite-observed microwave radiances only over ocean due to variations of land surface temperature and emissivity Recently Deeter and Vivekanandan 2006 developed a new technique for retrieving LWP over land In order to overcome the sensitivity to land surface temperature and emissivity their technique is based on a parameterization of microwave polarization-difference signals In this study a similar regression-based technique for retrieving LWP over land and ocean using Advanced Microwave Scanning Radiometer - EOS AMSR-E measurements is developed Furthermore the microwave surface emissivities are also derived using clear-sky fields of view based on the Clouds and Earth s Radiant Energy System Moderate-resolution Imaging Spectroradiometer CERES-MODIS cloud mask These emissivities are used in an alternate form of the technique The results are evaluated using independent measurements such
USDA-ARS?s Scientific Manuscript database
Surface albedo is widely used in climate and environment applications as an important parameter for controlling the surface energy budget. There is an increasing need for fine resolution (< 100 m) albedo data for use in small scale applications and for validating coarse-resolution datasets; however,...
NASA Astrophysics Data System (ADS)
Curra, C.; Arnold, E.; Karwoski, B.; Grima, C.; Schroeder, D. M.; Young, D. A.; Blankenship, D. D.
2013-12-01
The shape and composition of the surface of Europa result from multiple processes, most of them involving direct and indirect interactions between the liquid and solid phases of its outer water layer. The surface ice composition is likely to reflect the material exchanged with the sub-glacial ocean and potentially holds signatures of organic compounds that could demonstrate the ability of the icy moon to sustain life. Therefore, the most likely targets for in-situ landing missions are primarily located in complex terrains disrupted by exchange mechanisms with the ocean/lenses of sub-glacial liquid water. Any landing site selection process to ensure a safe delivery of a future lander, will then have to confidently characterize its surface roughness. We evaluate the capability of an ice-penetrating radar to characterize the roughness using a statistical method applied to the surface echoes. Our approach is to compare radar-derived data with nadir-imagery and laser altimetry simultaneously acquired on an airborne platform over Marie Byrd Land, West Antarctica, during the 2012-13 GIMBLE survey. The radar is the High-Capability Radar Sounder 2 (HiCARS 2, 60 MHz) system operated by the University of Texas Institute for Geophysics (UTIG), with specifications similar to the Ice Penetrating Radar (IPR) of the Europa Clipper project. Surface textures as seen by simultaneously collected nadir imagery are manually classified, allowing individual contrast stretching for better identification. We identified crevasse fields, blue ice patches, and families of wind-blown patterns. Homogeneity/heterogeneity of the textures has also been an important classification criterion. The various textures are geolocated and compared to the evolution and amplitude of laser-derived and radar-derived roughness. Similarities and discrepancies between these three datasets are illustrated and analyzed to qualitatively constrain radar sensitivity to the surface textures. The result allows for a first insight and discussion into how to interpret statistically-inverted radar data from an icy planetary surface.
NASA Technical Reports Server (NTRS)
Matthews, E.
1984-01-01
A simple method was developed for improved prescription of seasonal surface characteristics and parameterization of land-surface processes in climate models. This method, developed for the Goddard Institute for Space Studies General Circulation Model II (GISS GCM II), maintains the spatial variability of fine-resolution land-cover data while restricting to 8 the number of vegetation types handled in the model. This was achieved by: redefining the large number of vegetation classes in the 1 deg x 1 deg resolution Matthews (1983) vegetation data base as percentages of 8 simple types; deriving roughness length, field capacity, masking depth and seasonal, spectral reflectivity for the 8 types; and aggregating these surface features from the 1 deg x 1 deg resolution to coarser model resolutions, e.g., 8 deg latitude x 10 deg longitude or 4 deg latitude x 5 deg longitude.
Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product
NASA Technical Reports Server (NTRS)
Vermote, Eric; Justice, Chris; Claverie, Martin; Franch, Belen
2016-01-01
The surface reflectance, i.e., satellite derived top of atmosphere (TOA) reflectance corrected for the temporally, spatially and spectrally varying scattering and absorbing effects of atmospheric gases and aerosols, is needed to monitor the land surface reliably. For this reason, the surface reflectance, and not TOA reflectance, is used to generate the greater majority of global land products, for example, from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Even if atmospheric effects are minimized by sensor design, atmospheric effects are still challenging to correct. In particular, the strong impact of aerosols in the visible and near infrared spectral range can be difficult to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol size, shape, chemistry and density.
NASA Astrophysics Data System (ADS)
Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.
2016-11-01
With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.
NASA Astrophysics Data System (ADS)
Anand, Jasdeep S.; Monks, Paul S.
2017-07-01
Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.
Assessment of NPP VIIRS Albedo Over Heterogeneous Crop Land in Northern China
NASA Astrophysics Data System (ADS)
Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Yu, Yunyue; You, Dongqin; Hueni, Andreas
2017-12-01
In this paper, the accuracy of Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) land surface albedo, which is derived from the direct estimation algorithm, was assessed using ground-based albedo observations from a wireless sensor network over a heterogeneous cropland in the Huailai station, northern China. Data from six nodes spanning 2013-2014 over vegetation, bare soil, and mixed terrain surfaces were utilized to provide ground reference at VIIRS pixel scale. The performance of VIIRS albedo was also compared with Global LAnd Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) albedos (Collection 5 and 6). The results indicate that the current granular VIIRS albedo has a high accuracy with a root-mean-square error of 0.02 for typical land covers. They are significantly correlated with ground references indicated by a correlation coefficient (R) of 0.73. The VIIRS albedo shows distinct advantages to GLASS and MODIS albedos over bare soil and mixed-cover surfaces, while it is inferior to the other two products over vegetated surfaces. Furthermore, its time continuity and the ability to capture the abrupt change of surface albedo are better than that of GLASS and MODIS albedo.
Sulfur Mineralogy at the Mars Phoenix Landing Site
NASA Technical Reports Server (NTRS)
Ming, Douglas W.; Morris, R.V.; Golden, D.C.; Sutter, B.; Clark, B.C.; Boynton, W.V.; Hecht, M.H.; Kounaves, S.P.
2009-01-01
The Mars Phoenix Scout mission landed at the northernmost location (approx.68deg N) of any lander or rover on the martian surface. This paper compares the S mineralogy at the Phoenix landing site with S mineralogy of soils studied by previous Mars landers. S-bearing phases were not directly detected by the payload onboard the Phoenix spacecraft. Our objective is to derive the possible mineralogy of S-bearing phases at the Phoenix landing site based upon Phoenix measurements in combination with orbital measurements, terrestrial analog and Martian meteorite studies, and telescopic observations.
Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data
NASA Technical Reports Server (NTRS)
DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.;
2013-01-01
Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data
NASA Astrophysics Data System (ADS)
Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.
2013-12-01
Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
Brakebill, J.W.; Preston, S.D.
2003-01-01
The U.S. Geological Survey has developed a methodology for statistically relating nutrient sources and land-surface characteristics to nutrient loads of streams. The methodology is referred to as SPAtially Referenced Regressions On Watershed attributes (SPARROW), and relates measured stream nutrient loads to nutrient sources using nonlinear statistical regression models. A spatially detailed digital hydrologic network of stream reaches, stream-reach characteristics such as mean streamflow, water velocity, reach length, and travel time, and their associated watersheds supports the regression models. This network serves as the primary framework for spatially referencing potential nutrient source information such as atmospheric deposition, septic systems, point-sources, land use, land cover, and agricultural sources and land-surface characteristics such as land use, land cover, average-annual precipitation and temperature, slope, and soil permeability. In the Chesapeake Bay watershed that covers parts of Delaware, Maryland, Pennsylvania, New York, Virginia, West Virginia, and Washington D.C., SPARROW was used to generate models estimating loads of total nitrogen and total phosphorus representing 1987 and 1992 land-surface conditions. The 1987 models used a hydrologic network derived from an enhanced version of the U.S. Environmental Protection Agency's digital River Reach File, and course resolution Digital Elevation Models (DEMs). A new hydrologic network was created to support the 1992 models by generating stream reaches representing surface-water pathways defined by flow direction and flow accumulation algorithms from higher resolution DEMs. On a reach-by-reach basis, stream reach characteristics essential to the modeling were transferred to the newly generated pathways or reaches from the enhanced River Reach File used to support the 1987 models. To complete the new network, watersheds for each reach were generated using the direction of surface-water flow derived from the DEMs. This network improves upon existing digital stream data by increasing the level of spatial detail and providing consistency between the reach locations and topography. The hydrologic network also aids in illustrating the spatial patterns of predicted nutrient loads and sources contributed locally to each stream, and the percentages of nutrient load that reach Chesapeake Bay.
Comparing land surface phenology derived from satellite and GPS network microwave remote sensing.
Jones, Matthew O; Kimball, John S; Small, Eric E; Larson, Kristine M
2014-08-01
The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The vegetation optical depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to the prohibitive costs of maintaining regional monitoring networks. Alternatively, a normalized microwave reflectance index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation. We compared multiyear (2007-2011) NMRI and satellite VOD records at over 300 GPS sites in North America, and their derived SOS metrics for a subset of 24 homogenous land cover sites to investigate VOD and NMRI correspondence, and potential NMRI utility for LSP validation. Significant correlations (P<0.05) were found at 276 of 305 sites (90.5 %), with generally favorable correspondence in the resulting SOS metrics (r (2)=0.73, P<0.001, RMSE=36.8 days). This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation, including spatial scale discrepancies between local NMRI measurements and relatively coarse satellite VOD retrievals.
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
2017-02-22
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Exploring new topography-based subgrid spatial structures for improving land surface modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
NASA Astrophysics Data System (ADS)
Yang, Junhua; Ji, Zhenming; Chen, Deliang; Kang, Shichang; Fu, Congshen; Duan, Keqin; Shen, Miaogen
2018-06-01
The application of satellite radiance assimilation can improve the simulation of precipitation by numerical weather prediction models. However, substantial quantities of satellite data, especially those derived from low-level (surface-sensitive) channels, are rejected for use because of the difficulty in realistically modeling land surface emissivity and energy budgets. Here, we used an improved land use and leaf area index (LAI) dataset in the WRF-3DVAR assimilation system to explore the benefit of using improved quality of land surface information to improve rainfall simulation for the Shule River Basin in the northeastern Tibetan Plateau as a case study. The results for July 2013 show that, for low-level channels (e.g., channel 3), the underestimation of brightness temperature in the original simulation was largely removed by more realistic land surface information. In addition, more satellite data could be utilized in the assimilation because the realistic land use and LAI data allowed more satellite radiance data to pass the deviation test and get used by the assimilation, which resulted in improved initial driving fields and better simulation in terms of temperature, relative humidity, vertical convection, and cumulative precipitation.
Mahmoud, Shereif H.; Alazba, A. A.
2015-01-01
The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities. PMID:25923712
NASA Technical Reports Server (NTRS)
Yang, R.; Houser, P.; Joiner, J.
1998-01-01
The surface ground temperature (Tg) is an important meteorological variable, because it represents an integrated thermal state of the land surface determined by a complex surface energy budget. Furthermore, Tg affects both the surface sensible and latent heat fluxes. Through these fluxes. the surface budget is coupled with the atmosphere above. Accurate Tg data are useful for estimating the surface radiation budget and fluxes, as well as soil moisture. Tg is not included in conventional synoptical weather station reports. Currently, satellites provide Tg estimates globally. It is necessary to carefully consider appropriate methods of using these satellite data in a data assimilation system. Recently, an Off-line Land surface GEOS Assimilation (OLGA) system was implemented at the Data Assimilation Office at NASA-GSFC. One of the goals of OLGA is to assimilate satellite-derived Tg data. Prior to the Tg assimilation, a thorough investigation of satellite- and model-derived Tg, including error estimates, is required. In this study we examine the Tg from the n Project (ISCCP DI) data and the OLGA simulations. The ISCCP data used here are 3-hourly DI data (2.5x2.5 degree resolution) for 1992 summer months (June, July, and August) and winter months (January and February). The model Tg for the same periods were generated by OLGA. The forcing data for this OLGA 1992 simulation were generated from the GEOS-1 Data Assimilation System (DAS) at Data Assimilation Office NASA-GSFC. We examine the discrepancies between ISCCP and OLGA Tg with a focus on its spatial and temporal characteristics, particularly on the diurnal cycle. The error statistics in both data sets, including bias, will be estimated. The impact of surface properties, including vegetation cover and type, topography, etc, on the discrepancies will be addressed.
Validation of ET maps derived from MODIS imagery
NASA Astrophysics Data System (ADS)
Hong, S.; Hendrickx, J. M.; Borchers, B.
2005-12-01
In previous work we have used the New Mexico Tech implementation of the Surface Energy Balance Algorithm for Land (SEBAL-NMT) for the generation of ET maps from LandSat imagery. Comparison of these SEBAL ET estimates versus ET ground measurements using eddy covariance showed satisfactory agreement between the two methods in the heterogeneous arid landscape of the Middle Rio Grande Basin. The objective of this study is to validate SEBAL ET estimates obtained from MODIS imagery. The use of MODIS imagery is attractive since MODIS images are available at a much higher frequency than LandSat images at no cost to the user. MODIS images have a pixel size in the thermal band of 1000x1000 m which is much coarser than the 60x60 m pixel size of LandSat 7. This large pixel size precludes the use of eddy covariance measurements for validation of ET maps derived from MODIS imagery since the eddy covariance measurement is not representative of a 1000x1000 m MODIS pixel. In our experience, a typical foot print of an ET rate measured by eddy covariance on a clear day in New Mexico around 11 am is less than then thousand square meters or two orders of magnitude smaller than a MODIS thermal pixel. Therefore, we have validated ET maps derived from MODIS imagery by comparison with up-scaled ET maps derived from LandSat imagery. The results of our study demonstrate: (1) There is good agreement between ET maps derived from LandSat and MODIS images; (2) Up-scaling of LandSat ET maps over the Middle Rio Grande Basin produces ET maps that are very similar to ET maps directly derived from MODIS images; (3) ET maps derived from free MODIS imagery using SEBAL-NMT can provide reliable regional ET information for water resource managers.
USDA-ARS?s Scientific Manuscript database
Satellite-derived soil moisture products have become an important data source for the study of land surface processes and related applications. For satellites with sun-synchronous orbits, these products are typically derived separately for ascending and descending overpasses with different local acq...
Timescales of Land Surface Evapotranspiration Response
NASA Technical Reports Server (NTRS)
Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max
1997-01-01
Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.
Classification of Land Cover and Land Use Based on Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Yang, Chun; Rottensteiner, Franz; Heipke, Christian
2018-04-01
Land cover describes the physical material of the earth's surface, whereas land use describes the socio-economic function of a piece of land. Land use information is typically collected in geospatial databases. As such databases become outdated quickly, an automatic update process is required. This paper presents a new approach to determine land cover and to classify land use objects based on convolutional neural networks (CNN). The input data are aerial images and derived data such as digital surface models. Firstly, we apply a CNN to determine the land cover for each pixel of the input image. We compare different CNN structures, all of them based on an encoder-decoder structure for obtaining dense class predictions. Secondly, we propose a new CNN-based methodology for the prediction of the land use label of objects from a geospatial database. In this context, we present a strategy for generating image patches of identical size from the input data, which are classified by a CNN. Again, we compare different CNN architectures. Our experiments show that an overall accuracy of up to 85.7 % and 77.4 % can be achieved for land cover and land use, respectively. The classification of land cover has a positive contribution to the classification of the land use classification.
Surface phenology and satellite sensor-derived onset of greenness: An initial comparison
Schwartz, Mark D.; Reed, Bradley C.
1999-01-01
The objective of this work was to document the utility of phenological data derived from satellite sensors by comparing them with modelled phenology. Surface phenological model outputs (first leaf and first bloom dates) were correlated positively with satellite sensor-derived start of season (SOS) dates for 1991-1995 across the eastern United States. The correlation was highest for forest (r 0.62 for deciduous trees and 0.64 for mixed woodland) and tall grass (r 0.46) and lowest for short grass (r 0.37). The average correlation over all land cover types was 0.61. Average SOS dates were consistently earlier than Spring Index dates across all land cover types. This finding and limited native tree phenology data suggest that the SOS technique detects understorey green-up in the forest rather than overstorey species. The biweekly temporal resolution of the satellite sensor data placed an upper limit on prediction accuracy; thus, year-to-year variations at individual sites were typically small. Nevertheless, the correct biweek SOS could be identified from the surface models 61% of the time, and 1 biweek 96% of the time. Further temporal refinement of the satellite sensor measurements is necessary in order to connect them with surface phenology adequately and to develop links among 'green wave' components in selected biomes.
A global analysis of the urban heat island effect based on multisensor satellite data
NASA Astrophysics Data System (ADS)
Xiao, J.; Frolking, S. E.; Milliman, T. E.; Schneider, A.; Friedl, M. A.
2017-12-01
Human population is rapidly urbanizing. In much of the world, cities are prone to hotter weather than surrounding rural areas - so-called `urban heat islands' - and this effect can have mortal consequences during heat waves. During the daytime, when the surface energy balance is driven by incoming solar radiation, the magnitude of urban warming is strongly influenced by surface albedo and the capacity to evaporate water (i.e., there is a strong relationship between vegetated land fraction and the ratio of sensible to latent heat loss or Bowen ratio). At nighttime, urban cooling is often inhibited by the thermal inertia of the built environment and anthropogenic heat exhaust from building and transportation energy use. We evaluated a suite of global remote sensing data sets representing a range of urban characteristics against MODIS-derived land-surface temperature differences between urban and surrounding rural areas. We included two new urban datasets in this analysis - MODIS-derived change in global urban extent and global urban microwave backscatter - along with several MODIS standard products and DMSP/OLS nighttime lights time series data. The global analysis spanned a range of urban characteristics that likely influence the magnitude of daytime and/or nighttime urban heat islands - urban size, population density, building density, state of development, impervious fraction, eco-climatic setting. Specifically, we developed new satellite datasets and synthesizing these with existing satellite data into a global database of urban land surface parameters, used two MODIS land surface temperature products to generate time series of daytime and nighttime urban heat island effects for 30 large cities across the globe, and empirically analyzed these data to determine specifically which remote sensing-based characterizations of global urban areas have explanatory power with regard to both daytime and nighttime urban heat islands.
NASA Technical Reports Server (NTRS)
Reining, P. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Repetitively derived multispectral band imagery from ERTS-1 is now available for many parts of the earth's land surface and represents major new data sources for anthropological work in habitat, land use, and settlement patterns. A completed first step test of ERTS-1 data is available in carrying capacity estimates for Mossi, Hausa, and Sonrai sites derived from: (1) field work; (2) aerial photography; and (3) ERTS-1. Data can test more than one carrying capacity formula.
NASA Astrophysics Data System (ADS)
Sprigg, W. A.; Sahoo, S.; Prasad, A. K.; Venkatesh, A. S.; Vukovic, A.; Nickovic, S.
2015-12-01
Identification and evaluation of sources of aeolian mineral dust is a critical task in the simulation of dust. Recently, time series of space based multi-sensor satellite images have been used to identify and monitor changes in the land surface characteristics. Modeling of windblown dust requires precise delineation of mineral dust source and its strength that varies over a region as well as seasonal and inter-annual variability due to changes in land use and land cover. Southwest USA is one of the major dust emission prone zone in North American continent where dust is generated from low lying dried-up areas with bare ground surface and they may be scattered or appear as point sources on high resolution satellite images. In the current research, various satellite derived variables have been integrated to produce a high-resolution dust source mask, at grid size of 250 m, using data such as digital elevation model, surface reflectance, vegetation cover, land cover class, and surface wetness. Previous dust source models have been adopted to produce a multi-parameter dust source mask using data from satellites such as Terra (Moderate Resolution Imaging Spectroradiometer - MODIS), and Landsat. The dust source mask model captures the topographically low regions with bare soil surface, dried-up river plains, and lakes which form important source of dust in southwest USA. The study region is also one of the hottest regions of USA where surface dryness, land use (agricultural use), and vegetation cover changes significantly leading to major changes in the areal coverage of potential dust source regions. A dynamic high resolution dust source mask have been produced to address intra-annual change in the aerial extent of bare dry surfaces. Time series of satellite derived data have been used to create dynamic dust source masks. A new dust source mask at 16 day interval allows enhanced detection of potential dust source regions that can be employed in the dust emission and transport pathways models for better estimation of emission of dust during dust storms, particulate air pollution, public health risk assessment tools and decision support systems.
NASA Astrophysics Data System (ADS)
Huscroft, Jordan; Gleeson, Tom; Hartmann, Jens; Börker, Janine
2018-02-01
The spatial distribution of subsurface parameters such as permeability are increasingly relevant for regional to global climate, land surface, and hydrologic models that are integrating groundwater dynamics and interactions. Despite the large fraction of unconsolidated sediments on Earth's surface with a wide range of permeability values, current global, high-resolution permeability maps distinguish solely fine-grained and coarse-grained unconsolidated sediments. Representative permeability values are derived for a wide variety of unconsolidated sediments and applied to a new global map of unconsolidated sediments to produce the first geologically constrained, two-layer global map of shallower and deeper permeability. The new mean logarithmic permeability of the Earth's surface is -12.7 ± 1.7 m2 being 1 order of magnitude higher than that derived from previous maps, which is consistent with the dominance of the coarser sediments. The new data set will benefit a variety of scientific applications including the next generation of climate, land surface, and hydrology models at regional to global scales.
Land surface phenological responses to land use and climate variation in a changing Central Asia
NASA Astrophysics Data System (ADS)
Kariyeva, Jahan
During the last few decades Central Asia has experienced widespread changes in land cover and land use following the socio-economic and institutional transformations of the region catalyzed by the USSR collapse in 1991. The decade-long drought events and steadily increasing temperature regimes in the region came on top of these institutional transformations, affecting the long term and landscape scale vegetation responses. This research is based on the need to better understand the potential ecological and policy implications of climate variation and land use practices in the contexts of landscape-scale changes dynamics and variability patterns of land surface phenology responses in Central Asia. The land surface phenology responses -- the spatio-temporal dynamics of terrestrial vegetation derived from the remotely sensed data -- provide measurements linked to the timing of vegetation growth cycles (e.g., start of growing season) and total vegetation productivity over the growing season, which are used as a proxy for the assessment of effects of variations in environmental settings. Local and regional scale assessment of the before and after the USSR collapse vegetation response patterns in the natural and agricultural systems of the Central Asian drylands was conducted to characterize newly emerging links (since 1991) between coupled human and natural systems, e.g., socio-economic and policy drivers of altered land and water use and distribution patterns. Spatio-temporal patterns of bioclimatic responses were examined to determine how phenology is associated with temperature and precipitation in different land use types, including rainfed and irrigated agricultural types. Phenological models were developed to examine relationship between environmental drivers and effect of their altitudinal and latitudinal gradients on the broad-scale vegetation response patterns in non-cropland ecosystems of the desert, steppe, and mountainous regional landscapes of Central Asia. The study results demonstrated that the satellite derived measurements of temporal cycles of vegetation greenness and productivity data was a valuable bioclimatic integrator of climatic and land use variation in Central Asia. The synthesis of broad-scale phenological changes in Central Asia showed that linkages of natural and human systems vary across space and time comprising complex and tightly integrated patterns and processes that are not evident when studied separately.
Impacts of Land Cover Changes on Climate over China
NASA Astrophysics Data System (ADS)
Chen, L.; Frauenfeld, O. W.
2014-12-01
Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.
Poppenga, Sandra K.; Gesch, Dean B.; Worstell, Bruce B.
2013-01-01
The 1:24,000-scale high-resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time-relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR-derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.
NASA Technical Reports Server (NTRS)
Mielonen, T.; Levy, R. C.; Aaltonen, V.; Komppula, M.; de Leeuw, G.; Huttunen, J.; Lihavainen, H.; Kolmonen, P.; Lehtinen, K. E. J.; Arola, A.
2011-01-01
Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm.
Satellite Estimation of Daily Land Surface Water Vapor Pressure Deficit from AMSR- E
NASA Astrophysics Data System (ADS)
Jones, L. A.; Kimball, J. S.; McDonald, K. C.; Chan, S. K.; Njoku, E. G.; Oechel, W. C.
2007-12-01
Vapor pressure deficit (VPD) is a key variable for monitoring land surface water and energy exchanges, and estimating plant water stress. Multi-frequency day/night brightness temperatures from the Advanced Microwave Scanning Radiometer on EOS Aqua (AMSR-E) were used to estimate daily minimum and average near surface (2 m) air temperatures across a North American boreal-Arctic transect. A simple method for determining daily mean VPD (Pa) from AMSR-E air temperature retrievals was developed and validated against observations across a regional network of eight study sites ranging from boreal grassland and forest to arctic tundra. The method assumes that the dew point and minimum daily air temperatures tend to equilibrate in areas with low night time temperatures and relatively moist conditions. This assumption was tested by comparing the VPD algorithm results derived from site daily temperature observations against results derived from AMSR-E retrieved temperatures alone. An error analysis was conducted to determine the amount of error introduced in VPD estimates given known levels of error in satellite retrieved temperatures. Results indicate that the assumption generally holds for the high latitude study sites except for arid locations in mid-summer. VPD estimates using the method with AMSR-E retrieved temperatures compare favorably with site observations. The method can be applied to land surface temperature retrievals from any sensor with day and night surface or near-surface thermal measurements and shows potential for inferring near-surface wetness conditions where dense vegetation may hinder surface soil moisture retrievals from low-frequency microwave sensors. This work was carried out at The University of Montana, at San Diego State University, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Quaife, T. L.; Davenport, I. J.; Lines, E.; Styles, J.; Lewis, P.; Gurney, R. J.
2012-12-01
Satellite observations offer a spatially and temporally synoptic data source for constraining models of land surface processes, but exploitation of these data for such purposes has been largely ad-hoc to date. In part this is because traditional land surface models, and hence most land surface data assimilation schemes, have tended to focus on a specific component of the land surface problem; typically either surface fluxes of water and energy or biogeochemical cycles such as carbon and nitrogen. Furthermore the assimilation of satellite data into such models tends to be restricted to a single wavelength domain, for example passive microwave, thermal or optical, depending on the problem at hand. The next generation of land surface schemes, such as the Joint UK Land Environment Simulator (JULES) and the US Community Land Model (CLM) represent a broader range of processes but at the expense of increasing overall model complexity and in some cases reducing the level of detail in specific processes to accommodate this. Typically, the level of physical detail used to represent the interaction of electromagnetic radiation with the surface is not sufficient to enable prediction of intrinsic satellite observations (reflectance, brightness temperature and so on) and consequently these are not assimilated directly into the models. A seemingly attractive alternative is to assimilate high-level products derived from satellite observations but these are often only superficially related to the corresponding variables in land surface models due to conflicting assumptions between the two. This poster describes the water and energy balance modeling components of a project funded by the European Space Agency to develop a data assimilation scheme for the land surface and observation operators to translate between models and the intrinsic observations acquired by satellite missions. The rationale behind the design of the underlying process model is to represent the physics of the water and energy balance in as parsimonious manner as possible, using a force-restore approach, but describing the physics of electromagnetic radiation scattering at the surface sufficiently well that it is possible to assimilate the intrinsic observations made by remote sensing instruments. In this manner the initial configuration of the resulting scheme will be able to make optimal use of available satellite observations at arbitrary wavelengths and geometries. Model complexity can then be built up from this point whilst ensuring consistency with satellite observations.
Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States
Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi
2009-01-01
As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low mountains were redefined as not gently sloping and 151 m 400 m. The final application of the MoRAP methodology was implemented using the USGS 30-meter National Elevation Dataset and an existing USGS slope dataset that had been derived by calculating the slope from the NED in Universal Transverse Mercator (UTM) coordinates in each UTM zone, and then combining all of the zones into a national dataset. This map shows a smoothed image of the nine land surface form classes based on MoRAP's methodology. Additional information about this map and any data developed for the ecosystems modeling of the conterminous United States is available online at http://rmgsc.cr.usgs.gov/ecosystems/.
NASA Astrophysics Data System (ADS)
Jacquemin, Ingrid; Henrot, Alexandra-Jane; Beckers, Veronique; Berckmans, Julie; Debusscher, Bos; Dury, Marie; Minet, Julien; Hamdi, Rafiq; Dendoncker, Nicolas; Tychon, Bernard; Hambuckers, Alain; François, Louis
2016-04-01
The interactions between land surface and climate are complex. Climate changes can affect ecosystem structure and functions, by altering photosynthesis and productivity or inducing thermal and hydric stresses on plant species. These changes then impact socio-economic systems, through e.g., lower farming or forestry incomes. Ultimately, it can lead to permanent changes in land use structure, especially when associated with other non-climatic factors, such as urbanization pressure. These interactions and changes have feedbacks on the climate systems, in terms of changing: (1) surface properties (albedo, roughness, evapotranspiration, etc.) and (2) greenhouse gas emissions (mainly CO2, CH4, N2O). In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), we aim at improving regional climate model projections at the decennial scale over Belgium and Western Europe by combining high-resolution models of climate, land surface dynamics and socio-economic processes. The land surface dynamics (LSD) module is composed of a dynamic vegetation model (CARAIB) calculating the productivity and growth of natural and managed vegetation, and an agent-based model (CRAFTY), determining the shifts in land use and land cover. This up-scaled LSD module is made consistent with the surface scheme of the regional climate model (RCM: ALARO) to allow simulations of the RCM with a fully dynamic land surface for the recent past and the period 2000-2030. In this contribution, we analyze the results of the first simulations performed with the CARAIB dynamic vegetation model over Belgium at a resolution of 1km. This analysis is performed at the species level, using a set of 17 species for natural vegetation (trees and grasses) and 10 crops, especially designed to represent the Belgian vegetation. The CARAIB model is forced with surface atmospheric variables derived from the monthly global CRU climatology or ALARO outputs (from a 4 km resolution simulation) for the recent past and the decennial projections. Evidently, these simulations lead to a first analysis of the impact of climate change on carbon stocks (e.g., biomass, soil carbon) and fluxes (e.g., gross and net primary productivities (GPP and NPP) and net ecosystem production (NEP)). The surface scheme is based on two land use/land cover databases, ECOPLAN for the Flemish region and, for the Walloon region, the COS-Wallonia database and the Belgian agricultural statistics for agricultural land. Land use and land cover are fixed through time (reference year: 2007) in these simulations, but a first attempt of coupling between CARAIB and CRAFTY will be made to establish dynamic land use change scenarios for the next decades. A simulation with variable land use would allow an analysis of land use change impacts not only on crop yields and the land carbon budget, but also on climate relevant parameters, such as surface albedo, roughness length and evapotranspiration towards a coupling with the RCM.
Bi-scale analysis of multitemporal land cover fractions for wetland vegetation mapping
NASA Astrophysics Data System (ADS)
Michishita, Ryo; Jiang, Zhiben; Gong, Peng; Xu, Bing
2012-08-01
Land cover fractions (LCFs) derived through spectral mixture analysis are useful in understanding sub-pixel information. However, few studies have been conducted on the analysis of time-series LCFs. Although multi-scale comparisons of spectral index, hard classification, and land surface temperature images have received attention, rarely have these approaches been applied to LCFs. This study compared the LCFs derived through Multiple Endmember Spectral Mixture Analysis (MESMA) using the time-series Landsat Thematic Mapper (TM) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired in the Poyang Lake area, China between 2004 and 2005. Specifically, we aimed to: (1) propose an approach for optimal endmember (EM) selection in time-series MESMA; (2) understand the trends in time-series LCFs derived from the TM and MODIS data; and (3) examine the trends in the correlation between the bi-scale LCFs derived from the time-series TM and MODIS data. Our results indicated: (1) the EM spectra chosen according to the proposed hierarchical three-step approach (overall, seasonal, and individual) accurately modeled the both the TM and MODIS images; (2) green vegetation (GV) and NPV/soil/impervious surface (N/S/I) classes followed sine curve trends in the overall area, while the two water classes displayed the water level change pattern in the areas primarily covered with wetland vegetation; and (3) GV, N/S/I, and bright water classes indicated a moderately high agreement between the TM and MODIS LCFs in the whole area (adjusted R2 ⩾ 0.6). However, low levels of correlations were found in the areas primarily dominated by wetland vegetation for all land cover classes.
Assessing land leveling needs and performance with unmanned aerial system
NASA Astrophysics Data System (ADS)
Enciso, Juan; Jung, Jinha; Chang, Anjin; Chavez, Jose Carlos; Yeom, Junho; Landivar, Juan; Cavazos, Gabriel
2018-01-01
Land leveling is the initial step for increasing irrigation efficiencies in surface irrigation systems. The objective of this paper was to evaluate potential utilization of an unmanned aerial system (UAS) equipped with a digital camera to map ground elevations of a grower's field and compare them with field measurements. A secondary objective was to use UAS data to obtain a digital terrain model before and after land leveling. UAS data were used to generate orthomosaic images and three-dimensional (3-D) point cloud data by applying the structure for motion algorithm to the images. Ground control points (GCPs) were established around the study area, and they were surveyed using a survey grade dual-frequency GPS unit for accurate georeferencing of the geospatial data products. A digital surface model (DSM) was then generated from the 3-D point cloud data before and after laser leveling to determine the topography before and after the leveling. The UAS-derived DSM was compared with terrain elevation measurements acquired from land surveying equipment for validation. Although 0.3% error or root mean square error of 0.11 m was observed between UAS derived and ground measured ground elevation data, the results indicated that UAS could be an efficient method for determining terrain elevation with an acceptable accuracy when there are no plants on the ground, and it can be used to assess the performance of a land leveling project.
Land Capability Potential Index (LCPI) and geodatabase for the Lower Missouri River Valley
Chojnacki, Kimberly A.; Struckhoff, Matthew A.; Jacobson, Robert B.
2012-01-01
The Land Capacity Potential Index (LCPI) is a coarse-scale index intended to delineate broad land-capability classes in the Lower Missouri River valley bottom from the Gavins Point Dam near Yankton, South Dakota to the mouth of the Missouri River near St. Louis, Missouri (river miles 811–0). The LCPI provides a systematic index of wetness potential and soil moisture-retention potential of the valley-bottom lands by combining the interactions among water-surface elevations, land-surface elevations, and the inherent moisture-retention capability of soils. A nine-class wetness index was generated by intersecting a digital elevation model for the valley bottom with sloping water-surface elevation planes derived from eight modeled discharges. The flow-recurrence index was then intersected with eight soil-drainage classes assigned to soils units in the digital Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2010) to create a 72-class index of potential flow-recurrence and moisture-retention capability of Missouri River valley-bottom lands. The LCPI integrates the fundamental abiotic factors that determine long-term suitability of land for various uses, particularly those relating to vegetative communities and their associated values. Therefore, the LCPI provides a mechanism allowing planners, land managers, landowners, and other stakeholders to assess land-use capability based on the physical properties of the land, in order to guide future land-management decisions. This report documents data compilation for the LCPI in a revised and expanded, 72-class version for the Lower Missouri River valley bottom, and inclusion of additional soil attributes to allow users flexibility in exploring land capabilities.
NASA Astrophysics Data System (ADS)
Sulistiyono, N.; Basyuni, M.; Slamet, B.
2018-03-01
Green open space (GOS) is one of the requirements where a city is comfortable to stay. GOS might reduce land surface temperature (LST) and air pollution. Medan is one of the biggest towns in Indonesia that experienced rapid development. However, the early development tends to neglect the GOS existence for the city. The objective of the study is to determine the distribution of land surface temperature and the relationship between the normalized difference vegetation index (NDVI) and the priority of GOS development in Medan City using imagery-based satellite Landsat 8. The method approached to correlate the distribution of land surface temperature derived from the value of digital number band 10 with the NDVI which was from the ratio of groups five and four on satellite images of Landsat 8. The results showed that the distribution of land surface temperature in the Medan City in 2016 ranged 20.57 - 33.83 °C. The relationship between the distribution of LST distribution with NDVI was reversed with a negative correlation of -0.543 (sig 0,000). The direction of GOS in Medan City is therefore developed on the allocation of LST and divided into three priority classes namely first priority class had 5,119.71 ha, the second priority consisted of 16,935.76 ha, and third priority of 6,118.50 ha.
Improving the Fit of a Land-Surface Model to Data Using its Adjoint
NASA Astrophysics Data System (ADS)
Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.
2015-12-01
Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.
NASA Astrophysics Data System (ADS)
Xiang, T.; Vivoni, E. R.; Gochis, D. J.; Mascaro, G.
2015-12-01
Heterogeneous land surface conditions are essential components of land-atmosphere interactions in regions of complex terrain and have the potential to affect convective precipitation formation. Yet, due to their high complexity, hydrologic processes over mountainous regions are not well understood, and are usually parameterized in simple ways within coupled land-atmosphere modeling frameworks. With the improving model physics and spatial resolution of numerical weather prediction models, there is an urgent need to understand how land surface processes affect local and regional meteorological processes. In the North American Monsoon (NAM) region, the summer rainy season is accompanied by a dramatic greening of mountain ecosystems that adds spatiotemporal variability in vegetation which is anticipated to impact the conditions leading to convection, mountain-valley circulations and mesoscale organization. In this study, we present results from a detailed analysis of a high-resolution (1 km) land surface model, Noah-MP, in a large, mountainous watershed of the NAM region - the Rio Sonora (21,264 km2) in Mexico. In addition to capturing the spatial variations in terrain and soil distributions, recently-developed features in Noah-MP allow the model to read time-varying vegetation parameters derived from remotely-sensed vegetation indices; however, this new implementation has not been fully evaluated. Therefore, we assess the simulated spatiotemporal fields of soil moisture, surface temperature and surface energy fluxes through comparisons to remote sensing products and results from coarser land surface models obtained from the North American Land Data Assimilation System. We focus attention on the impact of vegetation changes along different elevation bands on the diurnal cycle of surface energy fluxes to provide a baseline for future analyses of mountain-valley circulations using a coupled land-atmosphere modeling system. Our study also compares limited streamflow observations in the large watershed to simulations using the terrain and channel routing when Noah-MP is run within the WRF-Hydro modeling framework, with the goals of validating the rainfall-runoff partitioning and translating the spatiotemporal mountain processes into improvements in streamflow predictions.
NASA Astrophysics Data System (ADS)
Grima, Cyril; Schroeder, Dustin M.; Blankenship, Donald D.; Young, Duncan A.
2014-11-01
The potential for a nadir-looking radar sounder to retrieve significant surface roughness/permittivity information valuable for planetary landing site selection is demonstrated using data from an airborne survey of the Thwaites Glacier Catchment, West Antarctica using the High Capability Airborne Radar Sounder (HiCARS). The statistical method introduced by Grima et al. (2012. Icarus 220, 84-99. http://dx.doi.org/10.1007/s11214-012-9916-y) for surface characterization is applied systematically along the survey flights. The coherent and incoherent components of the surface signal, along with an internally generated confidence factor, are extracted and mapped in order to show how a radar sounder can be used as both a reflectometer and a scatterometer to identify regions of low surface roughness compatible with a planetary lander. These signal components are used with a backscattering model to produce a landing risk assessment map by considering the following surface properties: Root mean square (RMS) heights, RMS slopes, roughness homogeneity/stationarity over the landing ellipse, and soil porosity. Comparing these radar-derived surface properties with simultaneously acquired nadir-looking imagery and laser-altimetry validates this method. The ability to assess all of these parameters with an ice penetrating radar expands the demonstrated capability of a principle instrument in icy planet satellite science to include statistical reconnaissance of the surface roughness to identify suitable sites for a follow-on lander mission.
NASA Astrophysics Data System (ADS)
Kim, Y.; Kimball, J. S.; PARK, H.; Yi, Y.
2017-12-01
Climate change in the Boreal-Arctic region has experienced greater surface air temperature (SAT) warming than the global average in recent decades, which is promoting permafrost thawing and active layer deepening. Permafrost extent (PE) and active layer thickness (ALT) are key environmental indicators of recent climate change, and strongly impact other eco-hydrological processes including land-atmosphere carbon exchange. We developed a new approach for regional estimation and monitoring of PE using daily landscape freeze-thaw (FT) records derived from satellite microwave (37 GHz) brightness temperature (Tb) observations. ALT was estimated within the PE domain using empirical modeling of land cover dependent edaphic factors and an annual thawing index derived from MODIS land surface temperature (LST) observations and reanalysis based surface air temperatures (SAT). The PE and ALT estimates were derived over the 1980-2016 satellite record and NASA ABoVE (Arctic Boreal Vulnerability Experiment) domain encompassing Alaska and Northwest Canada. The baseline model estimates were derived at 25-km resolution consistent with the satellite FT global record. Our results show recent widespread PE decline and deepening ALT trends, with larger spatial variability and model uncertainty along the southern PE boundary. Larger PE and ALT variability occurs over heterogeneous permafrost subzones characterized by dense vegetation, and variable snow cover and organic layer conditions. We also tested alternative PE and ALT estimates derived using finer (6-km) scale satellite Tb (36.5 GHz) and FT retrievals from a calibrated AMSR-E and AMSR2 sensor record. The PE and ALT results were compared against other independent observations, including process model simulations, in situ measurements, and permafrost inventory records. A model sensitivity analysis was conducted to evaluate snow cover, soil organic layer, and vegetation composition impacts to ALT. The finer delineation of permafrost and active layer conditions provides enhanced regional monitoring of PE and ALT changes over the ABoVE domain, including heterogeneous permafrost subzones.
Derived Land Surface Emissivity From Suomi NPP CrIS
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu
2012-01-01
Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.
NASA Technical Reports Server (NTRS)
Alexander, R. H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The arrival of the so-called energy crisis makes the portion of this experiment dealing with land use climatology of more immediate significance than before, since in addition to helping to understand the processes of climatic change associated with urbanization, the knowledge obtained may be useful in assigning an energy balance impact factor to proposed changes in land use in and around cities. Thermal maps derived from S-192 data are to be used as a measure of the energy being radiated into space from the mosaic of different surfaces in and around the city. While presenting excellent spatial sampling potential for a metropolitan area tests site, the Skylab data permit a very poor temporal sampling opportunity, owing to the large number of factors beyond the investigator's control that determine when data will be taken over a given test site. The strategy is to augment the thermal maps derived from S-192 with a modeling technique which enables the simulation of a number of components of the surface energy balance, calculated at regular time intervals throughout the day or year. Preliminary tests on the performance of the model are still underway, using airborne MSS data from NASA aircraft flights. Results look extremely promising.
Trend analysis of time-series phenology of North America derived from satellite data
Reed, B.C.
2006-01-01
Remote sensing information has been used in studies of the seasonal dynamics (phenology) of the land surface since the 1980s. While our understanding of remote sensing phenology is still in development, it is regarded as a key to understanding land-surface processes over large areas. Phenologic metrics, including start of season, end of season, duration of season, and seasonally integrated greenness, were derived from 8 km advanced very high resolution radiometer (AVHRR) data over North America spanning the years 1982-2003. Trend analysis was performed on annual summaries of the metrics to determine areas with increasing or decreasing growing season trends for the time period under study. Results show a trend toward earlier starts of season in limited areas of the mixed boreal forest, and a trend toward later end of season in well-defined areas of New England and southeastern Canada. Results in Saskatchewan, Canada, include a trend toward longer duration of season over a well-defined area, principally as a result of regional changes in land use practices. Changing seasonality appears to be an integrated response to a complex of factors, including climate change, but also, in many places, changes in land use practices. Copyright ?? 2006 by V. H. Winston & Son, Inc. All rights reserved.
Validation of MODIS Aerosol Optical Depth Retrieval Over Land
NASA Technical Reports Server (NTRS)
Chu, D. A.; Kaufman, Y. J.; Ichoku, C.; Remer, L. A.; Tanre, D.; Holben, B. N.; Einaudi, Franco (Technical Monitor)
2001-01-01
Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.
Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains
Phillips, Thomas J.; Klein, Stephen A.
2014-01-28
This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scalemore » atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, of the local land feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary-layer clouds are influenced by thermal updrafts known to be associated with convection originating at the surface. Finally, we also discuss potential implications of these results for climate-model representation of regional land-atmosphere coupling.« less
Estimating Turbulent Surface Fluxes from Small Unmanned Aircraft: Evaluation of Current Abilities
NASA Astrophysics Data System (ADS)
de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.
2014-12-01
Heat transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic air-sea interface and Polar sea-ice-air interface are amongst the most challenging in which to measure these fluxes. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) fluxes are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate heat transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate fluxes at the air-land or air-sea interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface fluxes. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these fluxes. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent fluxes. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons between UAS-derived turbulent fluxes and those derived from tower-based instrumentation and discuss differences in the context of sensor technology and flight patterns employed to collect data.
Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Zaitchik, Benjamin F.; Rodell, Matt
2008-01-01
The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.
Hydrogeological controls of groundwater - land surface interactions
NASA Astrophysics Data System (ADS)
Bresciani, Etienne; Batelaan, Okke; Goderniaux, Pascal
2017-04-01
Interaction of groundwater with the land surface impacts a wide range of climatic, hydrologic, ecologic and geomorphologic processes. Many site-specific studies have successfully focused on measuring and modelling groundwater-surface water interaction, but upscaling or estimation at catchment or regional scale appears to be challenging. The factors controlling the interaction at regional scale are still poorly understood. In this contribution, a new 2-D (cross-sectional) analytical groundwater flow solution is used to derive a dimensionless criterion that expresses the conditions under which the groundwater outcrops at the land surface (Bresciani et al., 2016). The criterion gives insights into the functional relationships between geology, topography, climate and the locations of groundwater discharge along river systems. This sheds light on the debate about the topographic control of groundwater flow and groundwater-surface water interaction, as effectively the topography only influences the interaction when the groundwater table reaches the land surface. The criterion provides a practical tool to predict locations of groundwater discharge if a limited number of geomorphological and hydrogeological parameters (recharge, hydraulic conductivity and depth to impervious base) are known, and conversely it can provide regional estimates of the ratio of recharge over hydraulic conductivity if locations of groundwater discharge are known. A case study with known groundwater discharge locations located in South-West Brittany, France shows the feasibility of regional estimates of the ratio of recharge over hydraulic conductivity. Bresciani, E., Goderniaux, P. and Batelaan, O., 2016, Hydrogeological controls of water table-land surface interactions. Geophysical Research Letters 43(18): 9653-9661. http://dx.doi.org/10.1002/2016GL070618
Barnes, Christopher A.; Roy, David P.
2010-01-01
Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.
Falcone, James A.; Pearson, Daniel K.
2006-01-01
This report describes the processing and results of land-cover and impervious surface derivation for parts of three metropolitan areas being studied as part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program Effects of Urbanization on Stream Ecosystems (EUSE). The data were derived primarily from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery from the period 1999-2002, and are provided as 30-meter resolution raster datasets. Data were produced to a standard consistent with data being produced as part of the USGS National Land Cover Database 2001 (NLCD01) Program, and were derived in cooperation with, and assistance from, NLCD01 personnel. The data were intended as surrogates for NLCD01 data because of the EUSE Program's time-critical need for updated land-cover for parts of the United States that would not be available in time from the NLCD01 Program. Six datasets are described in this report: separate land-cover (15-class categorical data) and imperviousness (0-100 percent continuous data) raster datasets for parts of the general Denver, Colorado area (South Platte River Basin), Dallas-Fort Worth, Texas area (Trinity River Basin), and Milwaukee-Green Bay, Wisconsin area (Western Lake Michigan Drainages).
MEaSUREs Land Surface Temperature from GOES Satellites
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon
2017-04-01
Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).
Atmospheric Science Data Center
2018-06-28
... improving forecasting of near surface weather. DASF provides information critical to accounting for structural contributions to measurements ... derived products. We also provide two ancillary science data products. They are 10 km SIN Grid Land Cover Type and ...
Ice elevations and surface change on the Malaspina Glacier, Alaska
Sauber, J.; Molnia, B.; Carabajal, C.; Luthcke, S.; Muskett, R.
2005-01-01
Here we use Ice, Cloud and land Elevation Satellite (ICESat)-derived elevations and surface characteristics to investigate the Malaspina Glacier of southern Alaska. Although there is significant elevation variability between ICESat tracks on this glacier, we were able to discern general patterns in surface elevation change by using a regional digital elevation model (DEM) as a reference surface. Specifically, we report elevation differences between ICESat Laser 1-3 observations (February 2003 - November 2004) and a Shuttle Radar Topography Mission (SRTM)-derived DEM from February 2000. Elevation decreases of up to 20-25 m over a 3-4 year time period were observed across the folded loop moraine on the southern portion of the Malaspina Glacier. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2009-10-01
Land use/land cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/land cover. This paper presents different approaches to attain an optimal land use/land cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/land cover map was not sufficient for the delineation of HRUs, since the agricultural land use/land cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Subsequently the digital classification on fused data (ASAR and ASTER) were attempted to map land use/land cover classes with emphasis to delineate the paddy and maize crops but the supervised classification over fused datasets did not provide the desired accuracy and proper delineation of paddy and maize crops. Eventually, we adopted a visual classification approach on fused data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modeling.
NASA Astrophysics Data System (ADS)
Fang, Li
The Geostationary Operational Environmental Satellites (GOES) have been continuously monitoring the earth surface since 1970, providing valuable and intensive data from a very broad range of wavelengths, day and night. The National Oceanic and Atmospheric Administration's (NOAA's) National Environmental Satellite, Data, and Information Service (NESDIS) is currently operating GOES-15 and GOES-13. The design of the GOES series is now heading to the 4 th generation. GOES-R, as a representative of the new generation of the GOES series, is scheduled to be launched in 2015 with higher spatial and temporal resolution images and full-time soundings. These frequent observations provided by GOES Image make them attractive for deriving information on the diurnal land surface temperature (LST) cycle and diurnal temperature range (DTR). These parameters are of great value for research on the Earth's diurnal variability and climate change. Accurate derivation of satellite-based LSTs from thermal infrared data has long been an interesting and challenging research area. To better support the research on climate change, the generation of consistent GOES LST products for both GOES-East and GOES-West from operational dataset as well as historical archive is in great demand. The derivation of GOES LST products and the evaluation of proposed retrieval methods are two major objectives of this study. Literature relevant to satellite-based LST retrieval techniques was reviewed. Specifically, the evolution of two LST algorithm families and LST retrieval methods for geostationary satellites were summarized in this dissertation. Literature relevant to the evaluation of satellite-based LSTs was also reviewed. All the existing methods are a valuable reference to develop the GOES LST product. The primary objective of this dissertation is the development of models for deriving consistent GOES LSTs with high spatial and high temporal coverage. Proper LST retrieval algorithms were studied according to the characteristics of the imager onboard the GOES series. For the GOES 8-11 and GOES R series with split window (SW) channels, a new temperature and emissivity separation (TES) approach was proposed for deriving LST and LSE simultaneously by using multiple-temporal satellite observations. Two split-window regression formulas were selected for this approach, and two satellite observations over the same geo-location within a certain time interval were utilized. This method is particularly applicable to geostationary satellite missions from which qualified multiple-temporal observations are available. For the GOES M(12)-Q series without SW channels, the dual-window LST algorithm was adopted to derive LST. Instead of using the conventional training method to generate coefficients for the LST regression algorithms, a machine training technique was introduced to automatically select the criteria and the boundary of the sub-ranges for generating algorithm coefficients under different conditions. A software package was developed to produce a brand new GOES LST product from both operational GOES measurements and historical archive. The system layers of the software and related system input and output were illustrated in this work. Comprehensive evaluation of GOES LST products was conducted by validating products against multiple ground-based LST observations, LST products from fine-resolution satellites (e.g. MODIS) and GSIP LST products. The key issues relevant to the cloud diffraction effect were studied as well. GOES measurements as well as ancillary data, including satellite and solar geometry, water vapor, cloud mask, land emissivity etc., were collected to generate GOES LST products. In addition, multiple in situ temperature measurements were collected to test the performance of the proposed GOES LST retrieval algorithms. The ground-based dataset included direct surface temperature measurements from the Atmospheric Radiation Measurement program (ARM), and indirect measurements (surface long-wave radiation observations) from the SURFace RADiation Budget (SURFRAD) Network. A simulated dataset was created to analyse the sensitivity of the proposed retrieval algorithms. In addition, the MODIS LST and GSIP LST products were adopted to cross-evaluate the accuracy of the GOES LST products. Evaluation results demonstrate that the proposed GOES LST system is capable of deriving consistent land surface temperatures with good retrieval precision. Consistent GOES LST products with high spatial/temporal coverage and reliable accuracy will better support detections and observations of meteorological over land surfaces.
Global observation-based diagnosis of soil moisture control on land surface flux partition
NASA Astrophysics Data System (ADS)
Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.
2016-04-01
Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux. Higher RWRs were observed for shorter vegetation and bare soil compared to tall, deep-rooted vegetation due to differences in both aerodynamic and hydrological properties. The variation of RWR with antecedent rainfall provides information on which evaporation regime a particular region lies in climatologically. Different drying stages for a given antecedent rainfall can thus be observed depending on land cover type. For instance, our results suggest that forests in a continental climate remain unstressed during a 10 day dry spell provided the previous month saw at least 95 mm of rain. Conversely, RWR values indicate that under similar conditions regions of grass/crop cover are water-stressed.
NASA Astrophysics Data System (ADS)
Saran, Sameer; Sterk, Geert; Kumar, Suresh
2007-10-01
Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into HRU's requires good-quality spatial data on land use/cover. This paper presents different approaches to attain an optimal land use/cover map based on remote sensing imagery for a Himalayan watershed in northern India. First digital classifications using maximum likelihood classifier (MLC) and a decision tree classifier were applied. The results obtained from the decision tree were better and even improved after post classification sorting. But the obtained land use/cover map was not sufficient for the delineation of HRUs, since the agricultural land use/cover class did not discriminate between the two major crops in the area i.e. paddy and maize. Therefore we adopted a visual classification approach using optical data alone and also fused with ENVISAT ASAR data. This second step with detailed classification system resulted into better classification accuracy within the 'agricultural land' class which will be further combined with topography and soil type to derive HRU's for physically-based hydrological modelling.
Zhang, Di; Cao, Shan-Ping; Sun, Jian-Lin; Zeng, Hui
2014-02-01
188 surface soil samples were collected in Shenzhen of China to determine the occurrence and spatial differentiation of polycyclic aromatic hydrocarbons (PAHs), based on which we studied the correlation between PAHs concentrations and urbanization levels, as well as the PAHs ecological risk. The total concentrations of 28 PAHs (sigma28 PAHs), 16 EPA PAHs (sigma 16 PAHs) and 7 carcinogenic PAHs (sigma7 CarPAHs) ranged from 5 to 7939 ng x g(-1), 2 to 6745 ng x g(-1) and not detected to 3786 ng x g(-1), respectively. 8 kinds of land use types according to sigma16 PAHs average levels in descending order were: transportation lands, commercial lands, industrial lands, agricultural lands, residential lands, urban green space, orchards and woodland. And sigma16 PAHs of construction and non-construction lands samples were mainly derived from combustion of various fossil fuels with contribution of 75.1% and 68.2%, respectively. Significant positive correlation was also found between PAHs concentrations of high molecular weight and urbanization levels. And PAHs pollution in the top soils of Shenzhen was at a low-end level of the world.
Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors
NASA Technical Reports Server (NTRS)
Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.
2004-01-01
MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.
Fallow land effects on land-atmosphere interactions in California drought
NASA Astrophysics Data System (ADS)
Lu, Y.; Melton, F. S.; Kueppers, L. M.
2015-12-01
The recent drought in California increased the area of fallow land, which is cropland not planted or irrigated per normal agricultural practice. The effects of fallow land on land-atmosphere interactions in drought years are not well studied, but theoretically should alter local energy balance and surface climate relative to normal years, which in turn could affect neighboring cropland. We examined these effects using a regional climate model (Weather Research and Forecasting model) coupled with a dynamic crop growth model (Community Land Model) that has an irrigation scheme to study the effects of fallow land in 2014, an extreme drought year in California. In our study, we used satellite-derived maps of cultivated and fallowed acreage, and defined summer fallow land in 2014 as the reduced percentage of cultivated land for each grid cell relative to the 2011 cultivated area (2011 was the most recent year following a winter with average or above average precipitation). Using a sensitivity experiment that kept large-scale climate boundary conditions constant, we found that fallow land resulted in even dryer and warmer weather that worsened the drought impact. Fallow land increased 2-meter air temperature by 0.1- 4 °C with 0-80% fallow land, mainly due to an increase in nighttime temperature. Fallow land warmed the atmosphere up to 850hpa during the day, and after sunset, the warmed atmosphere emitted downward longwave radiation that prevented the surface from rapidly cooling, and therefore resulted in warmer nights. Fallow land reduced near surface relative humidity by 5-30% and increased vapor pressure deficit by 0.5-2 kPa. These drier conditions increased the irrigation water demand in the nearby cropland: crops required 1-25% more irrigation with 10-80% fallow land within the same 10km grid cell. Our study suggests that fallow land has large impacts on land-atmosphere interactions and increases irrigation requirements in nearby cropland.
Using Land Surface Phenology to Detect Land Use Change in the Northern Great Plains
NASA Astrophysics Data System (ADS)
Nguyen, L. H.; Henebry, G. M.
2017-12-01
The Northern Great Plains of the US have been undergoing many types of land cover / land use change over the past two decades, including expansion of irrigation, conversion of grassland to cropland, biofuels production, urbanization, and fossil fuel mining. Much of the literature on these changes has relied on post-classification change detection based on a limited number of observations per year. Here we demonstrate an approach to characterize land dynamics through land surface phenology (LSP) by synergistic use of image time series at two scales. Our study areas include regions of interest (ROIs) across the Northern Great Plains located within Landsat path overlap zones to boost the number of valid observations (free of clouds or snow) each year. We first compute accumulated growing degree-days (AGDD) from MODIS 8-day composites of land surface temperature (MOD11A2 and MYD11A2). Using Landsat Collection 1 surface reflectance-derived vegetation indices (NDVI, EVI), we then fit at each pixel a downward convex quadratic model linking the vegetation index to each year's progression of AGDD. This quadratic equation exhibits linearity in a mathematical sense; thus, the fitted models can be linearly mixed and unmixed using a set of LSP endmembers (defined by the fitted parameter coefficients of the quadratic model) that represent "pure" land cover types with distinct seasonal patterns found within the region, such as winter wheat, spring wheat, maize, soybean, sunflower, hay/pasture/grassland, developed/built-up, among others. Information about land cover corresponding to each endmember are provided by the NLCD (National Land Cover Dataset) and CDL (Cropland Data Layer). We use linear unmixing to estimate the likely proportion of each LSP endmember within particular areas stratified by latitude. By tracking the proportions over the 2001-2011 period, we can quantify various types of land transitions in the Northern Great Plains.
NASA Astrophysics Data System (ADS)
Guillevic, P. C.; Nickeson, J. E.; Roman, M. O.; camacho De Coca, F.; Wang, Z.; Schaepman-Strub, G.
2016-12-01
The Global Climate Observing System (GCOS) has specified the need to systematically produce and validate Essential Climate Variables (ECVs). The Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) and in particular its subgroup on Land Product Validation (LPV) is playing a key coordination role leveraging the international expertise required to address actions related to the validation of global land ECVs. The primary objective of the LPV subgroup is to set standards for validation methods and reporting in order to provide traceable and reliable uncertainty estimates for scientists and stakeholders. The Subgroup is comprised of 9 focus areas that encompass 10 land surface variables. The activities of each focus area are coordinated by two international co-leads and currently include leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FAPAR), vegetation phenology, surface albedo, fire disturbance, snow cover, land cover and land use change, soil moisture, land surface temperature (LST) and emissivity. Recent additions to the focus areas include vegetation indices and biomass. The development of best practice validation protocols is a core activity of CEOS LPV with the objective to standardize the evaluation of land surface products. LPV has identified four validation levels corresponding to increasing spatial and temporal representativeness of reference samples used to perform validation. Best practice validation protocols (1) provide the definition of variables, ancillary information and uncertainty metrics, (2) describe available data sources and methods to establish reference validation datasets with SI traceability, and (3) describe evaluation methods and reporting. An overview on validation best practice components will be presented based on the LAI and LST protocol efforts to date.
NASA Astrophysics Data System (ADS)
Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.
2017-12-01
A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, p<0.001) with a 250-m resolution static global water map (MOD44W) aggregated at the same spatial scale, while capturing significant inundation variations worldwide. The monthly fwLBand averages also showed seasonal inundation changes consistent with river discharge records within six major US river basins. An uncertainty analysis indicated generally reliable fwLBand performance for major land cover areas and under low to moderate vegetation cover, but with lower accuracy for detecting water bodies covered by dense vegetation. Finer resolution (30-m) fwLBand results were obtained for three sub-regions in North America using an empirical downscaling approach and ancillary global Water Occurrence Dataset (WOD) derived from the historical Landsat record. The resulting 30-m fwLBand retrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; LaCasse, Katherine M.; Santanello, Joseph A., Jr.; Lapenta, William M.; Petars-Lidard, Christa D.
2007-01-01
The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many hydrometeorological processes. Accurate and high-resolution representations of surface properties such as sea-surface temperature (SST), vegetation, soil temperature and moisture content, and ground fluxes are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of weather and climate phenomena. The NASA/NWS Short-term Prediction Research and Transition (SPORT) Center is currently investigating the potential benefits of assimilating high-resolution datasets derived from the NASA moderate resolution imaging spectroradiometer (MODIS) instruments using the Weather Research and Forecasting (WRF) model and the Goddard Space Flight Center Land Information System (LIS). The LIS is a software framework that integrates satellite and ground-based observational and modeled data along with multiple land surface models (LSMs) and advanced computing tools to accurately characterize land surface states and fluxes. The LIS can be run uncoupled to provide a high-resolution land surface initial condition, and can also be run in a coupled mode with WRF to integrate surface and soil quantities using any of the LSMs available in LIS. The LIS also includes the ability to optimize the initialization of surface and soil variables by tuning the spin-up time period and atmospheric forcing parameters, which cannot be done in the standard WRF. Among the datasets available from MODIS, a leaf-area index field and composite SST analysis are used to improve the lower boundary and initial conditions to the LIS/WRF coupled model over both land and water. Experiments will be conducted to measure the potential benefits from using the coupled LIS/WRF model over the Florida peninsula during May 2004. This month experienced relatively benign weather conditions, which will allow the experiments to focus on the local and mesoscale impacts of the high-resolution MODIS datasets and optimized soil and surface initial conditions. Follow-on experiments will examine the utility of such an optimized WRF configuration for more complex weather scenarios such as convective initiation. This paper will provide an overview of the experiment design and present preliminary results from selected cases in May 2004.
A Simple Downscaling Algorithm for Remotely Sensed Land Surface Temperature
NASA Astrophysics Data System (ADS)
Sandholt, I.; Nielsen, C.; Stisen, S.
2009-05-01
The method is illustrated using a combination of MODIS NDVI data with a spatial resolution of 250m and 3 Km Meteosat Second Generation SEVIRI LST data. Geostationary Earth Observation data carry a large potential for assessment of surface state variables. Not the least the European Meteosat Second Generation platform with its SEVIRI sensor is well suited for studies of the dynamics of land surfaces due to its high temporal frequency (15 minutes) and its red, Near Infrared (NIR) channels that provides vegetation indices, and its two split window channels in the thermal infrared for assessment of Land Surface Temperature (LST). For some applications the spatial resolution in geostationary data is too coarse. Due to the low statial resolution of 4.8 km at nadir for the SEVIRI sensor, a means of providing sub pixel information is sought for. By combining and properly scaling two types of satellite images, namely data from the MODIS sensor onboard the polar orbiting platforms TERRA and AQUA and the coarse resolution MSG-SEVIRI, we exploit the best from two worlds. The vegetation index/surface temperature space has been used in a vast number of studies for assessment of air temperature, soil moisture, dryness indices, evapotranspiration and for studies of land use change. In this paper, we present an improved method to derive a finer resolution Land Surface Temperature (LST). A new, deterministic scaling method has been applied, and is compared to existing deterministic downscaling methods based on LST and NDVI. We also compare our results from in situ measurements of LST from the Dahra test site in West Africa.
NASA Technical Reports Server (NTRS)
Smith, Cosmo
2011-01-01
The seasonal freezing and thawing of Earth's cryosphere (the portion of Earth's surface permanently or seasonally frozen) has an immense impact on Earth's climate as well as on its water, carbon and energy cycles. During the spring, snowmelt and the transition between frozen and non-frozen states lowers Earth's surface albedo. This change in albedo causes more solar radiation to be absorbed by the land surface, raising surface soil and air temperatures as much as 5 C within a few days. The transition of ice into liquid water not only raises the surface humidity, but also greatly affects the energy exchange between the land surface and the atmosphere as the phase change creates a latent energy dominated system. There is strong evidence to suggest that the thawing of the cryosphere during spring and refreezing during autumn is correlated to local atmospheric conditions such as cloud structure and frequency. Understanding the influence of land surface freeze/thaw cycles on atmospheric structure can help improve our understanding of links between seasonal land surface state and weather and climate, providing insight into associated changes in Earth's water, carbon, and energy cycles that are driven by climate change.Information on both the freeze/thaw states of Earth's land surface and cloud characteristics is derived from data sets collected by NOAA's Special Sensor Microwave/Imager (SSM/I), the Advanced Microwave Scanning Radiometer on NASA's Earth Observing System(AMSR-E), NASA's CloudSat, and NASA's SeaWinds-on-QuickSCAT Earth remote sensing satellite instruments. These instruments take advantage of the microwave spectrum to collect an ensemble of atmospheric and land surface data. Our analysis uses data from radars (active instruments which transmit a microwave signal toward Earth and measure the resultant backscatter) and radiometers (passive devices which measure Earth's natural microwave emission) to accurately characterize salient details on Earth's surface and atmospheric states. By comparing the cloud measurements and the surface freeze-thaw data sets, a correlation between the two phenomena can be developed.
Hydro-meteorological processes on the Qinghai - Tibet Plateau observed from space
NASA Astrophysics Data System (ADS)
Menenti, Massimo; Colin, Jerome; Jia, Li; D'Urso, Guido; Foken, Thomas; Immerzeel, Walter; Jha, Ramakar; Liu, Qinhuo; Liu, Changming; Ma, Yaoming; Sobrino, Jose Antonio; Yan, Guangjian; Pelgrum, Henk; Porcu, Federico; Wang, Jian; Wang, Jiemin; Shen, Xueshun; Su, Zhongbo; Ueno, Kenichi
2014-05-01
The Qinghai - Tibet Plateau is characterized by a significant intra-annual variability and spatial heterogeneity of surface conditions. Snow and vegetation cover, albedo, surface temperature and wetness change very significantly during the year and from place to place. The influence of temporal changes on convective events and the onset of the monsoon has been documented by ground based measurements of land - atmosphere exchanges of heat and water. The state of the land surface over the entire Plateau can be determined by space observation of surface albedo, temperature, snow and vegetation cover and soil moisture. Fully integrated use of satellite and ground observations is necessary to support water resources management in SE Asia and to clarify the roles of the interactions between the land surface and the atmosphere over the Tibetan Plateau in the Asian monsoon system. New or significantly improved algorithms have been developed and evaluated against ground measurements. Variables retrieved include land surface properties, rain rate, aerosol optical depth, water vapour, snow cover and water equivalent, soil moisture and lake level. The three years time series of gap-free daily and hourly evaporation derived from geostationary data collected by the FY-2D satellite was a major achievement. The hydrologic modeling system has been implemented and applied to the Qinghai Tibet Plateau and the headwaters of the major rivers in South and East Asia. Case studies on response of atmospheric circulation and specifically of convective activity to land surface conditions have been completed and the controlling land surface conditions and processes have been documented. Two new drought indicators have been developed: Normalized Temperature Anomaly Index (NTAI) and Normalized Vegetation Anomaly Index (NVAI). Case study in China and India showed that these indicators capture effectively drought severity and evolution. A new method has been developed for monitoring and early warning of flooded areas at the regional scale.
Using Landsat, MODIS, and a Biophysical Model to Evaluate LST in Urban Centers
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad Z.; Quattrochi, Dale A.; Bounoua, Lahouari; Lachir, Asia; Zhang, Ping
2016-01-01
In this paper, we assessed and compared land surface temperature (LST) in urban centers using data from Landsat, MODIS, and the Simple Biosphere model (SiB2). We also evaluated the sensitivity of the models LST to different land cover types, fractions (percentages), and emissivities compared to reference points derived from Landsat thermal data. This was demonstrated in three climatologically- and morphologically-different cities of Atlanta, GA, New York, NY, and Washington, DC. Our results showed that in these cities SiB2 was sensitive to both the emissivity and the land cover type and fraction, but much more sensitive to the latter. The practical implications of these results are rather significant since they imply that the SiB2 model can be used to run different scenarios for evaluating urban heat island (UHI) mitigation strategies. This study also showed that using detailed emissivities per land cover type and fractions from Landsat-derived data caused a convergence of the model results towards the Landsat-derived LST for most of the studied cases. This study also showed that SiB2 LSTs are closer in magnitude to Landsat-derived LSTs than MODIS-derived LSTs. It is important, however, to emphasize that both Landsat and MODIS LSTs are not direct observations and, as such, do not represent a ground truth. More studies will be needed to compare these results to in situ LST data and provide further validation.
NASA Astrophysics Data System (ADS)
He, Tao; Liang, Shunlin; Song, Dan-Xia
2014-09-01
For several decades, long-term time series data sets of multiple global land surface albedo products have been generated from satellite observations. These data sets have been used as one of the key variables in climate change studies. This study aims to assess the surface albedo climatology and to analyze long-term albedo changes, from nine satellite-based data sets for the period 1981-2010, on a global basis. Results show that climatological surface albedo data sets derived from satellite observations can be used to validate, calibrate, and further improve surface albedo simulations and parameterizations in current climate models. However, the albedo products derived from the International Satellite Cloud Climatology Project and the Global Energy and Water Exchanges Project have large seasonal biases. At latitudes higher than 50°, the maximal difference in winter zonal albedo ranges from 0.1 to 0.4 among the nine satellite data sets. Satellite-based albedo data sets agree relatively well during the summer at high latitudes, with a standard deviation of 0.04 for the 70°-80° zone in both hemispheres. The fine-resolution (0.05°) data sets agree well with each other for all the land cover types in middle to low latitudes; however, large spread was identified for their albedos at middle to high latitudes over land covers with mixed snow and sparse vegetation. By analyzing the time series of satellite-based albedo products over the past three decades, albedo of the Northern Hemisphere was found to be decreasing in July, likely due to the shrinking snow cover. Meanwhile, albedo in January was found to be increasing, likely because of the expansion of snow cover in northern winter. However, to improve the albedo estimation at high latitudes, and ultimately the climate models used for long-term climate change studies, a still better understanding of differences between satellite-based albedo data sets is required.
A second-order Budkyo-type parameterization of landsurface hydrology
NASA Technical Reports Server (NTRS)
Andreou, S. A.; Eagleson, P. S.
1982-01-01
A simple, second order parameterization of the water fluxes at a land surface for use as the appropriate boundary condition in general circulation models of the global atmosphere was developed. The derived parameterization incorporates the high nonlinearities in the relationship between the near surface soil moisture and the evaporation, runoff and percolation fluxes. Based on the one dimensional statistical dynamic derivation of the annual water balance, it makes the transition to short term prediction of the moisture fluxes, through a Taylor expansion around the average annual soil moisture. A comparison of the suggested parameterization is made with other existing techniques and available measurements. A thermodynamic coupling is applied in order to obtain estimations of the surface ground temperature.
NASA Astrophysics Data System (ADS)
Wang, Jianmin; Zhang, Xiaoyang
2017-05-01
Land surface phenology (LSP) derived from satellite data has been widely associated with recent global climate change. However, LSP is frequently influenced by land disturbances, which significantly limits our understanding of the phenological trends driven by climate change. Because wildfire is one of the most significant disturbance agents, we investigated the influences of wildfire on the start of growing season (SOS) and the interannual trends of SOS in the Hayman Fire area that occurred in 2002 in Colorado using time series of daily MODIS data (2001-2014). Results show that the Hayman Fire advanced the area-integrated SOS by 15.2 d and converted SOS from a delaying trend of 3.9 d/decade to an advancing trend of -1.9 d/decade during 2001-2014. The fire impacts on SOS increased from low burn severity to high burn severity. Moreover, the rate of increase of annual maximum and minimum EVI2 from 2003-2014 reflects that vegetation greenness could recover to pre-fire status in 2022 and 2053, respectively, which suggests that the fire impacts on the satellite-derived SOS variability and the interannual trends should continue in the next few decades.
NASA Astrophysics Data System (ADS)
Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.
2017-12-01
The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks, RNVCF shows significant overestimation in summer, perhaps due to RNVCF ignores the growing characteristics of vegetation (mainly grass) in these two regions. Our results demonstrate that VCF schemes have significant influence on LSM performance, and indicate that it is important to consider vegetation growing characteristics in VCF schemes for different LCs.
NASA Astrophysics Data System (ADS)
Ryu, Youngryel; Jiang, Chongya
2016-04-01
To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial-temporal resolution of LAI3g dataset. The BESS GPP and ET products were compared to other independent datasets including MPI-BGC and CLM. Overall, the BESS products show good agreement with the other two datasets, indicating a compelling potential for bridging remote sensing and land surface models.
NASA Astrophysics Data System (ADS)
Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia
2017-04-01
The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.
Gonthier, Gerard
2012-01-01
Two test wells were completed in Pooler, Georgia, in 2011 to investigate the potential of using the Lower Floridan aquifer as a source of water for municipal use. One well was completed in the Lower Floridan aquifer at a depth of 1,120 feet (ft) below land surface; the other well was completed in the Upper Floridan aquifer at a depth of 486 ft below land surface. At the Pooler test site, the U.S. Geological Survey performed flowmeter surveys, packer-isolated slug tests within the Lower Floridan confining unit, slug tests of the entire Floridan aquifer system, and aquifer tests of the Upper and Lower Floridan aquifers. Drill cuttings, geophysical logs, and borehole flowmeter surveys indicate that the Upper Floridan aquifer extends 333 –515 ft below land surface, the Lower Floridan confining unit extends 515–702 ft below land surface, and the Lower Floridan aquifer extends 702–1,040 ft below land surface. Flowmeter surveys indicate that the Upper Floridan aquifer contains two water-bearing zones at depth intervals of 339 –350 and 375–515 ft; the Lower Floridan confining unit contains one zone at a depth interval of 550–620 ft; and the Lower Floridan aquifer contains five zones at depth intervals of 702–745, 745–925, 925–984, 984–1,015, and 1,015–1,040 ft. Flowmeter testing of the test borehole open to the entire Floridan aquifer system indicated that the Upper Floridan aquifer contributed 92.4 percent of the total flow rate of 708 gallons per minute; the Lower Floridan confining unit contributed 3.0 percent; and the Lower Floridan aquifer contributed 4.6 percent. Horizontal hydraulic conductivity of the Lower Floridan confining unit derived from slug tests within three packer-isolated intervals ranged from 0.5 to 10 feet per day (ft/d). Aquifer-test analyses yielded values of transmissivity for the Upper Floridan aquifer, Lower Floridan confining unit, and the Lower Floridan aquifer of 46,000, 700, and 4,000 feet squared per day (ft2/d), respectively. Horizontal hydraulic conductivity of 4 ft/d for the Lower Floridan confining unit, derived from aquifer-test analyses, is near the midrange for values derived from packer-isolated slug tests. The transmissivity of the entire Floridan aquifer system derived from aquifer-test analyses totals about 51,000 ft2/d, similar to the value of 58,000 ft2/d derived from open slug tests on the entire Floridan aquifer system. Water-level data for each aquifer test were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small (less than 1 foot) water-level responses to aquifer-test pumping. During the 72-hour aquifer test of pumping the Lower Floridan aquifer, a drawdown response of 51.7 ft was observed in the Lower Floridan pumped well and a drawdown response of 0.9 foot was observed in the Upper Floridan observation well located 85 ft from the pumped well.
Ren, Shilong; Chen, Xiaoqiu; An, Shuai
2017-04-01
Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.
NASA Astrophysics Data System (ADS)
Ren, Shilong; Chen, Xiaoqiu; An, Shuai
2017-04-01
Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.
National housing and impervious surface scenarios for integrated climate impact assessments
Bierwagen, Britta G.; Theobald, David M.; Pyke, Christopher R.; Choate, Anne; Groth, Philip; Thomas, John V.; Morefield, Philip
2010-01-01
Understanding the impacts of climate change on people and the environment requires an understanding of the dynamics of both climate and land use/land cover changes. A range of future climate scenarios is available for the conterminous United States that have been developed based on widely used international greenhouse gas emissions storylines. Climate scenarios derived from these emissions storylines have not been matched with logically consistent land use/cover maps for the United States. This gap is a critical barrier to conducting effective integrated assessments. This study develops novel national scenarios of housing density and impervious surface cover that are logically consistent with emissions storylines. Analysis of these scenarios suggests that combinations of climate and land use/cover can be important in determining environmental conditions regulated under the Clean Air and Clean Water Acts. We found significant differences in patterns of habitat loss and the distribution of potentially impaired watersheds among scenarios, indicating that compact development patterns can reduce habitat loss and the number of impaired watersheds. These scenarios are also associated with lower global greenhouse gas emissions and, consequently, the potential to reduce both the drivers of anthropogenic climate change and the impacts of changing conditions. The residential housing and impervious surface datasets provide a substantial first step toward comprehensive national land use/land cover scenarios, which have broad applicability for integrated assessments as these data and tools are publicly available. PMID:21078956
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey
2017-01-01
The Ozone Monitoring Instrument (OMI) cloud and NO2 algorithms use a monthly gridded surface reflectivity climatology that does not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (GLER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. GLER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from MODIS over land and the Cox Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare GLER and climatological LER at 466 nm, which is used in the OMI O2-O2cloud algorithm to derive effective cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and GLERs is carried out. GLER and corresponding retrieved cloud products are then used as input to the OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with GLERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.
NASA Astrophysics Data System (ADS)
Zhong, L.; Ma, Y.; Ma, W.; Zou, M.; Hu, Y.
2016-12-01
Actual evapotranspiration (ETa) is an important component of the water cycle in the Tibetan Plateau. It is controlled by many hydrological and meteorological factors. Therefore, it is of great significance to estimate ETa accurately and continuously. It is also drawing much attention of scientific community to understand land surface parameters and land-atmosphere water exchange processes in small watershed-scale areas. Based on in-situ meteorological data in the Nagqu river basin and surrounding regions, the main meteorological factors affecting the evaporation process were quantitatively analyzed and the point-scale ETa estimation models in the study area were successfully built. On the other hand, multi-source satellite data (such as SPOT, MODIS, FY-2C) were used to derive the surface characteristics in the river basin. A time series processing technique was applied to remove cloud cover and reconstruct data series. Then improved land surface albedo, improved downward shortwave radiation flux and reconstructed normalized difference vegetation index (NDVI) were coupled into the topographical enhanced surface energy balance system to estimate ETa. The model-estimated results were compared with those ETa values determined by combinatory method. The results indicated that the model-estimated ETa agreed well with in-situ measurements with correlation coefficient, mean bias error and root mean square error of 0.836, 0.087 and 0.140 mm/h respectively.
Brines, Shannon J.; Brown, Daniel G.; Dvonch, J. Timothy; Gronlund, Carina J.; Zhang, Kai; Oswald, Evan M.; O’Neill, Marie S.
2013-01-01
Background: Land surface temperature (LST) and percent surface imperviousness (SI), both derived from satellite imagery, have been used to characterize the urban heat island effect, a phenomenon in which urban areas are warmer than non-urban areas. Objectives: We aimed to assess the correlations between LSTs and SI images with actual temperature readings from a ground-based network of outdoor monitors. Methods: We evaluated the relationships among a) LST calculated from a 2009 summertime satellite image of the Detroit metropolitan region, Michigan; b) SI from the 2006 National Land Cover Data Set; and c) ground-based temperature measurements monitored during the same time period at 19 residences throughout the Detroit metropolitan region. Associations between these ground-based temperatures and the average LSTs and SI at different radii around the point of the ground-based temperature measurement were evaluated at different time intervals. Spearman correlation coefficients and corresponding p-values were calculated. Results: Satellite-derived LST and SI values were significantly correlated with 24-hr average and August monthly average ground temperatures at all but two of the radii examined (100 m for LST and 0 m for SI). Correlations were also significant for temperatures measured between 0400 and 0500 hours for SI, except at 0 m, but not LST. Statistically significant correlations ranging from 0.49 to 0.91 were observed between LST and SI. Conclusions: Both SI and LST could be used to better understand spatial variation in heat exposures over longer time frames but are less useful for estimating shorter-term, actual temperature exposures, which can be useful for public health preparedness during extreme heat events. PMID:23777856
Maxwell, S.K.; Meliker, J.R.; Goovaerts, P.
2010-01-01
In recent years, geographic information systems (GIS) have increasingly been used for reconstructing individual-level exposures to environmental contaminants in epidemiological research. Remotely sensed data can be useful in creating space-time models of environmental measures. The primary advantage of using remotely sensed data is that it allows for study at the local scale (e.g., residential level) without requiring expensive, time-consuming monitoring campaigns. The purpose of our study was to identify how land surface remotely sensed data are currently being used to study the relationship between cancer and environmental contaminants, focusing primarily on agricultural chemical exposure assessment applications. We present the results of a comprehensive literature review of epidemiological research where remotely sensed imagery or land cover maps derived from remotely sensed imagery were applied. We also discuss the strengths and limitations of the most commonly used imagery data (aerial photographs and Landsat satellite imagery) and land cover maps.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
NASA Astrophysics Data System (ADS)
Shaffer, S. R.
2017-12-01
Coupled land-atmosphere interactions in urban settings modeled with the Weather Research and Forecasting model (WRF) derive urban land cover from 30-meter resolution National Land Cover Database (NLCD) products. However, within urban areas, the categorical NLCD lose information of non-urban classifications whenever the impervious cover within a grid cell is above 0%, and the current method to determine urban area over estimates the actual area, leading to a bias of urban contribution. To address this bias of urban contribution an investigation is conducted by employing a 1-meter resolution land cover data product derived from the National Agricultural Imagery Program (NAIP) dataset. Scenes during 2010 for the Central Arizona Phoenix Long Term Ecological Research (CAP-LTER) study area, roughly a 120 km x 100 km area containing metropolitan Phoenix, are adapted for use within WRF to determine the areal fraction and urban fraction of each WRF urban class. A method is shown for converting these NAIP data into classes corresponding to NLCD urban classes, and is evaluated in comparison with current WRF implementation using NLCD. Results are shown for comparisons of land cover products at the level of input data and aggregated to model resolution (1 km). The sensitivity of WRF short-term summertime pre-monsoon predictions within metropolitan Phoenix to different input data products of land cover, to method of aggregating these data to model grid scale (1 km), for the default and derived parameter values are examined with the Noah mosaic land surface scheme adapted for using these data. Issues with adapting these non-urban NAIP classes for use in the mosaic approach will also be discussed.
Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration
NASA Technical Reports Server (NTRS)
Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu
2016-01-01
In this study, the observations from S-NPP VIIRS Day-Night band (DNB) and Moderate resolution bands (M bands) of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF) correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA) DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR). In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442
The managed clearing: An overlooked land-cover type in urbanizing regions?
Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.
NASA Astrophysics Data System (ADS)
Betancourt, J. L.; Biondi, F.; Bradford, J. B.; Foster, J. R.; Betancourt, J. L.; Foster, J. R.; Biondi, F.; Bradford, J. B.; Henebry, G. M.; Post, E.; Koenig, W.; Hoffman, F. M.; de Beurs, K.; Hoffman, F. M.; Kumar, J.; Hargrove, W. W.; Norman, S. P.; Brooks, B. G.
2016-12-01
Vegetated ecosystems exhibit unique phenological behavior over the course of a year, suggesting that remotely sensed land surface phenology may be useful for characterizing land cover and ecoregions. However, phenology is also strongly influenced by temperature and water stress; insect, fire, and weather disturbances; and climate change over seasonal, interannual, decadal and longer time scales. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a useful proxy for land surface phenology. We used NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) every eight days at 250 m resolution for the period 2000-2015 to develop phenological signatures of emergent ecological regimes called phenoregions. We employed a "Big Data" classification approach on a supercomputer, specifically applying an unsupervised data mining technique, to this large collection of NDVI measurements to develop annual maps of phenoregions. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. To reduce the impact of short-term disturbances, we derived a single map of the mode of annual phenological states for the CONUS, assigning each map cell to the state with the largest integrated NDVI in cases where multiple states tie for the highest frequency of occurrence. Since the data mining technique is unsupervised, individual phenoregions are not associated with an ecologically understandable label. To add automated supervision to the process, we applied the method of Mapcurves, developed by Hargrove and Hoffman, to associate individual phenoregions with labeled polygons in expert-derived maps of biomes, land cover, and ecoregions. We will present the phenoregions methodology and resulting maps for the CONUS, describe the "label-stealing" technique for ascribing biome characteristics to phenoregions, and introduce a new polar plotting scheme for processing NDVI data by localized seasonality.
Generation of 2D Land Cover Maps for Urban Areas Using Decision Tree Classification
NASA Astrophysics Data System (ADS)
Höhle, J.
2014-09-01
A 2D land cover map can automatically and efficiently be generated from high-resolution multispectral aerial images. First, a digital surface model is produced and each cell of the elevation model is then supplemented with attributes. A decision tree classification is applied to extract map objects like buildings, roads, grassland, trees, hedges, and walls from such an "intelligent" point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software "R"; the generation of the dense and accurate digital surface model by the "Match-T DSM" program of the Trimble Company. A practical example of a 2D land cover map generation is carried out. Images of a multispectral medium-format aerial camera covering an urban area in Switzerland are used. The assessment of the produced land cover map is based on class-wise stratified sampling where reference values of samples are determined by means of stereo-observations of false-colour stereopairs. The stratified statistical assessment of the produced land cover map with six classes and based on 91 points per class reveals a high thematic accuracy for classes "building" (99 %, 95 % CI: 95 %-100 %) and "road and parking lot" (90 %, 95 % CI: 83 %-95 %). Some other accuracy measures (overall accuracy, kappa value) and their 95 % confidence intervals are derived as well. The proposed methodology has a high potential for automation and fast processing and may be applied to other scenes and sensors.
Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990-2009).
Sharma, Richa; Ghosh, Aniruddha; Joshi, Pawan Kumar
2013-04-01
Urbanisation is a ubiquitous phenomenon with greater prominence in developing nations. Urban expansion involves land conversions from vegetated moisture-rich to impervious moisture-deficient land surfaces. The urban land transformations alter biophysical parameters in a mode that promotes development of heat islands and degrades environmental health. This study elaborates relationships among various environmental variables using remote sensing dataset to study spatio-temporal footprint of urbanisation in Surat city. Landsat Thematic Mapper satellite data were used in conjugation with geo-spatial techniques to study urbanisation and correlation among various satellite-derived biophysical parameters, [Normalised Difference Vegetation Index, Normalised Difference Built-up Index, Normalised Difference Water Index, Normalised Difference Bareness Index, Modified NDWI and land surface temperature (LST)]. Land use land cover was prepared using hierarchical decision tree classification with an accuracy of 90.4 % (kappa = 0.88) for 1990 and 85 % (kappa = 0.81) for 2009. It was found that the city has expanded over 42.75 km(2) within a decade, and these changes resulted in elevated surface temperatures. For example, transformation from vegetation to built-up has resulted in 5.5 ± 2.6 °C increase in land surface temperature, vegetation to fallow 6.7 ± 3 °C, fallow to built-up is 3.5 ± 2.9 °C and built-up to dense built-up is 5.3 ± 2.8 °C. Directional profiling for LST was done to study spatial patterns of LST in and around Surat city. Emergence of two new LST peaks for 2009 was observed in N-S and NE-SW profiles.
Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity
NASA Technical Reports Server (NTRS)
Mueller, Thomas; Tucker, Compton J.; Dressler, Gunnar; Pinzon, Jorge E.; Leimgruber, Peter; Dubayah, Ralph O.; Hurtt, George C.; Boehning-Gaese, Katrin; Fagan, William F.
2014-01-01
Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.
NASA Astrophysics Data System (ADS)
Christanto, N.; Sartohadi, J.; Setiawan, M. A.; Shrestha, D. B. P.; Jetten, V. G.
2018-04-01
Land use change influences the hydrological as well as landscape processes such as runoff and sediment yields. The main objectives of this study are to assess the land use change and its impact on the runoff and sediment yield of the upper Serayu Catchment. Land use changes of 1991 to 2014 have been analyzed. Spectral similarity and vegetation indices were used to classify the old image. Therefore, the present and the past images are comparable. The influence of the past and present land use on runoff and sediment yield has been compared with field measurement. The effect of land use changes shows the increased surface runoff which is the result of change in the curve number (CN) values. The study shows that it is possible to classify previously obtained image based on spectral characteristics and indices of major land cover types derived from recently obtained image. This avoids the necessity of having training samples which will be difficult to obtain. On the other hand, it also demonstrates that it is possible to link land cover changes with land degradation processes and finally to sedimentation in the reservoir. The only condition is the requirement for having the comparable dataset which should not be difficult to generate. Any variation inherent in the data which are other than surface reflectance has to be corrected.
Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.
2006-01-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E
2006-09-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Kumar, Sujay V.; Mahanama, P. P.; Koster, Randal D.; Liu, Q.
2010-01-01
Land surface (or "skin") temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. Here we assimilate LST retrievals from the International Satellite Cloud Climatology Project (ISCCP) into the Noah and Catchment (CLSM) land surface models using an ensemble-based, off-line land data assimilation system. LST is described very differently in the two models. A priori scaling and dynamic bias estimation approaches are applied because satellite and model LST typically exhibit different mean values and variability. Performance is measured against 27 months of in situ measurements from the Coordinated Energy and Water Cycle Observations Project at 48 stations. LST estimates from Noah and CLSM without data assimilation ("open loop") are comparable to each other and superior to that of ISCCP retrievals. For LST, RMSE values are 4.9 K (CLSM), 5.6 K (Noah), and 7.6 K (ISCCP), and anomaly correlation coefficients (R) are 0.62 (CLSM), 0.61 (Noah), and 0.52 (ISCCP). Assimilation of ISCCP retrievals provides modest yet statistically significant improvements (over open loop) of up to 0.7 K in RMSE and 0.05 in anomaly R. The skill of surface turbulent flux estimates from the assimilation integrations is essentially identical to the corresponding open loop skill. Noah assimilation estimates of ground heat flux, however, can be significantly worse than open loop estimates. Provided the assimilation system is properly adapted to each land model, the benefits from the assimilation of LST retrievals are comparable for both models.
NASA Astrophysics Data System (ADS)
Aichele, Stephen S.; Andresen, Jeffrey A.
2013-04-01
SummaryImpervious surface has been recognized as a key indicator of watershed health and function. The rapid expansion of impervious surface associated with periurban development following the Second World War resulted in concerns that impervious surface would alter flow characteristics, water quality, sediment, and stream morphology. These effects have been documented in studies across many disciplines. Unfortunately, impervious surface is difficult to measure directly, and other forms of land-use data are often substituted as surrogates. This paper highlights the shortcomings in land-use data, particularly parcel-based land-use data, as a surrogate for impervious surface in a periurban environment. Periurban development has changed substantially in the last several decades. This study investigates changes in the form of periurban development in Oakland County, Michigan, from 1945 to 2005, with an emphasis on the accumulation of impervious surface. We first evaluate patterns in the sizes of parcels being developed to residential uses. Using an impervious surface map derived from aerial imagery, we then calculate amount of impervious surface created by different forms of development, both in parcels of similar sizes developed at different times, and across parcel sizes for the period of the study. The results indicate substantial variability in impervious surface within periurban residential development, from 5.4% of parcel area to 25.4% of total parcel area depending on parcel size. Even within relatively specific categories (for example, residential parcels less than 743 square metre) impervious surface varied between 18.5% and 34.6% of the parcel area between 1945 and 2000. Since 1980, the trend has been toward larger parcel sizes with lower impervious surface ratios. The overall effect is that land is being developed at a rate substantially greater than the rate impervious surface is being created. The bias created by the trend to larger parcel sizes with smaller impervious surface ratios results in a tendency to overestimate the effects of recent land development. In combination with the change in character of suburban development, this bias has a tendency to overestimate the hydrologic response to new development. This overestimation is easily overlooked because it is consistent with the expected effect of urbanization. However, this effect helps explain observed field results indicating little change in streamflow through time despite significant apparent periurban development.
Precipitation from the GPM Microwave Imager and Constellation Radiometers
NASA Astrophysics Data System (ADS)
Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu
2014-05-01
Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and total precipitable water. One year of coincident observations, generating 20 and 80 million database entries, depending upon the sensor, are used in the retrieval algorithm. The remaining areas such as sea ice and high latitude coastal zones are filled with a combination of CloudSat and AMSR-E plus MHS observations together with a model to create the equivalent databases for other radiometers in the constellation. The most noteworthy result from the Day-1 algorithm is the quality of the land products when compared to existing products. Unlike previous versions of land algorithms that depended upon complex screening routines to decide if pixels were precipitating or not, the current scheme is free of conditional rain statements and appears to produce rain rate with much greater fidelity than previous schemes. There results will be shown.
NASA Astrophysics Data System (ADS)
Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.
2008-12-01
Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably with 100 m scale topographic slopes extrapolated from altimetry profiles and meter scale slopes from high-resolution stereo images. The third global unit has very low thermal inertia and very high albedo, indicating it is dominated by deposits of bright red atmospheric dust that may be neither load bearing nor trafficable. The landers have thus sampled the majority of likely safe and trafficable surfaces that cover most of Mars and show that remote sensing data can be used to infer the surface characteristics, slopes, and surface materials present at other locations.
MAMS: High resolution atmospheric moisture/surface properties
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Guillory, Anthony R.; Suggs, Ron; Atkinson, Robert J.; Carlson, Grant S.
1991-01-01
Multispectral Atmospheric Mapping Sensor (MAMS) data collected from a number of U2/ER2 aircraft flights were used to investigate atmospheric and surface (land) components of the hydrologic cycle. Algorithms were developed to retrieve surface and atmospheric geophysical parameters which describe the variability of atmospheric moisture, its role in cloud and storm development, and the influence of surface moisture and heat sources on convective activity. Techniques derived with MAMS data are being applied to existing satellite measurements to show their applicability to regional and large process studies and their impact on operational forecasting.
Evaluation of the performance of hydrological variables derived from GLDAS-2 and MERRA-2 in Mexico
NASA Astrophysics Data System (ADS)
Real-Rangel, R. A.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.
2017-12-01
Hydrological studies have found in data assimilation systems and global reanalysis of land surface variables (e.g soil moisture, streamflow) a wide range of applications, from drought monitoring to water balance and hydro-climatology variability assessment. Indeed, these hydrological data sources have led to an improvement in developing and testing monitoring and prediction systems in poorly gauged regions of the world. This work tests the accuracy and error of land surface variables (precipitation, soil moisture, runoff and temperature) derived from the data assimilation reanalysis products GLDAS-2 and MERRA-2. Validate the performance of these data platforms must be thoroughly evaluated in order to consider the error of hydrological variables (i.e., precipitation, soil moisture, runoff and temperature) derived from the reanalysis products. For such purpose, a quantitative assessment was performed at 2,892 climatological stations, 42 stream gauges and 44 soil moisture probes located in Mexico and across different climate regimes (hyper-arid to tropical humid). Results show comparisons between these gridded products against ground-based observational stations for 1979-2014. The results of this analysis display a spatial distribution of errors and accuracy over Mexico discussing differences between climates, enabling the informed use of these products.
NASA Astrophysics Data System (ADS)
Qaisar, Maha
2016-07-01
Due to the present land use practices and climate variability, drastic shifts in regional climate and land covers are easily seen and their future reduction and gain are too well predicted. Therefore, there is an increasing need for data on land-cover changes at narrow and broad spatial scales. In this study, a remote sensing-based technique for land-cover-change analysis is applied to the lower Sindh areas for the last decade. Landsat satellite products were analyzed on an alternate yearly basis, from 1990 to 2016. Then Land-cover-change magnitudes were measured and mapped for alternate years. Land Surface Temperature (LST) is one of the critical elements in the natural phenomena of surface energy and water balance at local and global extent. However, LST was computed by using Landsat thermal bands via brightness temperature and a vegetation index. Normalized difference vegetation index (NDVI) was interpreted and maps were achieved. LST reflected NDVI patterns with complexity of vegetation patterns. Along with this, Object Based Image Analysis (OBIA) was done for classifying 5 major classes of water, vegetation, urban, marshy lands and barren lands with significant map layouts. Pakistan Meteorological Department provided the climate data in which rainfall, temperature and air temperature are included. Once the LST and OBIA are performed, overlay analysis was done to correlate the results of LST with OBIA and LST with meteorological data to ascertain the changes in land covers due to increasing centigrade of LST. However, satellite derived LST was also correlated with climate data for environmental analysis and to estimate Land Surface Temperature for assessing the inverse impacts of climate variability. This study's results demonstrate the land-cover changes in Lower Areas of Sindh including the Indus Delta mostly involve variations in land-cover conditions due to inter-annual climatic variability and temporary shifts in seasonality. However it is too concluded that transitory alteration of the biophysical characteristics of the surface driven by variations in rainfall is the prevailing progression. Moreover, future work will focus on finer-scale analysis and validations of patterns of changes due to rapid urbanization and population explosion in poverty stricken areas of Sindh which are posing an adverse impact on the land utilization and in turn increasing the land surface temperature and ultimately more stress on the low lying areas of Sindh i.e. Indus Delta will be losing its productivity and capacity to bear biodiversity whether the fauna or flora. Hence, this regional scale problem will become a global concern. Therefore, it is needed to stop the menace in its starting phase to mitigate the problem and to bring minds on this horrendous situation.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey
2015-04-01
To date, physical-mathematical modeling processes of land surface-atmosphere interaction is considered to be the most appropriate tool for obtaining reliable estimates of water and heat balance components of large territories. The model of these processes (Land Surface Model, LSM) developed for vegetation period is destined for simulating soil water content W, evapotranspiration Ev, vertical latent LE and heat fluxes from land surface as well as vertically distributed soil temperature and moisture, soil surface Tg and foliage Tf temperatures, and land surface skin temperature (LST) Ts. The model is suitable for utilizing remote sensing data on land surface and meteorological conditions. In the study these data have been obtained from measurements by scanning radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/geostationary satellites Meteosat-9, -10 (MSG-2, -3). The heterogeneity of the land surface and meteorological conditions has been taken into account in the model by using soil and vegetation characteristics as parameters and meteorological characteristics as input variables. Values of these characteristics have been determined from ground observations and remote sensing information. So, AVHRR data have been used to build the estimates of effective land surface temperature (LST) Ts.eff and emissivity E, vegetation-air temperature (temperature at the vegetation level) Ta, normalized vegetation index NDVI, vegetation cover fraction B, the leaf area index LAI, and precipitation. From MODIS data the values of LST Tls, Å, NDVI, LAI have been derived. From SEVIRI data there have been retrieved Tls, E, Ta, NDVI, LAI and precipitation. All named retrievals covered the vast territory of the part of the agricultural Central Black Earth Region located in the steppe-forest zone of European Russia. This territory with coordinates 49°30'-54°N, 31°-43°E and a total area of 227,300 km2 has been chosen for investigation. It has been carried out for years 2009-2013 vegetation seasons. To provide the retrieval of Ts.eff, E, Ta, NDVI, B, and LAI the previously developed technologies of AVHRR data processing have been refined and adapted to the region of interest. The updated linear regression estimators for Ts.eff and Tà have been built using representative training samples compiled for above vegetation seasons. The updated software package has been applied for AVHRR data processing to generate estimates of named values. To verify the accuracy of these estimates the error statistics of Ts.eff and Ta derivation has been investigated for various days of named seasons using comparison with in-situ ground-based measurements. On the base of special technology and Internet resources the remote sensing products Tls, E, NDVI, LAI derived from MODIS data and covering the study area have been extracted from LP DAAC web-site for the same vegetation seasons. The reliability of the MODIS-derived Tls estimates has been confirmed via comparison with analogous and collocated ground-, AVHRR-, and SEVIRI-based ones. The prepared remote sensing dataset has also included the SEVIRI-derived estimates of Tls, E, NDVI, Ta at daylight and night-time and daily estimates of LAI. The Tls estimates has been built utilizing the method and technology developed for the retrieval of Tls and E from 15 minutes time interval SEVIRI data in IR channels 10.8 and 12.0 µm (classified as 100% cloud-free and covering the area of interest) at three successive times without accurate a priori knowledge of E. Comparison of the SEVIRI-based Tls retrievals with independent collocated Tls estimates generated at the Land Surface Analysis Satellite Applications Facility (LSA SAF, Lisbon, Portugal) has given daily- or monthly-averaged values of RMS deviation in the range of 2°C for various dates and months during the mentioned vegetation seasons which is quite acceptable result. The reliability of the SEVIRI-based Tls estimates for the study area has been also confirmed by comparing with AVHRR- and MODIS-derived LST estimates for the same seasons. The SEVIRI-derived values of Ta considered as the temperature of the vegetation cover has been obtained using Tls estimates and a previously found multiple linear regression relationship between Tls and Ta formulated accounting for solar zenith angle and land elevation. A comparison with ground-based collocated Ta observations has given RMS errors of 2.5°C and lower. It can be treated as a proof of the proposed technique's functionality. SEVIRI-derived LAI estimates have been retrieved at LSA SAF from measurements by this sensor in channels 0.6, 0.8, and 1.6 μm under cloud-free conditions at that when using data in the channel 1.6 μm the accuracy of these estimates has increased. In the study the AVHRR- and SEVIRI-derived estimates of daily and monthly precipitation sums for the territory under investigation for the years 2009 - 2013 vegetation seasons have been also used. These estimates have been obtained by the improved integrated Multi Threshold Method (MTM) providing detection and identification of cloud types around the clock throughout the year as well as identification of precipitation zones and determination of instantaneous precipitation maximum intensity within the pixel using the measurement data in different channels of named sensors as predictors. Validation of the MTM has been performed by comparing the daily and monthly precipitation sums with appropriate values resulted from ground-based observations at the meteorological stations of the region. The probability of detecting precipitation zones from satellite data corresponding to the actual ones has been amounted to 70-80%. AVHRR- and SEVIRI-derived daily and monthly precipitation sums have been in reasonable agreement with each other and with results of ground-based observations although they are smoother than the last values. Discrepancies have been noted only for local maxima for which satellite-based estimates of precipitation have been much less than ground-based ones. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. To utilize satellite-derived vegetation and meteorological characteristics in the model the special procedures have been developed including: - replacement of ground-based LAI and B estimates used as model parameters by their satellite-derived estimates from AVHRR, MODIS and SEVIRI data. Correctness of such replacement has been confirmed by comparing the time behavior of LAI over the period of vegetation as well as modeled and measured values of evapotranspiration Ev and soil moisture content W; - entering AVHRR-, MODIS- and SEVIRI-derived estimates of Ts.eff Tls, and Ta into the model as input variables instead of ground-measured values with verification of adequacy of model operation under such a change through comparison of the calculated and measured values of W and Ev; - inputing satellite-derived estimates of precipitation during vegetation period retrieved from AVHRR and SEVIRI data using the MTM into the model as input variables. When developing given procedure algorithms and programs have been created to transit from assessment of the rainfall intensity to evaluation of its daily values. The implementation of such a transition requires controlling correctness of the estimates built at each time step. This control includes comparison of areal distributions of three-hour, daily and monthly precipitation amounts obtained from satellite data and calculated by interpolation of standard network observation data; - taking into account spatial heterogeneity of fields of satellite AVHRR-, MODIS- and SEVIRI-derived estimates of LAI, B, LST and precipitation. This has involved the development of algorithms and software for entering the values of all named characteristics into the model in each computational grid node. Values of evapotranspiration E, soil water content W, vertical latent and sensible heat fluxes and other water and heat balance components as well as land surface temperature and moisture area-distributed over the territory of interest have been resulted from the model calculations for the years 2009-2013 vegetation seasons. These calculations have been carried out utilizing satellite-derived estimates of the vegetation characteristics, LST and precipitation. E and W calculation errors have not exceeded the standard values.
Assessing the Impact of Land Use and Land Cover Change on Global Water Resources
NASA Astrophysics Data System (ADS)
Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.
2007-12-01
Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land use change disrupts the hydrological cycle through increasing the water yield at some places leading to floods while diminishing, or even eliminating the low flow at other places.
Rumsey, Christine; Miller, Matthew P.; Susong, David D.; Tillman, Fred D.; Anning, David W.
2015-01-01
Results suggest that approximately half of the streamflow in the UCRB is baseflow derived from groundwater discharge to streams. Higher baseflow yields typically occur in upper elevation areas of the UCRB. PCA identified precipitation, snow, sand content of soils, elevation, land surface slope, percent grasslands, and percent natural barren lands as being positively correlated with baseflow yield; whereas temperature, potential evapotranspiration, silt and clay content of soils, percent agriculture, and percent shrublands were negatively correlated with baseflow yield.
NASA Astrophysics Data System (ADS)
Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.
2002-12-01
We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.
NASA Astrophysics Data System (ADS)
Steyaert, L. T.; Hall, F. G.; Loveland, T. R.
1997-12-01
A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km × 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, l km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.
Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.
1997-01-01
A multitemporal 1 km advanced very high resolution radiometer (AVHRR) land cover analysis approach was used as the basis for regional land cover mapping, fire disturbance-regeneration, and multiresolution land cover scaling studies in the boreal forest ecosystem of central Canada. The land cover classification was developed by using regional field observations from ground and low-level aircraft transits to analyze spectral-temporal clusters that were derived from an unsupervised cluster analysis of monthly normalized difference vegetation index (NDVI) image composites (April-September 1992). Quantitative areal proportions of the major boreal forest components were determined for a 821 km ?? 619 km region, ranging from the southern grasslands-boreal forest ecotone to the northern boreal transitional forest. The boreal wetlands (mostly lowland black spruce, tamarack, mosses, fens, and bogs) occupied approximately 33% of the region, while lakes accounted for another 13%. Upland mixed coniferous-deciduous forests represented 23% of the ecosystem. A SW-NE productivity gradient across the region is manifested by three levels of tree stand density for both the boreal wetland conifer and the mixed forest classes, which are generally aligned with isopleths of regional growing degree days. Approximately 30% of the region was directly affected by fire disturbance within the preceding 30-35 years, especially in the Canadian Shield Zone where large fire-regeneration patterns contribute to the heterogeneous boreal landscape. Intercomparisons with land cover classifications derived from 30-m Landsat Thematic Mapper (TM) data provided important insights into the relative accuracy of the 1 km AVHRR land cover classification. Primarily due to the multitemporal NDVI image compositing process, the 1 km AVHRR land cover classes have an effective spatial resolution in the 3-4 km range; therefore fens, bogs, small water bodies, and small patches of dry jack pine cannot be resolved within the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.
NASA Astrophysics Data System (ADS)
Felkner, John Sames
The scale and extent of global land use change is massive, and has potentially powerful effects on the global climate and global atmospheric composition (Turner & Meyer, 1994). Because of this tremendous change and impact, there is an urgent need for quantitative, empirical models of land use change, especially predictive models with an ability to capture the trajectories of change (Agarwal, Green, Grove, Evans, & Schweik, 2000; Lambin et al., 1999). For this research, a spatial statistical predictive model of land use change was created and run in two provinces of Thailand. The model utilized an extensive spatial database, and used a classification tree approach for explanatory model creation and future land use (Breiman, Friedman, Olshen, & Stone, 1984). Eight input variables were used, and the trees were run on a dependent variable of land use change measured from 1979 to 1989 using classified satellite imagery. The derived tree models were used to create probability of change surfaces, and these were then used to create predicted land cover maps for 1999. These predicted 1999 maps were compared with actual 1999 landcover derived from 1999 Landsat 7 imagery. The primary research hypothesis was that an explanatory model using both economic and environmental input variables would better predict future land use change than would either a model using only economic variables or a model using only environmental. Thus, the eight input variables included four economic and four environmental variables. The results indicated a very slight superiority of the full models to predict future agricultural change and future deforestation, but a slight superiority of the economic models to predict future built change. However, the margins of superiority were too small to be statistically significant. The resulting tree structures were used, however, to derive a series of principles or "rules" governing land use change in both provinces. The model was able to predict future land use, given a series of assumptions, with 90 percent overall accuracies. The model can be used in other developing or developed country locations for future land use prediction, determination of future threatened areas, or to derive "rules" or principles driving land use change.
Surface Heat Balance Analysis of Tainan City on March 6, 2001 Using ASTER and Formosat-2 Data
Kato, Soushi; Yamaguchi, Yasushi; Liu, Cheng-Chien; Sun, Chen-Yi
2008-01-01
The urban heat island phenomenon occurs as a mixed result of anthropogenic heat discharge, decreased vegetation, and increased artificial impervious surfaces. To clarify the contribution of each factor to the urban heat island, it is necessary to evaluate the surface heat balance. Satellite remote sensing data of Tainan City, Taiwan, obtained from Terra ASTER and Formosat-2 were used to estimate surface heat balance in this study. ASTER data is suitable for analyzing heat balance because of the wide spectral range. We used Formosat-2 multispectral data to classify the land surface, which was used to interpolate some surface parameters for estimating heat fluxes. Because of the high spatial resolution of the Formosat-2 image, more roads, open spaces and small vegetation areas could be distinguished from buildings in urban areas; however, misclassifications of land cover in such areas using ASTER data would overestimate the sensible heat flux. On the other hand, the small vegetated areas detected from the Formosat-2 image slightly increased the estimation of latent heat flux. As a result, the storage heat flux derived from Formosat-2 is higher than that derived from ASTER data in most areas. From these results, we can conclude that the higher resolution land coverage map increases accuracy of the heat balance analysis. Storage heat flux occupies about 60 to 80% of the net radiation in most of the artificial surface areas in spite of their usages. Because of the homogeneity of the building roof materials, there is no contrast between the storage heat flux in business and residential areas. In sparsely vegetated urban areas, more heat is stored and latent heat is smaller than that in the forested suburbs. This result implies that density of vegetation has a significant influence in decreasing temperatures. PMID:27873856
Wang, Shu; Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing
2016-01-01
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models.
Zheng, Hui; Liu, Shuhua; Miao, Yucong; Li, Jing
2016-01-01
The wheat production in midland China is under serious threat by frequent Dry-Hot Wind (DHW) episodes with high temperature, low moisture and specific wind as well as intensive heat transfer and evapotranspiration. The numerical simulations of these episodes are important for monitoring grain yield and estimating agricultural water demand. However, uncertainties still remain despite that enormous experiments and modeling studies have been conducted concerning this issue, due to either inaccurate synoptic situation derived from mesoscale weather models or unrealistic parameterizations of stomatal physiology in land surface models. Hereby, we investigated the synoptic characteristics of DHW with widely-used mesoscale model Weather Research and Forecasting (WRF) and the effects of leaf physiology on surface evapotranspiration by comparing two land surface models: The Noah land surface model, and Peking University Land Model (PKULM) with stomata processes included. Results show that the WRF model could well replicate the synoptic situations of DHW. Two types of DHW were identified: (1) prevailing heated dry wind stream forces the formation of DHW along with intense sensible heating and (2) dry adiabatic processes overflowing mountains. Under both situations, the PKULM can reasonably model the stomatal closure phenomena, which significantly decreases both evapotranspiration and net ecosystem exchange of canopy, while these phenomena cannot be resolved in the Noah simulations. Therefore, our findings suggest that the WRF-PKULM coupled method may be a more reliable tool to investigate and forecast DHW as well as be instructive to crop models. PMID:27648943
NASA Astrophysics Data System (ADS)
Cescatti, A.; Duveiller, G.; Hooker, J.
2017-12-01
Changing vegetation cover not only affects the atmospheric concentration of greenhouse gases but also alters the radiative and non-radiative properties of the surface. The result of competing biophysical processes on Earth's surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate. To date these effects are not accounted for in land-based climate policies because of the complexity of the phenomena, contrasting model predictions and the lack of global data-driven assessments. To overcome the limitations of available observation-based diagnostics and of the on-going model inter-comparison, here we present a new benchmarking dataset derived from satellite remote sensing. This global dataset provides the potential changes induced by multiple vegetation transitions on the single terms of the surface energy balance. We used this dataset for two major goals: 1) Quantify the impact of actual vegetation changes that occurred during the decade 2000-2010, showing the overwhelming role of tropical deforestation in warming the surface by reducing evapotranspiration despite the concurrent brightening of the Earth. 2) Benchmark a series of ESMs against data-driven metrics of the land cover change impacts on the various terms of the surface energy budget and on the surface temperature. We anticipate that the dataset could be also used to evaluate future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
NASA Astrophysics Data System (ADS)
Xie, Z.; Zou, J.; Qin, P.; Sun, Q.
2014-12-01
In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the land surface variables will approach the natural state and stabilize at different rates. Simulations were also conducted for cases in which exploitation either continues or ceases using future climate scenario outputs from a general circulation model. The resulting trends were almost the same as those of the simulations with constant climate forcing.
Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements
NASA Astrophysics Data System (ADS)
Deuzé, J. L.; BréOn, F. M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; Tanré, D.
2001-03-01
The polarization measurements achieved by the POLDER instrument on ADEOS-1 are used for the remote sensing of aerosols over land surfaces. The key advantage of using polarized observations is their ability to systematically correct for the ground contribution, whereas the classical approach using natural light fails. The estimation of land surface polarizing properties from POLDER has been examined in a previous paper. Here we consider how the optical thickness δ0 and Ångstrom exponent α of aerosols are derived from the polarized light backscattered by the particles. The inversion scheme is detailed, and illustrative results are presented. Maps of the retrieved optical thickness allow for detection of large aerosol features, and in the case of small aerosols, the δ0 and α retrievals are consistent with correlative ground-based measurements. However, because polarized light stems mainly from small particles, the results are biased for aerosol distributions containing coarser modes of particles. To overcome this limitation, an aerosol index defined as the product AI = δ0α is proposed. Theoretical analysis and comparison with ground-based measurements suggest that AI is approximately the same when using δ0, and α is related to the entire aerosol size distribution or derived from the polarized light originating from the small polarizing particles alone. This invariance is specially assessed by testing the continuity of AI across coastlines, given the unbiased properties of aerosol retrieval over ocean. Although reducing the information concerning the aerosols, this single parameter allows a link between the POLDER aerosol surveys over land and ocean. POLDER aerosol index global maps enable the monitoring of major aerosol sources over continental areas.
NASA Technical Reports Server (NTRS)
Zelazowski, Przemyslaw; Sayer, Andrew M.; Thomas, Gareth E; Grainger, Roy G.
2011-01-01
This paper investigates to what extent satellite measurements of atmospheric properties can be reconciled with fine-resolution land imagery, in order to improve the estimates of surface reflectance through physically based atmospheric correction. The analysis deals with mountainous area (Landsat scene of Peruvian Amazon/Andes, 72 E and 13 S), where the atmosphere is highly variable. Data from satellite sensors were used for characterization of the key atmospheric constituents: total water vapor (TWV), aerosol optical depth (AOD), and total ozone. Constituent time series revealed the season-dependent mean state of the atmosphere and its variability. Discrepancies between AOD from the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS) highlighted substantial uncertainty of atmospheric aerosol properties. The distribution of TWV and AOD over a Landsat scene was found to be exponentially related to ground elevation (mean R(sup 2) of 0.82 and 0.29, respectively). In consequence, the atmosphere-induced and seasonally varying bias of the top-of-atmosphere signal was also elevation dependent (e.g., mean Normalized Difference Vegetation Index bias at 500 m was 0.06 and at 4000 m was 0.01). We demonstrate that satellite measurements of key atmospheric constituents can be downscaled and gap filled with the proposed "background + anomalies" approach, to allow for a better compatibility with fine-resolution land surface imagery. Older images (i.e., predating the MODIS/ATSR era), without coincident atmospheric data, can be corrected using climatologies derived from time series of satellite retrievals. Averaging such climatologies over space compromises the quality of correction result to a much greater degree than averaging them over time. We conclude that the quality of both recent and older fine-resolution land surface imagery can be improved with satellite-based atmospheric data acquired to date.
Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Dwyer, John L.; Eidenshink, Jeffery C.
2004-01-01
Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Zhang, H.; Roy, D. P.
2016-12-01
Classification is a fundamental process in remote sensing used to relate pixel values to land cover classes present on the surface. The state of the practice for large area land cover classification is to classify satellite time series metrics with a supervised (i.e., training data dependent) non-parametric classifier. Classification accuracy generally increases with training set size. However, training data collection is expensive and the optimal training distribution over large areas is unknown. The MODIS 500 m land cover product is available globally on an annual basis and so provides a potentially very large source of land cover training data. A novel methodology to classify large volume Landsat data using high quality training data derived automatically from the MODIS land cover product is demonstrated for all of the Conterminous United States (CONUS). The known misclassification accuracy of the MODIS land cover product and the scale difference between the 500 m MODIS and 30 m Landsat data are accommodated for by a novel MODIS product filtering, Landsat pixel selection, and iterative training approach to balance the proportion of local and CONUS training data used. Three years of global Web-enabled Landsat data (WELD) data for all of the CONUS are classified using a random forest classifier and the results assessed using random forest `out-of-bag' training samples. The global WELD data are corrected to surface nadir BRDF-Adjusted Reflectance and are defined in 158 × 158 km tiles in the same projection and nested to the MODIS land cover products. This reduces the need to pre-process the considerable Landsat data volume (more than 14,000 Landsat 5 and 7 scenes per year over the CONUS covering 11,000 million 30 m pixels). The methodology is implemented in a parallel manner on WELD tile by tile basis but provides a wall-to-wall seamless 30 m land cover product. Detailed tile and CONUS results are presented and the potential for global production using the recently available global WELD products are discussed.
Thermal inertia and surface heterogeneity on Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.
Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer
Apollo 12 voice transcript pertaining to the geology of the landing site
Bailey, N.G.; Ulrich, G.E.
1975-01-01
This document is an edited record of the conversations between the Apollo 12 astronauts and mission control pertaining to the geology of the landing site. It contains all discussions and observations documenting the lunar landscape, its geologic characteristics, the rocks and soils collected, and the lunar surface photographic record along with supplementary remarks essential to the continuity of events during the mission. This transcript is derived from audio tapes and the NASA Technical Air-to-Ground Voice Transcription and includes time of transcription, and photograph and sample numbers. The report also includes a glossary, landing site amp, and sample table.
The Impacts of Urbanization on Meteorology and Air Quality in the Los Angeles Basin
NASA Astrophysics Data System (ADS)
Li, Y.; Zhang, J.; Sailor, D.; Ban-Weiss, G. A.
2017-12-01
Urbanization has a profound influence on regional meteorology in mega cities like Los Angeles. This influence is driven by changes in land surface physical properties and urban processes, and their corresponding influence on surface-atmosphere coupling. Changes in meteorology from urbanization in turn influences air quality through weather-dependent chemical reaction, pollutant dispersion, etc. Hence, a real-world representation of the urban land surface properties and urban processes should be accurately resolved in regional climate-chemistry models for better understanding the role of urbanization on changing urban meteorology and associated pollutant dynamics. By incorporating high-resolution land surface data, previous research has improved model-observation comparisons of meteorology in urban areas including the Los Angeles basin, and indicated that historical urbanization has increased urban temperatures and altered wind flows significantly. However, the impact of urban expansion on air quality has been less studied. Thus, in this study, we aim to evaluate the effectiveness of resolving high-resolution heterogeneity in urban land surface properties and processes for regional weather and pollutant concentration predictions. We coupled the Weather Research and Forecasting model with Chemistry to the single-layer Urban Canopy Model to simulate a typical summer period in year 2012 for Southern California. Land cover type and urban fraction were determined from National Land Cover Data. MODIS observations were used to determine satellite-derived albedo, green vegetation fraction, and leaf area index. Urban morphology was determined from GIS datasets of 3D building geometries. An urban irrigation scheme was also implemented in the model. Our results show that the improved model captures the diurnal cycle of 2m air temperature (T2) and Ozone (O3) concentrations. However, it tends to overestimate wind speed and underestimate T2, which leads to an underestimation of O3 and fine particulate matter concentrations. By comparing simulations assuming current land cover of the Los Angeles basin versus pre-urbanization land cover, we find that land cover change through urbanization has led to important shifts in regional air pollution via the aforementioned physical and chemical mechanisms.
NASA Technical Reports Server (NTRS)
Xia, Youlong; Cosgrove, Brian A.; Mitchell, Kenneth E.; Peters-Lidard, Christa D.; Ek, Michael B.; Brewer, Michael; Mocko, David; Kumar, Sujay V.; Wei, Helin; Meng, Jesse;
2016-01-01
The purpose of this study is to evaluate the components of the land surface water budget in the four land surface models (Noah, SAC-Sacramento Soil Moisture Accounting Model, (VIC) Variable Infiltration Capacity Model, and Mosaic) applied in the newly implemented National Centers for Environmental Prediction (NCEP) operational and research versions of the North American Land Data Assimilation System version 2 (NLDAS-2). This work focuses on monthly and annual components of the water budget over 12 National Weather Service (NWS) River Forecast Centers (RFCs). Monthly gridded FLUX Network (FLUXNET) evapotranspiration (ET) from the Max-Planck Institute (MPI) of Germany, U.S. Geological Survey (USGS) total runoff (Q), changes in total water storage (dS/dt, derived as a residual by utilizing MPI ET and USGS Q in the water balance equation), and Gravity Recovery and Climate Experiment (GRACE) observed total water storage anomaly (TWSA) and change (TWSC) are used as reference data sets. Compared to these ET and Q benchmarks, Mosaic and SAC (Noah and VIC) in the operational NLDAS-2 overestimate (underestimate) mean annual reference ET and underestimate (overestimate) mean annual reference Q. The multimodel ensemble mean (MME) is closer to the mean annual reference ET and Q. An anomaly correlation (AC) analysis shows good AC values for simulated monthly mean Q and dS/dt but significantly smaller AC values for simulated ET. Upgraded versions of the models utilized in the research side of NLDAS-2 yield largely improved performance in the simulation of these mean annual and monthly water component diagnostics. These results demonstrate that the three intertwined efforts of improving (1) the scientific understanding of parameterization of land surface processes, (2) the spatial and temporal extent of systematic validation of land surface processes, and (3) the engineering-oriented aspects such as parameter calibration and optimization are key to substantially improving product quality in various land data assimilation systems.
NASA Astrophysics Data System (ADS)
Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.
2016-12-01
Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against MODIS snow-free black-sky and white-sky albedo estimates. In addition, we test the sensitivity of the Ent/ACTS albedo to different sets of leaf spectral albedos derived from the literature.
NASA Astrophysics Data System (ADS)
Zhang, X.; Friedl, M. A.; Yu, Y.
2013-12-01
Land surface phenology metrics are widely retrieved from satellite observations at regional and global scales, and have been shown to be valuable for monitoring terrestrial ecosystem dynamics in response to extreme climate events and predicting biological responses to future climate scenarios. While the response of spring vegetation greenup to climate warming at mid-to-high latitudes is well-documented, understanding of diverse phenological responses to climate change over entire growing cycles and at broad geographic scales is incomplete. Many studies assume that the timing of individual phenological indicators in responses to climate forcing is independent of phenological events that occur at other times during the growing season. In this paper we use a different strategy. Specifically, we hypothesize that integrating sequences of key phenological indicators across growing seasons provides a more effective way to capture long-term variation in phenology in response to climate change. To explore this hypothesis we use global land surface phenology metrics derived from the Version 3 Long Term Vegetation Index Products from Multiple Satellite Data Records data set to examine interannual variations and trends in global land surface phenology from 1982-2010. Using daily enhanced vegetation index (EVI) data at a spatial resolution of 0.05 degrees, we model the phenological trajectory for each individual pixel using piecewise logistic models. The modeled trajectories were then used to detect phenological indicators including the onset of greenness increase, the onset of greenness maximum, the onset of greenness decrease, the onset of greenness minimum, and the growing season length, among others at global scale. The quality of land surface phenology detection for individual pixels was calculated based on metrics that characterize the EVI quality and model fits in annual time series at each pixel. Phenological indicators characterized as having good quality were then used to detect interannual variation and long-term trends using linear and nonlinear trend analysis techniques.
NASA Technical Reports Server (NTRS)
Dicristofaro, D. C. (Principal Investigator)
1980-01-01
A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.
Comparison of MODIS-derived land surface temperature with air temperature measurements
NASA Astrophysics Data System (ADS)
Georgiou, Andreas; Akçit, Nuhcan
2017-09-01
Air surface temperature is an important parameter for a wide range of applications such as agriculture, hydrology and climate change studies. Air temperature data is usually obtained from measurements made in meteorological stations, providing only limited information about spatial patterns over wide areas. The use of remote sensing data can help overcome this problem, particularly in areas with low station density, having the potential to improve the estimation of air surface temperature at both regional and global scales. Land Surface (skin) Temperatures (LST) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS are compared to groundbased near surface air (Tair) measurements obtained from 14 observational stations during 2011 to 2015, covering coastal, mountainous and urban areas over Cyprus. Combining Terra and Aqua LST-8 Day and Night acquisitions into a mean monthly value, provide a large number of LST observations and a better overall agreement with Tair. Comparison between mean monthly LSTs and mean monthly Tair for all sites and all seasons pooled together yields a very high correlation and biases. In addition, the presented high standard deviation can be explained by the influence of surface heterogeneity within MODIS 1km2 grid cells, the presence of undetected clouds and the inherent difference between LST and Tair. However, MODIS LST data proved to be a reliable proxy for surface temperature and mostly for studies requiring temperature reconstruction in areas with lack of observational stations.
NASA Astrophysics Data System (ADS)
Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Folwell, Sonja S.
2015-04-01
During extended periods without rain (dry spells), the soil can dry out due to vegetation transpiration and soil evaporation. At some point in this drying cycle, land surface conditions change from energy-limited to water-limited evapotranspiration, and this is accompanied by an increase of the ground and overlying air temperatures. Regionally, the characteristics of this transition determine the influence of soil moisture on air temperature and rainfall. Global Climate Models (GCMs) disagree on where and how strongly the surface energy budget is limited by soil moisture. Flux tower observations are improving our understanding of these dry down processes, but typical heterogeneous landscapes are too sparsely sampled to ascertain a representative regional response. Alternatively, satellite observations of land surface temperature (LST) provide indirect information about the surface energy partition at 1km resolution globally. In our study, we analyse how well the dry spell dynamics of LST are represented by GCMs across the globe. We use a spatially and temporally aggregated diagnostic to describe the composite response of LST during surface dry down in rain-free periods in distinct climatic regions. The diagnostic is derived from daytime MODIS-Terra LST observations and bias-corrected meteorological re-analyses, and compared against the outputs of historical climate simulations of seven models running the CMIP5 AMIP experiment. Dry spell events are stratified by antecedent precipitation, land cover type and geographic regions to assess the sensitivity of surface warming rates to soil moisture levels at the onset of a dry spell for different surface and climatic zones. In a number of drought-prone hot spot regions, we find important differences in simulated dry spell behaviour, both between models, and compared to observations. These model biases are likely to compromise seasonal forecasts and future climate projections.
Application of Polarization to the MODIS Aerosol Retrieval Over Land
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine R.; Kaufman, Yoram J.
2004-01-01
Reflectance measurements in the visible and infrared wavelengths, from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used to derive aerosol optical thicknesses (AOT) and aerosol properties over land surfaces. The measured spectral reflectance is compared with lookup tables, containing theoretical reflectance calculated by radiative transfer (RT) code. Specifically, this RT code calculates top of the atmosphere (TOA) intensities based on a scalar treatment of radiation, neglecting the effects of polarization. In the red and near infrared (NIR) wavelengths the use of the scalar RT code is of sufficient accuracy to model TOA reflectance. However, in the blue, molecular and aerosol scattering dominate the TOA signal. Here, polarization effects can be large, and should be included in the lookup table derivation. Using a RT code that allows for both vector and scalar calculations, we examine the reflectance differences at the TOA, with and without polarization. We find that the differences in blue channel TOA reflectance (vector - scalar) may reach values of 0.01 or greater, depending on the sun/surface/sensor scattering geometry. Reflectance errors of this magnitude translate to AOT differences of 0.1, which is a very large error, especially when the actual AOT is low. As a result of this study, the next version of aerosol retrieval from MODIS over land will include polarization.
Land Cover Indicators for U.S. National Climate Assessments
NASA Astrophysics Data System (ADS)
Channan, S.; Thomson, A. M.; Collins, K. M.; Sexton, J. O.; Torrens, P.; Emanuel, W. R.
2014-12-01
Land is a critical resource for human habitat and for the vast majority of human activities. Many natural resources are derived from terrestrial ecosystems or otherwise extracted from the landscape. Terrestrial biodiversity depends on land attributes as do people's perceptions of the value of land, including its value for recreation or tourism. Furthermore, land surface properties and processes affect weather and climate, and land cover change and land management affect emissions of greenhouse gases. Thus, land cover with its close association with climate is so pervasive that a land cover indicator is of fundamental importance to U.S. national climate assessments and related research. Moderate resolution remote sensing products (MODIS) were used to provide systematic data on annual distributions of land cover over the period 2001-2012. Selected Landsat observations and data products further characterize land cover at higher resolution. Here we will present the prototype for a suite of land cover indicators including land cover maps as well as charts depicting attributes such as composition by land cover class, statistical indicators of landscape characteristics, and tabular data summaries indispensable for communicating the status and trends of U.S. land cover at national, regional and state levels.
NASA Astrophysics Data System (ADS)
Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.
2017-12-01
Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.
Numerical Model Sensitivity to Heterogeneous Satellite Derived Vegetation Roughness
NASA Technical Reports Server (NTRS)
Jasinski, Michael; Eastman, Joseph; Borak, Jordan
2011-01-01
The sensitivity of a mesoscale weather prediction model to a 1 km satellite-based vegetation roughness initialization is investigated for a domain within the south central United States. Three different roughness databases are employed: i) a control or standard lookup table roughness that is a function only of land cover type, ii) a spatially heterogeneous roughness database, specific to the domain, that was previously derived using a physically based procedure and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, and iii) a MODIS climatologic roughness database that like (i) is a function only of land cover type, but possesses domain specific mean values from (ii). The model used is the Weather Research and Forecast Model (WRF) coupled to the Community Land Model within the Land Information System (LIS). For each simulation, a statistical comparison is made between modeled results and ground observations within a domain including Oklahoma, Eastern Arkansas, and Northwest Louisiana during a 4-day period within IHOP 2002. Sensitivity analysis compares the impact the three roughness initializations on time-series temperature, precipitation probability of detection (POD), average wind speed, boundary layer height, and turbulent kinetic energy (TKE). Overall, the results indicate that, for the current investigation, replacement of the standard look-up table values with the satellite-derived values statistically improves model performance for most observed variables. Such natural roughness heterogeneity enhances the surface wind speed, PBL height and TKE production up to 10 percent, with a lesser effect over grassland, and greater effect over mixed land cover domains.
NASA Astrophysics Data System (ADS)
Albergel, Clément; Munier, Simon; Leroux, Delphine Jennifer; Dewaele, Hélène; Fairbairn, David; Lavinia Barbu, Alina; Gelati, Emiliano; Dorigo, Wouter; Faroux, Stéphanie; Meurey, Catherine; Le Moigne, Patrick; Decharme, Bertrand; Mahfouf, Jean-Francois; Calvet, Jean-Christophe
2017-10-01
In this study, a global land data assimilation system (LDAS-Monde) is applied over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface soil moisture (SSM) and leaf area index (LAI) observations to constrain the interactions between soil-biosphere-atmosphere (ISBA, Interactions between Soil, Biosphere and Atmosphere) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. SSM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 to 100 cm depth). A sensitivity test of the Jacobians over 2000-2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and SSM have an impact on the different control variables. From the assimilation of SSM, the LDAS is more effective in modifying soil moisture (SM) from the top layers of soil, as model sensitivity to SSM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Results shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. A comprehensive evaluation of the assimilation impact is conducted using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observation-based estimates of upscaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
Compressive Strength of Cometary Surfaces Derived from Radar Observations
NASA Astrophysics Data System (ADS)
ElShafie, A.; Heggy, E.
2014-12-01
Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a dielectric constant of 2.2 and 3.4 over the density range of 0.4-0.9 g/cm3. This preliminary correlation will be applied to the case of porous and dust contaminated snow under different temperatures to assess the surface mechanical properties for Comet 67P.
Earth Observing System: Information on NASA’s Incorporation of Existing Data Into EOSDIS
1992-09-25
oceanography, and marine resources can be derived from this data set. The Landsat Pathfinder Project comprises three separate activities, two of which...contain informnation about atmospheric properties such as water vapor and rain rate, ocean surface properties such as surface wind speed, and land...Ferrari, Assignment Manager anagement and Elizabeth L. Johnston, Evaluator-in-Charge ,chnology Division, ashington, D.C. Page 11 GAO/ AMTEC -92-79 Earth
NASA Technical Reports Server (NTRS)
1975-01-01
Data derived from Mariners 6, 7, and 9, Russian Mars probes, and photographic and radar observations conducted from earth are used to develop engineering models of Martian surface properties. These models are used in mission planning and in the design of landing and exploration vehicles. Optical models needed in the design of camera systems, dielectric properties needed in the design of radar systems, and thermal properties needed in the design of the spacecraft thermal control system are included.
NASA Astrophysics Data System (ADS)
Ren, S.; Chen, X.; An, S.
2016-12-01
Other than green vegetation indices, Plant Senescence Reflectance Index (PSRI) is sensitive to carotenoids/chlorophyll ratio in plant leaves, and shows a reversed bell curve during the growing season. Up to now, performances of PSRI in monitoring vegetation phenology are still unclear. Here, we used Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 to determine PSRI-derived start (SOS) and end (EOS) dates of the growing season in the Inner Mongolian Grassland, and validated the reliability of PSRI-derived SOS and EOS dates using Normalized Difference Vegetation Index (NDVI) derived SOS and EOS dates. Then, we conducted temporal and spatial correlation analyses between SOS/EOS date and climatic factors. Moreover, we revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.
NASA Technical Reports Server (NTRS)
Webb, Charles E.; Zwally H. Jay; Abdalati, Waleed
2012-01-01
The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, primarily, to quantify the spatial and temporal variations in the topography of the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser Altimeter System (GLAS), which measured the round-trip travel time of a laser pulse emitted from the satellite to the surface of the Earth and back. Each range derived from these measurements was combined with precise, concurrent orbit and pointing information to determine the location of the laser spot centroid on the Earth. By developing a time series of precise topographic maps for each ice sheet, changes in their surface elevations can be used to infer their mass balances.
Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape
NASA Astrophysics Data System (ADS)
Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.
2017-11-01
Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.
Impact of Land Use/Land Cover Conditions on WRF Model Evaluation for Heat Island Assessment
NASA Astrophysics Data System (ADS)
Bhati, S.; Mohan, M.
2017-12-01
Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. Impact of urbanization related changes in land use/land cover (LULC) on model outputs has been analyzed. Four simulations have been carried out with different types of LULC data viz. (1) USGS , (2) MODIS, (3) user-modified USGS and (4) user modified land use data coupled with urban canopy model (UCM) for incorporation of canopy features. Heat island intensities have been estimated based on these simulations and subsequently compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with modification of LULC and inclusion of UCM. Overall, RMSEs for near surface temperature improved from 6.3°C to 3.9°C and index of agreement for mean urban heat island intensities (UHI) improved from 0.4 to 0.7 with modified land use coupled with UCM. In general, model is able to capture the magnitude of UHI as well as high UHI zones well. The study highlights the importance of appropriate and updated representation of landuse-landcover and urban canopies for improving predictive capabilities of the mesoscale models.
Prince, Keith R.; Galloway, Devin L.
2003-01-01
InSAR is a powerful technique that uses radar data acquired at different times to measure land-surface deformation, or displacement, over large areas at a high level of spatial detail and a high degree of measurement resolution. InSAR displacement maps (interferograms), in conjunction with other hydrogeologic data, have been used to determine aquifer-system characteristics for areas where surface deformation is the result of stress induced changes in the granular skeleton of the aquifer system. Interferograms and measurements of aquifer-system compaction from borehole extensometers, and ground-water levels in wells in Santa Clara Valley, California, have shown that land-surface changes caused by aquifer-system deformation for September 23, 1992-August 2, 1997, are elastic (reversible): During the summer when water levels are declining, the land surface subsides, and during the winter when water levels are recovering, the land surface uplifts, resulting in no net surface deformation. Interferograms used with fault maps of Santa Clara Valley and of Las Vegas Valley, Nevada, have shown that the extent of regional land-surface changes caused by aquifer-system deformation may be partially controlled by faults. Interferograms of Yucca Flat, Nevada, show subsidence associated with the recovery of elevated hydraulic heads caused by underground weapons testing at depths of more than 600 meters. For these selected case studies, continuing or renewed deformation of the aquifer system is coupled with pore-fluid-pressure changes. When applied stresses (water-level changes) can be measured accurately for periods that the interferograms show displacement, stress-strain relations, and thus bulk storage properties, can be evaluated. For areas where additional ground-water-level, land-surface-elevation, aquifer-system-compaction, or other environmental data are needed, the interferograms can be used as a guide for designing appropriate monitoring networks. Aquifer-system properties derived from stress-strain relations and identification of hidden faults, other structural or stratigraphic controls on deformation and ground-water flow, and other hydrogeologic boundaries in the flow system can be used to constrain numerical ground-water flow and subsidence simulations. Managing aquifer systems within optimal limits may be possible if regions susceptible to ground-water depletion and the accompanying land subsidence can be identified and characterized.
Tang, Bohui; Bi, Yuyun; Li, Zhao-Liang; Xia, Jun
2008-01-01
On the basis of the radiative transfer theory, this paper addressed the estimate of Land Surface Temperature (LST) from the Chinese first operational geostationary meteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1, 10.3-11.3 μm and IR2, 11.5-12.5 μm), using the Generalized Split-Window (GSW) algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithm corresponding to a series of overlapping ranging of the mean emissivity, the atmospheric Water Vapor Content (WVC), and the LST were derived using a statistical regression method from the numerical values simulated with an accurate atmospheric radiative transfer model MODTRAN 4 over a wide range of atmospheric and surface conditions. The simulation analysis showed that the LST could be estimated by the GSW algorithm with the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with the Viewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60° and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities (LSEs) are known. In order to determine the range for the optimum coefficients of the GSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according to the land surface classification or using the method proposed by Jiang et al. (2006); and the WVC could be obtained from MODIS total precipitable water product MOD05, or be retrieved using Li et al.' method (2003). The sensitivity and error analyses in term of the uncertainty of the LSE and WVC as well as the instrumental noise were performed. In addition, in order to compare the different formulations of the split-window algorithms, several recently proposed split-window algorithms were used to estimate the LST with the same simulated FY-2C data. The result of the intercomparsion showed that most of the algorithms give comparable results. PMID:27879744
Tang, Bohui; Bi, Yuyun; Li, Zhao-Liang; Xia, Jun
2008-02-14
On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST) from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C) data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m ), using the Generalized Split-Window (GSW)algorithm proposed by Wan and Dozier (1996). The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC), and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE) less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA) less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm² provided that the Land Surface Emissivities(LSEs) are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006); and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.' method (2003). The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give comparable results.
A Physical Model to Determine Snowfall over Land by Microwave Radiometry
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.
2003-01-01
Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Cammarano, Diego; Fabrizia Buongiorno, Maria; Amici, Stefania; Piscini, Alessandro
2016-04-01
In this work we compare ground measurements of emissivity collected during dedicated fields campaign on Mt. Etna and Solfatara of Pozzuoli volcanoes and acquired by means of Micro-FTIR (Fourier Thermal Infrared spectrometer) instrument with the emissivity obtained by using single ASTER data (Advanced Spaceborne Thermal Emission and Reflection Radiometer, ASTER 05) and the ASTER emissivity map extract from ASTER Global Emissivity Database (GED), released by LP DAAC on April 2, 2014. The database was developed by the National Aeronautics and Space Administration's (NASA) Jet Propulsion Laboratory (JPL), California Institute of Technology. The database includes land surface emissivity derived from ASTER data acquired over the contiguous United States, Africa, Arabian Peninsula, Australia, Europe, and China. Through this analysis we want to investigate the differences existing between the ASTER-GED dataset (average from 2000 to 2008 seasoning independent) and fall in-situ emissivity measurement. Moreover the role of different spatial resolution characterizing ASTER and MODIS, 90mt and 1km respectively, by comparing them with in situ measurements, is analyzed. Possible differences can be due also to the different algorithms used for the emissivity estimation, Temperature and Emissivity Separation algorithm for ASTER TIR band( Gillespie et al, 1998) and the classification-based emissivity method (Snyder and al, 1998) for MODIS. Finally land surface temperature products generated using ASTER-GED and ASTER 05 emissivity are also analyzed. Gillespie, A. R., Matsunaga, T., Rokugawa, S., & Hook, S. J. (1998). Temperature and emissivity separation from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36, 1113-1125. Snyder, W.C., Wan, Z., Zhang, Y., & Feng, Y.-Z. (1998). Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19, 2753-2574.
The relation between land use and subsidence in the Vietnamese Mekong delta.
Minderhoud, P S J; Coumou, L; Erban, L E; Middelkoop, H; Stouthamer, E; Addink, E A
2018-09-01
The Vietnamese Mekong delta is subsiding due to a combination of natural and human-induced causes. Over the past several decades, large-scale anthropogenic land-use changes have taken place as a result of increased agricultural production, population growth and urbanization in the delta. Land-use changes can alter the hydrological system or increase loading of the delta surface, amplifying natural subsidence processes or creating new anthropogenic subsidence. The relationships between land use histories and current rates of land subsidence have so far not been studied in the Mekong delta. We quantified InSAR-derived subsidence rates for the various land-use classes and past land-use changes using a new, optical remote sensing-based, 20-year time series of land use. Lowest mean subsidence rates were found for undeveloped land-use classes, like marshland and wetland forest (~6-7mmyr -1 ), and highest rates for areas with mixed-crop agriculture and cities (~18-20mmyr -1 ). We assessed the relationship strength between current land use, land-use history and subsidence by predicting subsidence rates during the measurement period solely based on land-use history. After initial training of all land-use sequences with InSAR-derived subsidence rates, the land-use-based approach predicted 65-92% of the spatially varying subsidence rates within the measurement error range of the InSAR observations (RMSE=5.8mm). As a result, the spatial patterns visible in the observed subsidence can largely be explained by land use. We discuss in detail the dominant land-use change pathways and their indirect, causal relationships with subsidence. Our spatially explicit evaluation of these pathways provides valuable insights for policymakers concerned with land-use planning in both subsiding and currently stable areas of the Mekong delta and similar systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Barnes, Christopher; Roy, David P.
2008-01-01
Recently available satellite land cover land use (LCLU) and albedo data are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 36 ecoregions covering 43% of the conterminous United States (CONUS). Moderate Resolution Imaging Spectroradiometer (MODIS) snow-free broadband albedo values are derived from Landsat LCLU classification maps located using a stratified random sampling methodology to estimate ecoregion estimates of LCLU induced albedo change and surface radiative forcing. The results illustrate that radiative forcing due to LCLU change may be disguised when spatially and temporally explicit data sets are not used. The radiative forcing due to contemporary LCLU albedo change varies geographically in sign and magnitude, with the most positive forcings (up to 0.284 Wm−2) due to conversion of agriculture to other LCLU types, and the most negative forcings (as low as −0.247 Wm−2) due to forest loss. For the 36 ecoregions considered a small net positive forcing (i.e., warming) of 0.012 Wm−2 is estimated.
NASA Technical Reports Server (NTRS)
Meneghini, Robert; Jones, Jeffrey A.
2010-01-01
We investigate the spatial variability of the normalized radar cross section of the surface (NRCS or Sigma(sup 0)) derived from measurements of the TRMM Precipitation Radar (PR) for the period from 1998 to 2009. The purpose of the study is to understand the way in which the sample standard deviation of the Sigma(sup 0) data changes as a function of spatial resolution, incidence angle, and surface type (land/ocean). The results have implications regarding the accuracy by which the path integrated attenuation from precipitation can be inferred by the use of surface scattering properties.
Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)
2002-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
Reeves, Mari Kathryn; Perdue, Margaret; Munk, Lee Ann; Hagedorn, Birgit
2018-07-15
Studies of environmental processes exhibit spatial variation within data sets. The ability to derive predictions of risk from field data is a critical path forward in understanding the data and applying the information to land and resource management. Thanks to recent advances in predictive modeling, open source software, and computing, the power to do this is within grasp. This article provides an example of how we predicted relative trace element pollution risk from roads across a region by combining site specific trace element data in soils with regional land cover and planning information in a predictive model framework. In the Kenai Peninsula of Alaska, we sampled 36 sites (191 soil samples) adjacent to roads for trace elements. We then combined this site specific data with freely-available land cover and urban planning data to derive a predictive model of landscape scale environmental risk. We used six different model algorithms to analyze the dataset, comparing these in terms of their predictive abilities and the variables identified as important. Based on comparable predictive abilities (mean R 2 from 30 to 35% and mean root mean square error from 65 to 68%), we averaged all six model outputs to predict relative levels of trace element deposition in soils-given the road surface, traffic volume, sample distance from the road, land cover category, and impervious surface percentage. Mapped predictions of environmental risk from toxic trace element pollution can show land managers and transportation planners where to prioritize road renewal or maintenance by each road segment's relative environmental and human health risk. Published by Elsevier B.V.
Middle Miocene environmental and climatic evolution at the Wilkes Land margin, East Antarctica
NASA Astrophysics Data System (ADS)
Sangiorgi, Francesca; Bijl, Peter; Passchier, Sandra; Salzmann, Ulrich; Schouten, Stefan; Pross, Jörg; Escutia, Carlota; Brinkhuis, Henk
2015-04-01
Integrated Ocean Drilling Program (IODP) Expedition 318 successfully drilled a Middle Miocene (~ 17 - 12.5 Ma) record from the Wilkes Land Margin at Site U1356A (63°18.6138'S, 135°59.9376'E), located at the transition between the continental rise and the abyssal plain at 4003 mbsl. We present a multiproxy palynological (dinoflagellate cyst, pollen and spores), sedimentological and organic geochemical (TEX86, MBT/CBT) study, which unravels the environmental and climate variability across the Miocene Climatic Optimum (MCO, ~17-15 Ma) and the Mid Miocene Climate Transition (MMCT). Several independent lines of evidence suggest a relatively warm climate during the MCO. Dinocyst and pollen assemblage diversity at the MCO is unprecedented for a Neogene Antarctic record and indicates a temperate, sea ice-free marine environment, with woody sub-antarctic vegetation with elements of forest/shrub tundra and peat lands along the coast. These results are further confirmed by relatively warm TEX86-derived Sea Surface Temperatures and mild MBT-derived continental temperatures, and by the absence of glacially derived deposits and very few ice-rafted clasts. A generally colder but highly dynamic environment is suggested for the interval 15-12.5 Ma.
NASA Technical Reports Server (NTRS)
Cintala, Mark J.; Mcbride, Kathleen M.
1995-01-01
Among the hazards that must be negotiated by lunar-landing spacecraft are blocks on the surface of the Moon. Unfortunately, few data exist that can be used to evaluate the threat posed by such blocks to landing spacecraft. Perhaps the best information is that obtained from Surveyor photographs, but those data do not extend to the dimensions of the large blocks that would pose the greatest hazards. Block distributions in the vicinities of the Surveyor 1, 3, 6, and 7 sites have been determined from Lunar Orbiter photography and are presented here. Only large (i.e., greater than or equal to 2.5 m) blocks are measurable in these pictures, resulting in a size gap between the Surveyor and Lunar Orbiter distributions. Nevertheless, the orbital data are self-consistent, a claim supported by the similarity in behavior between the subsets of data from the Surveyor 1, 3, and 6 sites and by the good agreement in position (if not slopes) between the data obtained from the Surveyor 3 photography and those derived from the Lunar Orbiter photographs. Confidence in the results is also justified by the well-behaved distribution of large blocks at the surveyor site. Comparisons between the Surveyor distributions and those derived from the orbital photography permit these observations: (1) in all cases but that for Surveyor 3, the density of large blocks is overestimated by extrapolation of the Surveyor-derived trends; (2) the slopes of the Surveyor-derived distributions are consistently lower than those determined for the large blocks; and (3) these apparent disagreements could be mitigated if the overall shapes of the cumulative lunar block populations were nonlinear, allowing for different slopes over different size intervals. The relatively large gaps between the Surveyor-derived and Orbiter-derived data sets, however, do not permit a determination of those shapes.
NASA Astrophysics Data System (ADS)
Nijssen, B.
2013-12-01
While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U.S. systems poses new challenges, particularly with respect to the generation of meteorological forcings that drive the land surface models. Agricultural and hydrological droughts are inherently defined in the context of a long-term climatology. Changes in observing platforms can be misinterpreted as droughts (or as excessively wet periods). This problem cannot simply be addressed through the addition of more observations or through the development of new observing platforms. Instead, it will require careful (re)construction of long-term records that are updated in near real-time in a consistent manner so that changes in surface meteorological forcings reflect actual conditions rather than changes in methods or sources.
NASA Astrophysics Data System (ADS)
Werner, Micha; Blyth, Eleanor; Schellekens, Jaap
2016-04-01
Global hydrological and land-surface models are becoming increasingly available, and as the resolution of these improves, as well how hydrological processes are represented, so does their potential. These offer consistent datasets at the global scale, which can be used to establish water balances and derive policy relevant indicators in medium to large basins, including those that are poorly gauged. However, differences in model structure, model parameterisation, and model forcing may result in quite different indicator values being derived, depending on the model used. In this paper we explore indicators developed using four land surface models (LSM) and five global hydrological models (GHM). Results from these models have been made available through the Earth2Observe project, a recent research initiative funded by the European Union 7th Research Framework. All models have a resolution of 0.5 arc degrees, and are forced using the same WATCH-ERA-Interim (WFDEI) meteorological re-analysis data at a daily time step for the 32 year period from 1979 to 2012. We explore three water resources indicators; an aridity index, a simplified water exploitation index; and an indicator that calculates the frequency of occurrence of root zone stress. We compare indicators derived over selected areas/basins in Europe, Colombia, Southern Africa, the Indian Subcontinent and Australia/New Zealand. The hydrological fluxes calculated show quite significant differences between the nine models, despite the common forcing dataset, with these differences reflected in the indicators subsequently derived. The results show that the variability between models is related to the different climates types, with that variability quite logically depending largely on the availability of water. Patterns are also found in the type of models that dominate different parts of the distribution of the indicator values, with LSM models providing lower values, and GHM models providing higher values in some climates, and vice versa in others. How important this variability is in supporting a policy decision, depends largely on how a decision thresholds are set. For example in the case of the aridity index, with areas being denoted as arid with an index of 0.6 or above, we show that the variability is primarily of interest in transitional climates, such as the Mediterranean The analysis shows that while both LSM's and GHM's provide useful data, indices derived to support water resources management planning may differ substantially, depending on the model used. The analysis also identifies in which climates improvements to the models are particularly relevant to support the confidence with which decisions can be taken based on derived indicators.
Evaluation of a Model-Based Groundwater Drought Indicator in the Conterminous U.S.
NASA Technical Reports Server (NTRS)
Li, Bailing; Rodell, Matthew
2015-01-01
Monitoring groundwater drought using land surface models is a valuable alternative given the current lack of systematic in situ measurements at continental and global scales and the low resolution of current remote sensing based groundwater data. However, uncertainties inherent to land surface models may impede drought detection, and thus should be assessed using independent data sources. In this study, we evaluated a groundwater drought index (GWI) derived from monthly groundwater storage output from the Catchment Land Surface Model (CLSM) using a GWI similarly derived from in situ groundwater observations. Groundwater observations were obtained from unconfined or semi-confined aquifers in eight regions of the central and northeastern U.S. Regional average GWI derived from CLSM exhibited strong correlation with that from observation wells, with correlation coefficients between 0.43 and 0.92. GWI from both in situ data and CLSM was generally better correlated with the Standard Precipitation Index (SPI) at 12 and 24 month timescales than at shorter timescales, but it varied depending on climate conditions. The correlation between CLSM derived GWI and SPI generally decreases with increasing depth to the water table, which in turn depends on both bedrock depth (a CLSM parameter) and mean annual precipitation. The persistence of CLSM derived GWI is spatially varied and again shows a strong influence of depth to groundwater. CLSM derived GWI generally persists longer than GWI derived from in situ data, due at least in part to the inability of coarse model inputs to capture high frequency meteorological variability at local scales. The study also showed that groundwater can have a significant impact on soil moisture persistence where the water table is shallow. Soil moisture persistence was estimated to be longer in the eastern U.S. than in the west, in contrast to previous findings that were based on models that did not represent groundwater. Assimilation of terrestrial water storage data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission improved the correlation between CLSM based regional average GWI and that based on in situ data in six of the eight regions. Practical issues regarding the application of GRACE assimilated groundwater storage for drought detection are discussed. An important conclusion of this study is that model parameters that control the depth to the water table, including bedrock depth, strongly influence the evolution and persistence of simulated groundwater and require careful configuration for drought monitoring.
NASA Technical Reports Server (NTRS)
Stocker, H. L.; Cox, D. M.; Holle, G. F.
1977-01-01
Labyrinth air seal static and dynamic performance was evaluated using solid, abradable, and honeycomb lands with standard and advanced seal designs. The effects on leakage of land surface roughness, abradable land porosity, rub grooves in abradable lands, and honeycomb land cell size and depth were studied using a standard labyrinth seal. The effects of rotation on the optimum seal knife pitch were also investigated. Selected geometric and aerodynamic parameters for an advanced seal design were evaluated to derive an optimized performance configuration. The rotational energy requirements were also measured to determine the inherent friction and pumping energy absorbed by the various seal knife and land configurations tested in order to properly assess the net seal system performance level. Results indicate that: (1) seal leakage can be significantly affected with honeycomb or abradable lands; (2) rotational energy absorption does not vary significantly with the use of a solid-smooth, an abradable, or a honeycomb land; and (3) optimization of an advanced lab seal design produced a configuration that had leakage 25% below a conventional stepped seal.
Glynn, Jonathan M; Froehlich, John E; Osteryoung, Katherine W
2008-09-01
Chloroplasts arose from a free-living cyanobacterial endosymbiont and divide by binary fission. Division involves the assembly and constriction of the endosymbiont-derived, tubulin-like FtsZ ring on the stromal surface of the inner envelope membrane and the host-derived, dynamin-like ARC5 ring on the cytosolic surface of the outer envelope membrane. Despite the identification of many proteins required for plastid division, the factors coordinating the internal and external division machineries are unknown. Here, we provide evidence that this coordination is mediated in Arabidopsis thaliana by an interaction between ARC6, an FtsZ assembly factor spanning the inner envelope membrane, and PDV2, an ARC5 recruitment factor spanning the outer envelope membrane. ARC6 and PDV2 interact via their C-terminal domains in the intermembrane space, consistent with their in vivo topologies. ARC6 acts upstream of PDV2 to localize PDV2 (and hence ARC5) to the division site. We present a model whereby ARC6 relays information on stromal FtsZ ring positioning through PDV2 to the chloroplast surface to specify the site of ARC5 recruitment. Because orthologs of ARC6 occur in land plants, green algae, and cyanobacteria but PDV2 occurs only in land plants, the connection between ARC6 and PDV2 represents the evolution of a plant-specific adaptation to coordinate the assembly and activity of the endosymbiont- and host-derived plastid division components.
NASA Astrophysics Data System (ADS)
Pradhan, N. R.
2015-12-01
Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.
Skylab/EREP application to ecological, geological, and oceanographic investigations of Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V.; Bartlett, D. S.; Philpot, W. D.; Rogers, R. H.; Reed, L. E.
1978-01-01
Skylab/EREP S190A and S190B film products were optically enhanced and visually interpreted to extract data suitable for; (1) mapping coastal land use; (2) inventorying wetlands vegetation; (3) monitoring tidal conditions; (4) observing suspended sediment patterns; (5) charting surface currents; (6) locating coastal fronts and water mass boundaries; (7) monitoring industrial and municipal waste dumps in the ocean; (8) determining the size and flow direction of river, bay and man-made discharge plumes; and (9) observing ship traffic. Film products were visually analyzed to identify and map ten land-use and vegetation categories at a scale of 1:125,000. Digital tapes from the multispectral scanner were used to prepare thematic maps of land use. Classification accuracies obtained by comparison of derived thematic maps of land-use with USGS-CARETS land-use maps in southern Delaware ranged from 44 percent to 100 percent.
Assimilation of Passive and Active Microwave Soil Moisture Retrievals
NASA Technical Reports Server (NTRS)
Draper, C. S.; Reichle, R. H.; DeLannoy, G. J. M.; Liu, Q.
2012-01-01
Root-zone soil moisture is an important control over the partition of land surface energy and moisture, and the assimilation of remotely sensed near-surface soil moisture has been shown to improve model profile soil moisture [1]. To date, efforts to assimilate remotely sensed near-surface soil moisture at large scales have focused on soil moisture derived from the passive microwave Advanced Microwave Scanning Radiometer (AMSR-E) and the active Advanced Scatterometer (ASCAT; together with its predecessor on the European Remote Sensing satellites (ERS. The assimilation of passive and active microwave soil moisture observations has not yet been directly compared, and so this study compares the impact of assimilating ASCAT and AMSR-E soil moisture data, both separately and together. Since the soil moisture retrieval skill from active and passive microwave data is thought to differ according to surface characteristics [2], the impact of each assimilation on the model soil moisture skill is assessed according to land cover type, by comparison to in situ soil moisture observations.
NASA Technical Reports Server (NTRS)
deGoncalves, Luis Gustavo G.; Shuttleworth, William J.; Vila, Daniel; Larroza, Elaine; Bottino, Marcus J.; Herdies, Dirceu L.; Aravequia, Jose A.; De Mattos, Joao G. Z.; Toll, David L.; Rodell, Matthew;
2008-01-01
The definition and derivation of a 5-year, 0.125deg, 3-hourly atmospheric forcing dataset for the South America continent is described which is appropriate for use in a Land Data Assimilation System and which, because of the limited surface observational networks available in this region, uses remotely sensed data merged with surface observations as the basis for the precipitation and downward shortwave radiation fields. The quality of this data set is evaluated against available surface observations. There are regional difference in the biases for all variables in the dataset, with biases in precipitation of the order 0-1 mm/day and RMSE of 5-15 mm/day, biases in surface solar radiation of the order 10 W/sq m and RMSE of 20 W/sq m, positive biases in temperature typically between 0 and 4 K, depending on region, and positive biases in specific humidity around 2-3 g/Kg in tropical regions and negative biases around 1-2 g/Kg further south.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey
2010-05-01
The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the range 2.0-2.6, 2.5-3.7, and 3.5-4.9°C respectively. The dataset of remote sensing products has been compiled on the base of special technology using Internet resources, that includes MODIS-based estimates of land surface temperature (LST) Tsg, E, NDVI, LAI for the region of interest and the same vegetation seasons. Two types of MODIS-based Тsg and E estimates have been extracted from LP DAAC web-site (for separate dates of 2003-2009 time period): LST/E Daily L3 product (MOD11В1) with spatial resolution ~ 4.8 km and LST/E 5-Min L2 product (MOD11_L2) with spatial resolution ~ 1 km. The verification of Tsg estimates has been performed via comparison with analogous and collocated AVHRR-based ones. Along with this the sample of SEVIRI-based Tsg and E estimates has been accumulated for the Kursk area and surrounding territories for the time interval of several days during 2009 vegetation season. To retrieve Тsg and Е from SEVIRI/Meteosat-8, -9 data the new method has been developed. Being designed as the combination of well-known Split Window Technique and Two Temperature Method algorithms it provides the derivation of Тsg from SEVIRI/Meteosat-9 measurements carried out at three successive times (classified as 100% cloud-free) and covering the region under consideration without accurate a priory knowledge of E. Comparison of the SEVIRI-based Tsg retrievals with the independent collocated Tsg estimates gives the values of RMS deviation in the range of 0.9-1.4°C and it proves (indirectly) the efficiency of proposed approach. To assimilate satellite-derived estimates of vegetation characteristics and LST in the SVAT model some procedures have been developed. These procedures have included: 1) the replacement of LAI and B ground and point-wise estimates by their AVHRR- or MODIS-based analogues. The efficiency of such approach has been proved through comparison between satellite-derived and ground-based seasonal time behaviors of LAI and B, between satellite-derived, modeled, and in-situ measured temperatures as well as through comparison the modeled and actual values of evapotranspiration Ev and soil water content W for one meter soil layer. The discrepancies between mentioned temperatures do not exceed the RMS errors of satellite-derived estimates Ta, Ts.eff and Tsg while the modeled and measured values of Ev and W have been found close to each other within their standard estimation error; 2) the treating AVHRR- or MODIS-based LST as the input model variable within the SVAT model instead their standard ground-based estimates if the satisfactory time-matching of satellite and ground-based observations takes place. The SEVIRI-derived Tsg can be also used for these aims. Permissibility of such replacement has been verified while comparing remote sensed, modeled and ground-based temperatures as well as calculated and measured values of W and Ev. The SEVIRI-based Tsg estimates were found to be very informative and useful due to their high temporal resolution. Moreover the approach has been developed to account for space variability of vegetation cover parameters and meteorological characteristics. This approach includes the development of algorithms and programs for entering AVHRR- and MODIS-derived LAI and B, all named satellite-based LSTs as well as ground-based precipitation, air temperature and humidity data prepared by Inverse Distance Weighted Average Method into the model in each calculation grid unit. The calculations of vertical water and heat fluxes, soil water and heat contents and other water and heat balance components for Kursk region have been carried out with the help of the SVAT model using fields of AVHRR/3- and MODIS-derived LAI and B and AVHRR/3-, MODIS, and SEVIRI-derived LST for various vegetation seasons of 2003-2009. The acceptable accuracy levels of above values assessment have been achieved under all scenarios of parameter and input model variable specification. Thus, the results of this study confirm the opportunity of using area distributed satellite-derived estimates of land surface characteristics for the model calculations of water and heat balance components for large territories especially under the lack of ground observation data. The present study was carried out with support of the Russian Foundation of Basic Researches - grant N 10-05-00807.
Uncertainty in countrywide forest biomass estimates.
C.E. Peterson; D. Turner
1994-01-01
Country-wide estimates of forest biomass are the major driver for estimating and understanding carbon pools and flux, a critical component of global change research. Important determinants in making these estimates include the areal extent of forested lands and their associated biomass. Estimates for these parameters may be derived from surface-based data, photo...
Phenocams bridge the gap between field and satellite observations in an arid grassland ecosystem
USDA-ARS?s Scientific Manuscript database
Near surface (i.e., camera) and satellite remote sensing metrics have become widely used indicators of plant growing seasons. While robust linkages have been established between field metrics and ecosystem exchange in many land cover types, assessment of how well remotely-derived season start and en...
A comparison of all-weather land surface temperature products
NASA Astrophysics Data System (ADS)
Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio
2017-04-01
The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere, which is assumed to have no heat storage. The modelled skin temperatures are in fair agreement with LST directly estimated from SEVIRI observations. However, in contrast to LST retrievals from SEVIRI/MSG (or other infrared sensors) the SVAT model solves the energy budget equation under all-sky conditions. The SVAT surface skin temperature is then used to fill gaps in LST fields caused by clouds. Since under cloudy conditions the direct incoming solar radiation is greatly reduced, thermal balance at the surface is more easily achieved and directional effects are also less important. Therefore, a better performance of the model skin temperature may be expected. In contrast, under clear skies the satellite LST showed to be more reliable, since the SVAT model shows biases in the daily amplitude of the skin temperature. In the context of the GlobTemperature project (http://www.globtemperature.info/), all-weather LST datasets using AMSR-E microwave radiances were produced, which are compared here to the SVAT-based LST. Both products were validated against in situ data - particularly from Gobabeb & Farm Heimat (Namibia), and Évora (Portugal) - to show that under cloudy conditions the agreement between in-situ LST and modelled skin temperature is acceptable. Compared to the SVAT-based LST, AMSR-E LST is closer to satellite observations (level 2 product); the complementarity of the two approaches is assessed.
NASA Astrophysics Data System (ADS)
Aktaruzzaman, Md.; Schmitt, Theo G.
2011-11-01
This paper addresses the issue of a detailed representation of an urban catchment in terms of hydraulic and hydrologic attributes. Modelling of urban flooding requires a detailed knowledge of urban surface characteristics. The advancement in spatial data acquisition technology such as airborne LiDAR (Light Detection and Ranging) has greatly facilitated the collection of high-resolution topographic information. While the use of the LiDAR-derived Digital Surface Model (DSM) has gained popularity over the last few years as input data for a flood simulation model, the use of LiDAR intensity data has remained largely unexplored in this regard. LiDAR intensity data are acquired along with elevation data during the data collection mission by an aircraft. The practice of using of just aerial images with RGB (Red, Green and Blue) wavebands is often incapable of identifying types of surface under the shadow. On the other hand, LiDAR intensity data can provide surface information independent of sunlight conditions. The focus of this study is the use of intensity data in combination with aerial images to accurately map pervious and impervious urban areas. This study presents an Object-Based Image Analysis (OBIA) framework for detecting urban land cover types, mainly pervious and impervious surfaces in order to improve the rainfall-runoff modelling. Finally, this study shows the application of highresolution DSM and land cover maps to flood simulation software in order to visualize the depth and extent of urban flooding phenomena.
Topological Relations-Based Detection of Spatial Inconsistency in GLOBELAND30
NASA Astrophysics Data System (ADS)
Kang, S.; Chen, J.; Peng, S.
2017-09-01
Land cover is one of the fundamental data sets on environment assessment, land management and biodiversity protection, etc. Hence, data quality control of land cover is extremely critical for geospatial analysis and decision making. Due to the similar remote-sensing reflectance for some land cover types, omission and commission errors occurred in preliminary classification could result to spatial inconsistency between land cover types. In the progress of post-classification, this error checking mainly depends on manual labour to assure data quality, by which it is time-consuming and labour intensive. So a method required for automatic detection in post-classification is still an open issue. From logical inconsistency point of view, an inconsistency detection method is designed. This method consist of a grids extended 4-intersection model (GE4IM) for topological representation in single-valued space, by which three different kinds of topological relations including disjoint, touch, contain or contained-by are described, and an algorithm of region overlay for the computation of spatial inconsistency. The rules are derived from universal law in nature between water body and wetland, cultivated land and artificial surface. Through experiment conducted in Shandong Linqu County, data inconsistency can be pointed out within 6 minutes through calculation of topological inconsistency between cultivated land and artificial surface, water body and wetland. The efficiency evaluation of the presented algorithm is demonstrated by Google Earth images. Through comparative analysis, the algorithm is proved to be promising for inconsistency detection in land cover data.
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.
2011-01-01
The Land Information System (LIS; http://lis.gsfc.nasa.gov) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite-and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected as a co-winner of NASA?s 2005 Software of the Year award.LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has e volved from two earlier efforts -- North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations.In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems
NASA Astrophysics Data System (ADS)
Matthews, E.; Romanski, J.; Du, J.; Watts, J. D.
2017-12-01
Lakes are increasingly recognized as potentially important contributors to global methane emissions despite occupying only a few percent of Earth's ice-free land surface. More than 40% of the global lake area lies in regions of amplified warming north of 50˚N. As with wetlands, lake emissions are sensitive to interannual fluctuations in, e.g., temperature and duration of thaw season. Several estimates of CH4emission from high-latitude lakes have been published but none relies on geospatial lake distributions and satellite-based duration and timing of thaw seasons. We report on a climatology of weekly, spatially-explicit methane emissions from high-latitude lakes. Lake break-up and freeze-up dates for lakes >50km^2 were determined from a lake-ice phenology data set derived from brightness temperature (Tb) observations of space-borne Advanced Microwave Scanning Radiometer (AMSR-E/2) sensors. The lake-ice conditions for smaller lakes were estimated using an Earth System Data Record for Land Surface Freeze-Thaw State derived from Tb observations of Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and SSM/I Sounder (SSMIS). Climatologies encompass 2002-2015 for lake ice phenology and 1979 to 2010 for the land surface freeze-thaw state. Climatologies encompass 2003-2014 for ice phenology and 1979 to 2010 for freeze-thaw dynamics. Length and timing of typical methane-emission periods, derived from the satellite data, were integrated with daily diffusive and ebulliative methane fluxes for lake types following the work of Wik et al. (Nature, 2016) to estimate a full annual cycle of emissions from lakes >50˚N. We explored several approaches to estimate the large bursts of emissions observed over short periods during lake-ice breakup immediately prior to full lake thaw since several studies suggest that a substantial fraction of total annual emissions may occur at this time. While highly uncertain, we plan to investigate whether the modest, short-lived but annual uptick in atmospheric methane concentrations in late winter/early spring may be associated with these bursts of methane from lakes.
Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems.
Romo-Leon, Jose Raul; van Leeuwen, Willem J D; Castellanos-Villegas, Alejandro
2016-02-01
The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance.
Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.
Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data
Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data
Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.
2004-01-01
Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.
NASA Astrophysics Data System (ADS)
Feng, N.; Christopher, S. A.; Nair, U. S.
2014-12-01
Due to increasing urbanization, deforestation, and agriculture, land use change over Southeast Asia has dramatically risen during the last decades. Large areas of peat swamp forests over the Southeast Asian Maritime Continent region (10°S~20°N and 90°E~135°E) have been cleared for agricultural purposes. The Center for Remote Imaging, Sensing and Processing (CRISP) Moderate Resolution Imaging Spectroradiometer (MODIS) derived land cover classification data show that changes in land use are dominated by conversion of peat swamp forests to oil palm plantation, open lowland or lowland mosaic categories. Nested grid simulations based on Weather Research Forecasting Version 3.6 modelling system (WRFV3.6) over the central region of the Sarawak coast are used to investigate the climatic impacts of land use change over Maritime Continent. Numerical simulations were conducted for August of 2009 for satellite derived land cover scenarios for years 2000 and 2010. The variations in cloud formation, precipitation, and regional radiative and non-radiative parameters on climate results from land use change have been assessed based on numerical simulation results. Modelling studies demonstrate that land use change such as extensive deforestation processes can produce a negative radiative forcing due to the surface albedo increase and evapotranspiration decrease, while also largely caused reduced rainfall and cloud formation, and enhanced shortwave radiative forcing and temperature over the study area. Land use and land cover changes, similar to the domain in this study, has also occurred over other regions in Southeast Asia including Indonesia and could also impact cloud and precipitation formation in these regions.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Lazarus, Steven M.; Splitt, Michael E.; Crosson, William L.; Lapenta, William M.; Jedlovec, Gary J.; Peters-Lidard, Christa D.
2008-01-01
The exchange of energy and moisture between the Earth's surface and the atmospheric boundary layer plays a critical role in many meteorological processes. High-resolution, accurate representations of surface properties such as sea-surface temperature (SST), soil temperature and moisture content, ground fluxes, and vegetation are necessary to better understand the Earth-atmosphere interactions and improve numerical predictions of sensible weather. The NASA Short-term Prediction Research and Transition (SPoRT) Center has been conducting separate studies to examine the impacts of high-resolution land-surface initialization data from the Goddard Space Flight Center Land Information System (LIS) on subsequent WRF forecasts, as well as the influence of initializing WRF with SST composites derived from the MODIS instrument. This current project addresses the combined impacts of using high-resolution lower boundary data over both land (LIS data) and water (MODIS SSTs) on the subsequent daily WRF forecasts over Florida during May 2004. For this experiment, the WRF model is configured to run on a nested domain with 9- km and 3-kin grid spacing, centered on the Florida peninsula and adjacent coastal waters of the Gulf of Mexico and Atlantic Ocean. A control configuration of WRF is established to take all initial condition data from the NCEP Eta model. Meanwhile, two WRF experimental runs are configured to use high-resolution initialization data from (1) LIS land-surface data only, and (2) a combination of LIS data and high-resolution MODIS SST composites. The experiment involves running 24-hour simulations of the control WRF configuration, the MS-initialized WRF, and the LIS+MODIS-initialized WRF daily for the entire month of May 2004. All atmospheric data for initial and boundary conditions for the Control, LIS, and LIS+MODIS runs come from the NCEP Eta model on a 40-km grid. Verification statistics are generated at land surface observation sites and buoys, and the impacts of the high-resolution lower boundary data on the development and evolution of mesoscale circulations such as sea and land breezes are examined, This paper will present the results of these WRF modeling experiments using LIS and MODIS lower boundary datasets over the Florida peninsula during May 2004.
Marshall, C.H.; Pielke, R.A.; Steyaert, L.T.
2004-01-01
On several occasions, winter freezes have wrought severe destruction on Florida agriculture. A series of devastating freezes around the turn of the twentieth century, and again during the 1980s, were related to anomalies in the large-scale flow of the ocean–atmosphere system. During the twentieth century, substantial areas of wetlands in south Florida were drained and converted to agricultural land for winter fresh vegetable and sugarcane production. During this time, much of the citrus industry also was relocated to those areas to escape the risk of freeze farther to the north. The purpose of this paper is to present a modeling study designed to investigate whether the conversion of the wetlands to agriculture itself could have resulted in or exacerbated the severity of recent freezes in those agricultural areas of south Florida.For three recent freeze events, a pair of simulations was undertaken with the Regional Atmospheric Modeling System. One member of each pair employed land surface properties that represent pre-1900s (near natural) land cover, whereas the other member of each pair employed data that represent near-current land-use patterns as derived from analysis of Landsat data valid for 1992/93. These two different land cover datasets capture well the conversion of wetlands to agriculture in south Florida during the twentieth century. Use of current land surface properties resulted in colder simulated minimum temperatures and temperatures that remained below freezing for a longer period at locations of key agricultural production centers in south Florida that were once natural wetlands. Examination of time series of the surface energy budget from one of the cases reveals that when natural land cover is used, a persistent moisture flux from the underlying wetlands during the nighttime hours served to prevent the development of below-freezing temperatures at those same locations. When the model results were subjected to an important sensitivity factor, the depth of standing water in the wetlands, the outcome remained consistent. These results provide another example of the potential for humans to perturb the climate system in ways that can have severe socioeconomic consequences by altering the land surface alone.
Evaluation Of The MODIS-VIIRS Land Surface Reflectance Fundamental Climate Data Record.
NASA Astrophysics Data System (ADS)
Roger, J. C.; Vermote, E.; Skakun, S.; Murphy, E.; Holben, B. N.; Justice, C. O.
2016-12-01
The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and has been recognized as a key parameter in the understanding of the land-surface-climate processes. Here, we present the validation of the Land surface reflectance used for MODIS and VIIRS data. This methodology uses the 6SV Code and data from the AERONET network. The first part was to define a protocol to use the AERONET data. To correctly take into account the aerosol model, we used the aerosol microphysical properties provided by the AERONET network including size-distribution (%Cf, %Cc, rf, rc, σr, σc), complex refractive indices and sphericity. Over the 670 available AERONET sites, we selected 230 sites with sufficient data. To be useful for validation, the aerosol model should be readily available anytime, which is rarely the case. We then used regressions for each microphysical parameter using the aerosol optical thickness at 440nm and the Angström coefficient as parameters. Comparisons with the AERONET dataset give good APU (Accuracy-Precision-Uncertainties) for each parameter. The second part of the study relies on the theoretical land surface retrieval. We generated TOA synthetic data using aerosol models from AERONET and determined APU on the surface reflectance retrieval while applying the MODIS and VIRRS Atmospheric correction software. Over 250 AERONET sites, the global uncertainties are for MODIS band 1 (red) is always lower than 0.0015 (when surface reflectance is > 0.04). This very good result shows the validity of our reference. Then, we used this reference for validating the MODIS and VIIRS surface reflectance products. The overall accuracy clearly reaches specifications. Finally, we will present an error budget of the surface reflectance retrieval. Indeed, to better understand how to improve the methodology, we defined an exhaustive error budget. We included all inputs i.e. sensor, calibration, aerosol properties, atmospheric conditions… This latter work provides a lot of information, such as the aerosol optical thickness obviously drives the uncertainties of the retrieval, the absorption and the volume concentration of the fine aerosol mode have an important impact as well…
Mapping the global depth to bedrock for land surface modeling
NASA Astrophysics Data System (ADS)
Shangguan, Wei; Hengl, Tomislav; Mendes de Jesus, Jorge; Yuan, Hua; Dai, Yongjiu
2017-03-01
Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 1,30,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surface reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forest and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250 m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.
NASA Astrophysics Data System (ADS)
Vieira, D.; Teodoro, A.; Gomes, A.
2016-10-01
Land Surface Temperature (LST) is an important parameter related to land surface processes that changes continuously through time. Assessing its dynamics during a volcanic eruption has both environmental and socio-economical interest. Lava flows and other volcanic materials produced and deposited throughout an eruption transform the landscape, contributing to its heterogeneity and altering LST measurements. This paper aims to assess variations of satellite-derived LST and to detect patterns during the latest Fogo Island (Cape Verde) eruption, extending from November 2014 through February 2015. LST data was obtained through four processed Landsat 8 images, focused on the caldera where Pico do Fogo volcano sits. QGIS' plugin Semi-Automatic Classification was used in order to apply atmospheric corrections and radiometric calibrations. The algorithm used to retrieve LST values is a single-channel method, in which emissivity values are known. The absence of in situ measurements is compensated by the use of MODIS sensor-derived LST data, used to compare with Landsat retrieved measurements. LST data analysis shows as expected that the highest LST values are located inside the caldera. High temperature values were also founded on the south-facing flank of the caldera. Although spatial patterns observed on the retrieved data remained roughly the same during the time period considered, temperature values changed throughout the area and over time, as it was also expected. LST values followed the eruption dynamic experiencing a growth followed by a decline. Moreover, it seems possible to recognize areas affected by lava flows of previous eruptions, due to well-defined LST spatial patterns.
NASA Astrophysics Data System (ADS)
Rigden, Angela J.; Salvucci, Guido D.
2015-04-01
A novel method of estimating evapotranspiration (ET), referred to as the ETRHEQ method, is further developed, validated, and applied across the U.S. from 1961 to 2010. The ETRHEQ method estimates the surface conductance to water vapor transport, which is the key rate-limiting parameter of typical ET models, by choosing the surface conductance that minimizes the vertical variance of the calculated relative humidity profile averaged over the day. The ETRHEQ method, which was previously tested at five AmeriFlux sites, is modified for use at common weather stations and further validated at 20 AmeriFlux sites that span a wide range of climates and limiting factors. Averaged across all sites, the daily latent heat flux RMSE is ˜26 W·m-2 (or 15%). The method is applied across the U.S. at 305 weather stations and spatially interpolated using ANUSPLIN software. Gridded annual mean ETRHEQ ET estimates are compared with four data sets, including water balance-derived ET, machine-learning ET estimates based on FLUXNET data, North American Land Data Assimilation System project phase 2 ET, and a benchmark product that integrates 14 global ET data sets, with RMSEs ranging from 8.7 to 12.5 cm·yr-1. The ETRHEQ method relies only on data measured at weather stations, an estimate of vegetation height derived from land cover maps, and an estimate of soil thermal inertia. These data requirements allow it to have greater spatial coverage than direct measurements, greater historical coverage than satellite methods, significantly less parameter specification than most land surface models, and no requirement for calibration.
NASA Astrophysics Data System (ADS)
Xu, Tongren; Bateni, S. M.; Neale, C. M. U.; Auligne, T.; Liu, Shaomin
2018-03-01
In different studies, land surface temperature (LST) observations have been assimilated into the variational data assimilation (VDA) approaches to estimate turbulent heat fluxes. The VDA methods yield accurate turbulent heat fluxes, but they need an adjoint model, which is difficult to derive and code. They also cannot directly calculate the uncertainty of their estimates. To overcome the abovementioned drawbacks, this study assimilates LST data from Geostationary Operational Environmental Satellite into the ensemble Kalman smoother (EnKS) data assimilation system to estimate turbulent heat fluxes. EnKS does not need to derive the adjoint term and directly generates statistical information on the accuracy of its predictions. It uses the heat diffusion equation to simulate LST. EnKS with the state augmentation approach finds the optimal values for the unknown parameters (i.e., evaporative fraction and neutral bulk heat transfer coefficient, CHN) by minimizing the misfit between LST observations from Geostationary Operational Environmental Satellite and LST estimations from the heat diffusion equation. The augmented EnKS scheme is tested over six Ameriflux sites with a wide range of hydrological and vegetative conditions. The results show that EnKS can predict not only the model parameters and turbulent heat fluxes but also their uncertainties over a variety of land surface conditions. Compared to the variational method, EnKS yields suboptimal turbulent heat fluxes. However, suboptimality of EnKS is small, and its results are comparable to those of the VDA method. Overall, EnKS is a feasible and reliable method for estimation of turbulent heat fluxes.
NASA Astrophysics Data System (ADS)
Suresh Babu, K. V.; Roy, Arijit; Ramachandra Prasad, P.
2016-05-01
Forest fire has been regarded as one of the major causes of degradation of Himalayan forests in Uttarakhand. Forest fires occur annually in more than 50% of forests in Uttarakhand state, mostly due to anthropogenic activities and spreads due to moisture conditions and type of forest fuels. Empirical drought indices such as Keetch-Byram drought index, the Nesterov index, Modified Nesterov index, the Zhdanko index which belongs to the cumulative type and the Angstrom Index which belongs to the daily type have been used throughout the world to assess the potential fire danger. In this study, the forest fire danger index has been developed from slightly modified Nesterov index, fuel and anthropogenic activities. Datasets such as MODIS TERRA Land Surface Temperature and emissivity (MOD11A1), MODIS AQUA Atmospheric profile product (MYD07) have been used to determine the dew point temperature and land surface temperature. Precipitation coefficient has been computed from Tropical Rainfall measuring Mission (TRMM) product (3B42RT). Nesterov index has been slightly modified according to the Indian context and computed using land surface temperature, dew point temperature and precipitation coefficient. Fuel type danger index has been derived from forest type map of ISRO based on historical fire location information and disturbance danger index has been derived from disturbance map of ISRO. Finally, forest fire danger index has been developed from the above mentioned indices and MODIS Thermal anomaly product (MOD14) has been used for validating the forest fire danger index.
Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals
NASA Technical Reports Server (NTRS)
Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo
2014-01-01
Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.
NASA Astrophysics Data System (ADS)
Ghilain, N.; Arboleda, A.; Gellens-Meulenberghs, F.
2009-04-01
For water and agricultural management, there is an increasing demand to monitor the soil water status and the land evapotranspiration. In the framework of the LSA-SAF project (http://landsaf.meteo.pt), we are developing an energy balance model forced by remote sensing products, i.e. radiation components and vegetation parameters, to monitor in quasi real-time the evapotranspiration rate over land (Gellens-Meulenberghs et al, 2007; Ghilain et al, 2008). The model is applied over the full MSG disk, i.e. including Europe and Africa. Meteorological forcing, as well as the soil moisture status, is provided by the forecasts of the ECMWF model. Since soil moisture is computed by a forecast model not dedicated to the monitoring of the soil water status, inadequate soil moisture input can occur, and can cause large effects on evapotranspiration rates, especially over semi-arid or arid regions. In these regions, a remotely sensed-based method for the soil moisture retrieval can therefore be preferable, to avoid too strong dependency in ECMWF model estimates. Among different strategies, remote sensing offers the advantage of monitoring large areas. Empirical methods of soil moisture assessment exist using remotely sensed derived variables either from the microwave bands or from the thermal bands. Mainly polar orbiters are used for this purpose, and little attention has been paid to the new possibilities offered by geosynchronous satellites. In this contribution, images of the SEVIRI instrument on board of MSG geosynchronous satellites are used. Dedicated operational algorithms were developed for the LSA-SAF project and now deliver images of land surface temperature (LST) every 15-minutes (Trigo et al, 2008) and vegetations indices (leaf area index, LAI; fraction of vegetation cover, FVC; fraction of absorbed photosynthetically active radiation, FAPAR) every day (Garcia-Haro et al, 2005) over Africa and Europe. One advantage of using products derived from geostationary satellites is the close monitoring of the diurnal variation of the land surface temperature. This feature reinforced the statistical strength of empirical methods. An empirical method linking land surface morning heating rates and the fraction of the vegetation cover, also known as a ‘Triangle method' (Gillies et al, 1997) is examined. This method is expected to provide an estimation of a root-zone soil moisture index. The sensitivity of the method to wind speed, soil type, vegetation type and climatic region is explored. Moreover, the impact of the uncertainty of LST and FVC on the resulting soil moisture estimates is assessed. A first impact study of using remotely sensed soil moisture index in the energy balance model is shown and its potential benefits for operational monitoring of evapotranspiration are outlined. References García-Haro, F.J., F. Camacho-de Coca, J. Meliá, B. Martínez (2005) Operational derivation of vegetation products in the framework of the LSA SAF project. Proceedings of the EUMETSAT Meteorological Satellite Conference Dubrovnik (Croatia) 19-23 Septembre. Gellens-Meulenberghs, F., Arboleda, A., Ghilain, N. (2007) Towards a continuous monitoring of evapotranspiration based on MSG data. Proceedings of the symposium on Remote Sensing for Environmental Monitoring and Change Detection. IAHS series. IUGG, Perugia, Italy, July 2007, 7 pp. Ghilain, N., Arboleda, A. and Gellens-Meulenberghs, F., (2008) Improvement of a surface energy balance model by the use of MSG-SEVIRI derived vegetation parameters. Proceedings of the 2008 EUMETSAT meteorological satellite data user's conference, Darmstadt, Germany, 8th-12th September, 7 pp. Gillies R.R., Carlson T.N., Cui J., Kustas W.P. and Humes K. (1997), Verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of Normalized Difference Vegetation Index (NDVI) and surface radiant temperature, International Journal of Remote Sensing, 18, pp. 3145-3166. Trigo, I.F., Monteiro I.T., Olesen F. and Kabsch E. (2008) An assessment of remotely sensed land surface temperature. Journal of Geophysical Research, 113, D17108, doi:10.1029/2008JD010035.
TopoSCALE v.1.0: downscaling gridded climate data in complex terrain
NASA Astrophysics Data System (ADS)
Fiddes, J.; Gruber, S.
2014-02-01
Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of observations (i.e. remote areas or future periods).
NASA Astrophysics Data System (ADS)
Rao, Xiong; Tang, Yunwei
2014-11-01
Land surface deformation evidently exists in a newly-built high-speed railway in the southeast of China. In this study, we utilize the Small BAseline Subsets (SBAS)-Differential Synthetic Aperture Radar Interferometry (DInSAR) technique to detect land surface deformation along the railway. In this work, 40 Cosmo-SkyMed satellite images were selected to analyze the spatial distribution and velocity of the deformation in study area. 88 pairs of image with high coherence were firstly chosen with an appropriate threshold. These images were used to deduce the deformation velocity map and the variation in time series. This result can provide information for orbit correctness and ground control point (GCP) selection in the following steps. Then, more pairs of image were selected to tighten the constraint in time dimension, and to improve the final result by decreasing the phase unwrapping error. 171 combinations of SAR pairs were ultimately selected. Reliable GCPs were re-selected according to the previously derived deformation velocity map. Orbital residuals error was rectified using these GCPs, and nonlinear deformation components were estimated. Therefore, a more accurate surface deformation velocity map was produced. Precise geodetic leveling work was implemented in the meantime. We compared the leveling result with the geocoding SBAS product using the nearest neighbour method. The mean error and standard deviation of the error were respectively 0.82 mm and 4.17 mm. This result demonstrates the effectiveness of DInSAR technique for monitoring land surface deformation, which can serve as a reliable decision for supporting highspeed railway project design, construction, operation and maintenance.
NASA Astrophysics Data System (ADS)
Karachevtseva, I. P.; Kozlova, N. A.; Kokhanov, A. A.; Zubarev, A. E.; Nadezhdina, I. E.; Patratiy, V. D.; Konopikhin, A. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Oberst, J.; Haase, I.; Jolliff, B. L.; Plescia, J. B.; Robinson, M. S.
2017-02-01
The Lunar Reconnaissance Orbiter Camera (LROC) system consists of a Wide Angle Camera (WAC) and Narrow Angle Camera (NAC). NAC images (∼0.5 to 1.7 m/pixel) reveal details of the Luna-21 landing site and Lunokhod-2 traverse area. We derived a Digital Elevation Model (DEM) and an orthomosaic for the study region using photogrammetric stereo processing techniques with NAC images. The DEM and mosaic allowed us to analyze the topography and morphology of the landing site area and to map the Lunokhod-2 rover route. The total range of topographic elevation along the traverse was found to be less than 144 m; and the rover encountered slopes of up to 20°. With the orthomosaic tied to the lunar reference frame, we derived coordinates of the Lunokhod-2 landing module and overnight stop points. We identified the exact rover route by following its tracks and determined its total length as 39.16 km, more than was estimated during the mission (37 km), which until recently was a distance record for planetary robotic rovers held for more than 40 years.
NASA Astrophysics Data System (ADS)
Goñi, Miguel A.; Ruttenberg, Kathleen C.; Eglinton, Timothy I.
1998-09-01
Organic matter in surface sediments from two onshore-offshore transects in the northwestern Gulf of Mexico was characterized by a variety of techniques, including elemental, stable carbon, radiocarbon, and molecular-level analyses. In spite of the importance of the Mississippi River as a sediment source, there is little evidence for a significant terrigenous input based on the low carbon:nitrogen ratios (8-5) and the enriched δ 13C values of bulk sedimentary organic carbon (-19.7‰ to -21.7‰). Radiocarbon analyses, on the other hand, yield depleted Δ 14C values (-277‰ to -572‰) which indicate that a significant fraction of the sedimentary organic carbon (OC) in all these surface sediments must be relatively old and most likely of allochthonous origin. CuO oxidations yield relatively low quantities of lignin products (0.4-1.4 mg/100 mg OC) along with compounds derived from proteins, polysaccharides, and lipids. Syringyl:vanillyl and cinnamyl:vanillyl ratios (averaging 1.6 and 0.5, respectively) and acid:aldehyde ratios for both vanillyl and syringyl phenols (averaging 0.8 and 1.2, respectively) indicate that the lignin present in sediments originates from nonwoody angiosperm sources and is highly degraded. The δ 13C values of lignin phenols in shelf sediments are relatively depleted in 13C (averaging -26.3‰) but are increasingly enriched in 13C at the slope sites (averaging -17.5‰ for the two deepest stations). We interpret these molecular and isotopic compositions to indicate that a significant fraction (≥50%) of the lignin and, by inference, the land-derived organic carbon in northwestern Gulf of Mexico sediments ultimately originated from C 4 plants. The source of this material is likely to be soil organic matter eroded from the extensive grasslands of the Mississippi River drainage basin. Notably, the mixed C 4 and C 3 source and the highly degraded state of this material hampers its recognition and quantification in shelf and slope sediments. Our data are consistent with higher than previously estimated inputs of land-derived organic carbon to regions of the ocean, such as the Gulf of Mexico, with significant sources of terrigenous C 4-derived organic matter.
NASA Astrophysics Data System (ADS)
Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian
2017-10-01
Rock populations can supply fundamental geological information about origin and evolution of a planet. In this paper, we used Lunar Reconnaissance Orbiter (LRO) narrow-angle camera (NAC) images to identify rocks at the lunar landing sites (including Chang'e 3 (CE-3), Apollo and Surveyor series). The diameter and area of each identified rock were measured to generate distributions of rock cumulative fractional area and size-frequency on a log-log plot. The two distributions both represented the same shallow slopes at smaller diameters followed by steeper slopes at larger diameters. A reasonable explanation for the lower slopes may be the resolution and space weathering effects. By excluding the smaller diameters, rock populations derived from NAC images showed approximately linear relationships and could be fitted well by power laws. In the last, the entire rock populations derived from both NAC and in-situ imagery could be described by one power function at the lunar landing sites except the CE-3 and Apollo 11 landing sites. This may be because that the process of a large rock breaking down to small rocks even fine particles can be modeled by fractal theories. Thus, rock populations on lunar surfaces can be extrapolated along the curves of rock populations derived from NAC images to smaller diameters. In the future, we can apply rock populations from remote sensing images to estimate the number of rocks with smaller diameters to select the appropriate landing sites for the CE-4 and CE-5 missions.
Fergason, R.L.; Christensen, P.R.; Golombek, M.P.; Parker, T.J.
2012-01-01
This work describes the interpretation of THEMIS-derived thermal inertia data at the Eberswalde, Gale, Holden, and Mawrth Vallis Mars Science Laboratory (MSL) candidate landing sites and determines how thermophysical variations correspond to morphology and, when apparent, mineralogical diversity. At Eberswalde, the proportion of likely unconsolidated material relative to exposed bedrock or highly indurated surfaces controls the thermal inertia of a given region. At Gale, the majority of the landing site region has a moderate thermal inertia (250 to 410 J m-2 K-1 s-1/2), which is likely an indurated surface mixed with unconsolidated materials. The primary difference between higher and moderate thermal inertia surfaces may be due to the amount of mantling material present. Within the mound of stratified material in Gale, layers are distinguished in the thermal inertia data; the MSL rover could be traversing through materials that are both thermophysically and compositionally diverse. The majority of the Holden ellipse has a thermal inertia of 340 to 475 J m-2 K-1 s-1/2 and consists of bed forms with some consolidated material intermixed. Mawrth Vallis has a mean thermal inertia of 310 J m-2 K-1 s-1/2 and a wide variety of materials is present contributing to the moderate thermal inertia surfaces, including a mixture of bedrock, indurated surfaces, bed forms, and unconsolidated fines. Phyllosilicates have been identified at all four candidate landing sites, and these clay-bearing units typically have a similar thermal inertia value (400 to 500 J m-2 K-1 s-1/2), suggesting physical properties that are also similar.
NASA Astrophysics Data System (ADS)
Grigsby, S.; Hulley, G. C.; Roberts, D. A.; Scheele, C. J.; Ustin, S.; Alsina, M. M.
2014-12-01
Land surface temperature (LST) is an important parameter in many ecological studies, where processes such as evapotranspiration have impacts at temperature gradients less than 1 K. Current errors in standard MODIS and ASTER LST products are greater than 1 K, and for ASTER can be greater than 2 K in humid conditions due to incomplete atmospheric correction of atmospheric water vapor. Estimates of water vapor, either derived from visible-to-shortwave-infrared (VSWIR) remote sensing data or taken from weather simulation data such as NCEP, can be combined with coincident Thermal-Infrared (TIR) remote sensing data to yield improved accuracy in LST measurements. This study compares LST retrieval accuracies derived using the standard JPL MASTER Temperature Emissivity Separation (TES) algorithm, and the Water Vapor Scaling (WVS) atmospheric correction method proposed for the Hyperspectral Infrared Imager, or HyspIRI, mission with ground observations. The 2011 ER-2 Delano/Lost Hills flights acquired TIR data from the MODIS/ASTER Simulator (MASTER) and VSWIR data from Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) instruments flown concurrently. The TES and WVS retrieval methods are run with and without high spatial resolution AVIRIS-derived water vapor maps to assess the improvement using VSWIR water vapor estimates. We find improvement using VSWIR derived water vapor maps in both cases, with the WVS method being most accurate overall. For closed canopy agricultural vegetation we observed canopy temperature retrieval RMSEs of 0.49 K and 0.70 K using the WVS method on MASTER data with and without AVIRIS derived water vapor, respectively.
Altitude-dependent influence of snow cover on alpine land surface phenology
NASA Astrophysics Data System (ADS)
Xie, Jing; Kneubühler, Mathias; Garonna, Irene; Notarnicola, Claudia; De Gregorio, Ludovica; De Jong, Rogier; Chimani, Barbara; Schaepman, Michael E.
2017-05-01
Snow cover impacts alpine land surface phenology in various ways, but our knowledge about the effect of snow cover on alpine land surface phenology is still limited. We studied this relationship in the European Alps using satellite-derived metrics of snow cover phenology (SCP), namely, first snow fall, last snow day, and snow cover duration (SCD), in combination with land surface phenology (LSP), namely, start of season (SOS), end of season, and length of season (LOS) for the period of 2003-2014. We tested the dependency of interannual differences (Δ) of SCP and LSP metrics with altitude (up to 3000 m above sea level) for seven natural vegetation types, four main climatic subregions, and four terrain expositions. We found that 25.3% of all pixels showed significant (p < 0.05) correlation between ΔSCD and ΔSOS and 15.3% between ΔSCD and ΔLOS across the entire study area. Correlations between ΔSCD and ΔSOS as well as ΔSCD and ΔLOS are more pronounced in the northern subregions of the Alps, at high altitudes, and on north and west facing terrain—or more generally, in regions with longer SCD. We conclude that snow cover has a greater effect on alpine phenology at higher than at lower altitudes, which may be attributed to the coupled influence of snow cover with underground conditions and air temperature. Alpine ecosystems may therefore be particularly sensitive to future change of snow cover at high altitudes under climate warming scenarios.
A review on remotely sensed land surface temperature anomaly as an earthquake precursor
NASA Astrophysics Data System (ADS)
Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh
2017-12-01
The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.
Operational evapotranspiration based on Earth observation satellites
NASA Astrophysics Data System (ADS)
Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel
2016-04-01
Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In parallel, research has been started to investigate ET downscaling to a finer spatial scale. A first step is focusing on the assimilation into the algorithm of vegetation products derived from polar satellites. MODIS and SPOT-VEG products have been investigated to prepare the exploitation of the new Proba-V derived vegetation products that should become part the Copernicus Land Monitoring Service portfolio. Furthermore, an ongoing specific project is dedicated to the study of ET in wetlands allowing to concentrate research on relationship between ET, vegetation characteristics and ecosystem health. In the future, the launch of the Meteosat Third Generation satellite will motivate new developments in the framework of LSA-SAF. The present contribution will give an overview of above mentioned operational products and related ongoing research activities. LSA-SAF research at RMI is co-funded by EUMETSAT and Belgian Federal Science Policy/ESA through their Prodex funding program (contract C4000110695). Exploratory research on multi-mission EO exploitation has been allowed thanks to grants of Belgian Federal Science Policy (CB/34/18, SR/34/163, SR/00/301).
Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results.
Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P; Levy, Robert C; Lotz, Wolfhardt
2017-08-01
The MEdium Resolution Imaging Spectrometer (MERIS) instrument on board ESA Envisat made measurements from 2002 to 2012. Although MERIS was limited in spectral coverage, accurate Aerosol Optical Thickness (AOT) from MERIS data are retrieved by using appropriate additional information. We introduce a new AOT retrieval algorithm for MERIS over land surfaces, referred to as eXtensible Bremen AErosol Retrieval (XBAER). XBAER is similar to the "dark-target" (DT) retrieval algorithm used for Moderate-resolution Imaging Spectroradiometer (MODIS), in that it uses a lookup table (LUT) to match to satellite-observed reflectance and derive the AOT. Instead of a global parameterization of surface spectral reflectance, XBAER uses a set of spectral coefficients to prescribe surface properties. In this manner, XBAER is not limited to dark surfaces (vegetation) and retrieves AOT over bright surface (desert, semiarid, and urban areas). Preliminary validation of the MERIS-derived AOT and the ground-based Aerosol Robotic Network (AERONET) measurements yield good agreement, the resulting regression equation is y = (0.92 × ± 0.07) + (0.05 ± 0.01) and Pearson correlation coefficient of R = 0.78. Global monthly means of AOT have been compared from XBAER, MODIS and other satellite-derived datasets.
NASA Astrophysics Data System (ADS)
Niu, X.; Yang, K.; Tang, W.; Qin, J.
2015-12-01
Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).
Using NASA Techniques to Atmospherically Correct AWiFS Data for Carbon Sequestration Studies
NASA Technical Reports Server (NTRS)
Holekamp, Kara L.
2007-01-01
Carbon dioxide is a greenhouse gas emitted in a number of ways, including the burning of fossil fuels and the conversion of forest to agriculture. Research has begun to quantify the ability of vegetative land cover and oceans to absorb and store carbon dioxide. The USDA (U.S. Department of Agriculture) Forest Service is currently evaluating a DSS (decision support system) developed by researchers at the NASA Ames Research Center called CASA-CQUEST (Carnegie-Ames-Stanford Approach-Carbon Query and Evaluation Support Tools). CASA-CQUEST is capable of estimating levels of carbon sequestration based on different land cover types and of predicting the effects of land use change on atmospheric carbon amounts to assist land use management decisions. The CASA-CQUEST DSS currently uses land cover data acquired from MODIS (the Moderate Resolution Imaging Spectroradiometer), and the CASA-CQUEST project team is involved in several projects that use moderate-resolution land cover data derived from Landsat surface reflectance. Landsat offers higher spatial resolution than MODIS, allowing for increased ability to detect land use changes and forest disturbance. However, because of the rate at which changes occur and the fact that disturbances can be hidden by regrowth, updated land cover classifications may be required before the launch of the Landsat Data Continuity Mission, and consistent classifications will be needed after that time. This candidate solution investigates the potential of using NASA atmospheric correction techniques to produce science-quality surface reflectance data from the Indian Remote Sensing Advanced Wide-Field Sensor on the RESOURCESAT-1 mission to produce land cover classification maps for the CASA-CQUEST DSS.
Surface properties of Mars' polar layered deposits and polar landing sites
Vasavada, Ashwin R.; Williams, Jean-Pierre; Paige, David A.; Herkenhoff, Ken E.; Bridges, Nathan T.; Greeley, Ronald; Murray, Bruce C.; Bass, Deborah S.; McBride, Karen S.
2000-01-01
On December 3, 1999, the Mars Polar Lander and Mars Microprobes will land on the planet's south polar layered deposits near (76°S, 195°W) and conduct the first in situ studies of the planet's polar regions. The scientific goals of these missions address several poorly understood and globally significant issues, such as polar meteorology, the composition and volatile content of the layered deposits, the erosional state and mass balance of their surface, their possible relationship to climate cycles, and the nature of bright and dark aeolian material. Derived thermal inertias of the southern layered deposits are very low (50-100 J m-2 s-1/2 K-1), suggesting that the surface down to a depth of a few centimeters is generally fine grained or porous and free of an appreciable amount of rock or ice. The landing site region is smoother than typical cratered terrain on ∼1 km pixel-1 Viking Orbiter images but contains low-relief texture on ∼5 to 100 m pixel-1 Mariner 9 and Mars Global Surveyor images. The surface of the southern deposits is older than that of the northern deposits and appears to be modified by aeolian erosion or ablation of ground ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Grippo, Mark A.
2015-01-01
A monitoring plan that incorporates regional datasets and integrates cost-effective data collection methods is necessary to sustain the long-term environmental monitoring of utility-scale solar energy development in expansive, environmentally sensitive desert environments. Using very high spatial resolution (VHSR; 15 cm) multispectral imagery collected in November 2012 and January 2014, an image processing routine was developed to characterize ephemeral streams, vegetation, and land surface in the southwestern United States where increased utility-scale solar development is anticipated. In addition to knowledge about desert landscapes, the methodology integrates existing spectral indices and transformation (e.g., visible atmospherically resistant index and principal components); a newlymore » developed index, erosion resistance index (ERI); and digital terrain and surface models, all of which were derived from a common VHSR image. The methodology identified fine-scale ephemeral streams with greater detail than the National Hydrography Dataset and accurately estimated vegetation distribution and fractional cover of various surface types. The ERI classified surface types that have a range of erosive potentials. The remote-sensing methodology could ultimately reduce uncertainty and monitoring costs for all stakeholders by providing a cost-effective monitoring approach that accurately characterizes the land resources at potential development sites.« less
NASA Astrophysics Data System (ADS)
Michel, Dominik; Hirschi, Martin; Jimenez, Carlos; McCabe, Mathew; Miralles, Diego; Wood, Eric; Seneviratne, Sonia
2014-05-01
Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which can not be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). Currently, a multi-decadal global reference heat flux data set for ET at the land surface is being developed within the LandFlux initiative of the Global Energy and Water Cycle Experiment (GEWEX). This LandFlux v0 ET data set comprises four ET algorithms forced with a common radiation and surface meteorology. In order to estimate the agreement of this LandFlux v0 ET data with existing data sets, it is compared to the recently available LandFlux-EVAL synthesis benchmark product. Additional evaluation of the LandFlux v0 ET data set is based on a comparison to in situ observations of a weighing lysimeter from the hydrological research site Rietholzbach in Switzerland. These analyses serve as a test bed for similar evaluation procedures that are envisaged for ESA's WACMOS-ET initiative (http://wacmoset.estellus.eu). Reference: Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10): 3707-3720.
Jones, J.W.
2000-01-01
The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.
Jones, J.W.
2001-01-01
The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.
NASA Astrophysics Data System (ADS)
Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.
Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most pronounced distribution differences for all types of cultivated soils examined here and are by themselves powerful markers for fugitive dust that allow differentiation between the types of crops cultivated. PAHs are also found in some surface soils, as well as persistent pesticides, e.g., DDE, Fosfall, and others.
Uncertainty in Land Cover observations and its impact on near surface climate
NASA Astrophysics Data System (ADS)
Georgievski, Goran; Hagemann, Stefan
2017-04-01
Land Cover (LC) and its bio-geo-physical feedbacks are important for the understanding of climate and its vulnerability to changes on the surface of the Earth. Recently ESA has published a new LC map derived by combining remotely sensed surface reflectance and ground-truth observations. For each grid-box at 300m resolution, an estimate of confidence is provided. This LC data set can be used in climate modelling to derive land surface boundary parameters for the respective Land Surface Model (LSM). However, the ESA LC classes are not directly suitable for LSMs, therefore they need to be converted into the model specific surface presentations. Due to different design and processes implemented in various climate models they might differ in the treatment of artificial, water bodies, ice, bare or vegetated surfaces. Nevertheless, usually vegetation distribution in models is presented by means of plant functional types (PFT), which is a classification system used to simplify vegetation representation and group different vegetation types according to their biophysical characteristics. The method of LC conversion into PFT is also called "cross-walking" (CW) procedure. The CW procedure is another source of uncertainty, since it depends on model design and processes implemented and resolved by LSMs. These two sources of uncertainty, (i) due to surface reflectance conversion into LC classes, (ii) due to CW procedure, have been studied by Hartley et al (2016) to investigate their impact on LSM state variables (albedo, evapotranspiration (ET) and primary productivity) by using three standalone LSMs. The present study is a follow up to that work and aims at quantifying the impact of these two uncertainties on climate simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) using prescribed sea surface temperature and sea ice. The main focus is on the terrestrial water cycle, but the impacts on surface albedo, wind patterns, 2m temperatures, as well as plant productivity are also examined. The analysis of vegetation covered area indicates that the range of uncertainty might be about the same order of magnitude as the estimated historical anthropogenic LC change. For example, the area covered with managed grasses (crops and pasture in MPI-ESM PFT classification) varies from 17 to 26 million km2, and area covered with trees ranges from 15 million km2 up to 51 million km2. These uncertainties in vegetation distribution lead to noticeable variations in atmospheric temperature, humidity, cloud cover, circulation, and precipitation as well as local, regional and global climate forcing. For example, the amount of terrestrial ET ranges from 73 to 77 × 103 km3yr-1in MPI-ESM simulations and this range has about the same order of magnitude as the current estimate of the reduction of annual ET due to recent anthropogenic LC change. This and more impacts of LC uncertainty on the near surface climate will be presented and discussed in the context of LC change. Hartley, A.J., MacBean, N., Georgievski, G., Bontemps, S.: Uncertainty in plant functional type distributions and its impact on land surface models (in review with Remote Sensing of Environment Special Issue)
Distribution Patterns of Land Surface Water from Hurricanes Katrina and Rita
2005-10-12
The above images, derived from NASA QuikScat satellite data, show the extensive pattern of rain water deposited by Hurricanes Katrina and Rita on land surfaces over several states in the southern and eastern United States. These results demonstrate the capability of satellite scatterometers to monitor changes in surface water on land. The color scale depicts increases in radar backscatter (in decibels) between the current measurement and the mean of measurements obtained during the previous two weeks. The backscatter can be calibrated to measure increases in surface soil moisture resulting from rainfall. The yellow color corresponds to an increase of approximately 10 percent or more in surface soil moisture according to the calibration site of Lonoke, Ark. The two hurricanes deposited excessive rainfall over extensive regions of the Mississippi River basin. Basins the size of the Mississippi can take up to several weeks before such excess rainfall significantly increases the amount of river discharge in large rivers such as the Mississippi. With hurricane season not over until November 30, the potential exists for significant flooding, particularly if new rain water is deposited by new hurricanes when river discharge peaks up as a result of previous rainfalls. River discharge should be closely monitored to account for this factor in evaluating potential flood conditions in the event of further hurricanes. http://photojournal.jpl.nasa.gov/catalog/PIA03029
NASA Astrophysics Data System (ADS)
Crawford, Ben; Grimmond, Sue; Kent, Christoph; Gabey, Andrew; Ward, Helen; Sun, Ting; Morrison, William
2017-04-01
Remotely sensed data from satellites have potential to enable high-resolution, automated calculation of urban surface energy balance terms and inform decisions about urban adaptations to environmental change. However, aerodynamic resistance methods to estimate sensible heat flux (QH) in cities using satellite-derived observations of surface temperature are difficult in part due to spatial and temporal variability of the thermal aerodynamic resistance term (rah). In this work, we extend an empirical function to estimate rah using observational data from several cities with a broad range of surface vegetation land cover properties. We then use this function to calculate spatially and temporally variable rah in London based on high-resolution (100 m) land cover datasets and in situ meteorological observations. In order to calculate high-resolution QH based on satellite-observed land surface temperatures, we also develop and employ novel methods to i) apply source area-weighted averaging of surface and meteorological variables across the study spatial domain, ii) calculate spatially variable, high-resolution meteorological variables (wind speed, friction velocity, and Obukhov length), iii) incorporate spatially interpolated urban air temperatures from a distributed sensor network, and iv) apply a modified Monte Carlo approach to assess uncertainties with our results, methods, and input variables. Modeled QH using the aerodynamic resistance method is then compared to in situ observations in central London from a unique network of scintillometers and eddy-covariance measurements.
Lunar soil strength estimation based on Chang'E-3 images
NASA Astrophysics Data System (ADS)
Gao, Yang; Spiteri, Conrad; Li, Chun-Lai; Zheng, Yong-Chun
2016-11-01
Chang'E-3 (CE-3) was the third mission by China to explore the Moon which had landed two spacecraft, the CE-3 lander and Yutu rover on the lunar surface in late 2013. The paper presents analytical results of high-resolution terrain data taken by CE-3's onboard cameras. The image data processing aims to extract sinkage profiles of the wheel tracks during the rover traverse. Further analysis leads to derivation or estimation of lunar soil physical properties (in terms of strength and stiffness) based on the wheel sinkage, despite the fact Yutu does not possess in situ soil measurement instruments. Our findings indicate that the lunar soil at the CE-3 landing site has similar stiffness to what is measured at the Luna 17 landing site but has much less strength compared to the Apollo 15 landing site.
Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations
NASA Astrophysics Data System (ADS)
Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.
2016-12-01
Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.
Terrain-Moisture Classification Using GPS Surface-Reflected Signals
NASA Technical Reports Server (NTRS)
Grant, Michael S.; Acton, Scott T.; Katzberg, Stephen J.
2006-01-01
In this study we present a novel method of land surface classification using surface-reflected GPS signals in combination with digital imagery. Two GPS-derived classification features are merged with visible image data to create terrain-moisture (TM) classes, defined here as visibly identifiable terrain or landcover classes containing a surface/soil moisture component. As compared to using surface imagery alone, classification accuracy is significantly improved for a number of visible classes when adding the GPS-based signal features. Since the strength of the reflected GPS signal is proportional to the amount of moisture in the surface, use of these GPS features provides information about the surface that is not obtainable using visible wavelengths alone. Application areas include hydrology, precision agriculture, and wetlands mapping.
Hall, D.K.; Williams, R.S.; Casey, K.A.; DiGirolamo, N.E.; Wan, Z.
2006-01-01
Mean, clear-sky surface temperature of the Greenland Ice Sheet was measured for each melt season from 2000 to 2005 using Moderate-Resolution Imaging Spectroradiometer (MODIS)–derived land-surface temperature (LST) data-product maps. During the period of most-active melt, the mean, clear-sky surface temperature of the ice sheet was highest in 2002 (−8.29 ± 5.29°C) and 2005 (−8.29 ± 5.43°C), compared to a 6-year mean of −9.04 ± 5.59°C, in agreement with recent work by other investigators showing unusually extensive melt in 2002 and 2005. Surface-temperature variability shows a correspondence with the dry-snow facies of the ice sheet; a reduction in area of the dry-snow facies would indicate a more-negative mass balance. Surface-temperature variability generally increased during the study period and is most pronounced in the 2005 melt season; this is consistent with surface instability caused by air-temperature fluctuations.
NASA Astrophysics Data System (ADS)
Famiglietti, C.; Fisher, J.; Halverson, G. H.
2017-12-01
This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.
Retrieval of aerosol optical depth over bare soil surfaces using time series of MODIS imagery
NASA Astrophysics Data System (ADS)
Yuan, Zhengwu; Yuan, Ranyin; Zhong, Bo
2014-11-01
Aerosol Optical Depth (AOD) is one of the key parameters which can not only reflect the characterization of atmospheric turbidity, but also identify the climate effects of aerosol. The current MODIS aerosol estimation algorithm over land is based on the "dark-target" approach which works only over densely vegetated surfaces. For non-densely vegetated surfaces (such as snow/ice, desert, and bare soil surfaces), this method will be failed. In this study, we develop an algorithm to derive AOD over the bare soil surfaces. Firstly, this method uses the time series of MODIS imagery to detect the " clearest" observations during the non-growing season in multiple years for each pixel. Secondly, the "clearest" observations after suitable atmospheric correction are used to fit the bare soil's bidirectional reflectance distribution function (BRDF) using Kernel model. As long as the bare soil's BRDF is established, the surface reflectance of "hazy" observations can be simulated. Eventually, the AOD over the bare soil surfaces are derived. Preliminary validation results by comparing with the ground measurements from AERONET at Xianghe sites show a good agreement.
The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas
NASA Astrophysics Data System (ADS)
Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.
2015-12-01
Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.
Mapping the global land surface using 1 km AVHRR data
Lauer, D.T.; Eidenshink, J.C.
1998-01-01
The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.
USDA-ARS?s Scientific Manuscript database
High spatial heterogeneity in ground cover, large amounts of exposed bare soil, and modest cover from shrubs and grasses in arid and semi-arid ecosystems challenge the integration of field observations of phenology and remotely sensed data to monitor changes in land surface phenology. This research ...
USDA-ARS?s Scientific Manuscript database
Climate warming over the past half century has led to observable changes in vegetation phenology and growing season length; which can be measured globally using remote sensing derived vegetation indices. Previous studies in mid- and high northern latitude systems show temperature driven earlier spri...
NASA Astrophysics Data System (ADS)
Richter, D., Jr.; Mobley, M. L.; Billings, S. A.; Markewitz, D.
2016-12-01
At the Calhoun Long-Term Soil-Ecosystem field experiment (1957-present), reforestation of previously cultivated land over fifty years nearly doubled soil organic carbon (SOC) in surface soils (0 to 7.5-cm) but these gains were offset by significant SOC losses in subsoils (35 to 60-cm). Nearly all of the accretions in surface soils amounted to gains in light fraction SOC, whereas losses at depth were associated with silt and clay-sized particles. These changes are documented in the Calhoun Long-Term Soil-Ecosystem (LTSE) study that resampled soil from 16 plots about every five years and archived all soil samples from four soil layers within the upper 60-cm of mineral soil. We combined soil bulk density, density fractionation, stable isotopes, and radioisotopes to explore changes in SOC and soil organic nitrogen (SON) associated with five decades of the growth of a loblolly pine secondary forest. Isotopic signatures showed relatively large accumulations of contemporary forest-derived carbon in surface soils, and no accumulation of forest-derived carbon in subsoils. We interpret results to indicate that land-use change from cotton fields to secondary pine forests drove soil biogeochemical and hydrological changes that enhanced root and microbial activity and SOM decomposition in subsoils. As pine stands matured and are now transitioning to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth has eased due to pine mortality, and bulk SOM and SON and their isotopes in subsoils have stabilized. We anticipate major changes in the next fifty years as 1957 pine trees transition to hardwoods. This study emphasizes the importance of long-term experiments and deep soil measurements when characterizing SOC and SON responses to land use change. There is a remarkable paucity of E long-term soil data deeper than 30 cm.
Examining the utility of satellite-based wind sheltering estimates for lake hydrodynamic modeling
Van Den Hoek, Jamon; Read, Jordan S.; Winslow, Luke A.; Montesano, Paul; Markfort, Corey D.
2015-01-01
Satellite-based measurements of vegetation canopy structure have been in common use for the last decade but have never been used to estimate canopy's impact on wind sheltering of individual lakes. Wind sheltering is caused by slower winds in the wake of topography and shoreline obstacles (e.g. forest canopy) and influences heat loss and the flux of wind-driven mixing energy into lakes, which control lake temperatures and indirectly structure lake ecosystem processes, including carbon cycling and thermal habitat partitioning. Lakeshore wind sheltering has often been parameterized by lake surface area but such empirical relationships are only based on forested lakeshores and overlook the contributions of local land cover and terrain to wind sheltering. This study is the first to examine the utility of satellite imagery-derived broad-scale estimates of wind sheltering across a diversity of land covers. Using 30 m spatial resolution ASTER GDEM2 elevation data, the mean sheltering height, hs, being the combination of local topographic rise and canopy height above the lake surface, is calculated within 100 m-wide buffers surrounding 76,000 lakes in the U.S. state of Wisconsin. Uncertainty of GDEM2-derived hs was compared to SRTM-, high-resolution G-LiHT lidar-, and ICESat-derived estimates of hs, respective influences of land cover type and buffer width on hsare examined; and the effect of including satellite-based hs on the accuracy of a statewide lake hydrodynamic model was discussed. Though GDEM2 hs uncertainty was comparable to or better than other satellite-based measures of hs, its higher spatial resolution and broader spatial coverage allowed more lakes to be included in modeling efforts. GDEM2 was shown to offer superior utility for estimating hs compared to other satellite-derived data, but was limited by its consistent underestimation of hs, inability to detect within-buffer hs variability, and differing accuracy across land cover types. Nonetheless, considering a GDEM2 hs-derived wind sheltering potential improved the modeled lake temperature root mean square error for non-forested lakes by 0.72 °C compared to a commonly used wind sheltering model based on lake area alone. While results from this study show promise, the limitations of near-global GDEM2 data in timeliness, temporal and spatial resolution, and vertical accuracy were apparent. As hydrodynamic modeling and high-resolution topographic mapping efforts both expand, future remote sensing-derived vegetation structure data must be improved to meet wind sheltering accuracy requirements to expand our understanding of lake processes.
NCEP/NLDAS Drought Monitoring and Prediction
NASA Astrophysics Data System (ADS)
Xia, Y.; Ek, M.; Wood, E.; Luo, L.; Sheffield, J.; Lettenmaier, D.; Livneh, B.; Cosgrove, B.; Mocko, D.; Meng, J.; Wei, H.; Restrepo, P.; Schaake, J.; Mo, K.
2009-05-01
The NCEP Environmental Modeling Center (EMC) collaborated with its CPPA (Climate Prediction Program of the Americas) partners to develop a North American Land Data Assimilation System (NLDAS, http://www.emc.ncep.noaa.gov/mmb/nldas) to monitor and predict the drought over the Continental United States (CONUS). The realtime NLDAS drought monitor, executed daily at NCEP/EMC, including daily, weekly and monthly anomaly and percentile of six fields (soil moisture, snow water equivalent, total runoff, streamflow, evaporation, precipitation) outputted from four land surface models (Noah, Mosaic, SAC, and VIC) on a common 1/8th degree grid using common hourly land surface forcing. The non-precipitation surface forcing is derived from NCEP's retrospective and realtime North American Regional Reanalysis System (NARR). The precipitation forcing is anchored to a daily gauge-only precipitation analysis over CONUS that applies a Parameter-elevation Regressions on Independent Slopes Model (PRISM) correction. This daily precipitation analysis is then temporally disaggregated to hourly precipitation amounts using radar and satellite precipitation. The NARR- based surface downward solar radiation is bias-corrected using seven years (1997-2004) of GOES satellite- derived solar radiation retrievals. The uncoupled ensemble seasonal drought prediction utilizes the following three independent approaches for generating downscaled ensemble seasonal forecasts of surface forcing: (1) Ensemble Streamflow Prediction, (2) CPC Official Seasonal Climate Outlook, and (3) NCEP CFS ensemble dynamical model prediction. For each of these three approaches, twenty ensemble members of forcing realizations are generated using a Bayesian merging algorithm developed by Princeton University. The three forcing methods are then used to drive the VIC model in seasonal prediction mode over thirteen large river basins that together span the CONUS domain. One to nine month ensemble seasonal prediction products such as air temperature, precipitation, soil moisture, snowpack, total runoff, evaporation and streamflow are derived for each forcing approach. The anomalies and percentiles of the predicted products for each approach may be used for CONUS drought prediction. This system is executed at the beginning of each month and distributes its products by the 10th of each month. The prediction products are evaluated using corresponding monitoring products for the VIC model and are compared with the prediction products from other research groups (e.g., University of Washington at Seattle, NASA Goddard) in the CONUS.
NASA Technical Reports Server (NTRS)
Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.
1989-01-01
Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.
What We Learned From the Venus Surface in-situ Exploration And What Looks Promising to do Next
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Head, J. W.
2005-12-01
The in-situ study of Venus surface started on Dec 15, 1970 with the landing of the Soviet Venera 7 probe, which sent back to Earth data on the surface temperature and atmosphere pressure. Then, since 1972 till 1985 there were successful landings of the Soviet Venera 9 to 14 and Vega 1-2 probes. The Day probe, part of the US Pioneer Venus Multiprobe (1978), also sent the data from the Venus surface. Gained by these missions we have the results of gamma-spectrometry measurements of K, U, and Th contents in the surface material in five sites and the X-ray fluorescence measurements of major elements contents in three sites as well as TV panoramas of four landing sites. In addition, in some of these sites there have been measured the surface material density, bearing capacity and electro conductivity as well as albedo and color. The results of the geochemical measurements, all characterizing Venusian plains, are consistent with basaltic composition of the surface material in all seven sampled sites. Recent comparisons of the Venusian compositions with those of the extended database of terrestrial magmatic rocks from different geodynamic environments within the oceanic crust showed that except one (Venera 14) all other measurements suggest enrichment in LIL elements and differ from N-MORB compositions. The surface in the imaged landing sites was found to consist of very dark finely layered and mechanically weak rock and even darker soil. Recent joint analysis of the Veneras' and Magellan data showed that the layered rock most likely is thermally sintered airborn sediment of fine debris derived from ejecta of impact craters. This sediment, although of small thickness, seems to be widespread on the Venus surface that should be taken into account in planning new missions. The future landings have to provide more compositional knowledge on Venus surface by significantly improving the analyses accuracies and detection limits and extending sampled geologic formations beyond the already sampled plains. Determination of mineralogic composition of the surface material as well as the redox-controlling components of the atmosphere are of a key value. Seismic and other geophysical sounding of Venus interior should be also planned. Sample return mission(s) as distant but necessary step in Venus studies should be considered too.
Fountoulakis, I; Bais, A F
2015-07-01
Simulations of the monthly mean noon UV index and the effective dose for the production of vitamin D in the human skin have been performed for local noon for the latitude band 55°N-85°N using a radiative transfer model. The magnitude and spatial distribution of the changes estimated for the two quantities between the past (1955-1965 mean), the present (2010-2020 mean) and the future (2085-2095 mean) are discussed and the main drivers for these changes are identified. The irradiance simulations are based on simulations and projections of total ozone, surface reflectivity and aerosol optical depth derived from models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP-5). The cloud modification factor is also derived from the CMIP-5 models and used to account for the effects of cloudiness. Simulations have been derived for two socioeconomic scenarios: the moderate RCP 4.5 and the extreme RCP 8.5. For the future, the two quantities are projected to be generally lower than in the past and the present, mainly due to the projected super-recovery of stratospheric ozone and reduced surface reflectivity. Although the greatest changes are projected over the Arctic Ocean and do not directly affect humans, the changes over land are also important. Over land, the greatest changes are found in northern Asia, Greenland and the north-east shores of Canada and Alaska. The greatest reductions over land are projected for April under all skies, locally reaching ∼30% for the noon UV index and ∼50% for the noon effective UV dose for the production of vitamin D.
Remotely Sensed Index of Deforestation/Urbanization for use in Climate Models
NASA Technical Reports Server (NTRS)
Carlson, Toby N.
1996-01-01
The purpose of this investigation is to use a new method for deriving land surface parameters from a combination of thermal infrared and vegetation index measurements from satellites (Landsat-TM, and NOAA-AVHRR) and to integrate these parameters with more conventional data bases. We have completed an investigation of urbanization in the State College, PA area and have begun work in Chester County, PA, and Costa Rica. Our basic hypothesis is that changes in land use, including deforestation, exert a profound influence on local microclimates whose effects may greatly exceed in importance those occurring on larger scales.
NASA Technical Reports Server (NTRS)
Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, Peter S.
1991-01-01
The advective transport of atmospheric water vapor and its role in global hydrology and the water balance of continental regions are discussed and explored. The data set consists of ten years of global wind and humidity observations interpolated onto a regular grid by objective analysis. Atmospheric water vapor fluxes across the boundaries of selected continental regions are displayed graphically. The water vapor flux data are used to investigate the sources of continental precipitation. The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from surrounding areas external to the region; and (2) evaporation and transpiration from the land surface recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. In a separate, but related, study estimates of ocean to land water vapor transport are used to parameterize an existing simple climate model, containing both land and ocean surfaces, that is intended to mimic the dynamics of continental climates.
Improving the Fit of a Land-Surface Model to Data Using its Adjoint
NASA Astrophysics Data System (ADS)
Raoult, Nina; Jupp, Tim; Cox, Peter; Luke, Catherine
2016-04-01
Land-surface models (LSMs) are crucial components of the Earth System Models (ESMs) which are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. In this study, JULES is automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. We present an introduction to the adJULES system and demonstrate its ability to improve the model-data fit using eddy covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the 5 Plant Functional Types (PFTS) in JULES. The optimised PFT-specific parameters improve the performance of JULES over 90% of the FLUXNET sites used in the study. These reductions in error are shown and compared to reductions found due to site-specific optimisations. Finally, we show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.
NASA Astrophysics Data System (ADS)
Powell, R. L.; Goulden, M.; Peterson, S.; Roberts, D. A.; Still, C. J.
2015-12-01
Temperature is a primary environmental control on biological systems and processes at a range of spatial and temporal scales, from controlling biochemical processes such as photosynthesis to influencing continental-scale species distribution. The Landsat satellite series provides a long record (since the mid-1980s) of relatively high spatial resolution thermal infrared (TIR) imagery, from which we derive land surface temperature (LST) grids. Here, we investigate fine spatial resolution factors that influence Landsat-derived LST over a spectrally and spatially heterogeneous landscape. We focus on paired sites (inside/outside a 1994 fire scar) within a pinyon-juniper scrubland in Southern California. The sites have nearly identical micro-meteorology and vegetation species composition, but distinctly different vegetation abundance and structure. The tower at the unburned site includes a number of in-situ imaging tools to quantify vegetation properties, including a thermal camera on a pan-tilt mount, allowing hourly characterization of landscape component temperatures (e.g., sunlit canopy, bare soil, leaf litter). We use these in-situ measurements to assess the impact of fine-scale landscape heterogeneity on estimates of LST, including sensitivity to (i) the relative abundance of component materials, (ii) directional effects due to solar and viewing geometry, (iii) duration of sunlit exposure for each compositional type, and (iv) air temperature. To scale these properties to Landsat spatial resolution (~100-m), we characterize the sub-pixel composition of landscape components (in addition to shade) by applying spectral mixture analysis (SMA) to the Landsat Operational Land Imager (OLI) spectral bands and test the sensitivity of the relationships established with the in-situ data at this coarser scale. The effects of vegetation abundance and cover height versus other controls on satellite-derived estimates of LST will be assessed by comparing estimates at the burned vs. unburned sites across multiple seasons (~30 dates).
NASA Astrophysics Data System (ADS)
Zou, Jing; Xie, Zhenghui; Zhan, Chesheng; Qin, Peihua; Sun, Qin; Jia, Binghao; Xia, Jun
2015-05-01
In this study, we incorporated a groundwater exploitation scheme into the land surface model CLM3.5 to investigate the effects of the anthropogenic exploitation of groundwater on land surface processes in a river basin. Simulations of the Haihe River Basin in northern China were conducted for the years 1965-2000 using the model. A control simulation without exploitation and three exploitation simulations with different water demands derived from socioeconomic data related to the Basin were conducted. The results showed that groundwater exploitation for human activities resulted in increased wetting and cooling effects at the land surface and reduced groundwater storage. A lowering of the groundwater table, increased upper soil moisture, reduced 2 m air temperature, and enhanced latent heat flux were detected by the end of the simulated period, and the changes at the land surface were related linearly to the water demands. To determine the possible responses of the land surface processes in extreme cases (i.e., in which the exploitation process either continued or ceased), additional hypothetical simulations for the coming 200 years with constant climate forcing were conducted, regardless of changes in climate. The simulations revealed that the local groundwater storage on the plains could not contend with high-intensity exploitation for long if the exploitation process continues at the current rate. Changes attributable to groundwater exploitation reached extreme values and then weakened within decades with the depletion of groundwater resources and the exploitation process will therefore cease. However, if exploitation is stopped completely to allow groundwater to recover, drying and warming effects, such as increased temperature, reduced soil moisture, and reduced total runoff, would occur in the Basin within the early decades of the simulation period. The effects of exploitation will then gradually disappear, and the variables will approach the natural state and stabilize at different rates. Simulations were also conducted for cases in which exploitation either continues or ceases using future climate scenario outputs from a general circulation model. The resulting trends were almost the same as those of the simulations with constant climate forcing, despite differences in the climate data input. Therefore, a balance between slow groundwater restoration and rapid human development of the land must be achieved to maintain a sustainable water resource.
Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data
Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.
2005-01-01
The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.
The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida
NASA Technical Reports Server (NTRS)
Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo
1998-01-01
Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.
NASA Astrophysics Data System (ADS)
Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.
2010-05-01
The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.
Satellite Data Sets in the Polar Regions
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
We have generated about two decades of consistently derived geophysical parameters in the polar regions. The key parameters are sea ice concentration, surface temperature, albedo, and cloud cover statistics. Sea ice concentrations were derived from the Scanning Multichannel Microwave Radiometer (SMMR) data and the Special Scanning Cl Microwave Imager (SSM/I) data from several platforms using the enhanced Bootstrap Algorithm for the period 1978 through 1999. The new algorithm reduces the errors associated with spatial and temporal variations in the emissivity and surface temperatures of sea ice. Also, bad data at ocean/land interfaces are identified and deleted in an unsupervised manner. Surface ice temperature, albedo and cloud cover statistics are derived simultaneously from the Advanced Very High Resolution Radiometer (AVHRR) data from 1981 through 1999 and mapped at a higher resolution but the same format as the ice concentration data. The technique makes use these co-registered ice concentration maps to enable cloud masking to be done separately for open ocean, sea ice and land areas. The effect of inversion is minimized by taking into consideration the expected changes in the effect of inversion with altitude, especially in the Antarctic. A technique for ice type regional classification has also been developed using multichannel cluster analysis and a neural network. This provide a means to identify large areas of thin ice, first year ice, and older ice types. The data sets have been shown to be coherent with each other and provide a powerful tool for in depth studies of the currently changing Arctic and Antarctic environment.
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Kumar, Sujay V.; Santanello, Joseph A., Jr.; Reichle, Rolf H.
2009-01-01
The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins,". As described in Kumar et al., 2007, and demonstrated in Case et al., 2008, and Santanello et al., 2009, LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling the enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation as described in Peters-Lidard et al. (2008) and Santanello et al. (2007), who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs. LIS has also recently been demonstrated for multi-model data assimilation (Kumar et al., 2008) using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature. Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation. Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeoroogical modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems.
Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B.; Schenk, T.
2016-06-01
During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.
Jiang, L.; Liao, M.; Lin, H.; Yang, L.
2009-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.
1999-01-01
This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.
NASA Astrophysics Data System (ADS)
Hassaballah, Khalid; Mohamed, Yasir; Uhlenbrook, Stefan; Biro, Khalid
2017-10-01
Understanding the land use and land cover changes (LULCCs) and their implication on surface hydrology of the Dinder and Rahad basins (D&R, approximately 77 504 km2) is vital for the management and utilization of water resources in the basins. Although there are many studies on LULCC in the Blue Nile Basin, specific studies on LULCC in the D&R are still missing. Hence, its impact on streamflow is unknown. The objective of this paper is to understand the LULCC in the Dinder and Rahad and its implications on streamflow response using satellite data and hydrological modelling. The hydrological model has been derived by different sets of land use and land cover maps from 1972, 1986, 1998 and 2011. Catchment topography, land cover and soil maps are derived from satellite images and serve to estimate model parameters. Results of LULCC detection between 1972 and 2011 indicate a significant decrease in woodland and an increase in cropland. Woodland decreased from 42 to 14 % and from 35 to 14 % for Dinder and Rahad, respectively. Cropland increased from 14 to 47 % and from 18 to 68 % in Dinder and Rahad, respectively. The model results indicate that streamflow is affected by LULCC in both the Dinder and the Rahad rivers. The effect of LULCC on streamflow is significant during 1986 and 2011. This could be attributed to the severe drought during the mid-1980s and the recent large expansion in cropland.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.
2006-01-01
The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; Iagnemma, K. A.; Johnson, J. R.; Lanza, N.; Le Mouélic, S.; Mangold, N.; Ming, D. W.; Mehta, M.; Morris, R. V.; Newsom, H. E.; Rennó, N.; Rubin, D.; Schieber, J.; Sletten, R.; Stein, N. T.; Thuillier, F.; Vasavada, A. R.; Vizcaino, J.; Wiens, R. C.
2014-06-01
Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.
MEDOKADS - A 20 Year's Daily AVHRR Data Series for Analysis of Land Surface Properties
NASA Astrophysics Data System (ADS)
Koslowsky, D.; Billing, H.; Bolle, H.-J.
2009-04-01
To derive primary data products from raw AVHRR data, like spectral reflectances or temperatures, it is necessary to correct for sensor degradation and changing hardware specifications, to re-sample the data into a grid of equal pixel size, to perform geographical registration, cloud-screening and normalization for illumination and observation geometry. A data set which resulted from the application of these corrections is the top of the atmosphere Mediterranean Extended One-Km AVHRR Data Set (MEDOKADS) which now covers a period of 20 years. To study land surface processes, the obtained spectral data have to be combined, radiometric corrections for atmospheric effects, emissivity corrections in the case of temperature measurements have to be applied, and the variable over-flight times have to be accounted for. By application of complex evaluation schemes then higher level products are generated, like vegetation indices, surface albedo, and surface energy fluxes. The ultimate goal is to provide the users community with problem-related information. This includes the quantification of changes and the determination of trends. Methods and tools to reach this goal as well as their limitations are discussed. To validate the data, extended field measurements have been performed in which the scaling between local ground measurements and large scale satellite data play a major role. A major problem remains the application of atmospheric corrections because of the not well known variable aerosol content. The supervision of the quality of the derived information leads to the concept of anchor stations at which surface and atmospheric properties should permanently be measured.
NASA Astrophysics Data System (ADS)
Xu, Feinan; Wang, Weizhen; Wang, Jiemin; Xu, Ziwei; Qi, Yuan; Wu, Yueru
2017-08-01
The determination of area-averaged evapotranspiration (ET) at the satellite pixel scale/model grid scale over a heterogeneous land surface plays a significant role in developing and improving the parameterization schemes of the remote sensing based ET estimation models and general hydro-meteorological models. The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) flux matrix provided a unique opportunity to build an aggregation scheme for area-averaged fluxes. On the basis of the HiWATER flux matrix dataset and high-resolution land-cover map, this study focused on estimating the area-averaged ET over a heterogeneous landscape with footprint analysis and multivariate regression. The procedure is as follows. Firstly, quality control and uncertainty estimation for the data of the flux matrix, including 17 eddy-covariance (EC) sites and four groups of large-aperture scintillometers (LASs), were carefully done. Secondly, the representativeness of each EC site was quantitatively evaluated; footprint analysis was also performed for each LAS path. Thirdly, based on the high-resolution land-cover map derived from aircraft remote sensing, a flux aggregation method was established combining footprint analysis and multiple-linear regression. Then, the area-averaged sensible heat fluxes obtained from the EC flux matrix were validated by the LAS measurements. Finally, the area-averaged ET of the kernel experimental area of HiWATER was estimated. Compared with the formerly used and rather simple approaches, such as the arithmetic average and area-weighted methods, the present scheme is not only with a much better database, but also has a solid grounding in physics and mathematics in the integration of area-averaged fluxes over a heterogeneous surface. Results from this study, both instantaneous and daily ET at the satellite pixel scale, can be used for the validation of relevant remote sensing models and land surface process models. Furthermore, this work will be extended to the water balance study of the whole Heihe River basin.
Yang, Yingbao; Li, Xiaolong; Pan, Xin; Zhang, Yong; Cao, Chen
2017-01-01
Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mixed areas with three or four surface types. The correlation coefficients (CCs) between LST and the scale factors were used to assess the importance of the scale factors within a moving window. CC thresholds determined which factors participated in the fitting of the regression equation. The proposed downscaling approach, which involves an adaptive selection of the scale factors, was evaluated using the LST derived from four Landsat 8 thermal imageries of Nanjing City in different seasons. Results of the visual and quantitative analyses show that the proposed approach achieves relatively satisfactory downscaling results on 11 August, with coefficient of determination and root-mean-square error of 0.87 and 1.13 °C, respectively. Relative to other approaches, our approach shows the similar accuracy and the availability in all seasons. The best (worst) availability occurred in the region of vegetation (water). Thus, the approach is an efficient and reliable LST downscaling method. Future tasks include reliable LST downscaling in challenging regions and the application of our model in middle and low spatial resolutions. PMID:28368301
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Jakosky, B. M.
1979-01-01
The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Vasilenko, Eugene; Volkova, Elena; Kukharsky, Alexander
2017-04-01
The model of water and heat exchange between vegetation covered territory and atmosphere (LSM, Land Surface Model) for vegetation season has been developed to calculate soil water content, evapotranspiration, infiltration of water into the soil, vertical latent and sensible heat fluxes and other water and heat balances components as well as soil surface and vegetation cover temperatures and depth distributions of moisture and temperature. The LSM is suited for utilizing satellite-derived estimates of precipitation, land surface temperature and vegetation characteristics and soil surface humidity for each pixel. Vegetation and meteorological characteristics being the model parameters and input variables, correspondingly, have been estimated by ground observations and thematic processing measurement data of scanning radiometers AVHRR/NOAA, SEVIRI/Meteosat-9, -10 (MSG-2, -3) and MSU-MR/Meteor-M № 2. Values of soil surface humidity has been calculated from remote sensing data of scatterometers ASCAT/MetOp-A, -B. The case study has been carried out for the territory of part of the agricultural Central Black Earth Region of European Russia with area of 227300 km2 located in the forest-steppe zone for years 2012-2015 vegetation seasons. The main objectives of the study have been: - to built estimates of precipitation, land surface temperatures (LST) and vegetation characteristics from MSU-MR measurement data using the refined technologies (including algorithms and programs) of thematic processing satellite information matured on AVHRR and SEVIRI data. All technologies have been adapted to the area of interest; - to investigate the possibility of utilizing satellite-derived estimates of values above in the LSM including verification of obtained estimates and development of procedure of their inputting into the model. From the AVHRR data there have been built the estimates of precipitation, three types of LST: land skin temperature Tsg, air temperature at a level of vegetation cover (taken for vegetation temperature) Ta and efficient radiation temperature Ts.eff, as well as land surface emissivity E, normalized difference vegetation index NDVI, vegetation cover fraction B, and leaf area index LAI. The SEVIRI-based retrievals have included precipitation, LST Tls and Ta, E at daylight and nighttime, LAI (daily), and B. From the MSU-MR data there have been retrieved values of all the same characteristics as from the AVHRR data. The MSU-MR-based daily and monthly sums of precipitation have been calculated using the developed earlier and modified Multi Threshold Method (MTM) intended for the cloud detection and identification of its types around the clock as well as allocation of precipitation zones and determination of instantaneous maximum rainfall intensities for each pixel at that the transition from assessing rainfall intensity to estimating their daily values is a key element of the MTM. Measurement data from 3 IR MSU-MR channels (3.8, 11 i 12 μm) as well as their differences have been used in the MTM as predictors. Controlling the correctness of the MSU-MR-derived rainfall estimates has been carried out when comparing with analogous AVHRR- and SEVIRI-based retrievals and with precipitation amounts measured at the agricultural meteorological station of the study region. Probability of rainfall zones determination from the MSU-MR data, to match against the actual ones, has been 75-85% as well as for the AVHRR and SEVIRI data. The time behaviors of satellite-derived and ground-measured daily and monthly precipitation sums for vegetation season and yeaŗ correspondingly, have been in good agreement with each other although the first ones have been smoother than the latter. Discrepancies have existed for a number of local maxima for which satellite-derived precipitation estimates have been less than ground-measured values. It may be due to the different spatial scales of areal satellite-derived and point ground-based estimates. Some spatial displacement of the satellite-determined rainfall maxima and minima regarding to ground-based data can be explained by the discrepancy between the cloud location on satellite images and in reality at high angles of the satellite sightings and considerable altitudes of the cloud tops. Reliability of MSU-MR-derived rainfall estimates at each time step obtained using the MTM has been verified by comparing their values determined from the MSU-MR, AVHRR and SEVIRI measurements and distributed over the study area with similar estimates obtained by interpolation of ground observation data. The MSU-MR-derived estimates of temperatures Tsg, Ts.eff, and Ta have been obtained using computational algorithm developed on the base of the MTM and matured on AVHRR and SEVIRI data for the region under investigation. Since the apparatus MSU-MR is similar to radiometer AVHRR, the developed methods of satellite estimating Tsg, Ts.eff, and Ta from AVHRR data could be easily transferred to the MSU-MR data. Comparison of the ground-measured and MSU-MR-, AVHRR- and SEVIRI-derived LSTs has shown that the differences between all the estimates for the vast majority of observation terms have not exceed the RMSE of these quantities built from the AVHRR data. The similar conclusion has been also made from the results of building the time behavior of the MSU-MR-derived value of LAI for vegetation season. Satellite-based estimates of precipitation, LST, LAI and B have been utilized in the model with the help of specially developed procedures of replacing these values determined from observations at agricultural meteorological stations by their satellite-derived values taking into account spatial heterogeneity of their fields. Adequacy of such replacement has been confirmed by the results of comparing modeled and ground-measured values of soil moisture content W and evapotranspiration Ev. Discrepancies between the modeled and ground-measured values of W and Ev have been in the range of 10-15 and 20-25 %, correspondingly. It may be considered as acceptable result. Resulted products of the model calculations using satellite data have been spatial fields of W, Ev, vertical sensible and latent heat fluxes and other water and heat regime characteristics for the region of interest over the year 2012-2015 vegetation seasons. Thus, there has been shown the possibility of utilizing MSU-MR/Meteor-M №2 data jointly with those of other satellites in the LSM to calculate characteristics of water and heat regimes for the area under consideration. Besides the first trial estimations of the soil surface moisture from ASCAT scatterometers data for the study region have been obtained for the years 2014-2015 vegetation seasons, their comparison has been performed with the results of modeling for several agricultural meteorological stations of the region that has been carried out utilizing ground-based and satellite data, specific requirements for the obtained information have been formulated. To date, estimates of surface moisture built from ASCAT data can be used for the selection of the model soil parameter values and the initial soil moisture conditions for the vegetation season.
Radiative transfer analyses of Titan's tropical atmosphere
NASA Astrophysics Data System (ADS)
Griffith, Caitlin A.; Doose, Lyn; Tomasko, Martin G.; Penteado, Paulo F.; See, Charles
2012-04-01
Titan's optical and near-IR spectra result primarily from the scattering of sunlight by haze and its absorption by methane. With a column abundance of 92 km amagat (11 times that of Earth), Titan's atmosphere is optically thick and only ˜10% of the incident solar radiation reaches the surface, compared to 57% on Earth. Such a formidable atmosphere obstructs investigations of the moon's lower troposphere and surface, which are highly sensitive to the radiative transfer treatment of methane absorption and haze scattering. The absorption and scattering characteristics of Titan's atmosphere have been constrained by the Huygens Probe Descent Imager/Spectral Radiometer (DISR) experiment for conditions at the probe landing site (Tomasko, M.G., Bézard, B., Doose, L., Engel, S., Karkoschka, E. [2008a]. Planet. Space Sci. 56, 624-247; Tomasko, M.G. et al. [2008b]. Planet. Space Sci. 56, 669-707). Cassini's Visual and Infrared Mapping Spectrometer (VIMS) data indicate that the rest of the atmosphere (except for the polar regions) can be understood with small perturbations in the high haze structure determined at the landing site (Penteado, P.F., Griffith, C.A., Tomasko, M.G., Engel, S., See, C., Doose, L., Baines, K.H., Brown, R.H., Buratti, B.J., Clark, R., Nicholson, P., Sotin, C. [2010]. Icarus 206, 352-365). However the in situ measurements were analyzed with a doubling and adding radiative transfer calculation that differs considerably from the discrete ordinates codes used to interpret remote data from Cassini and ground-based measurements. In addition, the calibration of the VIMS data with respect to the DISR data has not yet been tested. Here, VIMS data of the probe landing site are analyzed with the DISR radiative transfer method and the faster discrete ordinates radiative transfer calculation; both models are consistent (to within 0.3%) and reproduce the scattering and absorption characteristics derived from in situ measurements. Constraints on the atmospheric opacity at wavelengths outside those measured by DISR, that is from 1.6 to 5.0 μm, are derived using clouds as diffuse reflectors in order to derive Titan's surface albedo to within a few percent error and cloud altitudes to within 5 km error. VIMS spectra of Titan at 2.6-3.2 μm indicate not only spectral features due to CH4 and CH3D (Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., Sotin, C., Drossart, P., Brown, R. [2010]. Icarus 208, 850-867), but also a fairly uniform absorption of unknown source, equivalent to the effects of a darkening of the haze to a single scattering albedo of 0.63 ± 0.05. Titan's 4.8 μm spectrum point to a haze optical depth of 0.2 at that wavelength. Cloud spectra at 2 μm indicate that the far wings of the Voigt profile extend 460 cm-1 from methane line centers. This paper releases the doubling and adding radiative transfer code developed by the DISR team, so that future studies of Titan's atmosphere and surface are consistent with the findings by the Huygens Probe. We derive the surface albedo at eight spectral regions of the 8 × 12 km2 area surrounding the Huygens landing site. Within the 0.4-1.6 μm spectral region our surface albedos match DISR measurements, indicating that DISR and VIMS measurements are consistently calibrated. These values together with albedos at longer 1.9-5.0 μm wavelengths, not sampled by DISR, resemble a dark version of the spectrum of Ganymede's icy leading hemisphere. The eight surface albedos of the landing site are consistent with, but not deterministic of, exposed water ice with dark impurities.
Carbon-Water-Energy Relations for Selected River Basins
NASA Technical Reports Server (NTRS)
Choudhury, B. J.
1998-01-01
A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.
Cooling effect of rivers on metropolitan Taipei using remote sensing.
Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen
2014-01-23
This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature.
Cooling Effect of Rivers on Metropolitan Taipei Using Remote Sensing
Chen, Yen-Chang; Tan, Chih-Hung; Wei, Chiang; Su, Zi-Wen
2014-01-01
This study applied remote sensing technology to analyze how rivers in the urban environment affect the surface temperature of their ambient areas. While surface meteorological stations can supply accurate data points in the city, remote sensing can provide such data in a two-dimensional (2-D) manner. The goal of this paper is to apply the remote sensing technique to further our understanding of the relationship between the surface temperature and rivers in urban areas. The 2-D surface temperature data was retrieved from Landsat-7 thermal infrared images, while data collected by Formosat-2 was used to categorize the land uses in the urban area. The land surface temperature distribution is simulated by a sigmoid function with nonlinear regression analysis. Combining the aforementioned data, the range of effect on the surface temperature from rivers can be derived. With the remote sensing data collected for the Taipei Metropolitan area, factors affecting the surface temperature were explored. It indicated that the effect on the developed area was less significant than on the ambient nature zone; moreover, the size of the buffer zone between the river and city, such as the wetlands or flood plain, was found to correlate with the affected distance of the river surface temperature. PMID:24464232
NASA Astrophysics Data System (ADS)
van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.
2017-12-01
The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.
NASA Astrophysics Data System (ADS)
van der Ent, Ruud; van Beek, Rens; Sutanudjaja, Edwin; Wang-Erlandsson, Lan; Hessels, Tim; Bastiaanssen, Wim; Bierkens, Marc
2017-04-01
The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. For root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.
NASA Astrophysics Data System (ADS)
Paiewonsky, Pablo; Elison Timm, Oliver
2018-03-01
In this paper, we present a simple dynamic global vegetation model whose primary intended use is auxiliary to the land-atmosphere coupling scheme of a climate model, particularly one of intermediate complexity. The model simulates and provides important ecological-only variables but also some hydrological and surface energy variables that are typically either simulated by land surface schemes or else used as boundary data input for these schemes. The model formulations and their derivations are presented here, in detail. The model includes some realistic and useful features for its level of complexity, including a photosynthetic dependency on light, full coupling of photosynthesis and transpiration through an interactive canopy resistance, and a soil organic carbon dependence for bare-soil albedo. We evaluate the model's performance by running it as part of a simple land surface scheme that is driven by reanalysis data. The evaluation against observational data includes net primary productivity, leaf area index, surface albedo, and diagnosed variables relevant for the closure of the hydrological cycle. In this setup, we find that the model gives an adequate to good simulation of basic large-scale ecological and hydrological variables. Of the variables analyzed in this paper, gross primary productivity is particularly well simulated. The results also reveal the current limitations of the model. The most significant deficiency is the excessive simulation of evapotranspiration in mid- to high northern latitudes during their winter to spring transition. The model has a relative advantage in situations that require some combination of computational efficiency, model transparency and tractability, and the simulation of the large-scale vegetation and land surface characteristics under non-present-day conditions.
Maupin, Molly A.; Senay, Gabriel B.; Kenny, Joan F.; Savoca, Mark E.
2012-01-01
Recent advances in remote-sensing technology and Simplified Surface Energy Balance (SSEB) methods can provide accurate and repeatable estimates of evapotranspiration (ET) when used with satellite observations of irrigated lands. Estimates of ET are generally considered equivalent to consumptive use (CU) because they represent the part of applied irrigation water that is evaporated, transpired, or otherwise not available for immediate reuse. The U.S. Geological Survey compared ET estimates from SSEB methods to CU data collected for 1995 using indirect methods as part of the National Water Use Information Program (NWUIP). Ten-year (2000-2009) average ET estimates from SSEB methods were derived using Moderate Resolution Imaging Spectroradiometer (MODIS) 1-kilometer satellite land surface temperature and gridded weather datasets from the Global Data Assimilation System (GDAS). County-level CU estimates for 1995 were assembled and referenced to 1-kilometer grid cells to synchronize with the SSEB ET estimates. Both datasets were seasonally and spatially weighted to represent the irrigation season (June-September) and those lands that were identified in the county as irrigated. A strong relation (R2 greater than 0.7) was determined between NWUIP CU and SSEB ET data. Regionally, the relation is stronger in arid western states than in humid eastern states, and positive and negative biases are both present at state-level comparisons. SSEB ET estimates can play a major role in monitoring and updating county-based CU estimates by providing a quick and cost-effective method to detect major year-to-year changes at county levels, as well as providing a means to disaggregate county-based ET estimates to sub-county levels. More research is needed to identify the causes for differences in state-based relations.
Comparing MODIS C6 'Deep Blue' and 'Dark Target' Aerosol Data
NASA Technical Reports Server (NTRS)
Hsu, N. C.; Sayer, A. M.; Bettenhausen, C.; Lee, J.; Levy, R. C.; Mattoo, S.; Munchak, L. A.; Kleidman, R.
2014-01-01
The MODIS Collection 6 Atmospheres product suite includes refined versions of both 'Deep Blue' (DB) and 'Dark Target' (DT) aerosol algorithms, with the DB dataset now expanded to include coverage over vegetated land surfaces. This means that, over much of the global land surface, users will have both DB and DT data to choose from. A 'merged' dataset is also provided, primarily for visualization purposes, which takes retrievals from either or both algorithms based on regional and seasonal climatologies of normalized difference vegetation index (NDVI). This poster present some comparisons of these two C6 aerosol algorithms, focusing on AOD at 550 nm derived from MODIS Aqua measurements, with each other and with Aerosol Robotic Network (AERONET) data, with the intent to facilitate user decisions about the suitability of the two datasets for their desired applications.
Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000
NASA Astrophysics Data System (ADS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2003-07-01
The NASA ER-2 aircraft was deployed to southern Africa between 13 August and 25 September 2000 as part of the Southern African Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 × 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this high-altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces and Terra analyses of cloud optical and microphysical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom. As a result of this experiment, the MODIS cloud mask was shown to distinguish clouds, cloud shadows, and fires over land ecosystems of southern Africa with a high degree of accuracy. In addition, data acquired from the ER-2 show the vertical distribution and stratification of aerosol layers over the subcontinent and make the first observations of a "blue spike" spectral emission signature associated with air heated by fire advecting over a cooler land surface.
NASA Technical Reports Server (NTRS)
Shuai, Yanmin; Masek, Jeffrey G.; Gao, Feng; Schaaf, Crystal B.; He, Tao
2014-01-01
Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth's radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-resolution sensors, many applications in heterogeneous environments can benefit from higher-resolution albedo products derived from Landsat. We previously developed a "MODIS-concurrent" approach for the 30-meter albedo estimation which relied on combining post-2000 Landsat data with MODIS Bidirectional Reflectance Distribution Function (BRDF) information. Here we present a "pre-MODIS era" approach to extend 30-m surface albedo generation in time back to the 1980s, through an a priori anisotropy Look-Up Table (LUT) built up from the high quality MCD43A BRDF estimates over representative homogenous regions. Each entry in the LUT reflects a unique combination of land cover, seasonality, terrain information, disturbance age and type, and Landsat optical spectral bands. An initial conceptual LUT was created for the Pacific Northwest (PNW) of the United States and provides BRDF shapes estimated from MODIS observations for undisturbed and disturbed surface types (including recovery trajectories of burned areas and non-fire disturbances). By accepting the assumption of a generally invariant BRDF shape for similar land surface structures as a priori information, spectral white-sky and black-sky albedos are derived through albedo-to-nadir reflectance ratios as a bridge between the Landsat and MODIS scale. A further narrow-to-broadband conversion based on radiative transfer simulations is adopted to produce broadband albedos at visible, near infrared, and shortwave regimes.We evaluate the accuracy of resultant Landsat albedo using available field measurements at forested AmeriFlux stations in the PNW region, and examine the consistency of the surface albedo generated by this approach respectively with that from the "concurrent" approach and the coincident MODIS operational surface albedo products. Using the tower measurements as reference, the derived Landsat 30-m snow-free shortwave broadband albedo yields an absolute accuracy of 0.02 with a root mean square error less than 0.016 and a bias of no more than 0.007. A further cross-comparison over individual scenes shows that the retrieved white sky shortwave albedo from the "pre-MODIS era" LUT approach is highly consistent (R(exp 2) = 0.988, the scene-averaged low RMSE = 0.009 and bias = -0.005) with that generated by the earlier "concurrent" approach. The Landsat albedo also exhibits more detailed landscape texture and a wider dynamic range of albedo values than the coincident 500-m MODIS operational products (MCD43A3), especially in the heterogeneous regions. Collectively, the "pre-MODIS" LUT and "concurrent" approaches provide a practical way to retrieve long-term Landsat albedo from the historic Landsat archives as far back as the 1980s, as well as the current Landsat-8 mission, and thus support investigations into the evolution of the albedo of terrestrial biomes at fine resolution.
Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors
NASA Astrophysics Data System (ADS)
Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.
2006-12-01
The University of Wisconsin-Madison Space Science and Engineering Center (UW-SSEC) has helped pioneer the use of high spectral resolution infrared spectrometers for application to atmospheric and surface remote sensing. This paper is focused on observations of land surface infrared emission from high spectral resolution measurements collected over the past 15 years using airborne, ground-based, and satellite platforms. The earliest data was collected by the High-resolution Interferometer Sounder (HIS), an instrument designed in the 1980s for operation on the NASA ER-2 high altitude aircraft. The HIS was replaced in the late 1990s by the Scanning-HIS instrument which has flown on the NASA ER-2, WB-57, DC-8, and Scaled Composites Proteus aircraft and continues to support field campaigns, such as those for EOS Terra, Aqua, and Aura validation. Since 1995 the UW-SSEC has fielded a ground-based Atmospheric Emitted Radiance Interferometer (AERI) in a research vehicle (the AERIBAGO) which has allowed for direct field measurements of land surface emission from a height of about 16 ft above the ground. Several ground-based and aircraft campaigns were conducted to survey the region surrounding the ARM Southern Great Plains site in north central Oklahoma. The ground- based AERIBAGO has also participated in surface emissivity campaigns in the Western U.S.. Since 2002, the NASA Atmospheric InfraRed Sounder (AIRS) has provided similar measurements from the Aqua platform in an afternoon sun-synchronous polar orbit. Ground-based and airborne observations are being used to validate the land surface products derived from the AIRS observations. These cal/val activities are in preparation for similar measurements anticipated from the operational Cross-track InfraRed Sounder (CrIS) on the NPOESS Preparatory Platform (NPP), expected to be launched in 2008. Moreover, high spectral infrared observations will soon be made by the Infrared Atmospheric Sounder Interferometer (IASI) on the European MetOp platform as well as a planned series of Chinese polar orbiting satellites. The detailed understanding of the land surface infrared emission is a crucial step in the effective utilization of these advanced sounder instruments for the extraction of atmospheric composition information (esp. water vapor vertical profile) over land, which is a key goal for numerical weather prediction data assimilation.
NASA Astrophysics Data System (ADS)
Kang, K.; Duguay, C. R.
2014-12-01
Lakes encompass a large part of the surface cover in the northern boreal and tundra areas of northern Canada and are therefore a significant component of the terrestrial hydrological system. To understand the hydrologic cycle over subarctic and arctic landscapes, estimating surface parameters such as surface net radiation, soil moisture, and surface albedo is important. Although ground-based field measurements provide a good temporal resolution, these data provide a limited spatial representation and are often restricted to the summer period (from June to August), and few surface-based stations are located in high-latitude regions. In this respect, spaceborne remote sensing provides the means to monitor surface hydrology and to estimate components of the surface energy balance with reasonable spatial and temporal resolutions required for hydrological investigations, as well as for providing more spatially representative lake-relevant information than available from in situ measurements. The primary objective of this study is to quantify the sources of temporal and spatial variability in surface albedo over subarctic wetland from satellite derived albedo measurements in the Hudson Bay Lowlands near Churchill, Manitoba. The spatial variability in albedo within each land-cover type is investigated through optical satellite imagery from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic Mapper Plus, and Landsat-8 Operational Land Imager obtained in different seasons from spring into fall (April and October) over a 30-year period (1984-2013). These data allowed for an examination of the spatial variability of surface albedo under relatively dry and wet summer conditions (i.e. 1984, 1998 versus 1991, 2005). A detailed analysis of Landsat-derived surface albedo (ranging from 0.09 to 0.15) conducted in the Churchill region for August is inversely related to surface water fraction calculated from Landsat images. Preliminary analysis of surface albedo observed between July and August are 0.10 to 0.15, and vary due to differences in meteorological parameters such as rainfall, surface moisture and surface air temperature. Overall, spaceborne optical data are an invaluable source for investigating changes and variability in surface albedo in relation to surface hydrology over subarctic regions.
Effects of spatial resolution and landscape structure on land cover characterization
NASA Astrophysics Data System (ADS)
Yang, Wenli
This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: (1) the upscaling of Normalized Difference Vegetation Index (NDVI); (2) the effects of spatial scale on indices of landscape structure; (3) the representation of land cover databases at different spatial scales; and (4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI. Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods.
NASA Astrophysics Data System (ADS)
Spennemann, P. C.; Salvia, M.; Ruscica, R. C.; Sörensson, A. A.; Grings, F.; Karszenbaum, H.
2018-02-01
In regions of strong Land-Atmosphere (L-A) interaction, soil moisture (SM) conditions can impact the atmosphere through modulating the land surface fluxes. The importance of the identification of L-A interaction regions lies in the potential improvement of the weather/seasonal forecast and the better understanding of the physical mechanisms involved. This study aims to compare the terrestrial segment of the L-A interaction from satellite products and climate models, motivated by previous modeling studies pointing out southeastern South America (SESA) as a L-A hotspot during austral summer. In addition, the L-A interaction under dry or wet anomalous conditions over SESA is analyzed. To identify L-A hotspots the AMSRE-LPRM SM and MODIS land surface temperature products; coupled climate models and uncoupled land surface models were used. SESA highlights as a strong L-A interaction hotspot when employing different metrics, temporal scales and independent datasets, showing consistency between models and satellite estimations. Both AMSRE-LPRM bands (X and C) are consistent showing a strong L-A interaction hotspot over the Pampas ecoregion. Intensification and a larger spatial extent of the L-A interaction for dry summers was observed in both satellite products and models compared to wet summers. These results, which were derived from measured physical variables, are encouraging and promising for future studies analyzing L-A interactions. L-A interaction analysis is proposed here as a meeting point between remote sensing and climate modelling communities of Argentina, within a region with the highest agricultural and livestock production of the continent, but with an important lack of in-situ SM observations.
Coordinates of anthropogenic features on the Moon
NASA Astrophysics Data System (ADS)
Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E.
2017-02-01
High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates (<12 m) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.
NASA Technical Reports Server (NTRS)
Gossmann, H.; Haberaecker, P. (Principal Investigator)
1980-01-01
The southwestern part of Central Europe between Basal and Frankfurt was used in a study to determine the accuracy with which a regionally bounded HCMM scene could be rectified with respect to a preassigned coordinate system. The scale to which excerpts from HCMM data can be sensibly enlarged and the question of how large natural structures must be in order to be identified in a satellite thermal image with the given resolution were also examined. Relief and forest and population distribution maps and a land use map derived from LANDSAT data were digitalized and adapted to a common reference system and then combined in a single multichannel data system. The control points for geometrical rectification were determined using the coordinates of the reference system. The multichannel scene was evaluated in several different manners such as the correlation of surface temperature and relief, surface temperature and land use, or surface temperature and built up areas.
Coordinates of Anthropogenic Features on the Moon
NASA Technical Reports Server (NTRS)
Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer , E. J.; Mazarico, E.
2016-01-01
High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates ( less than 12 meters) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.
NASA Astrophysics Data System (ADS)
Sütterlin, M.; Stöckli, R.; Schaaf, C. B.; Wunderle, S.
2016-07-01
Satellite-based, long-term records of surface albedo characterization that accurately capture spatial and temporal patterns are essential to develop climate models and to monitor the impact of land use changes on the terrestrial energy and water balance. This study presents the first Bidirectional Reflectance Distribution Function (BRDF) and albedo data set derived from the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage reflectance data acquired on board National Oceanic and Atmospheric Administration and Meteorological Operational platforms from 1990 to 2014 over Europe. The objectives of this paper are to describe the data set's surface albedo climatology and anomalies in the visible, near-infrared, and shortwave broadbands for the growing season months of May to September in order to facilitate utilization of the data by the climate modeling communities. The results demonstrate that the AVHRR BRDF and albedo data have temporal and spatial patterns that are appropriate for the underlying predominant land cover type and accurately reflect the associated climate variation. Visible and near-infrared broadband albedo anomalies are found to be contrasting in most years, and their spatial distributions depict responses of vegetation to climate events (e.g., heat waves). Visible albedo of crops and near-infrared albedo of pastures show a higher interannual variation than respective albedos of other snow-free land covers, while the interannual standard deviations are found to be lower than 0.015. Our findings indicate the importance of taking into account the spectrally distinct variability of surface albedo when analyzing its complex spatiotemporal dynamics in climate-related research.
TEAM - Titan Exploration Atmospheric Microprobes
NASA Astrophysics Data System (ADS)
Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald
2016-10-01
The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.
Geospatiotemporal data mining in an early warning system for forest threats in the United States
F.M. Hoffman; R.T. Mills; J. Kumar; S.S. Vulli; W.W. Hargrove
2010-01-01
We investigate the potential of geospatiotemporal data mining of multi-year land surface phenology data (250 m Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) in this study) for the conterminous United States as part of an early warning system to identify threats to forest ecosystems. Cluster...
Richard Trans Mills; Forrest M Hoffman; Jitendra Kumar; William W. Hargrove
2011-01-01
We investigate methods for geospatiotemporal data mining of multi-year land surface phenology data (250 m2 Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectrometer (MODIS) in this study) for the conterminous United States (CONUS) as part of an early warning system for detecting threats to forest ecosystems. The...
Ghana watershed prototype products
,
2007-01-01
A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.
NASA Technical Reports Server (NTRS)
Staub, B.; Rosenzweig, C.; Rind, D.
1987-01-01
The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in.
NASA Astrophysics Data System (ADS)
Riedel, S.; Gege, P.; Schneider, M.; Pfug, B.; Oppelt, N.
2016-08-01
Atmospheric correction is a critical step and can be a limiting factor in the extraction of aquatic ecosystem parameters from remote sensing data of coastal and lake waters. Atmospheric correction models commonly in use for open ocean water and land surfaces can lead to large errors when applied to hyperspectral images taken from satellite or aircraft. The main problems arise from uncertainties in aerosol parameters and neglecting the adjacency effect, which originates from multiple scattering of upwelling radiance from the surrounding land. To better understand the challenges for developing an atmospheric correction model suitable for lakes, we compare atmospheric parameters derived from Sentinel- 2A and airborne hyperspectral data (HySpex) of two Bavarian lakes (Klostersee, Lake Starnberg) with in-situ measurements performed with RAMSES and Ibsen spectrometer systems and a Microtops sun photometer.
Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations
NASA Technical Reports Server (NTRS)
Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske
2003-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
NASA Astrophysics Data System (ADS)
Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego
2015-04-01
Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna, woody savanna, needleleaf forest, deciduous forest and mixed forest) are evaluated at the tower-scale in 24 pre-selected study regions on three continents (Europe, North America, and Australia). References: Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17, 3707-3720. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.
Georgescu, M.; Miguez-Macho, G.; Steyaert, L.T.; Weaver, C.P.
2009-01-01
This paper is part 1 of a two-part study that evaluates the climatic effects of recent landscape change for one of the nation's most rapidly expanding metropolitan complexes, the Greater Phoenix, Arizona, region. The region's landscape evolution over an approximate 30-year period since the early 1970s is documented on the basis of analyses of Landsat images and land use/land cover (LULC) data sets derived from aerial photography (1973) and Landsat (1992 and 2001). High-resolution, Regional Atmospheric Modeling System (RAMS), simulations (2-km grid spacing) are used in conjunction with consistently defined land cover data sets and associated biophysical parameters for the circa 1973, circa 1992, and circa 2001 time periods to quantify the impacts of intensive land use changes on the July surface temperatures and the surface radiation and energy budgets for the Greater Phoenix region. The main findings are as follows: since the early 1970s the region's landscape has been altered by a significant increase in urban/suburban land area, primarily at the expense of decreasing plots of irrigated agriculture and secondarily by the conversion of seminatural shrubland. Mean regional temperatures for the circa 2001 landscape were 0.12??C warmer than the circa 1973 landscape, with maximum temperature differences, located over regions of greatest urbanization, in excess of 1??C. The significant reduction in irrigated agriculture, for the circa 2001 relative to the circa 1973 landscape, resulted in dew point temperature decreases in excess of 1??C. The effect of distinct land use conversion themes (e.g., conversion from irrigated agriculture to urban land) was also examined to evaluate how the most important conversion themes have each contributed to the region's changing climate. The two urbanization themes studied (from an initial landscape of irrigated agriculture and seminatural shrubland) have the greatest positive effect on near-surface temperature, increasing maximum daily temperatures by 1??C. Overall, sensible heat flux differences between the circa 2001 and circa 1973 landscapes result in a 1 W m-2 increase in domain-wide sensible heating, and a similar order of magnitude decrease in latent heating, highlighting the importance of surface repartitioning in establishing near-surface temperature trends. In part 2 of this study, we address the role of the surface budget changes on the mesoscale dynamics/thermodynamics, in context of the large-scale environment. Copyright 2009 by the American Geophysical Union.
Global trends in visibility: Implications for dust sources
Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.
2007-01-01
There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. We did this by looking at time series of visibility derived variables and their correlations with precipitation, drought, winds, land use and grazing. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 357 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility-derived variables and AERONET optical depths indicate a moderate correlation (0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility-derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the Palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility-derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with VIS5 or EXT, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974-2003.
Estimation of Land Surface Energy Balance Using Satellite Data of Spatial Reduced Resolution
NASA Astrophysics Data System (ADS)
Vintila, Ruxandra; Radnea, Cristina; Savin, Elena; Poenaru, Violeta
2010-12-01
The paper presents preliminary results concerning the monitoring at national level of several geo-biophysical variables retrieved by remote sensing, in particular those related to drought or aridisation. The study, which is in progress, represents also an exercise for to the implementation of a Land Monitoring Core Service for Romania, according to the Kopernikus Program and in compliance with the INSPIRE Directive. The SEBS model has been used to retrieve land surface energy balance variables, such as turbulent heat fluxes, evaporative fraction and daily evaporation, based on three information types: (1) surface albedo, emissivity, temperature, fraction of vegetation cover (fCover), leaf area index (LAI) and vegetation height; (2) air pressure, temperature, humidity and wind speed at the planetary boundary layer (PBL) height; (3) downward solar radiation and downward longwave radiation. AATSR and MERIS archived reprocessed images have provided several types of information. Thus, surface albedo, emissivity, and land surface temperature have been retrieved from AATSR, while LAI and fCover have been estimated from MERIS. The vegetation height has been derived from CORINE Land Cover and PELCOM Land Use databases, while the meteorological information at the height of PBL have been estimated from the measurements provided by the national weather station network. Other sources of data used during this study have been the GETASSE30 digital elevation model with 30" spatial resolution, used for satellite image orthorectification, and the SIGSTAR-200 geographical information system of soil resources of Romania, used for water deficit characterisation. The study will continue by processing other AATSR and MERIS archived images, complemented by the validation of SEBS results with ground data collected on the most important biomes for Romania at various phenological stages, and the transformation of evaporation / evapotranspiration into a drought index using the soil texture data. It is also foreseen to develop procedures for processing near-real time AATSR and MERIS images from the rolling archives, as well as procedures for dealing with SENTINEL 3 images in the future, for timely delivery of reliable information to authorities and planning for drought to reduce its effects on citizens.
Mark D. Nelson; Ronald E. McRoberts; Veronica C. Lessard
2005-01-01
Our objective was to test one application of remote sensing technology for complementing forest resource assessments by comparing a variety of existing satellite image-derived land cover maps with national inventory-derived estimates of United States forest land area. National Resources Inventory (NRI) 1997 estimates of non-Federal forest land area differed by 7.5...
Remote Sensing of Smoke, Land and Clouds from the NASA ER-2 during SAFARI 2000
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Moeller, Christopher C.; Revercomb, Henry E.; Chu, D. Allen
2002-01-01
The NASA ER-2 aircraft was deployed to southern Africa between August 17 and September 25, 2000 as part of the Southern Africa Regional Science Initiative (SAFARI) 2000. This aircraft carried a sophisticated array of multispectral scanners, multiangle spectroradiometers, a monostatic lidar, a gas correlation radiometer, upward and downward spectral flux radiometers, and two metric mapping cameras. These observations were obtained over a 3200 x 2800 km region of savanna, woody savanna, open shrubland, and grassland ecosystems throughout southern Africa, and were quite often coordinated with overflights by NASA's Terra and Landsat 7 satellites. The primary purpose of this sophisticated high altitude observing platform was to obtain independent observations of smoke, clouds, and land surfaces that could be used to check the validity of various remote sensing measurements derived by Earth-orbiting satellites. These include such things as the accuracy of the Moderate Resolution Imaging Spectro-radiometer (MODIS) cloud mask for distinguishing clouds and heavy aerosol from land and ocean surfaces, and Terra analyses of cloud optical and micro-physical properties, aerosol properties, leaf area index, vegetation index, fire occurrence, carbon monoxide, and surface radiation budget. In addition to coordination with Terra and Landsat 7 satellites, numerous flights were conducted over surface AERONET sites, flux towers in South Africa, Botswana, and Zambia, and in situ aircraft from the University of Washington, South Africa, and the United Kingdom.
A global, 30-m resolution land-surface water body dataset for 2000
NASA Astrophysics Data System (ADS)
Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.
2014-12-01
Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).
Integrated remote sensing for multi-temporal analysis of urban land cover-climate interactions
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.
2016-08-01
Climate change is considered to be the biggest environmental threat in the future in the South- Eastern part of Europe. In frame of predicted global warming, urban climate is an important issue in scientific research. Surface energy processes have an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. This paper investigated the influences of urban growth on thermal environment in relationship with other biophysical variables in Bucharest metropolitan area of Romania. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- climate interactions over period between 2000 and 2015 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, and urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.
NASA Astrophysics Data System (ADS)
Yi, H.; Gao, X.; Sorooshian, S.
2002-05-01
As one aspect of the study of interactions between the atmosphere, vegetation, soil, and hydrology, there has been on going efforts to assimilate soil moisture data using coupled and uncoupled land surface-atmosphere hydrology models. The assimilation of soil moisture is expected to have influence due to its vital function in regulating runoff, partitioning latent and sensible heat, and through determining groundwater recharge. Soil moisture can provides long-term memory or persistence of the surface boundary condition, influencing large-scale atmospheric circulation over subsequent intervals. Now that the application of satellite remote sensing has become obvious to provide input parameters associated with land surface processes to the numerical models, this study utilizes remotely sensed precipitation data, PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) to assimilate soil moisture and other soil surface characteristics. Compared to the other earlier modeling experiments of seasonal or interannual temporal scale in continental or global spatial scale, this study investigates short term predictability in regional scale with the southwest United States as a study area, which has unique metrological and geographical features that provide special difficulties for mesoscale modeling. Research objectives are to assimilate the PERSIANN precipitation data into the mesoscale model for model initialization, examine the influence and memory of model precipitation errors on the land surface and atmospheric processes, and thereby study the short term predictability of meteorology and hydrology in the Southwest United States.
NASA Astrophysics Data System (ADS)
AllahTavakoli, Y.; Safari, A.; Ardalan, A.; Bahroudi, A.
2015-12-01
The current research provides a method for tracking near-surface mass-density anomalies via using only land-based gravity data, which is based on a special version of Poisson's Partial Differential Equation (PDE) of the gravitational field at Earth's surface. The research demonstrates how the Poisson's PDE can provide us with a capability to extract the near-surface mass-density anomalies from land-based gravity data. Herein, this version of the Poisson's PDE is mathematically introduced to the Earth's surface and then it is used to develop the new method for approximating the mass-density via derivatives of the Earth's gravitational field (i.e. via the gradient tensor). Herein, the author believes that the PDE can give us new knowledge about the behavior of the Earth's gravitational field at the Earth's surface which can be so useful for developing new methods of Earth's mass-density determination. In a case study, the proposed method is applied to a set of gravity stations located in the south of Iran. The results were numerically validated via certain knowledge about the geological structures in the area of the case study. Also, the method was compared with two standard methods of mass-density determination. All the numerical experiments show that the proposed approach is well-suited for tracking near-surface mass-density anomalies via using only the gravity data. Finally, the approach is also applied to some petroleum exploration studies of salt diapirs in the south of Iran.
Caruso, Geoffrey; Cavailhès, Jean; Peeters, Dominique; Thomas, Isabelle; Frankhauser, Pierre; Vuidel, Gilles
2015-01-01
This paper describes a dataset of 6284 land transactions prices and plot surfaces in 3 medium-sized cities in France (Besançon, Dijon and Brest). The dataset includes road accessibility as obtained from a minimization algorithm, and the amount of green space available to households in the neighborhood of the transactions, as evaluated from a land cover dataset. Further to the data presentation, the paper describes how these variables can be used to estimate the non-observable parameters of a residential choice function explicitly derived from a microeconomic model. The estimates are used by Caruso et al. (2015) to run a calibrated microeconomic urban growth simulation model where households are assumed to trade-off accessibility and local green space amenities. PMID:26958606
Land cover characterization and land surface parameterization research
Steyaert, Louis T.; Loveland, Thomas R.; Parton, William J.
1997-01-01
The understanding of land surface processes and their parameterization in atmospheric, hydrologic, and ecosystem models has been a dominant research theme over the past decade. For example, many studies have demonstrated the key role of land cover characteristics as controlling factors in determining land surface processes, such as the exchange of water, energy, carbon, and trace gases between the land surface and the lower atmosphere. The requirements for multiresolution land cover characteristics data to support coupled-systems modeling have also been well documented, including the need for data on land cover type, land use, and many seasonally variable land cover characteristics, such as albedo, leaf area index, canopy conductance, surface roughness, and net primary productivity. Recently, the developers of land data have worked more closely with the land surface process modelers in these efforts.
NASA Astrophysics Data System (ADS)
Zhong, L.; Ma, Y.
2017-12-01
Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation methodology.
NASA Astrophysics Data System (ADS)
Dietrich, P.; Kretschmer, F.; Vienken, T.; Popp, S.
2009-04-01
For economical and feasible seismic exploration of the near-surface ground, an approach has been developed for the joint application of reflection and refraction seismics as well as multi-channel analysis of surface waves (MASW). The measuring concept was tested within the research project COMEXTECH, dealing with the exploration of construction ground. Besides the overall characterization of the subsurface by refraction and reflection seismics, the MASW can be used for the derivation of relevant soil parameters such as soil stiffness. The centre of the measuring concept represents a land streamer, pulled by a vehicle equipped with the seismic source. The 24-channel land streamer may be tipped with different geophones, according to the focus of investigation. We used three fully equipped land streamers with 72 channels at all at the test site Nauen close to Berlin, Germany. The first 24 positions of the land streamer nearby the seismic source were filled with 4.5 Hz geophones. The next two land streamers were tipped with 14 Hz geophones, respectively. The idea behind this arrangement is that the positions close to the shot point, which are not utilisable for reflection seismics, can be used for the interpretation of surface waves. The signal was given with an accelerated weight drop mounted on a cross-country vehicle. Shots were arranged every meter, and four shots per shot point were executed for an increased signal/noise ratio. Three registration units (GeodeTM by Geometrics) were connected in series for signal recording. At the site, a profile of 164 m length was investigated in bidirectional manner in combination with geotechnical exploration technique. The purpose of bidirectional recording is to check the reliability and sensitivity of the seismic array and to increase the resolution of the image of the subsurface. By using the same shot points forth and back, a multiple overlap rate for certain common depth points (CDP) can be achieved, which is thought to result in an increased data quality. Geotechnical investigations comprise the use of Cone Penetrating Tests (CPT) for characterization of properties of the subsurface. Thereby the lithology may be derived by means of the friction ratio, which represents the ratio of the in-situ determined parameters of sleeve friction and cone resistance during CPT soundings. First results of data processing are available for the interpolated shear wave velocities (Vs) of the analysis of the Rayleigh-type surface waves on a multichannel record (MASW) by using the program SURFSEIS. The velocities are more or less laterally layered with zones of lower velocities (<180 m/s) in the upper subsurface and in about 5 m depth at the southern part of the profile. The strong increase of shear-wave velocities in 10 m depth and below (>250 m/s) is supposed to correspondent to a glacial moraine underlying the sandy sediments. The characterization of the near-surface ground by MASW corresponds well with the results of the nearby CPT soundings. By comparing the MASW results of the forward and backward recording of the profile, however, it turns out that the methodical approach of bidirectional seismic measurements still needs some tests. The produced 2-D Vs profiles show some marginal differences in the Vs-distribution in detail. Processing of seismic refraction and reflection data are in progress yet. In summery, the land streamer has the real advantage of fast data recording with a variable geophone array for different applications. The slight loss in quality of seismic data does not limit the use of the land streamer even on arable land. If carefully performed, geophones fitted on the land streamer still record data in an adequate quality for a feasible characterization of the subsurface, as shown in our study. Especially along long profiles the employment of a land streamer outplays stuck geophones by the fast progress in data recording due to the pulled array of geophones in a fixed geometry.
The Impact of Temporal Aggregation of Land Surface Temperature Data for Urban Heat Island Monitoring
NASA Astrophysics Data System (ADS)
Hu, L.; Brunsell, N. A.
2012-12-01
Temporally composited remote sensing products are widely used in monitoring the urban heat island (UHI). In order to quantify the impact of temporal aggregation for assessing the UHI, we examined MODIS land surface temperature (LST) products for 11 years focusing on Houston, Texas and its surroundings. By using the daily LST from 2000 to 2010, the urban and rural daily LST were presented for the 8-day period and annual comparisons for both day and night. Statistics based on the rural-urban LST differences show that the 8-day composite mean UHI effects are generally more intensive than that calculated by daily UHI images. Moreover, the seasonal pattern shows that the summer daytime UHI has the largest magnitude and variation while nighttime UHI magnitudes are much smaller and less variable. Regression analyses enhance the results showing an apparently higher UHI derived from 8-day composite dataset. The summer mean UHI maps were compared, indicating a land cover related pattern. We introduced yearly MODIS land cover type product to explore the spatial differences caused by temporal aggression of LST product. The mean bias caused by land cover types are calculated about 0.5 ~ 0.7K during the daytime, and less than 0.1K at night. The potential causes of the higher UHI are discussed. The analysis shows that the land-atmosphere interactions, which result in the regional cloud formation, are the primary reason.
SMOS after 2 YEARS and a half in orbit
NASA Astrophysics Data System (ADS)
Kerr, Y.; Richaume, P.; Wigneron, J.-P.; Waldteufel, P.; Mecklenburg, S.; Cabot, F.; Boutin, J.; Font, J.; Reul, N.
2012-04-01
The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3) and ocean salinity. These two geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches in particular in improving models forecasts. The purpose of this communication is to present the mission results after more than two years in orbit as well as some outstanding results already obtained. A special attention will be devoted to level 2 products. Modeling multi-angular brightness temperatures is not straightforward. The radiative model transfer model L-MEB (L-band Microwave Emission) is used over land while different models with different approaches as to the modeling of sea surface roughness are used over ocean surfaces. Over land the approach is based on semi-empirical relationships, adapted to different type of surface. The model computes a dielectric constant leading to surface emissivity. Surface features (roughness, vegetation) are also considered in the models. However, considering SMOS spatial resolution a wide area is seen by the instrument with strong heterogeneity. The L2 soil moisture retrieval scheme takes this into account. Brightness temperatures are computed for every classes composing a working area. A weighted function is applied for the incidence angle and the antenna beam. Once the brightness temperature is computed for the entire working area, the minimizing process starts. If no soil moisture is derived (not attempted or process failed) a dielectric constant is still derived from an simplified modeled (the cardioid model). SMOS data enabled very quickly to infer Sea surface salinity fields. As salinity retrieval is quite challenging, retrieving it enable to assess very finely the characteristics of the complete system in terms of stability, drift etc. Some anomalies such as the ascending descending temperature differences, temporal drifts or land sea contamination were used to infer issues and improve data quality. The modeling has to account for several perturbing factors 'galactic reflection, sea state, atmospheric path and Faraday rotation etc…as the useful signal is quite small when compared to the perturbing factors impact as well as the instrument sensitivity. Over sea ice several studies showed that it was possible to infer thin ice (first year ice, 50 cm or less) from SMOS measurements. Other studies focused on the Antarctic plateau with also very interesting new results. This presentation will show in detail the SMOS in flight results. The retrieval schemes have been developed to reach science requirements, that is to derive the surface soil moisture over continental surface with an accuracy better than 0,04m3/m3. Over the ocean the goals are not yet satisfied but results are already getting close to the requirements.
Surface water change as a significant contributor to global evapotranspiration change
NASA Astrophysics Data System (ADS)
Zhan, S.; Song, C.
2017-12-01
Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in global ET trend studies and should also be included in global water budget studies.
NASA Astrophysics Data System (ADS)
Caliskan, S.; de Beurs, K.
2010-12-01
Direct human impacts on the land surface are especially pronounced in agricultural regions that cover a substantial portion of the global land surface: 12% of the terrestrial surface is under active agricultural management. Crops display phenologies distinct from natural vegetation; the growing seasons are often shifted in time, crop establishment is generally fast and the vegetation is rapidly removed at harvest. Previously we have demonstrated that agricultural land abandonment alters land surface phenology sufficiently to be detectable from a time series of coarse resolution imagery. With land surface phenology models based on accumulated growing degree-days (AGDD) and AVHRR NDVI, we demonstrated that abandoned croplands covered with native grasses and weeds typically greened-up and peaked sooner than active croplands. Here we present an expansion of these analyses for the MODIS time period with the ultimate goal to map agricultural abandonment and expansion in European Russia from 2000 to 2010. We used the 8-day, 1km L3 Land Surface Temperature data (MOD11A2) to generate the accumulated growing degree days and the 16-day L3 Nadir BRDF-Adjusted reflectance data at 500m resolution (MCD43A4) to calculate NDVI. We calculated phenological metrics based on three methods: 1) Double-logistic models such as those applied to produce the standard MODIS phenology product (MOD12Q2); 2) A combination of NDII and NDVI; this method has been shown to provide start/end of season measurement closest to field observations in snowy areas; and 3) A quadratic model linking accumulated growing degree days and vegetation indices which we successfully applied in agricultural areas of Kazakhstan and semi-arid Africa. We selected Landsat imagery for two vastly different regions in Russia and present a Landsat-guided probabilistic detection of abandoned and active croplands for all available years of the MODIS image time series (2000-2010). For each region, we selected at least two images during the growing season and calculated the following indices: Normalized Difference Vegetation Index (NDVI), Tasseled Cap indices (Brightness, Greenness, Wetness), as well as the first three principal components for each image. We used the selected images to distinguish between the basic classes of agriculture, water, forest and urban areas, with the primary goal to separate between agricultural and non-agricultural regions. We compared class membership with ancillary regional agricultural statistics and targeted field observations collected in the summer of 2010. In the last part, we linked the Landsat based agricultural estimates and the MODIS phenological measurements using logistic regression and compared the agricultural maps with globally available land cover classifications.
Detection of heat wave using Kalpana-1 VHRR land surface temperature product over India
NASA Astrophysics Data System (ADS)
Shah, Dhiraj; Pandya, Mehul R.; Pathak, Vishal N.; Darji, Nikunj P.; Trivedi, Himanshu J.
2016-05-01
Heat Waves can have notable impacts on human mortality, ecosystem, economics and energy supply. The effect of heat wave is much more intense during summer than the other seasons. During the period of April to June, spells of very hot weather occur over certain regions of India and global warming scenario may result in further increases of such temperature anomalies and corresponding heat waves conditions. In this paper, satellite observations have been used to detect the heat wave conditions prevailing over India for the period of May-June 2015. The Kalpana-1 VHRR derived land surface temperature (LST) products have been used in the analysis to detect the heat wave affected regions over India. Results from the analysis shows the detection of heat wave affected pixels over Indian land mass. It can be seen that during the study period the parts of the west India, Indo-gangetic plane, Telangana and part of Vidarbh was under severe heat wave conditions which is also confirmed with Automatic Weather Station (AWS) air temperature observations.
NASA Astrophysics Data System (ADS)
Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena; Uspensky, Sergey
2014-05-01
At present physical-mathematical modeling processes of water and heat exchange between vegetation covered land surfaces and atmosphere is the most appropriate method to describe peculiarities of water and heat regime formation for large territories. The developed model of such processes (Land Surface Model, LSM) is intended for calculation evaporation, transpiration by vegetation, soil water content and other water and heat regime characteristics, as well as distributions of the soil temperature and humidity in depth utilizing remote sensing data from satellites on land surface and meteorological conditions. The model parameters and input variables are the soil and vegetation characteristics and the meteorological characteristics, correspondingly. Their values have been determined from ground-based observations or satellite-based measurements by radiometers AVHRR/NOAA, MODIS/EOS Terra and Aqua, SEVIRI/Meteosat-9, -10. The case study has been carried out for the part of the agricultural Central Black Earth region with coordinates 49.5 deg. - 54 deg. N, 31 deg. - 43 deg. E and a total area of 227,300 km2 located in the steppe-forest zone of the European Russia for years 2009-2012 vegetation seasons. From AVHRR data there have been derived the estimates of three types of land surface temperature (LST): land surface skin temperature Tsg, air-foliage temperature Ta and efficient radiation temperature Ts.eff, emissivity E, normalized vegetation index NDVI, vegetation cover fraction B, leaf area index LAI, cloudiness and precipitation. From MODIS data the estimates of LST Tls, E, NDVI and LAI have been obtained. The SEVIRI data have been used to build the estimates of Tls, Ta, E, LAI and precipitation. Previously developed method and technology of above AVHRR-derived estimates have been improved and adapted to the study area. To check the reliability of the Ts.eff and Ta estimations for named seasons the error statistics of their definitions has been analyzed through comparison with data of observations at agricultural meteorological stations of the study region. The mentioned MODIS-based remote sensing products for the same vegetation seasons have been built using data downloaded from the website LP DAAC (NASA). Reliability of the MODIS-derived Tls estimates have been confirmed by results of comparison with similar estimates from synchronous AVHRR, SEVIRI and ground-based data. To retrieve Tls and E from SEVIRI data at daylight and nighttime there have been developed the method and technology of thematic processing these data in IR channels NN 9, 10 (10.8 and 12.0 nm) at three successive times under cloud-free conditions without using exact values of E. This technology has been also adapted to the study area. Analysis of reliability of Tls estimation have been carried out through comparing with synchronous SEVIRI-derived Tls estimates obtained at Land Surface Analysis Satellite Applications Facility (LSA SAF, Lisbon, Portugal) and MODIS-derived Tls estimates. When the first comparison daily - or monthly-averaged values of RMS deviation have not been exceeded 2 deg. C for various dates and months during years 2009-2012 vegetation seasons. RMS deviation of Tls(SEVIRI) from Tls(MODIS) has been in the range of 1.0-3.0 deg. C. The method and technology have been also developed and tested to define Ta values from SEVIRI data at daylight and nighttime. This method is based on using satellite-derived estimates of Tls and regression relationship between Tls and ground-measured values of Ta. Comparison of satellite-based Ta estimates with data of synchronous standard term ground-based observations at the network of meteorological stations of the study area for summer periods of 2009-2012 has given RMS deviation values in the range of 1.8-3.0 deg. C. Formed archive of satellite products has been also supplemented with array of LAI estimates retrieved from SEVIRI data at LSA SAF for the study area and growing seasons 2011-2012. The possibility is shown to use the developed Multi Threshold Method (MTM) for generating the AVHRR- and SEVIRI-based estimates of daily and monthly precipitation amounts for the region of interest The MTM provides the cloud detection and identification of cloud types, estimation of the maximum liquid water content and cloud layer water content, allocation of precipitation zones and determination of instantaneous maximum of precipitation intensities in the pixel range around the clock throughout the year independently of the land surface type. In developing procedures of utilizing satellite estimates of precipitation during the vegetation season in the model there have been built up algorithms and programs of transition from estimating the rainfall intensity to assessment of their daily values. The comparison of the daily, monthly and seasonal AVHRR- and SEVIRI-derived precipitation sums with similar values retrieved from network ground-based observations using weighting interpolation procedure have been carried out. Agreement of all three evaluations is satisfactory. To assimilate remote sensing products into the model the special techniques have been developed including: 1) replacement of ground-measured model parameters LAI and B by their satellite-derived estimates. The possibility of such replacement has been confirmed through various comparisons of: a) LAI behavior for ground- and satellite-derived values; b) modeled values of Ts and Tf , satellite-based estimates of Ts.eff, Tls and Ta and ground-based measurements of LST; c) modeled and measured values of soil water content W and evapotranspiration Ev; 2) utilization of satellite-derived values of LSTs Ts.eff, Tls and Ta, and estimates of precipitation as the input model variables instead of the respective ground-measured temperatures and rainfall when assessing the accuracy of soil water content, evapotranspiration and soil temperature calculations; 3) accounting for the spatial variability of satellite-based LAI, B, LST and precipitation estimates by entering their area-distributed values into the model. For years 2009-2012 vegetation seasons there have been calculated the characteristics of the water and heat regimes of the region under investigation utilizing satellite estimates of vegetation characteristics, LST and precipitation in the model. The calculation results have shown that the discrepancies of evapotranspiration and soil water content values are within acceptable limits.
Intensification of North American Megadroughts through Surface and Dust Aerosol Forcing
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Seager, Richard; Miller, Ron L.; Mason, Joseph A
2013-01-01
Tree-ring-based reconstructions of the Palmer drought severity index (PDSI) indicate that, during the Medieval Climate Anomaly (MCA), the central plains of North America experienced recurrent periods of drought spanning decades or longer. These megadroughts had exceptional persistence compared to more recent events, but the causes remain uncertain. The authors conducted a suite of general circulation model experiments to test the impact of sea surface temperature (SST) and land surface forcing on the MCA megadroughts over the central plains. The land surface forcing is represented as a set of dune mobilization boundary conditions, derived from available geomorphological evidence and modeled as increased bare soil area and a dust aerosol source (32deg-44degN, 105deg-95degW). In the experiments, cold tropical Pacific SST forcing suppresses precipitation over the central plains but cannot reproduce the overall drying or persistence seen in the PDSI reconstruction. Droughts in the scenario with dust aerosols, however, are amplified and have significantly longer persistence than in other model experiments, more closely matching the reconstructed PDSI. This additional drying occurs because the dust increases the shortwave planetary albedo, reducing energy inputs to the surface and boundary layer. The energy deficit increases atmospheric stability, inhibiting convection and reducing cloud cover and precipitation over the central plains. Results from this study provide the first model-based evidence that dust aerosol forcing and land surface changes could have contributed to the intensity and persistence of the central plains megadroughts, although uncertainties remain in the formulation of the boundary conditions and the future importance of these feedbacks.
NASA Astrophysics Data System (ADS)
Khalil, Zahid
2016-07-01
Decision making about identifying suitable sites for any project by considering different parameters, is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30 meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pair wise comparison method, also known as Analytical Hierarchy Process (AHP) is took into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision making about suitable sites analysis for small dams using geo-spatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).
Roles of Fog and Topography in Redwood Forest Hydrology
NASA Astrophysics Data System (ADS)
Francis, E. J.; Asner, G. P.
2017-12-01
Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.
Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di
2013-01-01
The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal region for a hard surface landing, and the 1st phalangeal and 5th metatarsal region for a soft surface landing. PMID:24149145
NASA Astrophysics Data System (ADS)
Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.
2015-12-01
We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.
A preliminary experiment definition for video landmark acquisition and tracking
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Tietz, J. C.; Hulstrom, R. L.; Cunningham, R. A.; Reel, G. M.
1976-01-01
Six scientific objectives/experiments were derived which consisted of agriculture/forestry/range resources, land use, geology/mineral resources, water resources, marine resources and environmental surveys. Computer calculations were then made of the spectral radiance signature of each of 25 candidate targets as seen by a satellite sensor system. An imaging system capable of recognizing, acquiring and tracking specific generic type surface features was defined. A preliminary experiment definition and design of a video Landmark Acquisition and Tracking system is given. This device will search a 10-mile swath while orbiting the earth, looking for land/water interfaces such as coastlines and rivers.
NASA Astrophysics Data System (ADS)
Ning, Jicai; Gao, Zhiqiang; Meng, Ran; Xu, Fuxiang; Gao, Meng
2018-06-01
This study analyzed land use and land cover changes and their impact on land surface temperature using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta. Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, Evgueni; Barnard, James; Flynn, Connor
Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less
Kassianov, Evgueni; Barnard, James; Flynn, Connor; ...
2017-07-12
Tower-based data combined with high-resolution satellite products have been used to produce surface albedo at various spatial scales over land. Because tower-based albedo data are available at only a few sites, surface albedos using these combined data are spatially limited. Moreover, tower-based albedo data are not representative of highly heterogeneous regions. To produce areal-averaged and spectrally-resolved surface albedo for regions with various degrees of surface heterogeneity, we have developed a transmission-based retrieval and demonstrated its feasibility for relatively homogeneous land surfaces. Here we demonstrate its feasibility for a highly heterogeneous coastal region. We use the atmospheric transmission measured during amore » 19-month period (June 2009 – December 2010) by a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR) at five wavelengths (0.415, 0.5, 0.615, 0.673 and 0.87 µm) at the Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) site located on Graciosa Island. We compare the MFRSR-retrieved areal-averaged surface albedo with albedo derived from Moderate Resolution Imaging Spectroradiometer (MODIS) observations, and also a composite-based albedo. Lastly, we demonstrate that these three methods produce similar spectral signatures of surface albedo; however, the MFRSR-retrieved albedo, is higher on average (≤0.04) than the MODIS-based areal-averaged surface albedo and the largest difference occurs in winter.« less
Aerosol radiative forcing from GEO satellite data over land surfaces
NASA Astrophysics Data System (ADS)
Costa, Maria J.; Silva, Ana M.
2005-10-01
Aerosols direct and indirect effects on the Earth's climate are widely recognized but have yet to be adequately quantified. Difficulties arise due to the very high spatial and temporal variability of aerosols, which is a major cause of uncertainties in radiative forcing studies. The effective monitoring of the global aerosol distribution is only made possible by satellite monitoring and this is the reason why the interest in aerosol observations from satellite passive radiometers is steadily increasing. From the point of view of the study of land surfaces, the atmosphere with its constituents represents an obscurant whose effects should be as much as possible eliminated, being this process sometimes referred to as atmospheric correction. In absence of clouds and using spectral intervals where gas absorption can be avoided to a great extent, only the aerosol effect remains to be corrected. The monitoring of the aerosol particles present in the atmosphere is then crucial to succeed in doing an accurate atmospheric correction, otherwise the surface properties may be inadequately characterised. However, the atmospheric correction over land surfaces turns out to be a difficult task since surface reflection competes with the atmospheric component of the signal. On the other hand, a single mean pre-established aerosol characterisation would not be sufficient for this purpose due to very high spatial and temporal variability of aerosols and their unpredictability, especially what concerns particulary intense "events" such as biomass burning and forest fires, desert dust episodes and volcanic eruptions. In this context, an operational methodology has been developed at the University of Evora - Evora Geophysics Centre (CGE), in the framework of the Satellite Application Facility for Land Surface Analysis - Land SAF, to derive an Aerosol Product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, flying on the Geostationary (GEO) satellite system Meteosat-8. The aerosol characterization obtained is used to calculate the fluxes and estimate the aerosol radiative forcing at the top of the atmosphere. The methodology along with the results of the aerosol properties and radiative forcing using SEVIRI images is presented. The aerosol optical thickness results are compared with ground-based measurements from the Aerosol Robotic NETwork (AERONET), to assess the accuracy of the methodology presented.
Economic effects of western Federal land-use restrictions on U.S. coal markets
Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.
1991-01-01
Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.
Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland
Nicholas, F.W.; Lewis, J.E.
1980-01-01
Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.
Linking Satellite Derived Land Surface Temperature with Cholera: A Case Study for South Sudan
NASA Astrophysics Data System (ADS)
Aldaach, H. S. V.; Jutla, A.; Akanda, A. S.; Colwell, R. R.
2014-12-01
A sudden onset of cholera in South Sudan, in April 2014 in Northern Bari in Juba town resulted in more than 400 cholera cases after four weeks of initial outbreak with a case of fatality rate of CFR 5.4%. The total number of reported cholera cases for the period of April to July, 2014 were 5,141 including 114 deaths. With the limited efficacy of cholera vaccines, it is necessary to develop mechanisms to predict cholera occurrence and thereafter devise intervention strategies for mitigating impacts of the disease. Hydroclimatic processes, primarily precipitation and air temperature are related to epidemic and episodic outbreak of cholera. However, due to coarse resolution of both datasets, it is not possible to precisely locate the geographical location of disease. Here, using Land Surface Temperature (LST) from MODIS sensors, we have developed an algorithm to identify regions susceptible for cholera. Conditions for occurrence of cholera were detectable at least one month in advance in South Sudan and were statistically sensitive to hydroclimatic anomalies of land surface and air temperature, and precipitation. Our results indicate significant spatial and temporal averaging required to infer usable information from LST over South Sudan. Preliminary results that geographically location of cholera outbreak was identifiable within 1km resolution of the LST data.
Reclamation of mined lands in the western coal region
Narten, Perry F.; Litner, S.F.; Allingham, J.W.; Foster, Lee; Larsen, D.M.; McWreath, H.C.
1983-01-01
In 1978, a group of scientists from several Federal agencies examined reclamation work at 22 coal mines in seven western States. The results of these examinations were not used to derive quantitative predictions of the outcome of reclamation work but rather to determine the general requirements for revegetation success. Locally, reclamation efforts are affected by climate, especially precipitation; the landform of the restored surface; the nature of the overburden material; the nature of the surface soil; and the natural ecological system. The goals of reclamation efforts are now broader than ever. Regulations call not only for reducing the steepness of the final surface and establishing a cover of mostly perennial native vegetation, but for restoring the land for specific land uses, achieving diversity both in types of plants and in number of species, and reintroduction of biological and ecological processes. If specific sites are monitored over a long enough period of time, quantitative predictions of success for individual mines may be possible, and such predictions can be included in environmental impact statements to help in the decision-making process. The results of this study indicate that current reclamation objectives can be met when the reclamation effort is designed on the basis of site-specific needs and when existing technology is used.
Physically Accurate Soil Freeze-Thaw Processes in a Global Land Surface Scheme
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Haverd, Vanessa
2018-01-01
The model Soil-Litter-Iso (SLI) calculates coupled heat and water transport in soil. It was recently implemented into the Australian land surface model CABLE, which is the land component of the Australian Community Climate and Earth System Simulator (ACCESS). Here we extended SLI to include accurate freeze-thaw processes in the soil and snow. SLI provides thence an implicit solution of the energy and water balances of soil and snow as a standalone model and within CABLE. The enhanced SLI was tested extensively against theoretical formulations, laboratory experiments, field data, and satellite retrievals. The model performed well for all experiments at wide-ranging temporal and spatial scales. SLI melts snow faster at the end of the cold season compared to observations though because there is no subgrid variability within SLI given by the implicit, coupled solution of energy and water. Combined CABLE-SLI shows very realistic dynamics and extent of permafrost on the Northern hemisphere. It illustrated, however, also the limits of possible comparisons between large-scale land surface models and local permafrost observations. CABLE-SLI exhibits the same patterns of snow depth and snow water equivalent on the Northern hemisphere compared to satellite-derived observations but quantitative comparisons depend largely on the given meteorological input fields. Further extension of CABLE-SLI with depth-dependence of soil carbon will allow realistic projections of the development of permafrost and frozen carbon stocks in a changing climate.
Land science with Sentinel-2 and Sentinel-3 data series synergy
NASA Astrophysics Data System (ADS)
Moreno, Jose; Guanter, Luis; Alonso, Luis; Gomez, Luis; Amoros, Julia; Camps, Gustavo; Delegido, Jesus
2010-05-01
Although the GMES/Sentinel satellite series were primarily designed to provide observations for operational services and routine applications, there is a growing interest in the scientific community towards the usage of Sentinel data for more advanced and innovative science. Apart from the improved spatial and spectral capabilities, the availability of consistent time series covering a period of over 20 years opens possibilities never explored before, such as systematic data assimilation approaches exploiting the time-series concept, or the incorporation in the modelling approaches of processes covering time scales from weeks to decades. Sentinel-3 will provide continuity to current ENVISAT MERIS/AATSR capabilities. The results already derived from MERIS/AATRS will be more systematically exploited by using OLCI in synergy with SLST. Particularly innovative is the case of Sentinel-2, which is specifically designed for land applications. Built on a constellation of two satellites operating simultaneously to provide 5 days geometric revisit time, the Sentinel-2 system will providing global and systematic acquisitions with high spatial resolution and with a high revisit time tailored towards the needs of land monitoring. Apart from providing continuity to Landsat and SPOT time series, the Sentinel-2 Multi-Spectral Instrument (MSI) incorporates new narrow bands around the red-edge for improved retrievals of biophysical parameters. The limitations imposed by the need of a proper cloud screening and atmospheric corrections have represented a serious constraint in the past for optical data. The fact that both Sentinel-2 and 3 have dedicated bands to allow such needed corrections for optical data represents an important step towards a proper exploitation, guarantying consistent time series showing actual variability in land surface conditions without the artefacts introduced by the atmosphere. Expected operational products (such as Land Cover maps, Leaf Area Index, Fractional Vegetation Cover, Fraction of Absorbed Photosynthetically Active Radiation, and Leaf Chlorophyll and Water Contents), will be enhanced with new scientific applications. Higher level products will also be provided, by means of mosaicking, averaging, synthesising or compositing of spatially and temporally resampled data. A key element in the exploitation of the Sentinel series will be the adequate use of data synergy, which will open new possibilities for improved Land Models. This paper analyses in particular the possibilities offered by mosaicking and compositing information derived from Sentinel-2 observations in high spatial resolution to complement dense time series derived from Sentinel-3 data with more frequent coverage. Interpolation of gaps in high spatial resolution time series (from Sentinel-2 data) by using medium/low resolution data from Sentinel-3 (OLCI and SLSTR) is also a way of making series more temporally consistent with high spatial resolution. The primary goal of such temporal interpolation / spatial mosaicking techniques is to derive consistent surface reflectance data virtually for every date and geographical location, no matter the initial spatial/temporal coverage of the original data used to produce the composite. As a result, biophysical products can be derived in a more consistent way from the spectral information of Sentinel-3 data by making use of a description of surface heterogeneity derived from Sentinel-2 data. Using data from dedicated experiments (SEN2FLEX, CEFLES2, SEN3EXP), that include a large dataset of satellite and airborne data and of ground-based measurements of atmospheric and vegetation parameters, different techniques are tested, including empirical / statistical approaches that builds nonlinear regression by mapping spectra to a high dimensional space, up to model inversion / data assimilation scenarios. Exploitation of the temporal domain and spatial multi-scale domain becomes then a driver for the systematic exploitation of GMES/Sentinels data time series. This paper review current status, and identifies research priorities in such direction.
Land surface dynamics monitoring using microwave passive satellite sensors
NASA Astrophysics Data System (ADS)
Guijarro, Lizbeth Noemi
Soil moisture, surface temperature and vegetation are variables that play an important role in our environment. There is growing demand for accurate estimation of these geophysical parameters for the research of global climate models (GCMs), weather, hydrological and flooding models, and for the application to agricultural assessment, land cover change, and a wide variety of other uses that meet the needs for the study of our environment. The different studies covered in this dissertation evaluate the capabilities and limitations of microwave passive sensors to monitor land surface dynamics. The first study evaluates the 19 GHz channel of the SSM/I instrument with a radiative transfer model and in situ datasets from the Illinois stations and the Oklahoma Mesonet to retrieve land surface temperature and surface soil moisture. The surface temperatures were retrieved with an average error of 5 K and the soil moisture with an average error of 6%. The results show that the 19 GHz channel can be used to qualitatively predict the spatial and temporal variability of surface soil moisture and surface temperature at regional scales. In the second study, in situ observations were compared with sensor observations to evaluate aspects of low and high spatial resolution at multiple frequencies with data collected from the Southern Great Plains Experiment (SGP99). The results showed that the sensitivity to soil moisture at each frequency is a function of wavelength and amount of vegetation. The results confirmed that L-band is more optimal for soil moisture, but each sensor can provide soil moisture information if the vegetation water content is low. The spatial variability of the emissivities reveals that resolution suffers considerably at higher frequencies. The third study evaluates C- and X-bands of the AMSR-E instrument. In situ datasets from the Soil Moisture Experiments (SMEX03) in South Central Georgia were utilized to validate the AMSR-E soil moisture product and to derive surface soil moisture with a radiative transfer model. The soil moisture was retrieved with an average error of 2.7% at X-band and 6.7% at C-band. The AMSR-E demonstrated its ability to successfully infer soil moisture during the SMEX03 experiment.
Xian, George
2008-01-01
By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
Tropical Africa: Land use, biomass, and carbon estimates for 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.; Gaston, G.; Daniels, R.C.
1996-06-01
This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980 and describes a methodology that may be used to extend this data set to 1990 and beyond based on population and land cover data. The biomass data and carbon estimates are for woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with the possible magnitude of historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth`s landmore » surface and includes those countries that for the most part are located in Tropical Africa. Countries bordering the Mediterranean Sea and in southern Africa (i.e., Egypt, Libya, Tunisia, Algeria, Morocco, South Africa, Lesotho, Swaziland, and Western Sahara) have maximum potential biomass and land cover information but do not have biomass or carbon estimate. The database was developed using the GRID module in the ARC/INFO{sup TM} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass-carbon values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.« less
NASA Astrophysics Data System (ADS)
Song, Kaishan; Wu, Junjie; Li, Lin; Wang, Zongming; Lu, Dongmei; Du, Jia; Zhang, Bai
2010-08-01
Atmospheric water vapor (AWV) content is closely related to precipitation that in turn has effects on the productivity of agricultural, forestry and range land. MODIS images have been used for AWV retrieval, and the method uses either two (0.841-0.876 μm and 0.915-0.965 μm) or three (0.841-0.876, 0.915-0.965 and 1.230-0-1.250 μm) MODIS channel ratios. We applied both methods to the MODIS data over Northeast China acquired from June to August, 2008 to retrieve AWV content, and the results were validated on ground observed data from 10 radio sonde stations characterized by various land cover. The bulk results indicate that the two-channel ratio outperformed the three-channel ratio based on the coefficient of determination R2 = 0.81 vs. 0.78. The validation results for individual land cover types also support this observation with R2 = 0.92 vs. 0.84 for woodland, 0.82 vs. 0.79 for cropland, 0.90 vs. 0.86 for grassland and 0.673 vs. 0.669 for urban areas. The spatial distribution of AWV derived using the two-channel ratio method was correlated to land-use classification data, and a high correlation was evident when other conditions were similar. With the exception of dry cropland, the amount of average water vapor content over different land use types demonstrates a consistent order: water-body > paddy-field > woodland > grassland > barren for the analyzed multi-temporal MODIS data. This order partially matches the evapotranspiration pattern of underlying surface, and future work is required for analyzing the association of the landscape pattern with AWV in the region.
A tool to evaluate local biophysical effects on temperature due to land cover change transitions
NASA Astrophysics Data System (ADS)
Perugini, Lucia; Caporaso, Luca; Duveiller, Gregory; Cescatti, Alessandro; Abad-Viñas, Raul; Grassi, Giacomo; Quesada, Benjamin
2017-04-01
Land Cover Changes (LCC) affect local, regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. Assessment of the full climate impacts of anthropogenic LCC are incomplete without considering biophysical effects, but the high level of uncertainties in quantifying their impacts to date have made it impractical to offer clear advice on which policy makers could act. To overcome this barrier, we provide a tool to evaluate the biophysical impact of a matrix of land cover transitions, following a tiered methodological approach similar to the one provided by the IPCC to estimate the biogeochemical effects, i.e. through three levels of methodological complexity, from Tier 1 (i.e. default method and factors) to Tier 3 (i.e. specific methods and factors). In particular, the tool provides guidance for quantitative assessment of changes in temperature following a land cover transition. The tool focuses on temperature for two main reasons (i) it is the main variable of interest for policy makers at local and regional level, and (ii) temperature is able to summarize the impact of radiative and non-radiative processes following LULCC. The potential changes in annual air temperature that can be expected from various land cover transitions are derived from a dedicated dataset constructed by the JRC in the framework of the LUC4C FP7 project. The inputs for the dataset are air temperature values derived from satellite Earth Observation data (MODIS) and land cover characterization from the ESA Climate Change Initiative product reclassified into their IPCC land use category equivalent. This data, originally at 0.05 degree of spatial resolution, is aggregated and analysed at regional level to provide guidance on the expected temperature impact following specific LCC transitions.
Real-Time Application of Multi-Satellite Precipitation Analysis for Floods and Landslides
NASA Technical Reports Server (NTRS)
Adler, Robert; Hong, Yang; Huffman, George
2007-01-01
Satellite data acquired and processed in real time now have the potential to provide the spacetime information on rainfall needed to monitor flood and landslide events around the world. This can be achieved by integrating the satellite-derived forcing data with hydrological models and landslide algorithms. Progress in using the TRMM Multi-satellite Precipitation Analysis (TMPA) as input to flood and landslide forecasts is outlined, with a focus on understanding limitations of the rainfall data and impacts of those limitations on flood/landslide analyses. Case studies of both successes and failures will be shown, as well as comparison with ground comparison data sets-- both in terms of rainfall and in terms of flood/landslide events. In addition to potential uses in real-time, the nearly ten years of TMPA data allow retrospective running of the models to examine variations in extreme events. The flood determination algorithm consists of four major components: 1) multi-satellite precipitation estimation; 2) characterization of land surface including digital elevation from NASA SRTM (Shuttle Radar Terrain Mission), topography-derived hydrologic parameters such as flow direction, flow accumulation, basin, and river network etc.; 3) a hydrological model to infiltrate rainfall and route overland runoff; and 4) an implementation interface to relay the input data to the models and display the flood inundation results to potential users and decision-makers, In terms of landslides, the satellite rainfall information is combined with a global landslide susceptibility map, derived from a combination of global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a weighted linear combination approach. In those areas identified as "susceptible" (based on the surface characteristics), landslides are forecast where and when a rainfall intensity/duration threshold is exceeded. Results are described indicating general agreement with landslide occurrences.
Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong
2008-01-01
The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data. PMID:27879795
NASA Astrophysics Data System (ADS)
Beloconi, Anton; Benas, Nikolaos; Chrysoulakis, Nektarios; Kamarianakis, Yiannis
2015-11-01
Linear mixed effects models were developed for the estimation of the average daily Particulate Matter (PM) concentration spatial distribution over the area of Greater London (UK). Both fine (PM2.5) and coarse (PM10) concentrations were predicted for the 2002- 2012 time period, based on satellite data. The latter included Aerosol Optical Thickness (AOT) at 3×3 km spatial resolution, as well as the Surface Relative Humidity, Surface Temperature and K-Index derived from MODIS (Moderate Resolution Imaging Spectroradiometer) sensor. For a meaningful interpretation of the association among these variables, all data were homogenized with regard to spatial support and geographic projection, thus addressing the change of support problem and leading to a valid statistical inference. To this end, spatial (2D) and spatio- temporal (3D) kriging techniques were applied to in-situ particulate matter concentrations and the leave-one- station-out cross-validation was performed on a daily level to gauge the quality of the predictions. Satellite- derived covariates displayed clear seasonal patterns; in order to work with data which is stationary in mean, for each covariate, deviations from its estimated annual profiles were computed using nonlinear least squares and nonlinear absolute deviations. High-resolution land- cover and morphology static datasets were additionally incorporated in the analysis in order to catch the effects of nearby emission sources and sequestration sites. For pairwise comparisons of the particulate matter concentration means at distinct land-cover classes, the pairwise comparisons method for unequal sample sizes, known as Tukey's method, was performed. The use of satellite-derived products allowed better assessment of space-time interactions of PM, since these daily spatial measurements were able to capture differences in PM concentrations between grid cells, while the use of high- resolution land-cover and morphology static datasets allowed accounting for local industrial, domestic and traffic related air pollution. The developed methods are expected to fully exploit ESA's new Sentinel-3 observations to estimate spatial distributions of both PM10 and PM2.5 concentrations in arbitrary cities.
Impacts of Wind Farms on Local Land Surface Temperature
NASA Astrophysics Data System (ADS)
Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L. F.; Hu, Y.
2012-12-01
The U.S. wind industry has experienced a remarkably rapid expansion of capacity in recent years and this rapid growth is expected to continue in the future. While converting wind's kinetic energy into electricity, wind turbines modify surface-atmosphere exchanges and transfer of energy, momentum, mass and moisture within the atmosphere. These changes, if spatially large enough, may have noticeable impacts on local to regional weather and climate. Here we present observational evidence for such impacts based on analyses of satellite derived land surface temperature (LST) data at ~1.1 km for the period of 2003-2011 over a region in West-Central Texas, where four of the world's largest wind farms are located. Our results show a warming effect of up to 0.7 degrees C at nighttime for the 9-year period during which data was collected, over wind farms relative to nearby non wind farm regions and this warming is gradually enhanced with time, while the effect at daytime is small. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. These results suggest that the warming effect is very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer conditions due to wind farm operations. Figure 1: Nighttime land surface temperature (LST, C) differences between 2010 and 2003 (2010 minus 2003) in summer (June-July-August). Pixels with plus symbol have at least one wind turbine. A regional mean value (0.592 C) was removed to emphasize the relative LST changes at pixel level and so the resulting warming or cooling rate represents a change relative to the regional mean value. The LST data were derived from MODIS (Moderate Imaging Spectroradiometer) instruments on NASA's Aqua and Terra satellites. Note that LST measures the radiometric temperature of the Earth's surface itself - It has a larger diurnal variation than surface air temperature used in daily weather reports.
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan
2016-09-01
Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Applications of seismic spatial wavefield gradient and rotation data in exploration seismology
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.
2017-12-01
Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.
Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.
2007-01-01
In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212
Meyer, D.; Chander, G.
2006-01-01
Increasingly, data from multiple sensors are used to gain a more complete understanding of land surface processes at a variety of scales. Although higher-level products (e.g., vegetation cover, albedo, surface temperature) derived from different sensors can be validated independently, the degree to which these sensors and their products can be compared to one another is vastly improved if their relative spectroradiometric responses are known. Most often, sensors are directly calibrated to diffuse solar irradiation or vicariously to ground targets. However, space-based targets are not traceable to metrological standards, and vicarious calibrations are expensive and provide a poor sampling of a sensor's full dynamic range. Crosscalibration of two sensors can augment these methods if certain conditions can be met: (1) the spectral responses are similar, (2) the observations are reasonably concurrent (similar atmospheric & solar illumination conditions), (3) errors due to misregistrations of inhomogeneous surfaces can be minimized (including scale differences), and (4) the viewing geometry is similar (or, some reasonable knowledge of surface bi-directional reflectance distribution functions is available). This study explores the impacts of cross-calibrating sensors when such conditions are met to some degree but not perfectly. In order to constrain the range of conditions at some level, the analysis is limited to sensors where cross-calibration studies have been conducted (Enhanced Thematic Mapper Plus (ETM+) on Landsat-7 (L7), Advance Land Imager (ALI) and Hyperion on Earth Observer-1 (EO-1)) and including systems having somewhat dissimilar geometry, spatial resolution & spectral response characteristics but are still part of the so-called "A.M. constellation" (Moderate Resolution Imaging Spectrometer (MODIS) aboard the Terra platform). Measures for spectral response differences and methods for cross calibrating such sensors are provided in this study. These instruments are cross calibrated using the Railroad Valley playa in Nevada. Best fit linear coefficients (slope and offset) are provided for ALI-to-MODIS and ETM+-to-MODIS cross calibrations, and root-mean-squared errors (RMSEs) and correlation coefficients are provided to quantify the uncertainty in these relationships. In theory, the linear fits and uncertainties can be used to compare radiance and reflectance products derived from each instrument.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.
2009-01-01
The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan
2017-01-01
Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.
Prototype Global Burnt Area Algorithm Using a Multi-sensor Approach
NASA Astrophysics Data System (ADS)
López Saldaña, G.; Pereira, J.; Aires, F.
2013-05-01
One of the main limitations of products derived from remotely-sensed data is the length of the data records available for climate studies. The Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR) comprises a daily global atmospherically-corrected surface reflectance dataset at 0.05Deg spatial resolution and is available for the 1981-1999 time period. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has been on orbit in the Terra platform since late 1999 and in Aqua since mid 2002; surface reflectance products, MYD09CMG and MOD09CMG, are available at 0.05Deg spatial resolution. Fire is strong cause of land surface change and emissions of greenhouse gases around the globe. A global long-term identification of areas affected by fire is needed to analyze trends and fire-clime relationships. A burnt area algorithm can be seen as a change point detection problem where there is an abrupt change in the surface reflectance due to the biomass burning. Using the AVHRR-LTDR and the aforementioned MODIS products, a time series of bidirectional reflectance distribution function (BRDF) corrected surface reflectance was generated using the daily observations and constraining the BRDF model inversion using a climatology of BRDF parameters derived from 12 years of MODIS data. The identification of the burnt area was performed using a t-test in the pre- and post-fire reflectance values and a change point detection algorithm, then spectral constraints were applied to flag changes caused by natural land processes like vegetation seasonality or flooding. Additional temporal constraints are applied focusing in the persistence of the affected areas. Initial results for years 1998 to 2002, show spatio-temporal coherence but further analysis is required and a formal rigorous validation will be applied using burn scars identified from high-resolution datasets.
Brown, Sandra [University of Illinois, Urbana, IL (USA); Winrock International, Arlington, Virginia (USA); Gaston, Greg [University of Illinois, Urbana, IL (USA); Oregon State University; Beaty, T. W. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN (USA); Olsen, L. M. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2001-01-01
This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10E6 km2 of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea, Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo,Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO (TM geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.
NASA Technical Reports Server (NTRS)
Remer, L. A.; Wald, A. E.; Kaufman, Y. J.
1999-01-01
We obtain valuable information on the angular and seasonal variability of surface reflectance using a hand-held spectrometer from a light aircraft. The data is used to test a procedure that allows us to estimate visible surface reflectance from the longer wavelength 2.1 micrometer channel (mid-IR). Estimating or avoiding surface reflectance in the visible is a vital first step in most algorithms that retrieve aerosol optical thickness over land targets. The data indicate that specular reflection found when viewing targets from the forward direction can severely corrupt the relationships between the visible and 2.1 micrometer reflectance that were derived from nadir data. There is a month by month variation in the ratios between the visible and the mid-IR, weakly correlated to the Normalized Difference Vegetation Index (NDVI). If specular reflection is not avoided, the errors resulting from estimating surface reflectance from the mid-IR exceed the acceptable limit of DELTA-rho approximately 0.01 in roughly 40% of the cases, using the current algorithm. This is reduced to 25% of the cases if specular reflection is avoided. An alternative method that uses path radiance rather than explicitly estimating visible surface reflectance results in similar errors. The two methods have different strengths and weaknesses that require further study.
NASA Technical Reports Server (NTRS)
Cescatti, Alessandro; Marcolla, Barbara; Vannan, Suresh K. Santhana; Pan, Jerry Yun; Roman, Miguel O.; Yang, Xiaoyuan; Ciais, Philippe; Cook, Robert B.; Law, Beverly E.; Matteucci, Girogio;
2012-01-01
Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes.
Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling
NASA Technical Reports Server (NTRS)
Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah
2014-01-01
Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A.; Hamelin, M.; Caujolle-Bert, S.; Schreiber, F.; Carrasco, N.; Cernogora, G.; Szopa, C.; Brouet, Y.; Simões, F.; Correia, J. J.; Ruffié, G.
2018-04-01
In 2005, the complex permittivity of the surface of Saturn's moon Titan was measured by the PWA-MIP/HASI (Permittivity Wave Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) experiment on board the Huygens probe. The analysis of these measurements was recently refined but could not be interpreted in terms of composition due to the lack of knowledge on the low-frequency/low-temperature electrical properties of Titan's organic material, a likely key ingredient of the surface composition. In order to fill that gap, we developed a dedicated measurement bench and investigated the complex permittivity of analogs of Titan's organic aerosols called "tholins." These laboratory measurements, together with those performed in the microwave domain, are then used to derive constraints on the composition of Titan's first meter below the surface based on both the PWA-MIP/HASI and the Cassini Radar observations. Assuming a ternary mixture of water ice, tholin-like dust and pores (filled or not with liquid methane), we find that at least 10% of water ice and 15% of porosity are required to explain observations. On the other hand, there should be at most 50-60% of organic dust. PWA-MIP/HASI measurements also suggest the presence of a thin conductive superficial layer at the Huygens landing site. Using accurate numerical simulations, we put constraints on the electrical conductivity of this layer as a function of its thickness (e.g., in the range 7-40 nS/m for a 7-mm thick layer). Potential candidates for the composition of this layer are discussed.
Prototype global burnt area algorithm using the AVHRR-LTDR time series
NASA Astrophysics Data System (ADS)
López-Saldaña, Gerardo; Pereira, José Miguel; Aires, Filipe
2013-04-01
One of the main limitations of products derived from remotely-sensed data is the length of the data records available for climate studies. The Advanced Very High Resolution Radiometer (AVHRR) long-term data record (LTDR) comprises a daily global atmospherically-corrected surface reflectance dataset at 0.05° spatial resolution and is available for the 1981-1999 time period. Fire is strong cause of land surface change and emissions of greenhouse gases around the globe. A global long-term identification of areas affected by fire is needed to analyze trends and fire-clime relationships. A burnt area algorithm can be seen as a change point detection problem where there is an abrupt change in the surface reflectance due to the biomass burning. Using the AVHRR-LTDR dataset, a time series of bidirectional reflectance distribution function (BRDF) corrected surface reflectance was generated using the daily observations and constraining the BRDF model inversion using a climatology of BRDF parameters derived from 12 years of MODIS data. The identification of the burnt area was performed using a t-test in the pre- and post-fire reflectance values and a change point detection algorithm, then spectral constraints were applied to flag changes caused by natural land processes like vegetation seasonality or flooding. Additional temporal constraints are applied focusing in the persistence of the affected areas. Initial results for year 1998, which was selected because of a positive fire anomaly, show spatio-temporal coherence but further analysis is required and a formal rigorous validation will be applied using burn scars identified from high-resolution datasets.
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary
1999-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts (0-48h) is that it does not require a complex land-surface formulation within the atmospheric model. As a result, we can avoid having to specify land surface characteristics such as vegetation resistances, green fraction, leaf area index, soil physical and hydraulic characteristics, stream flow, runoff, and the vertical and horizontal distribution of soil moisture.
Downscaling of Remotely Sensed Land Surface Temperature with multi-sensor based products
NASA Astrophysics Data System (ADS)
Jeong, J.; Baik, J.; Choi, M.
2016-12-01
Remotely sensed satellite data provides a bird's eye view, which allows us to understand spatiotemporal behavior of hydrologic variables at global scale. Especially, geostationary satellite continuously observing specific regions is useful to monitor the fluctuations of hydrologic variables as well as meteorological factors. However, there are still problems regarding spatial resolution whether the fine scale land cover can be represented with the spatial resolution of the satellite sensor, especially in the area of complex topography. To solve these problems, many researchers have been trying to establish the relationship among various hydrological factors and combine images from multi-sensor to downscale land surface products. One of geostationary satellite, Communication, Ocean and Meteorological Satellite (COMS), has Meteorological Imager (MI) and Geostationary Ocean Color Imager (GOCI). MI performing the meteorological mission produce Rainfall Intensity (RI), Land Surface Temperature (LST), and many others every 15 minutes. Even though it has high temporal resolution, low spatial resolution of MI data is treated as major research problem in many studies. This study suggests a methodology to downscale 4 km LST datasets derived from MI in finer resolution (500m) by using GOCI datasets in Northeast Asia. Normalized Difference Vegetation Index (NDVI) recognized as variable which has significant relationship with LST are chosen to estimate LST in finer resolution. Each pixels of NDVI and LST are separated according to land cover provided from MODerate resolution Imaging Spectroradiometer (MODIS) to achieve more accurate relationship. Downscaled LST are compared with LST observed from Automated Synoptic Observing System (ASOS) for assessing its accuracy. The downscaled LST results of this study, coupled with advantage of geostationary satellite, can be applied to observe hydrologic process efficiently.
Black Sea impact on its west-coast land surface temperature
NASA Astrophysics Data System (ADS)
Cheval, Sorin; Constantin, Sorin
2018-03-01
This study investigates the Black Sea influence on the thermal characteristics of its western hinterland based on satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The marine impact on the land surface temperature (LST) values is detected at daily, seasonal and annual time scales, and a strong linkage with the land cover is demonstrated. The remote sensing products used within the study supply LST data with complete areal coverage during clear sky conditions at 1-km spatial resolution, which is appropriate for climate studies. The sea influence is significant up to 4-5 km, by daytime, while the nighttime influence is very strong in the first 1-2 km, and it gradually decreases westward. Excepting the winter, the daytime temperature increases towards the plateau with the distance from the sea, e.g. with a gradient of 0.9 °C/km in the first 5 km in spring or with 0.7 °C/km in summer. By nighttime, the sea water usually remains warmer than the contiguous land triggering higher LST values in the immediate proximity of the coastline in all seasons, e.g. mean summer LST is 19.0 °C for the 1-km buffer, 16.6 °C for the 5-km buffer and 16.0 °C for the 10-km buffer. The results confirm a strong relationship between the land cover and thermal regime in the western hinterland of the Black Sea coast. The satellite-derived LST and air temperature values recorded at the meteorological stations are highly correlated for similar locations, but the marine influence propagates differently, pledging for distinct analysis. Identified anomalies in the general observed trends are investigated in correlation with sea surface temperature dynamics in the coastal area.
NASA Technical Reports Server (NTRS)
White, Kristopher D.; Case, Jonathan L.
2014-01-01
The NASA Short term Prediction Research and Transition (SPoRT) Center in Huntsville, AL has been running a real-time configuration of the Noah land surface model within the NASA Land Information System (LIS) since June 2010. The SPoRT LIS version is run as a stand-alone land surface model over a Southeast Continental U.S. domain with 3-km grid spacing. The LIS contains output variables including soil moisture and temperature at various depths, skin temperature, surface heat fluxes, storm surface runoff, and green vegetation fraction (GVF). The GVF represents another real-time SPoRT product, which is derived from the Moderate Resolution Imaging Spectroradiometer instrument aboard NASA's Aqua and Terra satellites. These data have demonstrated operational utility for drought monitoring and hydrologic applications at the National Weather Service (NWS) office in Huntsville, AL since early 2011. The most relevant data for these applications have proven to be the moisture availability (%) in the 0-10 cm and 0-200 cm layers, and the volumetric soil moisture (%) in the 0-10 cm layer. In an effort to better understand their applicability among locations with different terrain, soil and vegetation types, SPoRT is conducting the first formal assessment of these data at NWS offices in Houston, TX, Huntsville, AL and Raleigh, NC during summer 2014. The goal of this assessment is to evaluate the LIS output in the context of assessing flood risk and determining drought designations for the U.S. Drought Monitor. Forecasters will provide formal feedback via a survey question web portal, in addition to the NASA SPoRT blog. In this presentation, the SPoRT LIS and its applications at NWS offices will be presented, along with information about the summer assessment, including training module development and preliminary results.
How are the wetlands over tropical basins impacted by the extreme hydrological events?
NASA Astrophysics Data System (ADS)
Al-Bitar, A.; Parrens, M.; Frappart, F.; Papa, F.; Kerr, Y. H.; Cretaux, J. F.; Wigneron, J. P.
2016-12-01
Wetlands play a crucial role in tropical basins and still many questions remain unanswered on how extreme events (like El-Nino) impacts them. Answering these questions is challenging as monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. Several microwave based products have been elaborated to monitor these surfaces (Papa et al. 2010). In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA to derive water storage maps at relatively high (7days) temporal frequency. The area of interest concerns the Amazon, Congo and GBH basins A first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS mission at coarse resolution (25 km x 25 km) and 7-days frequency. An initial investigation of the use of the SMAP mission for the same purpose will be also presented. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from SWAPS. It is then combined to the altimetric data to derive water storage maps. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets, ground water storage change from GRACE and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong influence of EL-Nino on the time shift of the different components showing that the hydrological regime of wetlands is highly impacted by these extreme events. This can have dramatic impacts on the ecosystem as the wetlands are vulnerable with a high biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Sheng; Li, Hongyi; Huang, Maoyi
2014-07-21
Subsurface stormflow is an important component of the rainfall–runoff response, especially in steep terrain. Its contribution to total runoff is, however, poorly represented in the current generation of land surface models. The lack of physical basis of these common parameterizations precludes a priori estimation of the stormflow (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global land surface models. This paper is aimed at deriving regionalized parameterizations of the storage–discharge relationship relating to subsurface stormflow from a top–down empirical data analysis of streamflow recession curves extracted from 50 eastern United Statesmore » catchments. Detailed regression analyses were performed between parameters of the empirical storage–discharge relationships and the controlling climate, soil and topographic characteristics. The regression analyses performed on empirical recession curves at catchment scale indicated that the coefficient of the power-law form storage–discharge relationship is closely related to the catchment hydrologic characteristics, which is consistent with the hydraulic theory derived mainly at the hillslope scale. As for the exponent, besides the role of field scale soil hydraulic properties as suggested by hydraulic theory, it is found to be more strongly affected by climate (aridity) at the catchment scale. At a fundamental level these results point to the need for more detailed exploration of the co-dependence of soil, vegetation and topography with climate.« less
NASA Astrophysics Data System (ADS)
Maksimowicz, M.; Masarik, M. T.; Brandt, J.; Flores, A. N.
2017-12-01
Land use/land cover (LULC) change directly impacts the partitioning of surface mass and energy fluxes. Regional-scale weather and climate are potentially altered by LULC if the resultant changes in partitioning of surface energy fluxes are significant enough to induce changes in the evolution of the planetary boundary layer and its interaction with the atmosphere above. Dynamics of land use, particularly those related to the social dimensions of the Earth System, are often simplified or not represented in regional land-atmosphere models or Earth System Models. This study explores the role of LULC change on a regional hydroclimate system, focusing on potential hydroclimate changes arising from timber harvesting due to a land grab boom in Mozambique. We also focus more narrowly at quantifying regional impacts on Gorongosa National Park, a nationally important economic and biodiversity resource in southeastern Africa. After nationalizing all land in 1975 after Mozambique gained independence, complex social processes, including an extended low intensity conflict civil war and economic hardships, led to an escalation of land use rights grants to foreign governments. Between 2004 and 2009, large tracts of land were requested for timber. Here we use existing tree cover loss datasets to more accurately represent land cover within a regional weather model. LULC in a region encompassing Gorongosa is updated at three instances between 2001 and 2014 using a tree cover loss dataset. We use these derived LULC datasets to inform lower boundary conditions in the Weather Research and Forecasting (WRF) model. To quantify potential hydrometeorological changes arising from land use change, we performed a factorial-like experiment by mixing input LULC maps and atmospheric forcing data from before, during, and after the land grab. Results suggest that the land grab has impacted microclimate parameters in a significant way via direct and indirect impacts on land-atmosphere interactions. Results of this study suggest that LULC change arising from regional social dynamics are a potentially understudied, yet important human process to capture in both regional reanalyses and climate change projections.
Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies
NASA Astrophysics Data System (ADS)
Norouzi, H.; Temimi, M.; Khanbilvardi, R.
2009-12-01
Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and resultant differences in phase and magnitude between LST and microwave brightness temperature. Additional factors such as topography and vegetation cover are under investigation. In addition, the potential of extrapolating the obtained land emissivity maps to different window and sounding channels has been also investigated in this study. The extrapolation of obtained emissivities to different incident angles is also under investigation. Land emissivity maps have been developed at different AMSR-E frequencies. Obtained product has been validated and compared to global land use distribution. Moreover, global soil moisture AMSR-E product maps have been also used to assess to the spatial distribution of the emissivity. Moreover, obtained emissivity maps seem to be consistent with landuse/land cover maps. They also agree well with land emissivity maps obtained from the ISCCP database and developed using SSM/I observations (for frequencies over 19 GHz).
Rationale for a Mars Pathfinder mission to Chryse Planitia and the Viking 1 lander
NASA Technical Reports Server (NTRS)
Craddock, Robert A.
1994-01-01
Presently the landing site for Mars Pathfinder will be constrained to latitudes between 0 deg and 30 deg N to facilitate communication with earth and to allow the lander and rover solar arrays to generate the maximum possible power. The reference elevation of the site must also be below 0 km so that the descent parachute, a Viking derivative, has sufficient time to open and slow the lander to the correct terminal velocity. Although Mars has as much land surface area as the continental crust of the earth, such engineering constraints immediately limit the number of possible landing sites to only three broad areas: Amazonis, Chryse, and Isidis Planitia. Of these, both Chryse and Isidis Planitia stand out as the sites offering the most information to address several broad scientific topics.
The utility of estimating net primary productivity over Alaska using baseline AVHRR data
Markon, C.J.; Peterson, Kim M.
2002-01-01
Net primary productivity (NPP) is a fundamental ecological variable that provides information about the health and status of vegetation communities. The Normalized Difference Vegetation Index, or NDVI, derived from the Advanced Very High Resolution Radiometer (AVHRR) is increasingly being used to model or predict NPP, especially over large remote areas. In this article, seven seasonally based metrics calculated from a seven-year baseline NDVI dataset were used to model NPP over Alaska, USA. For each growing season, they included maximum, mean and summed NDVI, total days, product of total days and maximum NDVI, an integral estimate of NDVI and a summed product of NDVI and solar radiation. Field (plot) derived NPP estimates were assigned to 18 land cover classes from an Alaskan statewide land cover database. Linear relationships between NPP and each NDVI metric were analysed at four scales: plot, 1-km, 10-km and 20-km pixels. Results show moderate to poor relationship between any of the metrics and NPP estimates for all data sets and scales. Use of NDVI for estimating NPP may be possible, but caution is required due to data seasonality, the scaling process used and land surface heterogeneity.
NASA Astrophysics Data System (ADS)
Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.
2017-12-01
Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.
On the effect of surface emissivity on temperature retrievals. [for meteorology
NASA Technical Reports Server (NTRS)
Kornfield, J.; Susskind, J.
1977-01-01
The paper is concerned with errors in temperature retrieval caused by incorrectly assuming that surface emissivity is equal to unity. An error equation that applies to present-day atmospheric temperature sounders is derived, and the bias errors resulting from various emissivity discrepancies are calculated. A model of downward flux is presented and used to determine the effective downward flux. In the 3.7-micron region of the spectrum, emissivities of 0.6 to 0.9 have been observed over land. At a surface temperature of 290 K, if the true emissivity is 0.6 and unit emissivity is assumed, the error would be approximately 11 C. In the 11-micron region, the maximum deviation of the surface emissivity from unity was 0.05.
Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar
2010-01-01
Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.
Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.
Benz, Susanne A; Bayer, Peter; Blum, Philipp
2017-04-15
Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and therefore urban heat islands are observed in communities down to a population of 5000. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Youngwook; Kimball, John S.; Glassy, Joseph; Du, Jinyang
2017-02-01
The landscape freeze-thaw (FT) signal determined from satellite microwave brightness temperature (Tb) observations has been widely used to define frozen temperature controls on land surface water mobility and ecological processes. Calibrated 37 GHz Tb retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and SSM/I Sounder (SSMIS) were used to produce a consistent and continuous global daily data record of landscape FT status at 25 km grid cell resolution. The resulting FT Earth system data record (FT-ESDR) is derived from a refined classification algorithm and extends over a larger domain and longer period (1979-2014) than prior FT-ESDR releases. The global domain encompasses all land areas affected by seasonal frozen temperatures, including urban, snow- and ice-dominant and barren land, which were not represented by prior FT-ESDR versions. The FT retrieval is obtained using a modified seasonal threshold algorithm (MSTA) that classifies daily Tb variations in relation to grid-cell-wise FT thresholds calibrated using surface air temperature data from model reanalysis. The resulting FT record shows respective mean annual spatial classification accuracies of 90.3 and 84.3 % for evening (PM) and morning (AM) overpass retrievals relative to global weather station measurements. Detailed data quality metrics are derived characterizing the effects of sub-grid-scale open water and terrain heterogeneity, as well as algorithm uncertainties on FT classification accuracy. The FT-ESDR results are also verified against other independent cryospheric data, including in situ lake and river ice phenology, and satellite observations of Greenland surface melt. The expanded FT-ESDR enables new investigations encompassing snow- and ice-dominant land areas, while the longer record and favorable accuracy allow for refined global change assessments that can better distinguish transient weather extremes, landscape phenological shifts, and climate anomalies from longer-term trends extending over multiple decades. The dataset is freely available online (doi:10.5067/MEASURES/CRYOSPHERE/nsidc-0477.003).
Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology
NASA Astrophysics Data System (ADS)
Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.
2014-12-01
When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.
NASA Technical Reports Server (NTRS)
Dwyer Cianciolo, Alicia; Powell, Richard W.
2017-01-01
Precision landing on Mars is a challenge. All Mars lander missions prior to the 2012 Mars Science Laboratory (MSL) had landing location uncertainty ellipses on the order of hundreds of kilometers. Sending humans to the surface of Mars will likely require multiple landers delivered in close proximity, which will in turn require orders of magnitude improvement in landing accuracy. MSL was the first Mars mission to use an Apollo-derived bank angle guidance to reduce the size of the landing ellipse. It utilized commanded bank angle magnitude to control total range and bank angle reversals to control cross range. A shortcoming of this bank angle guidance is that the open loop phase of flight created by use of bank reversals increases targeting errors. This paper presents a comparison of entry, descent and landing performance for a vehicle with a low lift-to-drag ratio using both bank angle control and an alternative guidance called Direct Force Control (DFC). DFC eliminates the open loop flight errors by directly controlling two forces independently, lift and side force. This permits independent control of down range and cross range. Performance results, evaluated using the Program to Optimize Simulated Trajectories (POST2), including propellant use and landing accuracy, are presented.
NASA Astrophysics Data System (ADS)
Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.
2008-12-01
Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated growing degree-days based on the LST time series. Sixth, we used representative IPCC AR4 mid-century projections to force the quadratic models and produce possible future LSPs. The resulting shifts in potential peak vegetation to earlier dates indicate potential seasonal shifts in evapotranspiration.
High Resolution Land Surface Modeling with the next generation Land Data Assimilation Systems
NASA Astrophysics Data System (ADS)
Kumar, S. V.; Eylander, J.; Peters-Lidard, C.
2005-12-01
Knowledge of land surface processes is important to many real-world applications such as agricultural production, water resources management, and flood predication. The Air Force Weather Agency (AFWA) has provided the USDA and other customers global soil moisture and temperature data for the past 30 years using the agrometeorological data assimilation model (now called AGRMET), merging atmospheric data. Further, accurate initialization of land surface conditions has been shown to greatly influence and improve weather forecast model and seasonal-to-interannual climate predictions. The AFWA AGRMET model exploits real time precipitation observations and analyses, global forecast model and satellite data to generate global estimates of soil moisture, soil temperature and other land surface states at 48km spatial resolution. However, to truly address the land surface initialization and climate prediction problem, and to mitigate the errors introduced by the differences in spatial scales of models, representations of land surface conditions need to be developed at the same fine scales such as that of cloud resolving models. NASA's Goddard Space Flight Center has developed an offline land data assimilation system known as the Land Information System (LIS) capable of modeling land atmosphere interactions at spatial resolutions as fine as 1km. LIS provides a software architecture that integrates the use of the state of the art land surface models, data assimilation techniques, and high performance computing and data management tools. LIS also employs many high resolution surface parameters such as the NASA Earth Observing System (EOS)-era products. In this study we describe the development of a next generation high resolution land surface modeling and data assimilation system, combining the capabilities of LIS and AGRMET. We investigate the influence of high resolution land surface data and observations on the land surface conditions by comparing with the operational AGRMET outputs.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
Laser pulse bidirectional reflectance from CALIPSO mission
NASA Astrophysics Data System (ADS)
Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Vaughan, Mark; Liu, Zhaoyan; Rodier, Sharon; Hunt, William; Powell, Kathy; Lucker, Patricia; Trepte, Charles
2018-06-01
This paper presents an innovative retrieval method that translates the CALIOP land surface laser pulse returns into the surface bidirectional reflectance. To better analyze the surface returns, the CALIOP receiver impulse response and the downlinked samples' distribution at 30 m vertical resolution are discussed. The saturated laser pulse magnitudes from snow and ice surfaces are recovered based on information extracted from the tail end of the surface signal. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud-covered regions and MODIS BRDF-albedo model parameters. In addition to the surface bidirectional reflectance, the column top-of-atmosphere bidirectional reflectances are calculated from the CALIOP lidar background data and compared with the bidirectional reflectances derived from WFC radiance measurements. The retrieved CALIOP surface bidirectional reflectance and column top-of-atmosphere bidirectional reflectance results provide unique information to complement existing MODIS standard data products and are expected to have valuable applications for modelers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.
This document describes the contents of a digital database containing maximum potential aboveground biomass, land use, and estimated biomass and carbon data for 1980. The biomass data and carbon estimates are associated with woody vegetation in Tropical Africa. These data were collected to reduce the uncertainty associated with estimating historical releases of carbon from land use change. Tropical Africa is defined here as encompassing 22.7 x 10{sup 6} km{sup 2} of the earth's land surface and is comprised of countries that are located in tropical Africa (Angola, Botswana, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Congo, Benin, Equatorial Guinea,more » Ethiopia, Djibouti, Gabon, Gambia, Ghana, Guinea, Ivory Coast, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Niger, Nigeria, Guinea-Bissau, Zimbabwe (Rhodesia), Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Tanzania, Togo, Uganda, Burkina Faso (Upper Volta), Zaire, and Zambia). The database was developed using the GRID module in the ARC/INFO{trademark} geographic information system. Source data were obtained from the Food and Agriculture Organization (FAO), the U.S. National Geophysical Data Center, and a limited number of biomass-carbon density case studies. These data were used to derive the maximum potential and actual (ca. 1980) aboveground biomass values at regional and country levels. The land-use data provided were derived from a vegetation map originally produced for the FAO by the International Institute of Vegetation Mapping, Toulouse, France.« less
NASA Astrophysics Data System (ADS)
Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.
2016-12-01
The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.
Forward-looking Assimilation of MODIS-derived Snow Covered Area into a Land Surface Model
NASA Technical Reports Server (NTRS)
Zaitchik, Benjamin F.; Rodell, Matthew
2008-01-01
Snow cover over land has a significant impact on the surface radiation budget, turbulent energy fluxes to the atmosphere, and local hydrological fluxes. For this reason, inaccuracies in the representation of snow covered area (SCA) within a land surface model (LSM) can lead to substantial errors in both offline and coupled simulations. Data assimilation algorithms have the potential to address this problem. However, the assimilation of SCA observations is complicated by an information deficit in the observation SCA indicates only the presence or absence of snow, and not snow volume and by the fact that assimilated SCA observations can introduce inconsistencies with atmospheric forcing data, leading to non-physical artifacts in the local water balance. In this paper we present a novel assimilation algorithm that introduces MODIS SCA observations to the Noah LSM in global, uncoupled simulations. The algorithm utilizes observations from up to 72 hours ahead of the model simulation in order to correct against emerging errors in the simulation of snow cover while preserving the local hydrologic balance. This is accomplished by using future snow observations to adjust air temperature and, when necessary, precipitation within the LSM. In global, offline integrations, this new assimilation algorithm provided improved simulation of SCA and snow water equivalent relative to open loop integrations and integrations that used an earlier SCA assimilation algorithm. These improvements, in turn, influenced the simulation of surface water and energy fluxes both during the snow season and, in some regions, on into the following spring.
Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma
2010-01-01
In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.
LIS-HYMAP coupled Hydrological Modeling in the Nile River Basin and the Greater Horn of Africa
NASA Astrophysics Data System (ADS)
Jung, H. C.; Getirana, A.; Policelli, F. S.
2015-12-01
Water scarcity and resources in Africa have been exacerbated by periodic droughts and floods. However, few studies show the quantitative analysis of water balance or basin-scale hydrological modeling in Northeast Africa. The NASA Land Information System (LIS) is implemented to simulate land surface processes in the Nile River Basin and the Greater Horn of Africa. In this context, the Noah land surface model (LSM) and the Hydrological Modeling and Analysis Platform (HYMAP) are used to reproduce the water budget and surface water (rivers and floodplains) dynamics in that region. The Global Data Assimilation System (GDAS) meteorological dataset is used to force the system . Due to the unavailability of recent ground-based observations, satellite data are considered to evaluate first model outputs. Water levels at 10 Envisat virtual stations and water discharges at a gauging station are used to provide model performance coefficients (e.g. Nash-Sutcliffe, delay index, relative error). We also compare the spatial and temporal variations of flooded areas from the model with the Global Inundation Extent from Multi-Satellites (GIEMS) and the Alaska Satellite Facility (ASF)'s MEaSUREs Wetland data. Finally, we estimate surface water storage variations using a hypsographic curve approach with Shuttle Radar Topography Mission (SRTM) topographic data and evaluate the model-derived water storage changes in both river and floodplain. This study demonstrates the feasibility of using LIS-HYMAP coupled modeling to support seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes.
NASA Astrophysics Data System (ADS)
Ouma, Yashon O.
2016-01-01
Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.
Mapping the global depth to bedrock for land surface modelling
NASA Astrophysics Data System (ADS)
Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.
2017-12-01
Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.
Assessment of MERRA-2 Land Surface Energy Flux Estimates
NASA Technical Reports Server (NTRS)
Draper, Clara; Reichle, Rolf; Koster, Randal
2017-01-01
In MERRA-2, observed precipitation is inserted in place of model-generated precipitation at the land surface. The use of observed precipitation was originally developed for MERRA-Land(a land-only replay of MERRA with model-generated precipitation replaced with observations).Previously shown that the land hydrology in MERRA-2 and MERRA-Land is better than MERRA. We test whether the improved land surface hydrology in MERRA-2 leads to the expected improvements in the land surface energy fluxes and 2 m air temperatures (T2m).
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
Climatological Data for Clouds Over the Globe from Surface Observations (1988) (NDP-026)
Hahn, Carole J. [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Warren, Stephen G. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; London, Julius [Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, CO; Jenne, Ray L. [National Center for Atmospheric Research, Boulder, CO (United States); Chervin, Robert M. [National Center for Atmospheric Research, Boulder, CO (United States)
1988-01-01
With some data from as early as 1930, global long-term monthly and/or seasonal total cloud cover, cloud type amounts and frequencies of occurrence, low cloud base heights, harmonic analyses of annual and diurnal cycles, interannual variations and trends, and cloud type co-occurrences have been compiled and presented in two atlases (Warren et al. 1988, 1990). These data were derived from land and ship synoptic weather reports from the "SPOT" archive of the Fleet Numerical Oceanography Center (FNOC) and from Release 1 of the Comprehensive Ocean-Atmosphere Data Set (COADS) for the years 1930-1979. The data are in 12 files (one containing latitude, longitude, land-fraction, and number of land stations for grid boxes; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for land; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for oceans; one containing first cloud analyses for the first year of the GARP Global Experiment (FGGE); one containing cloud-type co-occurrences for land and oceans; and one containing a FORTRAN program to read and produce maps).
NASA Technical Reports Server (NTRS)
Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei
2012-01-01
This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. The anthropogenic heat discharge was estimated with a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. The building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/Energy Information Administration survey data, the Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data. The spatial patterns of anthropogenic heat discharge and energy use from residential and commercial buildings were analyzed and compared. Quantitative relationships were evaluated across multiple scales from pixel aggregation to census block. The results indicate that anthropogenic heat discharge is consistent with building energy use in terms of the spatial pattern, and that building energy use accounts for a significant fraction of anthropogenic heat discharge. The research also implies that the relationship between anthropogenic heat discharge and building energy use is scale-dependent. The simultaneous estimation of anthropogenic heat discharge and building energy use via two independent methods improves the understanding of the surface energy balance in an urban landscape. The anthropogenic heat discharge derived from remote sensing and meteorological data may be able to serve as a spatial distribution proxy for spatially-resolved building energy use, and even for fossil-fuel CO2 emissions if additional factors are considered.
Pal, Sandip
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie
2013-01-01
Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data. PMID:24386441
NASA Astrophysics Data System (ADS)
Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi
2018-04-01
The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.
Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; ...
2013-12-27
Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this paper, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptakemore » (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. In conclusion, this methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.« less
GLACE: The Global Land-Atmosphere Coupling Experiment. Part 1; Overview
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Guo, Zhi-Chang; Dirmeyer, Paul A.; Bonan, Gordon; Chan, Edmond; Cox, Peter; Davies, Harvey; Gordon, C. T.; Kanae, Shinjiro; Kowalczyk, Eva
2005-01-01
GLACE is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land-atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The twelve AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, enough similarity to pinpoint multi-model "hot spots" of land-atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model s coupling strength within the broad range of those documented here.
NASA Technical Reports Server (NTRS)
McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas
2012-01-01
The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission is currently under development by NASA. The primary mission of ICESat-2 will be to measure elevation changes of the Greenland and Antarctic ice sheets, document changes in sea ice thickness distribution, and derive important information about the current state of the global ice coverage. To make this important measurement, NASA is implementing a new type of satellite-based surface altimetry based on sensing of laser pulses transmitted to, and reflected from, the surface. Because the ICESat-2 measurement approach is different from that used for previous altimeter missions, a high-fidelity aircraft instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to demonstrate the measurement concept and provide verification of the ICESat-2 methodology. The MABEL instrument will serve as a prototype for the ICESat-2 mission and also provides a science tool for studies of land surface topography. This paper outlines the science objectives for the ICESat-2 mission, the current measurement concept for ICESat-2, and the instrument concept and preliminary data from MABEL.
Improving Frozen Precipitation Density Estimation in Land Surface Modeling
NASA Astrophysics Data System (ADS)
Sparrow, K.; Fall, G. M.
2017-12-01
The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in model derived estimates and GHCN-D observations were assessed using time-series graphs of 2016-2017 winter season SLR observations and climatological estimates, as well as calculating RMSE and variance between estimated and observed values.
Evolution of 2016 drought in the Southeastern United States from a Land surface modeling perspective
NASA Astrophysics Data System (ADS)
Case, Jonathan L.; Zavodsky, Bradley T.
2018-03-01
The Southeastern United States (SEUS) climate region experienced a marked transition from excessively wet conditions early in 2016 to an exceptional drought during the Autumn. The unusually warm and dry conditions led to numerous wildfires, including the devastating Gatlinburg, Tennessee (TN) firestorm on 28-29 November. The evolution of soil wetness anomalies are highlighted through soil moisture percentiles derived from an instance of NASA's Land Information System (LIS). A 33-year soil moisture climatology simulation combined with daily, real-time county-based distributions illustrate how soil moisture began above the 96th percentile early in 2016, and declined to below the 2nd percentile in many locales by late November.
Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.
2009-01-01
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
NASA Technical Reports Server (NTRS)
Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.
2009-01-01
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
Advances in land modeling of KIAPS based on the Noah Land Surface Model
NASA Astrophysics Data System (ADS)
Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi
2017-08-01
As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.
NASA Astrophysics Data System (ADS)
Hernandez-Marin, Martin; Burbey, Thomas J.
2009-12-01
Land subsidence and earth fissuring can cause damage in semiarid urbanized valleys where pumping exceeds natural recharge. In places such as Las Vegas Valley (USA), Quaternary faults play an important role in the surface deformation patterns by constraining the migration of land subsidence and creating complex relationships with surface fissures. These fissures typically result from horizontal displacements that occur in zones where extensional stress derived from groundwater flow exceeds the tensile strength of the near-surface sediments. A series of hypothetical numerical models, using the finite-element code ABAQUS and based on the observed conditions of the Eglington Fault zone, were developed. The models reproduced the (1) long-term natural recharge and discharge, (2) heavy pumping and (3) incorporation of artificial recharge that reflects the conditions of Las Vegas Valley. The simulated hydrostratigraphy consists of three aquifers, two aquitards and a relatively dry vadose zone, plus a normal fault zone that reflects the Quaternary Eglington fault. Numerical results suggest that a 100-m-wide fault zone composed of sand-like material produces: (1) conditions most similar to those observed in Las Vegas Valley and (2) the most favorable conditions for the development of fissures to form on the surface adjacent to the fault zone.
Huang, C.; Townshend, J.R.G.; Liang, S.; Kalluri, S.N.V.; DeFries, R.S.
2002-01-01
Measured and modeled point spread functions (PSF) of sensor systems indicate that a significant portion of the recorded signal of each pixel of a satellite image originates from outside the area represented by that pixel. This hinders the ability to derive surface information from satellite images on a per-pixel basis. In this study, the impact of the PSF of the Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m bands was assessed using four images representing different landscapes. Experimental results showed that though differences between pixels derived with and without PSF effects were small on the average, the PSF generally brightened dark objects and darkened bright objects. This impact of the PSF lowered the performance of a support vector machine (SVM) classifier by 5.4% in overall accuracy and increased the overall root mean square error (RMSE) by 2.4% in estimating subpixel percent land cover. An inversion method based on the known PSF model reduced the signals originating from surrounding areas by as much as 53%. This method differs from traditional PSF inversion deconvolution methods in that the PSF was adjusted with lower weighting factors for signals originating from neighboring pixels than those specified by the PSF model. By using this deconvolution method, the lost classification accuracy due to residual impact of PSF effects was reduced to only 1.66% in overall accuracy. The increase in the RMSE of estimated subpixel land cover proportions due to the residual impact of PSF effects was reduced to 0.64%. Spatial aggregation also effectively reduced the errors in estimated land cover proportion images. About 50% of the estimation errors were removed after applying the deconvolution method and aggregating derived proportion images to twice their dimensional pixel size. ?? 2002 Elsevier Science Inc. All rights reserved.
Quantifying uncertainties of permafrost carbon-climate feedbacks
NASA Astrophysics Data System (ADS)
Burke, Eleanor J.; Ekici, Altug; Huang, Ye; Chadburn, Sarah E.; Huntingford, Chris; Ciais, Philippe; Friedlingstein, Pierre; Peng, Shushi; Krinner, Gerhard
2017-06-01
The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land-atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN-JULES and IMOGEN-ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon-climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric - the frozen carbon residence time (FCRt) in years - that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change.
Gaddis, L.R.; Kirk, R.L.; Johnson, J. R.; Soderblom, L.A.; Ward, A.W.; Barrett, J.; Becker, K.; Decker, T.; Blue, J.; Cook, D.; Eliason, E.; Hare, T.; Howington-Kraus, E.; Isbell, C.; Lee, E.M.; Redding, B.; Sucharski, R.; Sucharski, T.; Smith, P.H.; Britt, D.T.
1999-01-01
The Imager for Mars Pathfinder (IMP) acquired more than 16,000 images and provided panoramic views of the surface of Mars at the Mars Pathfinder landing site in Ares Vallis. This paper describes the stereoscopic, multispectral IMP imaging sequences and focuses on their use for digital mapping of the landing site and for deriving cartographic products to support science applications of these data. Two-dimensional cartographic processing of IMP data, as performed via techniques and specialized software developed for ISIS (the U.S.Geological Survey image processing software package), is emphasized. Cartographic processing of IMP data includes ingestion, radiometric correction, establishment of geometric control, coregistration of multiple bands, reprojection, and mosaicking. Photogrammetric processing, an integral part of this cartographic work which utilizes the three-dimensional character of the IMP data, supplements standard processing with geometric control and topographic information [Kirk et al., this issue]. Both cartographic and photogrammetric processing are required for producing seamless image mosaics and for coregistering the multispectral IMP data. Final, controlled IMP cartographic products include spectral cubes, panoramic (360?? azimuthal coverage) and planimetric (top view) maps, and topographic data, to be archived on four CD-ROM volumes. Uncontrolled and semicontrolled versions of these products were used to support geologic characterization of the landing site during the nominal and extended missions. Controlled products have allowed determination of the topography of the landing site and environs out to ???60 m, and these data have been used to unravel the history of large- and small-scale geologic processes which shaped the observed landing site. We conclude by summarizing several lessons learned from cartographic processing of IMP data. Copyright 1999 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Maksimowicz, M.; Masarik, M. T.; Brandt, J.; Flores, A. N.
2016-12-01
Land use/land cover (LULC) change directly impacts the partitioning of surface mass and energy fluxes. Regional-scale weather and climate are potentially altered by LULC if the resultant changes in partitioning of surface energy fluxes are extensive enough. Dynamics of land use, particularly those related to the social dimensions of the Earth System, are often simplified or not represented in regional land-atmosphere models. This study explores the role of LULC change on a regional hydroclimate system, focusing on potential hydroclimate changes arising from an extended civil conflict in Mozambique. Civil war from 1977-1992 in Mozambique led to land use change at a regional scale as a result of the collapse of large herbivore populations due to poaching. Since the war ended, farming has increased, poaching was curtailed, and animal populations were reintroduced. In this study LULC in a region encompassing Gorongosa is classified at three instances between 1977 to 2015 using Landsat imagery. We use these derived LULC datasets to inform lower boundary conditions in the Weather Research and Forecasting (WRF) model. To quantify potential hydrometeorological changes arising from conflict-driven land use change, we performed a factorial-like experiment by mixing input LULC maps and atmospheric forcing data from before, during, and after the civil war. Analysis of the Landsat data shows measurable land cover change from 1977-present as tree cover encroached into grasslands. Initial tests show corresponding sensitivities to different LULC schemes within the WRF model. Preliminary results suggest that the war did indeed impact regional hydroclimate in a significant way via its direct and indirect impacts on land-atmosphere interactions. Results of this study suggest that LULC change arising from regional conflicts are a potentially understudied, yet important human process to capture in both regional reanalyses and climate change projections.
A global reconstruction of climate-driven subdecadal water storage variability
NASA Astrophysics Data System (ADS)
Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.
2017-03-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:
Kathleen M. Bergen; Daniel G. Brown; James F. Rutherford; Eric J. Gustafson
2005-01-01
A ca. 1980 national-scale land-cover classification based on aerial photo interpretation was combined with 2000 AVHRR satellite imagery to derive land cover and land-cover change information for forest, urban, and agriculture categories over a seven-state region in the U.S. To derive useful land-cover change data using a heterogeneous dataset and to validate our...
Application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry
NASA Technical Reports Server (NTRS)
Wier, C. E.; Wobber, F. J. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The most important result to date is the demonstration of the special value of repetitive ERTS-1 multiband coverage for detecting previously unknown fracture lineaments despite the presence of a deep glacial overburden. The Illinois Basin is largely covered with glacial drift and few rock outcrops are present. A contribution to the geological understanding of Illinois and Indiana has been made. Analysis of ERTS-1 imagery has provided useful information to the State of Indiana concerning the surface mined lands. The contrast between healthy vegetation and bare ground as imaged by Band 7 is sharp and substantial detail can be obtained concerning the extent of disturbed lands, associated water bodies, large haul roads, and extent of mined lands revegetation. Preliminary results of analysis suggest a reasonable correlation between image-detected fractures and mine roof fall accidents for a few areas investigated. ERTS-1 applications to surface mining operations appear probable, but further investigations are required. The likelihood of applying ERTS-1 derived fracture data to improve coal mine safety in the entire Illinois Basin is suggested from studies conducted in Indiana.
Carabajal, C.C.; Harding, D.J.; Boy, J.-P.; Danielson, Jeffrey J.; Gesch, D.B.; Suchdeo, V.P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (?? 86?? latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete ???50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m. ?? 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Harding, David J.; Boy, Jean-Paul; Danielson, Jeffrey J.; Gesch, Dean B.; Suchdeo, Vijay P.
2011-01-01
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m.
Climate Change Studies over Bangalore using Multi-source Remote Sensing Data and GIS
NASA Astrophysics Data System (ADS)
B, S.; Gouda, K. C.; Laxmikantha, B. P.; Bhat, N.
2014-12-01
Urbanization is a form of metropolitan growth that is a response to often bewildering sets of economic, social, and political forces and to the physical geography of an area. Some of the causes of the sprawl include - population growth, economy, patterns of infrastructure initiatives like the construction of roads and the provision of infrastructure using public money encouraging development. The direct implication of such urban sprawl is the change in land use and land cover of the region. In this study the long term climate data from multiple sources like NCEP reanalysis, IMD observations and various satellite derived products from MAIRS, IMD, ERSL and TRMM are considered and analyzed using the developed algorithms for the better understanding of the variability in the climate parameters over Bangalore. These products are further mathematically analyzed to arrive at desired results by extracting land surface temperature (LST), Potential evapo-transmission (PET), Rainfall, Humidity etc. Various satellites products are derived from NASA (National Aeronautics Space Agency), Indian meteorological satellites and global satellites are helpful in massive study of urban issues at global and regional scale. Climate change analysis is well studied by using either single source data such as Temperature or Rainfall from IMD (Indian Meteorological Department) or combined data products available as in case of MAIRS (Monsoon Asia Integrated Regional Scale) program to get rainfall at regional scale. Finally all the above said parameters are normalized and analyzed with the help of various open source available software's for pre and post processing our requirements to obtain desired results. A sample of analysis i.e. the Inter annual variability of annual averaged Temperature over Bangalore is presented in figure 1, which clearly shows the rising trend of the temperature (0.06oC/year). Also the Land use and land cover (LULC) analysis over Bangalore, Day light hours from satellite derived products are analyzed and the correlation of climate parameters with LULC are presented.
NASA Astrophysics Data System (ADS)
Mattar, C.; Duran-Alarcon, C.; Jimenez-Munoz, J. C.; Sobrino, J. A.
2013-12-01
The arctic tundra is one of the most sensible biome to climate conditions which has experienced important changes in the spatial distribution of temperature and vegetation in the last decades. In this paper we analyzed the spatio-temporal trend of the Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI) over the arctic tundra biome during the last decade (2001-2012) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land products MOD11C3 (LST) and MOD13C2 (NDVI) were used. Anomalies for each variable were analyzed at monthly level, and the magnitude and statistical significance of the trends were computed using the non-parametric tests of Sen's Slope and Mann-Kendal respectively. The results obtained from MODIS LST data showed a significant increase (p-value < 0.05) on surface temperature over the arctic tundra in the last decade. In the case of the NDVI, the trend was positive (increase on NDVI) but statistically not significant (p-value < 0.05). All tundra regions defined in the Circumpolar Arctic Vegetation Map have presented positive and statistically significant trends in NDVI and LST. Values of trends obtained from MODIS data over all the tundra regions were +1.10 [°C/dec] in the case of LST and +0.005 [NDVI value/dec] in the case of NDVI.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Box, Jason E.; Casey, Kimberly A.; Hook, Simon J.; Shuman, Christopher A.; Steffen, Konrad
2008-01-01
The most practical way to get a spatially broad and continuous measurements of the surface temperature in the data-sparse cryosphere is by satellite remote sensing. The uncertainties in satellite-derived LSTs must be understood to develop internally-consistent decade-scale land-surface temperature (LST) records needed for climate studies. In this work we assess satellite-derived "clear-sky" LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and LSTs derived from the Enhanced Thematic Mapper Plus (ETM+) over snow and ice on Greenland. When possible, we compare satellite-derived LSTs with in-situ air-temperature observations from Greenland Climate Network (GC-Net) automatic-weather stations (AWS). We find that MODIS, ASTER and ETM+ provide reliable and consistent LSTs under clear-sky conditions and relatively-flat terrain over snow and ice targets over a range of temperatures from -40 to 0 C. The satellite-derived LSTs agree within a relative RMS uncertainty of approx.0.5 C. The good agreement among the LSTs derived from the various satellite instruments is especially notable since different spectral channels and different retrieval algorithms are used to calculate LST from the raw satellite data. The AWS record in-situ data at a "point" while the satellite instruments record data over an area varying in size from: 57 X 57 m (ETM+), 90 X 90 m (ASTER), or to 1 X 1 km (MODIS). Surface topography and other factors contribute to variability of LST within a pixel, thus the AWS measurements may not be representative of the LST of the pixel. Without more information on the local spatial patterns of LST, the AWS LST cannot be considered valid ground truth for the satellite measurements, with RMS uncertainty approx.2 C. Despite the relatively large AWS-derived uncertainty, we find LST data are characterized by high accuracy but have uncertain absolute precision.
NASA Technical Reports Server (NTRS)
Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David
2014-01-01
The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pendleton, D.F.; Van Dyne, G.M.
1982-12-01
A study has been made of issues and researchable questions regarding the influence of potential CO/sub 2/-induced climatic change on grazing lands. Generalized scenarios of possible changes in climate in grazing land regions of the world were constructed based on published and ongoing investigations. These studies were of two general types: (i) general circulation climate, and (ii) analyses of historical data for periods which were warmer than average current conditions, based on the assumption that global warming can be expected. A review of scenarios derived from recent research suggests that surface temperature may increase and precipitation may decrease in somemore » important grazing land regions of the world. Research needs related specifically to climate in grazing lands were discussed. In the second workship, scientists discussed individual abiotic, autotrophic, and heterotrophic processes. Potential studies of these processes which were discussed included (i) work in the laboratory and the field, (ii) modelling, and (iii) analysis and synthesis of existing data bases and scientific literature. Both biological and socio-economic issues were discussed. Several overall conclusions were derived including the following: a planned, time-phased, and integrated study would be desirable to obtain the greatest amount of information for the least amount of funding in future investigations; a relatively small interdisciplinary group should be assembled consisting of individuals with backgrounds in such areas as meteorology, plant ecology, animal ecology, range science, economics, sociology, and systems analysis, and should operate over perhaps 10 years and draw upon specific short-term contractual inputs.« less
NASA Astrophysics Data System (ADS)
Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey
2017-01-01
Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey
2017-01-01
Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.
NASA Astrophysics Data System (ADS)
Shreve, Cheney
2010-12-01
With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover or sky conditions and variations may be large, e.g., for sparsely vegetated areas where net radiation is largely balanced by sensible heat flux (Hall et al 1992, Sun and Mahrt 1995, Jin et al 1997). Tskin can be higher than Taero at midday and lower at night (Sun and Mahrt 1995) and some models use Taero to approximate surface radiative temperature (Hubband and Monteith 1986). One of the strengths of the MODIS instrument is the simultaneous collection of surface and atmospheric conditions. By incorporating a range of MODIS variables in their comparison to Tskin, the authors examine the relationship of Tskin to atmospheric and surface conditions. Results from their global evaluation of Tskin highlight its variability on an inter-annual basis, its variation with solar zenith angle, and diurnal variations, which are not achievable with Tair measurements. Comparison with land cover type illustrates the seasonality of Tskin for different land covers. Comparison with the enhanced vegetation index (EVI) suggests more vegetation reduces skin temperature. Using the MODIS albedo, they demonstrate a clear relationship between yearly averaged Tskin and land surface albedo. Lastly, their examination of water vapor and cloud cover in comparison to Tskin suggests similar seasonality between these two variables. The MODIS Tskin product is not without uncertainty; retrieving Tskin requires a calculation of radiative transfer to account for atmospheric emission and molecular absorption, which is time and resource intensive (Jin and Dickinson 2010). Additionally, surface emissivity, instrument noise, and view angle geometry contribute to error in Tskin estimations (Jin and Dickinson 2010). The transparency of the scientific theory underlying this work, and the clear demonstration of the distinction between temperature measures on varying scales, demonstrates the usefulness of Tskin despite the uncertainties. Perhaps equally as important is the tone; in a time when the controversy surrounding climate change is peaking and the very ethics of the scientific community are being questioned, it is more critical than ever to be transparent in one's work and to assist the scientific community in understanding the tools we have available to us for investigating climate change. References Becker F and Li Z-L 1995 Surface temperature and emissivity at different scales: definition, measurement and related problems Remote Sensing Rev. 12 225-53 Goetz S J, Halthore R, Hall F G and Markham B L 1995 Surface temperature retrieval in a temperate grassland with multi-resolution sensors J. Geophys. Res. Atmos. 100 25397-410 Hall F G, Huemmrich K F, Goetz P J, Sellers P J and Nickeson J E 1992 Satellite remote sensing of the surface energy balance: success, failures and unresolved issues in FIFE J. Geophys. Res. Atmos. 97 19061-90 Jin M and Dickinson R E 2010 Land surface skin temperature climatology: benefitting from the strengths of satellite observations Environ. Res. Lett. 5 044004 Jin M, Dickinson R E and Vogelmann A M 1997 A comparison of CCM2/BATS skin temperature and surface-air temperature with satellite and surface observations J. Climate 10 1505-24 Hubband N D S and Monteith J L 1986 Radiative surface temperature and energy balance of a wheat canopy Boundary Layer Meteorol. 36 107-16 Peterson T C and Vose R S 1997 An overview of the Global Historical Climatology Network temperature data base Bull. Am. Meteorol. Soc. 78 2837-49 Peterson T C, Karl T R, Jamason P F, Knight R and Easterling D R 1998 The first difference method: maximizing station density for the calculation of long-term global temperature change J. Geophys. Res. Atmos. 103 25967-74 Sun J and Mahrt L 1995 Determination of surface fluxes from the surface radiative temperature Atmos. Sci. 52 1096-106 Wan Z and Dozier J 1996 A generalized split-window algorithm for retrieving land-surface temperature from space IEEE Trans. Geosci. Remote Sensing 34 892-905
Quality Assessment of Landsat Surface Reflectance Products Using MODIS Data
NASA Technical Reports Server (NTRS)
Feng, Min; Huang, Chengquan; Channan, Saurabh; Vermote, Eric; Masek, Jeffrey G.; Townshend, John R.
2012-01-01
Surface reflectance adjusted for atmospheric effects is a primary input for land cover change detection and for developing many higher level surface geophysical parameters. With the development of automated atmospheric correction algorithms, it is now feasible to produce large quantities of surface reflectance products using Landsat images. Validation of these products requires in situ measurements, which either do not exist or are difficult to obtain for most Landsat images. The surface reflectance products derived using data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), however, have been validated more comprehensively. Because the MODIS on the Terra platform and the Landsat 7 are only half an hour apart following the same orbit, and each of the 6 Landsat spectral bands overlaps with a MODIS band, good agreements between MODIS and Landsat surface reflectance values can be considered indicators of the reliability of the Landsat products, while disagreements may suggest potential quality problems that need to be further investigated. Here we develop a system called Landsat-MODIS Consistency Checking System (LMCCS). This system automatically matches Landsat data with MODIS observations acquired on the same date over the same locations and uses them to calculate a set of agreement metrics. To maximize its portability, Java and open-source libraries were used in developing this system, and object-oriented programming (OOP) principles were followed to make it more flexible for future expansion. As a highly automated system designed to run as a stand-alone package or as a component of other Landsat data processing systems, this system can be used to assess the quality of essentially every Landsat surface reflectance image where spatially and temporally matching MODIS data are available. The effectiveness of this system was demonstrated using it to assess preliminary surface reflectance products derived using the Global Land Survey (GLS) Landsat images for the 2000 epoch. As surface reflectance likely will be a standard product for future Landsat missions, the approach developed in this study can be adapted as an operational quality assessment system for those missions.
Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction
NASA Technical Reports Server (NTRS)
Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia
2012-01-01
Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry and wet land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through calibration of the Noah land surface model using the new optimization and uncertainty estimation subsystem in NASA's Land Information System (LIS-OPT/UE). The impact of the calibration on the a) spinup of the land surface used as initial conditions, and b) the simulated heat and moisture states and fluxes of the coupled WRF simulations is then assessed. Changes in ambient weather and land-atmosphere coupling are evaluated along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Results indicate that the offline calibration leads to systematic improvements in land-PBL fluxes and near-surface temperature and humidity, and in the process provide guidance on the questions of what, how, and when to calibrate land surface models for coupled model prediction.
Mapping extent and change in surface mines within the United States for 2001 to 2006
Soulard, Christopher E.; Acevedo, William; Stehman, Stephen V.; Parker, Owen P.
2016-01-01
A complete, spatially explicit dataset illustrating the 21st century mining footprint for the conterminous United States does not exist. To address this need, we developed a semi-automated procedure to map the country's mining footprint (30-m pixel) and establish a baseline to monitor changes in mine extent over time. The process uses mine seed points derived from the U.S. Energy Information Administration (EIA), U.S. Geological Survey (USGS) Mineral Resources Data System (MRDS), and USGS National Land Cover Dataset (NLCD) and recodes patches of barren land that meet a “distance to seed” requirement and a patch area requirement before mapping a pixel as mining. Seed points derived from EIA coal points, an edited MRDS point file, and 1992 NLCD mine points were used in three separate efforts using different distance and patch area parameters for each. The three products were then merged to create a 2001 map of moderate-to-large mines in the United States, which was subsequently manually edited to reduce omission and commission errors. This process was replicated using NLCD 2006 barren pixels as a base layer to create a 2006 mine map and a 2001–2006 mine change map focusing on areas with surface mine expansion. In 2001, 8,324 km2 of surface mines were mapped. The footprint increased to 9,181 km2 in 2006, representing a 10·3% increase over 5 years. These methods exhibit merit as a timely approach to generate wall-to-wall, spatially explicit maps representing the recent extent of a wide range of surface mining activities across the country.
Towards an purely data driven view on the global carbon cycle and its spatiotemporal variability
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Mahecha, Miguel; Reichstein, Markus; Avitabile, Valerio; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Jung, Martin; Landschützer, Peter; Laruelle, Goulven; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Regnier, Pierre; Rödenbeck, Christian; Cuesta, Rosa Maria Roman; Valentini, Ricardo
2015-04-01
Constraining carbon (C) fluxes between the Earth's surface and the atmosphere at regional scale via observations is essential for understanding the Earth's carbon budget and predicting future atmospheric C concentrations. Carbon budgets have often been derived based on merging observations, statistical models and process-based models, for example in the Global Carbon Project (GCP). However, it would be helpful to derive global C budgets and fluxes at global scale as independent as possible from model assumptions to obtain an independent reference. Long-term in-situ measurements of land and ocean C stocks and fluxes have enabled the derivation of a new generation of data driven upscaled data products. Here, we combine a wide range of in-situ derived estimates of terrestrial and aquatic C fluxes for one decade. The data were produced and/or collected during the FP7 project GEOCARBON and include surface-atmosphere C fluxes from the terrestrial biosphere, fossil fuels, fires, land use change, rivers, lakes, estuaries and open ocean. By including spatially explicit uncertainties in each dataset we are able to identify regions that are well constrained by observations and areas where more measurements are required. Although the budget cannot be closed at the global scale, we provide, for the first time, global time-varying maps of the most important C fluxes, which are all directly derived from observations. The resulting spatiotemporal patterns of C fluxes and their uncertainties inform us about the needs for intensifying global C observation activities. Likewise, we provide priors for inversion exercises or to identify regions of high (and low) uncertainty of integrated C fluxes. We discuss the reasons for regions of high observational uncertainties, and for biases in the budget. Our data synthesis might also be used as empirical reference for other local and global C budgeting exercises.
Prosdocimi, Massimo; Burguet, Maria; Di Prima, Simone; Sofia, Giulia; Terol, Enric; Rodrigo Comino, Jesús; Cerdà, Artemi; Tarolli, Paolo
2017-01-01
Soil water erosion is a serious problem, especially in agricultural lands. Among these, vineyards deserve attention, because they constitute for the Mediterranean areas a type of land use affected by high soil losses. A significant problem related to the study of soil water erosion in these areas consists in the lack of a standardized procedure of collecting data and reporting results, mainly due to a variability among the measurement methods applied. Given this issue and the seriousness of soil water erosion in Mediterranean vineyards, this works aims to quantify the soil losses caused by simulated rainstorms, and compare them with each other depending on two different methodologies: (i) rainfall simulation and (ii) surface elevation change-based, relying on high-resolution Digital Elevation Models (DEMs) derived from a photogrammetric technique (Structure-from-Motion or SfM). The experiments were carried out in a typical Mediterranean vineyard, located in eastern Spain, at very fine scales. SfM data were obtained from one reflex camera and a smartphone built-in camera. An index of sediment connectivity was also applied to evaluate the potential effect of connectivity within the plots. DEMs derived from the smartphone and the reflex camera were comparable with each other in terms of accuracy and capability of estimating soil loss. Furthermore, soil loss estimated with the surface elevation change-based method resulted to be of the same order of magnitude of that one obtained with rainfall simulation, as long as the sediment connectivity within the plot was considered. High-resolution topography derived from SfM revealed to be essential in the sediment connectivity analysis and, therefore, in the estimation of eroded materials, when comparing them to those derived from the rainfall simulation methodology. The fact that smartphones built-in cameras could produce as much satisfying results as those derived from reflex cameras is a high value added for using SfM. Copyright © 2016 Elsevier B.V. All rights reserved.
Mapping variation in radon potential both between and within geological units.
Miles, J C H; Appleton, J D
2005-09-01
Previously, the potential for high radon levels in UK houses has been mapped either on the basis of grouping the results of radon measurements in houses by grid squares or by geological units. In both cases, lognormal modelling of the distribution of radon concentrations was applied to allow the estimated proportion of houses above the UK radon Action Level (AL, 200 Bq m(-3)) to be mapped. This paper describes a method of combining the grid square and geological mapping methods to give more accurate maps than either method can provide separately. The land area is first divided up using a combination of bedrock and superficial geological characteristics derived from digital geological map data. Each different combination of geological characteristics may appear at the land surface in many discontinuous locations across the country. HPA has a database of over 430,000 houses in which long-term measurements of radon concentration have been made, and whose locations are accurately known. Each of these measurements is allocated to the appropriate bedrock--superficial geological combination underlying it. Taking each geological combination in turn, the spatial variation of radon potential is mapped, treating the combination as if it were continuous over the land area. All of the maps of radon potential within different geological combinations are then combined to produce a map of variation in radon potential over the whole land surface.
Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images
NASA Astrophysics Data System (ADS)
Saradjian, M. R.; Sherafati, Sh.
2015-12-01
Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.
NASA Technical Reports Server (NTRS)
Hu, Hua; Liu, W. Timothy
1999-01-01
Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.
NASA Technical Reports Server (NTRS)
Iacovazzi, Robert A., Jr.; Prabhakara, C.
2002-01-01
In this study, a model is developed to estimate mesoscale-resolution atmospheric latent heating (ALH) profiles. It utilizes rain statistics deduced from Tropical Rainfall Measuring Mission (TRMM) data, and cloud vertical velocity profiles and regional surface thermodynamic climatologies derived from other available data sources. From several rain events observed over tropical ocean and land, ALH profiles retrieved by this model in convective rain regions reveal strong warming throughout most of the troposphere, while in stratiform rain regions they usually show slight cooling below the freezing level and significant warming above. The mesoscale-average, or total, ALH profiles reveal a dominant stratiform character, because stratiform rain areas are usually much larger than convective rain areas. Sensitivity tests of the model show that total ALH at a given tropospheric level varies by less than +/- 10 % when convective and stratiform rain rates and mesoscale fractional rain areas are perturbed individually by +/- 15 %. This is also found when the non-uniform convective vertical velocity profiles are replaced by one that is uniform. Larger variability of the total ALH profiles arises when climatological ocean- and land-surface temperatures (water vapor mixing ratios) are independently perturbed by +/- 1.0 K (+/- 5%) and +/- 5.0 K (+/- 15%), respectively. At a given tropospheric level, such perturbations can cause a +/- 25% variation of total ALH over ocean, and a factor-of-two sensitivity over land. This sensitivity is reduced substantially if perturbations of surface thermodynamic variables do not change surface relative humidity, or are not extended throughout the entire model evaporation layer. The ALH profiles retrieved in this study agree qualitatively with tropical total diabatic heating profiles deduced in earlier studies. Also, from January and July 1999 ALH-profile climatologies generated separately with TRMM Microwave Imager and Precipitation Radar rain statistics, it is shown that ALH profiles can be retrieved utilizing diverse satellite-derived rain products that offer convective and stratiform discrimination. Therefore, the ALH retrieval model developed in this study can be used to make regional estimates of total diabatic heating profiles in the future Global Precipitation Measurement mission, and to assimilate these profiles into numerical weather forecast and climate models.
NASA Technical Reports Server (NTRS)
Iacovazzi, Robert A., Jr.; Prabhakara, C.; Lau, William K. M. (Technical Monitor)
2001-01-01
In this study, a model is developed to estimate mesoscale-resolution atmospheric latent heating (ALH) profiles. It utilizes rain statistics deduced from Tropical Rainfall Measuring Mission (TRMM) data, and cloud vertical velocity profiles and regional surface thermodynamic climatologies derived from other available data sources. From several rain events observed over tropical ocean and land, ALH profiles retrieved by this model in convective rain regions reveal strong warming throughout most of the troposphere, while in stratiform rain regions they usually show slight cooling below the freezing level and significant warming above. The mesoscale-average, or total, ALH profiles reveal a dominant stratiform character, because stratiform rain areas are usually much larger than convective rain areas. Sensitivity tests of the model show that total ALH at a given tropospheric level varies by less than +/- 10 % when convective and stratiform rain rates and mesoscale fractional rain areas are perturbed individually by 1 15 %. This is also found when the non-uniform convective vertical velocity profiles are replaced by one that is uniform. Larger variability of the total ALH profiles arises when climatological ocean- and land-surface temperatures (water vapor mixing ratios) are independently perturbed by +/- 1.0 K (+/- 5 %) and +/- 5.0 K (+/- 15 %), respectively. At a given tropospheric level, such perturbations can cause a +/- 25 % variation of total ALH over ocean, and a factor-of-two sensitivity over land. This sensitivity is reduced substantially if perturbations of surface thermodynamic variables do not change surface relative humidity, or are not extended throughout the entire model evaporation layer. The ALH profiles retrieved in this study agree qualitatively with tropical total diabatic heating profiles deduced in earlier studies. Also, from January and July 1999 ALH-profile climatologies generated separately with TRMM Microwave Imager and Precipitation Radar rain statistics, it is shown that ALH profiles can be retrieved utilizing diverse satellite-derived rain products that offer convective and stratiform discrimination. Therefore, the ALH retrieval model developed in this study can be used to make regional estimates of total diabatic heating profiles in the future Global Precipitation Measurement mission, and to assimilate these profiles into numerical weather forecast and climate models.