Science.gov

Sample records for derived plant sterol

  1. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.

    PubMed

    Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V

    2016-08-01

    Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses.

  2. Plant Sterols: Diversity, Biosynthesis, and Physiological Functions.

    PubMed

    Valitova, J N; Sulkarnayeva, A G; Minibayeva, F V

    2016-08-01

    Sterols, which are isoprenoid derivatives, are structural components of biological membranes. Special attention is now being given not only to their structure and function, but also to their regulatory roles in plants. Plant sterols have diverse composition; they exist as free sterols, sterol esters with higher fatty acids, sterol glycosides, and acylsterol glycosides, which are absent in animal cells. This diversity of types of phytosterols determines a wide spectrum of functions they play in plant life. Sterols are precursors of a group of plant hormones, the brassinosteroids, which regulate plant growth and development. Furthermore, sterols participate in transmembrane signal transduction by forming lipid microdomains. The predominant sterols in plants are β-sitosterol, campesterol, and stigmasterol. These sterols differ in the presence of a methyl or an ethyl group in the side chain at the 24th carbon atom and are named methylsterols or ethylsterols, respectively. The balance between 24-methylsterols and 24-ethylsterols is specific for individual plant species. The present review focuses on the key stages of plant sterol biosynthesis that determine the ratios between the different types of sterols, and the crosstalk between the sterol and sphingolipid pathways. The main enzymes involved in plant sterol biosynthesis are 3-hydroxy-3-methylglutaryl-CoA reductase, C24-sterol methyltransferase, and C22-sterol desaturase. These enzymes are responsible for maintaining the optimal balance between sterols. Regulation of the ratios between the different types of sterols and sterols/sphingolipids can be of crucial importance in the responses of plants to stresses. PMID:27677551

  3. Plant Sterol Diversity in Pollen from Angiosperms.

    PubMed

    Villette, Claire; Berna, Anne; Compagnon, Vincent; Schaller, Hubert

    2015-08-01

    Here we have examined the composition of free sterols and steryl esters of pollen from selected angiosperm species, as a first step towards a comprehensive analysis of sterol biogenesis in the male gametophyte. We detected four major sterol structural groups: cycloartenol derivatives bearing a 9β,19-cyclopropyl group, sterols with a double bond at C-7(8), sterols with a double bond at C-5(6), and stanols. All these groups were unequally distributed among species. However, the distribution of sterols as free sterols or as steryl esters in pollen grains indicated that free sterols were mostly Δ(5)-sterols and that steryl esters were predominantly 9β,19-cyclopropyl sterols. In order to link the sterol composition of a pollen grain at anthesis with the requirement for membrane lipid constituents of the pollen tube, we germinated pollen grains from Nicotiana tabacum, a model plant in reproductive biology. In the presence of radiolabelled mevalonic acid and in a time course series of measurements, we showed that cycloeucalenol was identified as the major neosynthesized sterol. Furthermore, the inhibition of cycloeucalenol neosynthesis by squalestatin was in full agreement with a de novo biogenesis and an apparent truncated pathway in the pollen tube.

  4. Plant Sterols, Stanols, and Sitosterolemia

    PubMed Central

    Ajagbe, Bridget O.; Othman, Rgia A.; Myrie, Semone B.

    2015-01-01

    Phytosterolemia (sitosterolemia) is a rare autosomal recessive sterol storage disease caused by mutations in either of the adenosine triphosphate (ATP) binding cassette transporter genes; (ABC)G5 or ABCG8, leading to impaired elimination of plant sterols and stanols, with their increased accumulation in the blood and tissues. Thus the disease is characterized by substantially elevated serum plant sterols and stanols, with moderate to high plasma cholesterol levels, and increased risk of premature atherosclerosis. Hematologic abnormalities including macrothrombocytopenia, stomatocytosis and hemolysis are frequently observed in sitosterolemia patients. Currently, ezetimibe, a sterol absorption inhibitor, is used as the routine treatment for sitosterolemia, with reported improvement in plant sterol levels and hemolytic parameters. This review summarizes the research related to the health impact of plant sterols and stanols on sitosterolemia. PMID:25941971

  5. Cholesterol-lowering effect of plant sterols.

    PubMed

    AbuMweis, Suhad S; Jones, Peter J H

    2008-12-01

    Plant sterols are plant components that have a chemical structure similar to cholesterol except for the addition of an extra methyl or ethyl group; however, plant sterol absorption in humans is considerably less than that of cholesterol. In fact, plant sterols reduce cholesterol absorption and thus reduce circulating levels of cholesterol. Earlier studies that have tested the efficacy of plant sterols as cholesterol-lowering agents incorporated plant sterols into fat spreads. Later on, plant sterols were added to other food matrices, including juices, nonfat beverages, milk and yogurt, cheese, meat, croissants and muffins, and cereal and chocolate bars. The beneficial physiologic effects of plant sterols could be further enhanced by combining them with other beneficial substances, such as olive and fish oils, fibers, and soy proteins, or with exercise. The addition of plant sterols to the diet is suggested by health experts as a safe and effective way to reduce the risk of coronary heart disease. PMID:18937893

  6. Plant sterols in food: No consensus in guidelines

    SciTech Connect

    Weingärtner, Oliver; Baber, Ronny; Teupser, Daniel

    2014-04-11

    Highlights: • Plant sterols are used as food supplement to reduce serum cholesterol levels. • Reductions in serum cholesterol levels are achieved at the expense of increased plant sterol levels. • The potential atherogenicity of increased serum plant sterol levels is controversially debated. • This dispute is reflected by different guideline recommendations in regard to plant sterols. - Abstract: Plant sterols are supplemented in foods to reduce cardiovascular risk. Randomized controlled trials show 2 g of plant sterols a day reduce serum cholesterol by about 10%. This reduction in serum cholesterol levels is achieved at the expense of increased serum plant sterol levels. Findings in patients with phytosterolemia, in experimental studies and in clinical trials have lead to speculations that plant sterols might be atherogenic. In view of emerging safety issues the role of plant sterols in cardiovascular prevention has become controversial. This review reflects the ongoing controversial scientific debate and points out recent developments in guidelines of national and international societies.

  7. A Reappraisal of the Mechanism by Which Plant Sterols Promote Neutral Sterol Loss in Mice

    PubMed Central

    Brufau, Gemma; Kuipers, Folkert; Lin, Yuguang; Trautwein, Elke A.; Groen, Albert K.

    2011-01-01

    Dietary plant sterols (PS) reduce serum total and LDL-cholesterol in hyperlipidemic animal models and in humans. This hypocholesterolemic effect is generally ascribed to inhibition of cholesterol absorption. However, whether this effect fully explains the reported strong induction of neutral sterol excretion upon plant sterol feeding is not known. Recent data demonstrate that the intestine directly mediates plasma cholesterol excretion into feces, i.e., without involvement of the hepato-biliary route. Objective Aim of this study was to determine whether stimulation of fecal neutral sterol loss during PS feeding is (partly) explained by increased intestinal cholesterol excretion and to assess the role of the cholesterol transporter Abcg5/Abcg8 herein. Methods and Results Wild-type mice were fed a control diet or diets enriched with increasing amounts of PS (1%, 2%, 4% or 8%, wt/wt) for two weeks. In addition, Abcg5-/- mice were fed either control or 8% PS diet. PS feeding resulted in a dose-dependent decrease of fractional cholesterol absorption (∼2–7-fold reduction) in wild-type mice and ∼80% reduction in Abcg5-/- mice. Furthermore, PS feeding led to a strong, dose-independent induction of neutral sterol excretion (3.4-fold in wild-types and 2.7-fold in Abcg5-/- mice) without changes in biliary cholesterol secretion. It was calculated that PS feeding stimulated intestinal cholesterol excretion by ∼500% in wild-type mice and by ∼250% in Abcg5-/-. Conclusions Our data indicate that in mice the cholesterol-lowering effects of PS are to a large extent attributable to stimulation of intestinal, non-bile derived, cholesterol excretion. The Abcg5/Abcg8 heterodimer is involved in facilitating this PS-induced flux of cholesterol. PMID:21738715

  8. Glycerol derivatives and sterols from Sargassum parvivesiculosum.

    PubMed

    Qi, Shu-Hua; Zhang, Si; Huang, Jian-She; Xiao, Zhi-Hui; Wu, Jun; Long, Li-Juan

    2004-08-01

    Five glycerol derivatives (1-5) and three sterols (6-8) were isolated from the EtOH extraction of the brown alga of Sargassum parvivesiculosum. On the basis of spectroscopic methods, their structures were elucidated as 1,3-di-O-[2',2'-di-(p-phenylene) isopropylidene] glycerol (1), (2S)-1-O-heptatriacontanoyl glycerol (2), (2S)-1,2-di-O-palmitoyl-3-O-(6-sulpho-alpha-D-quinovopyranosyl) glycerol (3), (2S)-1-O-palmitoyl glycerol (4), (2S)-1,3-di-(O-palmitoyl)-2-O-octadecanoyl glycerol (5), 24-ethylcholest-5,23Z-dien-3beta,28zeta-diol (6), 24-vinylcholest-5-en-24zeta-hydroperoxy (7), 24-ethylcholest-4,24(28)-dien-3beta-ol (8), respectively. Among them, 1 and 2 were new.

  9. Composition of Plant Sterols and Stanols in Supplemented Food Products.

    PubMed

    Moreau, Robert A

    2015-01-01

    All fruits, vegetables, grains and other plant materials contain small amounts of plant sterols, which are essential for the function of the biological membranes in living cells. The average human consumption of plant sterols has been estimated to be about 150-350 mg/day and trace amounts of stanols (which are defined as saturated sterols such as sitostanol), but this number varies regionally and is higher for vegetarians. When consumed in the diet, plant sterols reduce the levels of serum cholesterol. In 1995 the first functional food product, Benecol spread (enriched in plant stanol fatty acid esters), was developed by Raisio and marketed, first in Finland and then globally. Since then many other functional food products have been developed and are now available globally. In addition to stanol esters, other functional food products contain plant sterol esters and/or free (unesterified) plant sterols and stanols. In essentially all of the current functional foods that are enriched in sterols and stanols, the feedstock from which the sterols and stanols are obtained is either tall oil (a byproduct/coproduct of the pulping of pine wood) or vegetable oil deodorizer distillate (a byproduct/coproduct of the refining of vegetable oils).

  10. Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community.

    PubMed

    Janson, Eric M; Grebenok, Robert J; Behmer, Spencer T; Abbot, Patrick

    2009-11-01

    Insects lack the ability to synthesize sterols de novo, which are required as cell membrane inserts and as precursors for steroid hormones. Herbivorous insects typically utilize cholesterol as their primary sterol. However, plants rarely contain cholesterol, and herbivorous insects must, therefore, produce cholesterol by metabolizing plant sterols. Previous studies have shown that insects generally display diversity in phytosterol metabolism. Despite the biological importance of sterols, there has been no investigation of their metabolism in a naturally occurring herbivorous insect community. Therefore, we determined the neutral sterol profile of Solidago altissima L., six taxonomically and ecologically diverse herbivorous insect associates, and the fungal symbiont of one herbivore. Our results demonstrated that S. altissima contained Delta(7)-sterols (spinasterol, 22-dihydrospinasterol, avenasterol, and 24-epifungisterol), and that 85% of the sterol pool existed in a conjugated form. Despite feeding on a shared host plant, we observed significant variation among herbivores in terms of their qualitative tissue sterol profiles and significant variation in the cholesterol content. Cholesterol was absent in two dipteran gall-formers and present at extremely low levels in a beetle. Cholesterol content was highly variable in three hemipteran phloem feeders; even species of the same genus showed substantial differences in their cholesterol contents. The fungal ectosymbiont of a dipteran gall former contained primarily ergosterol and two ergosterol precursors. The larvae and pupae of the symbiotic gall-former lacked phytosterols, phytosterol metabolites, or cholesterol, instead containing an ergosterol metabolite in addition to unmetabolized ergosterol and erogsterol precursors, thus demonstrating the crucial role that a fungal symbiont plays in their nutritional ecology. These data are discussed in the context of sterol physiology and metabolism in insects, and the

  11. Use of Animal Models in Plant Sterol and Stanol Research.

    PubMed

    Solati, Zahra; Moghadasian, Mohammed H

    2015-01-01

    Cholesterol-lowering properties of plant sterols were reported approximately six decades ago. However, over the past couple of decades we have learnt more about other cardiovascular benefits of regular consumption of plant sterols and/or plant stanols. In particular a series of animal studies has consistently reported that dietary plant sterols and/or plant stanols or their fatty acid esters can reduce atherogenesis to a different extent in different animal models. Such effects may be mediated not only through reductions in LDL cholesterol levels, but also through other mechanisms including anti-inflammatory effects. In this manuscript, various animal models including mice, rabbits, hamsters, and others which have been used to establish cardiovascular benefits of plant sterols are discussed. PMID:25942701

  12. Reminiscences of research on the chemistry and biology of natural sterols in insects, plants and humans

    PubMed Central

    IKEKAWA, Nobuo; FUJIMOTO, Yoshinori; ISHIGURO, Masaji

    2013-01-01

    Natural sterols often occur as a heterogeneous mixture of homologs, which had disturbed the progress of steroid research. Development and application of GC methodology overcame this difficulty and enabled us to obtain detailed sterol profiles. Together, fine synthesis of stereo-defined isomers and homologs of steroids having oxygenated side chains allowed us to compare them with natural samples as well as to investigate structure-activity relationship. Advance of HPLC technology also facilitated the determination of the stereochemical structure of naturally occurring steroidal compounds, which were obtained only in minute amounts. This review highlights three topics out of our steroid research that have been performed mainly at Tokyo Institute of Technology around 1970–1990. These are sterol metabolism in insects focusing on the mechanism of the conversion of plant sterols to cholesterol and ecdysone biosynthesis, the synthesis and biochemical research of active forms of vitamin D3 derivatives, and the synthesis and microanalysis of plant hormone brassinosteroids. PMID:24126284

  13. Effect of plant sterols on the lipid profile of patients with hypercholesterolaemia. Randomised, experimental study

    PubMed Central

    2011-01-01

    Background Studies have been conducted on supplementing the daily diet with plant sterol ester-enriched milk derivatives in order to reduce LDL-cholesterol levels and, consequently, cardiovascular risk. However, clinical practice guidelines on hypercholesterolaemia state that there is not sufficient evidence to recommend their use in subjects with hypercholesterolaemia. The main objective of this study is to determine the efficacy of the intake of 2 g of plant sterol esters a day in lowering LDL-cholesterol levels in patients diagnosed with hypercholesterolaemia. The specific objectives are: 1) to quantify the efficacy of the daily intake of plant sterol esters in lowering LDL-cholesterol, total cholesterol and cardiovascular risk in patients with hypercholesterolaemia; 2) to evaluate the occurrence of adverse effects of the daily intake of plant sterol esters; 3) to identify the factors that determine a greater reduction in lipid levels in subjects receiving plant sterol ester supplements. Methods/Design Randomised, double-blind, placebo controlled experimental trial carried out at family doctors' surgeries at three health centres in the Health Area of Albacete (Spain). The study subjects will be adults diagnosed with "limit" or "defined" hypercholesterolaemia and who have LDL cholesterol levels of 130 mg/dl or over. A dairy product in the form of liquid yoghurt containing 2 g of plant sterol ester per container will be administered daily after the main meal, for a period of 24 months. The control group will receive a daily unit of yogurt not supplemented with plant sterol esters that has a similar appearance to the enriched yoghurt. The primary variable is the change in lipid profile at 1, 3, 6, 12, 18 and 24 months. The secondary variables are: change in cardiovascular risk, adherence to the dairy product, adverse effects, adherence to dietary recommendations, frequency of food consumption, basic physical examination data, health problems, lipid

  14. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  15. Plant Oxidosqualene Metabolism: Cycloartenol Synthase–Dependent Sterol Biosynthesis in Nicotiana benthamiana

    PubMed Central

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J.; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ5-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis. PMID:25343375

  16. The biosynthesis of sterols in higher plants

    PubMed Central

    Goad, L. J.; Goodwin, T. W.

    1966-01-01

    1. [2-14C]Mevalonate was incorporated into squalene and the major phytosterols of pea and maize leaves; it was also incorporated into compounds belonging to the 4,4-dimethyl and 4α-methyl steroid groups and which may be possible phytosterol intermediates. 2. l-[Me-14C]Methionine was incorporated into the major sterols and also into the 4,4-dimethyl and 4α-methyl steroid groups. No radioactivity was detected in squalene. 3. Under anaerobic conditions incorporation of [2-14C]-mevalonate into the non-saponifiable lipid of pea leaves was drastically decreased but radioactive squalene was accumulated. 4. Cycloartenol, 24-methylenecycloartanol, 24-methylenelophenol, 24-ethylidenelophenol, fucosterol, β-sitosterol, stigmasterol and campesterol have been identified by gas–liquid chromatography in pea leaves. 5. The significance of these results in connexion with phytosterol biosynthesis and the introduction of the alkyl group at C-24 into phytosterols is discussed. ImagesFig. 1. PMID:5964970

  17. Plant sterols and cardiovascular disease: a systematic review and meta-analysis†

    PubMed Central

    Genser, Bernd; Silbernagel, Günther; De Backer, Guy; Bruckert, Eric; Carmena, Rafael; Chapman, M. John; Deanfield, John; Descamps, Olivier S.; Rietzschel, Ernst R.; Dias, Karen C.; März, Winfried

    2012-01-01

    The impact of increased serum concentrations of plant sterols on cardiovascular risk is unclear. We conducted a systematic review and meta-analysis aimed to investigate whether there is an association between serum concentrations of two common plant sterols (sitosterol, campesterol) and cardiovascular disease (CVD). We systematically searched the databases MEDLINE, EMBASE, and COCHRANE for studies published between January 1950 and April 2010 that reported either risk ratios (RR) of CVD in relation to serum sterol concentrations (either absolute or expressed as ratios relative to total cholesterol) or serum sterol concentrations in CVD cases and controls separately. We conducted two meta-analyses, one based on RR of CVD contrasting the upper vs. the lower third of the sterol distribution, and another based on standardized mean differences between CVD cases and controls. Summary estimates were derived by fixed and random effects meta-analysis techniques. We identified 17 studies using different designs (four case–control, five nested case–control, three cohort, five cross-sectional) involving 11 182 participants. Eight studies reported RR of CVD and 15 studies reported serum concentrations in CVD cases and controls. Funnel plots showed evidence for publication bias indicating small unpublished studies with non-significant findings. Neither of our meta-analyses suggested any relationship between serum concentrations of sitosterol and campesterol (both absolute concentrations and ratios to cholesterol) and risk of CVD. Our systematic review and meta-analysis did not reveal any evidence of an association between serum concentrations of plant sterols and risk of CVD. PMID:22334625

  18. Serum lipid and antioxidant responses in hypercholesterolemic men and women receiving plant sterol esters vary by apolipoprotein E genotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant sterol esters reduce serum total cholesterol (TC) and LDL cholesterol (LDL-C), but with striking inter-individual variability. In this randomized, double-blind, controlled study, serum lipid, plant sterol, fat-soluble vitamin, and carotenoid responses to plant sterols were studied according to...

  19. Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems.

    PubMed

    Bui, Tham Thi; Suga, Keishi; Umakoshi, Hiroshi

    2016-06-21

    Liposomes are considered an ideal biomimetic environment and are potential functional carriers for important molecules such as steroids and sterols. With respect to the regulation of self-assembly via sterol insertion, several pathways such as the sterol biosynthesis pathway are affected by the physicochemical properties of the membranes. However, the behavior of steroid or sterol molecules (except cholesterol (Chl)) in the self-assembled membranes has not been thoroughly investigated. In this study, to analyze the fundamental behavior of steroid molecules in fluid membranes, Chl, lanosterol, and ergosterol were used as representative sterols in order to clarify how they regulate the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Membrane properties such as surface membrane fluidity, hydrophobicity, surface membrane polarity, inner membrane polarity, and inner membrane fluidity were investigated using fluorescent probes, including 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, 8-anilino-1-naphthalenesulfonic acid, 6-propionyl-2-(dimethylamino) naphthalene, 6-dodecanoyl-2-dimethylaminonaphthalene, and 1,6-diphenyl-1,3,5-hexatriene. The results indicated that each sterol derivative could regulate the membrane properties in different ways. Specifically, Chl successfully increased the packing of the DOPC/Chl membrane proportional to its concentration, and lanosterol and ergosterol showed lower efficiencies in ordering the membrane in hydrophobic regions. Given the different binding positions of the probes in the membranes, the differences in membrane properties reflected the relationship between sterol derivatives and their locations in the membrane.

  20. The biosynthesis, absorption, and origin of cholesterol and plant sterols in the Florida land crab.

    PubMed

    Douglass, T S; Connor, W E; Lin, D S

    1981-08-01

    In order to study the biosynthesis, composition, and origin of sterols in the Florida land crabs, Cardisoma guanhumi (Latreille), we fed 17 male crabs either a cholesterol-free or a high cholesterol diet for 2 to 7 weeks. The origin of sterols in these crabs, whether from biosynthesis or from the diet, was determined by tahree procedures: the incorporation of isotopic mevalonate into the cholesterol when the diet was cholesterol-free; the absorption of isotopic cholesterol and sitosterol from the diet; the cholesterol and plant sterol concentrations of hepatopancreas, plasma, and muscle under conditions of cholesterol-free and high cholesterol diets. In addition, the interconversion of cholesterol and sitosterol was investigated. Dietary sterols of plant and animal sources were readily absorbed and provided the major source of sterols for this species of crab. The biosynthesis of cholesterol from mevalonate in this crab was minimal. However, cholesterol was synthesized from dietary sitosterol by dealkylation. Cholesterol and the three plant sterols (24 epsilon-methyl cholesterol, stigmasterol, and sitosterol) were found in the hepatopancreas, plasma, and muscle of the crab. Plant sterols contributed from 9 to 37% of the total sterols in the hepatopancreas, plasma, and muscle of the crabs fed a cholesterol-free diet.

  1. Plant sterols and host plant suitability for generalist and specialist caterpillars.

    PubMed

    Jing, Xiangfeng; Grebenok, Robert J; Behmer, Spencer T

    2012-02-01

    Insects, unlike plants and vertebrates, lack the ability to biosynthesize sterols. Cholesterol is typically the most common sterol found in plant-feeding insects, but it is rarely found in plants above trace levels, so plant-feeding insects must produce the cholesterol they need by metabolizing the sterols found in the plants they eat. Plant-feeding insects are, however, often limited in terms of which sterols can be converted to cholesterol. In the current study we used a transgenic tobacco plant line that displays high levels of atypical plant steroids, specifically stanols and ketone-steroids, to explore how novel steroid structural features affect performance in three economically important caterpillars (Heliothis virescens, Spodoptera exigua, and Manduca sexta). For each species we measured pupation success, larval development, pupal mass, pupal development, and eclosion success. For the two generalists species (H. virescens and S. exigua) we also measured egg production and egg viability. We then used these eggs to replicate the experiment, so that we could examine the effect of parental steroid dietary history on survival, growth and reproduction of 2nd-generation individuals. Significant negative effects of novel steroids on larval and pupal performance were observed for each caterpillar in the first generation, although these were often subtle, and were not consistent between the three species. In the second generation, larval survival estimated by 'pupation number/plant' on the tobacco plants with novel steroids was significantly reduced, while eclosion success was significantly lower for H. virescens. With respect to adult reproduction (i.e. egg production and egg viability) there were no observed differences in the first generation, but novel steroids significantly negatively impacted reproduction in the second generation. The findings from this study, when integrated into a simple population growth model, demonstrate the potential in using plants with

  2. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...,” except that if the sole source of the plant sterols or stanols is vegetable oil, the claim may use the term “vegetable oil sterol esters” or “vegetable oil stanol esters”; (E) The claim does not attribute... supplies ___grams of vegetable oil sterol esters. (ii) Diets low in saturated fat and cholesterol...

  3. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...,” except that if the sole source of the plant sterols or stanols is vegetable oil, the claim may use the term “vegetable oil sterol esters” or “vegetable oil stanol esters”; (E) The claim does not attribute... supplies ___grams of vegetable oil sterol esters. (ii) Diets low in saturated fat and cholesterol...

  4. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...,” except that if the sole source of the plant sterols or stanols is vegetable oil, the claim may use the term “vegetable oil sterol esters” or “vegetable oil stanol esters”; (E) The claim does not attribute... supplies ___grams of vegetable oil sterol esters. (ii) Diets low in saturated fat and cholesterol...

  5. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...,” except that if the sole source of the plant sterols or stanols is vegetable oil, the claim may use the term “vegetable oil sterol esters” or “vegetable oil stanol esters”; (E) The claim does not attribute... supplies ___grams of vegetable oil sterol esters. (ii) Diets low in saturated fat and cholesterol...

  6. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...,” except that if the sole source of the plant sterols or stanols is vegetable oil, the claim may use the term “vegetable oil sterol esters” or “vegetable oil stanol esters”; (E) The claim does not attribute... supplies ___grams of vegetable oil sterol esters. (ii) Diets low in saturated fat and cholesterol...

  7. Postprandial plasma oxyphytosterol concentrations after consumption of plant sterol or stanol enriched mixed meals in healthy subjects.

    PubMed

    Baumgartner, Sabine; Mensink, Ronald P; Konings, Maurice; Schött, Hans-F; Friedrichs, Silvia; Husche, Constanze; Lütjohann, Dieter; Plat, Jogchum

    2015-07-01

    Epidemiological studies have reported inconsistent results on the relationship between increased plant sterol concentrations with cardiovascular risk, which might be related to the formation of oxyphytosterols (plant sterol oxidation products) from plant sterols. However, determinants of oxyphytosterol formation and metabolism are largely unknown. It is known, however, that serum plant sterol concentrations increase after daily consumption of plant sterol enriched products, while concentrations decrease after plant stanol consumption. Still, we have earlier reported that fasting oxyphytosterol concentrations did not increase after consuming a plant sterol- or a plant stanol enriched margarine (3.0g/d of plant sterols or stanols) for 4weeks. Since humans are in a non-fasting state for most part of the day, we have now investigated effects on oxyphytosterol concentrations during the postprandial state. For this, subjects consumed a shake (50g of fat, 12g of protein, 67g of carbohydrates), containing no, or 3.0g of plant sterols or plant stanols. Blood samples were taken up to 8h and after 4h subjects received a second shake (without plant sterols or plant stanols). Serum oxyphytosterol concentrations were determined in BHT-enriched EDTA plasma via GC-MS/MS. 7β-OH-campesterol and 7β-OH-sitosterol concentrations were significantly higher after consumption of a mixed meal enriched with plant sterol esters compared to the control and plant stanol ester meal. These increases were seen only after consumption of the second shake, illustrative for a second meal effect. Non-oxidized campesterol and sitosterol concentrations also increased after plant sterol consumption, in parallel with 7β-OH concentrations and again only after the second meal. Apparently, plant sterols and oxyphytosterols follow the same second meal effect as described for dietary cholesterol. However, the question remains whether the increase in oxyphytosterols in the postprandial phase is due to

  8. Postprandial plasma oxyphytosterol concentrations after consumption of plant sterol or stanol enriched mixed meals in healthy subjects.

    PubMed

    Baumgartner, Sabine; Mensink, Ronald P; Konings, Maurice; Schött, Hans-F; Friedrichs, Silvia; Husche, Constanze; Lütjohann, Dieter; Plat, Jogchum

    2015-07-01

    Epidemiological studies have reported inconsistent results on the relationship between increased plant sterol concentrations with cardiovascular risk, which might be related to the formation of oxyphytosterols (plant sterol oxidation products) from plant sterols. However, determinants of oxyphytosterol formation and metabolism are largely unknown. It is known, however, that serum plant sterol concentrations increase after daily consumption of plant sterol enriched products, while concentrations decrease after plant stanol consumption. Still, we have earlier reported that fasting oxyphytosterol concentrations did not increase after consuming a plant sterol- or a plant stanol enriched margarine (3.0g/d of plant sterols or stanols) for 4weeks. Since humans are in a non-fasting state for most part of the day, we have now investigated effects on oxyphytosterol concentrations during the postprandial state. For this, subjects consumed a shake (50g of fat, 12g of protein, 67g of carbohydrates), containing no, or 3.0g of plant sterols or plant stanols. Blood samples were taken up to 8h and after 4h subjects received a second shake (without plant sterols or plant stanols). Serum oxyphytosterol concentrations were determined in BHT-enriched EDTA plasma via GC-MS/MS. 7β-OH-campesterol and 7β-OH-sitosterol concentrations were significantly higher after consumption of a mixed meal enriched with plant sterol esters compared to the control and plant stanol ester meal. These increases were seen only after consumption of the second shake, illustrative for a second meal effect. Non-oxidized campesterol and sitosterol concentrations also increased after plant sterol consumption, in parallel with 7β-OH concentrations and again only after the second meal. Apparently, plant sterols and oxyphytosterols follow the same second meal effect as described for dietary cholesterol. However, the question remains whether the increase in oxyphytosterols in the postprandial phase is due to

  9. Unsaturated lipid matrices protect plant sterols from degradation during heating treatment.

    PubMed

    Barriuso, Blanca; Astiasarán, Iciar; Ansorena, Diana

    2016-04-01

    The interest in plant sterols enriched foods has recently enhanced due to their healthy properties. The influence of the unsaturation degree of different fatty acids methyl esters (FAME: stearate, oleate, linoletate and linolenate) on a mixture of three plant sterols (PS: campesterol, stigmasterol and β-sitosterol) was evaluated at 180 °C for up to 180 min. Sterols degraded slower in the presence of unsaturated FAME. Both PS and FAME degradation fit a first order kinetic model (R(2)>0.9). Maximum oxysterols concentrations were achieved at 20 min in neat PS and 120 min in lipid mixtures and this maximum amount decreased with increasing their unsaturation degree. In conclusion, the presence of FAME delayed PS degradation and postponed oxysterols formation. This protective effect was further promoted by increasing the unsaturation degree of FAME. This evidence could help industries to optimize the formulation of sterol-enriched products, so that they could maintain their healthy properties during cooking or processing.

  10. Plant sterols: factors affecting their efficacy and safety as functional food ingredients

    PubMed Central

    Berger, Alvin; Jones, Peter JH; Abumweis, Suhad S

    2004-01-01

    Plant sterols are naturally occurring molecules that humanity has evolved with. Herein, we have critically evaluated recent literature pertaining to the myriad of factors affecting efficacy and safety of plant sterols in free and esterified forms. We conclude that properly solubilized 4-desmetyl plant sterols, in ester or free form, in reasonable doses (0.8–1.0 g of equivalents per day) and in various vehicles including natural sources, and as part of a healthy diet and lifestyle, are important dietary components for lowering low density lipoprotein (LDL) cholesterol and maintaining good heart health. In addition to their cholesterol lowering properties, plant sterols possess anti-cancer, anti-inflammatory, anti-atherogenicity, and anti-oxidation activities, and should thus be of clinical importance, even for those individuals without elevated LDL cholesterol. The carotenoid lowering effect of plant sterols should be corrected by increasing intake of food that is rich in carotenoids. In pregnant and lactating women and children, further study is needed to verify the dose required to decrease blood cholesterol without affecting fat-soluble vitamins and carotenoid status. PMID:15070410

  11. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  12. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane.

  13. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    PubMed Central

    Grattan, Bruce J.

    2013-01-01

    While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role. PMID:23434903

  14. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation.

    PubMed

    Stong, Rachel A; Kolodny, Eli; Kelsey, Rick G; González-Hernández, M P; Vivanco, Jorge M; Manter, Daniel K

    2013-06-01

    Elicitin-mediated acquisition of plant sterols is required for growth and sporulation of Phytophthora spp. This study examined the interactions between elicitins, sterols, and tannins. Ground leaf tissue, sterols, and tannin-enriched extracts were obtained from three different plant species (California bay laurel, California black oak, and Oregon white oak) in order to evaluate the effect of differing sterol/tannin contents on Phytophthora ramorum growth. For all three species, high levels of foliage inhibited P. ramorum growth and sporulation, with a steeper concentration dependence for the two oak samples. Phytophthora ramorum growth and sporulation were inhibited by either phytosterols or tannin-enriched extracts. High levels of sterols diminished elicitin gene expression in P. ramorum; whereas the tannin-enriched extract decreased the amount of 'functional' or ELISA-detectable elicitin, but not gene expression. Across all treatment combinations, P. ramorum growth and sporulation correlated strongly with the amount of ELISA-detectable elicitin (R (2) = 0.791 and 0.961, respectively).

  15. Effect of plant sterols and tannins on Phytophthora ramorum growth and sporulation.

    PubMed

    Stong, Rachel A; Kolodny, Eli; Kelsey, Rick G; González-Hernández, M P; Vivanco, Jorge M; Manter, Daniel K

    2013-06-01

    Elicitin-mediated acquisition of plant sterols is required for growth and sporulation of Phytophthora spp. This study examined the interactions between elicitins, sterols, and tannins. Ground leaf tissue, sterols, and tannin-enriched extracts were obtained from three different plant species (California bay laurel, California black oak, and Oregon white oak) in order to evaluate the effect of differing sterol/tannin contents on Phytophthora ramorum growth. For all three species, high levels of foliage inhibited P. ramorum growth and sporulation, with a steeper concentration dependence for the two oak samples. Phytophthora ramorum growth and sporulation were inhibited by either phytosterols or tannin-enriched extracts. High levels of sterols diminished elicitin gene expression in P. ramorum; whereas the tannin-enriched extract decreased the amount of 'functional' or ELISA-detectable elicitin, but not gene expression. Across all treatment combinations, P. ramorum growth and sporulation correlated strongly with the amount of ELISA-detectable elicitin (R (2) = 0.791 and 0.961, respectively). PMID:23689874

  16. History and development of plant sterol and stanol esters for cholesterol-lowering purposes.

    PubMed

    Thompson, Gilbert R; Grundy, Scott M

    2005-07-01

    Plant stanol esters provide a novel approach to lowering plasma low-density lipoprotein (LDL) cholesterol by dietary means. Their development was preceded by a long period of research into the cholesterol-lowering properties of plant sterols and, recently, plant stanols. Both classes of compound competitively inhibit the absorption of cholesterol and thus lower its level in plasma. Initial impressions were that stanols were more effective and safer than sterols, but the negative outcome of a study led to the recognition that the lipid solubility of free stanols was very limited. This was overcome by esterifying them with fatty acids, with the resultant stanol esters being freely soluble in fat spreads. This led to the launch of Benecol (margarine; Raisio Group, Raisio, Finland) in 1995. The coincident publication of the year-long North Karelia study conclusively demonstrated the long-term LDL-lowering efficacy of plant stanol esters. Variables that might influence the efficacy of stanol esters include dose, frequency of administration, food vehicle in which the stanol ester is incorporated, and background diet. The effective dose is 1 to 3 g/day, expressed as free stanol, which, in placebo-controlled studies, decreased LDL cholesterol by 6% to 15%. This effect is maintained, appears to be similar with once-daily or divided dosage, and is independent of the fat content of the food vehicle. Short-term studies suggest that equivalent amounts of plant sterol and stanol esters are similarly effective in lowering LDL, the main difference being that plasma plant sterol levels increase on plant sterols and decrease on plant stanols. The clinical significance of these changes remains to be determined.

  17. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  18. Differential Modulation of Membrane Structure and Fluctuations by Plant Sterols and Cholesterol

    PubMed Central

    Hodzic, Aden; Rappolt, Michael; Amenitsch, Heinz; Laggner, Peter; Pabst, Georg

    2008-01-01

    We have studied the concentration and temperature dependent influence of cholesterol, stigmasterol, and sitosterol on the global structure and the bending fluctuations of fluid dimyristoyl phosphatidylcholine and palmitoyl oleoyl phosphatidylcholine bilayers applying small-angle x-ray scattering, as well as dilatometry and ultrasound velocimetry. Independent of the lipid matrix, cholesterol was found to be most efficient in modulating bilayer thickness and elasticity, followed by sitosterol and stigmasterol. This can be attributed to the additional ethyl groups and double bond at the C17 alkyl side-chain of the two plant sterols. Hence, it seems that some flexibility of the sterol hydrocarbon chain is needed to accommodate within the lipid bilayer. In addition, we did not observe two populations of membranes within the putative liquid-ordered/liquid-disordered phase coexistence regime of binary sterol/lipid mixtures. Instead, the diffraction patterns could be interpreted in terms of a uniform phase. This lends further support to the idea of compositional fluctuations of unstable sterol rich domains recently brought up by fluorescence microscopy experiments, which contrasts the formation of stable domains within the miscibility gap of binary lipid/sterol mixtures. PMID:18234811

  19. Cell-free transfer of sterols by plant fractions

    SciTech Connect

    Morre, D.J.; Wilkinson, F.E.; Morre, D.M. ); Moreau, P. ); Sandelius, A.S. ); Penel, C.; Greppin, H. )

    1990-05-01

    Microsomes from etiolated hypocotyls of soybean or leaves of light-grown spinach radiolabeled in vivo with ({sup 3}H)acetate or in vitro with ({sup 3}H)squalene or ({sup 3}H)cholesterol as donor transferred radioactivity to unlabeled acceptor membranes immobilized on nitrocellulose. Most efficient transfer was with plasma membrane or tonoplast as the acceptor. The latter were highly purified by aqueous two-phase partition (plasma membrane) and preparative free-flow electrophoresis (tonoplast and plasma membrane). Plasma membrane- and tonoplast-free microsomes and purified mitochondria were less efficient acceptors. Sterol transfer was verified by thin-layer chromatography of extracted lipids. Transfer was time- and temperature-dependent, required ATP but was not promoted by cytosol. The nature of the donor (endoplasmic reticulum, Golgi apparatus or both) and of the transfer mechanism is under investigation.

  20. Plant Growth Retardants as Inhibitors of Sterol Biosynthesis in Tobacco Seedlings 12

    PubMed Central

    Douglas, Trevor J.; Paleg, Leslie G.

    1974-01-01

    Three plant-growth retardants 2′-isopropy1-4′-(trimethylammonium chloride)-5-methylphenylpiperidine carboxylate (Amo 1618), β-chloroethyltrimethylammonium chloride, and tributyl-2, 4-dichlorobenzylphosphonium chloride were tested for their effects on sterol production in, and growth of tobacco (Nicotiana tabacum) seedlings. As the concentration of each retardant increased, there was an increased inhibition of the incorporation of dl-2-14C-mevalonic acid into sterol (particularly desmethylsterol) fractions and an increased retardation of stem growth. Growth retardation was observed with both single and repeated retardant treatments, and with Amo 1618, in particular, a close quantitative relationship between inhibition of sterol biosynthesis and stem growth was obtained. Gibberellic acid completely overcame retardant effects and application of sterols also restored normal growth. It is concluded that the concept of causality in the relationship between growth retardation and gibberellin biosynthesis is probably premature, since growth retardants have a more general inhibitory action on isoprenoid biosynthesis in plants. PMID:16658867

  1. A dynamic role for sterols in embryogenesis of Pisum sativum.

    PubMed

    Schrick, Kathrin; Cordova, Cindy; Li, Grace; Murray, Leigh; Fujioka, Shozo

    2011-04-01

    Molecular roles of sterols in plant development remain to be elucidated. To investigate sterol composition during embryogenesis, the occurrence of 25 steroid compounds in stages of developing seeds and pods of Pisum sativum was examined by GC-MS analysis. Immature seeds containing very young embryos exhibited the greatest concentrations of sterols. Regression models indicated that the natural log of seed or pod fr. wt was a consistent predictor of declining sterol content during embryonic development. Although total sterol levels were reduced in mature embryos, the composition of major sterols sitosterol and campesterol remained relatively constant in all 12 seed stages examined. In mature seeds, a significant decrease in isofucosterol was observed, as well as minor changes such as increases in cycloartenol branch sterols and campesterol derivatives. In comparison to seeds and pods, striking differences in composition were observed in sterol profiles of stems, shoots, leaves, flowers and flower buds, as well as cotyledons versus radicles. The highest levels of isofucosterol, a precursor to sitosterol, occurred in young seeds and flower buds, tissues that contain rapidly dividing cells and cells undergoing differentiation. Conversely, the highest levels of stigmasterol, a derivative of sitosterol, were found in fully-differentiated leaves while all seed stages exhibited low levels of stigmasterol. The observed differences in sterol content were correlated to mRNA expression data for sterol biosynthesis genes from Arabidopsis. These findings implicate the coordinated expression of sterol biosynthesis enzymes in gene regulatory networks underlying the embryonic development of flowering plants.

  2. Effect of plant sterol-enriched diets on plasma and egg yolk cholesterol concentrations and cholesterol metabolism in laying hens.

    PubMed

    Liu, X; Zhao, H L; Thiessen, S; House, J D; Jones, P J H

    2010-02-01

    Egg exists as a major dietary source of cholesterol in Western diets. In North America, laying hen diets are usually devoid of cholesterol when diets are formulated to exclude animal-based products. Hence, laying hens meet their physiological cholesterol requirement through de novo synthesis. Plant sterols exert a cholesterol-lowering effect in humans by interfering with intestinal sterol absorption. However, it is unknown whether plant sterol supplementation could be effective in reducing intestinal reabsorption of biliary cholesterol in laying hens, thus modulating whole body cholesterol in favor of lower plasma and yolk cholesterol content. The current study was designed to investigate the effect of diets enriched with 0, 0.5, 1, and 2% plant sterols on cholesterol absorption, synthesis, as well as plasma, liver, and egg yolk cholesterol concentrations in laying hens. After 8 wk of plant sterol intervention (first 2 wk were acclimatization), feed intake, BW, egg weight, egg yolk weight, egg production, Haugh units, liver mass, plasma, and hepatic cholesterol concentrations did not differ as a function of plant sterol supplementation. Egg cholesterol concentrations (mg/g) fluctuated during the 6-wk experimental period. At wk 6, a minor reduction in egg yolk cholesterol concentration (mg per g of yolk, P<0.05, vs. control) was observed in hens fed 1 and 2% cholesterol-enriched diets, respectively. However, such result failed to affect total egg cholesterol content. No statistical difference was observed across treatments over 6 wk. Neither cholesterol absorption rates nor synthesis differed as a function of treatment. Results suggested that overall cholesterol content in egg yolk was not affected by feeding hens plant sterol-enriched diets over 6 wk. PMID:20075279

  3. Topsensterols A–C, Cytotoxic Polyhydroxylated Sterol Derivatives from a Marine Sponge Topsentia sp.

    PubMed Central

    Chen, Min; Wu, Xu-Dong; Zhao, Qing; Wang, Chang-Yun

    2016-01-01

    Three new polyhydroxylated sterol derivatives topsensterols A–C (1–3) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols A–C (l–3) possess novel 2β,3α,4β,6α-tetrahydroxy-14α-methyl Δ9(11) steroidal nuclei with unusual side chains. Compound 2 exhibited cytotoxicity against human gastric carcinoma cell line SGC-7901 with an IC50 value of 8.0 μM. Compound 3 displayed cytotoxicity against human erythroleukemia cell line K562 with an IC50 value of 6.0 μM. PMID:27490555

  4. Topsensterols A-C, Cytotoxic Polyhydroxylated Sterol Derivatives from a Marine Sponge Topsentia sp.

    PubMed

    Chen, Min; Wu, Xu-Dong; Zhao, Qing; Wang, Chang-Yun

    2016-01-01

    Three new polyhydroxylated sterol derivatives topsensterols A-C (1-3) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols A-C (l-3) possess novel 2β,3α,4β,6α-tetrahydroxy-14α-methyl Δ(9(11)) steroidal nuclei with unusual side chains. Compound 2 exhibited cytotoxicity against human gastric carcinoma cell line SGC-7901 with an IC50 value of 8.0 μM. Compound 3 displayed cytotoxicity against human erythroleukemia cell line K562 with an IC50 value of 6.0 μM. PMID:27490555

  5. Topsensterols A-C, Cytotoxic Polyhydroxylated Sterol Derivatives from a Marine Sponge Topsentia sp.

    PubMed

    Chen, Min; Wu, Xu-Dong; Zhao, Qing; Wang, Chang-Yun

    2016-01-01

    Three new polyhydroxylated sterol derivatives topsensterols A-C (1-3) have been isolated from a marine sponge Topsentia sp. collected from the South China Sea. Their structures were elucidated by detailed analysis of the spectroscopic data, especially the NOESY spectra. Topsensterols A-C (l-3) possess novel 2β,3α,4β,6α-tetrahydroxy-14α-methyl Δ(9(11)) steroidal nuclei with unusual side chains. Compound 2 exhibited cytotoxicity against human gastric carcinoma cell line SGC-7901 with an IC50 value of 8.0 μM. Compound 3 displayed cytotoxicity against human erythroleukemia cell line K562 with an IC50 value of 6.0 μM.

  6. Effects of a Plant Sterol or Stanol Enriched Mixed Meal on Postprandial Lipid Metabolism in Healthy Subjects

    PubMed Central

    Baumgartner, Sabine; Mensink, Ronald P.; Plat, Jogchum

    2016-01-01

    Background Evidence is increasing that plant sterols and stanols not only lower fasting serum low-density lipoprotein concentrations, but also those of triglycerides (TG). Insight into effects of these components on postprandial TG metabolism, an emerging risk factor for cardiovascular disease, is missing. Objective Our objective was to examine the 8-hour postprandial response after consuming plant sterol or stanol enriched margarine as part of a mixed meal. Methods This postprandial study was part of a randomized crossover study in which 42 subjects consumed plant sterol enriched (3 g/d plant sterols), plant stanol enriched (3 g/d plant stanols), and control margarines for 4 weeks. After each period, subjects consumed a shake enriched with 3g plant sterols (sterol period), 3g plant stanols (stanol period) or no addition (control period). Subjects received a second shake with no addition after 4 hours. Results TG and apoB48 incremental areas under the curves (iAUC) of the total (0-8h) and 1st meal response (0-4h) were comparable between the meals and in all age categories (I:18-35y, II:36-52y, III:53-69y). In subjects aged 53-69y, TG iAUC after the 2nd meal (4-8h) was higher in the stanol period as compared with the sterol (63.1±53.0 mmol/L/min; P < 0.01) and the control period (43.2±52.4 mmol/L/min; P < 0.05). ApoB48 iAUC after the 2nd meal was higher after the stanol than after the sterol period (67.1±77.0 mg/L/min; P < 0.05) and tended to be higher than after the control period (43.1±64.5 mg/L/min; P = 0.08) in subjects aged 53-69y. These increased postprandial responses may be due to reduced lipoprotein lipase activity, since postprandial apoCIII/II ratios were increased after stanol consumption compared with the control meal. Conclusion Postprandial TG and apoB48 responses are age-dependently increased after plant stanol consumption, which might be related to a changed clearance of triglyceride-rich lipoproteins. Trial Registration ClinicalTrials.gov NCT

  7. Sterols as biomarkers in the surface microlayer of the estuarine areas.

    PubMed

    Alsalahi, Murad Ali; Latif, Mohd Talib; Ali, Masni Mohd; Dominick, Doreena; Khan, Md Firoz; Mustaffa, Nur Ili Hamizah; Nadzir, Mohd Shahrul Mohd; Nasher, Essam; Zakaria, Mohamad Pauzi

    2015-04-15

    This study aims to determine the concentration of sterols used as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. Samples were collected during different seasons through the use of a rotation drum. The analysis of sterols was performed using gas chromatography equipped with a flame ionisation detector (GC-FID). The results showed that the concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L(-1). The total sterol concentration was found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).

  8. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters.

    PubMed

    Lin, Yuguang; Knol, Diny; Menéndez-Carreño, María; Blom, Wendy A M; Matthee, Joep; Janssen, Hans-Gerd; Trautwein, Elke A

    2016-01-27

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median POP contents per portion size of cooked foods were 0.57 mg (range 0.05-1.11 mg) with control margarine versus 1.42 mg (range 0.08-20.5 mg) with PS-margarine. The oxidation rate of PS (ORP) was 0.50% (median) with the PS-margarine and 3.66% with the control margarine. Using the PS-margarine, microwave-cooked codfish had the lowest POP content, with 0.08 mg per portion, while shallow-fried potatoes had the highest POP content, 20.5 mg per portion. Median POP contents in cookies, muffins, banana bread, and sponge cake baked with the control or PS-margarine were 0.12 mg (range 0.11-0.21 mg) and 0.24 mg (range 0.19-0.60 mg) per portion, with a corresponding ORP of 1.38% and 0.06%, respectively. POP contents in all the cooked and baked foods did not exceed 20.5 mg per typical portion size. A wide variation in the distribution of individual POP among different foods existed, with 7-keto-PS and 5,6-epoxy-PS being the major oxidation products.

  9. Formation of Plant Sterol Oxidation Products in Foods during Baking and Cooking Using Margarine without and with Added Plant Sterol Esters.

    PubMed

    Lin, Yuguang; Knol, Diny; Menéndez-Carreño, María; Blom, Wendy A M; Matthee, Joep; Janssen, Hans-Gerd; Trautwein, Elke A

    2016-01-27

    Plant sterols (PS) in foods are subject to thermal oxidation to form PS oxidation products (POP). This study measured POP contents of 19 foods prepared by typical household baking and cooking methods using margarines without (control) and with 7.5% added PS (as 12.5% PS-esters, PS-margarine). Median POP contents per portion size of cooked foods were 0.57 mg (range 0.05-1.11 mg) with control margarine versus 1.42 mg (range 0.08-20.5 mg) with PS-margarine. The oxidation rate of PS (ORP) was 0.50% (median) with the PS-margarine and 3.66% with the control margarine. Using the PS-margarine, microwave-cooked codfish had the lowest POP content, with 0.08 mg per portion, while shallow-fried potatoes had the highest POP content, 20.5 mg per portion. Median POP contents in cookies, muffins, banana bread, and sponge cake baked with the control or PS-margarine were 0.12 mg (range 0.11-0.21 mg) and 0.24 mg (range 0.19-0.60 mg) per portion, with a corresponding ORP of 1.38% and 0.06%, respectively. POP contents in all the cooked and baked foods did not exceed 20.5 mg per typical portion size. A wide variation in the distribution of individual POP among different foods existed, with 7-keto-PS and 5,6-epoxy-PS being the major oxidation products. PMID:26697919

  10. Sterol-dependent induction of plant defense responses by a microbe-associated molecular pattern from Trichoderma viride.

    PubMed

    Sharfman, Miya; Bar, Maya; Schuster, Silvia; Leibman, Meirav; Avni, Adi

    2014-02-01

    Plant-microbe interactions involve numerous regulatory systems essential for plant defense against pathogens. An ethylene-inducing xylanase (Eix) of Trichoderma viride is a potent elicitor of plant defense responses in specific cultivars of tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum). We demonstrate that tomato cyclopropyl isomerase (SlCPI), an enzyme involved in sterol biosynthesis, interacts with the LeEix2 receptor. Moreover, we examined the role of SlCPI in signaling during the LeEix/Eix defense response. We found that SlCPI is an important factor in the regulation of the induction of defense responses such as the hypersensitive response, ethylene biosynthesis, and the induction of pathogenesis-related protein expression in the case of LeEix/Eix. Our results also suggest that changes in the sterol composition reduce LeEix internalization, thereby attenuating the induction of plant defense responses. PMID:24351686

  11. The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants.

    PubMed

    Mangas, Susana; Bonfill, Mercè; Osuna, Lidia; Moyano, Elisabeth; Tortoriello, Jaime; Cusido, Rosa M; Piñol, M Teresa; Palazón, Javier

    2006-09-01

    Considering that exogenously applied methyl jasmonate can enhance secondary metabolite production in a variety of plant species and that 2,3-oxidosqualene is a common precursor of triterpenes and sterols in plants, we have studied Centella asiatica and Galphimia glauca (both synthesizing triterpenoid secondary compounds) and Ruscus aculeatus (which synthesizes steroidal secondary compounds) for their growth rate and content of free sterols and respective secondary compounds, after culturing with or without 100 microM methyl jasmonate. Our results show that elicited plantlets of G. glauca and to a higher degree C. asiatica (up to 152-times more) increased their content of triterpenoids directly synthesized from 2,3-oxidosqualene (ursane saponins and nor-seco-friedelane galphimines, respectively) at the same time as growth decreased. In contrast, the free sterol content of C. asiatica decreased notably, and remained practically unaltered in G. glauca. However, in the case of R. aculeatus, which synthesizes steroidal saponins (mainly spirostane type) indirectly from 2,3-oxidosqualene after the latter is converted to the plant phytosterol-precursor cycloartenol, while the growth rate and free sterol content clearly decreased, the spirostane saponine content was virtually unchanged (aerial part) or somewhat lower (roots) in presence of the same elicitor concentration. Our results suggest that while methyl jasmonate may be used as an inducer of enzymes involved in the triterpenoid synthesis downstream from 2,3-oxidosqualene in both C. asiatica and G. glauca plantlets, in those of C. asiatica and R. aculeatus it inhibited the enzymes involved in sterol synthesis downstream from cycloartenol. PMID:16876832

  12. Plant sterols and sterolins: a review of their immune-modulating properties.

    PubMed

    Bouic, P J; Lamprecht, J H

    1999-06-01

    Beta-sitosterol (BSS) and its glycoside (BSSG) are sterol molecules which are synthesized by plants. When humans eat plant foods phytosterols are ingested, and are found in the serum and tissues of healthy individuals, but at concentrations orders of magnitude lower than endogenous cholesterol. Epidemiological studies have correlated a reduced risk of numerous diseases with a diet high in fruits and vegetables, and have concluded that specific molecules, including b-carotene, tocopherols, vitamin C, and flavonoids, confer some of this protective benefit. However, these epidemiologic studies have not examined the potential effect that phytosterols ingested with fruits and vegetables might have on disease risk reduction. In animals, BSS and BSSG have been shown to exhibit anti-inflammatory, anti-neoplastic, anti-pyretic, and immune-modulating activity. A proprietary BSS:BSSG mixture has demonstrated promising results in a number of studies, including in vitro studies, animal models, and human clinical trials. This phytosterol complex seems to target specific T-helper lymphocytes, the Th1 and Th2 cells, helping normalize their functioning and resulting in improved T-lymphocyte and natural killer cell activity. A dampening effect on overactive antibody responses has also been seen, as well as normalization of the DHEA:cortisol ratio. The re-establishment of these immune parameters may be of help in numerous disease processes relating to chronic immune-mediated abnormalities, including chronic viral infections, tuberculosis, rheumatoid arthritis, allergies, cancer, and auto-immune diseases. PMID:10383481

  13. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies.

    PubMed

    Ras, Rouyanne T; Geleijnse, Johanna M; Trautwein, Elke A

    2014-07-28

    Phytosterols (PS, comprising plant sterols and plant stanols) have been proven to lower LDL-cholesterol concentrations. The dose-response relationship for this effect has been evaluated in several meta-analyses by calculating averages for different dose ranges or by applying continuous dose-response functions. Both approaches have advantages and disadvantages. So far, the calculation of averages for different dose ranges has not been done for plant sterols and stanols separately. The objective of the present meta-analysis was to investigate the combined and separate effects of plant sterols and stanols when classified into different dose ranges. Studies were searched and selected based on predefined criteria. Relevant data were extracted. Average LDL-cholesterol effects were calculated when studies were categorised by dose, according to random-effects models while using the variance as weighing factor. This was done for plant sterols and stanols combined and separately. In total, 124 studies (201 strata) were included. Plant sterols and stanols were administered in 129 and fifty-nine strata, respectively; the remaining used a mix of both. The average PS dose was 2.1 (range 0.2-9.0) g/d. PS intakes of 0.6-3.3 g/d were found to gradually reduce LDL-cholesterol concentrations by, on average, 6-12%. When plant sterols and stanols were analysed separately, clear and comparable dose-response relationships were observed. Studies carried out with PS doses exceeding 4 g/d were not pooled, as these were scarce and scattered across a wide range of doses. In conclusion, the LDL-cholesterol-lowering effect of both plant sterols and stanols continues to increase up to intakes of approximately 3 g/d to an average effect of 12%.

  14. Independent and interactive effects of plant sterols and fish oil n-3 long-chain polyunsaturated fatty acids on the plasma lipid profile of mildly hyperlipidaemic Indian adults.

    PubMed

    Khandelwal, Shweta; Demonty, Isabelle; Jeemon, Panniyammakal; Lakshmy, Ramakrishnan; Mukherjee, Rajat; Gupta, Ruby; Snehi, Uma; Niveditha, Devasenapathy; Singh, Yogendra; van der Knaap, Henk C M; Passi, Santosh J; Prabhakaran, Dorairaj; Reddy, K Srinath

    2009-09-01

    The present study was designed to evaluate the independent and interactive effects of a once-a-day yoghurt drink providing 2 g plant sterols/d and capsules providing 2 g fish oil n-3 long-chain (LC) PUFA/d on plasma lipids, apolipoproteins and LDL particle size. Following a 2-week run-in period, 200 mildly hypercholesterolaemic Indian adults aged 35-55 years were randomised into one of four groups of a 2 x 2 factorial, double-blind controlled trial. The 4-week treatments consisted of (1) control yoghurt drink and control capsules, (2) control yoghurt drink and fish oil capsules, (3) plant sterol-enriched yoghurt drink and control capsules, or (4) plant sterol-enriched yoghurt drink and fish oil capsules. Blood was drawn before and after the 4-week intervention. Changes in health status, lifestyle and dietary habits, and daily compliance were recorded. The main effects of plant sterols were a 4.5 % reduction in LDL-cholesterol and a 15 % reduction in TAG without a significant change in HDL-cholesterol. Overall, fish oil n-3 LC-PUFA did not significantly affect cholesterol concentrations but reduced TAG by 15 % and increased HDL-cholesterol by 5.4 %. The combination significantly lowered TAG by 15 % v. control. No significant interaction between plant sterols and n-3 LC-PUFA was observed on plasma cholesterol concentrations. In conclusion, once-a-day intake of 2 g plant sterols/d in a yoghurt drink, 2 g fish oil n-3 LC-PUFA/d in capsules, and their combination had beneficial effects on the lipid profile of mildly hypercholesterolaemic Indian adults. The potent hypotriacylglycerolaemic effect of plant sterols observed in the present study and this population warrants additional investigation. PMID:19296875

  15. Sterols of the fungi - Distribution and biosynthesis

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  16. Sterols of the fungi - Distribution and biosynthesis.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1973-01-01

    The importance of sterols in the growth and reproduction in fungi is becoming increasingly apparent. This article concerns the composition and biosynthesis of ergosterol in these organisms. Comparison to plant and animal sterol formation are made.

  17. Consuming functional foods enriched with plant sterol or stanol esters for 85 weeks does not affect neurocognitive functioning or mood in statin-treated hypercholesterolemic individuals.

    PubMed

    Schiepers, Olga J G; de Groot, Renate H M; van Boxtel, Martin P J; Jolles, Jelle; de Jong, Ariënne; Lütjohann, Dieter; Plat, Jogchum; Mensink, Ronald P

    2009-07-01

    Recent animal and human studies have shown that plant sterols and stanols, which are used as functional food ingredients to lower increased LDL cholesterol concentrations, pass the blood-brain barrier. Whether this affects neurocognitive functioning and mental well-being in humans has, to our knowledge, never been investigated. The aim of the present study was therefore to examine the effects of long-term plant sterol or stanol consumption on neurocognitive functioning and mood in a randomized, double-blind, placebo-controlled dietary intervention trial. To this end, hypercholesterolemic individuals, aged 43-69 y, receiving stable statin treatment were randomly assigned to an 85-wk supplementation with margarines enriched with plant sterol esters (2.5 g/d), plant stanol esters (2.5 g/d), or placebo. At baseline and at the end of the intervention period, all participants underwent a cognitive assessment. In addition, subjective cognitive functioning and mood were assessed by means of questionnaires (Cognitive Failure Questionnaire and depression subscale of the Symptom Checklist 90, respectively). Long-term supplementation with plant sterol or stanol esters did not affect cognitive performance (memory, simple information processing speed, complex information processing speed, Letter-Digit Substitution test performance), subjective cognitive functioning, or mood. In conclusion, the present results indicate that long-term use of plant sterols or stanols at recommended intakes of 2.5 g/d does not affect neurocognitive functioning or mood in hypercholesterolemic individuals receiving statin treatment.

  18. Effects of Dietary Plant Sterols and Stanol Esters with Low- and High-Fat Diets in Chronic and Acute Models for Experimental Colitis.

    PubMed

    te Velde, Anje A; Brüll, Florence; Heinsbroek, Sigrid E M; Meijer, Sybren L; Lütjohann, Dieter; Vreugdenhil, Anita; Plat, Jogchum

    2015-10-15

    In this study, we evaluated the effects of dietary plant sterols and stanols as their fatty acid esters on the development of experimental colitis. The effects were studied both in high- and low-fat diet conditions in two models, one acute and another chronic model of experimental colitis that resembles gene expression in human inflammatory bowel disease (IBD). In the first experiments in the high fat diet (HFD), we did not observe a beneficial effect of the addition of plant sterols and stanols on the development of acute dextran sulphate sodium (DSS) colitis. In the chronic CD4CD45RB T cell transfer colitis model, we mainly observed an effect of the presence of high fat on the development of colitis. In this HFD condition, the presence of plant sterol or stanol did not result in any additional effect. In the second experiments with low fat, we could clearly observe a beneficial effect of the addition of plant sterols on colitis parameters in the T cell transfer model, but not in the DSS model. This positive effect was related to the gender of the mice and on Treg presence in the colon. This suggests that especially dietary plant sterol esters may improve intestinal inflammation in a T cell dependent manner.

  19. Effects of Dietary Plant Sterols and Stanol Esters with Low- and High-Fat Diets in Chronic and Acute Models for Experimental Colitis.

    PubMed

    te Velde, Anje A; Brüll, Florence; Heinsbroek, Sigrid E M; Meijer, Sybren L; Lütjohann, Dieter; Vreugdenhil, Anita; Plat, Jogchum

    2015-10-01

    In this study, we evaluated the effects of dietary plant sterols and stanols as their fatty acid esters on the development of experimental colitis. The effects were studied both in high- and low-fat diet conditions in two models, one acute and another chronic model of experimental colitis that resembles gene expression in human inflammatory bowel disease (IBD). In the first experiments in the high fat diet (HFD), we did not observe a beneficial effect of the addition of plant sterols and stanols on the development of acute dextran sulphate sodium (DSS) colitis. In the chronic CD4CD45RB T cell transfer colitis model, we mainly observed an effect of the presence of high fat on the development of colitis. In this HFD condition, the presence of plant sterol or stanol did not result in any additional effect. In the second experiments with low fat, we could clearly observe a beneficial effect of the addition of plant sterols on colitis parameters in the T cell transfer model, but not in the DSS model. This positive effect was related to the gender of the mice and on Treg presence in the colon. This suggests that especially dietary plant sterol esters may improve intestinal inflammation in a T cell dependent manner. PMID:26501315

  20. Comparison of Enzymatic Hydrolysis and Acid Hydrolysis of Sterol Glycosides from Foods Rich in Δ(7)-Sterols.

    PubMed

    Münger, Linda H; Jutzi, Sabrina; Lampi, Anna-Maija; Nyström, Laura

    2015-08-01

    In this study, we present the difference in sterol composition of extracted steryl glycosides (SG) hydrolyzed by either enzymatic or acid hydrolysis. SG were analyzed from foods belonging to the plant families Cucurbitaceae (melon and pumpkin seeds) and Amaranthaceae (amaranth and beetroot), both of which are dominated by Δ(7)-sterols. Released sterols were quantified by gas chromatography with a flame ionization detector (GC-FID) and identified using gas chromatography/mass spectrometry (GC-MS). All Δ(7)-sterols identified (Δ(7)-stigmastenyl, spinasteryl, Δ(7)-campesteryl, Δ(7)-avenasteryl, poriferasta-7,25-dienyl and poriferasta-7,22,25-trienyl glucoside) underwent isomerization under acidic conditions and high temperature. Sterols with an ethylidene or methylidene side chain were found to form multiple artifacts. The artifact sterols coeluted with residues of incompletely isomerized Δ(7)-sterols, or Δ(5)-sterols if present, and could be identified as Δ(8(14))-sterols on the basis of relative retention time, and their MS spectra as trimethylsilyl (TMS) and acetate derivatives. For instance, SG from melon were composed of 66% Δ(7)-stigmastenol when enzymatic hydrolysis was performed, whereas with acid hydrolysis only 8% of Δ(7)-stigmastenol was determined. The artifact of Δ(7)-stigmastenol coeluted with residual non-isomerized spinasterol, demonstrating the high risk of misinterpretation of compositional data obtained after acid hydrolysis. Therefore, the accurate composition of SG from foods containing sterols with a double bond at C-7 can only be obtained by enzymatic hydrolysis or by direct analysis of the intact SG.

  1. Determination of plant stanols and plant sterols in phytosterol enriched foods with a gas chromatographic-flame ionization detection method: NMKL collaborative study.

    PubMed

    Laakso, Päivi H

    2014-01-01

    This collaborative study with nine participating laboratories was conducted to determine the total plant sterol and/or plant stanol contents in phytosterol fortified foods with a gas chromatographic method. Four practice and 12 test samples representing mainly commercially available foodstuffs were analyzed as known replicates. Twelve samples were enriched with phytosterols, whereas four samples contained only natural contents of phytosterols. The analytical procedure consisted of two alternative approaches: hot saponification method, and acid hydrolysis treatment prior to hot saponification. As a result, sterol/stanol compositions and contents in the samples were measured. The amounts of total plant sterols and total plant stanols varying from 0.005 to 8.04 g/100 g product were statistically evaluated after outliers were eliminated. The repeatability RSD (RSDr) varied from 1.34 to 17.13%. The reproducibility RSD (RSDR) ranged from 3.03 to 17.70%, with HorRat values ranging from 0.8 to 2.1. When only phytosterol enriched food test samples are considered, the RSDr ranged from 1.48 to 6.13%, the RSD, ranged from 3.03 to 7.74%, and HorRat values ranged from 0.8 to 2.1. Based on the results of this collaborative study, the study coordinator concludes the method is fit for its purpose.

  2. Increased plant sterol deposition in vascular tissue characterizes patients with severe aortic stenosis and concomitant coronary artery disease.

    PubMed

    Luister, Alexandra; Schött, Hans Frieder; Husche, Constanze; Schäfers, Hans-Joachim; Böhm, Michael; Plat, Jogchum; Gräber, Stefan; Lütjohann, Dieter; Laufs, Ulrich; Weingärtner, Oliver

    2015-07-01

    The aim of the study was to evaluate the relationship between phytosterols, oxyphytosterols, and other markers of cholesterol metabolism and concomitant coronary artery disease (CAD) in patients with severe aortic stenosis who were scheduled for elective aortic valve replacement. Markers of cholesterol metabolism (plant sterols and cholestanol as markers of cholesterol absorption and lathosterol as an indicator of cholesterol synthesis) and oxyphytosterols were determined in plasma and aortic valve tissue from 104 consecutive patients with severe aortic stenosis (n=68 statin treatment; n=36 no statin treatment) using gas chromatography-flame ionization and mass spectrometry. The extent of CAD was determined by coronary angiography prior to aortic valve replacement. Patients treated with statins were characterized by lower plasma cholesterol, cholestanol, and lathosterol concentrations. However, statin treatment did not affect the sterol concentrations in cardiovascular tissue. The ratio of campesterol-to-cholesterol was increased by 0.46±0.34μg/mg (26.0%) in plasma of patients with CAD. The absolute values for the cholesterol absorption markers sitosterol and campesterol were increased by 18.18±11.59ng/mg (38.8%) and 11.40±8.69ng/mg (30.4%) in the tissues from patients with documented CAD compared to those without concomitant CAD. Campesterol oxides were increased by 0.06±0.02ng/mg (17.1%) in the aortic valve cusps and oxidized sitosterol-to-cholesterol ratios were up-regulated by 0.35±0.2ng/mg (22.7%) in the plasma of patients with CAD. Of note, neither cholestanol nor the ratio of cholestanol-to-cholesterol was associated with CAD. Patients with concomitant CAD are characterized by increased deposition of plant sterols, but not cholestanol in aortic valve tissue. Moreover, patients with concomitant CAD were characterized by increased oxyphytosterol concentrations in plasma and aortic valve cusps.

  3. Sterols of a contemporary lacustrine sediment. [in English postglacial lake

    NASA Technical Reports Server (NTRS)

    Gaskell, S. J.; Eglinton, G.

    1976-01-01

    Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.

  4. Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both ...

  5. Lipid-lowering Activity of Natural and Semi-Synthetic Sterols and Stanols.

    PubMed

    Taha, Dhiaa A; Wasan, Ellen K; Wasan, Kishor M; Gershkovich, Pavel

    2015-01-01

    Consumption of plant sterols/ stanols has long been demonstrated to reduce plasma cholesterol levels. The objective of this review is to demonstrate the lipid-lowering activity and anti-atherogenic effects of natural and semi-synthetic plant sterols/ stanols based on evidence from cell-culture studies, animal studies and clinical trials. Additionally, this review highlights certain molecular mechanisms by which plant sterols/ stanols lower plasma cholesterol levels with a special emphasis on factors that affect the cholesterol-lowering activity of plant sterols/stanols. The crystalline nature and the poor oil solubility of these natural products could be important factors that limit their cholesterol-lowering efficiency. Several attempts have been made to improve the cholesterol-lowering activity by enhancing the bioavailability of crystalline sterols and stanols. Approaches involved reduction of the crystal size and/or esterification with fatty acids from vegetable or fish oils. However, the most promising approach in this context is the chemical modification of plant sterols /stanols into water soluble disodium ascorbyl phytostanyl phosphates analogue by esterification with ascorbic acid. This novel semi-synthetic stanol derivative has improved efficacy over natural plant sterols/ stanols and can provide additional benefits by combining the cholesterol-lowering properties of plant stanols with the antioxidant potential of ascorbic acid. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. PMID:26626241

  6. Distribution and Functions of Sterols and Sphingolipids

    PubMed Central

    Hannich, J. Thomas; Umebayashi, Kyohei; Riezman, Howard

    2011-01-01

    Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols. Sphingolipids and sterols are found in the plasma membrane, but we do not have a clear picture of their precise intracellular localization. Advances in lipidomics and subcellular fractionation should help to improve this situation. Genetic approaches have provided insights into the diversity of sterol and sphingolipid functions in eukaryotes providing evidence that these two lipid classes function together. Intermediates in sphingolipid biosynthesis and degradation are involved in signaling pathways, whereas sterol structures are converted to hormones. Both lipids have been implicated in regulating membrane trafficking. PMID:21454248

  7. Lathosterol to cholesterol ratio in serum predicts cholesterol lowering response to plant sterol consumption in a dual center, randomized, single-blind placebo controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benefits of plant sterols (PS) for cholesterol lowering are compromised by large variability in efficacy across individuals. High fractional cholesterol synthesis measured by deuterium incorporation has been associated with non-response to PS consumption; however, prospective studies showing this as...

  8. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol lowering after plant sterol consumption in a randomized clinical trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The benefits of plant sterols (PS) for cholesterol lowering are hampered by large heterogeneity across individuals, potentially due to genetic polymorphisms. We investigated the impact of candidate genetic variations on cholesterol response to PS, in a trial which recruited individuals with high or ...

  9. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    PubMed

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species.

  10. Higher sterol content regulated by CYP51 with concomitant lower phospholipid content in membranes is a common strategy for aluminium tolerance in several plant species.

    PubMed

    Wagatsuma, Tadao; Khan, Md Shahadat Hossain; Watanabe, Toshihiro; Maejima, Eriko; Sekimoto, Hitoshi; Yokota, Takao; Nakano, Takeshi; Toyomasu, Tomonobu; Tawaraya, Keitaro; Koyama, Hiroyuki; Uemura, Matsuo; Ishikawa, Satoru; Ikka, Takashi; Ishikawa, Akifumi; Kawamura, Takeshi; Murakami, Satoshi; Ueki, Nozomi; Umetsu, Asami; Kannari, Takayuki

    2015-02-01

    Several studies have shown that differences in lipid composition and in the lipid biosynthetic pathway affect the aluminium (Al) tolerance of plants, but little is known about the molecular mechanisms underlying these differences. Phospholipids create a negative charge at the surface of the plasma membrane and enhance Al sensitivity as a result of the accumulation of positively charged Al(3+) ions. The phospholipids will be balanced by other electrically neutral lipids, such as sterols. In the present research, Al tolerance was compared among pea (Pisum sativum) genotypes. Compared with Al-tolerant genotypes, the Al-sensitive genotype accumulated more Al in the root tip, had a less intact plasma membrane, and showed a lower expression level of PsCYP51, which encodes obtusifoliol-14α-demethylase (OBT 14DM), a key sterol biosynthetic enzyme. The ratio of phospholipids to sterols was higher in the sensitive genotype than in the tolerant genotypes, suggesting that the sterol biosynthetic pathway plays an important role in Al tolerance. Consistent with this idea, a transgenic Arabidopsis thaliana line with knocked-down AtCYP51 expression showed an Al-sensitive phenotype. Uniconazole-P, an inhibitor of OBT 14DM, suppressed the Al tolerance of Al-tolerant genotypes of maize (Zea mays), sorghum (Sorghum bicolor), rice (Oryza sativa), wheat (Triticum aestivum), and triticale (×Triticosecale Wittmark cv. Currency). These results suggest that increased sterol content, regulated by CYP51, with concomitant lower phospholipid content in the root tip, results in lower negativity of the plasma membrane. This appears to be a common strategy for Al tolerance among several plant species. PMID:25416794

  11. Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: systematic review and meta-analysis.

    PubMed

    Han, Shufen; Jiao, Jun; Xu, Jiaying; Zimmermann, Diane; Actis-Goretta, Lucas; Guan, Lei; Zhao, Youyou; Qin, Liqiang

    2016-01-01

    Efficacy and safety data from trials with suitable endpoints have shown that non-statin medication in combination with a statin is a potential strategy to further reduce cardiovascular events. We aimed to evaluate the overall effect of stanol- or sterol-enriched diets on serum lipid profiles in patients treated with statins by conducting a meta-analysis of randomized controlled trials (RCTs). We used the PubMed, Cochrane library and ClinicalTrials.gov databases to search for literature published up to December 2015. Trials were included in the analysis if they were RCTs evaluating the effect of plant stanols or sterols in patients under statin therapy that reported corresponding data on serum lipid profiles. We included 15 RCTs involving a total of 500 participants. Stanol- or sterol-enriched diets in combination with statins, compared with statins alone, produced significant reductions in total cholesterol of 0.30 mmol/L (95% CI -0.36 to -0.25) and low-density lipoprotein (LDL) cholesterol of 0.30 mmol/L (95% CI -0.35 to -0.25), but not in high-density lipoprotein cholesterol or triglycerides. These results persisted in the subgroup analysis. Our meta-analysis provides further evidence that stanol- or sterol-enriched diets additionally lower total cholesterol and LDL-cholesterol levels in patients treated with statins beyond that achieved by statins alone. PMID:27539156

  12. Effects of plant stanol or sterol-enriched diets on lipid profiles in patients treated with statins: systematic review and meta-analysis

    PubMed Central

    Han, Shufen; Jiao, Jun; Xu, Jiaying; Zimmermann, Diane; Actis-Goretta, Lucas; Guan, Lei; Zhao, Youyou; Qin, Liqiang

    2016-01-01

    Efficacy and safety data from trials with suitable endpoints have shown that non-statin medication in combination with a statin is a potential strategy to further reduce cardiovascular events. We aimed to evaluate the overall effect of stanol- or sterol-enriched diets on serum lipid profiles in patients treated with statins by conducting a meta-analysis of randomized controlled trials (RCTs). We used the PubMed, Cochrane library and ClinicalTrials.gov databases to search for literature published up to December 2015. Trials were included in the analysis if they were RCTs evaluating the effect of plant stanols or sterols in patients under statin therapy that reported corresponding data on serum lipid profiles. We included 15 RCTs involving a total of 500 participants. Stanol- or sterol-enriched diets in combination with statins, compared with statins alone, produced significant reductions in total cholesterol of 0.30 mmol/L (95% CI −0.36 to −0.25) and low-density lipoprotein (LDL) cholesterol of 0.30 mmol/L (95% CI −0.35 to −0.25), but not in high-density lipoprotein cholesterol or triglycerides. These results persisted in the subgroup analysis. Our meta-analysis provides further evidence that stanol- or sterol-enriched diets additionally lower total cholesterol and LDL-cholesterol levels in patients treated with statins beyond that achieved by statins alone. PMID:27539156

  13. Increased plasma plant sterol concentrations and a heterozygous amino acid exchange in ATP binding cassette transporter ABCG5: a case report.

    PubMed

    Keller, Sylvia; Prechtl, Danielle; Aslanidis, Charalampos; Ceglarek, Uta; Thiery, Joachim; Schmitz, Gerd; Jahreis, Gerhard

    2011-01-01

    Whilst conducting a scientific study, an elevated plasma plant sterol concentration of 3.07 mg/dL was established in one proband. Similar levels found in his mothers plasma (2.73 mg/dL) were suggestive of a heterozygous sitosterolemia. The resulting gene analysis for ATP binding cassette transporter G5/G8 (ABCG5/G8) revealed a heterozygous polymorphism in ABCG8 (Thr400Lys, rs4148217), which the proband had inherited from his father. However, a heterozygous amino acid exchange (Arg406Gln) in exon 9 of ABCG5 was revealed, which was inherited from his mother. Although not sufficient evidence exists to regard this sequence variation as a mutation, this previously unreleased sequence variation occurred in a "hot spot" area for sitosterolemia of the ABCG5 gene (exon 9) and the similar increased plasma plant sterol concentrations of the heterozygous mother contribute to the notion, that this very likely presents an inactivating mutation.

  14. Flaxseed Oil Containing α-Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice

    PubMed Central

    Han, Hao; Yan, Peipei; Chen, Li; Luo, Cheng; Gao, Hui; Deng, Qianchun; Zheng, Mingming; Shi, Yong; Liu, Liegang

    2015-01-01

    Plant sterols (PS) have potential preventive function in atherosclerosis due to their cholesterol-lowering ability. Dietary α-linolenic acid in flaxseed oil is associated with a reduction in cardiovascular events through its hypolipidemic and anti-inflammation properties. This study was designed to evaluate the effects of flaxseed oil containing α-linolenic acid ester of PS (ALA-PS) on atherosclerosis and investigate the underlying mechanisms. C57BL/6 mice were administered a regular diet and apoE knockout (apoE-KO) mice were given a high fat diet alone or supplemented with 5% flaxseed oil with or without 3.3% ALA-PS for 18 weeks. Results demonstrated that flaxseed oil containing ALA-PS was synergistically interaction in ameliorating atherosclerosis as well as optimizing overall lipid levels, inhibiting inflammation and reducing oxidative stress. These data were associated with the modification effects on expression levels of genes involved in lipid metabolism (PPARα, HMGCR, and SREBPs), inflammation (IL-6, TNF, MCP-1, and VCAM-1), and oxidative stress (NADPH oxidase). PMID:26180602

  15. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE.

  16. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoeba Naegleria lovaniensis and Naegleria gruberi.

    PubMed

    Raederstorff, D; Rohmer, M

    1987-04-15

    The sterols and sterol precursors of two amoebae of the genus Naegleria, Naegleria lovaniensis and Naegleria gruberi were investigated. Cycloartenol, the sterol precursor in photosynthetic organisms, is present in both amoebae. In N. lovaniesis, it is accompanied by lanosterol and parkeol, as well as by the 24,25-dihydro derivatives of these triterpenes. One of the most striking features of these amoebae is the accumulation of 4 alpha-methylsterols which are present in similar amounts as those of 4,4-desmethylsterols (3-5 mg/g, dry weight). 4 alpha-Methylergosta-7,22-dienol was identified as a new compound. Ergosterol was the major 4,4-desmethylsterol, accompanied by small amounts of C27 and other C28 sterols. Treatment of N. lovaniensis with fenpropimorph modified the sterol pattern of this amoeba and inhibited its growth. This fungicide, known to inhibit steps of sterol biosynthesis in fungi and plants, induced the disappearance of 4 alpha-methyl-delta 7-sterols and the appearance of the unusual delta 6,8,22-ergostatrienol as in A. polyphaga. These results might be explained by a partial inhibition of the delta 8----delta 7 isomerase, the small amounts of delta 7-sterols formed being converted into ergosterol which is still present in fenpropimorph-exposed cells. De novo sterol biosynthesis in N. lovaniensis was shown by incorporation of [1-14C]acetate into sterols and sterol precursors, especially cycloartenol. Lanosterol and parkeol were not significantly labelled. Furthermore, [3-3H]squalene epoxide was efficiently cyclized by a cell-free system of this amoeba into cycloartenol, and again no significant radioactivity was detected in lanosterol and parkeol. This shows that cycloartenol, the sterol precursor in plants and algae, is also the sterol precursor in Naegleria species, and that these amoebae, like A. polyphaga, are related by some biosynthetic pathways to photosynthetic phyla. Lanosterol, the sterol precursor in non-photosynthetic phyla (animal and

  17. Concentrations of surfactants and sterols in the surface microlayer of the estuarine areas of Selangor River, Malaysia

    NASA Astrophysics Data System (ADS)

    Alsalahi, Murad Ali; Talib Latif, Mohd; Mohd Ali, Masni; Dominick, Doreena; Firoz Khan, Md; Bahiyah Abd Wahid, Nurul; Ili Hamizah Mustaffa, Nur

    2016-04-01

    This study determined the concentration of surfactant and sterols as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. SML samples were collected during different seasons using a rotation drum method. The compositions of surfactants in SML were determined as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS) as anionic and cationic surfactants respectively. The concentration of sterols was determined using a gas chromatography equipped with a flame ionisation detector (GC-FID). The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS) with average concentrations of 0.39 μmol L-1. The concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L-1. The surfactants and total sterol concentrations were found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML of the Selangor River. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).

  18. Effect of a plant sterol, fish oil and B vitamin combination on cardiovascular risk factors in hypercholesterolemic children and adolescents: a pilot study

    PubMed Central

    2013-01-01

    Background Assessment of cardiovascular disease (CVD) risk factors can predict clinical manifestations of atherosclerosis in adulthood. In this pilot study with hypercholesterolemic children and adolescents, we investigated the effects of a combination of plant sterols, fish oil and B vitamins on the levels of four independent risk factors for CVD; LDL-cholesterol, triacylglycerols, C-reactive protein and homocysteine. Methods Twenty five participants (mean age 16 y, BMI 23 kg/m2) received daily for a period of 16 weeks an emulsified preparation comprising plant sterols esters (1300 mg), fish oil (providing 1000 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA)) and vitamins B12 (50 μg), B6 (2.5 mg), folic acid (800 μg) and coenzyme Q10 (3 mg). Atherogenic and inflammatory risk factors, plasma lipophilic vitamins, provitamins and fatty acids were measured at baseline, week 8 and 16. Results The serum total cholesterol, LDL- cholesterol, VLDL-cholesterol, subfractions LDL-2, IDL-1, IDL-2 and plasma homocysteine levels were significantly reduced at the end of the intervention period (p<0.05). The triacylglycerols levels decreased by 17.6%, but did not reach significance. No significant changes in high sensitivity C-reactive protein, HDL-cholesterol and apolipoprotein A-1 were observed during the study period. After standardisation for LDL cholesterol, there were no significant changes in the levels of plasma γ-tocopherol, β-carotene and retinol, except for reduction in α-tocopherol levels. The plasma levels of n-3 fatty acids increased significantly with the dietary supplementation (p<0.05). Conclusions Daily intake of a combination of plant sterols, fish oil and B vitamins may modulate the lipid profile of hypercholesterolemic children and adolescents. Trial registration Current Controlled Trials ISRCTN89549017 PMID:23297818

  19. Sterol composition of Bulgarian soya and corn oils.

    PubMed

    Milkova, T; Popov, A; Selva, A; Vettori, U

    1977-01-01

    The free sterols, the sterol esters and the sterol glycosides of the raw soya and corn oils as well as those of the technical lecithin and the deodorizer distillated of the latter oils were isolated by preparative TLC. The composition of each of the isolated sterol derivatives was determined by GLC and MS. Sitosterol, campesterol, stigmasterol and an unknown sterol with a molecular weight of 428 are contained in almost all of the examined fractions of the soya oil and its refinement byproducts. Dehydrocampesterol is present in the free sterols of the raw soya oil and the soya lecithin. Stigmasterol is contained in the soya deodorizer distillate in high amounts. It was established that cholesterol was present in the sterol esters of the raw soya oil high amounts. Delta7-stigmastenol occurs only in the sterol esters of the latter oil. Sitosterol, campesterol and stimgasterol are the main components of all sterol fractions of the corn oil and its refinement products. Dehydrocampesterol and unknown sterols with molecular weights of 428 are present in the free sterols of the raw corn oil. Some sterol glycosides of the soya and corn lecithin are esterified with the same major fatty acid components of the glycerides, palmitic acid being the main one. The fatty acid compositon of sterol esters of the raw soya and corn oil roughly corresponds to the fatty acid composition of oils. PMID:558512

  20. Thresholds for sterol-limited growth of Daphnia magna: a comparative approach using 10 different sterols.

    PubMed

    Martin-Creuzburg, Dominik; Oexle, Sarah; Wacker, Alexander

    2014-09-01

    Arthropods are incapable of synthesizing sterols de novo and thus require a dietary source to cover their physiological demands. The most prominent sterol in animal tissues is cholesterol, which is an indispensable structural component of cell membranes and serves as precursor for steroid hormones. Instead of cholesterol, plants and algae contain a variety of different phytosterols. Consequently, herbivorous arthropods have to metabolize dietary phytosterols to cholesterol to meet their requirements for growth and reproduction. Here, we investigated sterol-limited growth responses of the freshwater herbivore Daphnia magna by supplementing a sterol-free diet with increasing amounts of 10 different phytosterols and comparing thresholds for sterol-limited growth. In addition, we analyzed the sterol composition of D. magna to explore sterol metabolic constraints and bioconversion capacities. We show that dietary phytosterols strongly differ in their potential to support somatic growth of D. magna. The dietary threshold concentrations obtained by supplementing the different sterols cover a wide range (3.5-34.4 μg mg C(-1)) and encompass the one for cholesterol (8.9 μg mg C(-1)), indicating that certain phytosterols are more efficient in supporting somatic growth than cholesterol (e.g., fucosterol, brassicasterol) while others are less efficient (e.g., dihydrocholesterol, lathosterol). The dietary sterol concentration gradients revealed that the poor quality of particular sterols can be alleviated partially by increasing dietary concentrations, and that qualitative differences among sterols are most pronounced at low to moderate dietary concentrations. We infer that the dietary sterol composition has to be considered in zooplankton nutritional ecology to accurately assess potential sterol limitations under field conditions.

  1. Brassinosteroid/Sterol Synthesis and Plant Growth as Affected by lka and lkb Mutations of Pea1

    PubMed Central

    Nomura, Takahito; Kitasaka, Yukiko; Takatsuto, Suguru; Reid, James B.; Fukami, Motohiro; Yokota, Takao

    1999-01-01

    The dwarf pea (Pisum sativum) mutants lka and lkb are brassinosteroid (BR) insensitive and deficient, respectively. The dwarf phenotype of the lkb mutant was rescued to wild type by exogenous application of brassinolide and its biosynthetic precursors. Gas chromatography-mass spectrometry analysis of the endogenous sterols in this mutant revealed that it accumulates 24-methylenecholesterol and isofucosterol but is deficient in their hydrogenated products, campesterol and sitosterol. Feeding experiments using 2H-labeled 24-methylenecholesterol indicated that the lkb mutant is unable to isomerize and/or reduce the Δ24(28) double bond. Dwarfism of the lkb mutant is, therefore, due to BR deficiency caused by blocked synthesis of campesterol from 24-methylenecholesterol. The lkb mutation also disrupted sterol composition of the membranes, which, in contrast to those of the wild type, contained isofucosterol as the major sterol and lacked stigmasterol. The lka mutant was not BR deficient, because it accumulated castasterone. Like some gibberellin-insensitive dwarf mutants, overproduction of castasterone in the lka mutant may be ascribed to the lack of a feedback control mechanism due to impaired perception/signal transduction of BRs. The possibility that castasterone is a biologically active BR is discussed. PMID:10198111

  2. Origins of suspended particulate matter based on sterol distribution in low salinity water mass observed in the offshore East China Sea.

    PubMed

    Kim, Moonkoo; Jung, Jee-Hyun; Jin, Yongnu; Han, Gi Myeong; Lee, Taehee; Hong, Sang Hee; Yim, Un Hyuk; Shim, Won Joon; Choi, Dong-Lim; Kannan, Narayanan

    2016-07-15

    The molecular composition and distribution of sterols were investigated in the East China Sea to identify the origins of suspended particulate matter (SPM) in offshore waters influenced by Changjiang River Diluted Water (CRDW). Total sterol concentrations ranged from 3200 to 31,900pgL(-1) and 663 to 5690pgL(-1) in the particulate and dissolved phases, respectively. Marine sterols dominated representing 71% and 66% in the particulate and dissolved phases, respectively. Typical sewage markers, such as coprostanol, were usually absent at ~250km offshore. However, sterols from allochthonous terrestrial plants were still detected at these sites. A negative relationship was observed between salinity and concentrations of terrestrial sterols in SPM, suggesting that significant amounts of terrestrial particulate matter traveled long distance offshore in the East China Sea, and the Changjiang River Diluted Water (CRDW) was an effective carrier of land-derived particulate organic matter to the offshore East China Sea. PMID:27167134

  3. Origins of suspended particulate matter based on sterol distribution in low salinity water mass observed in the offshore East China Sea.

    PubMed

    Kim, Moonkoo; Jung, Jee-Hyun; Jin, Yongnu; Han, Gi Myeong; Lee, Taehee; Hong, Sang Hee; Yim, Un Hyuk; Shim, Won Joon; Choi, Dong-Lim; Kannan, Narayanan

    2016-07-15

    The molecular composition and distribution of sterols were investigated in the East China Sea to identify the origins of suspended particulate matter (SPM) in offshore waters influenced by Changjiang River Diluted Water (CRDW). Total sterol concentrations ranged from 3200 to 31,900pgL(-1) and 663 to 5690pgL(-1) in the particulate and dissolved phases, respectively. Marine sterols dominated representing 71% and 66% in the particulate and dissolved phases, respectively. Typical sewage markers, such as coprostanol, were usually absent at ~250km offshore. However, sterols from allochthonous terrestrial plants were still detected at these sites. A negative relationship was observed between salinity and concentrations of terrestrial sterols in SPM, suggesting that significant amounts of terrestrial particulate matter traveled long distance offshore in the East China Sea, and the Changjiang River Diluted Water (CRDW) was an effective carrier of land-derived particulate organic matter to the offshore East China Sea.

  4. Plant-derived nanostructures: types and applications

    EPA Science Inventory

    Plant-derived nanostructures and nanoparticles (NPs) have functional applications in numerous disciplines such as health care, food and feed, cosmetics, biomedical science, energy science, drug-gene delivery, environmental health, and so on. Consequently, it is imperative for res...

  5. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp. PMID:26168138

  6. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    PubMed

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  7. Sterol Synthesis in Diverse Bacteria

    PubMed Central

    Wei, Jeremy H.; Yin, Xinchi; Welander, Paula V.

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  8. Sterol Synthesis in Diverse Bacteria.

    PubMed

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  9. Sterol Synthesis in Diverse Bacteria.

    PubMed

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria

  10. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  11. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.

    PubMed

    Mannock, David A; Benesch, Matthew G K; Lewis, Ruthven N A H; McElhaney, Ronald N

    2015-08-01

    We performed comparative DSC and FTIR spectroscopic measurements of the effects of β-sitosterol (Sito) and stigmasterol (Stig) on the thermotropic phase behavior and organization of DPPC bilayers. Sito and Stig are the major sterols in the biological membranes of higher plants, whereas cholesterol (Chol) is the major sterol in mammalian membranes. Sito differs in structure from Chol in having an ethyl group at C24 of the alkyl side-chain, and Stig in having both the C24 ethyl group and trans-double bond at C22. Our DSC studies indicate that the progressive incorporation of Sito and Stig decrease the temperature and cooperativity of the pretransition of DPPC to a slightly lesser and greater extent than Chol, respectively, but the pretransition persists to 10 mol % sterol concentration in all cases. All three sterols produce essentially identical effects on the thermodynamic parameters of the sharp component of the DPPC main phase transition. However, the ability to increase the temperature and decrease the cooperativity and enthalpy of the broad component decreases in the order Chol>Sito>Stig. Nevertheless, at higher Sito/Stig concentrations, there is no evidence of sterol crystallites. Our FTIR spectroscopic studies demonstrate that Sito and especially Stig incorporation produces a smaller ordering of the hydrocarbon chains of fluid DPPC bilayers than does Chol. In general, the presence of a C24 ethyl group in the alkyl side-chain reduces the characteristic effects of Chol on the thermotropic phase behavior and organization of DPPC bilayer membranes, and a trans-double bond at C22 magnifies this effect.

  12. Final report of the amended safety assessment of PEG-5, -10, -16, -25, -30, and -40 soy sterol.

    PubMed

    2004-01-01

    PEGs Soy Sterol are polyethylene glycol (PEG) derivatives of soybean oil sterols used in a variety of cosmetic formulations as surfactants and emulsifying agents, skin-conditioning agents, and cleansing and solubilizing agents. When the safety of these ingredients were first reviewed, the available data were insufficient to support safety. New data have since been received and the safety of these ingredients in cosmetics has been substantiated. Current concentration of use ranges from a low of 0.05% in makeup preparations to 2% in moisturizers and several other products. PEGs Soy Sterol are produced by the reaction of the soy sterol hydroxyl with ethylene oxide. In general, ethoxylated fatty acids can contain 1,4-dioxane as a byproduct of ethoxylation. The soy sterols include campesterol, stigmasterol, and beta-sitosterol. The distribution of sterols found in oils derived from common plants is similar, with beta-sitosterol comprising a major component. Impurities include sterol hydrocarbons and cholesterol (4% to 6%) and triterpine alcohols, keto-steroids, and other steroid-like substances (4% to 6%). No pesticide residues were detected. PEGS: Because PEGs are an underlying structure in PEGs Soy Sterols, the previous assessment of PEGs was considered. It is generally recognized that the PEG monomer, ethylene glycol, and certain of its monoalkyl ethers are reproductive and developmental toxins. Given the methods of manufacture of PEGs Soy Sterol, there is no likelihood of ethylene glycol or its alkyl ethers being present. Also, the soybean oil sterol ethers in this ingredient are chemically different from the ethylene glycol alkyl ethers of concern. PEGs are not carcinogenic, although sensitization and nephrotoxicity were observed in burn patients treated with a PEG-based cream. No evidence of systemic toxicity or sensitization was found in studies with intact skin. Plant Phytosterols: Intestinal absorption of ingested plant phytosterols is on the order of 5%, with

  13. A Novel Sterol Isolated from a Plant Used by Mayan Traditional Healers Is Effective in Treatment of Visceral Leishmaniasis Caused by Leishmania donovani.

    PubMed

    Gupta, Gaurav; Peine, Kevin J; Abdelhamid, Dalia; Snider, Heidi; Shelton, Andrew B; Rao, Latha; Kotha, Sainath R; Huntsman, Andrew C; Varikuti, Sanjay; Oghumu, Steve; Naman, C Benjamin; Pan, Li; Parinandi, Narasimham L; Papenfuss, Tracy L; Kinghorn, A Douglas; Bachelder, Eric M; Ainslie, Kristy M; Fuchs, James R; Satoskar, Abhay R

    2015-10-01

    Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani, is a global health problem affecting millions of people worldwide. Treatment of VL largely depends on therapeutic drugs such as pentavalent antimonials, amphotericin B, and others, which have major drawbacks due to drug resistance, toxicity, and high cost. In this study, for the first time, we have successfully demonstrated the synthesis and antileishmanial activity of the novel sterol pentalinonsterol (PEN), which occurs naturally in the root of a Mexican medicinal plant, Pentalinon andrieuxii. In the experimental BALB/c mouse model of VL induced by infection with L. donovani, intravenous treatment with liposome-encapsulated PEN (2.5 mg/kg) led to a significant reduction in parasite burden in the liver and spleen. Furthermore, infected mice treated with liposomal PEN showed a strong host-protective TH1 immune response characterized by IFN-γ production and formation of matured hepatic granulomas. These results indicate that PEN could be developed as a novel drug against VL. PMID:27623316

  14. A Novel Sterol Isolated from a Plant Used by Mayan Traditional Healers Is Effective in Treatment of Visceral Leishmaniasis Caused by Leishmania donovani.

    PubMed

    Gupta, Gaurav; Peine, Kevin J; Abdelhamid, Dalia; Snider, Heidi; Shelton, Andrew B; Rao, Latha; Kotha, Sainath R; Huntsman, Andrew C; Varikuti, Sanjay; Oghumu, Steve; Naman, C Benjamin; Pan, Li; Parinandi, Narasimham L; Papenfuss, Tracy L; Kinghorn, A Douglas; Bachelder, Eric M; Ainslie, Kristy M; Fuchs, James R; Satoskar, Abhay R

    2015-10-01

    Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani, is a global health problem affecting millions of people worldwide. Treatment of VL largely depends on therapeutic drugs such as pentavalent antimonials, amphotericin B, and others, which have major drawbacks due to drug resistance, toxicity, and high cost. In this study, for the first time, we have successfully demonstrated the synthesis and antileishmanial activity of the novel sterol pentalinonsterol (PEN), which occurs naturally in the root of a Mexican medicinal plant, Pentalinon andrieuxii. In the experimental BALB/c mouse model of VL induced by infection with L. donovani, intravenous treatment with liposome-encapsulated PEN (2.5 mg/kg) led to a significant reduction in parasite burden in the liver and spleen. Furthermore, infected mice treated with liposomal PEN showed a strong host-protective TH1 immune response characterized by IFN-γ production and formation of matured hepatic granulomas. These results indicate that PEN could be developed as a novel drug against VL.

  15. Nuclear hormone receptors put immunity on sterols

    PubMed Central

    Santori, Fabio R.

    2015-01-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and non-classic (all others) NHRs; 17 non-classic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and non-sterol intermediates and derivatives, is a source of ligands for many classic and non-classic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review we summarize the roles of non-classic NHRs and their potential ligands in the immune system. PMID:26222181

  16. Differential cytotoxic effects of 7-dehydrocholesterol-derived oxysterols on cultured retina-derived cells: Dependence on sterol structure, cell type, and density.

    PubMed

    Pfeffer, Bruce A; Xu, Libin; Porter, Ned A; Rao, Sriganesh Ramachandra; Fliesler, Steven J

    2016-04-01

    Tissue accumulation of 7-dehydrocholesterol (7DHC) is a hallmark of Smith-Lemli-Opitz Syndrome (SLOS), a human inborn error of the cholesterol (CHOL) synthesis pathway. Retinal 7DHC-derived oxysterol formation occurs in the AY9944-induced rat model of SLOS, which exhibits a retinal degeneration characterized by selective loss of photoreceptors and associated functional deficits, Müller cell hypertrophy, and engorgement of the retinal pigment epithelium (RPE) with phagocytic inclusions. We evaluated the relative effects of four 7DHC-derived oxysterols on three retina-derived cell types in culture, with respect to changes in cellular morphology and viability. 661W (photoreceptor-derived) cells, rMC-1 (Müller glia-derived) cells, and normal diploid monkey RPE (mRPE) cells were incubated for 24 h with dose ranges of either 7-ketocholesterol (7kCHOL), 5,9-endoperoxy-cholest-7-en-3β,6α-diol (EPCD), 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), or 4β-hydroxy-7-dehydrocholesterol (4HDHC); CHOL served as a negative control (same dose range), along with appropriate vehicle controls, while staurosporine (Stsp) was used as a positive cytotoxic control. For 661W cells, the rank order of oxysterol potency was: EPCD > 7kCHOL > DHCEO > 4HDHC ≈ CHOL. EC50 values were higher for confluent vs. subconfluent cultures. 661W cells exhibited much higher sensitivity to EPCD and 7kCHOL than either rMC-1 or mRPE cells, with the latter being the most robust when challenged, either at confluence or in sub-confluent cultures. When tested on rMC-1 and mRPE cells, EPCD was again an order of magnitude more potent than 7kCHOL in compromising cellular viability. Hence, 7DHC-derived oxysterols elicit differential cytotoxicity that is dose-, cell type-, and cell density-dependent. These results are consistent with the observed progressive, photoreceptor-specific retinal degeneration in the rat SLOS model, and support the hypothesis that 7DHC-derived oxysterols are causally linked to that

  17. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.).

    PubMed

    Gu, Min; Kortner, Trond M; Penn, Michael; Hansen, Anne Kristine; Krogdahl, Åshild

    2014-02-01

    Altered lipid metabolism has been shown in fish fed plant protein sources. The present study aimed to gain further insights into how intestinal and hepatic lipid absorption and metabolism are modulated by plant meal (PM) and soya-saponin (SA) inclusion in salmon feed. Post-smolt Atlantic salmon were fed for 10 weeks one of four diets based on fishmeal or PM, with or without 10 g/kg SA. PM inclusion resulted in decreased growth performance, excessive lipid droplet accumulation in the pyloric caeca and liver, and reduced plasma cholesterol levels. Intestinal and hepatic gene expression profiling revealed an up-regulation of the expression of genes involved in lipid absorption and lipoprotein (LP) synthesis (apo, fatty acid transporters, microsomal TAG transfer protein, acyl-CoA cholesterol acyltransferase, choline kinase and choline-phosphate cytidylyltransferase A), cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase) and associated transcription factors (sterol regulatory element-binding protein 2 and PPARγ). SA inclusion resulted in reduced body pools of cholesterol and bile salts. The hepatic gene expression of the rate-limiting enzyme in bile acid biosynthesis (cytochrome P450 7A1 (cyp7a1)) as well as the transcription factor liver X receptor and the bile acid transporter abcb11 (ATP-binding cassette B11) was down-regulated by SA inclusion. A significant interaction was observed between PM inclusion and SA inclusion for plasma cholesterol levels. In conclusion, gene expression profiling suggested that the capacity for LP assembly and cholesterol synthesis was up-regulated by PM exposure, probably as a compensatory mechanism for excessive lipid droplet accumulation and reduced plasma cholesterol levels. SA inclusion had hypocholesterolaemic effects on Atlantic salmon, accompanied by decreased bile salt metabolism.

  18. The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum.

    PubMed

    Bouvaine, Sophie; T Behmer, Spencer; Lin, George G; Faure, Marie-Line; Grebenok, Robert J; Douglas, Angela E

    2012-11-01

    The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three sterols, cholesterol, stigmasterol and sitosterol, in a 2:2:1 ratio. To investigate the nutritional value of these sterols, pea aphids were reared on chemically-defined diets containing each sterol at 0.1, 1 and 10μgml(-1) with a sterol-free diet as control. Larval growth rate and aphid lifespan did not vary significantly across the diets, indicating that sterol reserves can buffer some performance indices against a shortfall in dietary sterol over at least one generation. However, lifetime reproductive output was depressed in aphids on diets containing stigmasterol or no sterol, relative to diets supplemented with cholesterol or sitosterol. The cholesterol density of embryos in teneral adults was significantly higher than in the total body; and the number and biomass of embryos in aphids on diets with stigmasterol and no sterols were reduced relative to diets with cholesterol or sitosterol, indicating that the reproductive output of the pea aphid can be limited by the amount and composition of dietary sterol. In a complementary RNA-seq analysis of pea aphids reared on plants and diets with different sterol contents, 7.6% of the 17,417 detected gene transcripts were differentially expressed. Transcript abundance of genes with annotated function in sterol utilization did not vary significantly among treatments, suggesting that the metabolic response to dietary sterol may be mediated primarily at the level of enzyme function or metabolite concentration.

  19. Influence of the sterol aliphatic side chain on membrane properties: a molecular dynamics study.

    PubMed

    Robalo, João R; Ramalho, J P Prates; Huster, Daniel; Loura, Luís M S

    2015-09-21

    Following a recent experimental investigation of the effect of the length of the alkyl side chain in a series of cholesterol analogues (Angew. Chem., Int. Ed., 2013, 52, 12848-12851), we report here an atomistic molecular dynamics characterization of the behaviour of methyl-branched side chain sterols (iso series) in POPC bilayers. The studied sterols included androstenol (i-C0-sterol) and cholesterol (i-C8-sterol), as well as four other derivatives (i-C5, i-C10, i-C12 and i-C14-sterol). For each sterol, both subtle local effects and more substantial differential alterations of membrane properties along the iso series were investigated. The location and orientation of the tetracyclic ring system is almost identical in all compounds. Among all the studied sterols, cholesterol is the sterol that presents the best matching with the hydrophobic length of POPC acyl chains, whereas longer-chained sterols interdigitate into the opposing membrane leaflet. In accordance with the experimental observations, a maximal ordering effect is observed for intermediate sterol chain length (i-C5, cholesterol, i-C10). Only for these sterols a preferential interaction with the saturated sn-1 chain of POPC (compared to the unsaturated sn-2 chain) was observed, but not for either shorter or longer-chained derivatives. This work highlights the importance of the sterol alkyl chain in the modulation of membrane properties and lateral organization in biological membranes.

  20. Lactoferrin-derived resistance against plant pathogens in transgenic plants.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry; Mandal, Sudhamoy; Mitra, Amitava

    2013-12-01

    Lactoferrin (LF) is a ubiquitous cationic iron-binding milk glycoprotein that contributes to nutrition and exerts a broad-spectrum primary defense against bacteria, fungi, protozoa, and viruses in mammals. These qualities make lactoferrin protein and its antimicrobial motifs highly desirable candidates to be incorporated in plants to impart broad-based resistance against plant pathogens or to economically produce them in bulk quantities for pharmaceutical and nutritional purposes. This study introduced bovine LF (BLF) gene into tobacco ( Nicotiana tabacum var. Xanthi), Arabidopsis ( A. thaliana ) and wheat ( Triticum aestivum ) via Agrobacterium -mediated plant transformation. Transgenic plants or detached leaves exhibited high levels of resistance against the damping-off causing fungal pathogen Rhizoctonia solani and the head blight causing fungal pathogen Fusarium graminearum . LF also imparted resistance to tomato plants against a bacterial pathogen, Ralstonia solanacearum . Similarly, other researchers demonstrated expression of LF and LF-mediated high-quality resistance to several other aggressive fungal and bacterial plant pathogens in transgenic plants and against viral pathogens by foliar applications of LF or its derivatives. Taken together, these studies demonstrated the effectiveness of LF for improving crop quality and its biopharming potentials for pharmaceautical and nutritional applications.

  1. Regulation by Phospholipids and Kinetic Studies of Plant Membrane-Bound UDP-Glucose Sterol β-d-Glucosyl Transferase 1

    PubMed Central

    Ullmann, Pascaline; Bouvier-Navé, Pierrette; Benveniste, P.

    1987-01-01

    Solubilization and partial purification of the microsomal UDP-glucose sterol glucosyl transferase activity from maize coleoptiles by chromatography on DEAE-cellulose resulted in a highly delipidated (>95%) and inactive enzymic preparation. Addition of sterols revealed part of the activity and subsequent addition of phospholipids further increased the activity. Negatively charged phospholipids were shown to be by far the best activators. The purification step also produced the elimination of two interfering microsomal enzymic activities: UDPase and steryl glucoside acyl transferase. The removal of these two enzymic activities was a prerequisite for kinetic studies including product-inhibition studies, since the substrates of these two latter enzymes are the products of UDPG-SGTase activity. The results of the kinetic studies strongly suggest an ordered bi-bi mechanism for the glucosylation of sterols. Finally the effect of different phospholipids on the kinetic parameters of the reaction was studied. Both phosphatidylcholine and phosphatidylglycerol significantly decrease Km-sterol (and not Km-UDPglucose) and increase the reaction Vmax. The decrease of Km-sterol is similar with both phospholipids whereas the increase of Vmax is much greater with phosphatidylglycerol than with phosphatidylcholine. PMID:16665682

  2. Biosynthesis of plant-derived flavor compounds.

    PubMed

    Schwab, Wilfried; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim

    2008-05-01

    Plants have the capacity to synthesize, accumulate and emit volatiles that may act as aroma and flavor molecules due to interactions with human receptors. These low-molecular-weight substances derived from the fatty acid, amino acid and carbohydrate pools constitute a heterogenous group of molecules with saturated and unsaturated, straight-chain, branched-chain and cyclic structures bearing various functional groups (e.g. alcohols, aldehydes, ketones, esters and ethers) and also nitrogen and sulfur. They are commercially important for the food, pharmaceutical, agricultural and chemical industries as flavorants, drugs, pesticides and industrial feedstocks. Due to the low abundance of the volatiles in their plant sources, many of the natural products had been replaced by their synthetic analogues by the end of the last century. However, the foreseeable shortage of the crude oil that is the source for many of the artificial flavors and fragrances has prompted recent interest in understanding the formation of these compounds and engineering their biosynthesis. Although many of the volatile constituents of flavors and aromas have been identified, many of the enzymes and genes involved in their biosynthesis are still not known. However, modification of flavor by genetic engineering is dependent on the knowledge and availability of genes that encode enzymes of key reactions that influence or divert the biosynthetic pathways of plant-derived volatiles. Major progress has resulted from the use of molecular and biochemical techniques, and a large number of genes encoding enzymes of volatile biosynthesis have recently been reported.

  3. Bioavailability of Plant-Derived Antioxidants

    PubMed Central

    Abourashed, Ehab A.

    2013-01-01

    Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included. PMID:26784467

  4. The effects of sterol structure upon sterol esterification.

    PubMed

    Lin, Don S; Steiner, Robert D; Merkens, Louise S; Pappu, Anuradha S; Connor, William E

    2010-01-01

    Cholesterol is esterified in mammals by two enzymes: LCAT (lecithin cholesterol acyltransferase) in plasma and ACAT(1) and ACAT(2) (acyl-CoA cholesterol acyltransferases) in the tissues. We hypothesized that the sterol structure may have significant effects on the outcome of esterification by these enzymes. To test this hypothesis, we analyzed sterol esters in plasma and tissues in patients having non-cholesterol sterols (sitosterolemia and Smith-Lemli-Opitz syndrome). The esterification of a given sterol was defined as the sterol ester percentage of total sterols. The esterification of cholesterol in plasma by LCAT was 67% and in tissues by ACAT was 64%. Esterification of nine sterols (cholesterol, cholestanol, campesterol, stigmasterol, sitosterol, campestanol, sitostanol, 7-dehydrocholesterol and 8-dehydrocholesterol) was examined. The relative esterification (cholesterol being 1.0) of these sterols by the plasma LCAT was 1.00, 0.95, 0.89, 0.40, 0.85, 0.82 and 0.80, 0.69 and 0.82, respectively. The esterification by the tissue ACAT was 1.00, 1.29, 0.75, 0.49, 0.45, 1.21 and 0.74, respectively. The predominant fatty acid of the sterol esters was linoleic acid for LCAT and oleic acid for ACAT. We compared the esterification of two sterols differing by only one functional group (a chemical group attached to sterol nucleus) and were able to quantify the effects of individual functional groups on sterol esterification. The saturation of the A ring of cholesterol increased ester formation by ACAT by 29% and decreased the esterification by LCAT by 5.9%. Esterification by ACAT and LCAT was reduced, respectively, by 25 and 11% by the presence of an additional methyl group on the side chain of cholesterol at the C-24 position. This data supports our hypothesis that the structure of the sterol substrate has a significant effect on its esterification by ACAT or LCAT.

  5. Sterol Composition in Infant Formulas and Estimated Intake.

    PubMed

    Claumarchirant, Lorena; Matencio, Esther; Sanchez-Siles, Luis Manuel; Alegría, Amparo; Lagarda, María Jesús

    2015-08-19

    Sterol contents in infant formulas (IFs) from the European market were determined, and their intakes by infants between 0 and 6 months were evaluated. Total animal sterols (mg/100 mL) ranged from 1.71 to 5.46, cholesterol being the main animal sterol (1.46-5.1). In general, cholesterol and desmosterol were lower than the human milk (HM) values indicated by other authors. Total plant sterol (mg/100 mL) ranged from 3.1 to 5.0. β-Sitosterol, the most abundant phytosterol, ranged from 1.82 to 3.01, followed by campesterol (0.72-1.15), stigmasterol (0.27-0.53), and brassicasterol (0.14-0.28). Cholesterol intake (mg/day) ranged from 9 to 51 and plant sterol intake (mg/day) from 19 to 50. The sterol profile of IFs is highly dependent on the type and quantity of fats used in their formula. The use of bovine milk fat and milk fat globule membrane in the IFs can approximate the profile of animal sterols to those found in HM, though cholesterol intakes in breastfed infants are still higher than in formula-fed infants.

  6. Sterol Composition in Infant Formulas and Estimated Intake.

    PubMed

    Claumarchirant, Lorena; Matencio, Esther; Sanchez-Siles, Luis Manuel; Alegría, Amparo; Lagarda, María Jesús

    2015-08-19

    Sterol contents in infant formulas (IFs) from the European market were determined, and their intakes by infants between 0 and 6 months were evaluated. Total animal sterols (mg/100 mL) ranged from 1.71 to 5.46, cholesterol being the main animal sterol (1.46-5.1). In general, cholesterol and desmosterol were lower than the human milk (HM) values indicated by other authors. Total plant sterol (mg/100 mL) ranged from 3.1 to 5.0. β-Sitosterol, the most abundant phytosterol, ranged from 1.82 to 3.01, followed by campesterol (0.72-1.15), stigmasterol (0.27-0.53), and brassicasterol (0.14-0.28). Cholesterol intake (mg/day) ranged from 9 to 51 and plant sterol intake (mg/day) from 19 to 50. The sterol profile of IFs is highly dependent on the type and quantity of fats used in their formula. The use of bovine milk fat and milk fat globule membrane in the IFs can approximate the profile of animal sterols to those found in HM, though cholesterol intakes in breastfed infants are still higher than in formula-fed infants. PMID:26242905

  7. Final report of the amended safety assessment of PEG-5, -10, -16, -25, -30, and -40 soy sterol.

    PubMed

    2004-01-01

    PEGs Soy Sterol are polyethylene glycol (PEG) derivatives of soybean oil sterols used in a variety of cosmetic formulations as surfactants and emulsifying agents, skin-conditioning agents, and cleansing and solubilizing agents. When the safety of these ingredients were first reviewed, the available data were insufficient to support safety. New data have since been received and the safety of these ingredients in cosmetics has been substantiated. Current concentration of use ranges from a low of 0.05% in makeup preparations to 2% in moisturizers and several other products. PEGs Soy Sterol are produced by the reaction of the soy sterol hydroxyl with ethylene oxide. In general, ethoxylated fatty acids can contain 1,4-dioxane as a byproduct of ethoxylation. The soy sterols include campesterol, stigmasterol, and beta-sitosterol. The distribution of sterols found in oils derived from common plants is similar, with beta-sitosterol comprising a major component. Impurities include sterol hydrocarbons and cholesterol (4% to 6%) and triterpine alcohols, keto-steroids, and other steroid-like substances (4% to 6%). No pesticide residues were detected. PEGS: Because PEGs are an underlying structure in PEGs Soy Sterols, the previous assessment of PEGs was considered. It is generally recognized that the PEG monomer, ethylene glycol, and certain of its monoalkyl ethers are reproductive and developmental toxins. Given the methods of manufacture of PEGs Soy Sterol, there is no likelihood of ethylene glycol or its alkyl ethers being present. Also, the soybean oil sterol ethers in this ingredient are chemically different from the ethylene glycol alkyl ethers of concern. PEGs are not carcinogenic, although sensitization and nephrotoxicity were observed in burn patients treated with a PEG-based cream. No evidence of systemic toxicity or sensitization was found in studies with intact skin. Plant Phytosterols: Intestinal absorption of ingested plant phytosterols is on the order of 5%, with

  8. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  9. "Dinoflagellate Sterols" in marine diatoms.

    PubMed

    Giner, José-Luis; Wikfors, Gary H

    2011-10-01

    Sterol compositions for three diatom species, recently shown to contain sterols with side chains typically found in dinoflagellates, were determined by HPLC and ¹H NMR spectroscopic analyses. The centric diatom Triceratium dubium (=Biddulphia sp., CCMP 147) contained the highest percentage of 23-methylated sterols (37.2% (24R)-23-methylergosta-5,22-dienol), whereas the pennate diatom Delphineis sp. (CCMP 1095) contained the cyclopropyl sterol gorgosterol, as well as the 27-norsterol occelasterol. The sterol composition of Ditylum brightwellii (CCMP 358) was the most complex, containing Δ⁰- and Δ⁷-sterols, in addition to the predominant Δ⁵-sterols. A pair of previously unknown sterols, stigmasta-5,24,28-trienol and stigmasta-24,28-dienol, were detected in D. brightwellii and their structures were determined by NMR spectroscopic analysis and by synthesis of the former sterol from saringosterol. Also detected in D. brightwellii was the previously unknown 23-methylcholesta-7,22-dienol. PMID:21621802

  10. Agrobacterium tumefaciens responses to plant-derived signaling molecules

    PubMed Central

    Subramoni, Sujatha; Nathoo, Naeem; Klimov, Eugene; Yuan, Ze-Chun

    2014-01-01

    As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium–plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium–plant interactions. PMID:25071805

  11. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    PubMed

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-10-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance.

  12. Sterol biosynthesis is required for heat resistance but not extracellular survival in leishmania.

    PubMed

    Xu, Wei; Hsu, Fong-Fu; Baykal, Eda; Huang, Juyang; Zhang, Kai

    2014-10-01

    Sterol biosynthesis is a crucial pathway in eukaryotes leading to the production of cholesterol in animals and various C24-alkyl sterols (ergostane-based sterols) in fungi, plants, and trypanosomatid protozoa. Sterols are important membrane components and precursors for the synthesis of powerful bioactive molecules, including steroid hormones in mammals. Their functions in pathogenic protozoa are not well characterized, which limits the development of sterol synthesis inhibitors as drugs. Here we investigated the role of sterol C14α-demethylase (C14DM) in Leishmania parasites. C14DM is a cytochrome P450 enzyme and the primary target of azole drugs. In Leishmania, genetic or chemical inactivation of C14DM led to a complete loss of ergostane-based sterols and accumulation of 14-methylated sterols. Despite the drastic change in lipid composition, C14DM-null mutants (c14dm(-)) were surprisingly viable and replicative in culture. They did exhibit remarkable defects including increased membrane fluidity, failure to maintain detergent resistant membrane fraction, and hypersensitivity to heat stress. These c14dm(-) mutants showed severely reduced virulence in mice but were highly resistant to itraconazole and amphotericin B, two drugs targeting sterol synthesis. Our findings suggest that the accumulation of toxic sterol intermediates in c14dm(-) causes strong membrane perturbation and significant vulnerability to stress. The new knowledge may help improve the efficacy of current drugs against pathogenic protozoa by exploiting the fitness loss associated with drug resistance. PMID:25340392

  13. Study of Behavior of Sterols at Interfaces

    NASA Technical Reports Server (NTRS)

    Klein, P. D.; Knight, J. C.; Szczepanik, P. A.

    1968-01-01

    Behavior of sterols and sterol acetates on various types of interfaces indicates that the function of a sterol depends upon a surface orientation and surface energy of the interface. Column-chromatographic techniques determine the retention volume of various sterols under standard conditions.

  14. The mucosal immune response to plant-derived vaccines.

    PubMed

    Hefferon, Kathleen Laura

    2010-10-01

    Transgenic plants present enormous potential as one of the most cost-effective and safe systems for large-scale production of proteins for industrial, pharmaceutical, veterinary and agricultural uses. Heat-stable plant-derived vaccines that are administered orally could in effect enhance vaccine coverage in children and infants, particularly in developing countries. Here we discuss the current status of plant-derived vaccines and their potential to champion the battle against infectious diseases in the least developed countries.

  15. The physiology of sterol nutrition in the pea aphid Acyrthosiphon pisum.

    PubMed

    Bouvaine, Sophie; T Behmer, Spencer; Lin, George G; Faure, Marie-Line; Grebenok, Robert J; Douglas, Angela E

    2012-11-01

    The phloem sap of fava bean (Vicia faba) plants utilized by the pea aphid Acyrthosiphon pisum contains three sterols, cholesterol, stigmasterol and sitosterol, in a 2:2:1 ratio. To investigate the nutritional value of these sterols, pea aphids were reared on chemically-defined diets containing each sterol at 0.1, 1 and 10μgml(-1) with a sterol-free diet as control. Larval growth rate and aphid lifespan did not vary significantly across the diets, indicating that sterol reserves can buffer some performance indices against a shortfall in dietary sterol over at least one generation. However, lifetime reproductive output was depressed in aphids on diets containing stigmasterol or no sterol, relative to diets supplemented with cholesterol or sitosterol. The cholesterol density of embryos in teneral adults was significantly higher than in the total body; and the number and biomass of embryos in aphids on diets with stigmasterol and no sterols were reduced relative to diets with cholesterol or sitosterol, indicating that the reproductive output of the pea aphid can be limited by the amount and composition of dietary sterol. In a complementary RNA-seq analysis of pea aphids reared on plants and diets with different sterol contents, 7.6% of the 17,417 detected gene transcripts were differentially expressed. Transcript abundance of genes with annotated function in sterol utilization did not vary significantly among treatments, suggesting that the metabolic response to dietary sterol may be mediated primarily at the level of enzyme function or metabolite concentration. PMID:22878342

  16. Delivery of plant-derived vaccines.

    PubMed

    Streatfield, Stephen J

    2005-07-01

    Many protein subunit vaccine candidates have been expressed in transgenic plants, and in a few cases the recombinant material has entered early phase clinical or target animal trials. The expressed protein can be purified prior to formulation for any preferred delivery approach. However, there are major cost advantages associated with avoiding protein purification and pursuing the oral delivery of a processed plant product containing the recombinant protein. Grains and dry products that are processed from fresh plant tissues can stably store expressed proteins for extended periods of time at room temperature, making refridgeration unnecessary during storage and distribution. Encapsulation of recombinant proteins in plant tissues guards against their rapid degradation in the gut, therefore facilitating the uptake and induction of appropriate immune responses. Early trial data with plant-based vaccine candidates has shown promising safety and efficacy.

  17. Biopharmaceuticals derived from genetically modified plants.

    PubMed

    Goldstein, D A; Thomas, J A

    2004-11-01

    Modern biotechnology has resulted in a resurgence of interest in the production of new therapeutic agents using botanical sources. With nearly 500 biotechnology products approved or in development globally, and with production capacity limited, the need for efficient means of therapeutic protein production is apparent. Through genetic engineering, plants can now be used to produce pharmacologically active proteins, including mammalian antibodies, blood product substitutes, vaccines, hormones, cytokines, and a variety of other therapeutic agents. Efficient biopharmaceutical production in plants involves the proper selection of host plant and gene expression system, including a decision as to whether a food crop or a non-food crop is more appropriate. Product safety issues relevant to patients, pharmaceutical workers, and the general public must be addressed, and proper regulation and regulatory oversight must be in place prior to commercial plant-based biopharmaceutical production. Plant production of pharmaceuticals holds great potential, and may become an important production system for a variety of new biopharmaceutical products.

  18. Propiconazole inhibits the sterol 14α-demethylase in Glomus irregulare like in phytopathogenic fungi.

    PubMed

    Calonne, Maryline; Sahraoui, Anissa Lounès-Hadj; Campagnac, Estelle; Debiane, Djouher; Laruelle, Frédéric; Grandmougin-Ferjani, Anne; Fontaine, Joël

    2012-04-01

    The increasing concentrations impact (0.02, 0.2 and 2 mg L(-1)) of a Sterol Biosynthesis Inhibitor (SBI) fungicide, propiconazole, was evaluated on development and sterol metabolism of two non-target organisms: mycorrhizal or non-mycorrhizal transformed chicory roots and the arbuscular mycorrhizal fungus (AMF) Glomus irregulare using monoxenic cultures. In this work, we provide the first evidence of a direct impact of propiconazole on the AMF by disturbing its sterol metabolism. A significant decrease in end-products sterols contents (24-methylcholesterol and in 24-ethylcholesterol) was observed concomitantly to a 24-methylenedihydrolanosterol accumulation indicating the inhibition of a key enzyme in sterol biosynthesis pathway, the sterol 14α-demethylase like in phytopathogenic fungi. A decrease in end-product sterol contents in propiconazole-treated roots was also observed suggesting a slowing down of the sterol metabolism in plant. Taken together, our findings suggest that the inhibition of the both AM symbiotic partners development by propiconazole results from their sterol metabolism alterations.

  19. Distribution and factors affecting adsorption of sterols in the surface sediments of Bosten Lake and Manas Lake, Xinjiang.

    PubMed

    Liu, Jiang; Yao, Xiaorui; Lu, Jianjiang; Qiao, Xiuwen; Liu, Zilong; Li, Shanman

    2016-03-01

    This study investigated the concentrations and distribution of eight sterol compounds in the surface sediments of Bosten Lake and Manas Lake, Xinjiang, China. The ratios of sterols as diagnostic indices were used to identify pollution sources. The sediment of the two lakes was selected as an adsorbent to investigate the adsorption behaviour of sterols. Results showed that the sterols were widely distributed in the sediments of the lakes in the study areas. The total concentrations of the detected sterols in Bosten Lake and in Manas Lake were 1.584-27.897 and 2.048-18.373 μg g(-1)∙dw, respectively. In all of the sampling sites, the amount of faecal sterols was less than that of plant sterols. β-sitosterol was the dominant plant sterol with a mean concentration of 2.378 ± 2.234 μg g(-1)∙dw; cholesterol was the most abundant faecal sterol with a mean concentration of 1.060 ± 1.402 μg g(-1)∙dw. The pollution level was higher in Bosten Lake than in Manas Lake. Majority of the ratios clearly demonstrated that the contamination by human faecal sources was occurring at stations which are adjacent to residential areas and water inlets. The adsorption behaviour of sterols to sediment suggested that the sterol adsorption coefficients were reduced as temperature increased. As salinity increased, the adsorption quantity also increased. As pH increased, the sediment adsorption of sterol slightly increased because the strong alkaline solution is not conducive to the adsorption of sterols. The ratios between sterols did not change largely with the change in external factors.

  20. Post-ingestive feedbacks and associative learning regulate the intake of unsuitable sterols in a generalist grasshopper.

    PubMed

    Behmer, S T; Elias, D O; Bernays, E A

    1999-03-01

    Behavioural studies of the grasshopper Schistocerca americana were undertaken to identify the mechanisms that regulate the intake of dietary sterols. In the first experiment, grasshoppers were allowed to feed on spinach, a plant containing only unsuitable sterols; immediately after this first meal, a suitable or unsuitable sterol was injected into the haemolymph. Grasshoppers injected with unsuitable sterols had second meals on spinach that were significantly shorter than those of grasshoppers injected with suitable sterols, indicating that unsuitable dietary sterols are detected post-ingestively. In the second experiment, grasshoppers were fed food containing only unsuitable sterols and were then presented with glass-fibre discs containing different concentrations of a suitable sterol or sucrose only (the control). The results suggest that grasshoppers do not use a direct feedback operating on mouthpart chemoreceptors to regulate their intake of suitable sterols. In the third experiment, grasshoppers were presented with artificial diets containing different sterols and flavours, and feeding was observed over a sequence of meals. The results from both the first and last experiments suggest a role for associative learning in regulating the intake of unsuitable sterols.

  1. Identifying avian sources of faecal contamination using sterol analysis.

    PubMed

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed. PMID:26370196

  2. Identifying avian sources of faecal contamination using sterol analysis.

    PubMed

    Devane, Megan L; Wood, David; Chappell, Andrew; Robson, Beth; Webster-Brown, Jenny; Gilpin, Brent J

    2015-10-01

    Discrimination of the source of faecal pollution in water bodies is an important step in the assessment and mitigation of public health risk. One tool for faecal source tracking is the analysis of faecal sterols which are present in faeces of animals in a range of distinctive ratios. Published ratios are able to discriminate between human and herbivore mammal faecal inputs but are of less value for identifying pollution from wildfowl, which can be a common cause of elevated bacterial indicators in rivers and streams. In this study, the sterol profiles of 50 avian-derived faecal specimens (seagulls, ducks and chickens) were examined alongside those of 57 ruminant faeces and previously published sterol profiles of human wastewater, chicken effluent and animal meatwork effluent. Two novel sterol ratios were identified as specific to avian faecal scats, which, when incorporated into a decision tree with human and herbivore mammal indicative ratios, were able to identify sterols from avian-polluted waterways. For samples where the sterol profile was not consistent with herbivore mammal or human pollution, avian pollution is indicated when the ratio of 24-ethylcholestanol/(24-ethylcholestanol + 24-ethylcoprostanol + 24-ethylepicoprostanol) is ≥0.4 (avian ratio 1) and the ratio of cholestanol/(cholestanol + coprostanol + epicoprostanol) is ≥0.5 (avian ratio 2). When avian pollution is indicated, further confirmation by targeted PCR specific markers can be employed if greater confidence in the pollution source is required. A 66% concordance between sterol ratios and current avian PCR markers was achieved when 56 water samples from polluted waterways were analysed.

  3. Plant-Derived Terpenes: A Feedstock for Specialty Biofuels

    DOE PAGESBeta

    Mewalal, Ritesh; Rai, Durgesh K.; Kainer, David; Chen, Feng; Külheim, Carsten; Peter, Gary F.; Tuskan, Gerald A.

    2016-09-09

    Research toward renewable and sustainable energy has identified candidate terpenes capable of blending/replacing petroleum-derived jet, diesel and tactical fuels. Additionally, despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants due to low yields. Plant terpene biosynthesis is regulated at multiple levels leading to wide variability in terpene content and chemistry. Advances in the plant molecular toolkit including annotated genomes, high-throughput omics profiling and genome-editing provides an ideal platform for high-resolution analysis and in-depth understanding of plant terpene metabolism. Concomitantly, such information is useful for bioengineering strategies of metabolic pathwaysmore » for candidate terpenes. Within this paper, we review the status of terpenes as an advanced biofuel and discuss the potential of plants as a viable agronomic solution for future advanced terpene-derived biofuels.« less

  4. Phylogenomics of Sterol Synthesis: Insights into the Origin, Evolution, and Diversity of a Key Eukaryotic Feature

    PubMed Central

    Desmond, Elie

    2009-01-01

    The availability of complete genomes from a wide sampling of eukaryotic diversity has allowed the application of phylogenomics approaches to study the origin and evolution of unique eukaryotic cellular structures, but these are still poorly applied to study unique eukaryotic metabolic pathways. Sterols are a good example because they are an essential feature of eukaryotic membranes. The sterol pathway has been well dissected in vertebrates, fungi, and land plants. However, although different types of sterols have been identified in other eukaryotic lineages, their pathways have not been fully characterized. We have carried out an extensive analysis of the taxonomic distribution and phylogeny of the enzymes of the sterol pathway in a large sampling of eukaryotic lineages. This allowed us to tentatively indicate features of the sterol pathway in organisms where this has not been characterized and to point out a number of steps for which yet-to-discover enzymes may be at work. We also inferred that the last eukaryotic common ancestor already harbored a large panel of enzymes for sterol synthesis and that subsequent evolution over the eukaryotic tree occurred by tinkering, mainly by gene losses. We highlight a high capacity of sterol synthesis in the myxobacterium Plesiocystis pacifica, and we support the hypothesis that the few bacteria that harbor homologs of the sterol pathway have likely acquired these via horizontal gene transfer from eukaryotes. Finally, we propose a potential candidate for the elusive enzyme performing C-3 ketoreduction (ERG27 equivalent) in land plants and probably in other eukaryotic phyla. PMID:20333205

  5. Insect molting hormone and sterol biosynthesis in spinach

    SciTech Connect

    Grebenok, R.J.; Adler, J.H. )

    1990-05-01

    Insect molting hormones, which are produced by plants and are effective molecules in the control of insect crop pests, are biosynthesized in developing spinach leaves (Spinacia oleracea L.). The major sterols biosynthesized by spinach are avenasterol (24{alpha}-ethyl-5{alpha}-cholesta-7,24(28)-dien-3{beta}-ol), spinasterol (24{alpha}-ethyl-5{alpha}-cholesta-7,22-dien-3{beta}-ol), and 22-dihydrospinasterol (24{alpha}-ethyl-5{alpha}-cholest-7-en-3{beta}-ol). The major ecdysteroids biosynthesized are ecdysterone (2{beta},3{beta},14{alpha},20R,22R,25-hexahydroxy-5{beta}-cholest-7-en-6-one) and polypodine B (2{beta},3{beta},5{beta},14{alpha},20R,22R,25-heptahycroxycholest-7-en-6-one) and polypodine B (2{beta},3{beta},5{beta},14{alpha},20R,22R,25-heptahydroxycholest-7-en-6-one). When labeled 2-{sup 14}C-mevalonic acid was incorporated into young leaves isolated squalene, sterols and ecdysteroids contained the label. During a short (16 h) incorporation period in intact young leaves of 100 day old plants, the avenasterol has the highest specific activity in counts per minute per {mu}g of sterol followed by 22-dihydrospinasterol which is more highly labeled than spinasterol. The ecdysteroids synthesized, on an entire plant basis, account for 20% of the total steroid (sterol and ecdysteroid) isolated from the plant.

  6. Plant-Derived Natural Products for Parkinson's Disease Therapy.

    PubMed

    Sengupta, T; Vinayagam, J; Singh, R; Jaisankar, P; Mohanakumar, K P

    2016-01-01

    Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD. PMID:27651267

  7. Impact of ice melting on distribution of particulate sterols in glacial fjords of Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Marcelo H.; Riquelme, Pablo; Pantoja, Silvio

    2016-04-01

    We analyzed variability in abundance and composition of sterols in waters of the fjord adjacent to glacier Jorge Montt, one of the fastest retreated glaciers in Patagonian Icefields. The study was carried out between August 2012 and November 2013 under different meltwater scenarios. Distribution of sterols in surface and bottom waters was determined by Gas Chromatography coupled to Mass Spectrometry. Sterol concentration ranged from 18 to 1726 ng/L in surface and bottom waters and was positive correlated with chlorophyll-a concentration. Under high melting conditions in austral summer, surface meltwaters showed high concentrations of sterols and were dominated by methylene-cholesterol, a representative sterol of centric diatoms. In the area near open ocean and in austral autumn, winter and spring in proglacial fjord, lower sterol concentrations in surface waters were accompanied by other microalgae sterols and an increase in relative abundance of plant sterols, evidencing a different source of organic matter. In autumn, when high meltwater flux was also evidenced, presence of stanols and an uncommon tri-unsaturated sterol suggests influence of meltwaters in composition of sterols in the downstream fjord. We conclude that ice melting can modify sterol composition by setting conditions for development of a singular phytoplankton population able to thrive in surface meltwater and by carrying glacier organic matter into Patagonian glacial fjords. In projected ice melting scenario, these changes in organic matter quantity and quality can potentially affect availability of organic substrates for heterotrophic activity and trophic status of glacial fjords. This research was funded by COPAS Sur-Austral (PFB-31)

  8. A new sterol glycoside from Securidaca inappendiculata.

    PubMed

    Zhang, Li-Jie; Yang, Xue-Dong; Xu, Li-Zhen; Zou, Zhong-Mei; Yang, Shi-Lin

    2005-08-01

    From the roots of Securidaca inappendiculata, one new sterol glycoside securisteroside (1) has been isolated, along with two known sterols, spinasterol (2) and 3-O-beta-D-glucopyranosyl-spinasterol (3). The new sterol was characterized by chemical and spectrometric methods, including EIMS, FABMS and one- and two-dimensional NMR experiments. PMID:16087640

  9. Effect of beta-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells.

    PubMed

    Awad, A B; Gan, Y; Fink, C S

    2000-01-01

    Previous work from this laboratory suggests an activation of the sphingomyelin cycle as a mechanism for growth inhibition with the incorporation of beta-sitosterol (SIT) into human prostate cancer LNCaP cells. In the present study we examined two key enzymes that have been shown to play a role in the sphingomyelin cycle. Dietary sterols (SIT and cholesterol) were compared for their effect on LNCaP cell growth, phospholipase D (PLD) activity, and protein phosphatase 2A (PP 2A) activity and expression. PP 2A has been suggested as a direct in vitro target of ceramide action on cell growth and apoptosis. Ceramide also inhibits phorbol myristate acetate-stimulated PLD. SIT (16 microM) increased PP 2A activity by 50% compared with cholesterol treatment in LNCaP prostate cells; however, SIT did not alter protein levels of PP 2A. There was an increase in PLD activity in the presence of phorbol myristate acetate in cells supplemented with 16 microM SIT compared with those supplemented with cholesterol after five days of treatment. The present study suggests that the activation of PP 2A added support to the role of the activation of the sphingomyelin cycle by SIT treatment. However, the increase in PLD activity, which was modest but significant, with SIT supplementation suggests that this pathway may be modulated by other mechanisms. This includes the incorporation of SIT into cell membranes that may alter fluidity and, thus, influence the activation of membrane-bound enzymes such as PLD.

  10. [Safety assessment of foods derived from genetically modified plants].

    PubMed

    Pöting, A; Schauzu, M

    2010-06-01

    The placing of genetically modified plants and derived food on the market falls under Regulation (EC) No. 1829/2003. According to this regulation, applicants need to perform a safety assessment according to the Guidance Document of the Scientific Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA), which is based on internationally agreed recommendations. This article gives an overview of the underlying legislation as well as the strategy and scientific criteria for the safety assessment, which should generally be based on the concept of substantial equivalence and carried out in relation to an unmodified conventional counterpart. Besides the intended genetic modification, potential unintended changes also have to be assessed with regard to potential adverse effects for the consumer. All genetically modified plants and derived food products, which have been evaluated by EFSA so far, were considered to be as safe as products derived from the respective conventional plants.

  11. Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched- margarines by transmission mode direct analysis in real time mass spectrometry.

    PubMed

    Alberici, Rosana M; Fernandes, Gabriel D; Porcari, Andréia M; Eberlin, Marcos N; Barrera-Arellano, Daniel; Fernández, Facundo M

    2016-11-15

    Plant-derived sterols, often referred to as phytosterols, are important constituents of plant membranes where they assist in maintaining phospholipid bilayer stability. Consumption of phytosterols has been suggested to positively affect human health by reducing cholesterol levels in blood via inhibition of its absorption in the small intestine, thus protecting against heart attack and stroke. Sterols are challenging analytes for mass spectrometry, since their low polarity makes them difficult to ionize by both electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), typically requiring derivatization steps to overcome their low ionization efficiencies. We present a fast and reliable method to characterize the composition of phytosterols in vegetable oils and enriched margarines. The method requires no derivatization steps or sample extraction procedures thanks to the use of transmission mode direct analysis in real time mass spectrometry (TM-DART-MS).

  12. Rapid fingerprinting of sterols and related compounds in vegetable and animal oils and phytosterol enriched- margarines by transmission mode direct analysis in real time mass spectrometry.

    PubMed

    Alberici, Rosana M; Fernandes, Gabriel D; Porcari, Andréia M; Eberlin, Marcos N; Barrera-Arellano, Daniel; Fernández, Facundo M

    2016-11-15

    Plant-derived sterols, often referred to as phytosterols, are important constituents of plant membranes where they assist in maintaining phospholipid bilayer stability. Consumption of phytosterols has been suggested to positively affect human health by reducing cholesterol levels in blood via inhibition of its absorption in the small intestine, thus protecting against heart attack and stroke. Sterols are challenging analytes for mass spectrometry, since their low polarity makes them difficult to ionize by both electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI), typically requiring derivatization steps to overcome their low ionization efficiencies. We present a fast and reliable method to characterize the composition of phytosterols in vegetable oils and enriched margarines. The method requires no derivatization steps or sample extraction procedures thanks to the use of transmission mode direct analysis in real time mass spectrometry (TM-DART-MS). PMID:27283681

  13. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana

    PubMed Central

    Jang, Jyan-Chyun; Fujioka, Shozo; Tasaka, Masao; Seto, Hideharu; Takatsuto, Suguru; Ishii, Akira; Aida, Mitsuhiro; Yoshida, Shigeo; Sheen, Jen

    2000-01-01

    Here we report a novel Arabidopsis dwarf mutant, fackel-J79, whose adult morphology resembles that of brassinosteroid-deficient mutants but also displays distorted embryos, supernumerary cotyledons, multiple shoot meristems, and stunted roots. We cloned the FACKEL gene and found that it encodes a protein with sequence similarity to both the human sterol reductase family and yeast C-14 sterol reductase and is preferentially expressed in actively growing cells. Biochemical analysis indicates that the fk-J79 mutation results in deficient C-14 sterol reductase activity, abnormal sterol composition, and reduction of brassinosteroids (BRs). Unlike other BR-deficient mutants, the defect of hypocotyl elongation in fk-J79 cannot be corrected by exogenous BRs. The unique phenotypes and sterol composition in fk-J79 indicate crucial roles of sterol regulation and signaling in cell division and cell expansion in embryonic and post-embryonic development in plants. PMID:10859167

  14. Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii

    PubMed Central

    Pan, Li; Lezama-Davila, Claudio M.; Isaac-Marquez, Angelica P.; Calomeni, Edward P.; Fuchs, James R.; Satoskar, Abhay R.; Kinghorn, A. Douglas

    2012-01-01

    A new cholesterol derivative, pentalinonsterol (cholest-4,20,24-trien-3-one, 1), and a new polyoxygenated pregnane sterol glycoside, pentalinonside (2), together with 18 known compounds, including 14 sterols (3–16), three coumarins (17–19), and a triterpene (20), were isolated from a n-hexane partition of a methanol extract of the roots of the Mexican medicinal plant Pentalinon andrieuxii. Structure elucidation of compounds 1 and 2 was accomplished by spectroscopic data interpretation. All isolates were evaluated in vitro for their antileishmanial activity. Among these compounds, 6,7-dihydroneridienone (15) was found to be the most potent principle against promastigotes of Leishmania mexicana (L. mexicana). The cholesterol analogue, pentalinonsterol (1), together with two known sterols, 24-methylcholest-4,24(28)-dien-3-one (3) and neridienone (16), also exhibited significant leishmanicidal activity in this same bioassay. Compounds 1, 3, 15, 16, cholest-4-en-3-one (4), and cholest-5,20,24-trien-3β-ol (7), showed strong antileishmanial activity against amastigotes of L. mexicana, and 4 was found to be the most potent agent with an IC50 value of 0.03 μM. All the isolates were also evaluated for their cytotoxicity in non-infected bone marrow-derived macrophages, but none of these compounds was found active towards this cell line. The intracellular parasites treated with compounds 1, 3, 4, 15, and 16 were further studied by electron microscopy; morphological abnormalities and destruction of the amastigotes were observed, as a result of treatment with these compounds. PMID:22840389

  15. Transgenic plant-derived pharmaceuticals - the practical approach?

    PubMed

    Yano, Akira; Takekoshi, Masataka

    2004-10-01

    Production of biopharmaceuticals in transgenic plants would involve the creation of a new industry. Those transgenic plants, including staple food crops, could provide many benefits to people all over the world. However, the new industry might require a strict regulation system. It is probable that such a strict system would not be acceptable to Japan or to most developing countries. Many countries should use non-food crops for production of biopharmaceuticals and take on more simple systems. The new industry must develop strategies for promoting the benefits of transgenic plant-derived biopharmaceuticals on both the domestic and worldwide scales.

  16. Plant-derived virus-like particles as vaccines

    PubMed Central

    Chen, Qiang; Lai, Huafang

    2013-01-01

    Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of “humanized” glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future. PMID:22995837

  17. Plant-derived virus-like particles as vaccines.

    PubMed

    Chen, Qiang; Lai, Huafang

    2013-01-01

    Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.

  18. Plant derived and dietary phenolic antioxidants: anticancer properties.

    PubMed

    Roleira, Fernanda M F; Tavares-da-Silva, Elisiário J; Varela, Carla L; Costa, Saul C; Silva, Tiago; Garrido, Jorge; Borges, Fernanda

    2015-09-15

    In this paper, a review of the literature on the phenolic compounds with anticancer activity published between 2008 and 2012 is presented. In this overview only phenolic antioxidant compounds that display significant anticancer activity have been described. In the first part of this review, the oxidative and nitrosative stress relation with cancer are described. In the second part, the plant-derived food extracts, containing identified phenolic antioxidants, the phenolic antioxidants isolated from plants and plant-derived food or commercially available and the synthetic ones, along with the type of cancer and cells where they exert anticancer activity, are described and summarized in tables. The principal mechanisms for their anti-proliferative effects were also described. Finally, a critical analysis of the studies and directions for future research are included in the conclusion.

  19. The Potential for Plant Derivatives against Acrylamide Neurotoxicity.

    PubMed

    Adewale, O O; Brimson, J M; Odunola, O A; Gbadegesin, M A; Owumi, S E; Isidoro, C; Tencomnao, T

    2015-07-01

    Certain industrial chemicals and food contaminants have been demonstrated to possess neurotoxic activity and have been suspected to cause brain-related disorders in humans. Acrylamide (ACR), a confirmed neurotoxicant, can be found in trace amount in commonly consumed human aliments as a result of food processing or cooking. This discovery aroused a great concern in the public, and increasing efforts are continuously geared towards the resolution of this serious threat. The broad chemical diversity of plants may offer the resources for novel antidotes against neurotoxicants. With the goal of attenuating neurotoxicity of ACR, several plants extracts or derivatives have been employed. This review presents the plants and their derivatives that have been shown most active against ACR-induced neurotoxicity, with a focus on their origin, pharmacological activity, and antidote effects. PMID:25886076

  20. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  1. Plant-derived pharmaceuticals for the developing world.

    PubMed

    Hefferon, Kathleen

    2013-10-01

    Plant-produced vaccines and therapeutic agents offer enormous potential for providing relief to developing countries by reducing the incidence of infant mortality caused by infectious diseases. Vaccines derived from plants have been demonstrated to effectively elicit an immune response. Biopharmaceuticals produced in plants are inexpensive to produce, require fewer expensive purification steps, and can be stored at ambient temperatures for prolonged periods of time. As a result, plant-produced biopharmaceuticals have the potential to be more accessible to the rural poor. This review describes current progress with respect to plant-produced biopharmaceuticals, with a particular emphasis on those that target developing countries. Specific emphasis is given to recent research on the production of plant-produced vaccines toward human immunodeficiency virus, malaria, tuberculosis, hepatitis B virus, Ebola virus, human papillomavirus, rabies virus and common diarrheal diseases. Production platforms used to express vaccines in plants, including nuclear and chloroplast transformation, and the use of viral expression vectors, are described in this review. The review concludes by outlining the next steps for plant-produced vaccines to achieve their goal of providing safe, efficacious and inexpensive vaccines to the developing world.

  2. Comparative safety assessment of plant-derived foods.

    PubMed

    Kok, E J; Keijer, J; Kleter, G A; Kuiper, H A

    2008-02-01

    The second generation of genetically modified (GM) plants that are moving towards the market are characterized by modifications that may be more complex and traits that more often are to the benefit of the consumer. These developments will have implications for the safety assessment of the resulting plant products. In part of the cases the same crop plant can, however, also be obtained by 'conventional' breeding strategies. The breeder will decide on a case-by-case basis what will be the best strategy to reach the set target and whether genetic modification will form part of this strategy. This article discusses important aspects of the safety assessment of complex products derived from newly bred plant varieties obtained by different breeding strategies. On the basis of this overview, we conclude that the current process of the safety evaluation of GM versus conventionally bred plants is not well balanced. GM varieties are elaborately assessed, yet at the same time other crop plants resulting from conventional breeding strategies may warrant further food safety assessment for the benefit of the consumer. We propose to develop a general screening frame for all newly developed plant varieties to select varieties that cannot, on the basis of scientific criteria, be considered as safe as plant varieties that are already on the market.

  3. Strigolactones, a novel carotenoid-derived plant hormone.

    PubMed

    Al-Babili, Salim; Bouwmeester, Harro J

    2015-01-01

    Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development.

  4. Biosynthesis of Phytosterol Esters: Identification of a Sterol O-Acyltransferase in Arabidopsis1[OA

    PubMed Central

    Chen, Qilin; Steinhauer, Lee; Hammerlindl, Joe; Keller, Wilf; Zou, Jitao

    2007-01-01

    Fatty acyl esters of phytosterols are a major form of sterol conjugates distributed in many parts of plants. In this study we report an Arabidopsis (Arabidopsis thaliana) gene, AtSAT1 (At3g51970), which encodes for a novel sterol O-acyltransferase. When expressed in yeast (Saccharomyces cerevisiae), AtSAT1 mediated production of sterol esters enriched with lanosterol. Enzyme property assessment using cell-free lysate of yeast expressing AtSAT1 suggested the enzyme preferred cycloartenol as acyl acceptor and saturated fatty acyl-Coenyzme A as acyl donor. Taking a transgenic approach, we showed that Arabidopsis seeds overexpressing AtSAT1 accumulated fatty acyl esters of cycloartenol, accompanied by substantial decreases in ester content of campesterol and β-sitosterol. Furthermore, fatty acid components of sterol esters from the transgenic lines were enriched with saturated and long-chain fatty acids. The enhanced AtSAT1 expression resulted in decreased level of free sterols, but the total sterol content in the transgenic seeds increased by up to 60% compared to that in wild type. We conclude that AtSAT1 mediates phytosterol ester biosynthesis, alternative to the route previously described for phospholipid:sterol acyltransferase, and provides the molecular basis for modification of phytosterol ester level in seeds. PMID:17885082

  5. The sterols of calcareous sponges (Calcarea, Porifera).

    PubMed

    Hagemann, Andrea; Voigt, Oliver; Wörheide, Gert; Thiel, Volker

    2008-11-01

    Sponges are sessile suspension-feeding organisms whose internal phylogenetic relationships are still the subject of intense debate. Sterols may have the potential to be used as independent markers to test phylogenetic hypotheses. Twenty representative specimens of calcareous sponges (class Calcarea, phylum Porifera) with a broad coverage within both subclasses Calcinea and Calcaronea were analysed for their sterol content. Two major pseudohomologous series were found, accompanied by some additional sterols. The first series encompassing conventional C(27) to C(29)Delta(5,7,22) sterols represented the major sterols, with ergosterol (ergosta-5,7,22-trien-3beta-ol, C(28)Delta(5,7,22)) being most prominent in many species. The second series consisted of unusual C(27) to C(29)Delta(5,7,9(11),22) sterols. Cholesterol occurred sporadically, mostly in trace amounts. The sterol patterns did not resolve intraclass phylogenetic relationships, namely the distinction between the subclasses, Calcinea and Calcaronea. This pointed towards major calcarean lipid traits being established prior to the separation of subclasses. Furthermore, calcarean sterol patterns clearly differ from those found in Hexactinellida, whereas partial overlap occurred with some Demospongiae. Hence, sterols only partly reflect the phylogenetic separation of Calcarea from both of the other poriferan classes that was proposed by recent molecular work and fatty acid analyses.

  6. Sedimentary hydrocarbons and sterols in a South Atlantic estuarine/shallow continental shelf transitional environment under oil terminal and grain port influences.

    PubMed

    Bet, Rafael; Bícego, Marcia C; Martins, César C

    2015-06-15

    Sterols and hydrocarbons were determined in the surface sediments from the transitional environment between Paranaguá Bay and the shallow continental shelf in the South Atlantic to assess the sources of organic matter (OM) and the contamination status of an area exposed to multiple anthropogenic inputs. Total aliphatic hydrocarbon concentrations were less than 10μgg(-1), which is typical of unpolluted sediments, and related to recent inputs from higher terrestrial plants. Total polycyclic aromatic hydrocarbon ranged from

    derived from combustion with non-detectable levels occurring in 65% of the samples. Sterols typically related to marine sources predominated in the analysed sediments. Hence, the study area was protected from human activity. The relative absence of anthropogenic input and OM preservation clearly indicate that the organic markers analysed can be used to investigate the biogenic input of sedimentary OM in the study area.

  7. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products

    PubMed Central

    Kuete, Victor; Efferth, Thomas

    2010-01-01

    Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, anti-parasitic including antimalarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics, and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative, and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products. PMID:21833168

  8. Elimination of alkaloids from plant-derived human monoclonal antibody.

    PubMed

    Ko, Kisung; Wei, Xiaochen; Crooks, Peter A; Koprowski, Hilary

    2004-03-01

    A human antiviral monoclonal antibody (mAb) expressed in transgenic tobacco plants was purified from the tobacco leaf by two different methods. In one method, total protein precipitated with ammonium sulfate was applied to a Hi-Trap protein A column (column method). In the second method, leaf supernatant obtained after liquid nitrogen leaf grinding was directly immunoprecipitated using protein A-agarose beads (immunoprecipitation method). The column and immunoprecipitation methods yielded 0.52 and 0.45 microg of plant-derived mAb (mAb(P))/g, respectively, from fresh leaf tissue. The product derived using the column method exhibited higher binding activity compared to immunoprecipitation-derived product against rabies virus strain CVS-11 in ELISA. Gas chromatography/mass spectrometry analysis, which has a detection limit of 5 pg revealed no detectable levels of nicotine or other related plant alkaloids in the purified mAb(P) from either purification procedure. Thus, both purification methodologies yield mAb(P) uncontaminated with nicotine from the tobacco leaves.

  9. Metabolic engineering of sugars and simple sugar derivatives in plants.

    PubMed

    Patrick, John W; Botha, Frikkie C; Birch, Robert G

    2013-02-01

    Carbon captured through photosynthesis is transported, and sometimes stored in plants, as sugar. All organic compounds in plants trace to carbon from sugars, so sugar metabolism is highly regulated and integrated with development. Sugars stored by plants are important to humans as foods and as renewable feedstocks for industrial conversion to biofuels and biomaterials. For some purposes, sugars have advantages over polymers including starches, cellulose or storage lipids. This review considers progress and prospects in plant metabolic engineering for increased yield of endogenous sugars and for direct production of higher-value sugars and simple sugar derivatives. Opportunities are examined for enhancing export of sugars from leaves. Focus then turns to manipulation of sugar metabolism in sugar-storing sink organs such as fruits, sugarcane culms and sugarbeet tubers. Results from manipulation of suspected 'limiting' enzymes indicate a need for clearer understanding of flux control mechanisms, to achieve enhanced levels of endogenous sugars in crops that are highly selected for this trait. Outcomes from in planta conversion to novel sugars and derivatives range from severe interference with plant development to field demonstration of crops accumulating higher-value sugars at high yields. The differences depend on underlying biological factors including the effects of the novel products on endogenous metabolism, and on biotechnological fine-tuning including developmental expression and compartmentation patterns. Ultimately, osmotic activity may limit the accumulation of sugars to yields below those achievable using polymers; but results indicate the potential for increases above current commercial sugar yields, through metabolic engineering underpinned by improved understanding of plant sugar metabolism.

  10. Single Plant Derived Nanotechnology for Synergistic Antibacterial Therapies

    PubMed Central

    Kalluri, Jhansi R.; Gonzalez-Rodriguez, Roberto; Hartman, Phil S.; Loni, Armando; Canham, Leigh T.; Coffer, Jeffery L.

    2016-01-01

    Multiple new approaches to tackle multidrug resistant infections are urgently needed and under evaluation. One nanotechnology-based approach to delivering new relevant therapeutics involves silicon accumulator plants serving as a viable silicon source in green routes for the fabrication of the nanoscale drug delivery carrier porous silicon (pSi). If the selected plant leaf components contain medicinally-active species as well, then a single substance can provide not only the nanoscale high surface area drug delivery carrier, but the drug itself. With this idea in mind, porous silicon was fabricated from joints of the silicon accumulator plant Bambuseae (Tabasheer) and loaded with an antibacterial extract originating from leaves of the same type of plant (Bambuseae arundinacea). Preparation of porous silicon from Tabasheer includes extraction of biogenic silica from the ground plant by calcination, followed by reduction with magnesium in the presence of sodium chloride, thereby acting as a thermal moderator that helps to retain the mesoporous structure of the feedstock. The purified product was characterized by a combination of scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and low temperature nitrogen gas adsorption measurements. Antimicrobial activity and minimum inhibitory concentration of a leaf extract of Bambuseae arundinacea was tested against the bacteria Escherichia Coli (E. Coli) and Staphylococcus aureus (S. Aureus), along with the fungus Candida albicans (C. Albicans). A S. aureus active ethanolic leaf extract was loaded into the above Tabasheer-derived porous silicon. Initial studies indicate sustained in vitro antibacterial activity of the extract-loaded plant derived pSi (25 wt %, TGA), as measured by disk diffusion inhibitory zone assays. Subsequent chromatographic separation of this extract revealed that the active antimicrobial species

  11. Sterol phylogenesis and algal evolution.

    PubMed Central

    Nes, W D; Norton, R A; Crumley, F G; Madigan, S J; Katz, E R

    1990-01-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like micro-organisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and 1H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecycloartanol, ergosterol, protothecasterol, 4alpha-methylergostanol, 4alpha-methylclionastanol, clionastanol, 24beta-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I [2-3H]lanosterol, [2-3H]cycloartenol, [24-3H]lanosterol, and [methyl-2H3]methionine and by feeding to II [methyl-2H3]methionine. The results demonstrate that the 24beta configuration is formed by different alkylation routes in I and II. The Delta25(27) route operates in I while the Delta24(28) route operates in II. Based on what is known in the literature regarding sterol distribution and phylogenesis together with our findings that the stereochemical outcome of squalene oxide cyclization leads to the production of cycloartenol rather than lanosterol (characteristic of the fungal genealogy) and the chirality of the C-24 alkyl group is similar in the two nonphotosynthetic microbes (beta oriented), we conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors. PMID:11607106

  12. Excretion of sterols from the skin of normal and hypercholesterolemic humans

    PubMed Central

    Bhattacharyya, Ashim K.; Connor, William E.; Spector, Arthur A.

    1972-01-01

    The 24 hr sterol excretion from the entire skin surface was determined in six normal and five hypercholesterolemic (Type II) patients fed a controlled, eucaloric diet containing 400 mg of plant sterols. All subjects received radiolabeled cholesterol intravenously in order to measure cholesterol turnover and exchange. The 24 hr skin surface lipids were collected subsequently at intervals of 7-10 days. Sterols were quantified and identified by a combination of thin-layer and gas-liquid chromatographic methods. The mean 24 hr excretion of cholesterol in milligrams was 82.6 in the normal subjects and 82.7 in the hypercholesterolemic patients. Cholesterol constituted 89% of the total sterol excretion through the skin surface in both groups. The specific radioactivity of cholesterol in the skin surface lipids increased gradually after the intravenous administration of the isotope. Within 4-5 wk the specific activity equaled and then remained higher than that of the plasma up to 10 wk. These specific activity curves suggested that, for at least some of skin surface cholesterol, there was a precursor-product relationship between the plasma cholesterol and the skin cholesterol. The presence of plant sterols, β-sitosterol, campesterol, and stigmasterol in the skin surface lipids of man has not been reported previously. We identified these sterols in the skin surface lipids of all of our subjects. They constituted about 7% of the total skin surface sterols. The occurrence of plant sterols in the skin surface lipids suggested that plasma sterols were transferred from the plasma into the skin. 1-2% of the skin surface sterols were tentatively identified as lathosterol and lanosterol. The present study documented that a significant amount of cholesterol was excreted from the skin surface and that probably there was a net transfer of plasma cholesterol into the skin surface lipids. Both normal subjects and hypercholesterolemic patients excreted similar amounts of cholesterol per

  13. Transient expression systems for plant-derived biopharmaceuticals.

    PubMed

    Komarova, Tatiana V; Baschieri, Selene; Donini, Marcello; Marusic, Carla; Benvenuto, Eugenio; Dorokhov, Yuri L

    2010-08-01

    In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems. PMID:20673010

  14. The occurrence of tricin and its derivatives in plants

    DOE PAGESBeta

    Li, Mi; Pu, Yunqiao; Yoo, Chang Geun; Ragauskas, Arthur J.

    2016-02-02

    Our understanding of the structure and biosynthetic pathway of lignin, a phenylpropanoid heteropolymer, continues to evolve, especially with the discovery of new lignin monomers/structural moieties such as monolignol acetate, hydroxycinnamyl aldehyde/alcohol, and p-hydroxybenzoate in the past decades. Recently, tricin has been reported as a component incorporated into monocot lignin. As a flavonoid compound widely distributed in herbaceous plants, tricin has been extensively studied due to its biological significance in plant growth as well as its potential for pharmaceutical importance. Tricin is biosynthesized as a constituent of plant secondary metabolites through a combination of phenylpropanoid and polyketide pathways. Tricin occurs inmore » plants in either free or conjugated forms such as tricin-glycosides, tricin-lignans, and tricin-lignan-glycosides.The emergence of tricin covalently incorporated with lignin biopolymer implies the possible association of lignification and tricin biosynthesis. This review summarizes the occurrence of tricin and its derivatives in plants. Additionally, synthesis, potential application, and characterization of tricin are discussed.« less

  15. Bioorthogonal probes for imaging sterols in cells.

    PubMed

    Jao, Cindy Y; Nedelcu, Daniel; Lopez, Lyle V; Samarakoon, Thilani N; Welti, Ruth; Salic, Adrian

    2015-03-01

    Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited. We introduce a robust and versatile method for sterol microscopy based on C19 alkyne cholesterol and oxysterol analogues. These sterol analogues are fully functional; they rescue growth of cholesterol auxotrophic cells and faithfully recapitulate the multiple roles that sterols play in Hedgehog signal transduction. Alkyne sterol analogues incorporate efficiently into cellular membranes and can be imaged with high resolution after copper(I)-catalyzed azide-alkyne cycloaddition reaction with fluorescent azides. We demonstrate the use of alkyne sterol probes for visualizing the subcellular distribution of cholesterol and for two-color imaging of sterols and choline phospholipids. Our imaging strategy should be broadly applicable to studying the role of sterols in normal physiology and disease.

  16. Sterol phylogenesis and algal evolution

    SciTech Connect

    Nes, W.D.; Norton, R.A.; Crumley, F.G. ); Madigan, S.J.; Katz, E.R. )

    1990-10-01

    The stereochemistry of several sterol precursors and end products synthesized by two fungal-like microorganisms Prototheca wickerhamii (I) and Dictyostelium discoideum (II) have been determined by chromatographic (TLC, GLC, and HPLC) and spectral (UV, MS, and {sup 1}H NMR) methods. From I and II the following sterols were isolated from the cells: cycloartenol, cyclolaudenol, 24(28)-methylenecy-cloartanol, ergosterol, protothecasterol, 4{alpha}-methylergostanol, 4{alpha}-methylclionastanol, clionastanol, 24{beta}-ethylcholesta-8,22-enol, and dictyosterol. In addition, the mechanism of C-24 methylation was investigated in both organisms by feeding to I (2-{sup 3}H)lanosterol, (2-{sup 3}H)cycloartenol, (24{sup 3}H)lanosterol, and (methyl-{sup 2}H{sub 3})methionine and by feeding to II (methyl-{sup 2}H{sub 3})methionine. The results demonstrate that the 24{beta} configuration is formed by different alkylation routes in I and II. The authors conclude that Prototheca is an apoplastic Chlorella (i.e., an alga) and that Dictyostelium as well as the other soil amoebae that synthesize cycloartenol evolved from algal rather than fungal ancestors.

  17. Plant derived alternatives for hormone replacement therapy (HRT).

    PubMed

    Seidlova-Wuttke, Dana; Jarry, Hubertus; Wuttke, Wolfgang

    2013-12-01

    Abstract Hormone replacement therapy (HRT) has undisputable positive effects on climacteric complaints, in the bone and on body weight but also several undesired side effects. Therefore, plant-derived alternatives are currently promoted. Phytoestrogens - primarily the isoflavones genistein, daidzein and coumestrol, stemming from soy (Glycine max) or red clover (Trifolium pratense) - were suggested to have the desired but not the undesired effects of estrogens. Most recently published placebo-controlled studies question the beneficial effects. When taken at the time of puberty however, phytoestrogens appear to protect against mammary cancer later in life. Extracts from the rhizome of Cimicifuga racemosa (black cohosh) have no estrogenic effects. In a narrow dose range they have beneficial effects on climacteric complaints, which are due to several compounds with dopaminergic, noradrenergic, serotoninergic and GABAergic actions that act together in the hypothalamus. Ecdysone is produced by several plants, including spinach (Spinacia oleracea) and was very early on shown to increase muscle mass. Later it became apparent that spinach extracts containing ecdysone decreased body fat load, thereby reducing secretion of proinflammatory cytokines by visceral adipocytes and oxidative stress. This had beneficial effects on body weight and serum lipids not only in obese postmenopausal but also in premenopausal women and in men. For the above-described plant extracts, solid placebo-controlled clinical trials are available. For other plant extracts claiming beneficial effects on climacteric complaints or postmenopausal diseases, no solid data are available.

  18. Safety of foods derived from genetically modified plants.

    PubMed

    Thomas, John A

    2003-03-01

    Biopharmaceuticals have been available for clinical use for nearly three decades, but foods derived from agribiotechnology have been available for just under a decade. Controversy surrounding foods from genetically modified (GM) plants has focused primarily upon their allergenicity, with lesser concerns about antibiotic resistance genes. Concerns are related to possible environmental impacts on non-human species, including effects on non-target species (e.g., butterflies) and on the development of so-called "super weeds." Food allergies are no more prevalent in foods from GM plants than in conventional foods. Further, the use of antibiotics in the development of GM plants does not pose a significant risk to the human population. Foods from the current GM plant products have been shown not to pose any detrimental effects to humans, and, in fact, nutritionally enhanced products are being developed. GM foods are subjected globally to intense regulatory scrutiny, and extensive data have been provided consistently to regulatory agencies in the United States on a voluntary basis, with mandatory reporting of data soon to be in force. Existing environmental concerns appear to be unjustified on the basis of existing data and experience.

  19. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis

    PubMed Central

    Schrick, Kathrin; Mayer, Ulrike; Horrichs, Andrea; Kuhnt, Christine; Bellini, Catherine; Dangl, Jeff; Schmidt, Jürgen; Jürgens, Gerd

    2000-01-01

    In flowering plants, the developing embryo consists of growing populations of cells whose fates are determined in a position-dependent manner to form the adult organism. Mutations in the FACKEL (FK) gene affect body organization of the Arabidopsis seedling. We report that FK is required for cell division and expansion and is involved in proper organization of the embryo. We isolated FK by positional cloning. Expression analysis in embryos revealed that FK mRNA becomes localized to meristematic zones. FK encodes a predicted integral membrane protein related to the vertebrate lamin B receptor and sterol reductases across species, including yeast sterol C-14 reductase ERG24. We provide functional evidence that FK encodes a sterol C-14 reductase by complementation of erg24. GC/MS analysis confirmed that fk mutations lead to accumulation of intermediates in the biosynthetic pathway preceding the C-14 reductase step. Although fk represents a sterol biosynthetic mutant, the phenotype was not rescued by feeding with brassinosteroids (BRs), the only plant sterol signaling molecules known so far. We propose that synthesis of sterol signals in addition to BRs is important in mediating regulated cell growth and organization during embryonic development. Our results indicate a novel role for sterols in the embryogenesis of plants. PMID:10859166

  20. Tracking plant-derived biomarkers from source to sink in the Miners River, Upper Peninsula of Michigan (USA)

    NASA Astrophysics Data System (ADS)

    Giri, S. J.; Diefendorf, A. F.; Lowell, T. V.

    2012-12-01

    Biogeochemical cycling of terrestrial organic matter and it subsequent burial plays a vital role in the global carbon cycle. Rivers provide a pathway for terrestrial organic carbon dispersal and integration into sediments. Terrestrial plant biomarkers are useful tools for studying carbon cycling because they can provide an indication of the source of organic carbon in both modern and ancient sediments. Biomarkers can also be used as paleovegetation proxies in geologic sediments where fossils are absent. However, limited information is available about the dispersal and deposition of plant biomarkers in modern river systems, especially for compounds that provide taxonomic specificity such as di- and triterpenoids (diagnostic for conifers and angiosperms, respectively). To better resolve the modes of biomarker transport within fluvial and riparian systems, we characterized plant biomarker transport in the Miners River, a small river basin within a mixed angiosperm-conifer forest at Pictured Rocks National Lakeshore (MI, USA). To assess the transport of biomarkers in river systems, we collected plants, soils, river sediments, and filtered particulate and dissolved organic carbon from seven sites from the headwaters to Lake Superior along the Miners River (~20 km pathway). All samples contained long-chain n-alkyl lipids, sterols, diterpenoids (abietane and pimarane classes), and triterpenoids (oleanane, ursane, and lupane classes). With the exception of a soil sample taken at a depth of 30 cm, triterpenoids are found in higher concentrations than diterpenoids in riparian soils and river sediments. Biomarker compositions in riparian soils, point bar, and overbank deposits are similar to the surrounding vegetation, albeit much lower in concentration. The composition of di- and triterpenoids in the river-suspended particulate organic carbon is similar in composition to the surrounding vegetation and soils. We developed a method to isolate biomarkers in the dissolved

  1. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    PubMed Central

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  2. Function and glycosylation of plant-derived antiviral monoclonal antibody

    PubMed Central

    Ko, Kisung; Tekoah, Yoram; Rudd, Pauline M.; Harvey, David J.; Dwek, Raymond A.; Spitsin, Sergei; Hanlon, Cathleen A.; Rupprecht, Charles; Dietzschold, Bernhard; Golovkin, Maxim; Koprowski, Hilary

    2003-01-01

    Plant genetic engineering led to the production of plant-derived mAb (mAbP), which provides a safe and economically feasible alternative to the current methods of antibody production in animal systems. In this study, the heavy and light chains of human anti-rabies mAb were expressed and assembled in planta under the control of two strong constitutive promoters. An alfalfa mosaic virus untranslated leader sequence and Lys-Asp-Glu-Leu (KDEL) endoplasmic reticulum retention signal were linked at the N and C terminus of the heavy chain, respectively. mAbP was as effective at neutralizing the activity of the rabies virus as the mammalian-derived antibody (mAbM) or human rabies Ig (HRIG). The mAbP contained mainly oligomannose type N-glycans (90%) and had no potentially antigenic α(1,3)-linked fucose residues. mAbP had a shorter half-life than mAbM. The mAbP was as efficient as HRIG for post-exposure prophylaxis against rabies virus in hamsters, indicating that differences in N-glycosylation do not affect the efficacy of the antibody in this model. PMID:12799460

  3. Sterols in spermatogenesis and sperm maturation.

    PubMed

    Keber, Rok; Rozman, Damjana; Horvat, Simon

    2013-01-01

    Mammalian spermatogenesis is a complex developmental program in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. One intriguing aspect of sperm production is the dynamic change in membrane lipid composition that occurs throughout spermatogenesis. Cholesterol content, as well as its intermediates, differs vastly between the male reproductive system and nongonadal tissues. Accumulation of cholesterol precursors such as testis meiosis-activating sterol and desmosterol is observed in testes and spermatozoa from several mammalian species. Moreover, cholesterogenic genes, especially meiosis-activating sterol-producing enzyme cytochrome P450 lanosterol 14α-demethylase, display stage-specific expression patterns during spermatogenesis. Discrepancies in gene expression patterns suggest a complex temporal and cell-type specific regulation of sterol compounds during spermatogenesis, which also involves dynamic interactions between germ and Sertoli cells. The functional importance of sterol compounds in sperm production is further supported by the modulation of sterol composition in spermatozoal membranes during epididymal transit and in the female reproductive tract, which is a prerequisite for successful fertilization. However, the exact role of sterols in male reproduction is unknown. This review discusses sterol dynamics in sperm maturation and describes recent methodological advances that will help to illuminate the complexity of sperm formation and function.

  4. Free, esterified and residual bound sterols in Black Sea Unit I sediments

    NASA Astrophysics Data System (ADS)

    de Leeuw, J. W.; Rijpstra, W. Irene C.; Schenck, P. A.; Volkman, J. K.

    1983-03-01

    Detailed compositional data for the sterols isolated from a surface, Unit I, sediment from the Black Sea are reported. A procedure based on digitonin precipitation has been used to separate the more abundant free sterols from those occurring in esterified forms. Saponification of the solvent extracted sediment residue liberated only a small quantity of residual bound sterols in contrast to studies of other sediments. 4-Methylsterols are much more abundant than 4-desmethylsterols in both the free and esterified sterol fractions which we attribute to a major dinoflagellate input, as in deeper Unit II sediment. The desmethylsterol fraction appears to derive from a variety of sources including dinoflagellates, coccolithophores, diatoms, terrigenous detritus and perhaps invertebrates. 5α(H)-Stanols are particularly abundant in the free sterol fraction. An analysis of the stanol/stenol ratios suggests that the 4-desmethyl-5α(H)-stanols are the result of specific microbial reductions of Δ 5-sterols and/or the reflection of a contribution of stanol containing source organisms.

  5. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals

    PubMed Central

    Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D.

    2016-01-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion—via a novel pathway—of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages. PMID:27383626

  6. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals.

    PubMed

    Najle, Sebastián R; Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D

    2016-07-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion-via a novel pathway-of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages.

  7. Sterol metabolism in the filasterean Capsaspora owczarzaki has features that resemble both fungi and animals.

    PubMed

    Najle, Sebastián R; Molina, María Celeste; Ruiz-Trillo, Iñaki; Uttaro, Antonio D

    2016-07-01

    Sterols are essential for several physiological processes in most eukaryotes. Sterols regulate membrane homeostasis and participate in different signalling pathways not only as precursors of steroid hormones and vitamins, but also through its role in the formation of lipid rafts. Two major types of sterols, cholesterol and ergosterol, have been described so far in the opisthokonts, the clade that comprise animals, fungi and their unicellular relatives. Cholesterol predominates in derived bilaterians, whereas ergosterol is what generally defines fungi. We here characterize, by a combination of bioinformatic and biochemical analyses, the sterol metabolism in the filasterean Capsaspora owczarzaki, a close unicellular relative of animals that is becoming a model organism. We found that C. owczarzaki sterol metabolism combines enzymatic activities that are usually considered either characteristic of fungi or exclusive to metazoans. Moreover, we observe a differential transcriptional regulation of this metabolism across its life cycle. Thus, C. owczarzaki alternates between synthesizing 7-dehydrocholesterol de novo, which happens at the cystic stage, and the partial conversion-via a novel pathway-of incorporated cholesterol into ergosterol, the characteristic fungal sterol, in the filopodial and aggregative stages. PMID:27383626

  8. Gas chromatographic analysis of plant sterols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytosterols are well-known for their ability to lower blood cholesterol by competing with absorption of cholesterol from the diet and reabsorption of bile cholesterol. Phytosterols as food ingredients are “Generally Recognized As Safe” (GRAS) by the FDA, and they are increasingly incorporated into ...

  9. Plant extracts and plant-derived compounds: promising players in a countermeasure strategy against radiological exposure.

    PubMed

    Kma, Lakhan

    2014-01-01

    Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when

  10. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects.

    PubMed

    Jing, Xiangfeng; Grebenok, Robert J; Behmer, Spencer T

    2014-08-01

    Insects lack the ability to synthesize sterols de novo so they acquire this essential nutrient from their food. Cholesterol is the dominant sterol found in most insects, but in plant vegetative tissue it makes up only a small fraction of the total sterol profile. Instead, plants mostly contain phytosterols; plant-feeding insects generate the majority of their cholesterol by metabolizing phytosterols. However, not all phytosterols are readily converted to cholesterol, and some are even deleterious when ingested above a threshold level. In a recent study we showed that caterpillars reared on tobacco accumulating novel sterols/steroids exhibited reduced performance, even when suitable sterols were present. In the current study we examined how the dominant sterols (cholesterol and stigmasterol) and steroids (cholestanol and cholestanone) typical of the modified tobacco plants affected two insect herbivores (Heliothis virescens and Helicoverpa zea). The sterols/steroids were incorporated into synthetic diets singly, as well as in various combinations, ratios and amounts. For each insect species, a range of performance values was recorded for two generations, with the eggs from the 1st-generation adults as the source of neonates for the 2nd-generation. Performance on the novel steroids (cholestanol and cholestanone) was extremely poor compared to suitable sterols (cholesterol and stigmasterol). Additionally, performance tended to decrease as the ratio of the novel dietary steroids increased. We discuss how the balance of different dietary sterols/steroids affected our two caterpillar species, relate this back to recent studies on sterol/steroid metabolism in these two species, and consider the potential application of sterol/steroid modification in crops.

  11. Molecular and biochemical classification of plant-derived food allergens.

    PubMed

    Breiteneder, H; Ebner, C

    2000-07-01

    Molecular biology and biochemical techniques have significantly advanced the knowledge of allergens derived from plant foods. Surprisingly, many of the known plant food allergens are homologous to pathogenesis-related proteins (PRs), proteins that are induced by pathogens, wounding, or certain environmental stresses. PRs have been classified into 14 families. Examples of allergens homologous to PRs include chitinases (PR-3 family) from avocado, banana, and chestnut; antifungal proteins such as the thaumatin-like proteins (PR-5) from cherry and apple; proteins homologous to the major birch pollen allergen Bet v 1 (PR-10) from vegetables and fruits; and lipid transfer proteins (PR-14) from fruits and cereals. Allergens other than PR homologs can be allotted to other well-known protein families such as inhibitors of alpha-amylases and trypsin from cereal seeds, profilins from fruits and vegetables, seed storage proteins from nuts and mustard seeds, and proteases from fruits. As more clinical data and structural information on allergenic molecules becomes available, we may finally be able to answer what characteristics of a molecule are responsible for its allergenicity.

  12. Plant-derived compounds in treatment of leishmaniasis

    PubMed Central

    Oryan, A

    2015-01-01

    Leishmaniasis is a neglected public health problem caused by the protozoan species belonging to the genus Leishmania affecting mostly the poor populations of developing countries. The causative organism is transmitted by female sandflies. Cutaneous, mucocutaneous, and visceral clinical manifestations are the most frequent forms of leishmaniasis. Chemotherapy still relies on the use of pentavalent antimonials, amphotericin B, paromomycin, miltefosin and liposomal amphotericin B. However, the application of these drugs is limited due to low efficacy, life-threatening side effects, high toxicity, induction of parasite resistance, length of treatment and high cost. Given the fact that antileishmanial vaccines may not become available in the near future, the search for better drugs should be continued. Natural products may offer an unlimited source of chemical diversity to identify new drug modules. New medicines should be less toxic or non-toxic, safe, more efficient, less expensive and readily available antileishmanial agents, especially for low-income populations. In the present review, special focus is on medicinal plants used against leishmanaiasis. The bioactive phytocompounds present in the plant derivatives including the crude extracts, essential oils, and other useful compounds can be a good source for discovering and producing new antileishmanial medicines. PMID:27175144

  13. Shading Influence on the Sterol Balance of Nicotiana tabacum L. 1

    PubMed Central

    Grunwald, Claus

    1978-01-01

    Tobacco plants (Nicotiana tabacum L.) were grown in the field and the apex was removed at the 42-day stage. Shading screens were set up which produced 0, 26, 67, and 90% shade. Plants were grown an additional 25 days before leaves from top, middle, and bottom stalk positions were harvested. Each leaf group was analyzed for free sterol, steryl ester, steryl glycoside, and acylsteryl glycoside. The free sterol content was lowest in top leaves and highest in bottom leaves; however, the top leaves had more steryl ester than the bottom leaves. Leaf position had no effect on steryl glycosides and acylsteryl glycosides. Shading did not influence the level of any sterol class; but in general, shading increased stigmasterol and decreased sitosterol. This trend was observed for all sterol classes, and the free sterols showed the largest and most consistent change. The younger top leaves showed a greater response than the older bottom leaves, but bottom leaves always had more stigmasterol than sitosterol even without shade. PMID:16660242

  14. Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio.

    PubMed

    Thompson, Brian M; Grebenok, Robert J; Behmer, Spencer T; Gruner, Daniel S

    2013-01-01

    The symbiotic fungus Amylostereum areolatum is essential for growth and development of larvae of the invasive woodwasp, Sirex noctilio. In the nutrient poor xylem of pine trees, upon which Sirex feeds, it is unknown whether Amylostereum facilitates survival directly through consumption (mycetophagy) and/or indirectly through digestion of recalcitrant plant polymers (external rumen hypothesis). We tested these alternative hypotheses for Amylostereum involvement in Sirex foraging using the innate dependency of all insects on dietary sources of sterol and the unique sterols indicative of fungi and plants. We tested alternative hypotheses by using GC-MS to quantify concentrations of free and bound sterol pools from multiple life-stages of Sirex, food sources, and waste products in red pine (Pinus resinosa). Cholesterol was the primary sterol found in all life-stages of Sirex. However, cholesterol was not found in significant quantities in either plant or fungal resources. Ergosterol was the most prevalent sterol in Amylostereum but was not detectable in either wood or insect tissue (<0.001 μg/g). Phytosterols were ubiquitous in both pine xylem and Sirex. Therefore, dealkylation of phytosterols (sitosterol and campesterol) is the most likely pathway to meet dietary demand for cholesterol in Sirex. Ergosterol concentrations from fungal-infested wood demonstrated low fungal biomass, which suggests mycetophagy is not the primary source of sterol or bulk nutrition for Sirex. Our findings suggest there is a potentially greater importance for fungal enzymes, including the external digestion of recalcitrant plant polymers (e.g., lignin and cellulose), shaping this insect-fungal symbiosis.

  15. Assessment of plant-derived hydrocarbons. Final report

    SciTech Connect

    McFadden, K.; Nelson, S.H.

    1981-09-30

    A number of hydrocarbon producing plants are evaluated as possible sources of rubber, liquid fuels, and industrial lubricants. The plants considered are Euphorbia lathyris or gopher plant, milkweeds, guayule, rabbit brush, jojoba, and meadow foam. (ACR)

  16. Lectin cDNA and transgenic plants derived therefrom

    SciTech Connect

    Raikhel, Natasha V.

    2000-10-03

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties.

  17. Influenza viral membrane fusion is sensitive to sterol concentration but surprisingly robust to sterol chemical identity

    PubMed Central

    Zawada, Katarzyna E.; Wrona, Dominik; Rawle, Robert J.; Kasson, Peter M.

    2016-01-01

    Influenza virions are enriched in cholesterol relative to the plasma membrane from which they bud. Previous work has shown that fusion between influenza virus and synthetic liposomes is sensitive to the amount of cholesterol in either the virus or the target membrane. Here, we test the chemical properties of cholesterol required to promote influenza fusion by replacing cholesterol with other sterols and assaying viral fusion kinetics. We find that influenza fusion with liposomes is surprisingly robust to sterol chemical identity, showing no significant dependence on sterol identity in target membranes for any of the sterols tested. In the viral membrane, lanosterol slowed fusion somewhat, while polar sterols produced a more pronounced slowing and inhibition of fusion. No other sterols tested showed a significant perturbation in fusion rates, including ones previously shown to alter membrane bending moduli or phase behavior. Although fusion rates depend on viral cholesterol, they thus do not require cholesterol’s ability to support liquid-liquid phase coexistence. Using electron cryo-microscopy, we further find that sterol-dependent changes to hemagglutinin spatial patterning in the viral membrane do not require liquid-liquid phase coexistence. We therefore speculate that local sterol-hemagglutinin interactions in the viral envelope may control the rate-limiting step of fusion. PMID:27431907

  18. STARD4 Membrane Interactions and Sterol Binding.

    PubMed

    Iaea, David B; Dikiy, Igor; Kiburu, Irene; Eliezer, David; Maxfield, Frederick R

    2015-08-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix.

  19. Characterization, mutagenesis and mechanistic analysis of an ancient algal sterol C24-methyltransferase: Implications for understanding sterol evolution in the green lineage.

    PubMed

    Haubrich, Brad A; Collins, Emily K; Howard, Alicia L; Wang, Qian; Snell, William J; Miller, Matthew B; Thomas, Crista D; Pleasant, Stephanie K; Nes, W David

    2015-05-01

    Sterol C24-methyltransferases (SMTs) constitute a group of sequence-related proteins that catalyze the pattern of sterol diversity across eukaryotic kingdoms. The only gene for sterol alkylation in green algae was identified and the corresponding catalyst from Chlamydomonas reinhardtii (Cr) was characterized kinetically and for product distributions. The properties of CrSMT were similar to those predicted for an ancient SMT expected to possess broad C3-anchoring requirements for substrate binding and formation of 24β-methyl/ethyl Δ(25(27))-olefin products typical of primitive organisms. Unnatural Δ(24(25))-sterol substrates, missing a C4β-angular methyl group involved with binding orientation, convert to product ratios in favor of Δ(24(28))-products. Remodeling the active site to alter the electronics of Try110 (to Leu) results in delayed timing of the hydride migration from methyl attack of the Δ(24)-bond, that thereby produces metabolic switching of product ratios in favor of Δ(25(27))-olefins or impairs the second C1-transfer activity. Incubation of [27-(13)C]lanosterol or [methyl-(2)H3]SAM as co-substrates established the CrSMT catalyzes a sterol methylation pathway by the "algal" Δ(25(27))-olefin route, where methylation proceeds by a conserved SN2 reaction and de-protonation proceeds from the pro-Z methyl group on lanosterol corresponding to C27. This previously unrecognized catalytic competence for an enzyme of sterol biosynthesis, together with phylogenomic analyses, suggest that mutational divergence of a promiscuous SMT produced substrate- and phyla-specific SMT1 (catalyzes first biomethylation) and SMT2 (catalyzes second biomethylation) isoforms in red and green algae, respectively, and in the case of SMT2 selection afforded modification in reaction channeling necessary for the switch in ergosterol (24β-methyl) biosynthesis to stigmasterol (24α-ethyl) biosynthesis during the course of land plant evolution.

  20. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    PubMed

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  1. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    PubMed Central

    Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in the literature reveal partial amelioration of CSP-induced renal toxicity, stressing the need to develop potent combinatorial/synergistic agents for the mitigation of renal toxicity. However, the ideal renoprotective adjuvant should not interfere with the anticancer efficacy of CSP. In this review, we have discussed the progress made in utilizing plant-derived agents (phytochemicals) to combat CSP-induced nephrotoxicity in preclinical studies. Furthermore, we have also presented strategies to utilize phytochemicals as prototypes for the development of novel renoprotective agents for counteracting chemotherapy-induced renal damage. PMID:27774117

  2. An Update on Plant Derived Anti-Androgens

    PubMed Central

    Grant, Paul; Ramasamy, Shamin

    2012-01-01

    Anti-androgens are an assorted group of drugs and compounds that reduce the levels or activity of androgen hormones within the human body. Disease states in which this is relevant include polycystic ovarian syndrome, hirsutism, acne, benign prostatic hyperplasia, and endocrine related cancers such as carcinoma of the prostate. We provide an overview and discussion of the use of anti-androgen medications in clinical practice and explore the increasing recognition of the benefits of plant-derived anti-androgens, for example, spearmint tea in the management of PCOS, for which some evidence about efficacy is beginning to emerge. Other agents covered include red reishi, which has been shown to reduce levels 5-alpha reductase, the enzyme that facilitates conversion of testosterone to dihydrotestosterone (DHT); licorice, which has phytoestrogen effects and reduces testosterone levels; Chinese peony, which promotes the aromatization of testosterone into estrogen; green tea, which contains epigallocatechins and also inhibits 5-alpha reductase, thereby reducing the conversion of normal testosterone into the more potent DHT; black cohosh, which has been shown to kill both androgenresponsive and non-responsive human prostate cancer cells; chaste tree, which has a reduces prolactin from the anterior pituitary; and saw palmetto extract, which is used as an anti-androgen although it shown no difference in comparison to placebo in clinical trials. PMID:23843810

  3. An update on plant derived anti-androgens.

    PubMed

    Grant, Paul; Ramasamy, Shamin

    2012-01-01

    Anti-androgens are an assorted group of drugs and compounds that reduce the levels or activity of androgen hormones within the human body. Disease states in which this is relevant include polycystic ovarian syndrome, hirsutism, acne, benign prostatic hyperplasia, and endocrine related cancers such as carcinoma of the prostate. We provide an overview and discussion of the use of anti-androgen medications in clinical practice and explore the increasing recognition of the benefits of plant-derived anti-androgens, for example, spearmint tea in the management of PCOS, for which some evidence about efficacy is beginning to emerge. Other agents covered include red reishi, which has been shown to reduce levels 5-alpha reductase, the enzyme that facilitates conversion of testosterone to dihydrotestosterone (DHT); licorice, which has phytoestrogen effects and reduces testosterone levels; Chinese peony, which promotes the aromatization of testosterone into estrogen; green tea, which contains epigallocatechins and also inhibits 5-alpha reductase, thereby reducing the conversion of normal testosterone into the more potent DHT; black cohosh, which has been shown to kill both androgenresponsive and non-responsive human prostate cancer cells; chaste tree, which has a reduces prolactin from the anterior pituitary; and saw palmetto extract, which is used as an anti-androgen although it shown no difference in comparison to placebo in clinical trials. PMID:23843810

  4. Molecular cloning and expression of the human delta7-sterol reductase.

    PubMed

    Moebius, F F; Fitzky, B U; Lee, J N; Paik, Y K; Glossmann, H

    1998-02-17

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Delta7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith-Lemli-Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Delta7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7-8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 microM), BM15766 (IC50 1.2 microM), and triparanol (IC50 14 microM). Our work paves the way to clarify whether a defect in the delta7-sterol reductase gene underlies the Smith-Lemli-Opitz syndrome. PMID:9465114

  5. Molecular cloning and expression of the human Δ7-sterol reductase

    PubMed Central

    Moebius, Fabian F.; Fitzky, Barbara U.; Lee, Joon No; Paik, Young-Ki; Glossmann, Hartmut

    1998-01-01

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Δ7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith–Lemli–Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Δ7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7–8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 μM), BM15766 (IC50 1.2 μM), and triparanol (IC50 14 μM). Our work paves the way to clarify whether a defect in the Δ7-sterol reductase gene underlies the Smith–Lemli–Opitz syndrome. PMID:9465114

  6. The biological activity of a-mangostin, a larvicidal botanic mosquito sterol carrier protein-2 inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alpha-mangostin derived from mangosteen was identified as a mosquito sterol carrier protein-2 inhibitor via high throughput insecticide screening. Alpha-mangostin was tested for its larvicidal activity against 3rd instar larvae of six mosquito species and the LC50 values range from 0.84 to 2.90 ppm....

  7. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype.

  8. Biofuels. Altered sterol composition renders yeast thermotolerant.

    PubMed

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam; Feizi, Amir; Buskov, Steen; Hallström, Björn M; Petranovic, Dina; Nielsen, Jens

    2014-10-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype. PMID:25278608

  9. Inhibition of influenza virus replication by plant-derived isoquercetin.

    PubMed

    Kim, Yunjeong; Narayanan, Sanjeev; Chang, Kyeong-Ok

    2010-11-01

    Influenza virus infects the respiratory system of human and animals causing mild to severe illness which could lead to death. Although vaccines are available, there is still a great need for influenza antiviral drugs to reduce disease progression and virus transmission. Currently two classes (M2 channel blockers and neuraminidase inhibitors) of FDA-approved influenza antiviral drugs are available, but there are great concerns of emergence of viral resistance. Therefore, timely development of new antiviral drugs against influenza viruses is crucial. Plant-derived polyphenols have been studied for antioxidant activity, anti-carcinogenic, and cardio- and neuroprotective actions. Recently, some polyphenols, such as resveratrol and epigallocatechin gallate, showed significant anti-influenza activity in vitro and/or in vivo. Therefore we investigated selected polyphenols for their antiviral activity against influenza A and B viruses. Among the polyphenols we tested, isoquercetin inhibited the replication of both influenza A and B viruses at the lowest effective concentration. In a double treatment of isoquercetin and amantadine, synergistic effects were observed on the reduction of viral replication in vitro. The serial passages of virus in the presence of isoquercetin did not lead to the emergence of resistant virus, and the addition of isoquercetin to amantadine or oseltamivir treatment suppressed the emergence of amantadine- or oseltamivir-resistant virus. In a mouse model of influenza virus infection, isoquercetin administered intraperitoneally to mice inoculated with human influenza A virus significantly decreased the virus titers and pathological changes in the lung. Our results suggest that isoquercetin may have the potential to be developed as a therapeutic agent for the treatment of influenza virus infection and for the suppression of resistance in combination therapy with existing drugs.

  10. Enzyme mechanisms for sterol C-methylations.

    PubMed

    Nes, W David

    2003-09-01

    The mechanisms by which sterol methyl transferases (SMT) transform olefins into structurally different C-methylated products are complex, prompting over 50 years of intense research. Recent enzymological studies, together with the latest discoveries in the fossil record, functional analyses and gene cloning, establish new insights into the enzymatic mechanisms of sterol C-methylation and form a basis for understanding regulation and evolution of the sterol pathway. These studies suggest that SMTs, originated shortly after life appeared on planet earth. SMTs, including those which ultimately give rise to 24 alpha- and 24 beta-alkyl sterols, align the si(beta)-face pi-electrons of the Delta(24)-double bond with the S-methyl group of AdoMet relative to a set of deprotonation bases in the active site. From the orientation of the conformationally flexible side chain in the SMT Michaelis complex, it has been found that either a single product is formed or cationic intermediates are partitioned into multiple olefins. The product structure and stereochemistry of SMT action is phylogenetically distinct and physiologically significant. SMTs control phytosterol homeostasis and their activity is subject to feedback regulation by specific sterol inserts in the membrane. A unified conceptual framework has been formulated in the steric-electric plug model that posits SMT substrate acceptability on the generation of single or double 24-alkylated side chains, which is the basis for binding order, stereospecificity and product diversity in this class of AdoMet-dependent methyl transferase enzymes. The focus of this review is the mechanism of the C-methylation process which, as discussed, can be altered by point mutations in the enzyme to direct the shape of sterol structure to optimize function.

  11. Determining the Origin and Fate of Particulate Plant-Derived Organic Matter in the Rhone River (France) : A Lipid Tracer Review

    NASA Astrophysics Data System (ADS)

    Galeron, M. A.; Amiraux, R.; Charriere, B.; Radakovitch, O.; Raimbault, P.; Garcia, N.; Lagadec, V.; Vaultier, F.; Rontani, J. F.

    2014-12-01

    A number of lipid tracers including fatty acids, hydroxyacids, n-alkanols, sterols and triterpenoids were used to determine the origin and fate of suspended particulate organic matter (POM) collected in the Rhone River (France), with a main focus on phytosterols, such as sitosterol, desmosterol, brassicasterol and cholesterol. This seasonal survey (April 2011 to May 2013) revealed a year-round strong terrigenous contribution to the plant derived particulate organic matter (POM) with significant algal inputs observed in March and attributed to phytoplanktonic blooms likely dominated by diatoms. Specific sitosterol and cholesterol degradation products were quantified and used to estimate the part of biotic and abiotic degradation of POM within the river. Plant-derived organic matter appears to be mainly affected by photo-oxidation and autoxidation (free radical oxidation), while organic matter of human origin, evidenced by the presence of coprostanol, is clearly more prone to bacterial degradation. Despite the involvement of an intense autoxidation inducing homolytic cleavage of peroxy bonds, a significant proportion of hydroperoxides is still intact in higher plant debris. These compounds could play a role in the degradation of terrestrial material by inducing an intense autoxidation upon its arrival at sea. Although sitosterol has been commonly used as a tracer of the terrestrial origin of POM in rivers, we show here that is it also found in phytoplankton, which highlights the need to use different tracers to determine the origin of POM in rivers. As part of the set of tracers we use, we have identified betulin to be an interesting candidate, although limited to a number of angiosperms species. Not only can we trace betulin to an unequivocal terrestrial origin, we also identified its specific degradation products, allowing us to trace the degradation state of angiosperm particulate debris in rivers, as well as the type of degradation undergone.

  12. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, N.V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon. .

  13. Lectin cDNA and transgenic plants derived therefrom

    DOEpatents

    Raikhel, Natasha V.

    1994-01-04

    Transgenic plants containing cDNA encoding Gramineae lectin are described. The plants preferably contain cDNA coding for barley lectin and store the lectin in the leaves. The transgenic plants, particularly the leaves exhibit insecticidal and fungicidal properties. GOVERNMENT RIGHTS This application was funded under Department of Energy Contract DE-AC02-76ER01338. The U.S. Government has certain rights under this application and any patent issuing thereon.

  14. Plant derived edible nanoparticles as a new therapeutic approach against diseases.

    PubMed

    Zhang, Mingzhen; Viennois, Emilie; Xu, Changlong; Merlin, Didier

    2016-01-01

    In plant cells, nanoparticles containing miRNA, bioactive lipids and proteins serve as extracellular messengers to mediate cell-cell communication in a manner similar to the exosomes secreted by mammalian cells. Notably, such nanoparticles are edible. Moreover, given the proper origin and cargo, plant derived edible nanoparticles could function in interspecies communication and may serve as natural therapeutics against a variety of diseases. In addition, nanoparticles made of plant-derived lipids may be used to efficiently deliver specific drugs. Plant derived edible nanoparticles could be more easily scaled up for mass production, compared to synthetic nanoparticles. In this review, we discuss recent significant developments pertaining to plant derived edible nanoparticles and provide insight into the use of plants as a bio-renewable, sustainable, diversified platform for the production of therapeutic nanoparticles. PMID:27358751

  15. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum.

    PubMed

    Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C Y; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji

    2015-09-25

    Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.

  16. Regulation of ergosterol biosynthesis and sterol uptake in a sterol-auxotrophic yeast.

    PubMed Central

    Lorenz, R T; Parks, L W

    1987-01-01

    Inhibition of sterol uptake in Saccharomyces cerevisiae sterol auxotroph FY3 (alpha hem1 erg7 ura) by delta-aminolevulinic acid (ALA) is dependent on the ability of the organism to synthesize heme from ALA. Sterol-depleted cells not exposed to ALA or strain PFY3 cells, with a double heme mutation, exposed to ALA did not exhibit inhibition of sterol uptake. Addition of ALA to sterol-depleted FY3 stimulated production of a high endogenous concentration of 2,3-oxidosqualene (25.55 micrograms mg-1 [dry weight]) at 24 h, whereas FY3 not exposed to ALA or PFY3 exposed to ALA did not accumulate 2,3-oxidosqualene. The high concentration of 2,3-oxidosqualene in FY3 with ALA decreased, and 2,3;22,23-dioxidosqualene increased to a very high level. The elevation of 2,3-oxidosqualene by ALA was correlated with a fivefold increase in the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (EC 1.1.1.34). The enhanced activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase was prevented by cycloheximide but not chloramphenicol and was dependent on a fermentative energy source. Inhibition of sterol uptake could not be attributed to 2,3-oxidosqualene or 2,3;22,23-dioxidosqualene but was due to a nonsaturating level of ergosterol produced as a consequence of heme competency through a leaky erg7 mutation. PMID:3301810

  17. Mammalian opiate alkaloid synthesis: lessons derived from plant biochemistry.

    PubMed

    Meijerink, W J; Molina, P E; Abumrad, N N

    1999-09-01

    The presence of opiate receptors in mammalian tissues has stimulated the search for endogenous ligands to these receptors and has led to the discovery and characterization of endogenous opioid peptides. However, recent studies have provided evidence for the presence of opiate alkaloids in mammalian tissues and for their endogenous synthesis. The study of their origin and synthetic pathway has been significantly influenced by the early classical biochemical studies performed in plants. This review is a historical account of the use and abuse of opiates, the elucidation of morphine's synthetic pathway in the poppy plant, and the subsequent characterization of its presence in mammalian tissues. Clearly, our understanding of its synthetic pathway and regulation is a reflection of observations originally made in plant biochemistry.

  18. Sterol carrier and lipid transfer proteins.

    PubMed

    Scallen, T J; Pastuszyn, A; Noland, B J; Chanderbhan, R; Kharroubi, A; Vahouny, G V

    1985-09-01

    The discovery of the sterol carrier and lipid transfer proteins was largely a result of the findings that cells contained cytosolic factors which were required either for the microsomal synthesis of cholesterol or which could accelerate the transfer or exchange of phospholipids between membrane preparations. There are two sterol carrier proteins present in rat liver cytosol. Sterol carrier protein 1 (SCP1) (Mr 47 000) participates in the microsomal conversion of squalene to lanosterol, and sterol carrier protein 2 (SCP2) (Mr 13 500) participates in the microsomal conversion of lanosterol to cholesterol. In addition SCP2 also markedly stimulates the esterification of cholesterol by rat liver microsomes, as well as the conversion of cholesterol to 7 alpha-hydroxycholesterol - the major regulatory step in bile acid formation. Also, SCP2 is required for the intracellular transfer of cholesterol from adrenal cytoplasmic lipid inclusion droplets to mitochondria for steroid hormone production, as well as cholesterol transfer from the outer to the inner mitochondrial membrane. SCP2 is identical to the non-specific phospholipid exchange protein. While SCP2 is capable of phospholipid exchange between artificial donors/acceptors, e.g. liposomes and microsomes, it does not enhance the release of lipids other than unesterified cholesterol from natural donors/acceptors, e.g. adrenal lipid inclusion droplets, and will not enhance exchange of labeled phosphatidylcholine between lipid droplets and mitochondria. Careful comparison of SCP2 and fatty acid binding protein (FABP) using six different assay procedures demonstrates separate and distinct physiological functions for each protein, with SCP2 participating in reactions involving sterols and FABP participating in reactions involving fatty acid binding and/or transport. Furthermore, there is no overlap in substrate specificities, i.e. FABP does not possess sterol carrier protein activity and SCP2 does not specifically bind or

  19. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    PubMed

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress. PMID:26382564

  20. Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress.

    PubMed

    Mishra, Manoj K; Singh, Gaurav; Tiwari, Shalini; Singh, Ruchi; Kumari, Nishi; Misra, Pratibha

    2015-01-01

    Sterol glycosyltransferases regulate the properties of sterols by catalyzing the transfer of carbohydrate molecules to the sterol moiety for the synthesis of steryl glycosides and acyl steryl glycosides. We have analyzed the functional role of TTG15/UGT80B1 gene of Arabidopsis thaliana in freeze/thaw and heat shock stress using T-DNA insertional sgt knockout mutants. Quantitative study of spatial as well as temporal gene expression showed tissue-specific and dynamic expression patterns throughout the growth stages. Comparative responses of Col-0, TTG15/UGT80B1 knockout mutant and p35S:TTG15/UGT80B1 restored lines were analyzed under heat and freeze stress conditions. Heat tolerance was determined by survival of plants at 42°C for 3 h, MDA analysis and chlorophyll fluorescence image (CFI) analysis. Freezing tolerance was determined by survival of the plants at -1°C temperature in non-acclimatized (NA) and cold acclimatized (CA) conditions and also by CFI analysis, which revealed that, p35S:TTG15/UGT80B1 restored plants were more adapted to freeze stress than TTG15/UGT80B1 knockout mutant under CA condition. HPLC analysis of the plants showed reduced sterol glycoside in mutant seedlings as compared to other genotypes. Following CA condition, both β-sitosterol and sitosterol glycoside quantity was more in Col-0 and p35S:TTG15/UGT80B1 restored lines, whereas it was significantly less in TTG15/UGT80B1 knockout mutants. From these results, it may be concluded that due to low content of free sterols and sterol glycosides, the physiology of mutant plants was more affected during both, the chilling and heat stress.

  1. Mutations in UDP-Glucose:sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds.

    PubMed

    DeBolt, Seth; Scheible, Wolf-Rüdiger; Schrick, Kathrin; Auer, Manfred; Beisson, Fred; Bischoff, Volker; Bouvier-Navé, Pierrette; Carroll, Andrew; Hematy, Kian; Li, Yonghua; Milne, Jennifer; Nair, Meera; Schaller, Hubert; Zemla, Marcin; Somerville, Chris

    2009-09-01

    In higher plants, the most abundant sterol derivatives are steryl glycosides (SGs) and acyl SGs. Arabidopsis (Arabidopsis thaliana) contains two genes, UGT80A2 and UGT80B1, that encode UDP-Glc:sterol glycosyltransferases, enzymes that catalyze the synthesis of SGs. Lines having mutations in UGT80A2, UGT80B1, or both UGT80A2 and UGT8B1 were identified and characterized. The ugt80A2 lines were viable and exhibited relatively minor effects on plant growth. Conversely, ugt80B1 mutants displayed an array of phenotypes that were pronounced in the embryo and seed. Most notable was the finding that ugt80B1 was allelic to transparent testa15 and displayed a transparent testa phenotype and a reduction in seed size. In addition to the role of UGT80B1 in the deposition of flavanoids, a loss of suberization of the seed was apparent in ugt80B1 by the lack of autofluorescence at the hilum region. Moreover, in ugt80B1, scanning and transmission electron microscopy reveals that the outer integument of the seed coat lost the electron-dense cuticle layer at its surface and displayed altered cell morphology. Gas chromatography coupled with mass spectrometry of lipid polyester monomers confirmed a drastic decrease in aliphatic suberin and cutin-like polymers that was associated with an inability to limit tetrazolium salt uptake. The findings suggest a membrane function for SGs and acyl SGs in trafficking of lipid polyester precursors. An ancillary observation was that cellulose biosynthesis was unaffected in the double mutant, inconsistent with a predicted role for SGs in priming cellulose synthesis.

  2. Immunization against Rabies with Plant-Derived Antigen

    NASA Astrophysics Data System (ADS)

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-03-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain.

  3. Immunization against rabies with plant-derived antigen

    PubMed Central

    Modelska, Anna; Dietzschold, Bernard; Sleysh, N.; Fu, Zhen Fang; Steplewski, Klaudia; Hooper, D. Craig; Koprowski, Hilary; Yusibov, Vidadi

    1998-01-01

    We previously demonstrated that recombinant plant virus particles containing a chimeric peptide representing two rabies virus epitopes stimulate virus neutralizing antibody synthesis in immunized mice. We show here that mice immunized intraperitoneally or orally (by gastric intubation or by feeding on virus-infected spinach leaves) with engineered plant virus particles containing rabies antigen mount a local and systemic immune response. After the third dose of antigen, given intraperitoneally, 40% of the mice were protected against challenge infection with a lethal dose of rabies virus. Oral administration of the antigen stimulated serum IgG and IgA synthesis and ameliorated the clinical signs caused by intranasal infection with an attenuated rabies virus strain. PMID:9482911

  4. A plant-derived edible vaccine against hepatitis B virus.

    PubMed

    Kapusta, J; Modelska, A; Figlerowicz, M; Pniewski, T; Letellier, M; Lisowa, O; Yusibov, V; Koprowski, H; Plucienniczak, A; Legocki, A B

    1999-10-01

    The infectious hepatitis B virus represents 42 nm spherical double-shelled particles. However, analysis of blood from hepatitis B virus carriers revealed the presence of smaller 22 nm particles consisting of a viral envelope surface protein. These particles are highly immunogenic and have been used in the design of hepatitis B virus vaccine produced in yeast. Upon expression in yeast, these proteins form virus-like particles that are used for parenteral immunization. Therefore, the DNA fragment encoding hepatitis B virus surface antigen was introduced into Agrobacterium tumerifacience LBA4404 and used to obtain transgenic lupin (Lupinus luteus L.) and lettuce (Lactuca sativa L.) cv. Burpee Bibb expressing envelope surface protein. Mice that were fed the transgenic lupin tissue developed significant levels of hepatitis B virus-specific antibodies. Human volunteers, fed with transgenic lettuce plants expressing hepatitis B virus surface antigen, developed specific serum-IgG response to plant produced protein.

  5. Mycotoxins biosynthesized by plant-derived Fusarium isolates.

    PubMed

    Waśkiewicz, Agnieszka; Stępień, Łukasz

    2012-12-01

    There is little information on secondary metabolites produced by Fusaria infecting crop plants other than cereals. Many members of Fusarium genus have the ability to colonise perennial crops with only scarce infection or disease symptoms or with no symptoms at all while still being detectable. Even in case of such asymptomatic infection, significant mycotoxin contamination of the plant tissues is possible. The aim of this study was to characterise the spectrum of Fusarium species isolates obtained from different plant hosts (like asparagus, garlic, pineapple, banana, rhubarb, peppers, rice, maize, wheat, and oncidium) and evaluate their ability to biosynthesize the most common mycotoxins in vitro. Among the F.proliferatum isolates, up to 57 % of them biosynthesized fumonisins at very high mass fractions, amounting to above 1000 μg g(-1), while other Fusarium species such as F. verticillioides, F. lactis, F. polyphialydicum, F. concentricum, F. temperatum, and F. fujikuroi formed fumonisins mostly at much lower level. Only F. ananatum and F. oxysporum did not produce these toxins. Co-occurrence of FBs with other mycotoxins [moniliformin (MON) and beauvericin (BEA)] was often observed and it was mainly F. proliferatum species that formed both mycotoxins (0.4 μg g(-1) to 41.1 μg g(-1) BEA and 0.1 μg g(-1) to 158.5 μg g(-1) MON).

  6. Cycads: evolutionary innovations and the role of plant-derived neurotoxins.

    PubMed

    Brenner, Eric D; Stevenson, Dennis W; Twigg, Richard W

    2003-09-01

    Cycads are an important relic from the past and represent the oldest living seed plants. Cycads have been instrumental in our understanding the evolution of angiosperms and gymnosperms because they have recognizable morphological characteristics intermediate between less-recently evolved plants such as ferns and more-derived (advanced) plants including the angiosperms. Cycads also produce several compounds that are carcinogenic and neurotoxic. Because of their unique placement in terrestrial plant evolution, molecular studies should help to define the origins of structures that led to the rise of seed plants and the role of neurotoxic compounds that are found in cycads.

  7. Sterols and triterpenes in cell culture of Hyssopus officinalis L.

    PubMed

    Skrzypek, Zuzanna; Wysokińska, Halina

    2003-01-01

    Cell suspension cultures from hypocotyl-derived callus of Hyssopus officinalis were found to produce two sterols i. e. beta-sitosterol (1) and stigmasterol (2), as well as several known pentacyclic triterpenes with an oleanene and ursene skeleton. The triterpenes were identified as oleanolic acid (3), ursolic acid (4), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (5), 2alpha,3beta-dihydroxyurs-12-en-28-oic acid (6), 2alpha,3beta,24-trihydroxyolean-12-en-28-oic acid (7), and 2alpha,3beta,24-trihydroxyurs-12-en-28-oic acid (8). Compounds 5-8 were isolated as their acetates (6, 8) or bromolactone acetates (5, 7).

  8. Sterols and triterpenes in cell culture of Hyssopus officinalis L.

    PubMed

    Skrzypek, Zuzanna; Wysokińska, Halina

    2003-01-01

    Cell suspension cultures from hypocotyl-derived callus of Hyssopus officinalis were found to produce two sterols i. e. beta-sitosterol (1) and stigmasterol (2), as well as several known pentacyclic triterpenes with an oleanene and ursene skeleton. The triterpenes were identified as oleanolic acid (3), ursolic acid (4), 2alpha,3beta-dihydroxyolean-12-en-28-oic acid (5), 2alpha,3beta-dihydroxyurs-12-en-28-oic acid (6), 2alpha,3beta,24-trihydroxyolean-12-en-28-oic acid (7), and 2alpha,3beta,24-trihydroxyurs-12-en-28-oic acid (8). Compounds 5-8 were isolated as their acetates (6, 8) or bromolactone acetates (5, 7). PMID:12872919

  9. Plant derived substances with anti-cancer activity: from folklore to practice

    PubMed Central

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70–95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  10. Plant derived substances with anti-cancer activity: from folklore to practice.

    PubMed

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity. PMID:26483815

  11. Plant derived substances with anti-cancer activity: from folklore to practice.

    PubMed

    Fridlender, Marcelo; Kapulnik, Yoram; Koltai, Hinanit

    2015-01-01

    Plants have had an essential role in the folklore of ancient cultures. In addition to the use as food and spices, plants have also been utilized as medicines for over 5000 years. It is estimated that 70-95% of the population in developing countries continues to use traditional medicines even today. A new trend, that involved the isolation of plant active compounds begun during the early nineteenth century. This trend led to the discovery of different active compounds that are derived from plants. In the last decades, more and more new materials derived from plants have been authorized and subscribed as medicines, including those with anti-cancer activity. Cancer is among the leading causes of morbidity and mortality worldwide. The number of new cases is expected to rise by about 70% over the next two decades. Thus, there is a real need for new efficient anti-cancer drugs with reduced side effects, and plants are a promising source for such entities. Here we focus on some plant-derived substances exhibiting anti-cancer and chemoprevention activity, their mode of action and bioavailability. These include paclitaxel, curcumin, and cannabinoids. In addition, development and use of their synthetic analogs, and those of strigolactones, are discussed. Also discussed are commercial considerations and future prospects for development of plant derived substances with anti-cancer activity.

  12. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences.

    PubMed

    Acharya, Sefali; Ranjan, Rajiv; Pattanaik, Sitakanta; Maiti, Indu B; Dey, Nrisingha

    2014-02-01

    In the present study, we developed a set of three chimeric/hybrid promoters namely FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt incorporating different important domains of Figwort Mosaic Virus sub-genomic transcript promoter (FSgt, -270 to -60), Mirabilis Mosaic Virus sub-genomic transcript promoter (MSgt, -306 to -125) and Peanut Chlorotic Streak Caulimovirus full-length transcript promoter (PFlt-, -353 to +24 and PFlt-UAS, -353 to -49). We demonstrated that these chimeric/hybrid promoters can drive the expression of reporter genes in different plant species including tobacco, Arabidopsis, petunia, tomato and spinach. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 4.2, 1.5 and 1.2 times stronger GUS activities compared to the activity of the CaMV35S promoter, respectively, in tobacco protoplasts. Protoplast-derived recombinant promoter driven GFP showed enhanced accumulation compared to that obtained under the CaMV35S promoter. FSgt-PFlt, PFlt-UAS-2X and MSgt-PFlt promoters showed 3.0, 1.3 and 1.0 times stronger activities than the activity of the CaMV35S² (a modified version of the CaMV35S promoter with double enhancer domain) promoter, respectively, in tobacco (Nicotiana tabacum, var. Samsun NN). Alongside, we observed a fair correlation between recombinant promoter-driven GUS accumulation with the corresponding uidA-mRNA level in transgenic tobacco. Histochemical (X-gluc) staining of whole transgenic seedlings and fluorescence images of ImaGene Green™ treated floral parts expressing the GUS under the control of recombinant promoters also support above findings. Furthermore, we confirmed that these chimeric promoters are inducible in the presence of 150 μM salicylic acid (SA) and abscisic acid (ABA). Taken altogether, we propose that SA/ABA inducible chimeric/recombinant promoters could be used for strong expression of gene(s) of interest in crop plants.

  13. Seasonal changes in minor membrane phospholipid classes, sterols and tocopherols in overwintering insect, Pyrrhocoris apterus.

    PubMed

    Koštál, Vladimír; Urban, Tomáš; Rimnáčová, Lucie; Berková, Petra; Simek, Petr

    2013-09-01

    Ectotherm animals including insects are known to undergo seasonal restructuring of the cell membranes in order to keep their functionality and/or protect their structural integrity at low body temperatures. Studies on insects so far focused either on fatty acids or on composition of molecular species in major phospholipid classes. Here we extend the scope of analysis and bring results on seasonal changes in minor phospholipid classes, lysophospholipids (LPLs), free fatty acids, phytosterols and tocopherols in heteropteran insect, Pyrrhocoris apterus. We found that muscle tissue contains unusually high amounts of LPLs. Muscle and fat body tissues also contain high amounts of β-sitosterol and campesterol, two phytosterols derived from plant food, while only small amounts of cholesterol are present. In addition, two isomers (γ and δ) of tocopherol (vitamin E) are present in quantities comparable to, or even higher than phytosterols in both tissues. Distinct seasonal patterns of sterol and tocopherol concentrations were observed showing a minimum in reproductively active bugs in summer and a maximum in diapausing, cold-acclimated bugs in winter. Possible adaptive meanings of such changes are discussed including: preventing the unregulated transition of membrane lipids from functional liquid crystalline phase to non-functional gel phase; decreasing the rates of ion/solute leakage; silencing the activities of membrane bound enzymes and receptors; and counteracting the higher risk of oxidative damage to PUFA in winter membranes.

  14. Ribulose Bisphosphate Carboxylase Activity in Anther-Derived Plants of Saintpaulia ionantha Wendl. Shag 1

    PubMed Central

    Bhaskaran, Shyamala; Smith, Roberta H.; Finer, John J.

    1983-01-01

    Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. `Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663273

  15. Ribulose Bisphosphate Carboxylase Activity in Anther-Derived Plants of Saintpaulia ionantha Wendl. Shag.

    PubMed

    Bhaskaran, S; Smith, R H; Finer, J J

    1983-11-01

    Plants obtained from anther culture of the African violet, Saintpaulia ionantha Wendl. ;Shag' and vegetatively cloned copies of the parent anther donor plant were examined for their ploidy and ribulose-1,5-biphosphate carboxylase (RuBPcase) activity. The cloned parent plants were all diploid and did not vary much in their nuclear DNA, chlorophyll, and RuBPcase activity. Some of the anther-derived plants were similar to the parent plants while others were not. Different levels of ploidy were observed among the androgenetic plants. RuBPcase activities higher than that of the parent plants were found in some anther-derived plants. However, there was no direct correlation between ploidy and RuBPcase activity. Expression of nuclear genes from a single parent in the anther-derived plants and it's diploidization or plastid changes during early stages of microsporogenesis or androgenesis are suggested as possible reasons for the variations observed among them. This could be a useful technique to obtain physiological variants which could be agronomically desirable. PMID:16663273

  16. Distribution of sterols in the fungi. I - Fungal spores

    NASA Technical Reports Server (NTRS)

    Weete, J. D.; Laseter, J. L.

    1974-01-01

    Mass spectrometry was used to examine freely extractable sterols from spores of several species of fungi. Ergosterol was the most common sterol produced by any individual species, but it was completely absent from two species belonging to apparently distantly related groups of fungi: the aquatic Phycomycetes and the rust fungi. This fact could have taxonomic or phylogenetic implications. The use of glass capillary columns in the resolution of the sterols is shown to eliminate some of the difficulty inherent in this process.

  17. Plant-derived food ingredients for stimulation of energy expenditure.

    PubMed

    Yuliana, Nancy Dewi; Korthout, Henrie; Wijaya, Christofora Hanny; Kim, Hye Kyong; Verpoorte, Robert

    2014-01-01

    The development of obesity is related to the regulation of energy intake, energy expenditure, and energy storage in the body. Increasing energy expenditure by inducing lipolysis followed by fat oxidation is one of the alternatives which could help to reverse this increasingly widespread condition. Currently, there is no approved drug targeting on stimulation of energy expenditure available. The use of herbal medicines has become a preferred alternative, supported by the classical consensus on the innocuity of herbal medicine vs synthetic drugs, something that often lacks a scientific basis (ban on Ephedra, for example). The inclusion of functional food in the daily diet has also been promoted although its efficacy requires further investigation. This review summarizes the results of recent work focused on the investigation of edible plant materials targeted at various important pathways related to stimulation of energy expenditure. The aim is to evaluate a number of plants that may be of interest for further studies because of their potential to provide novel lead compounds or functional foods which may be used to combat obesity, but require further studies to evaluate their antiobesity activity in humans.

  18. Plant-derived health: the effects of turmeric and curcuminoids.

    PubMed

    Bengmark, S; Mesa, M D; Gil, A

    2009-01-01

    Plants contain numerous polyphenols, which have been shown to reduce inflammation and hereby to increase resistance to disease. Examples of such polyphenols are isothiocyanates in cabbage and broccoli, epigallocatechin in green tee, capsaicin in chili peppers, chalones, rutin and naringenin in apples, resveratrol in red wine and fresh peanuts and curcumin/curcuminoids in turmeric. Most diseases are maintained by a sustained discreet but obvious increased systemic inflammation. Many studies suggest that the effect of treatment can be improved by a combination of restriction in intake of proinflammatory molecules such as advanced glycation end products (AGE), advanced lipoperoxidation end products (ALE), and rich supply of antiinflammatory molecules such as plant polyphenols. To the polyphenols with a bulk of experimental documentation belong the curcuminoid family and especially its main ingredient, curcumin. This review summarizes the present knowledge about these turmericderived ingredients, which have proven to be strong antioxidants and inhibitors of cyclooxigenase-2 (COX-2), lipoxygenase (LOX) and nuclear factor kappa B (NF-kappaB) but also AGE. A plethora of clinical effects are reported in various experimental diseases, but clinical studies in humans are few. It is suggested that supply of polyphenols and particularly curcuminoids might be value as complement to pharmaceutical treatment, but also prebiotic treatment, in conditions proven to be rather therapy-resistant such as Crohn's, long-stayed patients in intensive care units, but also in conditions such as cancer, liver cirrhosis, chronic renal disease, chronic obstructive lung disease, diabetes and Alzheimer's disease.

  19. The Effect of New Thiophene-Derived Aminophosphonic Derivatives on Growth of Terrestrial Plants: A Seedling Emergence and Growth Test.

    PubMed

    Lewkowski, Jarosław; Malinowski, Zbigniew; Matusiak, Agnieszka; Morawska, Marta; Rogacz, Diana; Rychter, Piotr

    2016-01-01

    The aim of this work was to synthesize selected thiophene-derived aminophosphonic systems and evaluate the phytotoxicity of newly obtained products according to the OECD 208 Guideline. Seven new thiophene-derived N-substituted dimethyl aminomethylphosphonic acid esters 2a-h were synthesized by the addition of an appropriate phosphite to azomethine bond of starting Schiff bases 1a-h, and NMR spectroscopic properties of aminophosphonates were investigated. These eight compounds were analyzed in regard to their phytotoxicity towards two plants, radish (Raphanus sativus) and oat (Avena sativa). On the basis of the obtained results, it was found that tested aminophosphonates 2a-h showed an ecotoxicological impact against selected plants, albeit to various degrees. PMID:27248990

  20. Concentration of sterols of Porphyridium cruentum biomass at stationary phase.

    PubMed

    Durmaz, Yasar; Monteiro, Margarida; Koru, Edis; Bandarra, Narcisa

    2007-04-01

    The objective of this study was to investigate sterols content of Porphyridium cruentum batch cultured in laboratory at 18 degrees C and harvested in the stationary. The sterol distribution of this species is characterized by a predominance of cholesterol, with values as 199.0 mg 100 g(-1) freeze dry weight (92.2%). The second most important sterol was stigmasterol (4.9%) followed by beta-sitosterol (2.2%). Studied sterols give to this species a special importance in for being used in food as supplements/nutraceuticals (including aquaculture).

  1. Structure of an integral membrane sterol reductase from Methylomicrobium alcaliphilum

    PubMed Central

    Li, Xiaochun; Roberti, Rita; Blobel, Günter

    2014-01-01

    Sterols are essential biological molecules in the majority of life forms. Sterol reductases1 including Delta-14 sterol reductase (C14SR), 7-dehydrocholesterol reductase (DHCR7) and 24-dehydrocholesterol reductase (DHCR24) reduce specific carbon-carbon double bonds of the sterol moiety using a reducing cofactor during sterol biosynthesis. Lamin B Receptor2 (LBR), an integral inner nuclear membrane protein, also contains a functional C14SR domain. Here we report the crystal structure of a Delta-14 sterol reductase (maSR1) from the methanotrophic bacterium Methylomicrobium alcaliphilum 20Z, a homolog of human C14SR, LBR, and DHCR7, with the cofactor NADPH. The enzyme contains 10 transmembrane segments (TM). Its catalytic domain comprises the C-terminal half (containing TM6-10) and envelops two interconnected pockets, one of which faces the cytoplasm and houses NADPH, while the other one is accessible from the lipid bilayer. Comparison with a soluble steroid 5β-reductase structure3 suggests that the reducing end of NADPH meets the sterol substrate at the juncture of the two pockets. A sterol reductase activity assay proves maSR1 can reduce the double bond of a cholesterol biosynthetic intermediate demonstrating functional conservation to human C14SR. Therefore, our structure as a prototype of integral membrane sterol reductases provides molecular insight into mutations in DHCR7 and LBR for inborn human diseases. PMID:25307054

  2. Lipids in plant-microbe interactions.

    PubMed

    Siebers, Meike; Brands, Mathias; Wewer, Vera; Duan, Yanjiao; Hölzl, Georg; Dörmann, Peter

    2016-09-01

    Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner.

  3. Lipids in plant-microbe interactions.

    PubMed

    Siebers, Meike; Brands, Mathias; Wewer, Vera; Duan, Yanjiao; Hölzl, Georg; Dörmann, Peter

    2016-09-01

    Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner. PMID:26928590

  4. Butenolide derivatives from the plant endophytic fungus Aspergillus terreus.

    PubMed

    Guo, Feng; Li, Zhanlin; Xu, Xiangwei; Wang, Kaibo; Shao, Meili; Zhao, Feng; Wang, Haifeng; Hua, Huiming; Pei, Yuehu; Bai, Jiao

    2016-09-01

    Three new butenolides containing 5-hydroxyfuran-2(5H)-one core, asperteretal A (1), asperteretal B (2), and asperteretal C (3), together with seven known butenolides (4-10), were obtained from an endophytic fungus Aspergillus terreus PR-P-2 isolated from the plant Camellia sinensis var. assamica. The structures of compounds 1-3 were elucidated on the basis of detailed spectroscopic analysis including UV, IR, HRESIMS, 1D and 2D NMR, and ECD spectra. Compounds 1, 3, 5 and 6-8 showed potent inhibitory effects on NO production in RAW 264.7 lipopolysaccharide-induced macrophages, and compounds 5 and 8 also exhibited moderate cytotoxicity against HL-60 cell line. PMID:27370101

  5. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.

    PubMed

    Gali-Muhtasib, Hala; Hmadi, Raed; Kareh, Mike; Tohme, Rita; Darwiche, Nadine

    2015-12-01

    Despite remarkable progress in the discovery and development of novel cancer therapeutics, cancer remains the second leading cause of death in the world. For many years, compounds derived from plants have been at the forefront as an important source of anticancer therapies and have played a vital role in the prevention and treatment of cancer because of their availability, and relatively low toxicity when compared with chemotherapy. More than 3000 plant species have been reported to treat cancer and about thirty plant-derived compounds have been isolated so far and have been tested in cancer clinical trials. The mechanisms of action of plant-derived anticancer drugs are numerous and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and caspase and/or p53-dependent or independent mechanisms. Alternative modes of cell death by plant-derived anticancer drugs are emerging and include mainly autophagy, necrosis-like programmed cell death, mitotic catastrophe, and senescence leading to cell death. Considering that the non-apoptotic cell death mechanisms of plant-derived anticancer drugs are less reviewed than the apoptotic ones, this paper attempts to focus on such alternative cell death pathways for some representative anticancer plant natural compounds in clinical development. In particular, emphasis will be on some promising polyphenolics such as resveratrol, curcumin, and genistein; alkaloids namely berberine, noscapine, and colchicine; terpenoids such as parthenolide, triptolide, and betulinic acid; and the organosulfur compound sulforaphane. The understanding of non-apoptotic cell death mechanisms induced by these drugs would provide insights into the possibility of exploiting novel molecular pathways and targets of plant-derived compounds for future cancer therapeutics. PMID:26362468

  6. Steroleosin, a Sterol-Binding Dehydrogenase in Seed Oil Bodies1

    PubMed Central

    Lin, Li-Jen; Tai, Sorgan S.K.; Peng, Chi-Chung; Tzen, Jason T.C.

    2002-01-01

    Besides abundant oleosin, three minor proteins, Sop 1, 2, and 3, are present in sesame (Sesamum indicum) oil bodies. The gene encoding Sop1, named caleosin for its calcium-binding capacity, has recently been cloned. In this study, Sop2 gene was obtained by immunoscreening, and it was subsequently confirmed by amino acid partial sequencing and immunological recognition of its overexpressed protein in Escherichia coli. Immunological cross recognition implies that Sop2 exists in seed oil bodies of diverse species. Along with oleosin and caleosin genes, Sop2 gene was transcribed in maturing seeds where oil bodies are actively assembled. Sequence analysis reveals that Sop2, tentatively named steroleosin, possesses a hydrophobic anchoring segment preceding a soluble domain homologous to sterol-binding dehydrogenases/reductases involved in signal transduction in diverse organisms. Three-dimensional structure of the soluble domain was predicted via homology modeling. The structure forms a seven-stranded parallel β-sheet with the active site, S-(12X)-Y-(3X)-K, between an NADPH and a sterol-binding subdomain. Sterol-coupling dehydrogenase activity was demonstrated in the overexpressed soluble domain of steroleosin as well as in purified oil bodies. Southern hybridization suggests that one steroleosin gene and certain homologous genes may be present in the sesame genome. Comparably, eight hypothetical steroleosin-like proteins are present in the Arabidopsis genome with a conserved NADPH-binding subdomain, but a divergent sterol-binding subdomain. It is indicated that steroleosin-like proteins may represent a class of dehydrogenases/reductases that are involved in plant signal transduction regulated by various sterols. PMID:11950969

  7. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

    PubMed

    Rogers, Maximillian A; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C Y; Chang, Ta-Yuan

    2015-07-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  8. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    PubMed Central

    Upadhyaya, Indu; Kollanoor-Johny, Anup

    2014-01-01

    The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs) as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed. PMID:25298964

  9. Short-Term Water Deficit Changes Cuticular Sterol Profile in the Eggplant (Solanum melongena).

    PubMed

    Haliński, Łukasz P; Stepnowski, Piotr

    2016-06-01

    Crop irrigation uses a majority of a total world water supply, at the same time displaying low efficiency. As the expected, future water requirements are higher than the current ones; there is a risk of a growing deficit of water for the agricultural use. Hence, there is an arising need for better understanding the effects of water deprivation on the crop plants. Eggplant (Solanum melongena L.) is a vegetable crop cultivated in arid and semi-arid parts of the world. Because of its high water demands, the eggplant is a convenient model organism for studies concerning the effects of water deficit on the plant growth. The objective of the study was to determine the impact of short-term water deficit on eggplant leaf cuticular waxes and total sterols. Water deprivation did not affect the amount and composition of aliphatic components of cuticular waxes. Significant decrease in the total cuticular sterols and the increase in cuticular cholesterol were observed as an effect of water deficit. In contrast, some of the free internal sterols were more abundant in water-deprived plants. The possible importance of these observations, including increased biosynthesis of defensive compounds and the need to maintain the cell membrane stability, was discussed.

  10. Short-Term Water Deficit Changes Cuticular Sterol Profile in the Eggplant (Solanum melongena).

    PubMed

    Haliński, Łukasz P; Stepnowski, Piotr

    2016-06-01

    Crop irrigation uses a majority of a total world water supply, at the same time displaying low efficiency. As the expected, future water requirements are higher than the current ones; there is a risk of a growing deficit of water for the agricultural use. Hence, there is an arising need for better understanding the effects of water deprivation on the crop plants. Eggplant (Solanum melongena L.) is a vegetable crop cultivated in arid and semi-arid parts of the world. Because of its high water demands, the eggplant is a convenient model organism for studies concerning the effects of water deficit on the plant growth. The objective of the study was to determine the impact of short-term water deficit on eggplant leaf cuticular waxes and total sterols. Water deprivation did not affect the amount and composition of aliphatic components of cuticular waxes. Significant decrease in the total cuticular sterols and the increase in cuticular cholesterol were observed as an effect of water deficit. In contrast, some of the free internal sterols were more abundant in water-deprived plants. The possible importance of these observations, including increased biosynthesis of defensive compounds and the need to maintain the cell membrane stability, was discussed. PMID:27127890

  11. Potential of the Desert Locust Schistocerca gregaria (Orthoptera: Acrididae) as an Unconventional Source of Dietary and Therapeutic Sterols

    PubMed Central

    Cheseto, Xavier; Kuate, Serge Philibert; Tchouassi, David P.; Ndung’u, Mary; Teal, Peter E. A.; Torto, Baldwyn

    2015-01-01

    Insects are increasingly being recognized not only as a source of food to feed the ever growing world population but also as potential sources of new products and therapeutic agents, among which are sterols. In this study, we sought to profile sterols and their derivatives present in the desert locust, Schistocerca gregaria, focusing on those with potential importance as dietary and therapeutic components for humans. Using coupled gas chromatography-mass spectrometry (GC-MS), we analyzed and compared the quantities of sterols in the different sections of the gut and tissues of the locust. In the gut, we identified 34 sterols which showed a patchy distribution, but with the highest composition in the foregut (55%) followed by midgut (31%) and hindgut (14%). Fed ad libitum on wheat seedlings, five sterols unique to the insect were detected. These sterols were identified as 7-dehydrocholesterol, desmosterol, fucosterol, (3β, 5α) cholesta-8, 14, 24-trien-3-ol, 4, 4-dimethyl, and (3β, 20R) cholesta-5, 24-dien-3, 20-diol with the first three having known health benefits in humans. Incubation of the fore-, mid- and hindgut with cholesterol-[4-13C] yielded eight derivatives, three of these were detected in the gut of the desert locust after it had consumed the vegetative diet but were not detected in the diet. Our study shows that the desert locust ingests phytosterols from a vegetative diet and, amplifies and metabolizes them into derivatives with potential salutary benefits and we discuss our findings in this context. PMID:25970517

  12. Vermicompost derived from different feedstocks as a plant growth medium.

    PubMed

    Warman, P R; Anglopez, M J

    2010-06-01

    This study determined feedstock effects on earthworm populations and the quality of resulting vermicomposts produced from different types of feedstocks using different vermicomposting durations. Feedstock combinations (Kitchen Paper Waste (KPW), Kitchen Yard Waste (KYW), Cattle Manure Yard Waste (CMY)), three durations of vermicomposting (45, 68 or 90 days), and two seed germination methods (with two concentrations of vermicompost) for radish, marigold and upland cress, served as the independent variables. The worms (Eisenia fetida) doubled their weight by day 68 in KPW and CMY vermicomposts and day 90 KPW vermicompost produced the greatest weight of worms. The direct seed germination method (seeding into soil or vermicompost-soil mixtures) indicated that KPW and KYW feedstocks decreased germination compared to the control, even in mature vermicompost. Seed germination was greater in the water extract method; however, most of the vermicompost extracts suppressed germination of the three seed species compared to the water controls. Vermicomposts from all three feedstocks increased leaf area and biomass compared to the control, especially in the 10% vermicompost:soil mix. Thus, seed germination and leaf area or plant biomass for these three species are contrasting vermicompost quality indicators.

  13. Recent advances and safety issues of transgenic plant-derived vaccines.

    PubMed

    Guan, Zheng-jun; Guo, Bin; Huo, Yan-lin; Guan, Zheng-ping; Dai, Jia-kun; Wei, Ya-hui

    2013-04-01

    Transgenic plant-derived vaccines comprise a new type of bioreactor that combines plant genetic engineering technology with an organism's immunological response. This combination can be considered as a bioreactor that is produced by introducing foreign genes into plants that elicit special immunogenicity when introduced into animals or human beings. In comparison with traditional vaccines, plant vaccines have some significant advantages, such as low cost, greater safety, and greater effectiveness. In a number of recent studies, antigen-specific proteins have been successfully expressed in various plant tissues and have even been tested in animals and human beings. Therefore, edible vaccines of transgenic plants have a bright future. This review begins with a discussion of the immune mechanism and expression systems for transgenic plant vaccines. Then, current advances in different transgenic plant vaccines will be analyzed, including vaccines against pathogenic viruses, bacteria, and eukaryotic parasites. In view of the low expression levels for antigens in plants, high-level expression strategies of foreign protein in transgenic plants are recommended. Finally, the existing safety problems in transgenic plant vaccines were put forward will be discussed along with a number of appropriate solutions that will hopefully lead to future clinical application of edible plant vaccines.

  14. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1998-09-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  15. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1997-09-16

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  16. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1998-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  17. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1997-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  18. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2002-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  19. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids.

    PubMed

    John, Clara; Werner, Philipp; Worthmann, Anna; Wegner, Katrin; Tödter, Klaus; Scheja, Ludger; Rohn, Sascha; Heeren, Joerg; Fischer, Markus

    2014-12-01

    Recently, hydroxy sterols and bile acids have gained growing interest as they are important regulators of energy homoeostasis and inflammation. The high number of different hydroxy sterols and bile acid species requires powerful analytical tools to quantify these structurally and chemically similar analytes. Here, we introduce a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for rapid quantification of 34 sterols (hydroxy sterols, primary, secondary bile acids as well as their taurine and glycine conjugates). Chromatographic baseline separation of isomeric hydroxy sterols and bile acids is obtained using a rugged amide embedded C18 (polar embedded) stationary phase. The current method features a simple extraction protocol validated for blood plasma, urine, gall bladder, liver, feces, and adipose tissue avoiding solid phase extraction as well as derivatization procedures. The total extraction recovery for representative analytes ranged between 58-86% in plasma, 85% in urine, 79-92% in liver, 76-98% in adipose tissue, 93-104% in feces and 62-79% in gall bladder. The validation procedure demonstrated that the calibration curves were linear over the selected concentration ranges for 97% of the analytes, with calculated coefficients of determination (R2) of greater than 0.99. A feeding study in wild type mice with a standard chow and a cholesterol-enriched Western type diet illustrated that the protocol described here provides a powerful tool to simultaneously quantify cholesterol derivatives and bile acids in metabolically active tissues and to follow the enterohepatic circulation.

  20. Sterol evolution and the physics of membranes

    NASA Astrophysics Data System (ADS)

    Nielsen, M.; Thewalt, J.; Miao, L.; Ipsen, J. H.; Bloom, M.; Zuckermann, M. J.; Mouritsen, O. G.

    2000-11-01

    Sterols are important molecular components of the plasma membranes of eucaryotic cells. Using deuterium NMR spectroscopy in conjunction with statistical mechanical modelling, we present a unifying picture of how the evolution-engineered differences in molecular chemistry between cholesterol and its precursor lanosterol are manifested in the physical properties of model membranes in terms of molecular order and phase equilibria. Cholesterol optimizes the stability of a particular membrane phase, the liquid-ordered phase, that is a liquid and at the same time exhibits high molecular conformational order.

  1. A search for mosquito larvicidal compounds by blocking the sterol carrying protein, AeSCP-2, through computational screening and docking strategies

    PubMed Central

    Kumar, R. Barani; Shanmugapriya, B.; Thiyagesan, K.; Kumar, S. Raj; Xavier, Suresh M.

    2010-01-01

    Background: Sterol is a very vital compound for most of the insects and mosquitoes to complete their life cycle. Unfortunately mosquitoes cannot synthesize the sterol, it depends on mammals for the same. Mosquitoes take the sterol from the plant decays during their larval stage in the form of phytosterol, which is then converted to cholesterol for further growth and reproduction. This conversion occurs with the help of the sterol carrier protein 2(SCP2). Methods: Mosquito populations are controlled by plant-based inhibitors, which inhibit sterol carrier protein (SCPI-Sterol carrier protein inhibitor) activity. In this article, we explain the methods of inhibiting Aedes aegypti SCP2 by insilico methods including natural inhibitor selection and filtrations by virtual screening and interaction studies. Results: In this study protein-ligand interactions were carried out with various phytochemicals, as a result of virtual screening Alpha-mangostin and Panthenol were found to be good analogs, and were allowed to dock with the mosquito cholesterol carrier protein AeSCP-2. Conclusion: Computational selections of SCPIs are highly reliable and novel methods for discovering new and more effective compounds to control mosquitoes. PMID:21808576

  2. Prevention of bubonic and pneumonic plague using plant-derived vaccines.

    PubMed

    Alvarez, M Lucrecia; Cardineau, Guy A

    2010-01-01

    Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1-V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.

  3. Substrate Preferences and Catalytic Parameters Determined by Structural Characteristics of Sterol 14[alpha]-Demethylase (CYP51) from Leishmania infantum

    SciTech Connect

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W. David; Waterman, Michael R.; Lepesheva, Galina I.

    2012-05-14

    Leishmaniasis is a major health problem that affects populations of {approx}90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14{alpha}-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14{alpha}-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V{sub max} of {approx}10 and 8 min{sup -1}, respectively), it is also found to 14{alpha}-demethylate C4-dimethylated lanosterol (V{sub max} = 0.9 min{sup -1}) and C4-desmethylated 14{alpha}-methylzymosterol (V{sub max} = 1.9 min{sup -1}). Binding parameters with six sterols were tested, with K{sub d} values ranging from 0.25 to 1.4 {mu}m. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14{alpha}-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.

  4. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    EPA Science Inventory

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  5. Side effects of the sterol biosynthesis inhibitor fungicide, propiconazole, on a beneficial arbuscular mycorrhizal fungus.

    PubMed

    Calonne, M; Fontaine, J; Debiane, D; Laruelle, F; Grandmougin, A; Lounes-Hadj Sahraoui, A

    2011-01-01

    The Sterol Biosynthesis Inhibitor (SBI) fungicide, propiconazole, is extensively used in modern agriculture to control fungal diseases. Unfortunately, little is known about its potential side effects on non-target plant-beneficial soil organisms such as arbuscular mycorrhizal fungi (AMF). The direct impact of increasing propiconazole concentrations (0.02; 0.2 and 2 mg x L(-1)) on the lipid metabolism of the AMF Glomus irregulare in relation with its development, was studied by using axenic cultures. The propiconazole impact on G. irregulare was investigated, firstly, through sterol (the target-metabolism of SBI fungicides), phospholipids (PL) and their associated fatty acids (PLFA) analysis (the main membrane components) and secondly by measuring malondialdehyde (MDA) (a biomarker of lipid peroxidation) formation. Finally, the storage lipid quantity, triacylglycerol (TAG), was quantified. Our results demonstrated that the drastic reduction of G. irregulare development (germination, germ tube elongation, colonization, extraradical hyphae growth and sporulation) could be explained not only by the decreases of the total sterol end-products (24-methylcholesterol and 24-ethylcholesterol) and by 24-methylene dihydrolanosterol (a sterol precursor) accumulation, suggesting an inhibition of a key enzyme in sterol biosynthesis pathway (14alpha-demethylase), but also by the increases in phosphatidylcholine (PC) and PLFA (C16:0; C18:0 and C18:3) quantities as well as by MDA accumulation. Moreover, TAG quantity was found to be reduced in the presence of propiconazole, suggesting their use by G. irregulare in a response to propiconazole toxicity. In conclusion, taken together, the findings of the current study highlighted a relationship between the SBI fungicide toxicity against the beneficial AMF G. irregulare and (1) the disturbance in the sterol metabolism, (2) the membrane alteration (PC decrease, lipid peroxidation) as well as (3) the reduction in storage lipids, TAG. More

  6. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.

    PubMed

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Yizhu; Wang, Junfeng; Zhou, Xuefeng; Yang, Bin; Liu, Juan; Yang, Xianwen; Wang, Yi; Liu, Yonghong

    2014-06-01

    Two new aromatic butyrolactones, flavipesins A (1) and B (2), two new natural products (3 and 4), and a known phenyl dioxolanone (5) were isolated from marine-derived endophytic fungus Aspergillus flavipes. The structures of compounds 1-5 were elucidated by 1D- and 2D-NMR and MS analysis, the absolute configurations were assigned by optical rotation and CD data, and the stereochemistry of 1 was determined by X-ray crystallography analysis. 1 demonstrated lower MIC values against Staphylococcus aureus (8.0 μg/mL) and Bacillus subtillis (0.25 μg/mL). 1 also showed the unique antibiofilm activity of penetration through the biofilm matrix and kills live bacteria inside mature S. aureus biofilm. PMID:24704337

  7. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius.

    PubMed

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Yizhu; Wang, Junfeng; Zhou, Xuefeng; Yang, Bin; Liu, Juan; Yang, Xianwen; Wang, Yi; Liu, Yonghong

    2014-06-01

    Two new aromatic butyrolactones, flavipesins A (1) and B (2), two new natural products (3 and 4), and a known phenyl dioxolanone (5) were isolated from marine-derived endophytic fungus Aspergillus flavipes. The structures of compounds 1-5 were elucidated by 1D- and 2D-NMR and MS analysis, the absolute configurations were assigned by optical rotation and CD data, and the stereochemistry of 1 was determined by X-ray crystallography analysis. 1 demonstrated lower MIC values against Staphylococcus aureus (8.0 μg/mL) and Bacillus subtillis (0.25 μg/mL). 1 also showed the unique antibiofilm activity of penetration through the biofilm matrix and kills live bacteria inside mature S. aureus biofilm.

  8. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  9. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    PubMed

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  10. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    PubMed Central

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  11. Origin assessment of EV olive oils by esterified sterols analysis.

    PubMed

    Giacalone, Rosa; Giuliano, Salvatore; Gulotta, Eleonora; Monfreda, Maria; Presti, Giovanni

    2015-12-01

    In this study extra virgin olive oils of Italian and non-Italian origin (from Spain, Tunisia and blends of EU origin) were differentiated by GC-FID analysis of sterols and esterified sterols followed by chemometric tools. PCA allowed to highlight the high significance of esterified sterols to characterise extra virgin olive oils in relation to their origin. SIMCA provided a sensitivity and specificity of 94.39% and 91.59% respectively; furthermore, an external set of 54 extra virgin olive oils bearing a designation of Italian origin on the labelling was tested by SIMCA. Prediction results were also compared with organoleptic assessment. Finally, the poor correlation found between ethylesters and esterified sterols allowed to hazard the guess, worthy of further investigations, that esterified sterols may prove to be promising in studies of geographical discrimination: indeed they appear to be independent of those factors causing the formation of ethyl esters and related to olive oil production.

  12. Diversity of Sterol Composition in Tunisian Pistacia lentiscus Seed Oil.

    PubMed

    Mezni, Faten; Labidi, Arbia; Khouja, Mohamed Larbi; Martine, Lucy; Berdeaux, Olivier; Khaldi, Abdelhamid

    2016-05-01

    Pistacia lentiscus L. seed oil is used in some Mediterranean forest area for culinary and medicinal purposes. In this study, we aim to examine, for the first time, the effect of growing area on sterol content of Pistacia lentiscus seed oil. Fruits were harvested from 13 different sites located in northern and central Tunisia. Gas chromatography-flame-ionization detection (GC-FID) was used to quantify sterols and gas chromatography/mass spectrometry (GC/MS) was used to identify them. The major sterol identified was β-sitosterol with a value ranging from 854.12 to 1224.09 mg/kg of oil, thus making up more than 54% of the total sterols. The other two main sterols were cycloartenol (11%) and 24-methylene-cycloartenol (5%). Statistical results revealed that growing location significantly (P < 0.001) affected phytosterol levels in these oils. PMID:27060921

  13. Fecal neutral sterols in omnivorous and vegetarian women.

    PubMed

    Korpela, J T; Adlercreutz, H

    1985-12-01

    The purpose of this study was to investigate the effect of a vegetarian diet on human fecal neutral sterol excretion. Free and esterified fecal neutral sterols were analyzed by capillary gas-chromatography in healthy North-American white women who were consuming either a mixed Western diet (n = 19) or a vegetarian diet (n = 20). Vegetarians had lower mean concentrations of bacterial metabolites of cholesterol, coprostanol, and coprostanone, and their relative amounts of esterified neutral sterol metabolism in both populations. Most of the subjects in both groups excreted their neutral sterols mainly as metabolites. However, 25% of the omnivores and 21% of the vegetarians had exceptionally low amounts of these metabolites in their feces. The vegetarians in this study differed only slightly from omnivores with regard to intestinal bacterial metabolism of neutral sterols.

  14. Impact of plant derivatives on the growth of foodborne pathogens and the functionality of probiotics.

    PubMed

    Gyawali, Rabin; Ibrahim, Salam A

    2012-07-01

    Numerous studies have been published on the antimicrobial and antioxidant properties of various plant components. However, there is relatively little information on the impact of such components on the enhancement of probiotics and production of antimicrobial compounds from these probiotics. Hence, this paper focuses on the influence of plant-derived components against pathogens, enhancement of cell viability and functionality of probiotics, and potential applications of such components in food safety and human health.

  15. Profiling and Metabolism of Sterols in the Weaver Ant Genus Oecophylla.

    PubMed

    Vidkjær, Nanna H; Jensen, Karl-Martin V; Gislum, René; Fomsgaard, Inge S

    2016-01-01

    Sterols are essential to insects because they are vital for many biochemical processes, nevertheless insects cannot synthesize sterols but have to acquire them through their diet. Studies of sterols in ants are sparse and here the sterols of the weaver ant genus Oecophylla are identified for the first time. The sterol profile and the dietary sterols provided to a laboratory Oecophylla longinoda colony were analyzed. Most sterols originated from the diet, except one, which was probably formed via dealkylation in the ants and two sterols of fungal origin, which likely originate from hitherto unidentified endosymbionts responsible for supplying these two compounds. The sterol profile of a wild Oecophylla smaragdina colony was also investigated. Remarkable qualitative similarities were established between the two species despite the differences in diet, species, and origin. This may reflect a common sterol need/aversion in the weaver ants. Additionally, each individual caste of both species displayed unique sterol profiles.

  16. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods.

    PubMed

    da Cruz Cabral, Lucía; Fernández Pinto, Virginia; Patriarca, Andrea

    2013-08-16

    Food decay by spoilage fungi causes considerable economic losses and constitutes a health risk for consumers due to the potential for fungi to produce mycotoxins. The indiscriminate use of synthetic antifungals has led to the development of resistant strains which has necessitated utilization of higher concentrations, with the consequent increase in toxic residues in food products. Numerous studies have demonstrated that plant extracts contain diverse bioactive components that can control mould growth. The metabolites produced by plants are a promising alternative because plants generate a wide variety of compounds, either as part of their development or in response to stress or pathogen attack. The aim of this article is to summarize the results from the literature on in vitro and in vivo experiments regarding the effects of plant-derived products for controlling fungal growth. Data from research work on the mode of action of these metabolites inside the fungal cell and the influence of abiotic external factors such as pH and temperature are also covered in the present review. Furthermore, an analysis on how the stress factor derived from the presence of plant extracts and essential oils affects secondary metabolism of the fungus, specifically mycotoxin synthesis, is developed. Finally, the effectiveness of using plant-derived compounds in combination with other natural antimicrobials and its application in food using novel technologies is discussed.

  17. ATP-binding cassette transporters and sterol O-acyltransferases interact at membrane microdomains to modulate sterol uptake and esterification.

    PubMed

    Gulati, Sonia; Balderes, Dina; Kim, Christine; Guo, Zhongmin A; Wilcox, Lisa; Area-Gomez, Estela; Snider, Jamie; Wolinski, Heimo; Stagljar, Igor; Granato, Juliana T; Ruggles, Kelly V; DeGiorgis, Joseph A; Kohlwein, Sepp D; Schon, Eric A; Sturley, Stephen L

    2015-11-01

    A key component of eukaryotic lipid homeostasis is the esterification of sterols with fatty acids by sterol O-acyltransferases (SOATs). The esterification reactions are allosterically activated by their sterol substrates, the majority of which accumulate at the plasma membrane. We demonstrate that in yeast, sterol transport from the plasma membrane to the site of esterification is associated with the physical interaction of the major SOAT, acyl-coenzyme A:cholesterol acyltransferase (ACAT)-related enzyme (Are)2p, with 2 plasma membrane ATP-binding cassette (ABC) transporters: Aus1p and Pdr11p. Are2p, Aus1p, and Pdr11p, unlike the minor acyltransferase, Are1p, colocalize to sterol and sphingolipid-enriched, detergent-resistant microdomains (DRMs). Deletion of either ABC transporter results in Are2p relocalization to detergent-soluble membrane domains and a significant decrease (53-36%) in esterification of exogenous sterol. Similarly, in murine tissues, the SOAT1/Acat1 enzyme and activity localize to DRMs. This subcellular localization is diminished upon deletion of murine ABC transporters, such as Abcg1, which itself is DRM associated. We propose that the close proximity of sterol esterification and transport proteins to each other combined with their residence in lipid-enriched membrane microdomains facilitates rapid, high-capacity sterol transport and esterification, obviating any requirement for soluble intermediary proteins.

  18. Butenolides from plant-derived smoke: natural plant-growth regulators with antagonistic actions on seed germination.

    PubMed

    Light, Marnie E; Burger, Ben V; Staerk, Dan; Kohout, Ladislav; Van Staden, Johannes

    2010-02-26

    Smoke plays an intriguing role in promoting the germination of seeds of many species following a fire. Recently, a bicyclic compound containing a condensed butenolide moiety, 3-methyl-2H-furo[2,3-c]pyran-2-one (1), was reported as a potent germination promoter from plant-derived smoke. In this study, a related butenolide, 3,4,5-trimethylfuran-2(5H)-one (2), which inhibits germination and significantly reduces the effect of 1 when applied simultaneously, was also isolated from plant-derived smoke. The interaction of these compounds with opposing actions on seed germination may have important ecological implications in a post-fire environment and could be useful molecules for understanding the events involved in breaking seed dormancy and promoting seed germination.

  19. Evaluation of sterol transport from the endoplasmic reticulum to mitochondria using mitochondrially targeted bacterial sterol acyltransferase in Saccharomyces cerevisiae.

    PubMed

    Tian, Siqi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi

    2015-01-01

    To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria.

  20. Effect of commercially available plant-derived essential oil products on arthropod pests.

    PubMed

    Cloyd, Raymond A; Galle, Cindy L; Keith, Stephen R; Kalscheur, Nanette A; Kemp, Kenneth E

    2009-08-01

    Plant-derived essential oil products, in general, are considered minimum-risk pesticides and are exempt from Environmental Protection Agency registration under section 25(b) of the Federal Insecticide Fungicide and Rodenticide Act. However, many of the plant-derived essential products available to consumers (homeowners) have not been judiciously evaluated for both efficacy and plant safety. In fact, numerous plant-derived essential oil products labeled for control of arthropod pests have not been subject to rigorous evaluation, and there is minimal scientific information or supporting data associated with efficacy against arthropod pests. We conducted a series of greenhouse experiments to determine the efficacy and phytotoxicity of an array of plant-derived essential oil products available to consumers on arthropod pests including the citrus mealybug, Planococcus citri (Risso); western flower thrips, Frankliniella occidentalis (Pergande); twospotted spider mite, Tetranychus urticae Koch; sweetpotato whitefly B-biotype, Bemisia tabaci (Gennadius); and green peach aphid, Myzus persicae (Sulzer). Although the products Flower Pharm (cottonseed, cinnamon, and rosemary oil) and Indoor Pharm (soybean, rosemary, and lavender oil) provided > 90% mortality of citrus mealybug, they were also the most phytotoxic to the coleus, Solenostemon scutellarioides (L.) Codd, plants. Both GC-Mite (cottonseed, clove, and garlic oil) and Bugzyme (citric acid) were most effective against the twospotted spider mite (> or = 90% mortality). However, SMC (canola, coriander oil, and triethanolamine), neem (clarified hydrophobic extract of neem oil), and Bug Assassin (eugenol, sodium lauryl sulfate, peppermint, and citronella oil) provided > 80% mortality. Monterey Garden Insect Spray, which contained 0.5% spinosad, was most effective against western flower thrips with 100% mortality. All the other products evaluated failed to provide sufficient control of western flower thrips with < 30

  1. Effect of commercially available plant-derived essential oil products on arthropod pests.

    PubMed

    Cloyd, Raymond A; Galle, Cindy L; Keith, Stephen R; Kalscheur, Nanette A; Kemp, Kenneth E

    2009-08-01

    Plant-derived essential oil products, in general, are considered minimum-risk pesticides and are exempt from Environmental Protection Agency registration under section 25(b) of the Federal Insecticide Fungicide and Rodenticide Act. However, many of the plant-derived essential products available to consumers (homeowners) have not been judiciously evaluated for both efficacy and plant safety. In fact, numerous plant-derived essential oil products labeled for control of arthropod pests have not been subject to rigorous evaluation, and there is minimal scientific information or supporting data associated with efficacy against arthropod pests. We conducted a series of greenhouse experiments to determine the efficacy and phytotoxicity of an array of plant-derived essential oil products available to consumers on arthropod pests including the citrus mealybug, Planococcus citri (Risso); western flower thrips, Frankliniella occidentalis (Pergande); twospotted spider mite, Tetranychus urticae Koch; sweetpotato whitefly B-biotype, Bemisia tabaci (Gennadius); and green peach aphid, Myzus persicae (Sulzer). Although the products Flower Pharm (cottonseed, cinnamon, and rosemary oil) and Indoor Pharm (soybean, rosemary, and lavender oil) provided > 90% mortality of citrus mealybug, they were also the most phytotoxic to the coleus, Solenostemon scutellarioides (L.) Codd, plants. Both GC-Mite (cottonseed, clove, and garlic oil) and Bugzyme (citric acid) were most effective against the twospotted spider mite (> or = 90% mortality). However, SMC (canola, coriander oil, and triethanolamine), neem (clarified hydrophobic extract of neem oil), and Bug Assassin (eugenol, sodium lauryl sulfate, peppermint, and citronella oil) provided > 80% mortality. Monterey Garden Insect Spray, which contained 0.5% spinosad, was most effective against western flower thrips with 100% mortality. All the other products evaluated failed to provide sufficient control of western flower thrips with < 30

  2. Molecular aspects of polyene- and sterol-dependent pore formation in thin lipid membranes.

    PubMed

    Dennis, V W; Stead, N W; Andreoli, T E

    1970-03-01

    Amphotericin B modifies the permeability properties of thin lipid membranes formed from solutions containing sheep red cell phospholipids and cholesterol. At 10(-6)M amphotericin B, the DC membrane resistance fell from approximately 10(8) to approximately 10(2) ohm-cm(2), and the membranes became Cl(-)-, rather than Na(+)-selective; the permeability coefficients for hydrophilic nonelectrolytes increased in inverse relationship to solute size, and the rate of water flow during osmosis increased 30-fold. These changes may be rationalized by assuming that the interaction of amphotericin B with membrane-bound sterol resulted in the formation of aqueous pores. N-acetylamphotericin B and the methyl ester of N-acetylamphotericin B, but not the smaller ring compounds, filipin, rimocidin, and PA-166, produced comparable permeability changes in identical membranes, and amphotericin B and its derivatives produced similar changes in the properties of membranes formed from phospholipid-free sterol solutions. However, amphotericin B did not affect ionic selectivity or water and nonelectrolyte permeability in membranes formed from solutions containing phospholipids and no added cholesterol, or when cholesterol was replaced by either cholesterol palmitate, dihydrotachysterol, epicholesterol, or Delta5-cholesten-3-one. Phospholipid-free sterol membranes exposed to amphotericin B or its derivatives were anion-selective, but the degree of Cl(-) selectivity varied among the compounds, and with the aqueous pH. The data are discussed with regard to, first, the nature of the polyene-sterol interactions which result in pore formation, and second, the functional groups on amphotericin B responsible for membrane anion selectivity.

  3. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): enzymes with multiple sterols as substrates and as activators

    PubMed Central

    Rogers, Maximillian A.; Liu, Jay; Song, Bao-Liang; Li, Bo-Liang; Chang, Catherine C.Y.; Chang, Ta-Yuan

    2016-01-01

    Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the isooctyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form

  4. Sterols of Saccharomyces cerevisiae erg6 Knockout Mutant Expressing the Pneumocystis carinii S-Adenosylmethionine:Sterol C-24 Methyltransferase.

    PubMed

    Kaneshiro, Edna S; Johnston, Laura Q; Nkinin, Stephenson W; Romero, Becky I; Giner, José-Luis

    2015-01-01

    The AIDS-associated lung pathogen Pneumocystis is classified as a fungus although Pneumocystis has several distinct features such as the absence of ergosterol, the major sterol of most fungi. The Pneumocystis carinii S-adenosylmethionine:sterol C24-methyltransferase (SAM:SMT) enzyme, coded by the erg6 gene, transfers either one or two methyl groups to the C-24 position of the sterol side chain producing both C28 and C29 24-alkylsterols in approximately the same proportions, whereas most fungal SAM:SMT transfer only one methyl group to the side chain. The sterol compositions of wild-type Sacchromyces cerevisiae, the erg6 knockout mutant (Δerg6), and Δerg6 expressing the P. carinii or the S. cerevisiae erg6 gene were analyzed by a variety of chromatographic and spectroscopic procedures to examine functional complementation in the yeast expression system. Detailed sterol analyses were obtained using high performance liquid chromatography and proton nuclear magnetic resonance spectroscopy ((1)H-NMR). The P. carinii SAM:SMT in the Δerg6 restored its ability to produce the C28 sterol ergosterol as the major sterol, and also resulted in low levels of C29 sterols. This indicates that while the P. carinii SAM:SMT in the yeast Δerg6 cells was able to transfer a second methyl group to the side chain, the action of Δ(24(28)) -sterol reductase (coded by the erg4 gene) in the yeast cells prevented the formation and accumulation of as many C29 sterols as that found in P. carinii.

  5. 29-Norcucurbitacin derivatives isolated from the Indonesian medicinal plant, Phaleria macrocarpa (Scheff.) Boerl.

    PubMed

    Kurnia, Dikdik; Akiyama, Kohki; Hayashi, Hideo

    2008-02-01

    The new 29-norcucurbitacin, desacetylfevicordin A (1), together with three known 29-norcucurbitacin derivatives (2-4) were isolated from seeds of the Indonesian medicinal plant, Phaleria macrocarpa (Scheff.) Boerl. The structures of 1-4 were elucidated on the basis of spectroscopic analyses and chemical transformation. These compounds exhibited toxicity against the brine shrimp (Artemia salina). PMID:18256498

  6. Fecal Sterol and Runoff Analysis for Nonpoint Source Tracking.

    PubMed

    Fahrenfeld, N L; Del Monaco, N; Coates, J T; Elzerman, A W

    2016-01-01

    Fecal pollution source identification is needed to quantify risk, target installation of source controls, and assess performance of best management practices in impaired surface waters. Sterol analysis is a chemical method for fecal source tracking that allows for differentiation between several fecal pollution sources. The objectives of this study were to use these chemical tracers for quantifying human fecal inputs in a mixed-land-use watershed without point sources of pollution and to determine the relationship between land use and sterol ratios. Fecal sterol analysis was performed on bed and suspended sediment from impaired streams. Human fecal signatures were found at sites with sewer overflow and septic inputs. Different sterol ratios used to indicate human fecal pollution varied in their sensitivity. Next, geospatial data was used to determine the runoff volumes associated with each land-use category in the watersheds. Fecal sterol ratios were compared between sampling locations and correlations were tested between ratio values and percentage of runoff for a given land-use category. Correlation was not observed between percentage of runoff from developed land and any of the five tested human-indicating sterol ratios in streambed sediments, confirming that human fecal inputs were not evenly distributed across the urban landscape. Several practical considerations for adopting this chemical method for microbial source tracking in small watersheds are discussed. Results indicate that sterol analysis is useful for identifying the location of human fecal nonpoint-source inputs. PMID:26828187

  7. Derivative Analysis of AVIRIS Hyperspectral Data for the Detection of Plant Stress

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Berglund, Judith

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test site at Shelton, Nebraska. The test field was set off in blocks that were differentially treated with nitrogen. Four replicates of 0-kg/ha to 200-kg/ha, in 50-kg/ha increments, were present. Low-altitude AVIRIS hyperspectral data were collected over the site in 224 spectral bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to evaluate published, derivative-based algorithms for the detection of plant stress, different derivative-based approaches were applied to the collected AVIRIS image cube. The results indicate that, given good quality hyperspectral imagery, derivative techniques compare favorably with simple, well known band ratio algorithms for detection of plant stress.

  8. Recent advances in understanding carotenoid-derived signaling molecules in regulating plant growth and development

    PubMed Central

    Tian, Li

    2015-01-01

    Carotenoids (C40) are synthesized in plastids and perform numerous important functions in these organelles. In addition, carotenoids can be processed into smaller signaling molecules that regulate various phases of the plant’s life cycle. Besides the relatively well-studied phytohormones abscisic acid (ABA) and strigolactones (SLs), additional carotenoid-derived signaling molecules have been discovered and shown to regulate plant growth and development. As a few excellent reviews summarized recent research on ABA and SLs, this mini review will focus on progress made on identification and characterization of the emerging carotenoid-derived signals. Overall, a better understanding of carotenoid-derived signaling molecules has immediate applications in improving plant biomass production which in turn will have far reaching impacts on providing food, feed, and fuel for the growing world population. PMID:26442092

  9. Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils.

    PubMed

    Mullen, K A E; Lee, A R; Lyman, R L; Mason, S E; Washburn, S P; Anderson, K L

    2014-09-01

    Nonantibiotic treatments for mastitis are needed in organic dairy herds. Plant-derived oils may be useful but efficacy and potential mechanisms of action of such oils in mastitis therapy have not been well documented. The objective of the current study was to evaluate the antibacterial activity of the plant-derived oil components of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Plant-derived oils evaluated were Thymus vulgaris (thyme), Gaultheria procumbens (wintergreen), Glycyrrhiza uralensis (Chinese licorice), Angelica sinensis, and Angelica dahurica. Broth dilution testing according to standard protocol was performed using ultrapasteurized whole milk instead of broth. Controls included milk only (negative control), milk + bacteria (positive control), and milk + bacteria + penicillin-streptomycin (antibiotic control, at 1 and 5% concentrations). Essential oil of thyme was tested by itself and not in combination with other oils because of its known antibacterial activity. The other plant-derived oils were tested alone and in combination for a total of 15 treatments, each replicated 3 times and tested at 0.5, 1, 2, and 4% to simulate concentrations potentially achievable in the milk within the pre-dry-off udder quarter. Thyme oil at concentrations ≥2% completely inhibited bacterial growth in all replications. Other plant-derived oils tested alone or in various combinations were not consistently antibacterial and did not show typical dose-response effects. Only thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested in vitro. Further evaluation of physiological effects of thyme oil in various preparations on mammary tissue is recommended to determine potential suitability for mastitis therapy.

  10. Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils.

    PubMed

    Mullen, K A E; Lee, A R; Lyman, R L; Mason, S E; Washburn, S P; Anderson, K L

    2014-09-01

    Nonantibiotic treatments for mastitis are needed in organic dairy herds. Plant-derived oils may be useful but efficacy and potential mechanisms of action of such oils in mastitis therapy have not been well documented. The objective of the current study was to evaluate the antibacterial activity of the plant-derived oil components of Phyto-Mast (Bovinity Health LLC, Narvon, PA), an herbal intramammary product, against 3 mastitis-causing pathogens: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Plant-derived oils evaluated were Thymus vulgaris (thyme), Gaultheria procumbens (wintergreen), Glycyrrhiza uralensis (Chinese licorice), Angelica sinensis, and Angelica dahurica. Broth dilution testing according to standard protocol was performed using ultrapasteurized whole milk instead of broth. Controls included milk only (negative control), milk + bacteria (positive control), and milk + bacteria + penicillin-streptomycin (antibiotic control, at 1 and 5% concentrations). Essential oil of thyme was tested by itself and not in combination with other oils because of its known antibacterial activity. The other plant-derived oils were tested alone and in combination for a total of 15 treatments, each replicated 3 times and tested at 0.5, 1, 2, and 4% to simulate concentrations potentially achievable in the milk within the pre-dry-off udder quarter. Thyme oil at concentrations ≥2% completely inhibited bacterial growth in all replications. Other plant-derived oils tested alone or in various combinations were not consistently antibacterial and did not show typical dose-response effects. Only thyme essential oil had consistent antibacterial activity against the 3 mastitis-causing organisms tested in vitro. Further evaluation of physiological effects of thyme oil in various preparations on mammary tissue is recommended to determine potential suitability for mastitis therapy. PMID:25022682

  11. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    PubMed

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-01

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  12. Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants.

    PubMed

    Vargas, Walter A; Mandawe, John C; Kenerley, Charles M

    2009-10-01

    Fungal species belonging to the genus Trichoderma colonize the rhizosphere of many plants, resulting in beneficial effects such as increased resistance to pathogens and greater yield and productivity. However, the molecular mechanisms that govern the recognition and association between Trichoderma and their hosts are still largely unknown. In this report, we demonstrate that plant-derived sucrose (Suc) is an important resource provided to Trichoderma cells and is also associated with the control of root colonization. We describe the identification and characterization of an intracellular invertase from Trichoderma virens (TvInv) important for the mechanisms that control the symbiotic association and fungal growth in the presence of Suc. Gene expression studies revealed that the hydrolysis of plant-derived Suc in T. virens is necessary for the up-regulation of Sm1, the Trichoderma-secreted elicitor that systemically activates the defense mechanisms in leaves. We determined that as a result of colonization of maize (Zea mays) roots by T. virens, photosynthetic rate increases in leaves and the functional expression of tvinv is crucial for such effect. In agreement, the steady-state levels of mRNA for Rubisco small subunit and the oxygen-evolving enhancer 3-1 were increased in leaves of plants colonized by wild-type T. virens. We conclude that during the symbiosis, the sucrolytic activity in the fungal cells affects the sink activity of roots, directing carbon partitioning toward roots and increasing the rate of photosynthesis in leaves. A discussion of the role of Suc in controlling the fungal proliferation on roots and its pivotal role in the coordination of plant-microbe associations is provided.

  13. Sterol Methyl Oxidases Affect Embryo Development via Auxin-Associated Mechanisms.

    PubMed

    Zhang, Xia; Sun, Shuangli; Nie, Xiang; Boutté, Yohann; Grison, Magali; Li, Panpan; Kuang, Susu; Men, Shuzhen

    2016-05-01

    Sterols are essential molecules for multiple biological processes, including embryogenesis, cell elongation, and endocytosis. The plant sterol biosynthetic pathway is unique in the involvement of two distinct sterol 4α-methyl oxidase (SMO) families, SMO1 and SMO2, which contain three and two isoforms, respectively, and are involved in sequential removal of the two methyl groups at C-4. In this study, we characterized the biological functions of members of the SMO2 gene family. SMO2-1 was strongly expressed in most tissues during Arabidopsis (Arabidopsis thaliana) development, whereas SMO2-2 showed a more specific expression pattern. Although single smo2 mutants displayed no obvious phenotype, the smo2-1 smo2-2 double mutant was embryonic lethal, and the smo2-1 smo2-2/+ mutant was dwarf, whereas the smo2-1/+ smo2-2 mutant exhibited a moderate phenotype. The phenotypes of the smo2 mutants resembled those of auxin-defective mutants. Indeed, the expression of DR5rev:GFP, an auxin-responsive reporter, was reduced and abnormal in smo2-1 smo2-2 embryos. Furthermore, the expression and subcellular localization of the PIN1 auxin efflux facilitator also were altered. Consistent with these observations, either the exogenous application of auxin or endogenous auxin overproduction (YUCCA9 overexpression) partially rescued the smo2-1 smo2-2 embryonic lethality. Surprisingly, the dwarf phenotype of smo2-1 smo2-2/+ was completely rescued by YUCCA9 overexpression. Gas chromatography-mass spectrometry analysis revealed a substantial accumulation of 4α-methylsterols, substrates of SMO2, in smo2 heterozygous double mutants. Together, our data suggest that SMO2s are important for correct sterol composition and function partially through effects on auxin accumulation, auxin response, and PIN1 expression to regulate Arabidopsis embryogenesis and postembryonic development. PMID:27006488

  14. Screening, isolation and optimization of anti–white spot syndrome virus drug derived from marine plants

    PubMed Central

    Chakraborty, Somnath; Ghosh, Upasana; Balasubramanian, Thangavel; Das, Punyabrata

    2014-01-01

    Objective To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various marine floral ecosystems and to evaluate the efficacy of the same in host–pathogen interaction model. Methods Thirty species of marine plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti-WSSV property in Litopenaeus vannamei. By means of chemical processes, the purified anti-WSSV plant isolate, MP07X was derived. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. Results Nine plant isolates exhibited significant survivability in host. The drug MP07X thus formulated showing 85% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of MP07X required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 1 000 mg/kg body weight/day survived at the rate of 85%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. Conclusions The drug MP07X derived from Rhizophora mucronata is a potent anti-WSSV drug. PMID:25183065

  15. Transferability of retrotransposon primers derived from Persimmon (Diospyros kaki Thunb.) across other plant species.

    PubMed

    Du, X Y; Hu, Q N; Zhang, Q L; Wang, Y B; Luo, Z R

    2013-06-06

    Retrotransposon-based molecular markers are powerful molecular tools. However, these markers are not readily available due to the difficulty in obtaining species-specific retrotransposon primers. Although recent techniques enabling the rapid isolation of retrotransposon sequences have facilitated primer development, this process nonetheless remains time-consuming and costly. Therefore, research into the transferability of retrotransposon primers developed from one plant species onto others would be of great value. The present study investigated the transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon (Diospyros kaki Thunb.) across other fruit crops, as well as within the genus using inter-retrotransposon amplified polymorphism molecular marker. Fourteen of the 26 retrotransposon primers tested (53.85%) produced robust and reproducible amplification products across all fruit crops tested, indicating their applicability across plant species. Four of the 13 fruit crops showed the best transferability performances: persimmon, grape, citrus, and peach. Furthermore, similarity coefficients and UPGMA clustering indicated that these primers could further offer a potential tool for germplasm differentiation, parentage identification, genetic diversity assessment, classification, and phylogenetic studies across a variety of plant species. Transferability was further confirmed by examining published primers derived from Rosaceae, Gramineae, and Solanaceae. This study is one of the few currently available studies concerning the transferability of retrotransposon primers across plant species in general, and is the first successful study of the transferability of retrotransposon primers derived from persimmon. The primers presented here will help reduce costs for future retrotransposon primer development and therefore contribute to the popularization of retrotransposon molecular markers.

  16. Assessment of the allergenic potential of foods derived from genetically engineered crop plants.

    PubMed

    Metcalfe, D D; Astwood, J D; Townsend, R; Sampson, H A; Taylor, S L; Fuchs, R L

    1996-01-01

    This article provides a science-based, decision tree approach to assess the allergenic concerns associated with the introduction of gene products into new plant varieties. The assessment focuses on the source from which the transferred gene was derived. Sources fall into three general categories: common allergenic food proteins; less common allergenic foods or other known allergen sources; and sources with no history of allergenicity. Information concerning the amino acid sequence identity to known allergenic proteins, in vitro and/or in vivo immunologic assays, and assessment of key physiochemical properties are included in reaching a recommendation on whether food derived from the genetically modified plant variety should be labeled as to the source of the transferred gene. In the end, a balanced judgement of all the available data generated during allergenicity assessment will assure the safety of foods derived from genetically engineered crops. Using the approaches described here, new plant varieties generated by genetic modification should be introduced into the marketplace with the same confidence that new plant varieties developed by traditional breeding have been introduced for decades.

  17. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    PubMed

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. PMID:23106703

  18. An efficient diethyl ether-based soxhlet protocol to quantify faecal sterols from catchment waters.

    PubMed

    Shah, Vikas Kumar G; Dunstan, Hugh; Taylor, Warren

    2006-03-01

    A study was conducted to evaluate the efficiency and reproducibility of a diethyl ether-based soxhlet extraction procedure for faecal sterols occurring from catchment waters. Water samples spiked with a mixture of faecal sterols were filtered and analytes were extracted using the diethyl ether-based soxhlet method and the Bligh and Dyer chloroform extraction process. For diethyl ether-based soxhlet extraction procedure, solvent extracts were saponified with 100 microL of 10% KOH in methanol (100 degrees C/120 min) and then acidified with 60 microL of 6M HCl. Lipid contents were extracted by ethanol (0.5 mL) from the saponification products. The lipid extracts were then reacted with 100 microL of bis(trimethyl)trifluoroacetamide (BSTFA) containing 1% trimethyl chlorosilane (100 degrees C/60 min) to form the trimethylsilyl (TMS) derivatives. The derivatised extracts were then analyzed by gas chromatography-mass spectrometry. For sterol concentrations ranging from 35 to 175 microg mL(-1), the soxhlet-based extraction process yielded the following recovery efficiencies for coprostanol (101%), epicoprostanol (97%), cholesterol (97%), dihydrocholesterol (97%) and 5alpha-cholestane (111%), whereas the Bligh and Dyer process yielded recoveries of 32, 41, 0, 36 and 51%, respectively. The results suggested that the diethyl ether-based soxhlet extraction method was more efficient and reproducible than the Bligh and Dyer chloroform extraction process for the analyses of trace levels of faecal sterols from water samples. Moreover, it was revealed that the diethyl ether-based soxhlet extraction method used less solvent and was logistically easier.

  19. Inoculation of the nonlegume Capsicum annuum L. with Rhizobium strains. 2. Changes in sterols, triterpenes, fatty acids, and volatile compounds.

    PubMed

    Silva, Luís R; Azevedo, Jessica; Pereira, Maria J; Carro, Lorena; Velazquez, Encarna; Peix, Alvaro; Valentão, Patrícia; Andrade, Paula B

    2014-01-22

    Peppers (Capsicum spp.) are consumed worldwide, imparting flavor, aroma, and color to foods, additionally containing high concentrations of biofunctional compounds. This is the first report about the effect of the inoculation of two Rhizobium strains on sterols, triterpenes, fatty acids, and volatile compounds of leaves and fruits of pepper (Capsicum annuum L.) plants. Generally, inoculation with strain TVP08 led to the major changes, being observed a decrease of sterols and triterpenes and an increase of fatty acids, which are related to higher biomass, growth, and ripening of pepper fruits. The increase of volatile compounds may reflect the elicitation of plant defense after inoculation, since the content on methyl salicylate was significantly increased in inoculated material. The findings suggest that inoculation with Rhizobium strains may be employed to manipulate the content of interesting metabolites in pepper leaves and fruits, increasing potential health benefits and defense abilities of inoculated plants.

  20. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon.

    PubMed

    Hernández, Marcela; Dumont, Marc G; Yuan, Quan; Conrad, Ralf

    2015-03-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with (13)CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with (13)C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the "Spartobacteria" and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  1. Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon

    PubMed Central

    Hernández, Marcela; Yuan, Quan; Conrad, Ralf

    2015-01-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  2. Screening, isolation and optimization of anti–white spot syndrome virus drug derived from terrestrial plants

    PubMed Central

    Ghosh, Upasana; Chakraborty, Somnath; Balasubramanian, Thangavel; Das, Punyabrata

    2014-01-01

    Objective To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various terrestrial plants and to evaluate the efficacy of the same in host–pathogen interaction model. Methods Thirty plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti–WSSV property in Litopenaeus vannamei. The best anti–WSSV plant isolate, TP22C was isolated and further analyzed. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. Results Seven plant isolates exhibited significant survivability in host. The drug TP22C thus formulated showed 86% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of TP22C required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 750 mg/kg body weight/day survived at the rate of 86%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. Conclusions The drug TP22C derived from Momordica charantia is a potent anti-white spot syndrome virus drug. PMID:25183066

  3. Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms.

    PubMed Central

    Wilson, T M

    1993-01-01

    Since 1986, the ability to confer resistance against an otherwise devastating virus by introducing a single pathogen-derived or virus-targeted sequence into the DNA of a potential host plant has had a marked influence on much of the research effort, focus, and short-term objectives of plant virologists throughout the world. The vast literature on coat protein-mediated protection, for example, attests to our fascination for unraveling fundamental molecular mechanism(s), our (vain) search for a unifying hypothesis, our pragmatic interest in commercially exploitable opportunities for crop protection, and our ingenuity in manipulating transgene constructions to broaden their utility and reduce real or perceived environmental risk issues. Other single dominant, pathogen-derived plant resistance genes have recently been discovered from a wide variety of viruses and are operative in an ever-increasing range of plant species. Additional candidates seem limited only by the effort invested in experimentation and by our ingenuity and imagination. This review attempts to consider, in a critical way, the current state of the art, some exceptions, and some proposed rules. The final impression, from all the case evidence considered, is that normal virus replication requires a subtle blend of host- and virus-coded proteins, present in critical relative concentrations and at specific times and places. Any unregulated superimposition of interfering protein or nucleic acid species can, therefore, result in an apparently virus-resistant plant phenotype. PMID:8475051

  4. Response of γδ T cells to plant-derived tannins

    PubMed Central

    Holderness, Jeff; Hedges, Jodi F.; Daughenbaugh, Katie; Kimmel, Emily; Graff, Jill; Freedman, Brett; Jutila, Mark A.

    2008-01-01

    Many pharmaceutical drugs are isolated from plants used in traditional medicines. Through screening plant extracts, both traditional medicines and compound libraries, new pharmaceutical drugs continue to be identified. Currently, two plant-derived agonists for γδ T cells are described. These plant-derived agonists impart innate effector functions upon distinct γδ T cell subsets. Plant tannins represent one class of γδ T cell agonist and preferentially activate the mucosal population. Mucosal γδ T cells function to modulate tissue immune responses and induce epithelium repair. Select tannins, isolated from apple peel, rapidly induce immune gene transcription in γδ T cells, leading to cytokine production and increased responsiveness to secondary signals. Activity of these tannin preparations tracks to the procyanidin fraction, with the procyanidin trimer (C1) having the most robust activity defined to date. The response to the procyanidins is evolutionarily conserved in that responses are seen with human, bovine, and murine γδ T cells. Procyanidin-induced responses described in this review likely account for the expansion of mucosal γδ T cells seen in mice and rats fed soluble extracts of tannins. Procyanidins may represent a novel approach for treatment of tissue damage, chronic infection, and autoimmune therpies. PMID:19166386

  5. The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B

    PubMed Central

    Joung, Young Hee; Park, Se Hee; Moon, Ki-Beom; Jeon, Jae-Heung; Cho, Hye-Sun; Kim, Hyun-Soon

    2016-01-01

    Disease prevention through vaccination is considered to be the greatest contribution to public health over the past century. Every year more than 100 million children are vaccinated with the standard World Health Organization (WHO)-recommended vaccines including hepatitis B (HepB). HepB is the most serious type of liver infection caused by the hepatitis B virus (HBV), however, it can be prevented by currently available recombinant vaccine, which has an excellent record of safety and effectiveness. To date, recombinant vaccines are produced in many systems of bacteria, yeast, insect, and mammalian and plant cells. Among these platforms, the use of plant cells has received considerable attention in terms of intrinsic safety, scalability, and appropriate modification of target proteins. Research groups worldwide have attempted to develop more efficacious plant-derived vaccines for over 30 diseases, most frequently HepB and influenza. More inspiring, approximately 12 plant-made antigens have already been tested in clinical trials, with successful outcomes. In this study, the latest information from the last 10 years on plant-derived antigens, especially hepatitis B surface antigen, approaches are reviewed and breakthroughs regarding the weak points are also discussed. PMID:27754367

  6. [Production of plant-derived natural products in yeast cells - A review].

    PubMed

    Wang, Dong; Dai, Zhubo; Zhang, Xueli

    2016-03-01

    Plant-derived natural products (PNPs) have been widely used in pharmaceutical and nutritional fields. So far, the main method to produce PNPs is extracting them from their original plants, however, there remains lots of problems. With the concept of synthetic biology, construction of yeast cell factories for production of PNPs provides an alternative way. In this review, we will focus on PNPs' market and application, research progress for production of artemisinin, research progress for production of terpenes, alkaloids and polyunsaturated fatty acid (PUFAs) and recent technology development to give a brief introduction of construction of yeast cells for production of PNPs.

  7. Sterol Profile for Natural Juices Authentification by GC-MS

    NASA Astrophysics Data System (ADS)

    Culea, M.

    2007-04-01

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15m×0.25mm, 0.25μm film thickness, in a temperature program from 50°C for 1 min, then ramped at 15°C/min to 300°C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  8. Sterol Profile for Natural Juices Authentification by GC-MS

    SciTech Connect

    Culea, M.

    2007-04-23

    A GC-MS analytical method is described for some natural juices analysis. The fingerprint of sterols was used to characterize the natural juice. A rapid liquid-liquid extraction method was used. The sterols were separated on a Rtx-5MS capillary column, 15mx0.25mm, 0.25{mu}m film thickness, in a temperature program from 50 deg. C for 1 min, then ramped at 15 deg. C/min to 300 deg. C and held for 15 min. Identification of sterols and their patterns were used for juice characterization. The sterol profile is a useful approach for confirming the presence of juices of orange, grapefruit, pineapple and passion fruit in compounded beverages and for detecting of adulteration of fruit juices.

  9. Inhibition of human polymorphonuclear leukocyte chemotaxis by oxygenated sterol compounds

    SciTech Connect

    Gordon, L.I.; Bass, J.; Yachnin, S.

    1980-07-01

    When preincubated with certain oxygenated sterol compounds in lipoprotein-depleted serum (20% (vol/vol)), human polymorphonuclear leukocytes show inhibition of chemotaxis toward the synthetic dipeptide N-formylmethionylphenylalinine without alteration of random movement or loss of cell viability. These effects can occur at sterol concentrations as low as 6.25 ..mu..M and after as little as 5 min of preincubation, but they are increased at higher concentrations and longer preincubation times. The inhibition can be almost completely reversed by preincubation in lipoprotein-replete serum (human AB serum, 20% (vol/vol)) and may be partially corrected by addition of free cholesterol (0.125 mM) to the medium. These effects are unlikely to be due to inhibition of cellular sterol synthesis, competition for chemotaxin membrane binding sites, or deactivation of the leukocytes but they may be a consequence of insertion of the sterol molecule into the leukocyte plasma membranes.

  10. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids.

  11. Sterols in a unicellular relative of the metazoans.

    PubMed

    Kodner, Robin B; Summons, Roger E; Pearson, Ann; King, Nicole; Knoll, Andrew H

    2008-07-22

    Molecular clocks suggest that animals originated well before they first appear as macroscopic fossils, but geologic tests of these hypotheses have been elusive. A rare steroid hydrocarbon, 24-isopropylcholestane, has been hypothesized to be a biomarker for sponges or their immediate ancestors because of its relatively high abundance in pre-Ediacaran to Early Cambrian sedimentary rocks and oils. Biolipid precursors of this sterane have been reported to be prominent in several demosponges. Whether 24-isopropylcholestane can be interpreted as a sponge (and, hence, animal) biomarker, and so provide clues about early metazoan history, depends on an understanding of the distribution of sterol biosynthesis among animals and their protistan relatives. Accordingly, we characterized the sterol profile of the choanoflagellate Monosiga brevicollis, a representative of the unicellular sister group of animals. M. brevicollis does not produce a candidate sterol precursor for 24-isopropylcholestane under our experimental growth conditions. It does, however, produce a number of other sterols, and comparative genomics confirms its biosynthetic potential to produce the full suite of compounds recovered. Consistent with the phylogenetic position of choanoflagellates, the sterol profile and biosynthetic pathway of M. brevicollis display characteristics of both fungal and poriferan sterol biosynthesis. This is an example in which genomic and biochemical information have been used together to investigate the taxonomic specificity of a fossil biomarker.

  12. Fiber, intestinal sterols, and colon cancer.

    PubMed

    Huang, C T; Gopalakrishna, G S; Nichols, B L

    1978-03-01

    It has been postulated that dietary fiber's protective effect against the development of colon cancer, diverticular disease, and atherosclerosis may be due to the adsorption and/or dilution of intestinal sterols such as bile acids and neural sterols and their bacterial metabolites by component(s) of fiber. Dietary fiber is made up of four major components-cellulose, hemicellulose, lignin, and pectin. There is evidence that hemicellulose and pectin may induce an increase in fecal bile acid excretion in man which may be accompanied by a decrease in serum cholesterol. Natural fibers, such as rolled oats, alfalfa, guar gum, and Bengal gram have been shown to have hypocholesterolemic properties of alfalfa, wheat straw, and some other fibers found considerable amounts of bile acids in vitro. On the other hand, wheat bran, oat hulls, and all the synthetic fibers tested bound only negligible amounts of bile acids under the same conditions. Vegetarians in the United States have lower plasma lipids and different plasma lipoprotein patterns than those of comparable control populations on regular mixed diet. They also have smaller daily fractional turnover rates of cholic acid and deoxycholic acid pool size. In addition, populations on a mixed Western diet, where the rate of large bowel cancer is high (North American, English, Scottish, etc.) degraded and excreted cholesterol and bile acid metabolites to a greater degree than populations where the rate of colon cancer is comparatively low (Ugandan, Japanese, etc). It cannot be denied that the fiber theory linking fiber deficiency with the development of colon cancer and other diseases, is simple, attractive and appears to be firmly based in common sense. When subjected to research studies, however, the situation appears much more complex than expected. Although some progress is being made, the data are often contradictory and confusing, probably due to lack of adequate documentation of fiber intake (e.g., use of dietary fiber

  13. Citrus genus plants contain N-methylated tryptamine derivatives and their 5-hydroxylated forms.

    PubMed

    Servillo, Luigi; Giovane, Alfonso; Balestrieri, Maria Luisa; Casale, Rosario; Cautela, Domenico; Castaldo, Domenico

    2013-05-29

    The occurrence and distribution in Citrus genus plants of N-methylated derivatives of tryptamine and their 5-hydroxylated forms are reported. Tryptamine, N-methyltryptamine, N,N-dimethyltryptamine, N,N,N-trimethyltryptamine, 5-hydroxytryptamine (serotonin), 5-hydroxy-N-methyltryptamine, 5-hydroxy-N,N-dimethyltryptamine (bufotenine), and 5-hydroxy-N,N,N-trimethyltryptamine (bufotenidine) were quantitated by LC-ESI-MS/MS. Leaves of all citrus plants examined contained N,N,N-trimethyltryptamine, a compound that we first discovered in the bergamot plant. Interestingly, we also found out that all plants examined contained 5-hydroxy-N,N-dimethyltryptamine and 5-hydroxy-N,N,N-trimethyltryptamine, compounds never described so far in the Citrus genus. As N,N,N-trimethyltryptamine and 5-hydroxy-N,N,N-trimethyltryptamine possess nicotine-like activity by exerting their action on acetylcholine receptors, it is conceivable that both represent the arrival point of a biosynthetic pathway aimed to provide Citrus plants with chemical defense against aggressors. This hypothesis is supported by our finding that leaves and seeds, which are more frequently attacked by biotic agents, are the parts of the plant where the highest levels of those compounds were found. PMID:23682903

  14. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    EPA Science Inventory

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  15. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; Zhang, Changkuan; He, Zhenli; Yang, Xiaoe

    2016-01-01

    The objective of this study was to investigate the relationship between Cd(2+)/NH4(+) sorption and physicochemical properties of biochars produced from different wetland plants. Biochars from six species of wetland plants (i.e., Canna indica, Pennisetum purpureum Schum, Thalia dealbata, Zizania caduciflora, Phragmites australis and Vetiveria zizanioides) were obtained at 500°C and characterized, and their sorption for ammonium and cadmium was determined. There were significant differences in elemental composition, functional groups and specific surface area among the biochars derived from different wetland plant species. Sorption of ammonium and cadmium on the biochars could be described by a pseudo second order kinetic model, and the simple Langmuir model fits the isotherm data better than the Freundlich or Temkin model. The C. indica derived biochar had the largest sorption capacity for NH4(+) and Cd(2+), with a maximum sorption of 13.35 and 125.8mgg(-1), respectively. P. purpureum Schum derived biochar had a similar maximum sorption (119.3mgg(-1)) for Cd(2+). Ammonium sorption was mainly controlled by cation exchange, surface complexation with oxygen-containing functional groups and the formation of magnesium ammonium phosphate compounds, whereas for Cd(2+) sorption, the formation of cadmium phosphate precipitates, cation exchange and binding to oxygen-containing groups were the major possible mechanisms. In addition, the sorption of ammonium and cadmium was not affected by surface area and microporosity of the biochars. PMID:26386447

  16. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks.

    PubMed

    Sabalza, Maite; Christou, Paul; Capell, Teresa

    2014-12-01

    Molecular pharming is a cost-effective platform for the production of recombinant proteins in plants. Although the biopharmaceutical industry still relies on a small number of standardized fermentation-based technologies for the production of recombinant proteins there is now a greater awareness of the advantages of molecular pharming particularly in niche markets. Here we discuss some of the technical, economic and regulatory barriers that constrain the clinical development and commercialization of plant-derived pharmaceutical proteins. We also discuss strategies to increase productivity and product quality/homogeneity. The advantages of whole plants should be welcomed by the industry because this will help to reduce the cost of goods and therefore expand the biopharmaceutical market into untapped sectors.

  17. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils.

    PubMed

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-09

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  18. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks.

    PubMed

    Sabalza, Maite; Christou, Paul; Capell, Teresa

    2014-12-01

    Molecular pharming is a cost-effective platform for the production of recombinant proteins in plants. Although the biopharmaceutical industry still relies on a small number of standardized fermentation-based technologies for the production of recombinant proteins there is now a greater awareness of the advantages of molecular pharming particularly in niche markets. Here we discuss some of the technical, economic and regulatory barriers that constrain the clinical development and commercialization of plant-derived pharmaceutical proteins. We also discuss strategies to increase productivity and product quality/homogeneity. The advantages of whole plants should be welcomed by the industry because this will help to reduce the cost of goods and therefore expand the biopharmaceutical market into untapped sectors. PMID:25048244

  19. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils.

    PubMed

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming. PMID:27157964

  20. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    PubMed Central

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming. PMID:27157964

  1. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  2. Precise marker excision system using an animal-derived piggyBac transposon in plants.

    PubMed

    Nishizawa-Yokoi, Ayako; Endo, Masaki; Osakabe, Keishi; Saika, Hiroaki; Toki, Seiichi

    2014-02-01

    Accurate and effective positive marker excision is indispensable for the introduction of desired mutations into the plant genome via gene targeting (GT) using a positive/negative counter selection system. In mammals, the moth-derived piggyBac transposon system has been exploited successfully to eliminate a selectable marker from a GT locus without leaving a footprint. Here, we present evidence that the piggyBac transposon also functions in plant cells. To demonstrate the use of the piggyBac transposon for effective marker excision in plants, we designed a transposition assay system that allows the piggyBac transposition to be visualized as emerald luciferase (Eluc) luminescence in rice cells. The Eluc signal derived from piggyBac excision was observed in hyperactive piggyBac transposase-expressing rice calli. Polymerase chain reaction, Southern blot analyses and sequencing revealed the efficient and precise transposition of piggyBac in these calli. Furthermore, we have demonstrated the excision of a selection marker from a reporter locus in T0 plants without concomitant re-integration of the transposon and at a high frequency (44.0% of excision events), even in the absence of negative selection. PMID:24164672

  3. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants*

    PubMed Central

    Zeng, Zheng; Zhang, Song-da; Li, Ting-qiang; Zhao, Feng-liang; He, Zhen-li; Zhao, He-ping; Yang, Xiao-e; Wang, Hai-long; Zhao, Jing; Rafiq, Muhammad Tariq

    2013-01-01

    The study on biochar derived from plant biomass for environmental applications is attracting more and more attention. Twelve sets of biochar were obtained by treating four phytoremediation plants, Salix rosthornii Seemen, Thalia dealbata, Vetiveria zizanioides, and Phragmites sp., sequentially through pyrolysis at 500 °C in a N2 environment, and under different temperatures (500, 600, and 700 °C) in a CO2 environment. The cation exchange capacity and specific surface area of biochar varied with both plant species and pyrolysis temperature. The magnesium (Mg) content of biochar derived from T. dealbata (TC) was obviously higher than that of the other plant biochars. This biochar also had the highest sorption capacity for phosphate and ammonium. In terms of biomass yields, adsorption capacity, and energy cost, T. dealbata biochar produced at 600 °C (TC600) is the most promising sorbent for removing contaminants (N and P) from aqueous solution. Therefore, T. dealbata appears to be the best candidate for phytoremediation application as its biomass can make a good biochar for environmental cleaning. PMID:24302715

  4. Precise marker excision system using an animal-derived piggyBac transposon in plants

    PubMed Central

    Nishizawa-Yokoi, Ayako; Endo, Masaki; Osakabe, Keishi; Saika, Hiroaki; Toki, Seiichi

    2014-01-01

    Accurate and effective positive marker excision is indispensable for the introduction of desired mutations into the plant genome via gene targeting (GT) using a positive/negative counter selection system. In mammals, the moth-derived piggyBac transposon system has been exploited successfully to eliminate a selectable marker from a GT locus without leaving a footprint. Here, we present evidence that the piggyBac transposon also functions in plant cells. To demonstrate the use of the piggyBac transposon for effective marker excision in plants, we designed a transposition assay system that allows the piggyBac transposition to be visualized as emerald luciferase (Eluc) luminescence in rice cells. The Eluc signal derived from piggyBac excision was observed in hyperactive piggyBac transposase-expressing rice calli. Polymerase chain reaction, Southern blot analyses and sequencing revealed the efficient and precise transposition of piggyBac in these calli. Furthermore, we have demonstrated the excision of a selection marker from a reporter locus in T0 plants without concomitant re-integration of the transposon and at a high frequency (44.0% of excision events), even in the absence of negative selection. PMID:24164672

  5. A Plant-Derived Multi-HIV Antigen Induces Broad Immune Responses in Orally Immunized Mice.

    PubMed

    Rubio-Infante, Néstor; Govea-Alonso, Dania O; Romero-Maldonado, Andrea; García-Hernández, Ana Lilia; Ilhuicatzi-Alvarado, Damaris; Salazar-González, Jorge A; Korban, Schuyler S; Rosales-Mendoza, Sergio; Moreno-Fierros, Leticia

    2015-07-01

    Multi-HIV, a multiepitopic protein derived from both gp120 and gp41 envelope proteins of the human immunodeficiency virus (HIV), has been proposed as a vaccine prototype capable of inducing broad immune responses, as it carries various B and T cell epitopes from several HIV strains. In this study, the immunogenic properties of a Multi-HIV expressed in tobacco chloroplasts are evaluated in test mice. BALB/c mice orally immunized with tobacco-derived Multi-HIV have elicited antibody responses, including both the V3 loop of gp120 and the ELDKWA epitope of gp41. Based on splenocyte proliferation assays, stimulation with epitopes of the C4, V3 domain of gp120, and the ELDKWA domain of gp41 elicits positive cellular responses. Furthermore, specific interferon gamma production is observed in both CD4+ and CD8+ T cells stimulated with HIV peptides. These results demonstrate that plant-derived Multi-HIV induces T helper-specific responses. Altogether, these findings illustrate the immunogenic potential of plant-derived Multi-HIV in an oral immunization scheme. The potential of this low-cost immunization approach and its implications on HIV/AIDS vaccine development are discussed. PMID:25779638

  6. Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives.

    PubMed

    Yoshimoto, Makoto; Kurata-Azuma, Rie; Fujii, Makoto; Hou, De-Xing; Ikeda, Kohji; Yoshidome, Tomohisa; Osako, Miho

    2005-09-01

    The effect of a koji (Aspergillus awamori mut.) extract on the caffeoylquinic acid derivatives purified from sweetpotato (Ipomoea batatas L.) leaves was examined to develop the mass production of caffeic acid. A koji extract hydrolyzed the caffeoylquinic acid derivatives, chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid and 3,4,5-tri-O-caffeoylquinic acid, to caffeic acid. Furthermore, the koji extract also converted the major polyphenolic components from sweetpotato, burdock (Arctium lappa L.), and mugwort (Artemisia indica var. maximowiczii) leaves to caffeic acid. These results suggest that the production of caffeic acid from plant resources containing caffeoylquinic acid derivatives is possible.

  7. A review on plant-derived natural products and their analogs with anti-tumor activity

    PubMed Central

    Dholwani, K.K.; Saluja, A.K.; Gupta, A.R.; Shah, D.R.

    2008-01-01

    Traditional medicines, including Chinese herbal formulations, can serve as the source of potential new drugs, and initial research focuses on the isolation of bioactive lead compound(s). The development of novel plant-derived natural products and their analogs for anticancer activity details efforts to synthesize new derivatives based on bioactivity- and mechanism of action-directed isolation and characterization coupled with rational drug design - based modification. Also, the anticancer activity of certain natural products and their analogs can be enhanced by synthesizing new derivatives based on active pharmacophore models; drug resistance and solubility and metabolic limitations can be overcome by appropriate molecular modifications; and new biological properties or mechanisms of action can be added by combining other functional groups or molecules. Preclinical screening for in vitro human cell line panels and selected in vivo xenograft testing then identifies the most promising drug development targets. PMID:21279166

  8. A mixture of peptides and sugars derived from plant cell walls increases plant defense responses to stress and attenuates ageing-associated molecular changes in cultured skin cells.

    PubMed

    Apone, Fabio; Tito, Annalisa; Carola, Antonietta; Arciello, Stefania; Tortora, Assunta; Filippini, Lucio; Monoli, Irene; Cucchiara, Mirna; Gibertoni, Simone; Chrispeels, Maarten J; Colucci, Gabriella

    2010-02-15

    Small peptides and aminoacid derivatives have been extensively studied for their effect of inducing plant defense responses, and thus increasing plant tolerance to a wide range of abiotic stresses. Similarly to plants, these compounds can activate different signaling pathways in mammalian skin cells as well, leading to the up-regulation of anti-aging specific genes. This suggests the existence of analogous defense response mechanisms, well conserved both in plants and animal cells. In this article, we describe the preparation of a new mixture of peptides and sugars derived from the chemical and enzymatic digestion of plant cell wall glycoproteins. We investigate the multiple roles of this product as potential "biostimulator" to protect plants from abiotic stresses, and also as potential cosmeceutical. In particular, the molecular effects of the peptide/sugar mixture of inducing plant defense responsive genes and protecting cultured skin cells from oxidative burst damages were deeply evaluated.

  9. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals

    PubMed Central

    Klessig, Daniel F.; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  10. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals.

    PubMed

    Klessig, Daniel F; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  11. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models.

    PubMed

    Venuti, Aldo; Curzio, Gianfranca; Mariani, Luciano; Paolini, Francesca

    2015-10-01

    Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients.

  12. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis.

    PubMed

    Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa

    2014-01-01

    The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039

  13. Immunotherapy of HPV-associated cancer: DNA/plant-derived vaccines and new orthotopic mouse models.

    PubMed

    Venuti, Aldo; Curzio, Gianfranca; Mariani, Luciano; Paolini, Francesca

    2015-10-01

    Under the optimistic assumption of high-prophylactic HPV vaccine coverage, a significant reduction of cancer incidence can only be expected after decades. Thus, immune therapeutic strategies are needed for persistently infected individuals who do not benefit from the prophylactic vaccines. However, the therapeutic strategies inducing immunity to the E6 and/or E7 oncoprotein of HPV16 are more effective for curing HPV-expressing tumours in animal models than for treating human cancers. New strategies/technologies have been developed to improve these therapeutic vaccines. Our studies focussed on preparing therapeutic vaccines with low-cost technologies by DNA preparation fused to either plant-virus or plant-toxin genes, such as saporin, and by plant-produced antigens. In particular, plant-derived antigens possess an intrinsic adjuvant activity that makes these preparations especially attractive for future development. Additionally, discrepancy in vaccine effectiveness between animals and humans may be due to non-orthotopic localization of animal models. Orthotopic transplantation leads to tumours giving a more accurate representation of the parent tumour. Since HPV can cause cancer in two main localizations, anogenital and oropharynx area, we developed two orthotopic tumour mouse models in these two sites. Both models are bioluminescent in order to follow up the tumour growth by imaging and are induced by cell injection without the need to intervene surgically. These models were utilized for immunotherapies with genetic or plant-derived therapeutic vaccines. In particular, the head/neck orthotopic model appears to be very promising for studies combining chemo-radio-immune therapy that seems to be very effective in patients. PMID:26138695

  14. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis

    PubMed Central

    Colla, Giuseppe; Rouphael, Youssef; Canaguier, Renaud; Svecova, Eva; Cardarelli, Mariateresa

    2014-01-01

    The aim of this study was to evaluate the biostimulant action (hormone like activity, nitrogen uptake, and growth stimulation) of a plant-derived protein hydrolysate by means of two laboratory bioassays: a corn (Zea mays L.) coleoptile elongation rate test (Experiment 1), a rooting test on tomato cuttings (Experiment 2); and two greenhouse experiments: a dwarf pea (Pisum sativum L.) growth test (Experiment 3), and a tomato (Solanum lycopersicum L.) nitrogen uptake trial (Experiment 4). Protein hydrolysate treatments of corn caused an increase in coleoptile elongation rate when compared to the control, in a dose-dependent fashion, with no significant differences between the concentrations 0.75, 1.5, and 3.0 ml/L, and inodole-3-acetic acid treatment. The auxin-like effect of the protein hydrolysate on corn has been also observed in the rooting experiment of tomato cuttings. The shoot, root dry weight, root length, and root area were significantly higher by 21, 35, 24, and 26%, respectively, in tomato treated plants with the protein hydrolysate at 6 ml/L than untreated plants. In Experiment 3, the application of the protein hydrolysate at all doses (0.375, 0.75, 1.5, and 3.0 ml/L) significantly increased the shoot length of the gibberellin-deficient dwarf pea plants by an average value of 33% in comparison with the control treatment. Increasing the concentration of the protein hydrolysate from 0 to 10 ml/L increased the total dry biomass, SPAD index, and leaf nitrogen content by 20.5, 15, and 21.5%, respectively. Thus the application of plant-derived protein hydrolysate containing amino acids and small peptides elicited a hormone-like activity, enhanced nitrogen uptake and consequently crop performances. PMID:25250039

  15. Towards squalamine mimics: synthesis and antibacterial activities of head-to-tail dimeric sterol-polyamine conjugates.

    PubMed

    Chen, Wen-Hua; Wennersten, Christine; Moellering, Robert C; Regen, Steven L

    2013-03-01

    Four dimeric sterol-polyamine conjugates have been synthesized from the homo- and hetero-connection of monomeric sterol-polyamine analogs in a head-to-tail manner. These dimeric conjugates show strong antibacterial activity against a broad spectrum of Gram-positive bacteria, whereas their corresponding activities against Gram-negative bacteria are relatively moderate. Though no significant difference was observed in the activities of these conjugates, cholic acid-containing dimeric conjugates generally exhibit higher activities than the corresponding deoxycholic acid-derived analogs. This is in contrast to the finding that a monomeric deoxycholic acid-spermine conjugate was more active than the corresponding cholic acid-derived analog. PMID:23495155

  16. A Plant-Derived Morphinan as a Novel Lead Compound Active against Malaria Liver Stages

    PubMed Central

    Carraz, Maëlle; Jossang, Akino; Franetich, Jean-François; Siau, Anthony; Ciceron, Liliane; Hannoun, Laurent; Sauerwein, Robert; Frappier, François; Rasoanaivo, Philippe; Snounou, Georges; Mazier, Dominique

    2006-01-01

    Background The global spread of multidrug–resistant malaria parasites has led to an urgent need for new chemotherapeutic agents. Drug discovery is primarily directed to the asexual blood stages, and few drugs that are effective against the obligatory liver stages, from which the pathogenic blood infection is initiated, have become available since primaquine was deployed in the 1950s. Methods and Findings Using bioassay-guided fractionation based on the parasite's hepatic stage, we have isolated a novel morphinan alkaloid, tazopsine, from a plant traditionally used against malaria in Madagascar. This compound and readily obtained semisynthetic derivatives were tested for inhibitory activity against liver stage development in vitro (P. falciparum and P. yoelii) and in vivo (P. yoelii). Tazopsine fully inhibited the development of P. yoelii (50% inhibitory concentration [IC50] 3.1 μM, therapeutic index [TI] 14) and P. falciparum (IC50 4.2 μM, TI 7) hepatic parasites in cultured primary hepatocytes, with inhibition being most pronounced during the early developmental stages. One derivative, N-cyclopentyl-tazopsine (NCP-tazopsine), with similar inhibitory activity was selected for its lower toxicity (IC50 3.3 μM, TI 46, and IC50 42.4 μM, TI 60, on P. yoelii and P. falciparum hepatic stages in vitro, respectively). Oral administration of NCP-tazopsine completely protected mice from a sporozoite challenge. Unlike the parent molecule, the derivative was uniquely active against Plasmodium hepatic stages. Conclusions A readily obtained semisynthetic derivative of a plant-derived compound, tazopsine, has been shown to be specifically active against the liver stage, but inactive against the blood forms of the malaria parasite. This unique specificity in an antimalarial drug severely restricts the pressure for the selection of drug resistance to a parasite stage limited both in numbers and duration, thus allowing researchers to envisage the incorporation of a true causal

  17. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

    PubMed

    Tinazzi, Elisa; Merlin, Matilde; Bason, Caterina; Beri, Ruggero; Zampieri, Roberta; Lico, Chiara; Bartoloni, Elena; Puccetti, Antonio; Lunardi, Claudio; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases. PMID:26648961

  18. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome

    PubMed Central

    Tinazzi, Elisa; Merlin, Matilde; Bason, Caterina; Beri, Ruggero; Zampieri, Roberta; Lico, Chiara; Bartoloni, Elena; Puccetti, Antonio; Lunardi, Claudio; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren’s syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases. PMID:26648961

  19. Plant-Derived Chimeric Virus Particles for the Diagnosis of Primary Sjögren Syndrome.

    PubMed

    Tinazzi, Elisa; Merlin, Matilde; Bason, Caterina; Beri, Ruggero; Zampieri, Roberta; Lico, Chiara; Bartoloni, Elena; Puccetti, Antonio; Lunardi, Claudio; Pezzotti, Mario; Avesani, Linda

    2015-01-01

    Plants are ideal for the production of protein-based nanomaterials because they synthesize and assemble complex multimeric proteins that cannot be expressed efficiently using other platforms. Plant viruses can be thought of as self-replicating proteinaceous nanomaterials generally stable and easily produced in high titers. We used Potato virus X (PVX), chimeric virus particles, and Cowpea mosaic virus, empty virus-like particles to display a linear peptide (lipo) derived from human lipocalin, which is immunodominant in Sjögren's syndrome (SjS) and is thus recognized by autoantibodies in SjS patient serum. These virus-derived nanoparticles were thus used to develop a diagnostic assay for SjS based on a direct enzyme linked immunosorbent assay format. We found that PVX-lipo formulations were more sensitive than the chemically synthesized immunodominant peptide and equally specific when used to distinguish between healthy individuals and SjS patients. Our novel assay therefore allows the diagnosis of SjS using a simple, low-invasive serum test, contrasting with the invasive labial biopsy required for current tests. Our results demonstrate that nanomaterials based on plant viruses can be used as diagnostic reagents for SjS, and could also be developed for the diagnosis of other diseases.

  20. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    SciTech Connect

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  1. Acylspermidine derivatives isolated from a soft coral, Sinularia sp, inhibit plant vacuolar H(+)-pyrophosphatase.

    PubMed

    Hirono, Megumi; Ojika, Makoto; Mimura, Hisatoshi; Nakanishi, Yoichi; Maeshima, Masayoshi

    2003-06-01

    H(+)-pyrophosphatase (H(+)-PPase), which pumps H(+) across membranes coupled with PP(i) hydrolysis, is found in most plants, and some parasitic protists, eubacteria and archaebacteria. We assayed a number of extracts derived from 145 marine invertebrates as to their inhibitory effect on plant vacuolar H(+)-PPase. Acylspermidine derivatives [RCONH(CH(2))(3)N(CH(3))(CH(2))(4)N(CH(3))(2)] from a soft coral (Sinularia sp.) inhibited the PPi-hydrolysis activity of purified H(+)-PPase and the PP(i)-dependent H(+) pump activity (half inhibition concentration, 1 micro M) of vacuolar membranes of mung bean. The apparent K(i) was determined to be 0.9 micro M. Acylspermidines did not affect the activity of vacuolar H(+)-ATPase, plasma membrane H(+)-ATPase, mitochondrial ATPase or cytosolic PPase. Acylspermidines inhibited the acidification of vacuoles in protoplasts, as found on monitoring by the acridine orange fluorescent method. These results indicate that acylspermidine derivatives represent new inhibitors of H(+)-PPase with relatively high specificity.

  2. The Arabidopsis dwf7/ste1 mutant is defective in the delta7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis.

    PubMed Central

    Choe, S; Noguchi, T; Fujioka, S; Takatsuto, S; Tissier, C P; Gregory, B D; Ross, A S; Tanaka, A; Yoshida, S; Tax, F E; Feldmann, K A

    1999-01-01

    Lesions in brassinosteroid (BR) biosynthetic genes result in characteristic dwarf phenotypes in plants. Understanding the regulation of BR biosynthesis demands continued isolation and characterization of mutants corresponding to the genes involved in BR biosynthesis. Here, we present analysis of a novel BR biosynthetic locus, dwarf7 (dwf7). Feeding studies with BR biosynthetic intermediates and analysis of endogenous levels of BR and sterol biosynthetic intermediates indicate that the defective step in dwf7-1 resides before the production of 24-methylenecholesterol in the sterol biosynthetic pathway. Furthermore, results from feeding studies with 13C-labeled mevalonic acid and compactin show that the defective step is specifically the Delta7 sterol C-5 desaturation, suggesting that dwf7 is an allele of the previously cloned STEROL1 (STE1) gene. Sequencing of the STE1 locus in two dwf7 mutants revealed premature stop codons in the first (dwf7-2) and the third (dwf7-1) exons. Thus, the reduction of BRs in dwf7 is due to a shortage of substrate sterols and is the direct cause of the dwarf phenotype in dwf7. PMID:9927639

  3. Phenol content, antioxidant capacity and antibacterial activity of methanolic extracts derived from four Jordanian medicinal plants.

    PubMed

    Irshaid, Fawzi I; Tarawneh, Khalid A; Jacob, Jacob H; Alshdefat, Aisha M

    2014-02-01

    This study was performed to assess the antioxidant and antibacterial properties of methanolic extracts derived from aerial parts of four Jordanian medicinal plants (Artemisia sieberi, Peganum harmala, Rosmarinus officinalis (Green-Flowered) and Sarcopterium spinosium). The possible relationship between these biological properties and the total phenolic concentrations of these extracts were also be determined. The antioxidant capacity and total phenolic concentrations were assessed by the ABTS method and Folin-Ciocalteu method, respectively. The amount of the extract required to scavenge 50% of ABTS (IC50) was also measured. Broth dilution and disc diffusion assays were performed to measure the antibacterial activity of these extracts against available bacterial strains. Variations were observed among the examined plants in antioxidant and antibacterial activities as well as in their phenol contents. According to ABTS assay and IC50 value, the highest free radical scavenging potential was found in Sarcopterium spinosium, followed by Rosmarinus officinalis, Peganum harmala and Artemisia sieberi, respectively. Similarly, the results of antibacterial assays showed that Sarcopterium spinosium exhibited the highest antibacterial activity against all tested bacterial strains as compared to Rosmarinus officinalis, Peganum harmala and Artemisia sieberi. Moreover, Sarcopterium spinosium contained the highest amount of phenolic compounds followed by, Rosmarinus officinalis, Artemisia sieberi and Peganum harmala, respectively. In conclusion, these plants are not only interesting sources for antimicrobial agents but also have a considerable amount of antioxidants. In addition, these findings revealed that the antioxidant capacity and antibacterial activity of these plant extracts do not necessary be attributed to their total phenolic concentrations.

  4. Plant regeneration from cell suspension-derived protoplasts of Saintpaulia ionantha Wendl.

    PubMed

    Hoshino, Y; Nakano, M; Mii, M

    1995-03-01

    Friable calli were induced on leaf segments of Saintpaulia ionantha Wendl. on B5 medium containing 1 mg l(-1) 2,4-D and 2 g l(-1) casein hydrolysate. Cell suspension cultures were readily established from these friable calli and protoplasts could be isolated from the cells with yields of 1-3×10(7)/g f. wt.. By culturing in 0.1 % gellan gum-solidified B5 medium supplemented with 1 mg l(-1) 2,4-D and 0.1 M each of sucrose and mannitol at a density of 1×10(5)/ml, the protoplasts divided within 6 days and formed macro-colonies after 2 months of culture. Shoot regeneration from protoplast-derived calli was obtained by sequential treatment of the calli with plant growth regulators: initially with 1 mg l(-1) each of NAA and BA for 2 months followed by 0.01 mg l(-1) NAA and 5 mg l(-1) BA for 4 months. Regenerated plants were established after rooting of the shoots on half-strength MS medium, and successfully transferred to the greenhouse. The regenerated plants grew into flowering stage and showed the same phenotype as the parent plant. PMID:24185329

  5. The protein quality control system manages plant defence compound synthesis.

    PubMed

    Pollier, Jacob; Moses, Tessa; González-Guzmán, Miguel; De Geyter, Nathan; Lippens, Saskia; Vanden Bossche, Robin; Marhavý, Peter; Kremer, Anna; Morreel, Kris; Guérin, Christopher J; Tava, Aldo; Oleszek, Wieslaw; Thevelein, Johan M; Campos, Narciso; Goormachtig, Sofie; Goossens, Alain

    2013-12-01

    Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondary metabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Here we show that, in the legume Medicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD) quality control system to manage the production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membrane-anchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulation is prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.

  6. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes

    PubMed Central

    Oh, Yoon Sin

    2015-01-01

    Diabetes is a global health problem and a national economic burden. Although several antidiabetic drugs are available, the need for novel therapeutic agents with improved efficacy and few side effects remains. Drugs derived from natural compounds are more attractive than synthetic drugs because of their diversity and minimal side effects. This review summarizes the most relevant effects of various plant-derived natural compounds on the functionality of pancreatic beta cells. Published data suggest that natural compounds directly enhance insulin secretion, prevent pancreatic beta cell apoptosis, and modulate pancreatic beta cell differentiation and proliferation. It is essential to continuously investigate natural compounds as sources of novel pharmaceuticals. Therefore, more studies into these compounds' mechanisms of action are warranted for their development as potential anti-diabetics. PMID:26587047

  7. Safety assessment of animal- and plant-derived amino acids as used in cosmetics.

    PubMed

    Burnett, Christina; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of animal- and plant-derived amino acid mixtures, which function as skin and hair conditioning agents. The safety of α-amino acids as direct food additives has been well established, based on extensive research through acute and chronic dietary exposures and the Panel previously has reviewed the safety of individual α-amino acids in cosmetics. The Panel focused its review on dermal irritation and sensitization data relevant to the use of these ingredients in topical cosmetics. The Panel concluded that these 21 ingredients are safe in the present practices of use and concentration as used in cosmetics.

  8. Anti-inflammatory Inositol Derivatives from the Whole Plant of Inula cappa.

    PubMed

    Wu, Jiewei; Tang, Chunping; Yao, Sheng; Zhang, Lei; Ke, Changqiang; Feng, Linyin; Lin, Ge; Ye, Yang

    2015-10-23

    Twelve new inositol derivatives, classified into myoinositol (1-6) and l-inositol (10-15) types, along with five known analogues were isolated from the whole plant of Inula cappa. The structures of the new compounds were established by extensive analysis of mass spectrometric and 1D and 2D NMR spectroscopic data. All the tested compounds showed anti-inflammatory activities against the production of NO in RAW264.7 macrophages stimulated by lipopolysaccharide, with IC50 values ranging from 7 to 23 μM.

  9. Intracellular Reprogramming of Expression, Glycosylation, and Function of a Plant-Derived Antiviral Therapeutic Monoclonal Antibody

    PubMed Central

    Lee, Kyung-Jin; Kim, Young-Kwan; So, Yang-Kang; Ryu, Jae-Sung; Oh, Seung-Han; Han, Yeon-Soo; Ko, Kinarm; Choo, Young-Kug; Park, Sung-Joo; Brodzik, Robert; Lee, Kyoung-Ki; Oh, Doo-Byoung; Hwang, Kyung-A; Koprowski, Hilary; Lee, Yong Seong; Ko, Kisung

    2013-01-01

    Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAbPs), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAbP SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAbP SO57 with KDEL (mAbPK) were significantly higher than those of mAbP SO57 without KDEL (mAbP) regardless of the transcription level. The Fc domains of both purified mAbP and mAbPK and hybridoma-derived mAb (mAbH) had similar levels of binding activity to the FcγRI receptor (CD64). The mAbPK had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAbP had mainly Golgi type glycans (96.8%) similar to those seen with mAbH. Confocal analysis showed that the mAbPK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAbP with KDEL in the ER. Both mAbP and mAbPK disappeared with similar trends to mAbH in BALB/c mice. In addition, mAbPK was as effective as mAbH at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAbP by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant. PMID:23967055

  10. Discovery and resupply of pharmacologically active plant-derived natural products: A review.

    PubMed

    Atanasov, Atanas G; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H; Rollinger, Judith M; Schuster, Daniela; Breuss, Johannes M; Bochkov, Valery; Mihovilovic, Marko D; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M; Stuppner, Hermann

    2015-12-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future.

  11. Discovery and resupply of pharmacologically active plant-derived natural products: A review

    PubMed Central

    Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H.; Rollinger, Judith M.; Schuster, Daniela; Breuss, Johannes M.; Bochkov, Valery; Mihovilovic, Marko D.; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M.; Stuppner, Hermann

    2016-01-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a “screening hit” through a “drug lead” to a “marketed drug” is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. PMID:26281720

  12. Discovery and resupply of pharmacologically active plant-derived natural products: A review.

    PubMed

    Atanasov, Atanas G; Waltenberger, Birgit; Pferschy-Wenzig, Eva-Maria; Linder, Thomas; Wawrosch, Christoph; Uhrin, Pavel; Temml, Veronika; Wang, Limei; Schwaiger, Stefan; Heiss, Elke H; Rollinger, Judith M; Schuster, Daniela; Breuss, Johannes M; Bochkov, Valery; Mihovilovic, Marko D; Kopp, Brigitte; Bauer, Rudolf; Dirsch, Verena M; Stuppner, Hermann

    2015-12-01

    Medicinal plants have historically proven their value as a source of molecules with therapeutic potential, and nowadays still represent an important pool for the identification of novel drug leads. In the past decades, pharmaceutical industry focused mainly on libraries of synthetic compounds as drug discovery source. They are comparably easy to produce and resupply, and demonstrate good compatibility with established high throughput screening (HTS) platforms. However, at the same time there has been a declining trend in the number of new drugs reaching the market, raising renewed scientific interest in drug discovery from natural sources, despite of its known challenges. In this survey, a brief outline of historical development is provided together with a comprehensive overview of used approaches and recent developments relevant to plant-derived natural product drug discovery. Associated challenges and major strengths of natural product-based drug discovery are critically discussed. A snapshot of the advanced plant-derived natural products that are currently in actively recruiting clinical trials is also presented. Importantly, the transition of a natural compound from a "screening hit" through a "drug lead" to a "marketed drug" is associated with increasingly challenging demands for compound amount, which often cannot be met by re-isolation from the respective plant sources. In this regard, existing alternatives for resupply are also discussed, including different biotechnology approaches and total organic synthesis. While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs also in the future. PMID:26281720

  13. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  14. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352, and 355. (1) Appendix-III...) Personal and household effects as provided in § 23.15. (6) Urine, feces, and synthetically derived DNA...

  15. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in part 14 of this subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352..., and synthetically derived DNA as provided in § 23.16. (8) Certain wildlife hybrids as provided in §...

  16. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in part 14 of this subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352..., and synthetically derived DNA as provided in § 23.16. (8) Certain wildlife hybrids as provided in §...

  17. 50 CFR 23.92 - Are any wildlife or plants, and their parts, products, or derivatives, exempt?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in part 14 of this subchapter and for plants in part 24 of this subchapter and 7 CFR parts 319, 352..., and synthetically derived DNA as provided in § 23.16. (8) Certain wildlife hybrids as provided in §...

  18. Comparison of single cell culture derived Solanum tuberosum L. plants and a model for their application in breeding programs.

    PubMed

    Wenzel, G; Schieder, O; Przewozny, T; Sopory, S K; Melchers, G

    1979-03-01

    The techniques of microspore and protoplast regeneration starting from dihaploid Solanum tuberosum plants has been improved to such an extent that the production of more than 2000 microspore derived A1 plant lines and of several hundred protoplast derived plantlets has become possible. Further, from the dihaploid Solanum species S. phureja the regeneration of microspores to plants, and from the species S. infundibuliforme, S. sparsipilum and S. tarijense the regeneration of protoplasts to calluses, has been achieved. The plants descending from the two single cell culture systems are compared with reference to phenotypic markers and economic qualities. Some principles characteristic for either microspore or protoplast derived plants are examined and their significance is discussed. The results are compiled into an extended analytical synthetic breeding scheme based on a stepwise reduction of the autotetraploid to the monohaploid level and a subsequent controlled combination to a new synthetic completely heterozygous tetraploid potato.

  19. Characterization of fatty alcohol and sterol fractions in olive tree.

    PubMed

    Orozco-Solano, Mara; Ruiz-Jimenez, José; Luque De Castro, María D

    2010-07-14

    The determination of sterols and fatty alcohols is a part of the study of the metabolomic profile of the unsaponifiable fraction in olive tree. Leaves and drupes from three varieties of olive tree (Arbequina, Picual, and Manzanilla) were used. The content of the target compounds was studied in five ripeness stages and three harvesting periods for olive drupes and leaves, respectively. A method based on ultrasound-assisted extraction and derivatization for the individual identification and quantitation of sterols and fatty alcohols, involving chromatographic separation and mass spectrometry detection by selected ion monitoring, was used. The concentrations of alcohols and sterols in the drupes ranged between 0.1 and 1086.9 mug/g and between 0.1 and 5855.3 mug/g, respectively, which are higher than in leaves. Statistical studies were developed to show the relationship between the concentration of the target analytes and variety, ripeness stage, and harvesting period. PMID:20550122

  20. Sterols and sphingolipids: Dynamic duo or partners in crime?

    PubMed Central

    Gulati, Sonia; Liu, Ying; Munkacsi, Andrew B.; Wilcox, Lisa; Sturley, Stephen L.

    2010-01-01

    One manner in which eukaryotic cells respond to their environments is by optimizing the composition and proportions of sterols and sphingolipids in membranes. The physical association of the planar ring of sterols with the acyl chains of phospholipids, particularly sphingolipids, produces membrane micro-heterogeneity that is exploited to coordinate several crucial pathways. We hypothesize that these lipid molecules play an integrated role in human disease; when one of the partners is mis-regulated, pathology frequently ensues. Sterols and sphingolipid levels are not coordinated by the action of a single master regulator, however the cross talk between their metabolic pathways is considerable. We describe our perspectives on the key components of synthesis, catabolism and transport of these lipid partners with an emphasis on evolutionarily conserved reactions that produce disease states when defective. PMID:20362613

  1. A data mining approach to dinoflagellate clustering according to sterol composition: Correlations with evolutionary history.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the sterol compositions of 102 dinoflagellates (including several previously unexamined species) using clustering techniques as a means of determining the relatedness of the organisms. In addition, dinoflagellate sterol-based relationships were compared statistically to dinoflag...

  2. Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1.

    PubMed

    Tinkelenberg, A H; Liu, Y; Alcantara, F; Khan, S; Guo, Z; Bard, M; Sturley, S L

    2000-12-29

    Intracellular cholesterol redistribution between membranes and its subsequent esterification are critical aspects of lipid homeostasis that prevent free sterol toxicity. To identify genes that mediate sterol trafficking, we screened for yeast mutants that were inviable in the absence of sterol esterification. Mutations in the novel gene, ARV1, render cells dependent on sterol esterification for growth, nystatin-sensitive, temperature-sensitive, and anaerobically inviable. Cells lacking Arv1p display altered intracellular sterol distribution and are defective in sterol uptake, consistent with a role for Arv1p in trafficking sterol into the plasma membrane. Human ARV1, a predicted sequence ortholog of yeast ARV1, complements the defects associated with deletion of the yeast gene. The genes are predicted to encode transmembrane proteins with potential zinc-binding motifs. We propose that ARV1 is a novel mediator of eukaryotic sterol homeostasis.

  3. Alpha-amylase inhibitory activity and sterol composition of the marine algae, Sargassum glaucescens

    PubMed Central

    Payghami, Nasrin; Jamili, Shahla; Rustaiyan, Abdolhossein; Saeidnia, Soodabeh; Nikan, Marjan; Gohari, Ahmad Reza

    2015-01-01

    Background: Sargassum species (phaeophyceae) are economically important brown algae in southern parts of Iran. Sargassum is mainly harvested as a row material in alginate production industries and is a source of plant foods or plant bio-stimulants even a component of animal foods. Objective: In this study, Sargassum glaucescens, collected from the seashore of Chabahar, was employed for phytochemical and biological evaluations. Materials and Methods: For that purpose, the dried algae was extracted by methanol and subjected to different chromatographic separation methods. Results: Six sterols, fucosterol (1), 24(S)-hydroxy-24-vinylcholesterol (2), 24(R)-hydroxy-24-vinylcholesterol (3), stigmasterol (4), β-sitosterol (5) and cholesterol (6) were identified by spectroscopic methods including 1H-NMR, 13C-NMR and mass spectroscopy. In vitro alpha-amylase inhibitory test was performed on the methanolic extract and the results revealed a potent inhibition (IC50 = 8.9 ± 2.4 mg/mL) of the enzyme compared to acarbose as a positive control. Conclusion: Various biological activities and distribution of sterols in Sargassum genus have been critically reviewed here. The results concluded that these algae are a good candidate for further anti-diabetic investigations in animals and human. PMID:26692744

  4. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    PubMed

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.

  5. Sterol and genomic analyses validate the sponge biomarker hypothesis

    PubMed Central

    Gold, David A.; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki

    2016-01-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650–540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  6. Sterol and genomic analyses validate the sponge biomarker hypothesis.

    PubMed

    Gold, David A; Grabenstatter, Jonathan; de Mendoza, Alex; Riesgo, Ana; Ruiz-Trillo, Iñaki; Summons, Roger E

    2016-03-01

    Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago. PMID:26903629

  7. Triglyceride-Lowering Response To Plant Sterol and Stanol Consumption

    PubMed Central

    Rideout, Todd C; Marinangeli, Christopher PF; Harding, Scott V

    2015-01-01

    Phytosterols (PS) have long been recognized for their cholesterol-lowering action, however, recent work has highlighted triglyceride (TG)-lowering responses to PS that may have been overlooked in previous human interventions and mechanistic animal model studies. This review assesses the current state of knowledge regarding the effect of dietary PS supplementation on blood TG concentrations by examining the average therapeutic response, potential mechanisms, and metabolic and genetic factors that may contribute to inter-individual variability. Data from human intervention trials demonstrates that, compared to baseline concentrations, PS supplementation results in a variable TG-lowering response ranging from 0.8 to 28%. It is evident that hypertriglyceridemic individuals (>1.7 mmol/L) have a greater TG-lowering response to PS (11–28%) than subjects with normal plasma TG concentrations (0.8–7%). Although a genetic basis for the variable TG-lowering effects of PS is probable, there are only limited studies to draw on. The available data suggest that polymorphisms in the apolipoprotein E (apoE) gene may affect responsiveness, with PS-induced reductions in TG more readily evident in apoE2 than apoE3 or E4 subjects. Although only a minimal number of animal model studies have been conducted to specifically examine the mechanisms whereby PS may reduce blood TG concentrations, it appears that there may be multiple mechanisms involved including interruption of intestinal fatty acid absorption and modulation of hepatic lipogenesis and VLDL packaging and secretion. In summary, the available data suggest that PS may be an effective therapy to lower blood TG, particularly in hypertriglyceridemic individuals. However, before PS can be widely recommended as a TG-lowering therapy, studies that are specifically powered and designed to fully access therapeutic responses and the mechanisms involved are required. PMID:25941890

  8. Variable Contribution of Soil and Plant Derived Carbon to Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Gleixner, G.

    2005-12-01

    The seasonal variation in the amount and sources of dissolved organic matter (DOM) in soil profiles was investigated. In general DOM in soil solution can evolve from the decomposition and mobilization of soil organic matter (SOM), dissolution of dead microbial cells or from the input of plant material such as root exudates or decomposing litter. Here we used vegetation change from C3 to C4 plants to quantify the plant derived carbon in DOM. In 2002 an agricultural field was converted to an experimental grass land. The average carbon isotope value of SOM was -26.5 per mill (sd = 0.2) for the plough horizon. On two independent plots, each 10 x 20 m, we used Amaranthus retroflexus as C4 plant with a carbon isotope label of 13.0 per mill to distinguish unlabeled SOM and plant derived carbon sources. To quantify the contribution of litter input on DOM formation we applied a split plot design. One half had no litter and the other half double amount of above ground litter. Soil water was collected in 10, 20 and 30 cm depth biweekly and DOM concentrations in solution and carbon isotope ratios of the freeze dried and decarbonized material were investigated. During winter uniform concentrations of DOM of about 7 mg/l were measured throughout all depth and treatments. In spring when soil temperatures increase and water availability decreases DOM concentrations increased with similar rates in all depth. Even in the second year of Amaranth growth the carbon isotope ratios of DOM in winter and spring had no C4 signal. The carbon isotope ratios of -26 to -27 per mill suggest SOM as carbon source and contradict a contribution of root exudates to the DOM pool. During summer almost no soil solution was collected. After rewetting in fall DOM concentrations up to 50 mg/l in 10 cm depth and up to 35 mg/l in deeper layers were found. These high concentrations held carbon isotope signals from -25 to -26.5 per mill contradicting carbon input from plant material. With ongoing wetting of

  9. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials

    PubMed Central

    Jantan, Ibrahim; Ahmad, Waqas; Bukhari, Syed Nasir Abbas

    2015-01-01

    The phagocyte–microbe interactions in the immune system is a defense mechanism but when excessively or inappropriately deployed can harm host tissues and participate in the development of different non-immune and immune chronic inflammatory diseases such as autoimmune problems, allergies, some rheumatoid disorders, cancers and others. Immunodrugs include organic synthetics, biological agents such as cytokines and antibodies acting on single targets or pathways have been used to treat immune-related diseases but with limited success. Most of immunostimulants and immunosuppressants in clinical use are the cytotoxic drugs which possess serious side effects. There is a growing interest to use herbal medicines as multi-component agents to modulate the complex immune system in the prevention of infections rather than treating the immune-related diseases. Many therapeutic effects of plant extracts have been suggested to be due to their wide array of immunomodulatory effects and influence on the immune system of the human body. Phytochemicals such as flavonoids, polysaccharides, lactones, alkaloids, diterpenoids and glycosides, present in several plants, have been reported to be responsible for the plants immunomodulating properties. Thus the search for natural products of plant origin as new leads for development of potent and safe immunosuppressant and immunostimulant agents is gaining much major research interest. The present review will give an overview of widely investigated plant-derived compounds (curcumin, resveratrol, epigallocatechol-3-gallate, quercetin, colchicine, capsaicin, andrographolide, and genistein) which have exhibited potent effects on cellular and humoral immune functions in pre-clinical investigations and will highlight their clinical potential. PMID:26379683

  10. Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials.

    PubMed

    Jantan, Ibrahim; Ahmad, Waqas; Bukhari, Syed Nasir Abbas

    2015-01-01

    The phagocyte-microbe interactions in the immune system is a defense mechanism but when excessively or inappropriately deployed can harm host tissues and participate in the development of different non-immune and immune chronic inflammatory diseases such as autoimmune problems, allergies, some rheumatoid disorders, cancers and others. Immunodrugs include organic synthetics, biological agents such as cytokines and antibodies acting on single targets or pathways have been used to treat immune-related diseases but with limited success. Most of immunostimulants and immunosuppressants in clinical use are the cytotoxic drugs which possess serious side effects. There is a growing interest to use herbal medicines as multi-component agents to modulate the complex immune system in the prevention of infections rather than treating the immune-related diseases. Many therapeutic effects of plant extracts have been suggested to be due to their wide array of immunomodulatory effects and influence on the immune system of the human body. Phytochemicals such as flavonoids, polysaccharides, lactones, alkaloids, diterpenoids and glycosides, present in several plants, have been reported to be responsible for the plants immunomodulating properties. Thus the search for natural products of plant origin as new leads for development of potent and safe immunosuppressant and immunostimulant agents is gaining much major research interest. The present review will give an overview of widely investigated plant-derived compounds (curcumin, resveratrol, epigallocatechol-3-gallate, quercetin, colchicine, capsaicin, andrographolide, and genistein) which have exhibited potent effects on cellular and humoral immune functions in pre-clinical investigations and will highlight their clinical potential.

  11. Characterization of microsomal methyl sterol demethylase in two Morris hepatomas.

    PubMed

    Williams, M T; Gaylor, J L; Morris, H P

    1976-02-01

    Previously, we reported that the rate of metabolism of methyl sterol intermediates of cholesterol biosynthesis by broken-cell preparations of Morriss hepatoma 7777 is very slow, whereas the intact tumors are known to synthesize cholesterol quite efficiently. Active preparations have now been obtained by substitution of pyrophosphate for phosphate buffer. Although substitution of pyrophosphate buffer markedly enhances microsomal methyl sterol demethylation rates 3- to 4-fold in hepatoma 7777, other microsomal enzymes and electron carriers in either liver or a more slowly growing hepatoma appear to be unaffected by pyrophosphate. Several properties of the active microsomal methyl sterol demethylase have now been compared for control rat liver, host liver, tumor 7777, and tumor 5123C. Conditions necessary for the assay of initial velocities of enzymic reactions in the tumor microsomes have been established with respect to the amount of protein, time-course, concentrations of cofactors and substrate, pH, and other variables. The K'm and the responses to the variables studied above are very similar for methyl sterol demethylase of microsomes isolated from control liver, host liver, tumor 5123C, and tumor 7777. The multienzymic demethylase in the various preparations has been found to be inhibited similarly by in vitro additions of cyanide, cytochrome c, and bile salts. Thus, the enzymes of the microsomal-bound 4-methyl sterol demethylase of cholesterol biosynthesis appear to be very similar in liver and these 2 Morris hepatomas. When xenobiotic inducers of microsomal oxidases, such as phenobarbital and methylcholanthrene, are administered to normal and tumor-bearing rats, elevated rates of methyl sterol demethylation are observed with isolated liver microsomes obtained from both normal and tumor-bearing rats. Similar increases are not observed in the tumors. Furthermore, daily administration of an intestinal bile acid sequestrant elevates hepatic methyl sterol

  12. Protein Mediators of Sterol Transport Across Intestinal Brush Border Membrane

    PubMed Central

    Brown, J. Mark; Yu, Liqing

    2012-01-01

    Dysregulation of cholesterol balance contributes significantly to atherosclerotic cardiovascular disease (ASCVD), the leading cause of death in the United States. The intestine has the unique capability to act as a gatekeeper for entry of cholesterol into the body, and inhibition of intestinal cholesterol absorption is now widely regarded as an attractive non-statin therapeutic strategy for ASCVD prevention. In this chapter we discuss the current state of knowledge regarding sterol transport across the intestinal brush border membrane. The purpose of this work is to summarize substantial progress made in the last decade in regards to protein-mediated sterol trafficking, and to discuss this in the context of human disease. PMID:20213550

  13. Sterol Biosynthesis Pathway as Target for Anti-trypanosomatid Drugs

    PubMed Central

    de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2009-01-01

    Sterols are constituents of the cellular membranes that are essential for their normal structure and function. In mammalian cells, cholesterol is the main sterol found in the various membranes. However, other sterols predominate in eukaryotic microorganisms such as fungi and protozoa. It is now well established that an important metabolic pathway in fungi and in members of the Trypanosomatidae family is one that produces a special class of sterols, including ergosterol, and other 24-methyl sterols, which are required for parasitic growth and viability, but are absent from mammalian host cells. Currently, there are several drugs that interfere with sterol biosynthesis (SB) that are in use to treat diseases such as high cholesterol in humans and fungal infections. In this review, we analyze the effects of drugs such as (a) statins, which act on the mevalonate pathway by inhibiting HMG-CoA reductase, (b) bisphosphonates, which interfere with the isoprenoid pathway in the step catalyzed by farnesyl diphosphate synthase, (c) zaragozic acids and quinuclidines, inhibitors of squalene synthase (SQS), which catalyzes the first committed step in sterol biosynthesis, (d) allylamines, inhibitors of squalene epoxidase, (e) azoles, which inhibit C14α-demethylase, and (f) azasterols, which inhibit Δ24(25)-sterol methyltransferase (SMT). Inhibition of this last step appears to have high selectivity for fungi and trypanosomatids, since this enzyme is not found in mammalian cells. We review here the IC50 values of these various inhibitors, their effects on the growth of trypanosomatids (both in axenic cultures and in cell cultures), and their effects on protozoan structural organization (as evaluted by light and electron microscopy) and lipid composition. The results show that the mitochondrial membrane as well as the membrane lining the protozoan cell body and flagellum are the main targets. Probably as a consequence of these primary effects, other important changes take place in

  14. Bioprocessing of plant-derived virus-like particles of Norwalk virus capsid protein under current Good Manufacture Practice regulations

    PubMed Central

    Lai, Huafang; Chen, Qiang

    2012-01-01

    Despite the success in expressing a variety of subunit vaccine proteins in plants and the recent stride in improving vaccine accumulation levels by transient expression systems, there is still no plant-derived vaccine that has been licensed for human use. The lack of commercial success of plant-made vaccines lies in several technical and regulatory barriers that remain to be overcome. These challenges include the lack of scalable downstream processing procedures, the uncertainty of regulatory compliance of production processes, and the lack of demonstration of plant-derived products that meet the required standards of regulatory agencies in identity, purity, potency and safety. In this study, we addressed these remaining challenges and successfully demonstrate the ability of using plants to produce a pharmaceutical grade Norwalk virus (NV) vaccine under current Good Manufacture Practice (cGMP) guidelines at multiple gram scales. Our results demonstrate that an efficient and scalable extraction and purification scheme can established for processing virus-like particles (VLP) of NV capsid protein (NVCP). We successfully operated the upstream and downstream NVCP production processes under cGMP regulations. Furthermore, plant-derived NVCP VLP demonstrates the identity, purity, potency and safety that meet the preset release specifications. This material is being tested in a Phase I human clinical trial. This research provides the first report of producing a plant-derived vaccine at scale under cGMP regulations in an academic setting and an important step for plant-produced vaccines to become a commercial reality. PMID:22134876

  15. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions...

  16. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions...

  17. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions...

  18. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions...

  19. 40 CFR 180.1179 - Plant extract derived from Opuntia lindheimeri, Quercus falcata, Rhus aromatica, and Rhizophoria...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Rhizophoria mangle; exemption from the requirement of a tolerance. The biochemical pesticide plant extract... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Plant extract derived from Opuntia...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions...

  20. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    PubMed Central

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505

  1. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  2. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    PubMed

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505

  3. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced.

  4. Sterols and Stanols Preserved in Pond Sediments Track Seabird Biovectors in a High Arctic Environment.

    PubMed

    Cheng, Wenhan; Sun, Liguang; Kimpe, Linda E; Mallory, Mark L; Smol, John P; Gallant, Lauren R; Li, Jinping; Blais, Jules M

    2016-09-01

    Seabirds are major vertebrates in the coastal ecosystems of the Canadian High Arctic, where they transport substantial amounts of marine-derived nutrients and pollutants from oceans to land by depositing guano and stomach oils to their nesting area, which often includes nearby freshwater ponds. Here we present novel indicators for evaluating the impact of seabirds on freshwater ecosystems. The ratio of cholesterol/(cholesterol + sitosterol) in pond sediments showed significant enrichment near a nesting colony of northern fulmars (Fulmarus glacialis) and was significantly correlated with ornithogenic enrichment of sediment as determined by sedimentary δ(15)N. The sterol ratio was also correlated with several bioaccumulative persistent organic pollutants (POPs), suggesting its usefulness in tracking biovector enrichment of contaminants. Human-derived epicoprostanol was also analyzed in the sediments, and its relationship with an abandoned, prehistoric camp was recorded, suggesting its potential as a tracer of prehistoric human activities in the Arctic. Sterols and stanols preserved in sediments appear to be useful geochemical tools that will inform our understanding of migratory species and the presence of prehistoric human populations in the Arctic, and possibly other animal populations. PMID:27409713

  5. Effects of Ancymidol (a Growth Retardant) and Triarimol (a Fungicide) on the Growth, Sterols, and Gibberellins of Phaseolus vulgaris (L.).

    PubMed

    Shive, J B; Sisler, H D

    1976-04-01

    The effect of the two substituted pyrimidines, ancymidol (a growth retardant) and triarimol (a fungicide) on Phaseolus vulgaris was studied. Both compounds retarded shoot and root elongation as well as increases in fresh weight. Both compounds caused production of ethylene-like responses when given in high dosages or when applied shortly after germination. As growth retardation was shown to occur in the absence of net increase in sterol levels, neither ancymidol nor triarimol apparently retards growth by inhibiting sterol synthesis.Both ancymidol and triarimol treatment drastically reduced the amount of extractable gibberellin-like activity in beans. Ancymidol also either induced or enhanced the production of a compound which gave a negative response in the bioassay plant Oryza sativa var. Tan-ginbozu. The addition of gibberellin completely relieved the dwarfing effects of both ancymidol and triarimol in dark-grown beans. It is concluded that ancymidol and triarimol affect a gibberellin-induced growth response, probably by inhibiting gibberellin biosynthesis.

  6. Plant-derived natural medicines for the management of depression: an overview of mechanisms of action.

    PubMed

    Farahani, Marzieh Sarbandi; Bahramsoltani, Roodabeh; Farzaei, Mohammad Hosein; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    Depression is a serious widespread psychiatric disorder that affects approximately 17% of people all over the world. Exploring the neurological mechanisms of the antidepressant activity of plant-derived agents could have a crucial role in developing natural drugs for the management of depression. The aim of the present study is to review the neurological mechanisms of action of antidepressant plants and their constituents. For this purpose, electronic databases, including PubMed, Science Direct, Scopus, and Cochrane Library, were searched from 1966 to October 2013. The results showed that several molecular mechanisms could be proposed for the antidepressant activity of medicinal plants and their constituents. Hypericum species could normalize brain serotonin level. Liquiritin and isoliquiritin from Glycyrrhiza uralensis rhizome act via the noradrenergic system. Rosmarinus officinalis and curcumin from Curcuma longa interact with D1 and D2 receptors as well as elevate the brain dopamine level. Sida tiagii and Aloysia gratissima involve γ-aminobutyric acid and N-methyl-D-aspartate receptors, respectively. Fuzi polysaccharide-1 from Aconitum carmichaeli could affect brain-derived neurotrophic factor signaling pathways. Psoralidin from Psoralea corylifolia seed modulate the hypothalamic-pituitary-adrenal axis. The total glycosides of Paeonia lactiflora demonstrate an inhibitory effect on both subtypes of monoamine oxidase. 3,6'-Di-o-sinapoyl-sucrose and tenuifoliside A from Polygala tenuifolia exhibit cytoprotective effects on neuronal cells. Further preclinical and clinical trials evaluating their safety, bioefficacy, and bioavailability are suggested to prove the valuable role of natural drugs in the management of depressive disorders. PMID:25719303

  7. Structural and Functional Analyses of a Sterol Carrier Protein in Spodoptera litura

    PubMed Central

    Xu, Rui; Zheng, Sichun; He, Hongwu; Wan, Jian; Feng, Qili

    2014-01-01

    Backgrounds In insects, cholesterol is one of the membrane components in cells and a precursor of ecdysteroid biosynthesis. Because insects lack two key enzymes, squalene synthase and lanosterol synthase, in the cholesterol biosynthesis pathway, they cannot autonomously synthesize cholesterol de novo from simple compounds and therefore have to obtain sterols from their diet. Sterol carrier protein (SCP) is a cholesterol-binding protein responsible for cholesterol absorption and transport. Results In this study, a model of the three-dimensional structure of SlSCPx-2 in Spodoptera litura, a destructive polyphagous agricultural pest insect in tropical and subtropical areas, was constructed. Docking of sterol and fatty acid ligands to SlSCPx-2 and ANS fluorescent replacement assay showed that SlSCPx-2 was able to bind with relatively high affinities to cholesterol, stearic acid, linoleic acid, stigmasterol, oleic acid, palmitic acid and arachidonate, implying that SlSCPx may play an important role in absorption and transport of these cholesterol and fatty acids from host plants. Site-directed mutation assay of SlSCPx-2 suggests that amino acid residues F53, W66, F89, F110, I115, T128 and Q131 are critical for the ligand-binding activity of the SlSCPx-2 protein. Virtual ligand screening resulted in identification of several lead compounds which are potential inhibitors of SlSCPx-2. Bioassay for inhibitory effect of five selected compounds showed that AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 inhibited the growth of S. litura larvae. Conclusions Compounds AH-487/41731687, AG-664/14117324, AG-205/36813059 and AG-205/07775053 selected based on structural modeling showed binding affinity to SlSCPx-2 protein and inhibitory effect on the growth of S. litura larvae. PMID:24454688

  8. Effects of feeding plant-derived agents on the colonization of Campylobacter jejuni in broiler chickens.

    PubMed

    Kurekci, Cemil; Al Jassim, Rafat; Hassan, Errol; Bishop-Hurley, Sharon L; Padmanabha, Jagadish; McSweeney, Christopher S

    2014-09-01

    The aim of this work was to test the potential use of plant-derived extracts and compounds to control Campylobacter jejuni in broiler chickens. Over a 7-wk feeding period, birds were fed a commercial diet with or without plant extracts (Acacia decurrens, Eremophila glabra), essential oil [lemon myrtle oil (LMO)], plant secondary compounds [terpinene-4-ol and α-tops (including α-terpineol, cineole, and terpinene-4-ol)], and the antibiotic virginiamycin. Traditional culture and real-time quantitative PCR techniques were used to enumerate the numbers of C. jejuni in chicken fecal and cecal samples. In addition, BW and feed intake were recorded weekly for the calculation of BW gain and feed conversion ratio. The mean log10 counts of C. jejuni were similar (P > 0.05) across treatments. However, significantly lower levels of fecal Campylobacter counts (P < 0.05) were recorded at d 41 for the α-tops treatment by culture methods. No differences (P > 0.05) in BW gain were obtained for dietary supplementation, except for the E. glabra extract, which had a negative impact (P < 0.001) on BW, resulting in sporadic death. Results from this study suggest that supplemental natural compounds used in the current study did not reduce the shedding of C. jejuni to desired levels.

  9. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants

    PubMed Central

    Zhang, Chao; Wu, Zujian; Li, Yi; Wu, Jianguo

    2015-01-01

    RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research. PMID:26617580

  10. Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus

    PubMed Central

    Rahman, A.; Talukder, F. A.

    2006-01-01

    Experiments were conducted to study the bioefficacies of different plant/weed derivatives that affect the development of the pulse beetle, Callosobruchus maculates F. (Coleoptera: Bruchidae) fed on black gram, Vigna mungo, seeds. Plant extracts, powder, ash and oil from nishinda (Vitex negundo L.), eucalyptus (Eucalyptus globules Labill.), bankalmi (Ipomoea sepiaria K.), neem (Azadirachta indica L.), safflower (Carthamus tinctorius L.), sesame (Sesamum indicum L.) and bablah (Acacia arabica L.) were evaluated for their oviposition inhibition, surface protectant, residual toxicity and direct toxicity effects on C. maculates. The results showed that plant oils were effective in checking insect infestation. The least number of F1 adults emerged from black gram seeds treated with neem oil. The nishinda oil extract was the most toxic of three extracts tested (nishinda, eucalyptus and bankalmi). Bablah ash was the most effective compared to the powdered leaves of nishinda, eucalyptus and bankalmi. The powdered leaves and extracts of nishinda, eucalyptus and bankalmi, at a 3% mixture, provided good protection for black gram seeds by reducing insect oviposition, F1 adult emergence, and grain infestation rates. The oil treatment did not show adverse effects on germination capability of seeds, even after three months of treatment. PMID:19537990

  11. Transgenic plant-derived siRNAs can suppress propagation of influenza virus in mammalian cells.

    PubMed

    Zhou, Yuanxiang; Chan, Jack H; Chan, Annie Y; Chak, Regina K F; Wong, Elaine Y L; Chye, Mee-Len; Peiris, Joseph S M; Poon, Leo L M; Lam, Eric

    2004-11-19

    As an example of the cost-effective large-scale generation of small-interfering RNA (siRNAs), we have created transgenic tobacco plants that produce siRNAs targeted to the mRNA of the non-structural protein NS1 from the influenza A virus subtype H1N1. We have investigated if these siRNAs, specifically targeted to the 5'-portion of the NS1 transcripts (5mNS1), would suppress viral propagation in mammalian cells. Agroinfiltration of transgenic tobacco with an Agrobacterium strain harboring a 5mNS1-expressing binary vector caused a reduction in 5mNS1 transcripts in the siRNA-accumulating transgenic plants. Further, H1N1 infection of siRNA-transfected mammalian cells resulted in significant suppression of viral replication. These results demonstrate that plant-derived siRNAs can inhibit viral propagation through RNA interference and could potentially be applied in control of viral-borne diseases.

  12. Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus.

    PubMed

    Rahman, A; Talukder, F A

    2006-01-01

    Experiments were conducted to study the bioefficacies of different plant/weed derivatives that affect the development of the pulse beetle, Callosobruchus maculates F. (Coleoptera: Bruchidae) fed on black gram, Vigna mungo, seeds. Plant extracts, powder, ash and oil from nishinda (Vitex negundo L.), eucalyptus (Eucalyptus globules Labill.), bankalmi (Ipomoea sepiaria K.), neem (Azadirachta indica L.), safflower (Carthamus tinctorius L.), sesame (Sesamum indicum L.) and bablah (Acacia arabica L.) were evaluated for their oviposition inhibition, surface protectant, residual toxicity and direct toxicity effects on C. maculates. The results showed that plant oils were effective in checking insect infestation. The least number of F(1) adults emerged from black gram seeds treated with neem oil. The nishinda oil extract was the most toxic of three extracts tested (nishinda, eucalyptus and bankalmi). Bablah ash was the most effective compared to the powdered leaves of nishinda, eucalyptus and bankalmi. The powdered leaves and extracts of nishinda, eucalyptus and bankalmi, at a 3% mixture, provided good protection for black gram seeds by reducing insect oviposition, F(1) adult emergence, and grain infestation rates. The oil treatment did not show adverse effects on germination capability of seeds, even after three months of treatment. PMID:19537990

  13. Derivation of predicted no effect concentration (PNEC) for HHCB to terrestrial species (plants and invertebrates).

    PubMed

    Wang, Xiaonan; Liu, Zhengtao; Wang, Wanhua; Zhang, Cong; Chen, Lihong

    2015-03-01

    The 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(γ)-2-benzopyrane (HHCB) is a synthetic musk which is used as a fragrance in a variety of personal care products, and due to this it is widely spread in the environment. However, there is no paper dealing with the predicted no effect concentration (PNEC) for HHCB to terrestrial species using the species sensitivity distribution (SSD) method, mainly results from the shortage of species toxicity data of different taxonomic levels. In this study, toxicity data were obtained from 10 chronic toxicity tests using 10 terrestrial species (3 dicotyledonous plants, 5 monocotyledonous plants and 2 terrestrial invertebrates) from 3 Phyla and 9 Families. The PNEC of HHCB was derived using the SSD method. The result of present research showed that the dicotyledonous Solanum lycopersicum was the most sensitive plants to HHCB contamination. The PNEC ranged between 0.70 and 3.52 mg HHCB/kg when using the log-logistic SSD method. It is recommended to use toxicity data of different taxonomic levels for the development of PNEC values in terrestrial environment due to different species sensitivity.

  14. Biogenesis, Function, and Applications of Virus-Derived Small RNAs in Plants.

    PubMed

    Zhang, Chao; Wu, Zujian; Li, Yi; Wu, Jianguo

    2015-01-01

    RNA silencing, an evolutionarily conserved and sequence-specific gene-inactivation system, has a pivotal role in antiviral defense in most eukaryotic organisms. In plants, a class of exogenous small RNAs (sRNAs) originating from the infecting virus called virus-derived small interfering RNAs (vsiRNAs) are predominantly responsible for RNA silencing-mediated antiviral immunity. Nowadays, the process of vsiRNA formation and the role of vsiRNAs in plant viral defense have been revealed through deep sequencing of sRNAs and diverse genetic analysis. The biogenesis of vsiRNAs is analogous to that of endogenous sRNAs, which require diverse essential components including dicer-like (DCL), argonaute (AGO), and RNA-dependent RNA polymerase (RDR) proteins. vsiRNAs trigger antiviral defense through post-transcriptional gene silencing (PTGS) or transcriptional gene silencing (TGS) of viral RNA, and they hijack the host RNA silencing system to target complementary host transcripts. Additionally, several applications that take advantage of the current knowledge of vsiRNAs research are being used, such as breeding antiviral plants through genetic engineering technology, reconstructing of viral genomes, and surveying viral ecology and populations. Here, we will provide an overview of vsiRNA pathways, with a primary focus on the advances in vsiRNA biogenesis and function, and discuss their potential applications as well as the future challenges in vsiRNAs research. PMID:26617580

  15. Effects of different forms of plant-derived organic matter on nitrous oxide emissions.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-07-13

    To investigate the impact of different forms of plant-derived organic matter on nitrous oxide (N2O) emissions, an incubation experiment with the same rate of total nitrogen (N) application was carried out at 25 °C for 250 days. Soils were incorporated with maize-derived organic matter (i.e., maize residue-derived dissolved organic matter and maize residues with different C/N ratios) and an inorganic N fertilizer (urea). The pattern and magnitude of nitrous oxide (N2O) emissions were affected by the form of N applied. Single application of maize-derived organic matter resulted in a higher N2O emission than single application of the inorganic N fertilizer or combined application of the inorganic N fertilizer and maize-derived organic matter. The positive effect of maize residue-derived dissolved organic matter (DOM) addition on N2O emissions was relatively short-lived and mainly occurred at the early stage following DOM addition. In contrast, the positive effect induced by maize residue addition was more pronounced and lasted for a longer period. Single application of maize residues resulted in a substantial decrease in soil nitric nitrogen (NO3(-)-N), but it did not affect the production of N2O. No significant relationship between N2O emission and NO3(-)-N and ammonium nitrogen (NH4(+)-N) suggested that the availability of soil N was not limiting the production of N2O in our study. The key factors affecting soil N2O emission were the soil dissolved organic carbon (DOC) content and metabolism quotient (qCO2). Both of them could explain 87% of the variation in cumulative N2O emission. The C/N ratio of maize-derived organic matter was a poor predictor of N2O emission when the soil was not limited by easily available C and the available N content met the microbial N demands for nitrification and denitrification. The results suggested that the magnitude of N2O emission was determined by the impact of organic amendments on soil C availability and microbial activity

  16. Compositions of royal jelly II. Organic acid glycosides and sterols of the royal jelly of honeybees (Apis mellifera).

    PubMed

    Kodai, Tetsuya; Umebayashi, Kazue; Nakatani, Takafumi; Ishiyama, Kaori; Noda, Naoki

    2007-10-01

    Two organic acid glycosides (1, 2) and 16 sterols were isolated from the royal jelly of honeybees (Apis mellifera). The former two were monoglucosides of 10-hydroxy-2E-decenoic and 10-hydroxydecanoic acids. They are the first examples of glycosides isolated from royal jelly. The latter 16 were sterols mainly composed of 28 or 29 carbons. Among them, four compounds were new isofucosterol derivatives, and their structures were characterized as (24Z)-stigmasta-5,24(28)-dien-3beta-ol-7-one (3), (24Z)-stigmasta-5,24(28)-diene-3beta,7beta-diol (4), (24Z)-stigmasta-5,24(28)-diene-3beta,7alpha-diol (5), and (24Z)-stigmast-24(28)-ene-3beta,5alpha,6beta-triol (6) on the basis of various NMR spectroscopic data.

  17. Effects of plant-derived anti-leukemic drugs on individualized leukemic cell population profiles in Egyptian patients

    PubMed Central

    ABOUL-SOUD, MOURAD A. M.; EL-SHEMY, HANY A.; ABOUL-ENEIN, KHALID M.; MAHMOUD, ALI M.; AL-ABD, AHMED M.; LIGHTFOOT, DAVID A.

    2016-01-01

    Leukemias are a group of cancer types that originate from blood-forming tissues. In this disease, an abnormally large number of immature white blood cells is produced by the bone marrow. The relationship between treatments with plant-derived drugs and leukemia-associated immunophenotypes (LAIPs) of clinically isolated leukemia cells has yet to be established. The aim of the present study was to develop a preliminary clinical prognostic map for commonly expressed LAIPs in patients clinically diagnosed with leukemia, as well as to assess the potential involvement of LAIPs in the response rate to 10 natural products of plant origin. An increased expression of LAIPs, including CD4, CD14, CD33 and CD34, was considered a surrogate marker of the desired response of leukemia cells to treatment with plant-derived drugs. By contrast, the increased expression of the LAIPs, MPO and DR, was associated with poor prognostic outcomes following treatment with the plant-derived drugs. The results showed that 5 of the 10 plant-derived drugs tested induced the expression of several desirable LAIPs biomarkers. These findings clearly highlight the potential treatment efficacy of certain plant-derived drugs against leukemic cell types. PMID:26870259

  18. Inorganic nitrogen derived from foraging honey bees could have adaptive benefits for the plants they visit.

    PubMed

    Mishra, Archana; Afik, Ohad; Cabrera, Miguel L; Delaplane, Keith S; Mowrer, Jason E

    2013-01-01

    In most terrestrial ecosystems, nitrogen (N) is the most limiting nutrient for plant growth. Honey bees may help alleviate this limitation because their feces (frass) have high concentration of organic nitrogen that may decompose in soil and provide inorganic N to plants. However, information on soil N processes associated with bee frass is not available. The objectives of this work were to 1) estimate the amount of bee frass produced by a honey bee colony and 2) evaluate nitrogen mineralization and ammonia volatilization from bee frass when surface applied or incorporated into soil. Two cage studies were conducted to estimate the amount of frass produced by a 5000-bee colony, and three laboratory studies were carried out in which bee frass, surface-applied or incorporated into soil, was incubated at 25(o)C for 15 to 45 days. The average rate of bee frass production by a 5,000-bee colony was estimated at 2.27 to 2.69 g N month(-1). Nitrogen mineralization from bee frass during 30 days released 20% of the organic N when bee frass was surface applied and 34% when frass was incorporated into the soil. Volatilized NH3 corresponded to 1% or less of total N. The potential amount of inorganic N released to the soil by a typical colony of 20,000 bees foraging in an area similar to that of the experimental cages (3.24 m(2)) was estimated at 0.62 to 0.74 g N m(-2) month(-1) which may be significant at a community scale in terms of soil microbial activity and plant growth. Thus, the deposition of available N by foraging bees could have adaptive benefits for the plants they visit, a collateral benefit deriving from the primary activity of pollination. PMID:23923006

  19. Inorganic Nitrogen Derived from Foraging Honey Bees Could Have Adaptive Benefits for the Plants They Visit

    PubMed Central

    Mishra, Archana; Afik, Ohad; Cabrera, Miguel L.; Delaplane, Keith S.; Mowrer, Jason E.

    2013-01-01

    In most terrestrial ecosystems, nitrogen (N) is the most limiting nutrient for plant growth. Honey bees may help alleviate this limitation because their feces (frass) have high concentration of organic nitrogen that may decompose in soil and provide inorganic N to plants. However, information on soil N processes associated with bee frass is not available. The objectives of this work were to 1) estimate the amount of bee frass produced by a honey bee colony and 2) evaluate nitrogen mineralization and ammonia volatilization from bee frass when surface applied or incorporated into soil. Two cage studies were conducted to estimate the amount of frass produced by a 5000-bee colony, and three laboratory studies were carried out in which bee frass, surface-applied or incorporated into soil, was incubated at 25oC for 15 to 45 days. The average rate of bee frass production by a 5,000-bee colony was estimated at 2.27 to 2.69 g N month−1. Nitrogen mineralization from bee frass during 30 days released 20% of the organic N when bee frass was surface applied and 34% when frass was incorporated into the soil. Volatilized NH3 corresponded to 1% or less of total N. The potential amount of inorganic N released to the soil by a typical colony of 20,000 bees foraging in an area similar to that of the experimental cages (3.24 m2) was estimated at 0.62 to 0.74 g N m−2 month−1 which may be significant at a community scale in terms of soil microbial activity and plant growth. Thus, the deposition of available N by foraging bees could have adaptive benefits for the plants they visit, a collateral benefit deriving from the primary activity of pollination. PMID:23923006

  20. The counterflow transport of sterols and PI4P.

    PubMed

    Mesmin, Bruno; Antonny, Bruno

    2016-08-01

    Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.

  1. Effect of oxygenated sterol compounds on human bone marrow granulocytic progenitor cells

    SciTech Connect

    Hoffman, P.C.; Richman, C.M.; Hsu, R.C.; Chung, J.; Scanu, A.M.; Yachnin, S.

    1981-01-01

    Oxygenated sterol compounds are potent inhibitors of sterol and DNA synthesis in mammalian cells. We studied the effects of oxygenated sterols on human marrow granulocytic progenitor cells in vitro (CFU-C)*. 25-Hydroxycholesterol, as well as 6-ketocholestanol, 7-ketocholesterol, and 20 ..cap alpha..-hydroxycholesterol, demonstrated marked inhibition of CFU-C proliferation. The latter effect, which was not a result of direct cytoxicity of the compounds, was reversible by cholesterol, but not by mevalonic acid. We conclude that inhibition of sterol synthesis by oxygenated sterol compounds may be insufficient to explain their suppression of CFU-C proliferation.

  2. Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae)

    PubMed Central

    Ndjakou Lenta, Bruno; Chouna, Jean Rodolphe; Nkeng-Efouet, Pepin Alango; Sewald, Norbert

    2015-01-01

    Plants of the Lauraceae family are widely used in traditional medicine and are sources of various classes of secondary metabolites. Two genera of this family, Beilschmiedia and Endiandra, have been the subject of numerous investigations over the past decades because of their application in traditional medicine. They are the only source of bioactive endiandric acid derivatives. Noteworthy is that their biosynthesis contains two consecutive non-enzymatic electrocyclic reactions. Several interesting biological activities for this specific class of secondary metabolites and other constituents of the two genera have been reported, including antimicrobial, enzymes inhibitory and cytotoxic properties. This review compiles information on the structures of the compounds described between January 1960 and March 2015, their biological activities and information on endiandric acid biosynthesis, with 104 references being cited. PMID:26117852

  3. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria.

    PubMed

    Bardají, D K R; Reis, E B; Medeiros, T C T; Lucarini, R; Crotti, A E M; Martins, C H G

    2016-01-01

    This work investigated the antibacterial activity of 15 commercially available plant-derived essential oils (EOs) against a panel of oral pathogens. The broth microdilution method afforded the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the assayed EOs. The EO obtained from Cinnamomum zeylanicum (Lauraceae) (CZ-EO) displayed moderate activity against Fusobacterium nucleatum (MIC and MBC = 125 μg/mL), Actinomyces naeslundii (MIC and MBC = 125 μg/mL), Prevotella nigrescens (MIC and MBC = 125 μg/mL) and Streptococcus mutans (MIC = 200 μg/mL; MBC = 400 μg/mL). (Z)-isosafrole (85.3%) was the main chemical component of this oil. We did not detect cinnamaldehyde, previously described as the major constituent of CZ-EO, in specimens collected in other countries.

  4. Azasterol inhibitors in yeast. Inhibition of the 24-methylene sterol delta24(28)-reductase and delta24-sterol methyltransferase of Saccharomyces cerevisiae by 23-azacholesterol.

    PubMed

    Pierce, H D; Pierce, A M; Srinivasan, R; Unrau, A M; Oehlschlager, A C

    1978-06-23

    The effects of 23-azacholesterol on sterol biosynthesis and growth of Saccharomyces cervisiae were examined. In the presence of 0.2, 0.5, and 1 micron 23-azacholesterol, aerobically-growing yeast produced a nearly constant amount of ergosta-5,7,22,24(28)-tetraenol (approx. 36% of total sterol) and slowly accumulated zymosterol with a concommitant decline in ergosterol synthesis. Growth and total sterol content of yeast cultures treated with 0.2-1 micron 23-azacholesterol were similar to that of the control culture. Yeast cultures treated with 5 and 10 micron 23-azacholesterol produced mostly zymosterol (58-61% of total sterol), while ergosta-5,7,22,24(28)-tetraenol production declined to less than 10% of total sterol. The observed changes in the distribution of sterols in treated cultures are consistent with inhibition of 24-methylene sterol 24(28)-sterol reductase (total inhibition at 1 micron 23-azacholesterol) and of 24-sterol methyltransferase (71% inhibition at 10 micron 23-azacholesterol). Yeast cultures treated with 10 micron 23-azacholesterol were found to contain 4,4-dimethylcholesta-8,14,24-trienol and 4alpha-methylcholesta-8,14,24-trienol, which were isolated and characterized for the first time. PMID:352402

  5. Hormonal action of plant derived and anthropogenic non-steroidal estrogenic compounds: phytoestrogens and xenoestrogens.

    PubMed

    Lóránd, T; Vigh, E; Garai, J

    2010-01-01

    Herbivorous and omnivorous vertebrates have evolved in the presence of a variety of phytoestrogens, i.e., plant-derived compounds that can mimic, modulate or disrupt the actions of endogenous estrogens. Since the discovery of the estrus-inducing effects of some plant products in 1926, considerable effort has been devoted to the isolation and structural and pharmacological characterization of phytoestrogens. Recently, agricultural and industrial pollution has added anthropogenic estrogenic compounds to the list of environmental estrogens. Unlike phytoestrogens, these xenoestrogens tend to accumulate and persist in adipose tissue for decades and may cause long-lasting, adverse endocrine effects. Here we review the endocrine effects of known phytoestrogens and xenoestrogens with special emphasis on molecular structure-activity relationships. Phytoestrogens include flavonoids, isoflavonoids, chalcons, coumestans, stilbenes, lignans, ginsenosides and other saponins, as well as the recently discovered tetrahydrofurandiols. Fungal estrogenic compounds may enter the food chain via infested crops. Since some phytoestrogens have been shown to display organ-specific actions, pharmaceutical estrogen analogues with similar properties (selective estrogen receptor modulators, SERMs) are also discussed. Xenoestrogens include dichlorodiphenyltrichloroethane (DDT) and its metabolites, bisphenols, alkylphenols, dichlorophenols, methoxychlor, chlordecone, polychlorinated benzol derivatives (PCBs), and dioxins. While most of these compounds act through estrogen receptors alpha and beta, some of their effects may be mediated by other nuclear or membrane-bound receptors or receptor-independent mechanisms. Some might also interfere with the production and metabolism of ovarian estrogens. Better understanding of the molecular pharmacology of phyto- and xenoestrogens may result in the development of novel compounds with therapeutic utility and improved environmental protection.

  6. Deriving a Planting Medium from Solid Waste Compost and Construction, Demolition and Excavation Waste

    NASA Astrophysics Data System (ADS)

    Farajalla, Nadim; Assaf, Eleni; Bashour, Issam; Talhouk, Salma

    2014-05-01

    Lebanon's very high population density has been increasing since the end of the war in the early 1990s reaching 416.36 people per square kilometer. Furthermore, the influx of refugees from conflicts in the region has increased the resident population significantly. All these are exerting pressure on the country's natural resources, pushing the Lebanese to convert more forest and agricultural land into roads, buildings and houses. This has led to a building boom and rapid urbanization which in turn has created a demand for construction material - mainly rock, gravel, sand, etc. nearly all of which were locally acquired through quarrying to the tune of three million cubic meters annually. This boom has been followed by a war with Israel in 2006 which resulted in thousands of tonnes of debris. The increase in population has also led to an increase in solid waste generation with 1.57 million tonnes of solid waste generated in Lebanon per year. The combination of construction, demolition and excavation (CDE) waste along with the increase in solid waste generation has put a major stress on the country and on the management of its solid waste problem. Compounding this problem are the issues of quarries closure and rehabilitation and a decrease in forest and vegetative cover. The on-going research reported in this paper aims to provide an integrated solution to the stated problem by developing a "soil mix" derived from a mélange of the organic matter of the solid waste (compost), the CDE waste, and soil. In this mix, native and indicator plants are planted (in pots) from which the most productive mix will be selected for further testing at field level in later experiments. The plant species used are Matiolla, a native Lebanese plant and Zea mays, which is commonly known used as an indicator plant due to its sensitivity to environmental conditions. To ensure sustainability and environmental friendliness of the mix, its physical and chemical characteristics are monitored

  7. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants.

    PubMed

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-11-01

    In plant-ant-hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  8. Characterization of the sterol carrier protein-x/sterol carrier protein-2 gene in the cotton bollworm, Helicoverpa armigera.

    PubMed

    Du, Xin; Ma, Haihao; Zhang, Xin; Liu, Kaiyu; Peng, Jianxin; Lan, Que; Hong, Huazu

    2012-11-01

    Cholesterol is a membrane component and the precursor of ecdysteroids in insects, but insects cannot synthesize cholesterol de novo. Therefore, cholesterol uptake and transportation during the feeding larval stages are critical processes in insects. The sterol carrier protein-2 domain (SCP-2) in sterol carrier proteins-x (SCP-x) has been speculated to be involved in intracellular cholesterol transfer and metabolism in vertebrates. However, a direct association between SCP-x gene expression, cholesterol absorption and development in lepidopteran insects is poorly understood. We identified the Helicoverpa armigera sterol carrier protein-x/2 (HaSCP-x/2) gene from the larval midgut cDNAs. The HaSCP-x/2 gene is well conserved during evolution and relatively divergent in heterogenetic species. Transcripts of HaSCP-x/2 were detected by qRT-PCR at the highest level in the midgut of H. armigera during the larval stages. Expression knockdown of HaSCP-x/2 transcripts via dsRNA interference resulted in delayed larval development and decreased adult fecundity. Sterol carrier protein-2 inhibitors were lethal to young larvae and decreased fertility in adults emerged from treated elder larvae in H. armigera. The results taken together suggest that HaSCPx/2 gene is important for normal development and fertility in H. armigera.

  9. Toxicological actions of plant-derived and anthropogenic methylenedioxyphenyl-substituted chemicals in mammals and insects.

    PubMed

    Murray, Michael

    2012-01-01

    The methylenedioxyphenyl (MDP) substituent is a structural feature present in many plant chemicals that deter foraging by predatory insects and herbivores. With increasing use of herbal extracts in alternative medicine, human exposure to MDP-derived plant chemicals may also be significant. Early studies found that most MDP agents themselves possess relatively low intrinsic toxicity, but strongly influence the actions of other xenobiotics in mammals and insects by modulating cytochrome P-450 (CYP)-dependent biotransformation. Thus, after exposure to MDP chemicals an initial phase of CYP inhibition is followed by a sustained phase of CYP induction. In insects CYP inhibition by MDP agents underlies their use as pesticide synergists, but analogous inhibition of mammalian CYP impairs the clearance of drugs and foreign compounds. Conversely, induction of mammalian CYP by MDP agents increases xenobiotic oxidation capacity. Exposure of insects to MDP-containing synergists in the environment, in the absence of coadministered pesticides, may also enhance xenobiotic detoxication. Finally, although most MDP agents are well tolerated, several, typified by safrole, aristolochic acid, and MDP-kavalactones, are associated with significant toxicities, including the risk of hepatotoxicity or tumorigenesis. Thus, the presence of MDP-substituted chemicals in the environment may produce a range of direct and indirect toxicities in target and nontarget species.

  10. Proteomics Analyses of Bacillus subtilis after Treatment with Plumbagin, a Plant-Derived Naphthoquinone

    PubMed Central

    Reddy, Panga Jaipal; Ray, Sandipan; Sathe, Gajanan J.; Prasad, T.S. Keshava; Rapole, Srikanth; Panda, Dulal

    2015-01-01

    Abstract Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ≥2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine. PMID:25562197

  11. Structure of Dehydroergosterol Monohydrate and Interaction with Sterol Carrier Protein-2

    PubMed Central

    McIntosh, Avery L.; Atshaves, Barbara P.; Gallegos, Adalberto M.; Storey, Stephen M.; Reibenspies, Joseph H.; Kier, Ann B.; Meyer, Edgar; Schroeder, Friedhelm

    2008-01-01

    Dehydroergosterol [ergosta-5,7,9(11),22-tetraen-3β-ol] is a naturally-occurring, fluorescent sterol utilized extensively to probe membrane cholesterol distribution, cholesterol-protein interactions, and intracellular cholesterol transport both in vitro and in vivo. In aqueous solutions, the low solubility of dehydroergosterol results in the formation of monohydrate crystals similar to cholesterol. Low temperature x-ray diffraction analysis reveals that dehydroergosterol monohydrate crystallizes in the space group P21 with 4 molecules in the unit cell and monoclinic crystal parameters a = 9.975(1)Å, b = 7.4731(9)Å, c = 34.054(4)Å, and β = 92.970(2)° somewhat similar to ergosterol monohydrate. The molecular arrangement is in a slightly closer packed bilayer structure resembling cholesterol monohydrate. Since dehydroergosterol fluorescence emission undergoes a quantum yield enhancement and red-shift of its maximum wavelength when crystallized, formation or disruption of microcrystals was monitored with high sensitivity using cuvette-based spectroscopy and multi-photon laser scanning imaging microscopy (MPLSM). This manuscript reports on the dynamical effect of sterol carrier protein-2 (SCP-2) interacting between aqueous dispersions of dehydroergosterol monohydrate microcrystal donors and acceptors consisting not only of model membranes but also vesicles derived from plasma membranes isolated by biochemical fractionation and affinity purification from Madin-Darby canine kidney cells. Furthermore, this study provides real-time measurements of the effect of increased SCP-2 levels on the rate of disappearance of dehydroergosterol microcrystals in living cells. PMID:19020914

  12. In vitro cell-based assays for evaluation of antioxidant potential of plant-derived products.

    PubMed

    Nascimento da Silva, Luís Cláudio; Bezerra Filho, Clovis Macêdo; Paula, Raiana Apolinário de; Silva E Silva, Cristiane Santos; Oliveira de Souza, Larissa Isabela; Silva, Márcia Vanusa da; Correia, Maria Tereza Dos Santos; Figueiredo, Regina Célia Bressan Queiroz de

    2016-08-01

    Several plant-derived compounds have been screened by antioxidant assays, but many of these results are questionable, since they do not evaluate the pharmacologic parameters. In fact, the development of better antioxidants stills a great challenge. In vitro cell-based assays have been employed to assess the antioxidant effect of various compounds at subcellular level. Cell-based assays can also reveal compounds able to enhance the antioxidant pathways, but without direct radical scavenging action (which could not be detected by traditional assays). These methodologies are general of easy implementation and reproducible making them suitable for the early stages of drug discovery. Hydrogen peroxide, a nonradical derivative of oxygen, can be employed as an oxidative agent in these assays due its biochemical properties (presence of all biological systems, solubility) and capacity to induce cell death. Truthfully, if their limitations are understood (such as difference on cell metabolism when in in vitro conditions), these cell-based assays can provide useful information about the pathways involved in the protective effects of phytochemicals against cell death induced by oxidative stress, which can be exploited to develop new therapeutic approaches. PMID:27216086

  13. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products. PMID:26556214

  14. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes.

    PubMed

    Luoga, W; Mansur, F; Buttle, D J; Duce, I R; Garnett, M C; Lowe, A; Behnke, J M

    2015-03-01

    We examined the in vitro and in vivo efficacy of plant cysteine proteinases (CPs) derived from pineapple (Ananas comosus) and kiwi fruit (Actinidia deliciosa), and compared their efficacy as anthelmintics to the known effects of CPs from the latex of papaya (Carica papaya) against the rodent intestinal nematode, Heligmosomoides bakeri. Both fruit bromelain and stem bromelain had significant in vitro detrimental effects on H. bakeri but in comparison, actinidain from kiwi fruit had very little effect. However, in vivo trials indicated far less efficacy of stem bromelain and fruit bromelain than that expected from the in vitro experiments (24.5% and 22.4% reduction in worm burdens, respectively) against H. bakeri. Scanning electron microscopy revealed signs of cuticular damage on worms incubated in fruit bromelain, stem bromelain and actinidain, but this was far less extensive than on those incubated in papaya latex supernatant. We conclude that, on the basis of presently available data, CPs derived from pineapples and kiwi fruits are not suitable for development as novel anthelmintics for intestinal nematode infections.

  15. Mitochondrial DNA Fragmentation to Monitor Processing Parameters in High Acid, Plant-Derived Foods.

    PubMed

    Caldwell, Jane M; Pérez-Díaz, Ilenys M; Harris, Keith; Hassan, Hosni M; Simunovic, Josip; Sandeep, K P

    2015-12-01

    Mitochondrial DNA (mtDNA) fragmentation was assessed in acidified foods. Using quantitative polymerase chain reaction, Ct values measured from fresh, fermented, pasteurized, and stored cucumber mtDNA were determined to be significantly different (P > 0.05) based on processing and shelf-life. This indicated that the combination of lower temperature thermal processes (hot-fill at 75 °C for 15 min) and acidified conditions (pH = 3.8) was sufficient to cause mtDNA fragmentation. In studies modeling high acid juices, pasteurization (96 °C, 0 to 24 min) of tomato serum produced Ct values which had high correlation to time-temperature treatment. Primers producing longer amplicons (approximately 1 kb) targeting the same mitochondrial gene gave greater sensitivity in correlating time-temperature treatments to Ct values. Lab-scale pasteurization studies using Ct values derived from the longer amplicon differentiated between heat treatments of tomato serum (95 °C for <2 min). MtDNA fragmentation was shown to be a potential new tool to characterize low temperature (<100 °C) high acid processes (pH < 4.6), nonthermal processes such as vegetable fermentation and holding times of acidified, plant-derived products.

  16. More good news about polymeric plant- and algae-derived biomaterials in drug delivery systems.

    PubMed

    Scholtz, Jacques; Van der Colff, Jaco; Steenekamp, Jan; Stieger, Nicole; Hamman, Josias

    2014-05-01

    Natural polymers are continuously investigated for use in pharmaceutical and tissue engineering applications due to the renewability of their supply. Besides the conventional use of natural materials in dosage form design such as fillers, they are progressively investigated as functional excipients in specialised dosage forms. The hydrophilic nature of natural polymers together with their non-toxic and biodegradable properties make them useful in the design of modified release dosage forms. Matrix type tablets and beads made from natural gums and mucilages often exhibit sustained drug release through erosion in combination with swelling. Natural polymers are used to reach different pharmaceutical objectives, for instance, inulin and pectin are plant derived polymers that have suitable properties to produce colon-specific drug delivery. Alginate is an example of a natural polymer that has been used in the formulation of gastro-retentive dosage forms. Different cellulose derived polymers have been investigated as coating materials for dosage forms. Natural polymers can be chemically modified to produce molecules with specific properties and formation of co-polymers or polymer mixtures provide new opportunities to develop innovative drug delivery systems. PMID:24597532

  17. Detection of contaminating enzymatic activity in plant-derived recombinant biotechnology products.

    PubMed

    Brinson, Robert G; Giulian, Gary G; Kelman, Zvi; Marino, John P

    2014-12-01

    Residual impurities in recombinantly produced protein biologics, such as host cell proteins (HCP), can potentially cause unwanted toxic or immunogenic responses in patients. Additionally, undetected impurities found in recombinant proteins used in cell culture may adversely impact basic research and biotechnology applications. Currently, the enzyme-linked immunosorbent assay (ELISA) is the standard for detection of residual HCP contamination in recombinantly produced biologics. Alternatively, two-dimensional liquid chromatography coupled to mass spectrometry is being developed as a tool for assessing this critical quality attribute. Both of these methods rely on the direct detection of HCPs and some previous knowledge of the contaminant. For contaminating enzymes, the mass level of the impurity may fall below the threshold of detection of these methods and underestimate the true impact. To address this point, here we demonstrate facile detection and characterization of contaminating phytase activity in rice-derived recombinant human serum albumin (rHSA) using a sensitive, label-free nuclear magnetic resonance (NMR) spectroscopy assay. We observed varying degrees of phytase contamination in biotechnology-grade rHSA from various manufacturers by monitoring the degradation of adenosine-5'-triphosphate and myo-inositol-1,2,3,4,5,6-hexakisphosphate by (31)P NMR. The observed lot-to-lot variability may result in irreproducible cell culture results and should be evaluated as a possible critical quality attribute in plant-derived biotherapeutics.

  18. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    PubMed Central

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  19. Sterol biosynthesis: strong inhibition of maize delta 5,7-sterol delta 7-reductase by novel 6-aza-B-homosteroids and other analogs of a presumptive carbocationic intermediate of the reduction reaction.

    PubMed

    Rahier, A; Taton, M

    1996-06-01

    A series of mono- and diazasteroids have been synthesized as analogs of a predicted carbocationic intermediate of delta 5,7-sterol delta 7-reductase (delta 7-SR). 6-Aza-B-homo-5 alpha-cholest-7-en-3 beta-ol (4), a novel compound whose synthesis is described for the first time, and 6,7-diaza-5 alpha-cholest-8(14)-en-3 beta-ol (6) were shown to be very powerful inhibitors of delta 7-SR in a preparation isolated from maize (Zea mays) (K(i),app = 50-70 nM, Ki,app/Km,app = 1.0 x 10(-4) to 1.3 x 10(-4). The data are consistent with a carbonium ion mechanism for the reduction; compounds 4 and 6 probably act as reaction intermediate analogs. Compound 4, in contrast to compound 6, displayed in the same microsomal preparation more than 50-fold selectivity for inhibition of the delta 7-SR versus delta 8-delta 7-sterol isomerase, cycloeucalenol isomerase, and delta 8,14-sterol delta 14-reductase, the mechanism of these four enzymes involving presumptive cationic intermediates centered respectively at C7, C8, C9, and C14. These observations highlight the paramount importance of the location of the positively charged nitrogen atom(s) in the B-ring structure for selectivity among these enzymes involving structurally close cationic reaction intermediates. Efficient in vivo inhibition of sterol biosynthesis in bramble cell suspension cultures by a low concentration of compound 4 was demonstrated and confirmed the in vitro properties of this derivative.) PMID:8679532

  20. Inhibitory effects of various oxygenated sterols on the differentiation and function of tumor-specific cytotoxic T lymphocytes

    SciTech Connect

    Spangrude, G.J.; Sherris, D.; Daynes, R.A.

    1982-05-01

    Irradiation of skin with ultraviolet light (UVL) is capable of causing many biological and biochemical changes in this complex organ. One early consequence is the oxidation of epidermal plasma membrane cholesterol, causing the induction of a wide variety of photoproducts. It is well recognized that some oxygenated sterols possess potent biological activity on mammalian cells by their ability to inhibit endogeneous mevalonate and cholesterol biosynthesis. In the few immunological systems that have been studied, there is general agreement that lymphocyte function is altered in the presence of certain oxygenated sterols. Insight into the biochemical basis for altered lymphocyte function is lacking, as both afferent and efferent blockades have been suggested. These studies were undertaken to determine the effect of various oxygenated sterols (representing a number of known cholesterol-derived photoproducts) on the generation (afferent) and function (efferent) of cytotoxic T lymphocytes (CTLs). Cell-mediated immune responses which result in the generation of both alloantigen-specific and syngeneic tumor-specific CTLs were evaluated. (JMT)

  1. The mechanism of radical-trapping antioxidant activity of plant-derived thiosulfinates.

    PubMed

    Lynett, Philip T; Butts, Krista; Vaidya, Vipraja; Garrett, Graham E; Pratt, Derek A

    2011-05-01

    It has long been recognized that garlic and petiveria, two plants of the Allium genus--which also includes onions, leeks and shallots--possess great medicinal value. In recent times, the biological activities of extracts of these plants have been ascribed to the antioxidant properties of the thiosulfinate secondary metabolites allicin and S-benzyl phenylmethanethiosulfinate (BPT), respectively. Herein we describe our efforts to probe the mechanism of the radical-trapping antioxidant activity of these compounds, as well as S-propyl propanethiosulfinate (PPT), a saturated analog representative of the thiosulfinates that predominate in non-medicinal alliums. Our experimental results, which include thiosulfinate-inhibited autoxidations of the polyunsaturated fatty acid (ester) methyl linoleate, investigations of their decomposition kinetics, and radical clock experiments aimed at obtaining some quantitative insights into their reactions with peroxyl radicals, indicate that the radical-trapping activity of thiosulfinates is paralleled by their propensity to undergo Cope elimination to yield a sulfenic acid. Since sulfenic acids are transient species, we complement our experimental studies with the results of theoretical calculations aimed at understanding the radical-trapping behaviour of the sulfenic acids derived from allicin, BPT and PPT, and contrasting the predicted thermodynamics and kinetics of their reactions with those of the parent thiosulfinates. The calculations reveal that sulfenic acids have among the weakest O-H bonds known (ca. 70 kcal mol(-1)), and that their reactions with peroxyl radicals take place by a near diffusion-controlled proton-coupled electron transfer mechanism. As such, it is proposed that the abundance of a thiosulfinate in a given plant species, and the ease with which it undergoes Cope elimination to form a sulfenic acid, accounts for the differences in antioxidant activity, and perhaps medicinal value, of extracts of these plants

  2. Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

    PubMed Central

    Pringle, Elizabeth G; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V; Vannette, Rachel L

    2014-01-01

    In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. PMID:25505534

  3. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi.

    PubMed

    Prosser, R S; Lissemore, L; Shahmohamadloo, R S; Sibley, P K

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with the majority of crop plants. AMF provide plants with nutrients (e.g., P), modulate the effect of metal and pathogen exposure, and increase tolerance to moisture stress. The benefits of AMF to plant growth make them important to the development of sustainable agriculture. The land application of biosolids is becoming an increasingly common practice in sustainable agriculture, as a source of nutrients. However, biosolids have been found to contain numerous pharmaceutical and personal care products including antimicrobial chemicals such as triclosan and triclocarban. The potential risks that these two compounds may pose to plant-AMF interactions are poorly understood. The current study investigated whether biosolids-derived triclosan and triclocarban affect the colonization of the roots of lettuce and corn plants by AMF. Plants were grown in soil amended with biosolids that contained increasing concentrations of triclosan (0 to 307 μg/g dw) or triclocarban (0 to 304 μg/g dw). A relationship between the concentration of triclosan or triclocarban and colonization of plants roots by AMF was not observed. The presence of biosolids did not have a significant (p>0.05) effect on percent colonization of corn roots but had a significant, positive effect (p<0.05) on lettuce roots. Biosolids-derived triclosan and triclocarban did not inhibit the colonization of crop plant roots by AMF.

  4. Respiratory allergenic potential of plant-derived proteins: Understanding the relationship between exposure and potency for risk assessments.

    PubMed

    Blackburn, Karen; N'jai, Alhaji U; Dearman, Rebecca J; Kimber, Ian; Gerberick, G Frank

    2015-01-01

    Botanical ingredients (ingredients derived from plants) are finding increasing application in personal care products and the public perceives these ingredients to be safe. However, some proteins in botanicals have the potential to cause immediate-type (IgE-mediated) respiratory allergic reactions. Although reports of such reactions are uncommon, when they do occur, they can be severe. Experience with soap containing wheat proteins illustrated that under certain specific conditions, consumers may be affected. Establishing safe exposure levels for botanical proteins has been challenging. Industrial enzymes provide a rich reference dataset based on their historical association with allergic reactions among workers, which includes robust dose-response information. In the absence of similar data on the potency of plant proteins, a conservative default approach has historically been applied based on information derived from allergenic enzymes. In this article we review the historical default approach and dataset for setting limits for plant proteins in botanical ingredients based on analogy to industrial enzymes followed by a synthesis of literature data on allergic reactions following inhalation exposure to plant-derived proteins. The aim is to share relevant background information and display the relationship between exposure and potency as a first step in the development of a strategy for the development of an improved approach to support the risk assessment of plant-derived proteins.

  5. Respiratory allergenic potential of plant-derived proteins: Understanding the relationship between exposure and potency for risk assessments.

    PubMed

    Blackburn, Karen; N'jai, Alhaji U; Dearman, Rebecca J; Kimber, Ian; Gerberick, G Frank

    2015-01-01

    Botanical ingredients (ingredients derived from plants) are finding increasing application in personal care products and the public perceives these ingredients to be safe. However, some proteins in botanicals have the potential to cause immediate-type (IgE-mediated) respiratory allergic reactions. Although reports of such reactions are uncommon, when they do occur, they can be severe. Experience with soap containing wheat proteins illustrated that under certain specific conditions, consumers may be affected. Establishing safe exposure levels for botanical proteins has been challenging. Industrial enzymes provide a rich reference dataset based on their historical association with allergic reactions among workers, which includes robust dose-response information. In the absence of similar data on the potency of plant proteins, a conservative default approach has historically been applied based on information derived from allergenic enzymes. In this article we review the historical default approach and dataset for setting limits for plant proteins in botanical ingredients based on analogy to industrial enzymes followed by a synthesis of literature data on allergic reactions following inhalation exposure to plant-derived proteins. The aim is to share relevant background information and display the relationship between exposure and potency as a first step in the development of a strategy for the development of an improved approach to support the risk assessment of plant-derived proteins. PMID:26565768

  6. A trial of production of the plant-derived high-value protein in a plant factory

    PubMed Central

    Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Goto, Eiji

    2011-01-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m−2 s−1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity. PMID:21791976

  7. Effect of smoke derivatives on in vitro pollen germination and pollen tube elongation of species from different plant families.

    PubMed

    Kumari, A; Papenfus, H B; Kulkarni, M G; Pošta, M; Van Staden, J

    2015-07-01

    Plant-derived smoke stimulates seed germination in numerous plant species. Smoke also has a positive stimulatory effect on pollen germination and pollen tube growth. The range of plant families affected my smoke still needs to be established since the initial study was restricted to only three species from the Amaryllidaceae. The effects of smoke-water (SW) and the smoke-derived compounds, karrikinolide (KAR1 ) and trimethylbutenolide (TMB) on pollen growth characteristics were evaluated in seven different plant families. Smoke-water (1:1000 and 1:2000 v:v) combined with either Brewbaker and Kwack's (BWK) medium or sucrose and boric acid (SB) medium significantly improved pollen germination and pollen tube growth in Aloe maculata All., Kniphofia uvaria Oken, Lachenalia aloides (L.f.) Engl. var. aloides and Tulbaghia simmleri P. Beauv. Karrikinolide (10(-6) and 10(-7) m) treatment significantly improved pollen tube growth in A. maculata, K. uvaria, L. aloides and Nematanthus crassifolius (Schott) Wiehle compared to the controls. BWK or SB medium containing TMB (10(-3) m) produced significantly longer pollen tubes in A. maculata, K. uvaria and N. crassifolius. These results indicate that plant-derived smoke and the smoke-isolated compounds may stimulate pollen growth in a wide range of plant species.

  8. Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase 1 in Tobacco Results in Sterol Overproduction.

    PubMed Central

    Schaller, H.; Grausem, B.; Benveniste, P.; Chye, M. L.; Tan, C. T.; Song, Y. H.; Chua, N. H.

    1995-01-01

    A genomic fragment encoding one (HMGR1) of the three 3-hydroxy-3-methylglutaryl coenzyme A reductases (HMGRs) from Hevea brasiliensis (H.B.K.) Mull. Arg. (M.-L. Chye, C.-T. Tan, N.-H. Chua [1992] Plant Mol Biol 19: 473-484) was introduced into Nicotiana tabacum L. cv xanthi via Agrobacterium transformation to study the influence of the hmg1 gene product on plant isoprenoid biosynthesis. Transgenic plants were morphologically indistinguishable from control wild-type plants and displayed the same developmental pattern. Transgenic lines showed an increase in the level of total sterols up to 6-fold, probably because of an increased expression level of hmg1 mRNA and a corresponding increased enzymatic activity for HMGR, when compared with the level of total sterols from control lines not expressing the hmg1 transgene. In addition to the pathway end products, campesterol, sitosterol, and stigmasterol, some biosynthetic intermediates such as cycloartenol also accumulated in transgenic tissues. Most of the overproduced sterols were detected as steryl-esters and were likely to be stored in cytoplasmic lipid bodies. These data strongly support the conclusion that plant HMGR is a key limiting enzyme in phytosterol biosynthesis. PMID:12228630

  9. Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots.

    PubMed

    Campagnac, Estelle; Fontaine, Joël; Sahraoui, Anissa Lounès-Hadj; Laruelle, Frédéric; Durand, Roger; Grandmougin-Ferjani, Anne

    2008-12-01

    Sterols composition of transformed carrot roots incubated in presence of increasing concentrations of fenpropimorph (0.02; 0.2; 2mgl(-1)) and fenhexamid (0.02; 0.2; 2; 20mgl(-1)), colonized or not by Glomus intraradices was determined. In mycorrhizal roots treated with fenpropimorph, normal Delta(5)-sterols were replaced by unusual compounds such as 9beta,19-cyclopropylsterols (24-methylpollinastanol), Delta(8,14)-sterols (ergosta-8,14-dienol, stigmasta-8,14-dienol), Delta(8)-sterols (Delta(8) sitosterol) and Delta(7)-sterols (ergosta-7,22-dienol). After application of fenpropimorph, a drastic reduction of the mycorrhizal root growth, root colonization and extraradical fungal development was observed. Application of fenhexamid did not modify sterol profiles and the total colonization of roots. But the arbuscule frequency of the fungal partner was significantly affected. Comparison of the effects caused by the tested fungicides indicates that the usual phytosterols may be involved in symbiosis development. Indeed, observed modifications of root sterols composition could explain the high fenpropimorph toxicity to the AM symbiosis. However, the absence of sterolic modifications in the roots treated with fenhexamid could account for its more limited impact on mycorrhization.

  10. Analysis of the action of euxanthone, a plant-derived compound that stimulates neurite outgrowth.

    PubMed

    Naidu, M; Kuan, C-Y K; Lo, W-L; Raza, M; Tolkovsky, A; Mak, N-K; Wong, R N-S; Keynes, R

    2007-09-21

    We have investigated the neurite growth-stimulating properties of euxanthone, a xanthone derivative isolated from the Chinese medicinal plant Polygala caudata. Euxanthone was shown to exert a marked stimulatory action on neurite outgrowth from chick embryo dorsal root ganglia explanted in collagen gels, in the absence of added neurotrophins. It was also shown to promote cell survival in explanted chick embryo ganglia, and to stimulate neurite outgrowth from isolated adult rat primary sensory neurons in vitro. The further finding that euxanthone stimulates neurite outgrowth from explants of chick embryo retina and ventral spinal cord suggests an action on signaling pathways downstream of neuronal receptors for specific neurotrophic factors. Consistent with this, euxanthone did not promote neurite outgrowth from non-transfected PC12 cells, or from PC12 cells transfected with TrkB or TrkC, under conditions in which these cells extended neurites in response to, respectively, the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3. Western blot analysis of euxanthone-stimulated dorsal root ganglion explants showed that expression of phospho-mitogen-activated protein (MAP) kinase was up-regulated after 1 h of euxanthone-treatment. Inhibition of the MAP kinase pathway using PD98059, a specific inhibitor of MAP kinase kinase, blocked all euxanthone-stimulated neurite outgrowth. However, analysis of phospho-Akt expression indicated that the phosphatidylinositol-3 kinase-Akt pathway, another major signaling pathway engaged by neurotrophins, is not significantly activated by euxanthone. These results suggest that euxanthone promotes neurite outgrowth by selectively activating the MAP kinase pathway.

  11. Quantification of bisphenol A, 353-nonylphenol and their chlorinated derivatives in drinking water treatment plants.

    PubMed

    Dupuis, Antoine; Migeot, Virginie; Cariot, Axelle; Albouy-Llaty, Marion; Legube, Bernard; Rabouan, Sylvie

    2012-11-01

    Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography-tandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3 ng/L for BPA and chlorinated BPA and from 1.4 to 63.0 ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7 ng/L and from 0 to 124.9 ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9 % and 2.2 to 100.0 % for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.

  12. The sterols of Cucurbita moschata ("calabacita") seed oil.

    PubMed

    Rodriguez, J B; Gros, E G; Bertoni, M H; Cattaneo, P

    1996-11-01

    From the sterol fraction of seed oil from commercial Cucurbita moschata Dutch ("calabacita") delta 5 and delta 7 sterols having saturated and unsaturated side chain were isolated by chromatographic procedures and characterized by spectroscopic (1H and 13C-nuclear magnetic resonance, mass spectrometry) methods. The main components were identified as 24S-ethyl 5 alpha-cholesta-7,22E-dien-3 beta-ol (alpha-spinasterol); 24S-ethyl 5 alpha-cholesta-7,22E,25-trien-3 beta-ol (25-dehydrochondrillasterol); 24S-ethyl 5 alpha-cholesta-7,25-dien-3 beta-ol; 24R-ethyl-cholesta-7-en-3 beta-ol (delta 7-stigmastenol) and 24-ethyl-cholesta-7, 24(28)-dien-3 beta-ol (delta 7,24(28)-stigmastadienol).

  13. Risks and benefits of marginal biomass-derived biochars for plant growth.

    PubMed

    Buss, Wolfram; Graham, Margaret C; Shepherd, Jessica G; Mašek, Ondřej

    2016-11-01

    In this study, 19 biochars from marginal biomass, representing all major biomass groups (woody materials, grass, an aquatic plant, anthropogenic wastes) were investigated regarding their content of available potentially toxic elements (PTEs) and nutrients (determined by NH4NO3-extractions) and their effects on cress (Lepidium sativum) seedling growth. The objective was to assess the potential and actual effects of biochar with increased PTE content on plant growth in the context of use in soil amendments and growing media. It showed that the percentage of available PTEs was highest for biochars produced at the highest treatment temperature (HTT) of 750°C. On average, however, for all 19 biochars, the percentage availability of Cu, Cr, Ni and Zn (<1.5% for all) was similar to the percentage availability reported in the literature for the same elements in soils at similar pH values which is a highly important finding. Most biochars exceeded German soil threshold values for NH4NO3-extractable PTEs, such as Zn (by up to 25-fold), As and Cd. Despite this, cress seedling growth tests with 5% biochar in sand did not show any correlations between inhibitory effects (observed in 5 of the 19 biochars) and the available PTE concentrations. Instead, the available K concentration and biochar pH were highly significantly, negatively correlated with seedling growth (K: p<0.001, pH: p=0.004). K had the highest available concentration of all elements and the highest percentage availability (47.7±19.7% of the total K was available). Consequently, available K contributed most to the osmotic pressure and high pH which negatively affected the seedlings. Although a potential risk if some of these marginal biomass-derived biochar were applied at high concentrations, e.g. 5% (>100tha(-1)), when applied at agriculturally realistic application rates (1-10tha(-1)), the resulting smaller increases in pH and available K concentration may actually be beneficial for plant growth. PMID:27362631

  14. [Sterol extracts from Begonia Sinensis Rhizome against respiratory inflammation].

    PubMed

    Yao, Yong; Jiang, Wei; Li, Yu-shan

    2015-08-01

    The acute and chronic respiratory tract inflammation models were made to investigate the effect and mechanism of sterol extracts from Begonia Sinensis Rhizome (BSR). The first model of acute lung injury was made with Kunming mice by inhaling cigarette smoke, then the mice were treated with different concentrations of BSR sterol extracts. Lung tissue morphology was detected by HE staining, TNF-alpha/MPO were detected by Elisa, and cPLA2 protein were, detected by Western blotting respectively. Results showed that in model group, lung sheet became real, alveolar space shrank or disappeared, alveolar septum was thickened, plenty of inflammatory cells were infiltrated, capillary blood vessels were congestive and the expression of TNF-α, MPO, cPLA2 increased; after administration, a small amount of inflammatory cells were infiltrated, alveolar septum became obvious, capillary congestion status was significantly relieved and the expression of TNF-α, MPO, cPLA2 decreased (P < 0.05). The second model of chronic respiratory tract inflammation in BALB/c mice with bronchial asthma was induced by OVA, then the mice were treated with different concentrations of BSR sterol extracts. Lung tissue morphology was detected by HE staining, indexes such as IL-4, IL-5, IL-13 were detected by Elisa, and the cPLA2 protein expression was detected by Western blotting respectively. Results showed that in model group, a lot of inflammatory cells around lung vessels and bronchi exuded, bronchial goblet cells proliferated and the expression of IL-4, IL-5, IL-13, cPLA2 increased; after administration, inflammatory and goblet cell hyperplasia reduced, the expression of IL-4, IL-5, IL-13, cPLA2 also decreased (P < 0.05). The above results showed BSR sterol extracts could resist against respiratory inflammation by inhibiting cPLA2 in a dose-dependent manner.

  15. Relative abundance of Delta(5)-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice.

    PubMed

    Khan, M Shahadat Hossain; Tawaraya, Keitarou; Sekimoto, Hiroshi; Koyama, Hiroyuki; Kobayashi, Yuriko; Murayama, Tetsuya; Chuba, Masaru; Kambayashi, Mihoko; Shiono, Yoshihito; Uemura, Matsuo; Ishikawa, Satoru; Wagatsuma, Tadao

    2009-01-01

    We investigated variations in aluminum (Al) tolerance among rice plants, using ancestor cultivars from the family line of the Al-tolerant and widely cultivated Japonica cultivar, Sasanishiki. The cultivar Rikuu-20 was Al sensitive, whereas a closely related cultivar that is a descendant of Rikuu-20, Rikuu-132, was Al tolerant. These two cultivars were compared to determine mechanisms underlying variations in Al tolerance. The sensitive cultivar Rikuu-20 showed increased permeability of the plasma membrane (PM) and greater Al uptake within 1 h of Al treatment. This could not be explained by organic acid release. Lipid composition of the PM differed between these cultivars, and may account for the difference in Al tolerance. The tolerant cultivar Rikuu-132 had a lower ratio of phospholipids to Delta(5)-sterols than the sensitive cultivar Rikuu-20, suggesting that the PM of Rikuu-132 is less negatively charged and less permeabilized than that of Rikuu-20. We used inhibitors of Delta(5)-sterol synthesis to alter the ratio of phospholipids to Delta(5)-sterols in both cultivars. These inhibitors reduced Al tolerance in Rikuu-132 and its Al-tolerant ancestor cultivars Kamenoo and Kyoku. In addition, Rikuu-132 showed a similar level of Al sensitivity when the ratio of phospholipids to Delta(5)-sterols was increased to match that of Rikuu-20 after treatment with uniconazole-P, an inhibitor of obtusifoliol-14alpha-demethylase. These results indicate that PM lipid composition is a factor underlying variations in Al tolerance among rice cultivars.

  16. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites.

    PubMed

    Barajas, Daniel; Xu, Kai; de Castro Martín, Isabel Fernández; Sasvari, Zsuzsanna; Brandizzi, Federica; Risco, Cristina; Nagy, Peter D

    2014-10-01

    Viruses recruit cellular membranes and subvert cellular proteins involved in lipid biosynthesis to build viral replicase complexes and replication organelles. Among the lipids, sterols are important components of membranes, affecting the shape and curvature of membranes. In this paper, the tombusvirus replication protein is shown to co-opt cellular Oxysterol-binding protein related proteins (ORPs), whose deletion in yeast model host leads to decreased tombusvirus replication. In addition, tombusviruses also subvert Scs2p VAP protein to facilitate the formation of membrane contact sites (MCSs), where membranes are juxtaposed, likely channeling lipids to the replication sites. In all, these events result in redistribution and enrichment of sterols at the sites of viral replication in yeast and plant cells. Using in vitro viral replication assay with artificial vesicles, we show stimulation of tombusvirus replication by sterols. Thus, co-opting cellular ORP and VAP proteins to form MCSs serves the virus need to generate abundant sterol-rich membrane surfaces for tombusvirus replication.

  17. Structural complex of sterol 14[alpha]-demethylase (CYP51) with 14[alpha]-methylenecyclopropyl-[delta]7-24, 25-dihydrolanosterol[S

    SciTech Connect

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Waterman, Michael R.; Nes, W. David; Lepesheva, Galina I.

    2012-06-28

    Sterol 14{alpha}-demethylase (CYP51) that catalyzes the removal of the 14{alpha}-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14{alpha}-methylenecyclopropyl-{Delta}7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.

  18. Sterol 14 alpha-demethylase, an abundant and essential mixed-function oxidase.

    PubMed

    Waterman, Michael R; Lepesheva, Galina I

    2005-12-01

    Sterol 14alpha-demethylase (CYP51) is the most widely distributed of all members of the cytochrome P450 gene superfamily and the only CYP family found in both prokaryotes and eukaryotes. It is well known as a drug target for microbial pathogenic infections. Studies of CYP51 gene regulation have been carried out primarily in animals because its regulation is similar to those of other genes involved in the cholesterol biosynthetic pathway. The function of CYP51 has been studied widely throughout biology including in animals, plants, yeast/fungi, protozoa, and bacteria. The structure has been determined by X-ray crystallography for the soluble prokaryotic form of CYP51 from Mycobacterium tuberculosis. Together these studies provide the most detailed understanding of any single cytochrome P450 and this minireview summarizes this information.

  19. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  20. Attenuation of Leishmania infantum chagasi Metacyclic Promastigotes by Sterol Depletion

    PubMed Central

    Gaur Dixit, Upasna; Barker, Jason H.; Teesch, Lynn M.; Love-Homan, Laurie; Donelson, John E.; Wilson, Mary E.

    2013-01-01

    The infectious metacyclic promastigotes of Leishmania protozoa establish infection in a mammalian host after they are deposited into the dermis by a sand fly vector. Several Leishmania virulence factors promote infection, including the glycosylphosphatidylinositol membrane-anchored major surface protease (MSP). Metacyclic Leishmania infantum chagasi promastigotes were treated with methyl-beta-cyclodextrin (MβCD), a sterol-chelating reagent, causing a 3-fold reduction in total cellular sterols as well as enhancing MSP release without affecting parasite viability in vitro. MβCD-treated promastigotes were more susceptible to complement-mediated lysis than untreated controls and reduced the parasite load 3-fold when inoculated into BALB/c mice. Paradoxically, MβCD-treated promastigotes caused a higher initial in vitro infection rate in human or murine macrophages than untreated controls, although their intracellular multiplication was hindered upon infection establishment. There was a corresponding larger amount of covalently bound C3b than iC3b on the parasite surfaces of MβCD-treated promastigotes exposed to healthy human serum in vitro, as well as loss of MSP, a protease that enhances C3b cleavage to iC3b. Mass spectrometry showed that MβCD promotes the release of proteins into the extracellular medium, including both MSP and MSP-like protein (MLP), from virulent metacyclic promastigotes. These data support the hypothesis that plasma membrane sterols are important for the virulence of Leishmania protozoa at least in part through retention of membrane virulence proteins. PMID:23630964

  1. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  2. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

    PubMed Central

    Ojha, Shreesh; Al Taee, Hasan; Goyal, Sameer; Mahajan, Umesh B.; Patil, Chandrgouda R.; Arya, D. S.; Rajesh, Mohanraj

    2016-01-01

    Doxorubicin (DOX) is a potent and widely used anthracycline antibiotic for the treatment of several malignancies. Unfortunately, the clinical utility of DOX is often restricted due to the elicitation of organ toxicity. Particularly, the increased risk for the development of dilated cardiomyopathy by DOX among the cancer survivors warrants major attention from the physicians as well as researchers to develop adjuvant agents to neutralize the noxious effects of DOX on the healthy myocardium. Despite these pitfalls, the use of traditional cytotoxic drugs continues to be the mainstay treatment for several types of cancer. Recently, phytochemicals have gained attention for their anticancer, chemopreventive, and cardioprotective activities. The ideal cardioprotective agents should not compromise the clinical efficacy of DOX and should be devoid of cumulative or irreversible toxicity on the naïve tissues. Furthermore, adjuvants possessing synergistic anticancer activity and quelling of chemoresistance would significantly enhance the clinical utility in combating DOX-induced cardiotoxicity. The present review renders an overview of cardioprotective effects of plant-derived small molecules and their purported mechanisms against DOX-induced cardiotoxicity. Phytochemicals serve as the reservoirs of pharmacophore which can be utilized as templates for developing safe and potential novel cardioprotective agents in combating DOX-induced cardiotoxicity. PMID:27313831

  3. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols

    PubMed Central

    Encinar, José Antonio; Fernández-Ballester, Gregorio; Galiano-Ibarra, Vicente; Micol, Vicente

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a well-characterized member of the PPAR family that is predominantly expressed in adipose tissue and plays a significant role in lipid metabolism, adipogenesis, glucose homeostasis, and insulin sensitization. Full agonists of synthetic thiazolidinediones (TZDs) have been therapeutically used in clinical practice to treat type 2 diabetes for many years. Although it can effectively lower blood glucose levels and improve insulin sensitivity, the administration of TZDs has been associated with severe side effects. Based on recent evidence obtained with plant-derived polyphenols, the present in silico study aimed at finding new selective human PPARγ (hPPARγ) modulators that are able to improve glucose homeostasis with reduced side effects compared with TZDs. Docking experiments have been used to select compounds with strong binding affinity (ΔG values ranging from −10.0±0.9 to −11.4±0.9 kcal/mol) by docking against the binding site of several X-ray structures of hPPARγ. These putative modulators present several molecular interactions with the binding site of the protein. Additionally, most of the selected compounds have favorable druggability and good ADMET properties. These results aim to pave the way for further bench-scale analysis for the discovery of new modulators of hPPARγ that do not induce any side effects. PMID:26604687

  4. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum.

    PubMed

    Teichmann, Klaus; Kuliberda, Maxime; Schatzmayr, Gerd; Pacher, Thomas; Zitterl-Eglseer, Karin; Joachim, Anja; Hadacek, Franz

    2016-01-01

    Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250-500 μg mL(-1), IC50 = 361 (279-438) μg mL(-1), IC90 = 467 (398-615) μg mL(-1)). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds.

  5. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum

    PubMed Central

    Teichmann, Klaus; Kuliberda, Maxime; Schatzmayr, Gerd; Pacher, Thomas; Zitterl-Eglseer, Karin; Joachim, Anja; Hadacek, Franz

    2016-01-01

    Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250–500 μg mL−1, IC50 = 361 (279–438) μg mL−1, IC90 = 467 (398–615) μg mL−1). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds. PMID:27627637

  6. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp. PMID:25062020

  7. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    PubMed

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

  8. Isolation of a new bioactive cinnamic acid derivative from the whole plant of Viola betonicifolia.

    PubMed

    Muhammad, Naveed; Saeed, Muhammad; Adhikari, Achyut; Khan, Khalid Muhammad; Khan, Haroon

    2013-10-01

    A new cinnamic acid derivative was isolated from the whole plant of Viola betonicifolia as off white needle. On the basis of various modern spectroscopic techniques including HREI-MS and 1D and 2D NMR, its structure was elucidated as 2,4-dihydroxy, 5-methoxy-cinnamic acid. It showed marked inhibition against DPPH (diphenyl-2-picryl hydrazyl) free radicals with IC50 = 124 ± 5.76 µM. The antioxidant property of the compound was compared with α-tocopherole and vitamin C having IC50 values 96 ± 0.46 and 90 ± 0.56 µM, respectively. In case of antiglycation assay, the compound exhibited moderate activity (IC50 = 355 ± 7.56 µM) similar to standard compound, rutin (IC50 = 294 ± 0.56 µM). However, it was non-toxic to PC-3 cell line. It is concluded that 2,4-dihydroxy, 5-methoxy-cinnamic acid has antiglycation potential which was further augmented by its antioxidant activity and thus offered an ideal natural therapeutic option for the effective management of diabetes.

  9. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  10. Plant-Derived Tick Repellents Activate the Honey Bee Ectoparasitic Mite TRPA1.

    PubMed

    Peng, Guangda; Kashio, Makiko; Morimoto, Tomomi; Li, Tianbang; Zhu, Jingting; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2015-07-14

    We have identified and characterized the TRPA1 channel of Varroa destructor (VdTRPA1), a major ectoparasitic mite of honey bee. One of the two VdTRPA1 isoforms, VdTRPA1L, was activated by a variety of plant-derived compounds, including electrophilic compounds, suggesting that chemical activation profiles are mostly shared between arthropod TRPA1 channels. Nevertheless, carvacrol and α-terpineol activated VdTRPA1L but not a honey bee noxious-stimuli-sensitive TRPA, AmHsTRPA, and Drosophila melanogaster TRPA1. Activation of VdTRPA1L in D. melanogaster taste neurons by the above compounds was sufficient to modify the gustatory behaviors. Carvacrol and α-terpineol repelled V. destructor in a laboratory assay, and α-terpineol repressed V. destructor entry for reproduction into the brood cells in hives. Understanding the functions of parasite TRP channels not only gives clues about the evolving molecular and cellular mechanisms of parasitism but also helps in the development of control methods.

  11. In vitro inhibitory effects of plant-derived by-products against Cryptosporidium parvum.

    PubMed

    Teichmann, Klaus; Kuliberda, Maxime; Schatzmayr, Gerd; Pacher, Thomas; Zitterl-Eglseer, Karin; Joachim, Anja; Hadacek, Franz

    2016-01-01

    Disposal of organic plant wastes and by-products from the food or pharmaceutical industries usually involves high costs. In the present study, 42 samples derived from such by-products were screened in vitro against Cryptosporidium parvum, a protozoan parasite that may contaminate drinking water and cause diarrhoea. The novel bioassay was previously established in the microtitre plate format. Human ileocaecal adenocarcinoma (HCT-8) cell cultures were seeded with C. parvum oocysts and parasite development was monitored by an indirect fluorescent antibody technique (IFAT) and microscopic assessment for clusters of secondary infection (CSI). Minimum inhibitory concentrations (MICs) and potential detrimental effects on the host cells were determined. An ethanolic extract from olive (Olea europaea) pomace, after oil pressing and phenol recovery, reproducibly inhibited C. parvum development (MIC = 250-500 μg mL(-1), IC50 = 361 (279-438) μg mL(-1), IC90 = 467 (398-615) μg mL(-1)). Accordingly, tyrosol, hydroxytyrosol, trans-coniferyl alcohol and oleuropein were selected as reference test compounds, but their contributions to the observed activity of the olive pomace extract were insignificant. The established test system proved to be a fast and efficient assay for identifying anti-cryptosporidial activities in biological waste material and comparison with selected reference compounds. PMID:27627637

  12. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids.

    PubMed

    McAllister, Sean D; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-06-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ(9)-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment. PMID:25916739

  13. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    SciTech Connect

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  14. In silico approach for the discovery of new PPARγ modulators among plant-derived polyphenols.

    PubMed

    Encinar, José Antonio; Fernández-Ballester, Gregorio; Galiano-Ibarra, Vicente; Micol, Vicente

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a well-characterized member of the PPAR family that is predominantly expressed in adipose tissue and plays a significant role in lipid metabolism, adipogenesis, glucose homeostasis, and insulin sensitization. Full agonists of synthetic thiazolidinediones (TZDs) have been therapeutically used in clinical practice to treat type 2 diabetes for many years. Although it can effectively lower blood glucose levels and improve insulin sensitivity, the administration of TZDs has been associated with severe side effects. Based on recent evidence obtained with plant-derived polyphenols, the present in silico study aimed at finding new selective human PPARγ (hPPARγ) modulators that are able to improve glucose homeostasis with reduced side effects compared with TZDs. Docking experiments have been used to select compounds with strong binding affinity (ΔG values ranging from -10.0±0.9 to -11.4±0.9 kcal/mol) by docking against the binding site of several X-ray structures of hPPARγ. These putative modulators present several molecular interactions with the binding site of the protein. Additionally, most of the selected compounds have favorable druggability and good ADMET properties. These results aim to pave the way for further bench-scale analysis for the discovery of new modulators of hPPARγ that do not induce any side effects. PMID:26604687

  15. The antitumor activity of plant-derived non-psychoactive cannabinoids

    PubMed Central

    McAllister, Sean D.; Soroceanu, Liliana; Desprez, Pierre-Yves

    2015-01-01

    As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer stem cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment. PMID:25916739

  16. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study was conducted to investigate the effects of dietary plant-derived phytonutrients, carvacrol, cinnamaldehyde and Capsicum oleoresin, on the translational regulation of genes associated with immunology, physiology and metabolism using high-throughput microarray analysis and in vivo d...

  17. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways.

    PubMed

    Kier, Larry D; Petrick, Jay S

    2008-08-01

    The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.

  18. Conversion of Exogenous Cholesterol into Glycoalkaloids in Potato Shoots, Using Two Methods for Sterol Solubilisation

    PubMed Central

    Petersson, Erik V.; Nahar, Nurun; Dahlin, Paul; Broberg, Anders; Tröger, Rikard; Dutta, Paresh C.; Jonsson, Lisbeth; Sitbon, Folke

    2013-01-01

    Steroidal glycoalkaloids (SGA) are toxic secondary metabolites naturally occurring in the potato, as well as in certain other Solanaceous plant species, such as tomato, eggplant and pepper. To investigate the steroidal origin of SGA biosynthesis, cut potato shoots were fed cholesterol labelled with deuterium (D) in the sterol ring structure (D5- or D6-labelled), or side chain (D7-labelled), and analysed after three or five weeks. The labelled cholesterol and presence of D-labelled SGA were analysed by GC-MS and LC-MS/MS, respectively. When feeding D-labelled cholesterol solubilised in Tween-80, labelled cholesterol in free form became present in both leaves and stems, although the major part was recovered as steryl esters. Minor amounts of D-labelled SGA (α-solanine and α-chaconine) were identified in cholesterol-treated shoots, but not in blank controls, or in shoots fed D6-27-hydroxycholesterol. Solubilising the labelled cholesterol in methyl-β-cyclodextrin instead of Tween-80 increased the levels of labelled SGA up to 100-fold, and about 1 mole% of the labelled cholesterol was recovered as labelled SGA in potato leaves. Both side chain and ring structure D labels were retained in SGA, showing that the entire cholesterol molecule is converted to SGA. However, feeding side chain D7-labelled cholesterol resulted in D5-labelled SGA, indicating that two hydrogen atoms were released during formation of the SGA nitrogen-containing ring system. Feeding with D7-sitosterol did not produce any labelled SGA, indicating that cholesterol is a specific SGA precursor. In conclusion, we have demonstrated a superior performance of methyl-β-cyclodextrin for delivery of cholesterol in plant tissue feeding experiments, and given firm evidence for cholesterol as a specific sterol precursor of SGA in potato. PMID:24349406

  19. The structure of the human sterol carrier protein X/sterol carrier protein 2 gene (SCP2)

    SciTech Connect

    Ohba, Takashi; Rennert, H.; Pfeifer, S.M.

    1994-11-15

    Sterol carrier protein X (SCPx) is a 58-kDa protein that is localized to peroxisomes. The amino acid sequence of the protein suggests that SCPx may function as a thiolase. The gene encoding SCPx also codes for a 15.3-kDa protein called sterol carrier protein 2 (SCP{sub 2}). Here the authors report the structure of this gene (SCP2), which spans approximately 80 kb and consists of 16 exons and 15 introns. Multiple transcription start sites were identified. The 5{prime} flanking region has characteristics of other peroxisomal protein promoters, which include the absence of a TATA box and G+C-enriched region containing several reverse GC boxes. 24 refs., 3 figs., 1 tab.

  20. Stable isotope analysis of plant-derived nitrate - novel method for discrimination between organically and conventionally grown vegetables.

    PubMed

    Mihailova, A; Pedentchouk, N; Kelly, S D

    2014-07-01

    The lack of reliable markers for the discrimination between organic and conventional products makes the organic food market susceptible to attempted fraud. Robust analytical methodologies for organic food authentication are urgently needed. In this study a new approach, compound-specific nitrogen and oxygen isotope analysis of plant-derived nitrate, has been applied alongside bulk nitrogen isotope analysis for discrimination between organically and conventionally greenhouse-grown lettuce and retail potatoes and tomatoes. The method revealed significant differences between conventional and organic fertilisation. An intra-plant isotopic variation as well as significant impact of the fertiliser application rate on the nitrogen and oxygen isotope values of plant-derived nitrate has been observed. Nitrogen and oxygen isotope analysis of nitrate has a potential for differentiation between organic and conventional crops. Further analysis is needed to improve our understanding of the scope of application and robustness of this compound-specific approach. PMID:24518338

  1. Stable isotope analysis of plant-derived nitrate - novel method for discrimination between organically and conventionally grown vegetables.

    PubMed

    Mihailova, A; Pedentchouk, N; Kelly, S D

    2014-07-01

    The lack of reliable markers for the discrimination between organic and conventional products makes the organic food market susceptible to attempted fraud. Robust analytical methodologies for organic food authentication are urgently needed. In this study a new approach, compound-specific nitrogen and oxygen isotope analysis of plant-derived nitrate, has been applied alongside bulk nitrogen isotope analysis for discrimination between organically and conventionally greenhouse-grown lettuce and retail potatoes and tomatoes. The method revealed significant differences between conventional and organic fertilisation. An intra-plant isotopic variation as well as significant impact of the fertiliser application rate on the nitrogen and oxygen isotope values of plant-derived nitrate has been observed. Nitrogen and oxygen isotope analysis of nitrate has a potential for differentiation between organic and conventional crops. Further analysis is needed to improve our understanding of the scope of application and robustness of this compound-specific approach.

  2. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.

    PubMed

    2008-03-01

    In this report the various elements of the safety and nutritional assessment procedure for genetically modified (GM) plant derived food and feed are discussed, in particular the potential and limitations of animal feeding trials for the safety and nutritional testing of whole GM food and feed. The general principles for the risk assessment of GM plants and derived food and feed are followed, as described in the EFSA guidance document of the EFSA Scientific Panel on Genetically Modified Organisms. In Section 1 the mandate, scope and general principles for risk assessment of GM plant derived food and feed are discussed. Products under consideration are food and feed derived from GM plants, such as maize, soybeans, oilseed rape and cotton, modified through the introduction of one or more genes coding for agronomic input traits like herbicide tolerance and/or insect resistance. Furthermore GM plant derived food and feed, which have been obtained through extensive genetic modifications targeted at specific alterations of metabolic pathways leading to improved nutritional and/or health characteristics, such as rice containing beta-carotene, soybeans with enhanced oleic acid content, or tomato with increased concentration of flavonoids, are considered. The safety assessment of GM plants and derived food and feed follows a comparative approach, i.e. the food and feed are compared with their non-GM counterparts in order to identify intended and unintended (unexpected) differences which subsequently are assessed with respect to their potential impact on the environment, safety for humans and animals, and nutritional quality. Key elements of the assessment procedure are the molecular, compositional, phenotypic and agronomic analysis in order to identify similarities and differences between the GM plant and its near isogenic counterpart. The safety assessment is focussed on (i) the presence and characteristics of newly expressed proteins and other new constituents and possible

  3. Sterol O-Acyltransferase 2-Driven Cholesterol Esterification Opposes Liver X Receptor-Stimulated Fecal Neutral Sterol Loss.

    PubMed

    Warrier, Manya; Zhang, Jun; Bura, Kanwardeep; Kelley, Kathryn; Wilson, Martha D; Rudel, Lawrence L; Brown, J Mark

    2016-02-01

    Statin drugs have proven a successful and relatively safe therapy for the treatment of atherosclerotic cardiovascular disease (CVD). However, even with the substantial low-density lipoprotein (LDL) cholesterol lowering achieved with statin treatment, CVD remains the top cause of death in developed countries. Selective inhibitors of the cholesterol esterifying enzyme sterol-O acyltransferase 2 (SOAT2) hold great promise as effective CVD therapeutics. In mouse models, previous work has demonstrated that either antisense oligonucleotide (ASO) or small molecule inhibitors of SOAT2 can effectively reduce CVD progression, and even promote regression of established CVD. Although it is well known that SOAT2-driven cholesterol esterification can alter both the packaging and retention of atherogenic apoB-containing lipoproteins, here we set out to determine whether SOAT2-driven cholesterol esterification can also impact basal and liver X receptor (LXR)-stimulated fecal neutral sterol loss. These studies demonstrate that SOAT2 is a negative regulator of LXR-stimulated fecal neutral sterol loss in mice. PMID:26729489

  4. Bioactive sterols from marine resources and their potential benefits for human health.

    PubMed

    Kim, Se-Kwon; Van Ta, Quang

    2012-01-01

    Bioactive agents from marine resources have shown their valuable health beneficial effects. Therefore, increase knowledge on novel functional ingredients with biological activities from marine animal and microbe has gained much attention. Sterols are recognized as potential in development functional food ingredients and pharmaceutical agents. Marine resources, with a great diversity, can be a very interesting natural resource of sterols. This chapter focuses on biological activities of marine animal and microbe sterols with potential health beneficial applications in functional foods and pharmaceuticals.

  5. Reliance on prey-derived nitrogen by the carnivorous plant Drosera rotundifolia decreases with increasing nitrogen deposition.

    PubMed

    Millett, J; Svensson, B M; Newton, J; Rydin, H

    2012-07-01

    • Carnivory in plants is presumed to be an adaptation to a low-nutrient environment. Nitrogen (N) from carnivory is expected to become a less important component of the N budget as root N availability increases. • Here, we investigated the uptake of N via roots versus prey of the carnivorous plant Drosera rotundifolia growing in ombrotrophic bogs along a latitudinal N deposition gradient through Sweden, using a natural abundance stable isotope mass balance technique. • Drosera rotundifolia plants receiving the lowest level of N deposition obtained a greater proportion of N from prey (57%) than did plants on bogs with higher N deposition (22% at intermediate and 33% at the highest deposition). When adjusted for differences in plant mass, this pattern was also present when considering total prey N uptake (66, 26 and 26 μg prey N per plant at the low, intermediate and high N deposition sites, respectively). The pattern of mass-adjusted root N uptake was opposite to this (47, 75 and 86 μg N per plant). • Drosera rotundifolia plants in this study switched from reliance on prey N to reliance on root-derived N as a result of increasing N availability from atmospheric N deposition.

  6. Reliance on prey-derived nitrogen by the carnivorous plant Drosera rotundifolia decreases with increasing nitrogen deposition.

    PubMed

    Millett, J; Svensson, B M; Newton, J; Rydin, H

    2012-07-01

    • Carnivory in plants is presumed to be an adaptation to a low-nutrient environment. Nitrogen (N) from carnivory is expected to become a less important component of the N budget as root N availability increases. • Here, we investigated the uptake of N via roots versus prey of the carnivorous plant Drosera rotundifolia growing in ombrotrophic bogs along a latitudinal N deposition gradient through Sweden, using a natural abundance stable isotope mass balance technique. • Drosera rotundifolia plants receiving the lowest level of N deposition obtained a greater proportion of N from prey (57%) than did plants on bogs with higher N deposition (22% at intermediate and 33% at the highest deposition). When adjusted for differences in plant mass, this pattern was also present when considering total prey N uptake (66, 26 and 26 μg prey N per plant at the low, intermediate and high N deposition sites, respectively). The pattern of mass-adjusted root N uptake was opposite to this (47, 75 and 86 μg N per plant). • Drosera rotundifolia plants in this study switched from reliance on prey N to reliance on root-derived N as a result of increasing N availability from atmospheric N deposition. PMID:22506640

  7. Camphene, a Plant Derived Monoterpene, Exerts Its Hypolipidemic Action by Affecting SREBP-1 and MTP Expression

    PubMed Central

    Vallianou, Ioanna; Hadzopoulou-Cladaras, Margarita

    2016-01-01

    The control of hyperlipidemia plays a central role in cardiovascular disease. Previously, we have shown that camphene, a constituent of mastic gum oil, lowers cholesterol and triglycerides (TG) in the plasma of hyperlipidemic rats without affecting HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. In the present study, we examine the mechanism by which camphene exerts its hypolipidemic action. We evaluated the effect of camphene on the de novo synthesis of cholesterol and TG from [14C]-acetate in HepG2 cells, along with the statin mevinolin. Camphene inhibited the biosynthesis of cholesterol in a concentration-dependent manner, and a maximal inhibition of 39% was observed at 100 μM while mevinolin nearly abolished cholesterol biosynthesis. Moreover, treatment with camphene reduced TG by 34% and increased apolipoprotein AI expression. In contrast, mevinolin increased TG by 26% and had a modest effect on apolipoprotein AI expression. To evaluate the mode of action of camphene, we examined its effects on the expression of SREBP-1, which affects TG biosynthesis and SREBP-2, which mostly affects sterol synthesis. Interestingly, camphene increased the nuclear translocation of the mature form of SREBP-1 while mevinolin was found to increase the amount of the mature form of SREBP-2. The effect of camphene is most likely regulated through SREBP-1 by affecting MTP levels in response to a decrease in the intracellular cholesterol. We propose that camphene upregulates SREBP-1 expression and MTP inhibition is likely to be a probable mechanism whereby camphene exerts its hypolipidemic effect. PMID:26784701

  8. Availability Of Deep Groundwater-Derived CO2 For Plant Uptake In A Costa Rican Rainforest

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Genereux, D. P.; Osburn, C. L.; Dierick, D.; Oviedo Vargas, D.

    2014-12-01

    The role of export of carbon via surface waters has been increasingly appreciated as an important component of ecosystem carbon budgets. However the role of deep regional groundwater as a source of carbon to ecosystems is relatively poorly known. In a lowland rainforest in Costa Rica, inputs of elevated dissolved inorganic C (DIC) in regional groundwater greatly increase stream water C concentrations. Whether that groundwater-derived carbon represents a significant source of elevated CO2 for photosynthesis of riparian plants is unknown. We compared the concentration and δ13C of CO2 in the air above two weir-equipped streams with different inputs of high-DIC regional groundwater. The Taconazo has no inputs, whereas about 40% of stream discharge of the Arboleda is a result of regional groundwater. DIC from regional groundwater experiences little to no within-watershed sequestration and thus augments the C flux out of the watershed with stream flow and possibly the degassing flux from the stream. CO2 concentrations were recorded by Vaisala GMP343 gas analyzer over 24 hr periods above the weirs and in the splash zone below the weirs as well as at a small waterfall on the Sura, the higher order stream that the Arboleda joins, approximately 250 m downstream of the junction. Samples of air δ13C-CO2 taken from unmixed (early morning) and mixed (afternoon) canopy air were measured by mass spectrometer. Concentrations of CO2 at both sites on the Taconozo remained in the normal range of canopy storage of respiratory CO2 (< 600 ppm). In contrast, [CO2] above the Arboleda weir occasionally exceeded 1000 ppm and were generally above normal values of respiratory CO2. Values below the weir by the splash zone were often higher than 1500 ppm and occasionally exceeded 2000 ppm. At the Sura waterfall pulses of high CO2 > 1000 ppm occurred regularly throughout the day. We found higher δ13C-CO2 above the Arboleda compared to the Taconazo, consistent with an enhanced flux of

  9. New phenyl derivatives from endophytic fungus Botryosphaeria sp. SCSIO KcF6 derived of mangrove plant Kandelia candel.

    PubMed

    Ju, Zhi-ran; Qin, Xiaochu; Lin, Xiu-ping; Wang, Jun-feng; Kaliyaperumal, Kumaravel; Tian, Yong-qi; Liu, Juan; Liu, Fen; Tu, Zhengchao; Xu, Shi-hai; Liu, Yonghong

    2016-01-01

    Two new phenyl derivatives (1 and 3), along with two new natural products (4 and 5), and three known compounds (2, 6 and 7), were isolated from an endophytic fungus Botryosphaeria sp. SCSIO KcF6. The structures of these compounds 1-7 were elucidated by the extensive 1D and 2D-NMR and HRESIMS Data analysis, and compared with those of reported data. The absolute configuration of the compounds 1 and 3 were assigned by optical rotation and CD data. The isolated compounds were evaluated for their cytotoxic, anti-inflammatory (COX-2) and antimicrobial activities. Compound 3 exhibited a specific COX-2 inhibitory activity with the IC50 value of 1.12 μM.

  10. Molecular genetics of the Smith-Lemli-Opitz syndrome and postsqualene sterol metabolism.

    PubMed

    Fitzky, B U; Glossmann, H; Utermann, G; Moebius, F F

    1999-04-01

    The Smith-Lemli-Opitz syndrome is a disorder of morphogenesis resulting from an enzymatic defect in the last step of cholesterol metabolism (reduction of 7-dehydrocholesterol). Analysis of the defective gene and identification of mutations therein have paved the way for the study of the molecular genetics of the disorder which is caused by numerous different mutations. Future efforts should identify a postulated intracellular signalling activity of sterol intermediates, isolate proteins that govern the sterol traffic between intracellular compartments, structurally characterize the enzyme delta 7-sterol reductase defective in the Smith-Lemli-Opitz syndrome and investigate the pathomechanism of sterol depletion-induced dysmorphogenesis. PMID:10327280

  11. Some studies on the biosynthesis of ubiquinone, isoprenoid alcohols, squalene and sterols by marine invertebrates

    PubMed Central

    Walton, M. J.; Pennock, J. F.

    1972-01-01

    The ability of fourteen marine invertebrates to utilize [14C]mevalonate for the biosynthesis of isoprenoid compounds was investigated. Several of the animals, in particular crustaceans, bivalve molluscs, a coelenterate and a sponge, were unable to synthesize squalene and sterols, whereas gastropod molluscs, echinoderms, an annelid and a sponge could. Regardless of sterol-synthesizing ability the animals (with the exception of a sponge) always made dolichol and ubiquinone, and thus a specific block in squalene and sterol synthesis was indicated in some animals. Radioactivity accumulated in relatively large amounts in farnesol and geranylgeraniol in those animals incapable of making sterols. PMID:4403925

  12. [Sources, Migration and Conversion of Dissolved Sterols in Qingmuguan Underground River].

    PubMed

    Liang, Zuo-bing; Shen, Li-cheng; Sun, Yu-chuan; Wang, Zun-bo; Jiang, Ze-li; Zhang Mei; LIAO, Yu; Xie, Zheng-lan; Zhang, Yuan-zhu

    2015-11-01

    Water samples were collected from the Qinmuguan underground river from July to November in 2013. By gas chromatography-mass spectrometer (GC-MS), dissolved sterols were quantitatively analyzed. The results show that the average variation content of dissolved sterols ranges from 415 to 629 ng x L(-1), with the increasing migration distance of dissolved sterols in underground river, its contents are decreased. Between the inlet and outlet of Qingmuguan underground river, the average variation contents of dissolved sterol are between 724 and 374 ng x L(-1), and the average variation ratios of the content of stigmasterol with cholesterol range from 0.29 to 0.12. In short, their values are decreased accompanied by the increasing migration distance of underground river. The composing component in dissolved sterols varied differently between July to December, and the main component of dissolved sterols is cholesterin, the ratios of the content of dissolved sterols with cholesterin to the total dissolved sterols range from 37.30% to 94.85%. In addition, the ratios of the content of dissolved sterols with coprostanol to cholesterin, coprostanol to cholesterin are below 0.2 respectively, indicating the water quality of underground river is not contaminated by domestic sewage, but with the passage of time water quality tends to deterioration.

  13. Classification of Plant Associated Bacteria Using RIF, a Computationally Derived DNA Marker

    PubMed Central

    Schneider, Kevin L.; Marrero, Glorimar; Alvarez, Anne M.; Presting, Gernot G.

    2011-01-01

    A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF). Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS). Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF sequences obtained

  14. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins.

    PubMed

    Vidal, Cristina M P; Aguiar, Thaiane R; Phansalkar, Rasika; McAlpine, James B; Napolitano, José G; Chen, Shao-Nong; Araújo, Larissa S N; Pauli, Guido F; Bedran-Russo, Ana

    2014-07-01

    Proanthocyanidin-rich plant-derived agents have been shown to enhance dentin biomechanical properties and resistance to collagenase degradation. This study systematically investigated the interaction of chemically well-defined monomeric catechins with dentin extracellular matrix components by evaluating dentin mechanical properties as well as activities of matrix metalloproteinases (MMPs) and cysteine-cathepsins (CTs). Demineralized dentin beams (n=15) were incubated for 1h with 0.65% (+)-catechin (C), (-)-catechin gallate (CG), (-)-gallocatechin gallate (GCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG). The modulus of elasticity (E) and the fold increase in E were determined by comparing specimens at baseline and after treatment. Biodegradation rates were assessed by differences in percentage of dry mass before and after incubation with bacterial collagenase. The inhibition of MMP-9 and CT-B by 0.65, 0.065 and 0.0065% of each catechin was determined using fluorimetric proteolytic assay kits. All monomeric catechins led to a significant increase in E. EGCG showed the highest fold increase in E, followed by ECG, CG and GCG. EGCG, ECG, GCG and CG significantly lowered biodegradation rates and inhibited both MMP-9 and CT-B at a concentration of 0.65%. Overall, the 3-O-galloylated monomeric catechins are clearly more potent than their non-galloylated analogues in improving dentin mechanical properties, stabilizing collagen against proteolytic degradation, and inhibiting the activity of MMPs and CTs. The results indicate that galloylation is a key pharmacophore in the monomeric and likely also in the oligomeric proanthocyanidins that exhibit high cross-linking potential for dentin extracellular matrix.

  15. Reduction of Salmonella on turkey breast cutlets by plant-derived compounds.

    PubMed

    Nair, Divek V T; Nannapaneni, Rama; Kiess, Aaron; Schilling, Wes; Sharma, Chander Shekhar

    2014-12-01

    The foodborne illnesses associated with poultry meat due to Salmonella are a major concern in the United States. In this study, the antimicrobial efficacy of carvacrol, eugenol, thyme essential oil, and trans-cinnamaldehyde was determined against different Salmonella serotypes in vitro and on turkey breast cutlets. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of antimicrobial agents were determined using a microdilution colorimetric assay. Carvacrol was the most effective antimicrobial agent since it exhibited the lowest MIC and MBC (0.313 μL/mL, respectively) in culture media against Salmonella. Turkey breast cutlets inoculated with Salmonella Enteritidis, Salmonella Heidelberg, and Salmonella Typhimurium were dip treated with different concentrations (0.5, 1, 2, and 5% vol/vol) of carvacrol, eugenol, thyme essential oil, and trans-cinnamaldehyde for 2 min. Samples were analyzed after 24-h storage at 4°C for recovery of Salmonella. Significant reductions of Salmonella (p≤0.05) on turkey breast cutlets were obtained with 1, 2, and 5% treatments. These compounds exhibited a concentration-dependent response on turkey breast cutlets against Salmonella. For example, 1% carvacrol resulted in 1.0 log colony-forming units (CFU)/g reduction of Salmonella whereas 5% carvacrol caused 2.6 log CFU/g reduction. Based on its efficacy in the 2-min dip study, carvacrol was selected for 30-s and 60-s dip treatments of Salmonella-inoculated turkey breast cutlets. Dipping turkey breast cutlets in 5% carvacrol for 30 s and 60 s resulted in 1.0 and 1.8 log reductions of Salmonella (p≤0.05), respectively. None of the antimicrobial agents caused any changes in the meat pH (p>0.05). In conclusion, this study revealed that plant-derived compounds such as carvacrol can reduce Salmonella on turkey breast cutlets without changing the pH of meat. PMID:25405806

  16. Unsaturated amino acids derived from isoleucine trigger early membrane effects on plant cells.

    PubMed

    Roblin, Gabriel; Laduranty, Joëlle; Bonmort, Janine; Aidene, Mohand; Chollet, Jean-François

    2016-10-01

    Unsaturated amino acids (UnsAA) have been shown to affect the activity of various biological processes. However, their mode of action has been investigated poorly thus far. We show in this work that 2-amino-3-methyl-4-pentenoic acid (C2) and 2-amino-3-methyl-4-pentynoic acid (C3) structurally derived from isoleucine (Ile) exhibited a multisite action on plant cells. For one, C2 and C3 induced early modifications at the plasma membrane level, as shown by the hyperpolarization monitored by microelectrode implantation in the pulvinar cells of Mimosa pudica, indicating that these compounds are able to modify ionic fluxes. In particular, proton (H(+)) fluxes were modified, as shown by the pH rise monitored in the bathing medium of pulvinar tissues. A component of this effect may be linked to the inhibitory effect observed on the proton pumping and the vanadate-sensitive activity of the plasma membrane H(+)-ATPase monitored in plasma membrane vesicles (PMVs) purified from pulvinar tissues of M. pudica and leaf tissues of Beta vulgaris. This effect may explain, in part, the inhibitory effect of the compounds on the uptake capacity of sucrose and valine by B. vulgaris leaf tissues. In contrast, an unexpected action was observed in cell reactions, implicating ion fluxes and water movement. Indeed, the osmocontractile reactions of pulvini induced either by a mechanical shock in M. pudica or by dark and light signals in Cassia fasciculata were increased, indicating that, compared to Ile, these compounds may modify in a specific way the plasma membrane permeability to water and ions. PMID:27254795

  17. Measurement of hepatic sterol synthesis in the Mongolian gerbil in vivo using (/sup 3/H)water: diurnal variation and effect of type of dietary fat

    SciTech Connect

    Mercer, N.J.; Holub, B.J.

    1981-01-01

    The hepatic synthesis of sterol was measured in the male Mongolian gerbil (Meriones unguiculatus) in vivo following the administration of (/sup 3/H)water by monitoring the incorporation of radioactivity into digitonin-precipitable sterol. A diurnal rhythm in cholesterol synthesis was exhibited under conditions of ad libitum feeding with alternating 12-hour periods of light (0200 to 1400 hr) and dark (1400 to 0200 hr). The zenith was reached between 1500 and 2100 hr and the nadir approximately 10-12 hours later between 0200 and 0400 hr, which provided a zenith/nadir ratio of 9.6 to 1.0. The in vivo rates of hepatic sterol synthesis and plasma cholesterol levels were measured in gerbils fed semi-purified diets containing either 19.5% beef tallow + 0.5% safflower, 20% lard, or 20% safflower oil and widely differing ratios of polyunsaturated: saturated fatty acids. All diets were equalized to contain 0.01% cholesterol and 0.05% plant sterol. After 3 days on the experimental diets, the mean rates of cholesterol synthesis (nmol/g liver per hr) were 41.5, 26.6, and 13.8 for animals fed the diets containing beef tallow, lard, and safflower oil, respectively. After 7 and 14 days, synthetic rates were lowest in the gerbils fed safflower oil as were also the plasma cholesterol levels. These results indicate that the type of dietary lipid can significantly influence the in vivo rate of sterol biosynthesis in gerbil liver. This response may contribute, at least in part, to the observed differences in plasma cholesterol levels.

  18. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  19. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis

    PubMed Central

    Kim, David M.; Zhang, Hairong; Zhou, Haiying; Du, Tommy; Wu, Qian; Mockler, Todd C.; Berezin, Mikhail Y.

    2015-01-01

    The optical signature of leaves is an important monitoring and predictive parameter for a variety of biotic and abiotic stresses, including drought. Such signatures derived from spectroscopic measurements provide vegetation indices – a quantitative method for assessing plant health. However, the commonly used metrics suffer from low sensitivity. Relatively small changes in water content in moderately stressed plants demand high-contrast imaging to distinguish affected plants. We present a new approach in deriving sensitive indices using hyperspectral imaging in a short-wave infrared range from 800 nm to 1600 nm. Our method, based on high spectral resolution (1.56 nm) instrumentation and image processing algorithms (quantitative histogram analysis), enables us to distinguish a moderate water stress equivalent of 20% relative water content (RWC). The identified image-derived indices 15XX nm/14XX nm (i.e. 1529 nm/1416 nm) were superior to common vegetation indices, such as WBI, MSI, and NDWI, with significantly better sensitivity, enabling early diagnostics of plant health. PMID:26531782

  20. Sterol-inhibiting fungicide impacts on soil microbial ecology in Atlantic Coastal Plain soils

    NASA Astrophysics Data System (ADS)

    White, P. M.; Potter, T. L.; Strickland, T. C.

    2008-12-01

    Seventy-five percent of the peanuts (Arachus hypogaia) produced in the United States are grown in the Atlantic Coastal Plain region. Portions of this area, including Alabama and Georgia, exhibit a subtropical climate that promotes soil-borne plant fungal diseases. Most fields receive repeated fungicide applications during the growing season to suppress the disease causing organisms, such as Sclerotium rolfsii, Rhizoctonia solani, and Cylindrocladium parasiticum. Information regarding fungicide effects on the soil microbial community, with components principally responsible for transformation and fate of fungicides and other soil-applied pesticides, is limited. The objectives of the study were to assess soil microbial community response to (1) varying rates of the sterol-inhibiting fungicide tebuconazole (0, single application, season max, 2x season max), and (2) field rates of the sterol-inhibitors cyproconazole, prothioconazole, tebuconazole, and flutriafol, and thiol-competitor chlorothalonil. The sterol-inhibitors exhibited different half lives, as listed in the FOOTPRINT database, ranging from <1 day to >1300 d. Chlorothalonil was chosen because it is the most frequently applied fungicide to peanut. Shifts in the fungi, gram positive and gram negative bacteria, were monitored during the experiments using phospholipid fatty acid (PLFA) profiles. Ergosterol levels and pesticide decay rates were also monitored to evaluate the effectiveness of the fungicide and soil residence time, respectively. In the rate study, the highest rate of tebuconazole reduced the fungal biomarker 18:2ω6,9c to 2.6 nmol g-1 dry soil at 17 d, as compared to the control (4.1 nmol g-1 dry soil). However, levels of the fungal PLFA biomarker were similar regardless of rate at 0 and 32 d. The gram negative bacterial PLFA mole percent was greater at 17 d for the two highest rates of tebuconazole, but was similar at 0 and 32 d. Gram positive and fungal mole percents were not affected at any time

  1. Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

    SciTech Connect

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

    2003-12-31

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17

  2. Metabolic engineering of plant-derived (E)-β-farnesene synthase genes for a novel type of aphid-resistant genetically modified crop plants.

    PubMed

    Yu, Xiu-Dao; Pickett, John; Ma, You-Zhi; Bruce, Toby; Napier, Johnathan; Jones, Huw D; Xia, Lan-Qin

    2012-05-01

    Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. (E)-β-Farnesene (EβF) synthases catalyze the formation of EβF, which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species. EβF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds. Engineering of crop plants capable of synthesizing and emitting EβF could cause repulsion of aphids and also the attraction of natural enemies that use EβF as a foraging cue, thus minimizing aphid infestation. In this review, the effects of aphids on host plants, plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced. Furthermore, the plant-derived EβF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed.

  3. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration.

    PubMed

    Schilling, Tatjana; Ebert, Regina; Raaijmakers, Nadja; Schütze, Norbert; Jakob, Franz

    2014-01-01

    Phytoestrogens and other plant-derived compounds and extracts have been developed for the treatment of menopause-related complaints and disorders, e.g. hot flushes and osteoporosis. Since estrogens have been discussed to enhance the risk for hormone-sensitive cancers, research activities try to find alternatives. Phytoestrogens like genistein and resveratrol as well as other plant-derived compounds are capable of substituting for estrogens to some extent. Their effects on mesenchymal stem cells and the tissues derived therefrom have been investigated in vitro and in preclinical settings. Besides their well-known estrogenic, i.e. mainly antiresorptive effects on bone via estrogen receptor (ER) signalling, they also directly or indirectly affect osteogenic and adipogenic pathways. As a novel mechanism, phytoestrogens and plant-derived saponins and flavonoids like kaempferol and xanthohumol have been described to reciprocally affect the osteogenic versus the adipogenic differentiation pathway. Both, ER-mediated and other pathways mediate a shift towards osteogenesis by inhibiting PPARγ and C/EBPα, the key adipogenic transcription factors (TFs), while stimulating the key osteogenic TFs Runx2 and Sp7. Besides ER signalling, the broad spectrum of molecular mechanisms supporting osteogenesis comprises the modulation of PPARγ, Wnt/β-catenin, and Sirt1 signalling, which inversely influence the transcription or transactivation of osteogenic versus adipogenic TFs. Preventing the age- and hormone deficiency-related shift towards adipogenesis without provoking adverse estrogenic effects represents a very promising strategy for treating bone loss and other metabolic diseases beyond bone. Research on plant-derived compounds will have to be pursued in vitro as well as in preclinical studies and controlled clinical trials in humans are urgently needed. This article is part of a Special Issue entitled 'Phytoestrogens'.

  4. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Govindan, Natanamurugaraj

    2016-07-01

    The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases.

  5. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report.

    PubMed

    Kuppusamy, Palaniselvam; Yusoff, Mashitah M; Maniam, Gaanty Pragas; Govindan, Natanamurugaraj

    2016-07-01

    The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases. PMID:27330378

  6. Rapid analytical method for the determination of aflatoxins in plant-derived dietary supplement and cosmetic oils.

    PubMed

    Mahoney, Noreen; Molyneux, Russell J

    2010-04-14

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as healthier alternatives to animal-based fats and oils. More recently, there has been increased interest in the use of alternative specialty plant-derived oils, including those from tree nuts (almonds, pistachios, and walnuts) and botanicals (borage, evening primrose, and perilla) both for direct human consumption (e.g., as salad dressings) and for the preparation of cosmetics, soaps, and fragrance oils. This has raised the issue as to whether or not exposure to aflatoxins can result from such oils. Although most crops are subject to analysis and control, it has generally been assumed that plant oils do not retain aflatoxins due to the high polarity and lipophobicity of these compounds. There is virtually no scientific evidence to support this supposition, and available information is conflicting. To improve the safety and consistency of botanicals and dietary supplements, research is needed to establish whether or not oils used directly, or in the formulation of products, contain aflatoxins. A validated analytical method for the analysis of aflatoxins in plant-derived oils is essential to establish the safety of dietary supplements for consumption or cosmetic use that contain such oils. The aim of this research was therefore to develop an HPLC method applicable to a wide variety of oils from different plant sources spiked with aflatoxins, thereby providing a basis for a comprehensive project to establish an intra- and interlaboratory validated analytical method for the analysis of aflatoxins in dietary supplements and cosmetics formulated with plant oils. PMID:20235534

  7. Rapid analytical method for the determination of aflatoxins in plant-derived dietary supplement and cosmetic oils.

    PubMed

    Mahoney, Noreen; Molyneux, Russell J

    2010-04-14

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as healthier alternatives to animal-based fats and oils. More recently, there has been increased interest in the use of alternative specialty plant-derived oils, including those from tree nuts (almonds, pistachios, and walnuts) and botanicals (borage, evening primrose, and perilla) both for direct human consumption (e.g., as salad dressings) and for the preparation of cosmetics, soaps, and fragrance oils. This has raised the issue as to whether or not exposure to aflatoxins can result from such oils. Although most crops are subject to analysis and control, it has generally been assumed that plant oils do not retain aflatoxins due to the high polarity and lipophobicity of these compounds. There is virtually no scientific evidence to support this supposition, and available information is conflicting. To improve the safety and consistency of botanicals and dietary supplements, research is needed to establish whether or not oils used directly, or in the formulation of products, contain aflatoxins. A validated analytical method for the analysis of aflatoxins in plant-derived oils is essential to establish the safety of dietary supplements for consumption or cosmetic use that contain such oils. The aim of this research was therefore to develop an HPLC method applicable to a wide variety of oils from different plant sources spiked with aflatoxins, thereby providing a basis for a comprehensive project to establish an intra- and interlaboratory validated analytical method for the analysis of aflatoxins in dietary supplements and cosmetics formulated with plant oils.

  8. A Rapid Analytical Method for Determination of Aflatoxins in Plant-Derived Dietary Supplement and Cosmetic Oils

    PubMed Central

    Mahoney, Noreen; Molyneux, Russell J.

    2010-01-01

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as more healthy alternatives to animal based fats and oils. More recently there has been increased interest in the use of alternative specialty plant-derived oils, including those from tree nuts (almonds, pistachios and walnuts) and botanicals (borage, evening primrose and perilla) both for direct human consumption (e.g. as salad dressings) but also for preparation of cosmetics, soaps, and fragrance oils. This has raised the issue as to whether or not exposure to aflatoxins can result from such oils. Although most crops are subject to analysis and control, it has generally been assumed that plant oils do not retain aflatoxins due to their high polarity and lipophobicity of these compounds. There is virtually no scientific evidence to support this supposition and available information is conflicting. To improve the safety and consistency of botanicals and dietary supplements, research is needed to establish whether or not oils used directly, or in the formulation of products, contain aflatoxins. A validated analytical method for the analysis of aflatoxins in plant-derived oils is essential, in order to establish the safety of dietary supplements for consumption or cosmetic use that contain such oils. The aim of this research was therefore to develop an HPLC method applicable to a wide variety of oils from different plant sources spiked with aflatoxins, thereby providing a basis for a comprehensive project to establish an intra- and inter-laboratory validated analytical method for analysis of aflatoxins in dietary supplements and cosmetics formulated with plant oils. PMID:20235534

  9. Traditional beverages derived from wild food plant species in the Vhembe District, Limpopo Province in South Africa.

    PubMed

    Rampedi, Isaac T; Olivier, Jana

    2013-01-01

    Beverages derived from wild plant species play an important role in local and traditional food systems in rural communities such as in the Vhembe District, South Africa. Conducting research on such foodstuffs may help to prevent loss of indigenous knowledge on potential dietary sources for needy households. Through surveys and focussed group discussions, 41 different beverage-making plant species were identified. Traditional beverage making processes are of three types. Preparing teas involve a boiling process while juices are manually extracted following overnight soaking of the fruit pulp mixture. Brewing traditional beer usually requires a spontaneous fermentation process lasting 2-3 days.

  10. Improved stability of TMS derivatives for the robust quantification of plant polar metabolites by gas chromatography-mass spectrometry.

    PubMed

    Quéro, Anthony; Jousse, Cyril; Lequart-Pillon, Michelle; Gontier, Eric; Guillot, Xavier; Courtois, Bernard; Courtois, Josiane; Pau-Roblot, Corinne

    2014-11-01

    Plant metabolite profiling is commonly carried out by GC-MS of methoximated trimethylsilyl (TMS) derivatives. This technique is robust and enables a library search for spectra produced by electron ionization. However, recent articles have described problems associated with the low stability of some TMS derivatives. This limits the use of GC-MS for metabolomic studies that need large sets of qualitative and quantitative analyses. The aim of this work is to determine the experimental conditions in which the stability of TMS derivatives could be improved. This would facilitate the analysis of the large-scale experimental designs needed in the metabolomics approach. For good repeatability, the sampling conditions and the storage temperature of samples during analysis were investigated. Multiple injections of one sample from one vial led to high variations while injection of one sample from different vials improved the analysis. However, before injection, some amino acid TMS derivatives were degraded during the storage of vials in the autosampler. Only 10% of the initial quantity of glutamine 3 TMS and glutamate 3 TMS and 66% of α-alanine 2 TMS was detected 48 h after derivatization. When stored at 4 °C until injection, all TMS derivatives remained stable for 12 h; at -20 °C, they remained stable for 72 h. From the integration of all these results, a detailed analytical procedure is thus proposed. It enables a robust quantification of polar metabolites, useful for further plant metabolomics studies using GC-MS.

  11. Enhanced production of resveratrol derivatives in tobacco plants by improving the metabolic flux of intermediates in the phenylpropanoid pathway.

    PubMed

    Jeong, Yu Jeong; An, Chul Han; Woo, Su Gyeong; Park, Ji Hye; Lee, Ki-Won; Lee, Sang-Hoon; Rim, Yeonggil; Jeong, Hyung Jae; Ryu, Young Bae; Kim, Cha Young

    2016-09-01

    The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-β-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.

  12. Boosting Crop Yields with Plant Steroids[W

    PubMed Central

    Vriet, Cécile; Russinova, Eugenia; Reuzeau, Christophe

    2012-01-01

    Plant sterols and steroid hormones, the brassinosteroids (BRs), are compounds that exert a wide range of biological activities. They are essential for plant growth, reproduction, and responses to various abiotic and biotic stresses. Given the importance of sterols and BRs in these processes, engineering their biosynthetic and signaling pathways offers exciting potentials for enhancing crop yield. In this review, we focus on how alterations in components of sterol and BR metabolism and signaling or application of exogenous steroids and steroid inhibitors affect traits of agronomic importance. We also discuss areas for future research and identify the fine-tuning modulation of endogenous BR content as a promising strategy for crop improvement. PMID:22438020

  13. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers.

    PubMed

    Nyström, Joel H; Lönnfors, Max; Nyholm, Thomas K M

    2010-07-21

    Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. In this study the aim was to determine how transmembrane proteins influence the lateral distribution of cholesterol in phospholipid bilayers. Insight into this can be obtained by studying how cholesterol interacts with bilayer membranes of different composition in the presence of designed peptides that mimic the transmembrane helices of proteins. For this purpose we developed an assay in which the partitioning of the fluorescent cholesterol analog CTL between LUVs and mbetaCD can be measured. Comparison of how cholesterol and CTL partitioning between mbetaCD and phospholipid bilayers with different composition suggests that CTL sensed changes in bilayer composition similarly as cholesterol. Therefore, the results obtained with CTL can be used to understand cholesterol distribution in lipid bilayers. The effect of WALP23 on CTL partitioning between DMPC bilayers and mbetaCD was measured. From the results it was clear that WALP23 increased both the order in the bilayers (as seen from CTL and DPH anisotropy) and the affinity of the sterol for the bilayer in a concentration dependent way. Although WALP23 also increased the order in DLPC and POPC bilayers the effects on CTL partitioning was much smaller with these lipids. This indicates that proteins have the largest effect on sterol interactions with phospholipids that have longer and saturated acyl chains. KALP23 did not significantly affect the acyl chain order in the phospholipid bilayers, and inclusion of KALP23 into DMPC bilayers slightly decreased CTL partitioning into the bilayer. This shows that transmembrane proteins can

  14. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products.

    PubMed

    Hygreeva, Desugari; Pandey, M C; Radhakrishna, K

    2014-09-01

    Growing concern about diet and health has led to development of healthier food products. In general consumer perception towards the intake of meat and meat products is unhealthy because it may increase the risk of diseases like cardiovascular diseases, obesity and cancer, because of its high fat content (especially saturated fat) and added synthetic antioxidants and antimicrobials. Addition of plant derivatives having antioxidant components including vitamins A, C and E, minerals, polyphenols, flavanoids and terpenoids in meat products may decrease the risk of several degenerative diseases. To change consumer attitudes towards meat consumption, the meat industry is undergoing major transformations by addition of nonmeat ingredients as animal fat replacers, natural antioxidants and antimicrobials, preferably derived from plant sources.

  15. Rapid inactivation of Salmonella Enteritidis on shell eggs by plant-derived antimicrobials.

    PubMed

    Upadhyaya, Indu; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Baskaran, Sangeetha Ananda; Mooyottu, Shankumar; Darre, Michael J; Venkitanarayanan, Kumar

    2013-12-01

    Salmonella Enteritidis is a common foodborne pathogen transmitted to humans largely by consumption of contaminated eggs. The external surface of eggs becomes contaminated with Salmonella Enteritidis from various sources on farms, the main sources being hens' droppings and contaminated litter. Therefore, effective egg surface disinfection is critical to reduce pathogens on eggs and potentially control egg-borne disease outbreaks. This study investigated the efficacy of GRAS (generally recognized as safe) status, plant-derived antimicrobials (PDA), namely trans-cinnamaldehyde (TC), carvacrol (CR), and eugenol (EUG), as an antimicrobial wash for rapidly killing Salmonella Enteritidis on shell eggs in the presence or absence of chicken droppings. White-shelled eggs inoculated with a 5-strain mixture of nalidixic acid (NA) resistant Salmonella Enteritidis (8.0 log cfu/mL) were washed in sterile deionized water containing each PDA (0.0, 0.25, 0.5, or 0.75%) or chlorine (200 mg/kg) at 32 or 42°C for 30 s, 3 min, or 5 min. Approximately 6.0 log cfu/mL of Salmonella Enteritidis was recovered from inoculated and unwashed eggs. The wash water control and chlorine control decreased Salmonella Enteritidis on eggs by only 2.0 log cfu/mL even after washing for 5 min. The PDA were highly effective in killing Salmonella Enteritidis on eggs compared with controls (P < 0.05). All treatments containing CR and EUG reduced Salmonella Enteritidis to undetectable levels as rapidly as within 30 s of washing, whereas TC (0.75%) completely inactivated Salmonella Enteritidis on eggs washed at 42°C for 30 s (P < 0.05). No Salmonella Enteritidis was detected in any PDA or chlorine wash solution; however, substantial pathogen populations (~4.0 log cfu/mL) survived in the antibacterial-free control wash water (P < 0.05). The CR and EUG were also able to eliminate Salmonella Enteritidis on eggs to undetectable levels in the presence of 3% chicken droppings at 32°C (P < 0.05). This study

  16. New meroterpenoids from the endophytic fungus Aspergillus flavipes AIL8 derived from the mangrove plant Acanthus ilicifolius.

    PubMed

    Bai, Zhi-Qiang; Lin, Xiuping; Wang, Junfeng; Zhou, Xuefeng; Liu, Juan; Yang, Bin; Yang, Xianwen; Liao, Shengrong; Wang, Lishu; Liu, Yonghong

    2015-01-01

    Four new meroterpenoids (2-5), along with three known analogues (1, 6, and 7) were isolated from mangrove plant Acanthus ilicifolius derived endophytic fungus Aspergillus flavipes. The structures of these compounds were elucidated by NMR and MS analysis, the configurations were assigned by CD data, and the stereochemistry of 1 was confirmed by X-ray crystallography analysis. A possible biogenetic pathway of compounds 1-7 was also proposed. All compounds were evaluated for antibacterial and cytotoxic activities.

  17. Laboratory and field evaluations of chemical and plant-derived potential repellents against Culicoides biting midges in northern Spain.

    PubMed

    González, M; Venter, G J; López, S; Iturrondobeitia, J C; Goldarazena, A

    2014-12-01

    The efficacy of 23 compounds in repelling Culicoides biting midges (Diptera: Ceratopogonidae), particularly Culicoides obsoletus (Meigen) females, was determined by means of a Y-tube olfactometer. The 10 most effective compounds were further evaluated in landing bioassays. The six most promising compounds (including chemical and plant-derived repellents) were evaluated at 10% and 25% concentrations in field assays using Centers for Disease Control (CDC) light traps. At least three compounds showed promising results against Culicoides biting midges with the methodologies used. Whereas olfactometer assays indicated DEET at 1 µg/µL to be the most effective repellent, filter paper landing bioassays showed plant-derived oils to be better. Light traps fitted with polyester mesh impregnated with a mixture of octanoic, decanoic and nonanoic fatty acids at 10% and 25% concentrations collected 2.2 and 3.6 times fewer midges than control traps and were as effective as DEET, which is presently considered the reference standard insect repellent. The best plant-derived product was lemon eucalyptus oil. Although these have been reported as safe potential repellents, the present results indicate DEET and the mixture of organic fatty acids to be superior and longer lasting. PMID:25079042

  18. Genomic stability of Palmer amaranth plants derived by macro-vegetative propagation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Q-PCR (quantitative polymerase chain reaction) and random amplified polymorphic DNA (RAPD) were utilized to investigate genetic stability of Palmer amaranth cloned plants over 10 generations. Q-PCR analysis of DNA from parent Palmer amaranth plants was repeated and confidence levels for determining ...

  19. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    NASA Astrophysics Data System (ADS)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  20. Randomised controlled trial of use by hypercholesterolaemic patients of a vegetable oil sterol-enriched fat spread.

    PubMed

    Neil, H A; Meijer, G W; Roe, L S

    2001-06-01

    Plant sterols may be a useful additive therapy in the treatment of hypercholesterolaemic patients. The purpose of this study was to determine the effect of a fat spread enriched with vegetable oil sterols on plasma lipid, lipoprotein and apolipoprotein concentrations. A randomised double blind placebo-controlled crossover trial with two consecutive periods of 8 weeks was conducted. 30 patients with heterozygous familial hypercholesterolaemia treated concurrently with an HMG-CoA reductase inhibitor (statin) and 32 patients with type IIa primary hypercholesterolaemia with a total cholesterol concentration >6.5 mmol/l not taking lipid-lowering drug therapy were recruited from a hospital lipid clinic. The active treatment was a fortified fat spread (25 g/day) providing 2.5 g of plant sterols. The control spread was indistinguishable in taste and appearance. Comparison at the end of the two 8-week trial periods showed a statistically significant reduction in total and LDL-cholesterol with use of the fortified spread but the results were confounded by a carry-over effect, which was partly explained by changes in the background diet. Because a carry-over effect was present, further analyses were restricted to the parallel arms of the first treatment period and were conducted on an intention to treat basis. After 4 weeks, LDL-cholesterol had decreased by 0.04 mmol/l ([0.8%] 95% confidence interval -0.44-0.37 NS) in the placebo group and decreased by -0.76 mmol/l ([15.0%] 95% CI -1.03--0.48, P<0.0001) in the active treatment group. After 8 weeks, the corresponding results were 0.0 mmol/l ([0.0%] 95% CI -0.26-0.24 NS) and -0.51 mmol/l ([10.0%] 95% CI -0.73--0.29 P<0.0001). There were no significant changes in apolipoprotein AI or B concentrations in the placebo group, but there was a small but statistically significant increase in apolipoprotein AI and a decrease in apolipoprotein B in the active treatment group. HDL cholesterol and triglyceride concentrations were unchanged

  1. A potential biochemical mechanism underlying the influence of sterol deprivation stress on Caenorhabditis elegans longevity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the biochemical mechanism for sterol-mediated alteration in aging in Caenorhabditis elegans, we established sterol depletion conditions by treating worms with azacoprostane, which reduced mean lifespan of adult C. elegans by 35%. Proteomic analyses of egg proteins from treated and un...

  2. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    SciTech Connect

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-08-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with (4-/sup 14/C)cholesterol or beta-(4-/sup 14/C)sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study.