NASA Technical Reports Server (NTRS)
Vazquez, J.
2001-01-01
Sea Surface Temperatures (SST) as derived from the Pathfinder Sea Surface Temperature Data Set and the Along-Track Scanning Radiometer on-board the European Remote Sensing Satellite provide a unique opportunity for comparing two independent SST data sets.
NASA Technical Reports Server (NTRS)
Allison, Lewis J.; Kennedy, James S.
1967-01-01
An analysis of Nimbus I HRIR data over various parts of the world indicated limited success in deriving sea surface temperatures to within 3 to 6 K of aircraft radiation measurements (8- 13 microns) and synoptic-climatological ship sea surface temperature data. The areas studied included the east, west and Gulf coasts of the United States, West Greenland, Nova Scotia, southern Japan, the eastern Mediterranean Sea, Caspian Sea, Persian Gulf, and the Indian Ocean. At night, thin clouds which may fill the radiometer's field of view make it difficult to interpret the absolute values of derived sea surface temperature. During the daytime, the HRIR data is unusable for oceanographic temperature analysis because the contamination by reflected solar radiation mixes with the emitted radiation. Future satellite instrumentation, consisting of a HFUR radiometer (10-11 microns) when used in conjunction with television. data, will delineate cloud free ocean areas and permit the daily derivation of sea surface temperatures from approximately 10 to 30 Percent of the world's oceanic regions.
Enhanced Arctic Mean Sea Surface and Mean Dynamic Topography including retracked CryoSat-2 Data
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Jain, M.; Stenseng, L.; Knudsen, P.
2014-12-01
A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models combining conventional altimetry with retracked CryoSat-2 data to improve the reliability in the Arctic Ocean. For the derivation of a mean dynamic topography the ESA GOCE derived geoid model have been used to constrain the longer wavelength. We present the retracking of C2 SAR data using various retrackes and how we have been able to combine data from various retrackers under various sea ice conditions. DTU13MSS and DTU13MDT are the newest state of the art global high-resolution models including CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude and through combination with a GOCE geoid model completes coverage all the way to the North Pole. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.
Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface
NASA Astrophysics Data System (ADS)
Xie, Tao; He, Chao; William, Perrie; Kuang, Hai-Lan; Zou, Guang-Hui; Chen, Wei
2010-02-01
In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.
Sea surface temperature measurements with AIRS
NASA Technical Reports Server (NTRS)
Aumann, H.
2003-01-01
The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.
Atlantic Real-Time Ocean Forecast System NOAA Wavewatch III® Ocean Wave Model Sea Ice Concentration Analysis Satellite Derived Ocean Surface Winds Daily Sea Surface Temperature Analysis Sea Ice Drift Model
NASA Astrophysics Data System (ADS)
Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.
2003-11-01
The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.
NASA Astrophysics Data System (ADS)
Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars
2014-05-01
Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Martin, T. V.; Mccarthy, J. J.; Chovitz, P. J.
1979-01-01
The sea surface heights above the reference ellipsoid were determined for several regions of the world's ocean using data from the radar altimeter on board the GEOS-3 satellite in conjunction with precise orbital position information derived from laser data. The resolution of the estimated sea surfaces varied from 0.25 degrees off the east coast of the United States to about 2 degrees in the Indian Ocean near Australia. The rms crossover discrepancy after adjustment varied from 30 cm to 70 cm depending on geographic location. Comparison of the altimeter derived mean sea surface in the North Atlantic with the 5 x 5 ft GEM-8 detailed gravimetric geoid indicated a relative consistency of better than one meter.
Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Howard, Andrew B.; Aghazarian, Hrand; Rankin, Arturo L.
2012-01-01
PSSEARCH provides predictive sea state estimation, coupled with closed-loop feedback control for automated ride control. It enables a manned or unmanned watercraft to determine the 3D map and sea state conditions in its vicinity in real time. Adaptive path-planning/ replanning software and a control surface management system will then use this information to choose the best settings and heading relative to the seas for the watercraft. PSSEARCH looks ahead and anticipates potential impact of waves on the boat and is used in a tight control loop to adjust trim tabs, course, and throttle settings. The software uses sensory inputs including IMU (Inertial Measurement Unit), stereo, radar, etc. to determine the sea state and wave conditions (wave height, frequency, wave direction) in the vicinity of a rapidly moving boat. This information can then be used to plot a safe path through the oncoming waves. The main issues in determining a safe path for sea surface navigation are: (1) deriving a 3D map of the surrounding environment, (2) extracting hazards and sea state surface state from the imaging sensors/map, and (3) planning a path and control surface settings that avoid the hazards, accomplish the mission navigation goals, and mitigate crew injuries from excessive heave, pitch, and roll accelerations while taking into account the dynamics of the sea surface state. The first part is solved using a wide baseline stereo system, where 3D structure is determined from two calibrated pairs of visual imagers. Once the 3D map is derived, anything above the sea surface is classified as a potential hazard and a surface analysis gives a static snapshot of the waves. Dynamics of the wave features are obtained from a frequency analysis of motion vectors derived from the orientation of the waves during a sequence of inputs. Fusion of the dynamic wave patterns with the 3D maps and the IMU outputs is used for efficient safe path planning.
Results of the Second SeaWiFS Data Analysis Round Robin, March 2000 (DARR-00)
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; D'Alimonte, Davide; Maritorena, Stephane; McLean, Scott; Sildam, Juri; McClain, Charles R. (Technical Monitor)
2001-01-01
The accurate determination of upper ocean apparent optical properties (AOPs) is essential for the vicarious calibration of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the importance of data analysis methods upon derived AOP values, the Second Data Analysis Round Robin (DARR-00) activity was planned during the latter half of 1999 and executed during March 2000. The focus of the study was the intercomparison of several standard AOP parameters: (1) the upwelled radiance immediately below the sea surface, L(sub u)(0(-),lambda); (2) the downward irradiance immediately below the sea surface, E(sub d)(0(-),lambda); (3) the diffuse attenuation coefficients from the upwelling radiance and the downward irradiance profiles, L(sub L)(lambda) and K(sub d)(lambda), respectively; (4) the incident solar irradiance immediately above the sea surface, E(sub d)(0(+),lambda); (5) the remote sensing reflectance, R(sub rs)(lambda); (6) the normalized water-leaving radiance, [L(sub W)(lambda)](sub N); (7) the upward irradiance immediately below the sea surface, E(sub u)(0(-)), which is used with the upwelled radiance to derive the nadir Q-factor immediately below the sea surface, Q(sub n)(0(-),lambda); and (8) ancillary parameters like the solar zenith angle, theta, and the total chlorophyll concentration, C(sub Ta), derived from the optical data through statistical algorithms. In the results reported here, different methodologies from three research groups were applied to an identical set of 40 multispectral casts in order to evaluate the degree to which differences in data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-00 are presented in Chapter 1 and the individual methods used by the three groups and their data processors are presented in Chapters 2-4.
Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast System
2014-09-01
and those that may be resolved with a suite of satellite altimeters when several are present and operational (~ 100 km). The altimeter data provide...September 2014 47 The observational data used for assimilation include satellite sea surface temperature (SST), satellite altimeter sea surface height...anomaly (SSHA), satellite microwave-derived sea ice concentration, and in situ surface and profile data from sensors on ships; drifters; fixed buoys
NASA Astrophysics Data System (ADS)
Wimmer, Werenfrid
2016-08-01
The Infrared Sea surface temperature Autonomous Radiometer (ISAR) was developed to provide reference data for the validation of satellite Sea Surface Temperature at the Skin interface (SSTskin) temperature data products, particularly the Advanced Along Track Scanning Radiometer (AATSR). Since March 2004 ISAR instruments have been deployed nearly continuously on ferries crossing the English Channel and the Bay of Biscay, between Portsmouth (UK) and Bilbao/Santander (Spain). The resulting twelve years of ISAR data, including an individual uncertainty estimate for each SST record, are calibrated with traceability to national standards (National Institute of Standards and Technology, USA (NIST) and National Physical Laboratory, Teddigton, UK (NPL), Fiducial Reference Measurements for satellite derived surface temperature product validation (FRM4STS)). They provide a unique independent in situ reference dataset against which to validate satellite derived products. We present results of the AATSR validation, and show the use of ISAR fiducial reference measurements as a common traceable validation data source for both AATSR and Sea and Land Surface Temperature Radiometer (SLSTR). ISAR data were also used to review performance of the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) Sea Surface Temperature (SST) analysis before and after the demise of ESA Environmental Satellite (Envisat) when AATSR inputs ceased This demonstrates use of the ISAR reference data set for validating the SST climatologies that will bridge the data gap between AATSR and SLSTR.
Using ship-borne GNSS data for geoid model validation at the Baltic Sea
NASA Astrophysics Data System (ADS)
Nordman, Maaria; Kuokkanen, Jaakko; Bilker-Koivula, Mirjam; Koivula, Hannu; Häkli, Pasi; Lahtinen, Sonja
2017-04-01
We present a study of geoid model validation using ship-borne GNSS data on the Bothnian Bay of the Baltic Sea. In autumn 2015 a dedicated gravity survey took place in the Bothnian Bay on board of the surveying vessel Airisto as a part of the FAMOS (Finalising surveys for the Baltic motorways of the sea) Freja project, which is supported by the European Commission with the Connecting Europe Facility. The gravity data was collected to test older existing gravity data in the area and to contribute to a new improved geoid model for the Baltic Sea. The raw GNSS and IMU data of the vessel were recorded in order to study the possibilities for validating geoid models at sea. In order to derive geoid heights from GNSS-measurements at sea, the GNSS measurements must first be reduced to sea level. The instant sea level, also called sea surface height, must then be modelled and removed in order to get the GNSS positions at the zero height. In theory, the resulting GNSS heights are the geoid heights, giving the distance between the ellipsoid and the geoid surface. There were altogether 46 lines measured during the campaign on the area. The 1 Hz GNSS-IMU observations were post-processed using the Applanix POSPac MMS 7.1 software. Different processing options were tested and the Single Base -solution was found to be the best strategy. There were some issues with the quality of the data and cycle slips and thus, 37 of the lines were of adequate quality for the geoid validation. The final coordinates were transferred to the coordinate systems related to the geoid models used. Translation of the processed heights to sea level was performed taking the pitch and roll effects of the vessel into account. Also the effects of static and dynamic draft (squat) were applied. For the reduction from sea surface to geoid surface, the sea surface heights were derived from tide gauge data and also from a physical model for the Baltic Sea. The residual errors between the GNSS-derived geoid heights and geoid heights from geoid models were as low as 2 mm on some lines. When the overall mean is taken from the mean of all lines, the lowest value of 2.1 cm, was achieved using a physical model for the sea surface and comparing with the NKG2015 geoid model. The NKG2015 model together with the tide gauge sea surface yield 3.1 cm. Comparing with Finnish geoid model gave 3.7 and 4.7 cm for the physical model and tide gauge surfaces, respectively. The mean standard deviations were below 5 cm, when the data was filtered with a 10 min. moving average. Thus, it can be said that with high quality GNSS solution and enough information on the coordinate systems, vessel movements and the sea surface heights, geoid heights can be recovered from GNSS observations at sea.
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L-band because of the directional feature of sea surface waves. Symmetry properties of geophysical media can also be used to calibrate polarimetric radars.
Regional studies using sea surface temperature fields derived from satellite infrared measurements
NASA Technical Reports Server (NTRS)
Strong, A. E.
1972-01-01
Three examples of sea surface temperature distributions over the western Atlantic are presented. These were detected by means of data from the scanning radiometer on the Improved Tiros Operational Satellite 1 (ITOS 1) under relatively clear sky conditions.
Airborne gravity measurement over sea-ice: The western Weddel Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozena, J.; Peters, M.; LaBrecque, J.
1990-10-01
An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less
Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.
2016-02-01
Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.
Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights
NASA Astrophysics Data System (ADS)
Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang
2017-04-01
The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.
Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data
NASA Technical Reports Server (NTRS)
Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie
2016-01-01
We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.
Bourlier, Christophe
2005-07-10
The emissivity of two-dimensional anisotropic rough sea surfaces with non-Gaussian statistics is investigated. The emissivity derivation is of importance for retrieval of the sea-surface temperature or equivalent temperature of a rough sea surface by infrared thermal imaging. The well-known Cox-Munk slope probability-density function, considered non-Gaussian, is used for the emissivity derivation, in which the skewness and the kurtosis (related to the third- and fourth-order statistics, respectively) are included. The shadowing effect, which is significant for grazing angles, is also taken into account. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In addition, multiple reflections are ignored. Numerical results of the emissivity are presented for Gaussian and non-Gaussian statistics, for moderate wind speeds, for near-infrared wavelengths, for emission angles ranging from 0 degrees (nadir) to 90 degrees (horizon), and according to the wind direction. In addition, the emissivity is compared with both measurements and a Monte Carlo ray-tracing method.
He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut
2016-12-26
There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.
Satellite-Derived Sea Surface Temperature: Workshop 1
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1983-01-01
Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.
The absolute dynamic ocean topography (ADOT)
NASA Astrophysics Data System (ADS)
Bosch, Wolfgang; Savcenko, Roman
The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.
Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)
2002-01-01
Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.
Radar sea reflection for low-e targets
NASA Astrophysics Data System (ADS)
Chow, Winston C.; Groves, Gordon W.
1998-09-01
Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.
NASA Astrophysics Data System (ADS)
Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice
2010-05-01
The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.
2014-09-30
Here we use the newly launched Aquarius satellite derived Sea Surface Salinity ( SSS ) data as well as Argo salinity profiles, model simulations and...dipolar sea surface salinity ( SSS ) structure with the salty Arabian Sea (AS) on the west and the fresher Bay of Bengal (BoB) on the east. At the surface...interconnected, region is quantified. PRELIMINARY RESULTS Figure 1 shows the mean Aquarius SSS during August 2011-May 2014 and several boxes that
NASA Technical Reports Server (NTRS)
Singh, Sandipa; Kelly, Kathryn A.
1997-01-01
Monthly Maps of sea surface height are constructed for the North Atlantic Ocean using TOPEX/Poseidon altimeter data. Mean sea surface height is reconstructed using a weighted combination of historical, hydrographic data and a synthetic mean obtained by fitting a Gaussian model of the Gulf Stream jet to altimeter data. The resultant mean shows increased resolution over the hydrographic mean, and incorporates recirculation information that is absent in the synthetic mean. Monthly maps, obtained by adding the mean field to altimeter sea surface height residuals, are used to derive a set of zonal indices that describe the annual cycle of meandering as well as position and strength of the Gulf Stream.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.;
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
Incorrect Match Detection Method for Arctic Sea-Ice Reconstruction Using Uav Images
NASA Astrophysics Data System (ADS)
Kim, J.-I.; Kim, H.-C.
2018-05-01
Shapes and surface roughness, which are considered as key indicators in understanding Arctic sea-ice, can be measured from the digital surface model (DSM) of the target area. Unmanned aerial vehicle (UAV) flying at low altitudes enables theoretically accurate DSM generation. However, the characteristics of sea-ice with textureless surface and incessant motion make image matching difficult for DSM generation. In this paper, we propose a method for effectively detecting incorrect matches before correcting a sea-ice DSM derived from UAV images. The proposed method variably adjusts the size of search window to analyze the matching results of DSM generated and distinguishes incorrect matches. Experimental results showed that the sea-ice DSM produced large errors along the textureless surfaces, and that the incorrect matches could be effectively detected by the proposed method.
Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data
NASA Astrophysics Data System (ADS)
Stenseng, Lars; Andersen, Ole B.; Knudsen, Per
2014-05-01
A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.
NASA Technical Reports Server (NTRS)
Garcia-Gorriz, E.; Carr, M. E.
1998-01-01
The circulation and upwelling processes (coastal and gyre-induced) that control the phytoplankton distribution in the Alboran sea are examined by analyzing monthly climatological patterns of Coastal Zone Color Scanner (CZCS) pigment concentrations, sea surface temperatures, winds, and seasonal geostrophic fields.
Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity
NASA Astrophysics Data System (ADS)
Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.
2014-07-01
Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.
Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan
NASA Astrophysics Data System (ADS)
Yen-Ti, C.; Hwang, C.
2017-12-01
Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.
Whitecap coverage from aerial photography
NASA Technical Reports Server (NTRS)
Austin, R. W.
1970-01-01
A program for determining the feasibility of deriving sea surface wind speeds by remotely sensing ocean surface radiances in the nonglitter regions is discussed. With a knowledge of the duration and geographical extent of the wind field, information about the conventional sea state may be derived. The use of optical techniques for determining sea state has obvious limitations. For example, such means can be used only in daylight and only when a clear path of sight is available between the sensor and the surface. However, sensors and vehicles capable of providing the data needed for such techniques are planned for the near future; therefore, a secondary or backup capability can be provided with little added effort. The information currently being sought regarding white water coverage is also of direct interest to those working with passive microwave systems, the study of energy transfer between winds and ocean currents, the aerial estimation of wind speeds, and many others.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
New evidence for "far-field" Holocene sea level oscillations and links to global climate records
NASA Astrophysics Data System (ADS)
Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.
2018-04-01
Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.
Kumamoto, Yuichiro; Aoyama, Michio; Hamajima, Yasunori; Nishino, Shigeto; Murata, Akihiko; Kikuchi, Takashi
2017-08-01
We measured radiocesium ( 134 Cs and 137 Cs) in seawater from the western subarctic area of the North Pacific Ocean, Bering Sea, and Arctic Ocean in 2013 and 2014. Fukushima-derived 134 Cs in surface seawater was observed in the western subarctic area and Bering Sea but not in the Arctic Ocean. Vertical profile of 134 Cs in the Canada Basin of the Arctic Ocean implies that Fukushima-derived 134 Cs intruded into the basin from the Bering Sea through subsurface (150m depth) in 2014. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi.
Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong
2015-07-23
Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development.
A Brief Review of Bioactive Metabolites Derived from Deep-Sea Fungi
Wang, Yan-Ting; Xue, Ya-Rong; Liu, Chang-Hong
2015-01-01
Deep-sea fungi, the fungi that inhabit the sea and the sediment at depths of over 1000 m below the surface, have become an important source of industrial, agricultural, and nutraceutical compounds based on their diversities in both structure and function. Since the first study of deep-sea fungi in the Atlantic Ocean at a depth of 4450 m was conducted approximately 50 years ago, hundreds of isolates of deep-sea fungi have been reported based on culture-dependent methods. To date more than 180 bioactive secondary metabolites derived from deep-sea fungi have been documented in the literature. These include compounds with anticancer, antimicrobial, antifungal, antiprotozoal, and antiviral activities. In this review, we summarize the structures and bioactivities of these metabolites to provide help for novel drug development. PMID:26213949
Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos
Katow, Hideki
2015-01-01
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069
NASA Technical Reports Server (NTRS)
Liu, W. Timothy
1989-01-01
The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.
Reevaluation of mid-Pliocene North Atlantic sea surface temperatures
Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.
2008-01-01
Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.
Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data
NASA Astrophysics Data System (ADS)
Ding, Y.; Cheng, X.; Liu, J.
2017-12-01
Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic
NASA Astrophysics Data System (ADS)
Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.
2006-12-01
order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.
Inoue, M; Shirotani, Y; Yamashita, S; Takata, H; Kofuji, H; Ambe, D; Honda, N; Yagi, Y; Nagao, S
2018-02-01
To investigate the dispersion of Fukushima Dai-ichi Nuclear Power Plant (FDNPP)-derived radiocesium in the Sea of Japan and western Pacific coastal region and determine the sources of radiocesium in these areas, we examined the temporal and spatial variations of 134 Cs and 137 Cs concentrations (activities) during 2011-2016 in seawaters around the western Japanese Archipelago, particularly in the Sea of Japan. In May 2013, the surface concentration of 134 Cs was ∼0.5 mBq/L (decay-corrected to March 11, 2011), and that of 137 Cs exceeded the pre-accident level in this study area, where the effects of radiocesium depositions just after the FDNPP accident disappeared in surface waters in October 2011. Subsequently, radiocesium concentrations gradually increased during 2013-2016 (∼0.5-1 mBq/L for 134 Cs), exhibiting approximately homogeneous distributions in each year. The temporal and spatial variations of 134 Cs and 137 Cs concentrations indicated that FDNPP-derived radiocesium around the western Japanese Archipelago, including the Sea of Japan, has been supported by the Kuroshio Current and its branch, Tsushima Warm Current, during 2013-2016. However, in the Sea of Japan, the penetration of 134 Cs was limited to depths of less than ∼200 m during three years following the re-delivery of FDNPP-derived radiocesium. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kritz, M. A.
1983-01-01
Fluxes and exchange coefficients are derived for the transport of Sr-90, Pb-210, Bi-210, and Po-210 between the free troposphere and the marine boundary layer and between the boundary layer and the sea surface. Radionuclide concentrations previously measured near Hawaii are used in the derivations. Values obtained for the free troposphere/boundary layer exchange coefficient (expressed as a piston velocity) were 185, 228 and 203 m/d for Pb-210, Bi-210, and Sr-90, respectively. The magnitude of the local sea-surface source of Po-210 is also determined.
Satellite-derived data for sea surface temperature, salinity, chlorophyll; euphotic depth; and modeled bottom to surface temperature differences (Delta t) were evaluated to assess the utility of these products as proxies for in situ measurements. The data were used to classify su...
ICESat Observations of Arctic Sea Ice: A First Look
NASA Technical Reports Server (NTRS)
Kwok, Ron; Zwally, H. Jay; Yi, Dong-Hui
2004-01-01
Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
New insights into modeling an organic mass fraction of sea spray aerosol
NASA Astrophysics Data System (ADS)
Meskhidze, N.; Gantt, B.
2010-12-01
As the study of climate change progresses, a need to separate the effects of natural and anthropogenic processes becomes essential in order to correctly forecast the future climate. Due to their massive source regions underlying an atmosphere with low aerosol concentration, marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) are extremely important for the Earth’s radiative budget, regional air quality and biogeochemical cycling of elements. Measurements of freshly-emitted sea spray have revealed that bubble bursting processes, largely responsible for the production of sea salt aerosol, also control sea-to-air transfer of marine organic matter. It has been established that the organic mass fraction of sea spray can be a function of sea-water composition (e.g., concentrations of Chlorophyll-a, [Chl-a], dissolved organic carbon, [DOC], particulate organic carbon, [POC], types of organic carbon, and the amount of surfactants). Current paramaterizations of marine primary organic aerosol emissions use remotely sensed [Chl-a] data as a proxy for oceanic biological activity. However, it has also been shown that the path length, size, and lifetime of bubbles in seawater as well as spatial coverage of seawater surface by streaks or slicks (visible film of a roughly 50 μm thick layer, highly enriched in organics) can have dramatic effect on organic mass fraction of sea spray (OCss). Dynamics of bubble entrainment and the level of microlayer enrichment by organics relative to the underlying bulk water can be controlled by surface wind speed. For bubble entrainment, high winds can increase rising bubble path length and therefore the amount of organics scavenged by the bubble. However, when the surface wind speeds exceed 8 m s-1 breaking of ocean waves can entirely destroy surface organic films and diminish the amount of organics leaving the sea. Despite the probable impact of wind speed, existing parameterizations do not consider the wind speed dependence of OCss. In this study we use remotely sensed data for ocean slick coverage and surface wind speed in conjunction with an upwind averaged concentrations of [Chl-a], [DOC] and [POC] to derive marine primary organic aerosol emission function. Derived empirical relationships between the aerosol and ocean/meteorological data are then compared to observed OCss at Mace Head and Point Reyes National Seashore. MATLAB curve fitting tool revealed that multi-variable regression analysis (with both wind speed and [Chl-a]) yields a significant improvement between model predicted and observed submicron fraction of OCss. The coefficient of determination increased from R2=0.1 for previous parameterizations to R2=0.6. Based on the results of this study we propose that in addition to sea-water composition, future parameterizations of marine primary organic aerosol emissions should include sea spray organic mass fraction dependence on surface wind speed.
A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2001-01-01
The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best climatological analyses of fluxes derived from ship observations.
Microphysics of Air-Sea Exchanges
2003-09-30
intensities of the three color components at each point of the image . The ISG imaged an area of the water surface of up to 45 cm (downwind) x 30 cm...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not...satellite-derived sea-surface temperature (SST) fields into meaningful climatologies and to more physically-based applications of satellite data to studies
Anomalous sea surface structures as an object of statistical topography
NASA Astrophysics Data System (ADS)
Klyatskin, V. I.; Koshel, K. V.
2015-06-01
By exploiting ideas of statistical topography, we analyze the stochastic boundary problem of emergence of anomalous high structures on the sea surface. The kinematic boundary condition on the sea surface is assumed to be a closed stochastic quasilinear equation. Applying the stochastic Liouville equation, and presuming the stochastic nature of a given hydrodynamic velocity field within the diffusion approximation, we derive an equation for a spatially single-point, simultaneous joint probability density of the surface elevation field and its gradient. An important feature of the model is that it accounts for stochastic bottom irregularities as one, but not a single, perturbation. Hence, we address the assumption of the infinitely deep ocean to obtain statistic features of the surface elevation field and the squared elevation gradient field. According to the calculations, we show that clustering in the absolute surface elevation gradient field happens with the unit probability. It results in the emergence of rare events such as anomalous high structures and deep gaps on the sea surface almost in every realization of a stochastic velocity field.
Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent
2009-09-01
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.
Estimating Turbulent Surface Fluxes from Small Unmanned Aircraft: Evaluation of Current Abilities
NASA Astrophysics Data System (ADS)
de Boer, G.; Lawrence, D.; Elston, J.; Cassano, J. J.; Mack, J.; Wildmann, N.; Nigro, M. A.; Ivey, M.; Wolfe, D. E.; Muschinski, A.
2014-12-01
Heat transfer between the atmosphere and Earth's surface represents a key component to understanding Earth energy balance, making it important in understanding and simulating climate. Arguably, the oceanic air-sea interface and Polar sea-ice-air interface are amongst the most challenging in which to measure these fluxes. This difficulty results partially from challenges associated with infrastructure deployment on these surfaces and partially from an inability to obtain spatially representative values over a potentially inhomogeneous surface. Traditionally sensible (temperature) and latent (moisture) fluxes are estimated using one of several techniques. A preferred method involves eddy-correlation where cross-correlation between anomalies in vertical motion (w) and temperature (T) or moisture (q) is used to estimate heat transfer. High-frequency measurements of these quantities can be derived using tower-mounted instrumentation. Such systems have historically been deployed over land surfaces or on ships and buoys to calculate fluxes at the air-land or air-sea interface, but such deployments are expensive and challenging to execute, resulting in a lack of spatially diverse measurements. A second ("bulk") technique involves the observation of horizontal windspeed, temperature and moisture at a given altitude over an extended time period in order to estimate the surface fluxes. Small Unmanned Aircraft Systems (sUAS) represent a unique platform from which to derive these fluxes. These sUAS can be small ( 1 m), lightweight ( 700 g), low cost ( $2000) and relatively easy to deploy to remote locations and over inhomogeneous surfaces. We will give an overview of the ability of sUAS to provide measurements necessary for estimating surface turbulent fluxes. This discussion is based on flights in the vicinity of the 1000 ft. Boulder Atmospheric Observatory (BAO) tower, and over the US Department of Energy facility at Oliktok Point, Alaska. We will present initial comparisons between UAS-derived turbulent fluxes and those derived from tower-based instrumentation and discuss differences in the context of sensor technology and flight patterns employed to collect data.
Mean Dynamic Topography of the Arctic Ocean
NASA Technical Reports Server (NTRS)
Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine
2012-01-01
ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.
NASA Technical Reports Server (NTRS)
1972-01-01
Results are presented of analysis of satellite signal characteristics as influenced by ocean surface roughness and an investigation of sea truth data requirements. The first subject treated is that of postflight waveform reconstruction for the Skylab S-193 radar altimeter. Sea state estimation accuracies are derived based on analytical and hybrid computer simulation techniques. An analysis of near-normal incidence, microwave backscattering from the ocean's surface is accomplished in order to obtain the minimum sea truth data necessary for good agreement between theoretical and experimental scattering results. Sea state bias is examined from the point of view of designing an experiment which will lead to a resolution of the problem. A discussion is given of some deficiencies which were found in the theory underlying the Stilwell technique for spectral measurements.
Ocean dynamics in the Nordic Seas using satellite altimetry
NASA Technical Reports Server (NTRS)
Pettersson, Lasse H.; Johannessen, O. M.; Olaussen, T. I.
1991-01-01
The main objective of this TOPEX/POSEIDON project is to integrate the accurately measured sea surface topography, as resolved by both TOPEX/POSEIDON radar altimeters, into the above-mentioned quantitative studies of the short- and long-term variations in the mesoscale ocean dynamics of the Nordic Seas south of 66 deg N. This implies: (1) comparison and validation of the capability to resolve the general basin-scale circulation and the mesoscale variability by, respectively, radar altimeters and numerical ocean circulation models; (2) calibration and validation of the altimeter-derived sea surface topography against in situ measurements from research vessels and moorings, particularly under extreme wind and wave conditions; and (3) improved monitoring and understanding of the flux variations between the North Atlantic and the Nordic Seas, both on the short and seasonal time scales.
Stout, Scott A; Rouhani, Shahrokh; Liu, Bo; Oehrig, Jacob; Ricker, Robert W; Baker, Gregory; Lewis, Christopher
2017-01-15
The lateral and vertical extents of Macondo oil in deep-sea sediments resulting from the 2010 Deepwater Horizon oil spill were determined using chemical forensics and geostatistical kriging of data from 2397 sediment samples from 875 cores collected in 2010/2011 and 2014. The total mass of Macondo-derived hopane on the seafloor in 2010/2011 was conservatively estimated between 2.00 and 2.26metric tons, derived from 219,000 to 247,000barrels of oil; or 6.9 to 7.7% of the 3.19millionbarrels spilled. Macondo-derived hopane was deposited over 1030 to 1910km 2 of the seafloor, mostly (>97%) in surface (0-1cm) and near-surface (1-3cm) sediments, which is consistent with short-term oil deposition. Although Macondo oil was still present in surface sediments in 2014, the total mass of Macondo-derived hopane was significantly lower (~80 to 90%) than in 2010/2011, affirming an acute impact from the spill and not long-term deposition from natural seeps. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven
2017-11-01
State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.
Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Smith, Dru A.
1994-01-01
TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.
Global sea level trend in the past century
NASA Technical Reports Server (NTRS)
Gornitz, V.; Lebedeff, S.; Hansen, J.
1982-01-01
Data derived from tide-gauge stations throughout the world indicate that the mean sea level rose by about 12 centimeters in the past century. The sea level change has a high correlation with the trend of global surface air temperature. A large part of the sea level rise can be accounted for in terms of the thermal expansion of the upper layers of the ocean. The results also represent weak indirect evidence for a net melting of the continental ice sheets.
The Relationship Between Sea Breeze Forcing and HF Radar-Derived Surface Currents in Monterey Bay
2014-06-01
the ocean wave backscattering the radar signal is one half the radar’s wavelength (Neal 1992). This process is called Bragg scattering (Barrick 1977...transmit frequency of radar is important because it helps us to figure out the length of the ocean waves and backscattered radar wavelength (Harlan et al...Representation of some remote sensing methods exploiting signals backscattered from the sea surface (from Shearman 1981). 7 HF radars have many advantages
NASA Astrophysics Data System (ADS)
ZáVody, A. M.; Mutlow, C. T.; Llewellyn-Jones, D. T.
1995-01-01
The measurements made by the along-track scanning radiometer are now converted routinely into sea surface temperature (SST). The details of the atmospheric model which had been used for deriving the SST algorithms are given, together with tables of the coefficients in the algorithms for the different SST products. The accuracy of the retrieval under normal conditions and the effect of errors in the model on the retrieved SST are briefly discussed.
NASA Astrophysics Data System (ADS)
Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.
2017-12-01
Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.
Effects of Mackenzie River Discharge and Bathymetry on Sea Ice in the Beaufort Sea
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Hall, D. K.; Rigor, I. G; Li, P.; Neumann, G.
2014-01-01
Mackenzie River discharge and bathymetry effects on sea ice in the Beaufort Sea are examined in 2012 when Arctic sea ice extent hit a record low. Satellite-derived sea surface temperature revealed warmer waters closer to river mouths. By 5 July 2012, Mackenzie warm waters occupied most of an open water area about 316,000 sq km. Surface temperature in a common open water area increased by 6.5 C between 14 June and 5 July 2012, before and after the river waters broke through a recurrent landfast ice barrier formed over the shallow seafloor offshore the Mackenzie Delta. In 2012, melting by warm river waters was especially effective when the strong Beaufort Gyre fragmented sea ice into unconsolidated floes. The Mackenzie and other large rivers can transport an enormous amount of heat across immense continental watersheds into the Arctic Ocean, constituting a stark contrast to the Antarctic that has no such rivers to affect sea ice.
NASA Astrophysics Data System (ADS)
Zhang, Shengjun; Li, Jiancheng; Jin, Taoyong; Che, Defu
2018-04-01
Marine gravity anomaly derived from satellite altimetry can be computed using either sea surface height or sea surface slope measurements. Here we consider the slope method and evaluate the errors in the slope of the corrections supplied with the Jason-1 geodetic mission data. The slope corrections are divided into three groups based on whether they are small, comparable, or large with respect to the 1 microradian error in the current sea surface slope models. (1) The small and thus negligible corrections include dry tropospheric correction, inverted barometer correction, solid earth tide and geocentric pole tide. (2) The moderately important corrections include wet tropospheric correction, dual-frequency ionospheric correction and sea state bias. The radiometer measurements are more preferred than model values in the geophysical data records for constraining wet tropospheric effect owing to the highly variable water-vapor structure in atmosphere. The items of dual-frequency ionospheric correction and sea state bias should better not be directly added to range observations for obtaining sea surface slopes since their inherent errors may cause abnormal sea surface slopes and along-track smoothing with uniform distribution weight in certain width is an effective strategy for avoiding introducing extra noises. The slopes calculated from radiometer wet tropospheric corrections, and along-track smoothed dual-frequency ionospheric corrections, sea state bias are generally within ±0.5 microradians and no larger than 1 microradians. (3) Ocean tide has the largest influence on obtaining sea surface slopes while most of ocean tide slopes distribute within ±3 microradians. Larger ocean tide slopes mostly occur over marginal and island-surrounding seas, and extra tidal models with better precision or with extending process (e.g. Got-e) are strongly recommended for updating corrections in geophysical data records.
NASA Technical Reports Server (NTRS)
Dugdale, Richard C.; Wilkerson, Frances P.
1995-01-01
During this project we have collected numerous shipboard data-bases of oceanic nitrate and silicate versus temperature for both equatorial and coastal upwelling regions. These cruises all have accompanying N-15 measurements of new production. The inverse relationships between nutrients and temperatures have been determined and are being used to obtain surface nutrient fields from sea surface temperatures measured remotely by satellite borne sensors- i.e. AVHRR data from NOAA satellites contained in the MCSST data set for the world ocean provided by the University of Miami. The images and data derived from space in this way show the strong seasonal fluctuations and interannual el Nino fluctuations of the nitrate field. the nitrate data has been used to make estimates of new production for the equatorial pacific which are compared with shipboard measurements when available. The importance of silicate as a nutrient driving new production and the ratio of nitrate to silicate has been discovered to be crucial to better understand the causes of new production variability, so we have added these parameters to our study and have begun to make estimates of these for the equatorial Pacific, derived from the weekly averaged sea surface temperatures (SSTs).
NASA Technical Reports Server (NTRS)
Liu, W. T.
1984-01-01
The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.
NASA Astrophysics Data System (ADS)
Zhu, C.; Zhang, S.; Xiao, F.; Li, J.; Yuan, L.; Zhang, Y.; Zhu, T.
2018-05-01
The NASA Operation IceBridge (OIB) mission is the largest program in the Earth's polar remote sensing science observation project currently, initiated in 2009, which collects airborne remote sensing measurements to bridge the gap between NASA's ICESat and the upcoming ICESat-2 mission. This paper develop an improved method that optimizing the selection method of Digital Mapping System (DMS) image and using the optimal threshold obtained by experiments in Beaufort Sea to calculate the local instantaneous sea surface height in this area. The optimal threshold determined by comparing manual selection with the lowest (Airborne Topographic Mapper) ATM L1B elevation threshold of 2 %, 1 %, 0.5 %, 0.2 %, 0.1 % and 0.05 % in A, B, C sections, the mean of mean difference are 0.166 m, 0.124 m, 0.083 m, 0.018 m, 0.002 m and -0.034 m. Our study shows the lowest L1B data of 0.1 % is the optimal threshold. The optimal threshold and manual selections are also used to calculate the instantaneous sea surface height over images with leads, we find that improved methods has closer agreement with those from L1B manual selections. For these images without leads, the local instantaneous sea surface height estimated by using the linear equations between distance and sea surface height calculated over images with leads.
Modern average global sea-surface temperature
Schweitzer, Peter N.
1993-01-01
The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.
NASA Astrophysics Data System (ADS)
Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco
2015-04-01
The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates melting of sea ice. Hence, the change in seasonality and the associated change in feedback strength is an integral part of the positive surface albedo feedback leading to Arctic amplification and diminishing sea ice cover in the next century when global climate warms.
Robust global ocean cooling trend for the pre-industrial Common Era
NASA Astrophysics Data System (ADS)
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-09-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Robust global ocean cooling trend for the pre-industrial Common Era
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-01-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Coral-Derived Western Pacific Tropical Sea Surface Temperatures During the Last Millennium
NASA Astrophysics Data System (ADS)
Chen, Tianran; Cobb, Kim M.; Roff, George; Zhao, Jianxin; Yang, Hongqiang; Hu, Minhang; Zhao, Kuan
2018-04-01
Reconstructions of ocean temperatures prior to the industrial era serve to constrain natural climate variability on decadal to centennial timescales, yet relatively few such observations are available from the west Pacific Warm Pool. Here we present multiple coral-based sea surface temperature reconstructions from Yongle Atoll, in the South China Sea over the last 1,250 years (762-2013 Common Era [CE]). Reconstructed coral Sr/Ca-sea surface temperatures indicate that the "Little Ice Age (1711-1817 CE)" period was 0.7°C cooler than the "Medieval Climate Anomaly (913-1132 CE)" and that late 20th century warming of the western Pacific is likely unprecedented over the past millennium. Our findings suggest that the Western Pacific Warm Pool may have expanded (contracted) during the Medieval Climate Anomaly (Little Ice Age), leading to a strengthening (weakening) of the Asian summer monsoon, as recorded in Chinese stalagmites.
Vertical transport of carbon-14 into deep-sea food webs
NASA Astrophysics Data System (ADS)
Pearcy, W. G.; Stuiver, Minze
1983-04-01
During the years 1973 to 1976 the carbon-14 content was higher in epipelagic and vertically migrating, upper mesopelagic animals (caught between 0 and 500 m) than in lower mesopelagic, bathypelagic, and abyssobenthic animals (500 to 5180 m) in the northeastern Pacific Ocean. Only one species of deep-sea fish had a Δ14C value as high as surface-caught fish. The 14C content of most animals was higher pre-bomb levels, but the relatively low 14C content of most deep-sea animals indicates that the majority of their carbon was not derived directly from a near-surface food chain labeled with bomb carbon. A mean residence time of about 35 y was estimated for the organic carbon pool for abyssobenthic animals based on the relative increase of radiocarbon in surface-dwelling animals since 1967. The results suggest that rapidly sinking particles from surface waters, such as fecal pellets, are not the major source of organic carbon for deep-sea fishes and large benthic invertebrates.
NASA Astrophysics Data System (ADS)
Lange, Martin; Paul, Gerhard; Potthast, Roland
2014-05-01
Sea ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea ice cover in their NWP models. To the knowledge of the author there are mainly two global sea ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.
Fan, Hang; Wang, Xiujun; Zhang, Haibo; Yu, Zhitong
2018-05-22
The Yellow-Bohai Sea (YBS) is a typical marginal sea in the Northwest Pacific Ocean; however, little is known about the dynamics of particulate organic carbon (POC) and underlying mechanisms. Here, we analyze the spatial and temporal variations of surface POC derived from MODIS-Aqua during 2002-2016. Overall, POC is higher in the Bohai Sea (315-588 mg m -3 ) than in the Yellow Sea (181-492 mg m -3 ), and higher in the nearshore than in the offshore. Surface POC is highest in spring in the YBS, and lowest in winter (summer) in the Bohai Sea (the Yellow Sea). The spatial and seasonal patterns of POC are due to combined influences of primary productivity, water exchange, sediment resuspension and terrestrial inputs. Surface POC shows an overall decreasing trend prior to 2012 followed by an upward trend until 2015 in the YBS, which is almost opposite to chlorophyll; the decrease (increase) may result from strengthened (weakened) water exchange with the East China Sea through the Yellow Sea Warm Current. Declined terrestrial runoff is also partly responsible for the decrease prior to 2012. Our study suggests that water exchange and sediment resuspension are dominant factors regulating the spatial and temporal variability of POC in the YBS.
NASA Astrophysics Data System (ADS)
Hebert, David A.; Allard, Richard A.; Metzger, E. Joseph; Posey, Pamela G.; Preller, Ruth H.; Wallcraft, Alan J.; Phelps, Michael W.; Smedstad, Ole Martin
2015-12-01
In this study the forecast skill of the U.S. Navy operational Arctic sea ice forecast system, the Arctic Cap Nowcast/Forecast System (ACNFS), is presented for the period February 2014 to June 2015. ACNFS is designed to provide short term, 1-7 day forecasts of Arctic sea ice and ocean conditions. Many quantities are forecast by ACNFS; the most commonly used include ice concentration, ice thickness, ice velocity, sea surface temperature, sea surface salinity, and sea surface velocities. Ice concentration forecast skill is compared to a persistent ice state and historical sea ice climatology. Skill scores are focused on areas where ice concentration changes by ±5% or more, and are therefore limited to primarily the marginal ice zone. We demonstrate that ACNFS forecasts are skilful compared to assuming a persistent ice state, especially beyond 24 h. ACNFS is also shown to be particularly skilful compared to a climatologic state for forecasts up to 102 h. Modeled ice drift velocity is compared to observed buoy data from the International Arctic Buoy Programme. A seasonal bias is shown where ACNFS is slower than IABP velocity in the summer months and faster in the winter months. In February 2015, ACNFS began to assimilate a blended ice concentration derived from Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Interactive Multisensor Snow and Ice Mapping System (IMS). Preliminary results show that assimilating AMSR2 blended with IMS improves the short-term forecast skill and ice edge location compared to the independently derived National Ice Center Ice Edge product.
Sea ice and oceanic processes on the Ross Sea continental shelf
NASA Technical Reports Server (NTRS)
Jacobs, S. S.; Comiso, J. C.
1989-01-01
The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.
Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS
NASA Technical Reports Server (NTRS)
Wentz, F. J.; Christensen, E. J.; Richardson, K. A.
1981-01-01
The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.
Sea Ice Surface Temperature Product from the Moderate Resolution Imaging Spectroradiometer (MODIS)
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Key, Jeffrey R.; Casey, Kimberly A.; Riggs, George A.; Cavalieri, Donald J.
2003-01-01
Global sea ice products are produced from the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) on board both the Terra and Aqua satellites. Daily sea ice extent and ice-surface temperature (IST) products are available at 1- and 4-km resolution. Validation activities have been undertaken to assess the accuracy of the MODIS IST product at the South Pole station in Antarctica and in the Arctic Ocean using near-surface air-temperature data from a meteorological station and drifting buoys. Results from the study areas show that under clear skies, the MODIS ISTs are very close to those of the near-surface air temperatures with a bias of -1.1 and -1.2 K, and an uncertainty of 1.6 and 1.7 K, respectively. It is shown that the uncertainties would be reduced if the actual temperature of the ice surface were reported instead of the near-surface air temperature. It is not possible to get an accurate IST from MODIS in the presence of even very thin clouds or fog, however using both the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and the MODIS on the Aqua satellite, it may be possible to develop a relationship between MODIS-derived IST and ice temperature derived from the AMSR-E. Since the AMSR-E measurements are generally unaffected by cloud cover, they may be used to complement the MODIS IST measurements.
(abstract) Satellite Physical Oceanography Data Available From an EOSDIS Archive
NASA Technical Reports Server (NTRS)
Digby, Susan A.; Collins, Donald J.
1996-01-01
The Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory archives and distributes data as part of the Earth Observing System Data and Information System (EOSDIS). Products available from JPL are largely satellite derived and include sea-surface height, surface-wind speed and vectors, integrated water vapor, atmospheric liquid water, sea-surface temperature, heat flux, and in-situ data as it pertains to satellite data. Much of the data is global and spans fourteen years.There is email access, a WWW site, product catalogs, and FTP capabilities. Data is free of charge.
Kavak, Mehmet Tahir; Karadogan, Sabri
2012-04-01
Present work investigated the relationship between Chlorophyll (Chl), of phytoplankton biomass, and sea surface temperature (SST) of the Black Sea, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Advanced Very High Resolution Radiometer (AVHRR) satellite imagery. Satellite derived data could provide information on the amount of sea life present (Brown algae, called kelp, proliferate, supporting new species of sea life, including otters, fish, and various invertebrates) in a given area throughout the world. SST from AVHRR from 1993 to 2008 showed seasonal, annual and interannual variability of temperature, monthly variability Chl from SeaWiFS from 1997 to 2009 has also been investigated. Chl showed two high peaks for the year 1999 and 2008. The correlation between SST and Chl for the same time has been found to be 60%. Correlation was significant at p<0.05. The information could also be useful in connection with studies of global changes in temperature and what effect they could have on the total abundance of marine life.
Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs
NASA Astrophysics Data System (ADS)
Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.
2013-12-01
Recent years have seen extreme changes in the Arctic. Particularly striking are changes within the Pacific sector of the Arctic Ocean, and especially in the seas north of the Alaskan coast. These areas have experienced record warming, reduced sea ice extent, and loss of ice in areas that had been ice-covered throughout human memory. Even the oldest and thickest ice types have failed to survive through the summer melt period in areas such as the Beaufort Sea and Canada Basin, and fundamental changes in ocean conditions such as earlier phytoplankton blooms may be underway. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Airborne remote sensing, in particular InfraRed (IR), offers a unique opportunity to observe physical processes at sea-ice margins. It permits monitoring the ice extent and coverage, as well as the ice and ocean temperature variability. It can also be used for derivation of surface flow field allowing investigation of turbulence and mixing at the ice-ocean interface. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as a intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. The upstream side of the ice floe shows the coldest skin SST, and downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?
The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer
NASA Technical Reports Server (NTRS)
Jackson, Frederick C.
1987-01-01
The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.
Bourlier, Christophe
2006-08-20
The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method.
Satellite Data Sets in the Polar Regions
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
We have generated about two decades of consistently derived geophysical parameters in the polar regions. The key parameters are sea ice concentration, surface temperature, albedo, and cloud cover statistics. Sea ice concentrations were derived from the Scanning Multichannel Microwave Radiometer (SMMR) data and the Special Scanning Cl Microwave Imager (SSM/I) data from several platforms using the enhanced Bootstrap Algorithm for the period 1978 through 1999. The new algorithm reduces the errors associated with spatial and temporal variations in the emissivity and surface temperatures of sea ice. Also, bad data at ocean/land interfaces are identified and deleted in an unsupervised manner. Surface ice temperature, albedo and cloud cover statistics are derived simultaneously from the Advanced Very High Resolution Radiometer (AVHRR) data from 1981 through 1999 and mapped at a higher resolution but the same format as the ice concentration data. The technique makes use these co-registered ice concentration maps to enable cloud masking to be done separately for open ocean, sea ice and land areas. The effect of inversion is minimized by taking into consideration the expected changes in the effect of inversion with altitude, especially in the Antarctic. A technique for ice type regional classification has also been developed using multichannel cluster analysis and a neural network. This provide a means to identify large areas of thin ice, first year ice, and older ice types. The data sets have been shown to be coherent with each other and provide a powerful tool for in depth studies of the currently changing Arctic and Antarctic environment.
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Vincent, S.; Mcclinton, A. T.; Chang, E. S.
1975-01-01
A detailed gravimetric geoid was computed for the Northwest Atlantic Ocean and Caribbean Sea area in support of the calibration and evaluation of the GEOS-C altimeter. This geoid, computed on a 15 ft. x 15 ft. grid was based upon a combination of surface gravity data with the GSFC GEM-6 satellite derived gravity data. A comparison of this gravimetric geoid with 10 passes of SKYLAB altimeter data is presented. The agreement of the two data types is quite good with the differences generally less than 2 meters. Sea surface manifestations of numerous short wavelength (approximately 100 km) oceanographic features are now indicated in the gravimetric geoid and are also confirmed by the altimetry data.
Satellite-Derived Sea Surface Temperature: Workshop-2
NASA Technical Reports Server (NTRS)
Njoku, E. G.
1984-01-01
Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.
NASA Astrophysics Data System (ADS)
Harada, Naomi; Sato, Miyako; Sakamoto, Tatsuhiko
2008-09-01
We present records of phytoplankton-produced alkenones down a long piston core, which reveal changes of sea surface temperature (SST) and sea surface salinity (SSS) in the southwestern Okhotsk Sea over the past 120 ka. Between 20 and 60 ka B.P., alkenone-derived temperatures typically increased by 6°C-8°C from periods corresponding, within a few hundred years, to stadials to those corresponding to interstadials recorded in Greenland ice cores. The abundance of C37:4 alkenone relative to total C37 alkenones (percent C37:4), a possible proxy for salinity, indicated that during most low SSS was associated with high SST. The warm freshwater events might be related to (1) a decline in the supply of saline water entering the Okhotsk Sea through the Soya Strait; (2) strengthening of the freshwater supply from the Amur River and precipitation over the Okhotsk Sea, associated mainly with increased Asian summer monsoon activity; and (3) the effect of melting sea ice. These findings increase our understanding of the close linkage between high and low latitudes in relation to climate change and the synchronicity of climate changes within a few centuries between the Pacific and the Atlantic sides of the Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.
2011-12-01
The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea ice breakup and later sea ice formation. Sea surface temperatures have also shown warming, where sites show significant warming particularly during August, September, and October. Satellite-derived chlorophyll-a concentrations over the past decade have shown trends seemingly in direct response to changing sea ice conditions, with increasing trends in chlorophyll-a concentrations when sea ice declines (and vice versa). In some cases, however, satellite-derived chlorophyll-a concentrations do not show expected changes with sea ice variability, indicating that limitations on biological productivity in this region are complex and spatially heterogeneous. An understanding of these spatial and temporal complexities impacting biological productivity is needed for the accurate prediction of how overall ecosystems may be altered with further expected warming sea surface temperatures and declines in sea ice cover.
Sea ice roughness: the key for predicting Arctic summer ice albedo
NASA Astrophysics Data System (ADS)
Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.
2017-12-01
Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.
Toward RADSCAT measurements over the sea and their interpretation
NASA Technical Reports Server (NTRS)
Claassen, J. P.; Fung, A. K.; Wu, S. T.; Chan, H. L.
1973-01-01
Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed.
Multisensor satellite data integration for sea surface wind speed and direction determination
NASA Technical Reports Server (NTRS)
Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.
1984-01-01
Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.
NASA Astrophysics Data System (ADS)
Priya, R. Kanmani Shanmuga; Balaguru, B.; Ramakrishnan, S.
2013-10-01
The capabilities of evolving satellite remote sensing technology, combined with conventional data collection techniques, provide a powerful tool for efficient and cost effective management of living marine resources. Fishes are the valuable living marine resources producing food, profit and pleasure to the human community. Variations in oceanic condition play a role in natural fluctuations of fish stocks. The Satellite Altimeter derived Merged Sea Level Anomaly(MSLA) results in the better understanding of ocean variability and mesosclae oceanography and provides good possibility to reveal the zones of high dynamic activity. This study comprised the synergistic analysis of signatures of SEAWIFS derived chlorophyll concentration, National Oceanic and Atmospheric Administration-Advanced Very High Resolution Radiometer(NOAA-AVHRR) derived Sea Surface Temperature and the monthly Merged Sea Level Anomaly data derived from Topex/Poseidon, Jason-1 and ERS-1 Altimeters for the past 7 years during the period from 1998 to 2004. The overlapping Chlorophyll, SST and MSLA were suggested for delineating Potential Fishing Zones (PFZs). The Chlorophyll and SST data set were found to have influenced by short term persistence from days to week while MSLA signatures of respective features persisted for longer duration. Hence, the study used Altimeter derived MSLA as an index for long term variability detection of fish catches along with Chlorophyll and SST images and the maps showing PFZs of the study area were generated. The real time Fishing statistics of the same duration were procured from FSI Mumbai. The catch contours were generated with respect to peak spectra of chlorophyll variation and trough spectra of MSLA and SST variation. The vice- a- versa patterns were observed in the poor catch contours. The Catch Per Unit Effort (CPUE) for each fishing trail was calculated to normalize the fish catch. Based on the statistical analysis the actual CPUEs were classified at each probable MSLA depth zones and plotted on the same images.
Phytoplankton in the Beaufort and Chukchi Seas: Distributions, Dynamics and Environmental Forcing
NASA Technical Reports Server (NTRS)
Wang, Jian; Cota, Glenn F.; Comiso, Josefino C.
2005-01-01
Time-series of remotely sensed distributions of phytoplankton, sea ice, surface temperature, albedo, and clouds were examined to evaluate the impact of the variability of environmental conditions and physical forcing on the phytoplankton distribution in the Beaufort and Chukchi Seas. Large-scale distributions of these parameters were studied for the first time using weekly and monthly composites from April 1998 through September 2002. The basic data set used in this study are phytoplankton pigment concentration derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), ice concentration obtained from the Special Sensor Microwave Imager (SSM/I) and surface temperature, cloud cover, and albedo derived from the Advanced Very High Resolution Radiometer (AVHRR). Seasonal variations of the sea ice cover was observed to be the dominant environmental factor as the ice edge blooms followed the retreating marginal ice zones northward. Blooms were most prominent in the southwestern Chukchi Sea, and were especially persistent immediately north of the Bering Strait in nutrient- rich Anadyr water and in some fronts. Chlorophyll concentrations are shown to increase from a nominal value during onset of melt in April to a maximum value in mid-spring or summer depending on location. Large interannual variability of ice cover and phytoplankton distributions was observed with the year 1998 being uniquely associated with an early season occurrence of a massive bloom. This is postulated to be caused in part by a rapid response of phytoplankton to an early retreat of the sea ice cover in the Beaufort Sea region. Correlation analyses showed relatively high negative correlation between chlorophyll and ice concentration with the correlation being highest in May, the correlation coefficient being -0.45. 1998 was also the warmest among the five years globally and the sea ice cover was least extensive in the Beaufort-Khukchi Sea region, partly because of the 1997-98 El Nino. Strong correlations were noted between ice extent and surface temperature, the correlation coefficient being highest at - 0.79 in April, during the onset of the bloom period
A survey of the summer coccolithophore community in the western Barents Sea
NASA Astrophysics Data System (ADS)
Giraudeau, Jacques; Hulot, Vivien; Hanquiez, Vincent; Devaux, Ludovic; Howa, Hélène; Garlan, Thierry
2016-06-01
The Barents Sea is particularly vulnerable to large-scale hydro-climatic changes associated with the polar amplification of climate change. Key oceanographical variables in this region are the seasonal development of sea-ice and the location and strength of physico-chemical gradients in the surface and subsurface water layers induced by the convergence of Arctic- and Atlantic-derived water masses. Remote sensing imagery have highlighted the increasing success of calcifying haptophytes (coccolithophores) in the summer phytoplankton production of the Barents Sea over the last 20 years, as a response to an overall larger contribution of Atlantic waters to surface and sub-surface waters, as well as to enhanced sea-ice melt-induced summer stratification of the photic layer. The present study provides a first thorough description of coccolithophore standing stocks and diversity over the shelf and slope of the western Barents Sea from two sets of surface and water column samples collected during August-September 2014 from northern Norway to southern Svalbard. The abundance and composition of coccolithophore cells and skeletal remains (coccoliths) are discussed in view of the physical-chemical-biological status of the surface waters and water column based on in-situ (temperature, salinity, fluorescence) and shore-based (microscope enumerations, chemotaxonomy) measurements, as well as satellite-derived data (Chl a and particulate inorganic carbon contents). The coccolithophore population is characterized by a low species diversity and the overwhelming dominance of Emiliania huxleyi. Coccolithophores are abundant both within the well stratified, Norwegian coastal water - influenced shallow mixed layer off northern Norway, as well as within well-mixed cool Atlantic water in close vicinity of the Polar Front. Bloom concentrations with standing stocks larger than 4 million cells/l are recorded in the latter area north of 75°N. Our limited set of chemotaxonomic data suggests that coccolithophores contribute substantially (ca. 20% of the total Chl a) to the summer phytoplankton community which is made essentially of small-sized algal groups. Excluding the bloom area, coccolith calcite accounts for an average of 20% to the bulk particulate inorganic carbon content in the surface waters, and explains to some extent the satellite-derived spatial distribution of this parameter. Deep water living coccolithophore species thriving below the pycnocline as well as populations present in well-mixed cool Atlantic water are rapidly transferred to depth in the form of intact coccospheres down to at least 200 m. High amplitude internal waves which, according to our observations, affect a wide range of water depth up to the lower photic zone, might strengthen the vertical transfer of this sinking population.
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei
2018-01-01
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere. PMID:29349299
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei
2018-01-01
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.
NASA Technical Reports Server (NTRS)
Barrick, D. E.
1972-01-01
Using the specular point theory of scatter from a very rough surface, the average backscatter cross section per unit area per radar cell width is derived for a cell located at a given height above the mean sea surface. This result is then applied to predict the average radar cross section observed by a short-pulse altimeter as a function of time for two modes of operation: pulse-limited and beam-limited configurations. For a pulse-limited satellite altimeter, a family of curves is calculated showing the distortion of the leading edge of the receiver output signal as a function of sea state (i.e., wind speed). A signal processing scheme is discussed that permits an accurate determination of the mean surface position--even in high seas--and, as a by-product, the estimation of the significant seawave height (or wind speed above the surface). Comparison of these analytical results with experimental data for both pulse-limited and beam-limited operation lends credence to the model. Such a model should aid in the design of short-pulse altimeters for accurate determination of the geoid over the oceans, as well as for the use of such altimeters for orbital sea-state monitoring.
Radial orbit error reduction and sea surface topography determination using satellite altimetry
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Short, D. A.
1984-01-01
Monthly mean distributions of water vapor and liquid water contained in a vertical column of the atmosphere and the surface wind speed were derived from Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations over the global oceans for the period November 1978 to November 1979. The remote sensing techniques used to estimate these parameters from SMMR are presented to reveal the limitations, accuracies, and applicability of the satellite-derived information for climate studies. On a time scale of the order of a month, the distribution of atmospheric water vapor over the oceans is controlled by the sea surface temperature and the large scale atmospheric circulation. The monthly mean distribution of liquid water content in the atmosphere over the oceans closely reflects the precipitation patterns associated with the convectively and baroclinically active regions. Together with the remotely sensed surface wind speed that is causing the sea surface stress, the data collected reveal the manner in which the ocean-atmosphere system is operating. Prominent differences in the water vapor patterns from one year to the next, or from month to month, are associated with anomalies in the wind and geopotential height fields. In association with such circulation anomalies the precipitation patterns deduced from the meteorological network over adjacent continents also reveal anomalous distributions.
Air-sea interactions during strong winter extratropical storms
Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John
2014-01-01
A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.
Polarimetric Remote Sensing of Geophysical Medium Structures
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Nguyen, D. T.
1993-01-01
Polarimetric remote sensing of structures in geophysical media is studied in this paper based on their symmetry properties. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is defined to study scattering structures in geophysical media. Experimental observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented to illustrate the use of symmetry properties. For forests, the coniferous forest in Mount Shasta area and mixed forests neir Presque Isle show evidence of the centrical symmetry at C band. In sea ice from the Beaufort Sea, multiyear sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. For first-year sea ice, e is much smaller than e(sub 0) as a result of preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L band because of the directional feature of sea surface waves. Use of symmetry properties of geophysical media for polarimetric radar calibration is also suggested.
NASA Astrophysics Data System (ADS)
Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge
2018-04-01
Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.
2015-12-01
Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan
2003-01-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.
A robust empirical seasonal prediction of winter NAO and surface climate.
Wang, L; Ting, M; Kushner, P J
2017-03-21
A key determinant of winter weather and climate in Europe and North America is the North Atlantic Oscillation (NAO), the dominant mode of atmospheric variability in the Atlantic domain. Skilful seasonal forecasting of the surface climate in both Europe and North America is reflected largely in how accurately models can predict the NAO. Most dynamical models, however, have limited skill in seasonal forecasts of the winter NAO. A new empirical model is proposed for the seasonal forecast of the winter NAO that exhibits higher skill than current dynamical models. The empirical model provides robust and skilful prediction of the December-January-February (DJF) mean NAO index using a multiple linear regression (MLR) technique with autumn conditions of sea-ice concentration, stratospheric circulation, and sea-surface temperature. The predictability is, for the most part, derived from the relatively long persistence of sea ice in the autumn. The lower stratospheric circulation and sea-surface temperature appear to play more indirect roles through a series of feedbacks among systems driving NAO evolution. This MLR model also provides skilful seasonal outlooks of winter surface temperature and precipitation over many regions of Eurasia and eastern North America.
High Resolution Tidal Modelling in the Arctic Ocean: Needs and Upcoming Developments
NASA Astrophysics Data System (ADS)
Cancet, M.; Andersen, O.; Stenseng, L.; Lyard, F.; Cotton, D.; Benveniste, J.; Schulz, A.
2015-12-01
The Arctic Ocean is a challenging region for tidal modelling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimetres in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the performances of the available global tidal models in the Arctic Ocean and the on-going development of an improved regional tidal atlas in this region.
High resolution tidal modeling in the Arctic Ocean: needs and upcoming developments
NASA Astrophysics Data System (ADS)
Cancet, Mathilde; Baltazar Andersen, Ole; Cotton, David; Lyard, Florent; Benveniste, Jerome
2015-04-01
The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. As a consequence the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission) are impacted. Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat and SARAL/AltiKa data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the deficiencies and needs of the global tidal models in the Arctic Ocean as identified using the CryoSat altimetry data, and the on-going work to develop an improved regional tidal atlas in this region.
A new high resolution tidal model in the Arctic Ocean
NASA Astrophysics Data System (ADS)
Cancet, Mathilde; Andersen, Ole; Lyard, Florent; Cotton, David; Benveniste, Jérôme
2016-04-01
The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. It has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission), but also on the end-users' applications that need accurate tidal information. Better knowledge of the tides will improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have recently developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Oceans (CP4O) project funded by ESA (STSE program). In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including the Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites gives the best possible coverage of altimetry-derived tidal constituents. Tide gauge data have also been used either for assimilation or validation. This paper presents the methodology followed to develop the model and the performances of this new regional tidal model in the Arctic Ocean.
NASA Astrophysics Data System (ADS)
Wu, Xiangding; Lough, J. M.
1987-03-01
Sea-level pressure variations over the North Pacific Ocean influence the surface climate conditions of China and western North America. Documentary records of precipitation in China data back to the mid-15th century, and a well-replicated network of tree-ring chronologies from western North America dates to the early 17th century. These proxy climate records are used separately and together to estimate sea-level pressure variations over the North Pacific back to 1600 A.D. The models are calibrated over the period 1899 to 1950 and verified over the independent period, 1951 to 1963. The best estimates, derived from predictors in China and western North America, calibrate 44.7 % of summer sea-level pressure variance. The study demonstrates the potential of combining different proxy data sources to derive estimates of past climate.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)
2000-01-01
This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.
Investigation of different coastal processes in Indonesian waters using SeaWiFS data
NASA Astrophysics Data System (ADS)
Hendiarti, Nani; Siegel, Herbert; Ohde, Thomas
2004-01-01
SeaWiFS data were applied to investigate coastal processes in Indonesian waters around the most populated island of Java. Coastal processes due to wind forcing were studied the first time using SeaWiFS-derived chlorophyll and TSM concentrations in combination with AVHRR-derived SST in the period from September 1997 to December 2001. Upwelling events were studied along the southern coast of Java during the southeast monsoon (June to September). Satellite-derived chlorophyll concentrations higher than 0.8 mg/ m3 and sea-surface temperatures lower than 28°C are indications of upwelling. Upwelling events influence the distribution and growth of phytoplankton and provide by that good feeding condition for zooplankton, larvae, juvenile and adult of pelagic fish. Coastal discharge into the western Java Sea contains organic and inorganic materials originating from different sources. Diffuse impacts, particularly from fish farms and aquaculture, as well as coastal erosion influence large coastal areas during the rainy season (December to March), and to a lesser extent during the dry season. Strong Citarum river discharge was observed during the transition phase from the rainy to the dry season (March and April), when the maximum amount of transported material reaches the sea. The river plume is evident from chlorophyll concentrations higher than 2.5 mg/ m3, and suspended particulate matter concentrations of more than 8 mg/dm3. The Sunda Strait is seasonally influenced by water transport from the Java Sea and from the Indian Ocean. The satellite data show that water transport from the Java Sea occurs during the pre-dominantly easterly winds period (June to September). This is characterized by warm water (SST higher than 29.5°C) and chlorophyll concentrations higher than 0.5 mg/ m3. This water transport influences the fish abundance in the Sunda Strait. High fish catches coincide with the presence of Java Sea water, while the surface currents lead to the migration of pelagic fish. Conversely, during the dominant westerly winds period, oceanic waters from the Indian Ocean with low chlorophyll concentrations influence the Sunda Strait water.
NASA Astrophysics Data System (ADS)
Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken
2017-07-01
Exchange of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the sea surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the sea-to-air flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface air overlying the ocean surface. The difference was mainly due to the sea-to-air DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.
The along track scanning radiometer - an analysis of coincident ship and satellite measurements
NASA Astrophysics Data System (ADS)
Barton, I. J.; Prata, A. J.; Llewellyn-Jones, D. T.
1993-05-01
Following the successful launch of the ERS-1 satellite in July 1991 we have undertaken several geophysical validation cruises in the Coral Sea. The prime aim of these cruises was to compare the sea surface temperature (SST) derived from the Along Track Scanning Radiometer (ATSR) with that measured using precision radiometers mounted on the ships. On most occasions when simultaneous satellite and ship measurements were taken we also launched a radiosonde from one of the research vessels. The results suggest that the ATSR is able to measure the ``skin'' temperature of the sea surface with an accuracy suitable for climate research applications. A case study comparison between the AVHRR and ATSR SST products will also be presented.
Moran, Yehu; Cohen, Lior; Kahn, Roy; Karbat, Izhar; Gordon, Dalia; Gurevitz, Michael
2006-07-25
Type I sea anemone toxins are highly potent modulators of voltage-gated Na-channels (Na(v)s) and compete with the structurally dissimilar scorpion alpha-toxins on binding to receptor site-3. Although these features provide two structurally different probes for studying receptor site-3 and channel fast inactivation, the bioactive surface of sea anemone toxins has not been fully resolved. We established an efficient expression system for Av2 (known as ATX II), a highly insecticidal sea anemone toxin from Anemonia viridis (previously named A. sulcata), and mutagenized it throughout. Each toxin mutant was analyzed in toxicity and binding assays as well as by circular dichroism spectroscopy to discern the effects derived from structural perturbation from those related to bioactivity. Six residues were found to constitute the anti-insect bioactive surface of Av2 (Val-2, Leu-5, Asn-16, Leu-18, and Ile-41). Further analysis of nine Av2 mutants on the human heart channel Na(v)1.5 expressed in Xenopus oocytes indicated that the bioactive surfaces toward insects and mammals practically coincide but differ from the bioactive surface of a structurally similar sea anemone toxin, Anthopleurin B, from Anthopleura xanthogrammica. Hence, our results not only demonstrate clear differences in the bioactive surfaces of Av2 and scorpion alpha-toxins but also indicate that despite the general conservation in structure and importance of the Arg-14 loop and its flanking residues Gly-10 and Gly-20 for function, the surface of interaction between different sea anemone toxins and Na(v)s varies.
Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.
2017-12-01
The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane while making landfall on Cuba and the Florida Keys, where IRMA still hit as a category 3 to 4 hurricane. Results are compared to the WW3 model, which could not be validated over an area under strong and variable wind conditions before. A new theory on hurricane intensification based on Kelvin-Helmholtz instability is discussed and a first comparison to the SAR data is given.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Siegel, David A.; Obrien, Margaret C.; Sorensen, Jen C.; Konnoff, Daniel A.; Brody, Eric A.; Mueller, James L.; Davis, Curtiss O.; Rhea, W. Joseph
1995-01-01
The accurate determination of upper ocean apparent optical properties (AOP's) is essential for the vicarious calibration of the sea-viewing wide field-of-view sensor (SeaWiFS) instrument and the validation of the derived data products. To evaluate the role that data analysis methods have upon values of derived AOP's, the first Data Analysis Round-Robin (DARR-94) workshop was sponsored by the SeaWiFS Project during 21-23 July, 1994. The focus of this intercomparison study was the estimation of the downwelling irradiance spectrum just beneath the sea surface, E(sub d)(0(sup -), lambda); the upwelling nadir radiance just beneath the sea surface, L(sub u)(0(sup -), lambda); and the vertical profile of the diffuse attenuation coefficient spectrum, K(sub d)(z, lambda). In the results reported here, different methodologies from four research groups were applied to an identical set of 10 spectroradiometry casts in order to evaluate the degree to which data analysis methods influence AOP estimation, and whether any general improvements can be made. The overall results of DARR-94 are presented in Chapter 1 and the individual methods of the four groups are presented in Chapters 2-5. The DARR-94 results do not show a clear winner among data analysis methods evaluated. It is apparent, however, that some degree of outlier rejection is required in order to accurately estimate L(sub u)(0(sup -), lambda) or E(sub d)(0(sup -), lambda). Furthermore, the calculation, evaluation and exploitation of confidence intervals for the AOP determinations needs to be explored. That is, the SeaWiFS calibration and validation problem should be recast in statistical terms where the in situ AOP values are statistical estimates with known confidence intervals.
NASA Astrophysics Data System (ADS)
Birol, Florence; Delebecque, Caroline
2014-01-01
Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).
Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1978-01-01
Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.
NASA Astrophysics Data System (ADS)
Hang, F.; Wang, X.; Yu, Z.
2017-12-01
The Yellow-Bohai Sea is a semi-closed marginal sea in the east of China, affected much by human activities, especially the Bohai Sea. The present study evaluates spatial and seasonal variations of surface particulate organic carbon (POC) that was derived from MODIS month-average data for the period of July 2002-December 2016. Our analyses show that POC concentrations are significantly higher in the Bohai Sea (314.7-587.9 mg m-3) than in the Yellow Sea (181.3-492.2 mg m-3). In general, POC concentrations were higher in the nearshore waters than in the offshore. There are strong seasonal to interannual variations in POC. Mean POC was highest in spring in both Bohai Sea and Yellow Sea; the lowest POC was found in summer in the Yellow Sea, but in winter in the Bohai Sea. The elevated POC from summer to fall indicates that there was allochthonous source of POC. Overall, there was a decreasing trend in POC prior to year 2012, followed by a strong upward trend until the end of 2015. The interannual variability in POC was significantly correlated with NPGO, PDO and ENSO in the Yellow Sea, but only with NPGO in the Bohai Sea. Our analyses point out that both climate variability and human activity may impacts the carbon cycle in the Yellow-Bohai Sea.
NASA Astrophysics Data System (ADS)
Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard
2016-04-01
Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.
Eddy-induced Sea Surface Salinity changes in the tropical Pacific
NASA Astrophysics Data System (ADS)
Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.
2017-12-01
We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.
NASA Technical Reports Server (NTRS)
Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.
1989-01-01
Thematic Mapper data were analyzed with respect to its capability for mapping the complex structure and dynamics of suspended matter distribution in the coastal area of the German Bight (North Sea). Three independent pieces of information were found by factor analysis of all seven TM channels: suspended matter concentration, atmospheric scattering, and sea surface temperature. For the required atmospheric correction, the signal-to-noise ratios of Channels 5 and 7 have to be improved by averaging over 25 x 25 pixels, which also makes it possible to monitor the aerosol optical depth and aerosol type over cloud-free water surfaces. Near-surface suspended matter concentrations may be detected with an accuracy of factor less than 2 by using an algorithm derived from radiative transfer model calculation. The patchiness of suspended matter and its relation to underwater topography was analyzed with autocorrelation and cross-correlation.
Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures?
NASA Astrophysics Data System (ADS)
Newman, Matthew; Sardeshmukh, Prashant D.
2017-08-01
The predictability of seasonal anomalies worldwide rests largely on the predictability of tropical sea surface temperature (SST) anomalies. Tropical forecast skill is also a key metric of climate models. We find, however, that despite extensive model development, the tropical SST forecast skill of the operational North American Multi-Model Ensemble (NMME) of eight coupled atmosphere-ocean models remains close both regionally and temporally to that of a vastly simpler linear inverse model (LIM) derived from observed covariances of SST, sea surface height, and wind fields. The LIM clearly captures the essence of the predictable SST dynamics. The NMME and LIM skills also closely track and are only slightly lower than the potential skill estimated using the LIM's forecast signal-to-noise ratios. This suggests that the scope for further skill improvement is small in most regions, except in the western equatorial Pacific where the NMME skill is currently much lower than the LIM skill.
NASA Astrophysics Data System (ADS)
Merchant, C. J.; Llewellyn-Jones, D.; Saunders, R. W.; Rayner, N. A.; Kent, E. C.; Old, C. P.; Berry, D.; Birks, A. R.; Blackmore, T.; Corlett, G. K.; Embury, O.; Jay, V. L.; Kennedy, J.; Mutlow, C. T.; Nightingale, T. J.; O'Carroll, A. G.; Pritchard, M. J.; Remedios, J. J.; Tett, S.
We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991 2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade-1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Mock, Donald R.
1986-01-01
The data distributed by the National Space Science Data Center on the Geophysical parameters of precipitable water, sea surface temperature, and surface-level wind speed, measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, are evaluated with in situ measurements between Jan. 1980 and Oct. 1983 over the tropical oceans. In tracking annual cycles and the 1982-83 E1 Nino/Southern Oscillation episode, the radiometer measurements are coherent with sea surface temperatures and surface-level wind speeds measured at equatorial buoys and with precipitable water derived from radiosonde soundings at tropical island stations. However, there are differences between SMMR and in situ measurements. Corrections based on radiosonde and ship data were derived supplementing correction formulae suggested in the databook. This study is the initial evaluation of the data for quantitative description of the 1982-83 E1 Nino/Southern Oscillation episode. It paves the way for determination of the ocean-atmosphere moisture and latent heat exchanges, a priority of the Tropical Ocean and Global Atmosphere (TOGA) Heat Exchange Program.
NASA Astrophysics Data System (ADS)
Carnes, Michael R.; Mitchell, Jim L.; de Witt, P. Webb
1990-10-01
Synthetic temperature profiles are computed from altimeter-derived sea surface heights in the Gulf Stream region. The required relationships between surface height (dynamic height at the surface relative to 1000 dbar) and subsurface temperature are provided from regression relationships between dynamic height and amplitudes of empirical orthogonal functions (EOFs) of the vertical structure of temperature derived by de Witt (1987). Relationships were derived for each month of the year from historical temperature and salinity profiles from the region surrounding the Gulf Stream northeast of Cape Hatteras. Sea surface heights are derived using two different geoid estimates, the feature-modeled geoid and the air-dropped expendable bathythermograph (AXBT) geoid, both described by Carnes et al. (1990). The accuracy of the synthetic profiles is assessed by comparison to 21 AXBT profile sections which were taken during three surveys along 12 Geosat ERM ground tracks nearly contemporaneously with Geosat overflights. The primary error statistic considered is the root-mean-square (rms) difference between AXBT and synthetic isotherm depths. The two sources of error are the EOF relationship and the altimeter-derived surface heights. EOF-related and surface height-related errors in synthetic temperature isotherm depth are of comparable magnitude; each translates into about a 60-m rms isotherm depth error, or a combined 80 m to 90 m error for isotherms in the permanent thermocline. EOF-related errors are responsible for the absence of the near-surface warm core of the Gulf Stream and for the reduced volume of Eighteen Degree Water in the upper few hundred meters of (apparently older) cold-core rings in the synthetic profiles. The overall rms difference between surface heights derived from the altimeter and those computed from AXBT profiles is 0.15 dyn m when the feature-modeled geoid is used and 0.19 dyn m when the AXBT geoid is used; the portion attributable to altimeter-derived surface height errors alone is 0.03 dyn m less for each. In most cases, the deeper structure of the Gulf Stream and eddies is reproduced well by vertical sections of synthetic temperature, with largest errors typically in regions of high horizontal gradient such as across rings and the Gulf Stream front.
NASA Technical Reports Server (NTRS)
Johnson, B.; Cavanaugh, J.; Smith, J.; Esaias, W.
1988-01-01
The Ocean Data Acquisition System (ODAS) is a low cost instrument with potential commercial application. It is easily mounted on a small aircraft and flown over the coastal zone ocean to remotely measure sea surface temperature and three channels of ocean color information. From this data, chlorophyll levels can be derived for use by ocean scientists, fisheries, and environmental offices. Data can be transmitted to shipboard for real-time use with sea truth measurements, ocean productivity estimates and fishing fleet direction. The aircraft portion of the system has two primary instruments: an IR radiometer to measure sea surface temperature and a three channel visible spectro-radiometer for 460, 490, and 520 nm wavelength measurements from which chlorophyll concentration can be derived. The aircraft package contains a LORAN-C unit for aircraft location information, clock, on-board data processor and formatter, digital data storage, packet radio terminal controller, and radio transceiver for data transmission to a ship. The shipboard package contains a transceiver, packet terminal controller, data processing and storage capability, and printer. Both raw data and chlorophyll concentrations are available for real-time analysis.
Whitecaps, sea-salt aerosols, and climate
NASA Astrophysics Data System (ADS)
Anguelova, Magdalena Dimitrova
Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is parameterized for the first time using regression analysis. The resulting parameterization W( U10, TS) is a better predictor of whitecap coverage than the conventional W(U 10) relation. This thesis also considers the contribution of oceanic whitecaps to ocean albedo and CO2 transfer and evaluates the direct effect of sea-salt aerosols on climate, the sea-salt contribution to CCN formation, and the role of sea-salt aerosols in atmospheric chemistry.
NASA Technical Reports Server (NTRS)
Marsh, J. G.; Martin, T. V.; Mccarthy, J. J.; Chovitz, P. S.
1979-01-01
The mean surfaces of several regions of the world's oceans were estimated using GEOS-3 altimeter data. The northwest Atlantic, the northeast Pacific off the coast of California, the Indian Ocean, the southwest Pacific, and the Phillipine Sea are included. These surfaces have been oriented with respect to a common earth center-of-mass system by constraining the separate solutions to conform to precisely determined laser reference control orbits. The same reference orbits were used for all regions assuring continuity of the separate solutions. Radial accuracies of the control orbits were in the order of one meter. The altimeter measured sea surface height crossover differences were minimized by the adjustment of tilt and bias parameters for each pass with the exception of laser reference control passes. The tilt and bias adjustments removed long wavelength errors which were primarily due to orbit error. Ocean tides were evaluated. The resolution of the estimated sea surfaces varied from 0.25 degrees off the east coast of the United States to about 2 degrees in part of the Indian Ocean near Australia. The rms crossover discrepancy after adjustment varied from 30 cm to 70 cm depending upon geographic location. Comparisons of the altimeter derived mean sea surface in the North Atlantic with the 5 feet x 5 feet GEM-8 detailed gravimetric geoid indicated a relative consistency of better than a meter.
Development of Scatterometer-Derived Surface Pressures
NASA Astrophysics Data System (ADS)
Hilburn, K. A.; Bourassa, M. A.; O'Brien, J. J.
2001-12-01
SeaWinds scatterometer-derived wind fields can be used to estimate surface pressure fields. The method to be used has been developed and tested with Seasat-A and NSCAT wind measurements. The method involves blending two dynamically consistent values of vorticity. Geostrophic relative vorticity is calculated from an initial guess surface pressure field (AVN analysis in this case). Relative vorticity is calculated from SeaWinds winds, adjusted to a geostrophic value, and then blended with the initial guess. An objective method applied minimizes the differences between the initial guess field and scatterometer field, subject to regularization. The long-term goal of this project is to derive research-quality pressure fields from the SeaWinds winds for the Southern Ocean from the Antarctic ice sheet to 30 deg S. The intermediate goal of this report involves generation of pressure fields over the northern hemisphere for testing purposes. Specifically, two issues need to be addressed. First, the most appropriate initial guess field will be determined: the pure AVN analysis or the previously assimilated pressure field. The independent comparison data to be used in answering this question will involve data near land, ship data, and ice data that were not included in the AVN analysis. Second, the smallest number of pressure observations required to anchor the assimilated field will be determined. This study will use Neumann (derivative) boundary conditions on the region of interest. Such boundary conditions only determine the solution to within a constant that must be determined by a number of anchoring points. The smallness of the number of anchoring points will demonstrate the viability of the general use of the scatterometer as a barometer over the oceans.
NASA Technical Reports Server (NTRS)
Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.
1993-01-01
This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.
A global monthly sea surface temperature climatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, D.J.; Trenberth, K.E.; Reynolds, R.W.
1992-09-01
The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.
2016-12-01
A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.
A cross-assessment of CCI-ECVs and RCSM simulations over the Mediterranean area
NASA Astrophysics Data System (ADS)
D'Errico, Miriam; Planton, Serge; Nabat, Pierre
2017-04-01
A first objective of this study, conducted in the framework of the Climate Modelling Users Group (CMUG), one of the projects of the European Space Agency Climate Change Initiative (ESA CCI) program, is a cross-assessment of simulations of a Med-CORDEX regional climate system model (CNRM-RCSM5) and a sub-set of atmosphere, marine and surface interrelated Satellite-Derived Essential Climate Variables (CCI-ECVs) (i.e. sea surface temperature, sea level, aerosols and soil moisture content) over the Mediterranean area. The consistency between the model and the CCI-ECVs is evaluated through the analysis of a climate specific event that can be observed with the CCI-ECVs, in atmospheric reanalysis and reproduced in the RCSM simulations. In this presentation we focus on the July 2006 heat wave that affected the western part of the Mediterranean continental and marine area. The application of a spectral nudging method using ERA-Interim reanalysis in our simulation allows to reproduce this event with a proper chronology. As a result we show that the consistency between the simulated model aerosol optical depth and the ECV products (being produced by the ESA Aerosol CCI project consortium) depends on the choice of the algorithm used to infer the variable from the satellite observations. In particular the heat wave main characteristics become consistent between the model and the satellite-derived observations for sea surface temperature, soil moisture and sea level. The link between the atmospheric circulation and the aerosols distribution is also investigated.
NASA Technical Reports Server (NTRS)
Loomis, B. D.; Luthcke, S. B.
2016-01-01
We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.
NASA Astrophysics Data System (ADS)
Chen, Jiali; Hu, Pengju; Li, Xing; Yang, Yang; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Lü, Xiaoxia
2018-03-01
The TEX 86 H paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of TEX 86 H paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (Δ T) between TEX 86 H derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that TEX 86 H was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.
A Microwave Technique for Mapping Ice Temperature in the Arctic Seasonal Sea Ice Zone
NASA Technical Reports Server (NTRS)
St.Germain, Karen M.; Cavalieri, Donald J.
1997-01-01
A technique for deriving ice temperature in the Arctic seasonal sea ice zone from passive microwave radiances has been developed. The algorithm operates on brightness temperatures derived from the Special Sensor Microwave/Imager (SSM/I) and uses ice concentration and type from a previously developed thin ice algorithm to estimate the surface emissivity. Comparisons of the microwave derived temperatures with estimates derived from infrared imagery of the Bering Strait yield a correlation coefficient of 0.93 and an RMS difference of 2.1 K when coastal and cloud contaminated pixels are removed. SSM/I temperatures were also compared with a time series of air temperature observations from Gambell on St. Lawrence Island and from Point Barrow, AK weather stations. These comparisons indicate that the relationship between the air temperature and the ice temperature depends on ice type.
Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model
NASA Astrophysics Data System (ADS)
Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei
2009-10-01
The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.
Subtropical Gyre Variability Observed by Ocean Color Satellites
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Signorini, Sergio R.; Christian, James R.
2002-01-01
The subtropical gyres of the world are extensive, coherent regions that occupy about 40% of the surface of the earth. Once thought to be homogeneous and static habitats, there is increasing evidence that mid-latitude gyres exhibit substantial physical and biological variability on a variety of time scales. While biological productivity within these oligotrophic regions may be relatively small, their immense size makes their total contribution significant. Global distributions of dynamic height derived from satellite altimeter data, and chlorophyll concentration derived from satellite ocean color data, show that the dynamic center of the gyres, the region of maximum dynamic height where the thermocline is deepest, does not coincide with the region of minimum chlorophyll concentration. The physical and biological processes by which this distribution of ocean properties is maintained, and the spatial and temporal scales of variability associated with these processes, are analyzed using global surface chlorophyll-a concentrations, sea surface height, sea surface temperature and surface winds from operational satellite and meteorological sources, and hydrographic data from climatologies and individual surveys. Seasonal and interannual variability in the areal extent of the subtropical gyres are examined using 8 months (November 1996 - June 1997) of OCTS and nearly 5 years (September 1997 - June 02) of SeaWiFS ocean color data and are interpreted in the context of climate variability and measured changes in other ocean properties (i.e., wind forcing, surface currents, Ekman pumping, and vertical mixing). The North Pacific and North Atlantic gyres are observed to be shrinking over this period, while the South Pacific, South Atlantic, and South Indian Ocean gyres appear to be expanding.
NASA Technical Reports Server (NTRS)
Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)
2002-01-01
Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.
NASA Astrophysics Data System (ADS)
Nag, Bappaditya
The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.
Environmental studies of the Arabian Sea using remote sensing and GIS
NASA Astrophysics Data System (ADS)
Saxena, Ashlesha; Menezes, Andrew
2006-12-01
The Arabian Sea, situated in the western part of the northern Indian Ocean is a tropical basin. It is bounded on the east by the Indian peninsula, on the north by Baluchistan and Sindh provinces of Pakistan and on the west by the landmass of Arabia and Africa. The environmental factors that influence this tropical basin are the seasonally changing winds from the northeast during winter (November-February) and southwest during summer (June to September). Accordingly, the waters of the basin will experience seasonal variations. The study aims at understanding the seasonal and inter-annual variation of the Arabian Sea using satellite-derived data. The spatial domain selected for the present study is 40 degrees E and 78 degrees E longitude and equator to 30 degrees N. The remote sensing data with respect to sea surface temperature (SST), sea surface wind, sea surface height (SSH), and chlorophyll pigment concentration during January 2002 to December 2005 were used to understand the spatio-temporal variability of the Arabian Sea. The monthly mean SST data was obtained from Modis aqua, winds from Quikscat and chlorophyll pigment concentration from SeaWiFS. The SSH anomaly data was obtained from the merged product - Topex/Poseidon ERS 1/2 satellite which is 7-day snapshot. The spatial resolution of these data is 0.3 degrees latitude x 0.3 degrees longitude. Geographical information system (GIS) was used for processing and analysing the above parameters to determine the variability and detection of oceanic processes that are responsible for such variability.The study showed a very strong inverse correlation between SST and chlorophyll concentrations. Arabian Sea undergoes cooling during summer due to upwelling and advection, and in winter due to surface cooling under reduced solar heating. Upwelling along the coasts of Somalia, Arabia, and the west coast of India brings cold and nutrient rich sub-surface waters to the surface, which supports the observed high chlorophyll concentrations. During winter the convective mixing in the northern Arabian Sea supports high chlorophyll pigment concentrations. Due to strong solar heating, SST was warmest in spring (April), which supported least chlorophyll concentration.llite
High resolution sea ice modeling for the region of Baffin Bay and the Labrador Sea
NASA Astrophysics Data System (ADS)
Zakharov, I.; Prasad, S.; McGuire, P.
2016-12-01
A multi-category numerical sea ice model (CICE) with a data assimilation module was implemented to derive sea ice parameters in the region of Baffin Bay and the Labrador Sea with resolution higher than 10 km. The model derived ice parameters include concentration, ridge keel measurement, thickness and freeboard. The module for assimilation of ice concentration uses data from the Advance Microwave Scanning Radiometer (AMSR-E) and OSI SAF data. The sea surface temperature (SST) data from AMSRE-AVHRR and Operational SST and Sea Ice Analysis (OSTIA) system were used to correct the SST computed by a mixed layer slab ocean model that is used to determine the growth and melt of sea ice. The ice thickness parameter from the model was compared with the measurements from Soil Moisture Ocean Salinity - Microwave Imaging Radiometer using Aperture Synthesis (SMOS-MIRAS). The freeboard measures where compared with the Cryosat-2 measurements. A spatial root mean square error computed for freeboard measures was found to be within the uncertainty limits of the observation. The model was also used to estimate the correlation parameter between the ridge and the ridge keel measurements in the region of Makkovik Bank. Also, the level ice draft estimated from the model was in good agreement with the ice draft derived from the upward looking sonar (ULS) instrument deployed in the Makkovik bank. The model corrected with ice concentration and SST from remote sensing data demonstrated significant improvements in accuracy of the estimated ice parameters. The model can be used for operational forecast and climate research.
Surface water mass composition changes captured by cores of Arctic land-fast sea ice
NASA Astrophysics Data System (ADS)
Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.
2016-04-01
In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when engaging in end member determination for working out the component proportions of water masses.
Modeling of Long-Term Evolution of Hydrophysical Fields of the Black Sea
NASA Astrophysics Data System (ADS)
Dorofeyev, V. L.; Sukhikh, L. I.
2017-11-01
The long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by numerical simulation. The model of the Black Sea circulation has 4.8 km horizontal spatial resolution and 40 levels in z-coordinates. The mixing processes in the upper layer are parameterized by Mellor-Yamada turbulent model. For the sea surface boundary conditions, atmospheric forcing functions were used, provided for the Black Sea region by the Euro mediterranean Center on Climate Change (CMCC) from the COSMO-CLM regional climate model. These data have a spatial resolution of 14 km and a daily temporal resolution. To evaluate the quality of the hydrodynamic fields derived from the simulation, they were compared with in-situ hydrological measurements and similar results from physical reanalysis of the Black Sea.
NASA Technical Reports Server (NTRS)
Martin, S.; Cavalieri, D. J.; Gloersen, P.; Mcnutt, S. L.
1982-01-01
During March 1979, field operations were carried out in the Marginal Ice Zone (MIZ) of the Bering Sea. The field measurements which included oceanographic, meteorological and sea ice observations were made nearly coincident with a number of Nimbus-7 and Tiros-N satellite observations. The results of a comparison between surface and aircraft observations, and images from the Tiros-N satellite, with ice concentrations derived from the microwave radiances of the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are given. Following a brief discussion of the field operations, including a summary of the meteorological conditions during the experiment, the satellite data is described with emphasis on the Nimbus-7 SMMR and the physical basis of the algorithm used to retrieve ice concentrations.
Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.
1991-01-01
Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.
NASA Astrophysics Data System (ADS)
Ivanova, E. V.; Ovsepyan, E.; Murdmaa, I.; de Vernal, A.; Risebrobakken, B.; Seitkalieva, E.; Radionova, E.; Alekhina, G.
2014-12-01
The Barents and Bering seas are closely linked to the High Arctic and to the THC by marine gateways as well as by land-sea and ocean-atmosphere interactions. Our multi-proxy time series demonstrate that these remote seas exhibited dramatic changes during the deglaciation through a succession of global and regional paleoceanographic events including the beginning of Termination I (BT1), Heinrich-1 or Oldest Dryas (OD), Bølling-Allerød (B/A), Younger Dryas (YD) and early Holocene (EH). In the NW Barents Sea, the increased subsurface-to-bottom Atlantic water inflow via the Kvitøya-Erik Eriksen trough (cores S 2519 and S 2528) is inferred at the late OD, late B/A and late YD/EH transition. These events are generally coupled with the strengthened AMOC. A remarkable sea surface warming and sea ice retreat are documented at ~ 13 ka BP. Surface warming and strong Atlantic water inflow were followed by intense iceberg calving in the Erik Eriksen Trough as indicated by the high IRD content of Core S-2519. The rock fragments are unsorted and mainly angular suggesting their ice-rafted (likely iceberg-rafted) origin. Svalbard glaciers apparently derived the material dominated by black schistous mudstones, hard limestones with coral remains, fine-grained sandstones from nearby islands, and icebergs spread it in the Kvitøya-Erik Eriksen Trough during the early deglaciation. The ice rafted coarse terrigenous material supply during the BT1 is also suggested for the NW Bering Sea. In the NW Pacific, NW Bering Sea and Sea of Okhotsk, surface bioproductivity peaked at B/A and EH mainly due to the global warming, enhanced nutrient supply by surface currents from the flooded northeastern shelf, intensified vertical mixing and water exchange through the opened straits. Oxygen-depleted bottom water at intermediate depths characterized several locations including the NW Bering Sea (Core SO201-2-85KL).
SeaWiFS calibration and validation plan, volume 3
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William; Guenther, Bruce; Endres, Daniel; Mitchell, B. Greg; Barnes, Robert
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be the first ocean-color satellite since the Nimbus-7 Coastal Zone Color Scanner (CZCS), which ceased operation in 1986. Unlike the CZCS, which was designed as a proof-of-concept experiment, SeaWiFS will provide routine global coverage every 2 days and is designed to provide estimates of photosynthetic concentrations of sufficient accuracy for use in quantitative studies of the ocean's primary productivity and biogeochemistry. A review of the CZCS mission is included that describes that data set's limitations and provides justification for a comprehensive SeaWiFS calibration and validation program. To accomplish the SeaWiFS scientific objectives, the sensor's calibration must be constantly monitored, and robust atmospheric corrections and bio-optical algorithms must be developed. The plan incorporates a multi-faceted approach to sensor calibration using a combination of vicarious (based on in situ observations) and onboard calibration techniques. Because of budget constraints and the limited availability of ship resources, the development of the operational algorithms (atmospheric and bio-optical) will rely heavily on collaborations with the Earth Observing System (EOS), the Moderate Resolution Imaging Spectrometer (MODIS) oceans team, and projects sponsored by other agencies, e.g., the U.S. Navy and the National Science Foundation (NSF). Other elements of the plan include the routine quality control of input ancillary data (e.g., surface wind, surface pressure, ozone concentration, etc.) used in the processing and verification of the level-0 (raw) data to level-1 (calibrated radiances), level-2 (derived products), and level-3 (gridded and averaged derived data) products.
NASA Astrophysics Data System (ADS)
Liu, Y.; Wu, Z.; Chen, G.; Liu, W.
2016-12-01
HY-2A is the first marine dynamic environment satellite in China. It is used to observe the global sea surface wind field, sea surface height, significant wave heights and sea surface temperature. In order to correct tropospheric delay in the radar altimeter measurements, the calibration microwave radiometer (CMR) is on board satellite. In this paper, a ship-borne GNSS experiment was done to evaluate the accuracy of water vapor content observed from CMR over the India Ocean in 2014. Because the HY-2A satellite orbit is in S-N direction, the ship course was designed in E-W direction to produce the cross-point over the ocean for the calibration. During two months experiment, three cross-points were captured on the 29th April/5th May/13th May. The GNSS data include GPS,GLONASS and BDS, and its sampling rate is 1s. The GNSS observations are processed with the Point Precise Positioning (PPP) algorithm by our software. The Precipitable Water Vapor (PWV) is better than 3mm accuracy, which is consistent with the results from NAVCOM and FUFRO. The GNSS derived PWV are compared with those from HY-2A CMR on the three cross-points. Their differences are -1.68mm,-0.88mm and -2.21mm respectively, and the average is -1.58mm. This result means the CMR derived PWV is good agreement with that from GNSS. It demonstrates that the HY-2A satellite has the ability of high accuracy water vapor measurement. It is quite beneficial to the radar altimeter for sea surface height measurements.
SMOS after 2 YEARS and a half in orbit
NASA Astrophysics Data System (ADS)
Kerr, Y.; Richaume, P.; Wigneron, J.-P.; Waldteufel, P.; Mecklenburg, S.; Cabot, F.; Boutin, J.; Font, J.; Reul, N.
2012-04-01
The SMOS (Soil Moisture and Ocean Salinity) satellite was successfully launched in November 2009. This ESA led mission for Earth Observation is dedicated to provide soil moisture over continental surface (with an accuracy goal of 0.04 m3/m3) and ocean salinity. These two geophysical features are important as they control the energy balance between the surface and the atmosphere. Their knowledge at a global scale is of interest for climatic and weather researches in particular in improving models forecasts. The purpose of this communication is to present the mission results after more than two years in orbit as well as some outstanding results already obtained. A special attention will be devoted to level 2 products. Modeling multi-angular brightness temperatures is not straightforward. The radiative model transfer model L-MEB (L-band Microwave Emission) is used over land while different models with different approaches as to the modeling of sea surface roughness are used over ocean surfaces. Over land the approach is based on semi-empirical relationships, adapted to different type of surface. The model computes a dielectric constant leading to surface emissivity. Surface features (roughness, vegetation) are also considered in the models. However, considering SMOS spatial resolution a wide area is seen by the instrument with strong heterogeneity. The L2 soil moisture retrieval scheme takes this into account. Brightness temperatures are computed for every classes composing a working area. A weighted function is applied for the incidence angle and the antenna beam. Once the brightness temperature is computed for the entire working area, the minimizing process starts. If no soil moisture is derived (not attempted or process failed) a dielectric constant is still derived from an simplified modeled (the cardioid model). SMOS data enabled very quickly to infer Sea surface salinity fields. As salinity retrieval is quite challenging, retrieving it enable to assess very finely the characteristics of the complete system in terms of stability, drift etc. Some anomalies such as the ascending descending temperature differences, temporal drifts or land sea contamination were used to infer issues and improve data quality. The modeling has to account for several perturbing factors 'galactic reflection, sea state, atmospheric path and Faraday rotation etc…as the useful signal is quite small when compared to the perturbing factors impact as well as the instrument sensitivity. Over sea ice several studies showed that it was possible to infer thin ice (first year ice, 50 cm or less) from SMOS measurements. Other studies focused on the Antarctic plateau with also very interesting new results. This presentation will show in detail the SMOS in flight results. The retrieval schemes have been developed to reach science requirements, that is to derive the surface soil moisture over continental surface with an accuracy better than 0,04m3/m3. Over the ocean the goals are not yet satisfied but results are already getting close to the requirements.
NASA Astrophysics Data System (ADS)
Plach, Andreas; Hestnes Nisancioglu, Kerim
2016-04-01
The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.
Deriving a sea surface climatology of CO2 fugacity in support of air-sea gas flux studies
NASA Astrophysics Data System (ADS)
Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.
2014-07-01
Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.
NASA Astrophysics Data System (ADS)
Sotillo, M. G.; Amo-Baladrón, A.; Padorno, E.; Garcia-Ladona, E.; Orfila, A.; Rodríguez-Rubio, P.; Conti, D.; Madrid, J. A. Jiménez; de los Santos, F. J.; Fanjul, E. Alvarez
2016-11-01
An exhaustive validation of some of the operational ocean forecast products available in the Gibraltar Strait and the Alboran Sea is here presented. The skill of two ocean model solutions (derived from the Eulerian ocean forecast systems, such as the regional CMEMS IBI and the high resolution PdE SAMPA) in reproducing the complex surface dynamics in the above areas is evaluated. To this aim, in-situ measurements from the MEDESS-GIB drifter buoy database (comprising the Lagrangian positions, derived velocities and SST values) are used as the observational reference and the temporal coverage for the validation is 3 months (September to December 2014). Two metrics, a Lagrangian separation distance and a skill score, have been applied to evaluate the performance of the modelling systems in reproducing the observed trajectories. Furthermore, the SST validation with in-situ data is carried out by means of validating the model solutions with L3 satellite SST products. The Copernicus regional IBI products are evaluated in an extended domain, beyond the Alboran Sea, and covering western Mediterranean waters. This analysis reveals some strengths of the presented regional solution (i.e. realistic values of the Atlantic Jet in the Strait of Gibraltar area, realistic simulation of the Algerian Current). However, some shortcomings are also identified, with the major one being related to the simulated geographical position and intensity of the Alboran Gyres, particularly the western one. This performance limitation affects the IBI-modelled surface circulation in the entire Alboran Sea. On the other hand, the SAMPA system shows a more accurate model performance and it realistically reproduces the observed surface circulation in the area. The results reflect the effectiveness of the dynamical downscaling performed through the SAMPA system with respect to the regional IBI solution (in which SAMPA is nested), providing an objective measure of the potential added values introduced by the SAMPA downscaling solution in the Alboran Sea.
NASA Astrophysics Data System (ADS)
Böll, Anna; Gaye, Birgit; Lückge, Andreas
2014-05-01
Variability in the oceanic environment of the Arabian Sea region is strongly influenced by the seasonal monsoon cycle of alternating wind directions. Strong south-westerly winds during the summer monsoon induce upwelling of nutrient rich waters along the coast off Somalia, Oman and southwest India, which result in high rates of primary production. In the northeastern Arabian Sea off Pakistan on the other hand, primary production and sea surface temperatures are linked to northeast monsoonal winds that cool the sea surface and drive convective mixing and high surface ocean productivity during the winter season. In this study, we analyzed alkenone-derived sea surface temperature (SST) variations and proxies of primary productivity (organic carbon and δ15N) in a well-laminated sediment core from the Pakistan continental margin to establish the first high-resolution record of winter monsoon variability for the late Holocene. Over the last 2400 years reconstructed SST in the northeastern Arabian Sea decreased whereas productivity increased, imaging a long-term trend of northeast monsoon strengthening in response to insolation-induced southward migration of the Intertropical Convergence Zone. The comparison of our winter monsoon record with records of summer monsoon intensity suggests that summer and winter monsoon strength was essentially anti-correlated over the late Holocene throughout the Asian monsoon system. In addition, SST variations recorded off Pakistan match very well with Northern Hemisphere temperature records supporting the growing body of evidence that Asian climate is linked to Northern Hemisphere climate change. It reveals a consistent pattern of increased summer monsoon activity in the northeastern Arabian Sea during northern hemispheric warm periods (Medieval Warm Period, Roman Warm Period) and strengthened winter monsoon activity during hemispheric colder periods (Little Ice Age).
NASA Astrophysics Data System (ADS)
Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.
2016-02-01
In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.
Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah
1998-01-01
The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.
Thin Ice Area Extraction in the Seasonal Sea Ice Zones of the Northern Hemisphere Using Modis Data
NASA Astrophysics Data System (ADS)
Hayashi, K.; Naoki, K.; Cho, K.
2018-04-01
Sea ice has an important role of reflecting the solar radiation back into space. However, once the sea ice area melts, the area starts to absorb the solar radiation which accelerates the global warming. This means that the trend of global warming is likely to be enhanced in sea ice areas. In this study, the authors have developed a method to extract thin ice area using reflectance data of MODIS onboard Terra and Aqua satellites of NASA. The reflectance of thin sea ice in the visible region is rather low. Moreover, since the surface of thin sea ice is likely to be wet, the reflectance of thin sea ice in the near infrared region is much lower than that of visible region. Considering these characteristics, the authors have developed a method to extract thin sea ice areas by using the reflectance data of MODIS (NASA MYD09 product, 2017) derived from MODIS L1B. By using the scatter plots of the reflectance of Band 1 (620 nm-670 nm) and Band 2 (841 nm-876 nm)) of MODIS, equations for extracting thin ice area were derived. By using those equations, most of the thin ice areas which could be recognized from MODIS images were well extracted in the seasonal sea ice zones in the Northern Hemisphere, namely the Sea of Okhotsk, the Bering Sea and the Gulf of Saint Lawrence. For some limited areas, Landsat-8 OLI images were also used for validation.
NASA Technical Reports Server (NTRS)
Hu, Hua; Liu, W. Timothy
1999-01-01
Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.
The Derivation Of A CO2 Fugacity Climatology From SOCAT's Global In SITU Data
NASA Astrophysics Data System (ADS)
Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.
2013-12-01
The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. However, these fCO2 values are valid strictly only for the instantaneous temperature at measurement and are not ideal for climatology. We recomputed these fCO2 values for the measurement month to be applicable to climatological sea surface temperatures, extrapolated to reference year 2010. The data were then spatially interpolated on a 1°×1° grid of the global oceans to produce 12 monthly fCO2 distributions. Our climatology data will be shared with the science community.
D'Sa, Eurico J; Ko, Dong S
2008-07-15
Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles). The use of both satellite and model results revealed the strong interactions between physical processes and the surface particulate field in response to the frontal passage in a large riverdominated coastal margin.
Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial
NASA Astrophysics Data System (ADS)
Zhuravleva, Anastasia; Bauch, Henning A.; Spielhagen, Robert F.
2017-10-01
The Last Interglacial in the Arctic region is often described as a time with warmer conditions and significantly less summer sea ice than today. The role of Atlantic water (AW) as the main oceanic heat flux agent into the Arctic Ocean remains, however, unclear. Using high-resolution stable isotope and faunal records from the only deep Arctic Gateway, the Fram Strait, we note for the upper water column a diminished influence of AW and generally colder-than-Holocene surface ocean conditions. After the main Saalian deglaciation had terminated, a first intensification of northward-advected AW happened ( 124 ka). However, an intermittent sea surface cooling, triggered by meltwater release at 122 ka, caused a regional delay in the further development towards peak interglacial conditions. Maximum AW heat advection occurred during late MIS 5e (118.5-116 ka) and interrupted a longer-term cooling trend at the sea surface that started from about 120 ka on. Such a late occurrence of the major AW-derived near-surface warming in the Fram Strait - this is in stark contrast to an early warm peak in the Holocene - compares well in time with upstream records from the Norwegian Sea, altogether implying a coherent development of south-to-north ocean heat transfer through the eastern Nordic Seas and into the high Arctic during the Last Interglacial.
Temporal variability of the Antarctic Ice sheet observed from space-based geodesy
NASA Astrophysics Data System (ADS)
Memin, A.; King, M. A.; Boy, J. P.; Remy, F.
2017-12-01
Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.
Analysis of Surface Albedo to Improve Upper-Ocean Heat Budget Calculations
NASA Astrophysics Data System (ADS)
Hogikyan, A.; Zhang, D.; Cronin, M. F.
2016-12-01
Over 90% of the Earth's energy imbalance is stored in the oceans, so it is important to understand the ocean-atmosphere heat transfer. The Ocean Climate Stations group (OCS) at the Pacific Marine Environmental Laboratory maintains two moored surface buoys in the North Pacific (PAPA and KEO) as air-sea flux reference sites. The goal of the reference sites is to validate global air-sea flux products from atmospheric reanalyses and satellite products, that are critical to understand and model the variability and trend of the earth climate. As other air-sea flux reference buoys in the world ocean, PAPA and KEO only measure downward shortwave radiation (SWdown), but utilize the albedo and the directly measured SWdown to calculate the SWup. Since the open ocean albedo is small, the errors associated with this practice are thought to be comparable or smaller than the instrumentation errors in the air-sea flux measurements. In addition, it is generally accepted that ocean surface albedos can be derived with reasonable confidence from surface radiative fluxes in satellite products such as the Clouds and the Earth's Radiant Energy System (CERES) and the International Satellite Cloud Climatology Project (ISCCP). This project developed a CERES-based albedo product for derivation of SWnet at PAPA and KEO, and assessed the impact of CERES-based albedo on the net surface heat fluxes relative to the currently used ISCCP-based albedo in the OCS air-sea flux data (http://www.pmel.noaa.gov/ocs/data/fluxdisdel/). The high-resolution surface fluxes from CERES are more frequently updated, and consider more physical factors in the approximation, than those from ISCCP. There was a greater change between ISCCP and CERES albedo during wintertime than during summer. There was a greater change at Station PAPA in the northeastern sub-Arctic Pacific, than at Station KEO in the northwestern subtropical Pacific. The rate of temperature change of the mixed-layer is shown to increase based on the new source of albedo data, .08 and .5 °C/year at KEO and PAPA, respectively. The differences in the net surface heat flux due to different albedos used in this study suggest that more comprehensive investigations of the albedo in different products and radiative models, and their impacts on oceanic and atmospheric processes are needed.
Spherical harmonic expansion of the Levitus Sea surface topography
NASA Technical Reports Server (NTRS)
Engelis, Theodossios
1987-01-01
Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.
Vertical spatial coherence model for a transient signal forward-scattered from the sea surface
Yoerger, E.J.; McDaniel, S.T.
1996-01-01
The treatment of acoustic energy forward scattered from the sea surface, which is modeled as a random communications scatter channel, is the basis for developing an expression for the time-dependent coherence function across a vertical receiving array. The derivation of this model uses linear filter theory applied to the Fresnel-corrected Kirchhoff approximation in obtaining an equation for the covariance function for the forward-scattered problem. The resulting formulation is used to study the dependence of the covariance on experimental and environmental factors. The modeled coherence functions are then formed for various geometrical and environmental parameters and compared to experimental data.
Seasonal variability of thermal fronts in the northern South China Sea from satellite data
NASA Astrophysics Data System (ADS)
Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping
The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.
NASA Astrophysics Data System (ADS)
Nag, B.
2016-12-01
The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.
NASA Astrophysics Data System (ADS)
Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei
2017-10-01
Strong winds lead to large amounts of sea spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the air-sea heat fluxes due to their evaporation and the momentum due to the change of sea surface, and in turn change the upper ocean thermal structure. In this study, impact of sea spray on upper ocean temperatures in the Yellow and East China Seas (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a sea spray parameterization scheme, in which the sea spray-induced heat fluxes are based on an improved Fairall's sea spray heat fluxes algorithm, and the sea spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the sea spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow sea, the sea spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total air-sea momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the sea spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" processes. When the effect of sea spray is considered, the maximum of the sea surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean
2014-08-01
Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
Recent 121-year variability of western boundary upwelling in the northern South China Sea
NASA Astrophysics Data System (ADS)
Liu, Yi; Peng, Zicheng; Shen, Chuan-Chou; Zhou, Renjun; Song, Shaohua; Shi, Zhengguo; Chen, Tegu; Wei, Gangjian; Delong, Kristine L.
2013-06-01
upwelling is typically related to the eastern boundary upwelling system, whereas the powerful southwest Asian summer monsoon can also generate significant cold, nutrient-rich deep water in western coastal zones. Here we present a sea surface temperature record (A.D. 1876-1996) derived from coral Porites Sr/Ca for an upwelling zone in the northern South China Sea. The upwelling-induced sea surface temperature anomaly record reveals prominent multidecadal variability driven by Asian summer monsoon dynamics with an abrupt transition from warmer to colder conditions in 1930, and a return to warmer conditions after 1960. Previous studies suggest the expected increase in atmospheric CO2 for the coming decades may result in intensification in the eastern boundary upwelling system, which could enhance upwelling of CO2-rich deep water thus exacerbating the impact of acidification in these productive zones. In contrast, the weakening trend since 1961 in the upwelling time series from the northern South China Sea suggests moderate regional ocean acidification from upwelling thus a stress relief for marine life in this region.
NASA Astrophysics Data System (ADS)
Bauch, D.; Cherniavskaia, E.
2018-03-01
Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer data sets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA-derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.
NASA Astrophysics Data System (ADS)
Riethdorf, Jan-Rainer; Max, Lars; Nürnberg, Dirk; Lembke-Jene, Lester; Tiedemann, Ralf
2013-01-01
Based on models and proxy data, it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (δ18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases, our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.
Theoretical algorithms for satellite-derived sea surface temperatures
NASA Astrophysics Data System (ADS)
Barton, I. J.; Zavody, A. M.; O'Brien, D. M.; Cutten, D. R.; Saunders, R. W.; Llewellyn-Jones, D. T.
1989-03-01
Reliable climate forecasting using numerical models of the ocean-atmosphere system requires accurate data sets of sea surface temperature (SST) and surface wind stress. Global sets of these data will be supplied by the instruments to fly on the ERS 1 satellite in 1990. One of these instruments, the Along-Track Scanning Radiometer (ATSR), has been specifically designed to provide SST in cloud-free areas with an accuracy of 0.3 K. The expected capabilities of the ATSR can be assessed using transmission models of infrared radiative transfer through the atmosphere. The performances of several different models are compared by estimating the infrared brightness temperatures measured by the NOAA 9 AVHRR for three standard atmospheres. Of these, a computationally quick spectral band model is used to derive typical AVHRR and ATSR SST algorithms in the form of linear equations. These algorithms show that a low-noise 3.7-μm channel is required to give the best satellite-derived SST and that the design accuracy of the ATSR is likely to be achievable. The inclusion of extra water vapor information in the analysis did not improve the accuracy of multiwavelength SST algorithms, but some improvement was noted with the multiangle technique. Further modeling is required with atmospheric data that include both aerosol variations and abnormal vertical profiles of water vapor and temperature.
TEAM - Titan Exploration Atmospheric Microprobes
NASA Astrophysics Data System (ADS)
Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald
2016-10-01
The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.
NASA Astrophysics Data System (ADS)
Isern-Fontanet, Jordi; Ballabrera-Poy, Joaquim; Turiel, Antonio; García-Ladona, Emilio
2017-10-01
Ocean currents play a key role in Earth's climate - they impact almost any process taking place in the ocean and are of major importance for navigation and human activities at sea. Nevertheless, their observation and forecasting are still difficult. First, no observing system is able to provide direct measurements of global ocean currents on synoptic scales. Consequently, it has been necessary to use sea surface height and sea surface temperature measurements and refer to dynamical frameworks to derive the velocity field. Second, the assimilation of the velocity field into numerical models of ocean circulation is difficult mainly due to lack of data. Recent experiments that assimilate coastal-based radar data have shown that ocean currents will contribute to increasing the forecast skill of surface currents, but require application in multidata assimilation approaches to better identify the thermohaline structure of the ocean. In this paper we review the current knowledge in these fields and provide a global and systematic view of the technologies to retrieve ocean velocities in the upper ocean and the available approaches to assimilate this information into ocean models.
Nathalie F. Goodkin,; Bo-Shian Wang,; Chen-Feng You,; Konrad Hughen,; Prouty, Nancy G.; Bates, Nicholas; Scott Doney,
2015-01-01
The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.
NASA Astrophysics Data System (ADS)
Qiu, Chunhua; Mao, Huabin; Yu, Jiancheng; Xie, Qiang; Wu, Jiaxue; Lian, Shumin; Liu, Qinyan
2015-11-01
Based on 26 days of Chinese Sea-wing underwater glider measurements and satellite microwave data, we documented cooling of the upper mixed layer of the ocean in response to changes in the wind in the Northern South China Sea (NSCS) from September 19, 2014, to October 15, 2014. The Sea-wing underwater glider measured 177 profiles of temperature, salinity, and pressure within a 55 km×55 km area, and reached a depth of 1000 m at a temporal resolution of ∼4 h. The study area experienced two cooling events, Cooling I and Cooling II, according to their timing. During Cooling I, water temperature at 1-m depth (T1) decreased by ∼1.0 °C, and the corresponding satellite-derived surface winds increased locally by 4.2 m/s. During Cooling II, T1 decreased sharply by 1.7 °C within a period of 4 days; sea surface winds increased by 7 m/s and covered the entire NSCS. The corresponding mixed layer depth (MLD) deepened sharply from 30 m to 60 m during Cooling II, and remained steady during Cooling I. We estimated temperature tendencies using a ML model. High resolution Sea-wing underwater glider measurements provided an estimation of MLD migration, allowing us to obtain the temporal entrainment rate of cool sub-thermocline water. Quantitative analysis confirmed that the entrainment rate and latent heat flux were the two major components that regulated cooling of the ML, and that the Ekman advection and sensible heat flux were small.
A reanalysis dataset of the South China Sea.
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992-2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability.
Sea surface temperature 1871-2099 in 38 cells in the Caribbean region.
Sheppard, Charles; Rioja-Nieto, Rodolfo
2005-09-01
Sea surface temperature (SST) data with monthly resolution are provided for 38 cells in the Caribbean Sea and Bahamas region, plus Bermuda. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 coupled climate model for predicted SST (1950-2099). Statistical scaling of the forecast data sets are performed to produce confluent SST series according to a now established method. These SST series are available for download. High water temperatures in 1998 killed enormous amounts of corals in tropical seas, though in the Caribbean region the effects at that time appeared less marked than in the Indo-Pacific. However, SSTs are rising in accordance with world-wide trends and it has been predicted that temperature will become increasingly important in this region in the near future. Patterns of SST rise within the Caribbean region are shown, and the importance of sub-regional patterns within this biologically highly interconnected area are noted.
A reanalysis dataset of the South China Sea
Zeng, Xuezhi; Peng, Shiqiu; Li, Zhijin; Qi, Yiquan; Chen, Rongyu
2014-01-01
Ocean reanalysis provides a temporally continuous and spatially gridded four-dimensional estimate of the ocean state for a better understanding of the ocean dynamics and its spatial/temporal variability. Here we present a 19-year (1992–2010) high-resolution ocean reanalysis dataset of the upper ocean in the South China Sea (SCS) produced from an ocean data assimilation system. A wide variety of observations, including in-situ temperature/salinity profiles, ship-measured and satellite-derived sea surface temperatures, and sea surface height anomalies from satellite altimetry, are assimilated into the outputs of an ocean general circulation model using a multi-scale incremental three-dimensional variational data assimilation scheme, yielding a daily high-resolution reanalysis dataset of the SCS. Comparisons between the reanalysis and independent observations support the reliability of the dataset. The presented dataset provides the research community of the SCS an important data source for studying the thermodynamic processes of the ocean circulation and meso-scale features in the SCS, including their spatial and temporal variability. PMID:25977803
Transport of (137)Cs, (241)Am and Pu isotopes in the Curonian Lagoon and the Baltic Sea.
Lujanienė, G; Remeikaitė-Nikienė, N; Garnaga, G; Jokšas, K; Šilobritienė, B; Stankevičius, A; Šemčuk, S; Kulakauskaitė, I
2014-01-01
Activities of (137)Cs, (241)Am and (239,240)Pu were analyzed with special emphasis on better understanding of radionuclide transport from land via the Neman River estuaries to the Baltic Sea and behavior in the marine environment. Although activity concentrations of (137)Cs in water samples collected the Baltic Sea were almost 100 times higher as compared to the Curonian Lagoon, its activities in the bottom sediments were found to be comparable. Activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios indicated a different contribution of the Chernobyl-originated Pu to the suspended particulate matter (SPM) and bottom sediments. The largest amount of the Chernobyl-derived Pu was found in the smallest suspended matter particles of 0.2-1 μm in size collected in the Klaipeda Strait in 2011-2012. The decrease of characteristic activity (238)Pu/(239,240)Pu and atom (240)Pu/(239)Pu ratios towards the global fallout ones in surface soil and the corresponding increase of plutonium (Pu) ratios in the suspended particulate matter and bottom sediments have indicated that the Chernobyl-derived Pu, primarily deposited on the soil surface, was washed out and transported to the Baltic Sea. Behavior of (241)Am was found to be similar to that of Pu isotopes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Evaluation of the Precision of Satellite-Derived Sea Surface Temperature Fields
NASA Astrophysics Data System (ADS)
Wu, F.; Cornillon, P. C.; Guan, L.
2016-02-01
A great deal of attention has been focused on the temporal accuracy of satellite-derived sea surface temperature (SST) fields with little attention being given to their spatial precision. Specifically, the primary measure of the quality of SST fields has been the bias and variance of selected values minus co-located (in space and time) in situ values. Contributing values, determined by the location of the in situ values and the necessity that the satellite-derived values be cloud free, are generally widely separated in space and time hence provide little information related to the pixel-to-pixel uncertainty in the retrievals. But the main contribution to the uncertainty in satellite-derived SST retrievals relates to atmospheric contamination and because the spatial scales of atmospheric features are, in general, large compared with the pixel separation of modern infra-red sensors, the pixel-to-pixel uncertainty is often smaller than the accuracy determined from in situ match-ups. This makes selection of satellite-derived datasets for the study of submesoscale processes, for which the spatial structure of the upper ocean is significant, problematic. In this presentation we present a methodology to characterize the spatial precision of satellite-derived SST fields. The method is based on an examination of the high wavenumber tail of the 2-D spectrum of SST fields in the Sargasso Sea, a low energy region of the ocean close to the track of the MV Oleander, a container ship making weekly roundtrips between New York and Bermuda, with engine intake temperatures sampled every 75 m along track. Important spectral characteristics are the point at which the satellite-derived spectra separate from the Oleander spectra and the spectral slope following separation. In this presentation a number of high resolution 375 m to 10 km SST datasets are evaluated based on this approach.
Estimation of Surface Seawater Fugacity of Carbon Dioxide Using Satellite Data and Machine Learning
NASA Astrophysics Data System (ADS)
Jang, E.; Im, J.; Park, G.; Park, Y.
2016-12-01
The ocean controls the climate of Earth by absorbing and releasing CO2 through the carbon cycle. The amount of CO2 in the ocean has increased since the industrial revolution. High CO2 concentration in the ocean has a negative influence to marine organisms and reduces the ability of absorbing CO2 in the ocean. This study estimated surface seawater fugacity of CO2 (fCO2) in the East Sea of Korea using Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, and Hybrid Coordinate Ocean Model (HYCOM) reanalysis data. GOCI is the world first geostationary ocean color observation satellite sensor, and it provides 8 images with 8 bands hourly per day from 9 am to 4 pm at 500m resolution. Two machine learning approaches (i.e., random forest and support vector regression) were used to model fCO2 in this study. While most of the existing studies used multiple linear regression to estimate the pressure of CO2 in the ocean, machine learning may handle more complex relationship between surface seawater fCO2 and ocean parameters in a dynamic spatiotemporal environment. Five ocean related parameters, colored dissolved organic matter (CDOM), chlorophyll-a (chla), sea surface temperature (SST), sea surface salinity (SSS), and mixed layer depth (MLD), were used as input variables. This study examined two schemes, one with GOCI-derived products and the other with MODIS-derived ones. Results show that random forest performed better than support vector regression regardless of satellite data used. The accuracy of GOCI-based estimation was higher than MODIS-based one, possibly thanks to the better spatiotemporal resolution of GOCI data. MLD was identified the most contributing parameter in estimating surface seawater fCO2 among the five ocean related parameters, which might be related with an active deep convection in the East Sea. The surface seawater fCO2 in summer was higher in general with some spatial variation than the other seasons because of higher SST.
Development and evaluation of an empirical diurnal sea surface temperature model
NASA Astrophysics Data System (ADS)
Weihs, R. R.; Bourassa, M. A.
2013-12-01
An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.
NASA Astrophysics Data System (ADS)
Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.
2015-07-01
Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway sea surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous sea surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating air-sea CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the air-sea CO2 flux, and hence the presented fCO2 distributions can be used in air-sea gas flux calculations together with climatologies of other climate variables.
Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise
NASA Astrophysics Data System (ADS)
Megonigal, P.; Mueller, P.; Jensen, K.
2014-12-01
Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.
Space-based surface wind vectors to aid understanding of air-sea interactions
NASA Technical Reports Server (NTRS)
Atlas, R.; Bloom, S. C.; Hoffman, R. N.; Ardizzone, J. V.; Brin, G.
1991-01-01
A novel and unique ocean-surface wind data-set has been derived by combining the Defense Meteorological Satellite Program Special Sensor Microwave Imager data with additional conventional data. The variational analysis used generates a gridded surface wind analysis that minimizes an objective function measuring the misfit of the analysis to the background, the data, and certain a priori constraints. In the present case, the European Center for Medium-Range Weather Forecasts surface-wind analysis is used as the background.
Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)
2002-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations
NASA Technical Reports Server (NTRS)
Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske
2003-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
NASA Astrophysics Data System (ADS)
Drobinski, P.; Bastin, S.; Dabas, A.; Delville, P.; Reitebuch, O.
2006-08-01
Sea-breeze dynamics in southern France is investigated using an airborne Doppler lidar, a meteorological surface station network and radiosoundings, in the framework of the ESCOMPTE experiment conducted during summer 2001 in order to evaluate the role of thermal circulations on pollutant transport and ventilation. The airborne Doppler lidar WIND contributed to three-dimensional (3-D) mapping of the sea breeze circulation in an unprecedented way. The data allow access to the onshore and offshore sea breeze extents (xsb), and to the sea breeze depth (zsb) and intensity (usb). They also show that the return flow of the sea breeze circulation is very seldom seen in this area due to (i) the presence of a systematic non zero background wind, and (ii) the 3-D structure of the sea breeze caused by the complex coastline shape and topography. A thorough analysis is conducted on the impact of the two main valleys (Rhône and Durance valleys) affecting the sea breeze circulation in the area.
Finally, this dataset also allows an evaluation of the existing scaling laws used to derive the sea breeze intensity, depth and horizontal extent. The main results of this study are that (i) latitude, cumulative heating and surface friction are key parameters of the sea breeze dynamics; (ii) in presence of strong synoptic flow, all scaling laws fail in predicting the sea breeze characteristics (the sea breeze depth, however being the most accurately predicted); and (iii) the ratio zsb/usb is approximately constant in the sea breeze flow.
Monsoon-driven variability in the southern Red Sea and the exchange with the Indian Ocean
NASA Astrophysics Data System (ADS)
Sofianos, S. S.; Papadopoulos, V. P.; Abualnaja, Y.; Nenes, A.; Hoteit, I.
2016-02-01
Although progress has been achieved in describing and understanding the mean state and seasonal cycle of the Red Sea dynamics, their interannual variability is not yet well evaluated and explained. The thermohaline characteristics and the circulation patterns present strong variability at various time scales and are affected by the strong and variable atmospheric forcing and the exchange with the Indian Ocean and the gulfs located at the northern end of the basin. Sea surface temperature time-series, derived from satellite observations, show considerable trends and interannual variations. The spatial variability pattern is very diverse, especially in the north-south direction. The southern part of the Red Sea is significantly influenced by the Indian Monsoon variability that affects the sea surface temperature through the surface fluxes and the circulation patterns. This variability has also a strong impact on the lateral fluxes and the exchange with the Indian Ocean through the strait of Bab el Mandeb. During summer, there is a reversal of the surface flow and an intermediate intrusion of a relatively cold and fresh water mass. This water originates from the Gulf of Aden (the Gulf of Aden Intermediate Water - GAIW), is identified in the southern part of the basin and spreads northward along the eastern Red Sea boundary to approximately 24°N and carried across the Red Sea by basin-size eddies. The GAIW intrusion plays an important role in the heat and freshwater budget of the southern Red Sea, especially in summer, impacting the thermohaline characteristics of the region. It is a permanent feature of the summer exchange flow but it exhibits significant variation from year to year. The intrusion is controlled by a monsoon-driven pressure gradient in the two ends of the strait and thus monsoon interannual variability can laterally impose its signal to the southern Red Sea thermohaline patterns.
NASA Technical Reports Server (NTRS)
Key, Jeff; Maslanik, James; Steffen, Konrad
1994-01-01
During the first half of our second project year we have accomplished the following: (1) acquired a new AVHRR data set for the Beaufort Sea area spanning an entire year; (2) acquired additional ATSR data for the Arctic and Antarctic now totaling over seven months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; (6) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and SSM/I; and (7) continued work on compositing GAC data for coverage of the entire Arctic and Antarctic. During the second half of the year we will continue along these same lines, and will undertake a detailed validation study of the AVHRR and ATSR retrievals using LEADEX and the Beaufort Sea year-long data. Cloud masking methods used for the AVHRR will be modified for use with the ATSR. Methods of blending in situ and satellite-derived surface temperature data sets will be investigated.
Sea surface and remotely sensed temperatures off Cape Mendocino, California
NASA Technical Reports Server (NTRS)
Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.
1985-01-01
During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.
Investigating Climate at an Inland Sea During Snowball Earth
NASA Astrophysics Data System (ADS)
Campbell, A. J.; Bitz, C. M.; Warren, S. G.; Waddington, E. D.
2013-12-01
During the Neoproterozoic, the Earth's oceans may have been completely covered with thick ice, during periods commonly called Snowball Earth events. The Snowball Earth environment would seemingly have prohibited the survival of photosynthetic eukaryotic algae; however, these organisms were alive immediately prior to and immediate subsequent to these periods. Where on a Snowball Earth, or a Snowball-like exoplanet, could photosynthetic eukaryotic algae survive? Recent research, in attempt to reconcile this paradox, has demonstrated that narrow channels connected the ocean, called inland seas, could have provided refugia for photosynthetic eukaryotic algae during Snowball Earth events. Narrow channels could have restricted the flow of ocean-derived ice, called sea glaciers, diminishing sea-glacier penetration into these channels. Provided certain climate conditions and channel geometries, this diminished sea-glacier penetration would have allowed for either open water or thin sea ice, at the far end of these channels. A channel with open water or thin sea ice would provide the conditions needed for survival of photosynthetic eukaryotic algae. Here we test whether the climate needed to prevent sea-glacier penetration, could have existed in the special inland sea environment. Previous climate modeling of Snowball Earth has shown that tropical regions would have likely been warmer than the global average and would have experienced net sublimation at the surface. An inland sea located in the tropics would be surrounded by land that is bare and free from snow, while the inland sea itself would be either ice-covered or open water. With these conditions the inland sea would likely have a high albedo, while the surrounding bare land, would have a lower albedo. This albedo contrast could cause the climate over an inland sea to be warmer than the climate over the ice-covered ocean at the same latitude. We calculate the surface temperature and sublimation rate at an inland sea using the Community Earth System Model. By using idealized continent configurations and surface conditions and by adjusting the position and size of the inland sea, we establish the range and probability of achievable inland-sea climates in order to determine if inland seas could have been viable refugia for photosynthetic eukaryotic algae during Snowball Earth Events.
Inversion of Solid Earth's Varying Shape 2: Using Self-Consistency to Infer Static Ocean Topography
NASA Astrophysics Data System (ADS)
Blewitt, G.; Clarke, P. J.
2002-12-01
We have developed a spectral approach to invert for the redistribution of mass on the Earth's surface given precise global geodetic measurements of the solid Earth's geometrical shape. We used the elastic load Love number formalism to characterize the redistributed mass as a spherical harmonic expansion, truncated at some degree and order n. [Clarke and Blewitt, this meeting]. Here we incorporate the additional physical constraint that the sea surface in hydrostatic equilibrium corresponds to an equipotential surface, to infer the non-steric component of static ocean topography. Our model rigorously accounts for self-gravitation of the ocean, continental surface mass, and the deformed solid Earth, such that the sea surface adopts a new equipotential surface consistent with ocean-land mass exchange, deformation of the geoid, deformation of the sea floor, and the geographical configuration of the oceans and continents. We develop a self-consistent spectral inversion method to solve for the distribution of continental surface mass that would generate geographic variations in relative mean sea level such that the total (ocean plus continental) mass distribution agrees with the original geodetic estimates to degree and order n. We apply this theory to study the contribution of seasonal inter-hemispheric (degree-1) mass transfer to seasonal variation in static ocean topography, using a published empirical seasonal model for degree-1 surface loading derived using GPS coordinate time series from the global IGS network [Blewitt et al., Science 294, 2,342-2,345, 2001]. The resulting predictions of seasonal variations of relative sea level strongly depend on location, with peak variations ranging from 3 mm to 19 mm. The largest peak variations are predicted in mid-August around Antarctica and the southern hemisphere in general; the lowest variations are predicted in the northern hemisphere. Corresponding maximum continental loading occurs in Canada and Siberia at the water-equivalent level of 200 mm. The RMS spatial variability about global mean sea level at any given time is 20% for geocentric sea level (as measured by satellite altimetry) versus relative sea level, which is a consequence of degree-1 sea floor displacement in the center of figure frame. While land-ocean mass exchange governs global mean relative sea level, at any given point the contribution of geoid deformation to relative sea level can be of similar magnitude, and so can almost cancel or double the effect of change in global mean sea level.While the sea surface takes on the shape of the deformed geoid, the sea surface everywhere seasonally oscillates about the deformed geoid with annual amplitude 6.1 mm. This effect is due mainly to an 8.0+/- 0.7~mm contribution from land-ocean mass exchange, which is then reduced by a 1.9 mm seasonal variation in the mean geoid height above the sea floor (to which a mass-conserved ocean cannot respond). Of this, 0.4 mm is due to the mean geocentric height of the sea floor, and 1.5 mm is due to the mean geocentric height of the geoid over oceanic areas. The seasonal gradients predicted by our inversion might be misinterpreted as basin-scale dynamics. Also, the oceans amplify a land degree-1 load by 20--30%, which suggests that deformation (and models of geocenter displacements) would be sensitive to the accuracy of ocean bottom pressure, particularly in the southern hemisphere.
The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.
NASA Astrophysics Data System (ADS)
Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.
2016-02-01
The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.
NASA Astrophysics Data System (ADS)
Divine, Dmitry; Granskog, Mats A.; Hudson, Stephen R.; Pedersen, Christina A.; Karlsen, Tor I.; Gerland, Sebastian
2014-05-01
The paper presents the results of analysis of the radiative properties of first year sea ice in advanced stages of melt. The presented technique is based on the upscaling in situ point measurements of surface albedo to the regional (150 km) spatial scale using aerial photographs of sea ice captured by a helicopter borne camera setup. The sea ice imagery as well as in situ snow and ice data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 83.5 N during 27 July-03 August 2012. In total some 100 ground albedo measurements were made on melting sea ice in locations representative of the four main types of sea ice surface identified using the discriminant analysis -based classification technique. Some 11000 images from a total of six ice survey flights adding up to some 770 km of flight tracks covering about 28 km2 of sea ice surface were classified to yield the along-track distributions of four major surface classes: bare ice, dark melt ponds, bright melt ponds and open water. Results demonstrated a relative homogeneity of sea ice cover in the study area allowing for upscaling the local optical measurements to the regional scale. For the typical 10% open water fraction and 25% melt pond coverage, with a ratio of dark to bright ponds of 2 identified from selected images, the aggregate scale surface albedo of the area was estimated to be 0.42(0.40;0.44). The confidence intervals on the estimate were derived using the moving block bootstrap approach applied to the sequences of classified sea ice images and albedo of the four surface classes treated as random variables. Uncertainty in the mean estimates of local albedo from in situ measurements contributed some 65% to the variance of the estimated regional albedo with the remaining variance to be associated with the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt when the optical properties of sea ice undergo substantial changes which the existing sea ice models experience most difficulties to accurately reproduce. That phase of a season is especially crucial for climate and ecosystem processes in the polar regions.
The melting sea ice of Arctic polar cap in the summer solstice month and the role of ocean
NASA Astrophysics Data System (ADS)
Lee, S.; Yi, Y.
2014-12-01
The Arctic sea ice is becoming smaller and thinner than climatological standard normal and more fragmented in the early summer. We investigated the widely changing Arctic sea ice using the daily sea ice concentration data. Sea ice data is generated from brightness temperature data derived from the sensors: Defense Meteorological Satellite Program (DMSP)-F13 Special Sensor Microwave/Imagers (SSM/Is), the DMSP-F17 Special Sensor Microwave Imager/Sounder (SSMIS) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument on the NASA Earth Observing System (EOS) Aqua satellite. We tried to figure out appearance of arctic sea ice melting region of polar cap from the data of passive microwave sensors. It is hard to explain polar sea ice melting only by atmosphere effects like surface air temperature or wind. Thus, our hypothesis explaining this phenomenon is that the heat from deep undersea in Arctic Ocean ridges and the hydrothermal vents might be contributing to the melting of Arctic sea ice.
Derive Arctic Sea-ice Freeboard and Thickness from NASA's LVIS Observations
NASA Astrophysics Data System (ADS)
Yi, D.; Hofton, M. A.; Harbeck, J.; Cornejo, H.; Kurtz, N. T.
2015-12-01
The sea-ice freeboard and thickness are derived from the six sea-ice flights of NASA's IceBridge Land, Vegetation, and Ice Sensor (LVIS) over the Arctic from 2009 to 2013. The LVIS is an airborne scanning laser altimeter. It can operate at an altitude up to 10 km above the ground and produce a data swath up to 2 km wide with 20-m wide footprints. The laser output wavelength is 1064 nm and pulse repetition rate is 1000 Hz. The LVIS L2 geolocated surface elevation product and Level-1b waveform product (http://nsidc.org/data/ilvis2.html and http://nsidc.org/data/ilvis1b.html) at National Snow and Ice Data Center, USA (NSIDC) are used in this study. The elevations are referenced to a geoid with tides and dynamic atmospheric corrections applied. The LVIS waveforms were fitted with Gaussian curves to calculate pulse width, peak location, pulse amplitude, and signal baseline. For each waveform, the centroid, skewness, kurtosis, and pulse area were also calculated. The waveform parameters were calibrated based on laser off pointing angle and laser channels. Calibrated LVIS waveform parameters show a coherent response to variations in surface features along their ground tracks. These parameters, combined with elevation, can be used to identify leads, enabling the derivation of sea-ice freeboard and thickness without relying upon visual images. Preliminary results show that the elevations in some of the LVIS campaigns may vary with laser incident angle; this can introduce an elevation bias if not corrected. Further analysis of the LVIS data shown that the laser incident angle related elevation bias can be removed empirically. The sea-ice freeboard and thickness results from LVIS are compared with NASA's Airborne Topographic Mapper (ATM) for an April 20, 2010 flight, when both LVIS and ATM sensors were on the same aircraft and made coincidental measurements along repeat ground tracks.
Impact of Surface Roughness on AMSR-E Sea Ice Products
NASA Technical Reports Server (NTRS)
Stroeve, Julienne C.; Markus, Thorsten; Maslanik, James A.; Cavalieri, Donald J.; Gasiewski, Albin J.; Heinrichs, John F.; Holmgren, Jon; Perovich, Donald K.; Sturm, Matthew
2006-01-01
This paper examines the sensitivity of Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to surface roughness by a using radiative transfer model to simulate AMSR-E Tbs as a function of incidence angle at which the surface is viewed. The simulated Tbs are then used to examine the influence that surface roughness has on two operational sea ice algorithms, namely: 1) the National Aeronautics and Space Administration Team (NT) algorithm and 2) the enhanced NT algorithm, as well as the impact of roughness on the AMSR-E snow depth algorithm. Surface snow and ice data collected during the AMSR-Ice03 field campaign held in March 2003 near Barrow, AK, were used to force the radiative transfer model, and resultant modeled Tbs are compared with airborne passive microwave observations from the Polarimetric Scanning Radiometer. Results indicate that passive microwave Tbs are very sensitive even to small variations in incidence angle, which can cause either an over or underestimation of the true amount of sea ice in the pixel area viewed. For example, this paper showed that if the sea ice areas modeled in this paper mere assumed to be completely smooth, sea ice concentrations were underestimated by nearly 14% using the NT sea ice algorithm and by 7% using the enhanced NT algorithm. A comparison of polarization ratios (PRs) at 10.7,18.7, and 37 GHz indicates that each channel responds to different degrees of surface roughness and suggests that the PR at 10.7 GHz can be useful for identifying locations of heavily ridged or rubbled ice. Using the PR at 10.7 GHz to derive an "effective" viewing angle, which is used as a proxy for surface roughness, resulted in more accurate retrievals of sea ice concentration for both algorithms. The AMSR-E snow depth algorithm was found to be extremely sensitive to instrument calibration and sensor viewing angle, and it is concluded that more work is needed to investigate the sensitivity of the gradient ratio at 37 and 18.7 GHz to these factors to improve snow depth retrievals from spaceborne passive microwave sensors.
Process evaluation of sea salt aerosol concentrations at remote marine locations
NASA Astrophysics Data System (ADS)
Struthers, H.; Ekman, A. M.; Nilsson, E. D.
2011-12-01
Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations are analysed to quantify the key sensitivities of the processes connecting the physical drivers of sea salt aerosol to the mass tendency. The analysis employs a semi-empirical model based on the time-tendency of the aerosol mass. This approach of focusing on the time-tendency of the sea salt aerosol concentration provides a framework for the process evaluation of sea salt aerosol concentrations in global models. The same analysis methodology can be applied to output from global models. A process of comparing the sensitivity parameters derived from observations and models will reveal model inadequacies and thus guide model improvements. Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann G. W., Rae, J. G. L, Woodward, S., Kulmala, M. (2010). Atmos. Chem. Phys., 10, 1701-1737 IPCC (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Monahan, E. C., Spiel, D. E., Davidson, K. L. (1986) Oceanic Whitecaps ed. Monahan E. C. & MacNiochaill, D. Reidel, Norwell, Mass. Texor, C., et al. (2006) Atmos. Chem. Phys., 6, 1777-1813.
Air-sea fluxes and satellite-based estimation of water masses formation
NASA Astrophysics Data System (ADS)
Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig
2015-04-01
Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal and monthly water mass formation rates for different SST and SSS ranges are presented. The formation peaks are remapped geographically, to analyze the extent of the formation area. Water mass formation derived from SMOS and OSTIA compares well with the results obtained from in-situ data, although slight differences in magnitude and peak location occur. Known water masses can then be identified. Ongoing/future work aims at extending this study along different avenues by: 1) expand systematically the spatial and temporal domain of the study to additional ocean basins and to the entire time period of available SSS observations from SMOS/Aquarius; 2) perform a thorough error propagation to assess how errors in satellite SSS and SST translate into errors in water masses formation rates and geographical areas extent; and 3) explore the different options to connect the surface information to the vertical buoyancy structure to assess potential density instability (e.g., Turner angle). References [1] Sabia, R., M. Klockmann, D. Fernández-Prieto, and C. Donlon (2014), A first estimation of SMOS-based ocean surface T-S diagrams, J. Geophys. Res. Oceans, 119, 7357-7371, doi:10.1002/2014JC010120. [2] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, J. Font; Towards an estimation of water masses formation areas from SMOS-based T-S diagrams; EGU general assembly 2014, April 27-May 2, 2014. [3] Klockmann, M., R. Sabia, D. Fernández-Prieto, C. Donlon, Linking satellite SSS and SST to water mass formation; Ocean salinity science and salinity remote sensing workshop, Exeter, UK, November 26-28, 2014. [4] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [5] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE , vol.98, no.5, pp.688-703, May 2010, doi: 10.1109/JPROC.2010.2040550.
Variability of the Labrador Sea Surface Eddy Kinetic Energy Observed by Altimeter From 1993 to 2012
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Yan, Xiao-Hai
2018-01-01
A merged along track altimeter data set is used to study the variability of eddy kinetic energy (EKE) in the Labrador Sea from 1993 to 2012. The EKE near the west Greenland current (WGC) has strong interannual variability without long-term trend from 1993 to 2012. The propagation direction of the Irminger Rings (IRs) originating from the WGC can be inferred from the EKE derived from altimeter, and the southward propagation of the IRs varies interannually. The central Labrador Sea EKE increases significantly from 1993 to 2012. The central Labrador Sea temperature difference between the end and the beginning of the winter convections is defined as restratification index to measure the restratification strengths. The relation between the central Labrador Sea EKE and the restratification index shows that the enhanced eddy activity originating from the west of the central Labrador Sea may cool the central Labrador Sea significantly. The interannual variability of the WGC EKE is likely to be driven by the large scale Subpolar Gyre (SPG) circulation variability and the North Atlantic Oscillation (NAO). The NAO also affects the central Labrador Sea EKE through its fingerprint in the local wind stress and surface heat flux. The NAO affects the WGC EKE by changing the SPG circulation strength, which will subsequently affect the WGC EKE through unknown physical processes.
Towards an estimation of water masses formation areas from SMOS-based TS diagrams
NASA Astrophysics Data System (ADS)
Klockmann, Marlene; Sabia, Roberto; Fernandez-Prieto, Diego; Donlon, Craig; Font, Jordi
2014-05-01
Temperature-Salinity (TS) diagrams emphasize the mutual variability of ocean temperature and salinity values, relating them to the corresponding density. Canonically used in oceanography, they provide a means to characterize and trace ocean water masses. In [1], a first attempt to estimate surface-layer TS diagrams based on satellite measurements has been performed, profiting from the recent availability of spaceborne salinity data. In fact, the Soil Moisture and Ocean Salinity (SMOS, [2]) and the Aquarius/SAC-D [3] satellite missions allow to study the dynamical patterns of Sea Surface Salinity (SSS) for the first time on a global scale. In [4], given SMOS and Aquarius salinity estimates, and by also using Sea Surface Temperature (SST) from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA, [5]) effort, experimental satellite-based TS diagrams have been routinely derived for the year 2011. They have been compared with those computed from ARGO-buoys interpolated fields, referring to a customised partition of the global ocean into seven regions, according to the water masses classification of [6]. In [7], moreover, besides using TS diagrams as a diagnostic tool to evaluate the temporal variation of SST and SSS (and their corresponding density) as estimated by satellite measurements, the emphasis was on the interpretation of the geographical deviations with respect to the ARGO baseline (aiming at distinguishing between the SSS retrieval errors and the additional information contained in the satellite data with respect to ARGO). In order to relate these mismatches to identifiable oceanographic structures and processes, additional satellite datasets of ocean currents, evaporation/precipitation fluxes, and wind speed have been super-imposed. Currently, the main focus of the study deals with the exploitation of these TS diagrams as a prognostic tool to derive water masses formation areas. Firstly, following the approach described in [8], the surface density flux (i.e., the change in density induced by surface heat and freshwater fluxes) is computed, characterizing how the buoyancy of a water parcel is being transformed, by increasing or decreasing its density. Afterwards, integrating over a certain time/space and deriving with respect to density, the formation (in Sv) of water masses themselves can be computed, pinpointing the range of SST and SSS in the TS diagrams where a specific water mass is formed. A geographical representation of these points, ultimately, allows to provide a relevant temporal series of the spatial extent of the water masses formation areas (in the specific test zones chosen). This can be then extended over challenging ocean regions, also evaluating the sensitivity of the performances to the datasets used. With this approach, known water masses can be identified and their formation traced in time and space. Longer time series will give further insights by helping to identify inter-annual water mass formation variability and trends in the TS/geographical domains. Future work aims at exploring additional datasets and at connecting the surface information to the vertical structure and to buoyancy-driven ocean circulation processes. References [1] Sabia, R., J. Ballabrera, G. Lagerloef, E. Bayler, M. Talone, Y. Chao, C. Donlon, D. Fernández-Prieto, J. Font, "Derivation of an Experimental Satellite-based T-S Diagram", In Proceedings of IGARSS '12 , Munich, Germany, pp. 5760-5763, 2012. [2] Font, J., A. Camps, A. Borges, M. Martín-Neira, J. Boutin, N. Reul, Y. H. Kerr, A. Hahne, and S. Mecklenburg, "SMOS: The challenging sea surface salinity measurement from space," Proceedings of the IEEE, vol. 98, pp. 649-665, 2010. [3] Le Vine, D.M.; Lagerloef, G.S.E.; Torrusio, S.E.; "Aquarius and Remote Sensing of Sea Surface Salinity from Space," Proceedings of the IEEE , vol.98, no.5, pp.688-703, May 2010, doi: 10.1109/JPROC.2010.2040550. [4] Sabia, R., M. Klockmann, D. Fernández-Prieto, C. Donlon, E. Bayler, J. Font, G. Lagerloef, "Satellite-based T/S Diagrams and Surface Ocean Water Masses", SMOS-Aquarius Science Workshop, Brest, France, April 2013. [5] Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, "The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA)", Remote Sensing of the Environment. doi: 10.1016/j.rse.2010.10.017 2011. [6] Emery, W. J., "Water Types and Water Masses", Ocean Circulation, Elsevier science, pp 1556-1567, 2003. [7] Sabia, R., M. Klockmann, C. Donlon, D. Fernández-Prieto, M. Talone, J. Ballabrera, "Satellite-based T-S Diagrams: a prospective diagnostic tool to trace ocean water masses", Living Planet Symposium 2013, Edinburgh, UK, September 2013. [8] Speer, K., E. Tzipermann, "Rates of Water Mass Transformation in the North Atlantic", Journal of Physical Oceanography, 22, 93 - 104, 1992.
Monitoring of ocean surface algal blooms in coastal and oceanic waters around India.
Tholkapiyan, Muniyandi; Shanmugam, Palanisamy; Suresh, T
2014-07-01
The National Aeronautics and Space Administration's (NASA) sensor MODIS-Aqua provides an important tool for reliable observations of the changing ocean surface algal bloom paradigms in coastal and oceanic waters around India. A time series of the MODIS-Aqua-derived OSABI (ocean surface algal bloom index) and its seasonal composite images report new information and comprehensive pictures of these blooms and their evolution stages in a wide variety of events occurred at different times of the years from 2003 to 2011, providing the first large area survey of such phenomena around India. For most of the years, the results show a strong seasonal pattern of surface algal blooms elucidated by certain physical and meteorological conditions. The extent of these blooms reaches a maximum in winter (November-February) and a minimum in summer (June-September), especially in the northern Arabian Sea. Their spatial distribution and retention period are also significantly increased in the recent years. The increased spatial distribution and intensity of these blooms in the northern Arabian Sea in winter are likely caused by enhanced cooling, increased convective mixing, favorable winds, and atmospheric deposition of the mineral aerosols (from surrounding deserts) of the post-southwest monsoon period. The southward Oman coastal current and southwestward winds become apparently responsible for their extension up to the central Arabian Sea. Strong upwelling along this coast further triggers their initiation and growth. Though there is a warming condition associated with increased sea surface height anomalies along the coasts of India and Sri Lanka in winter, surface algal bloom patches are still persistent along these coasts due to northeast monsoonal winds, enhanced precipitation, and subsequent nutrient enrichment in these areas. The occurrence of the surface algal blooms in the northern Bay of Bengal coincides with a region of the well-known Ganges-Brahmaputra Estuarine Frontal (GBEF) system, which increases supply of nutrients in addition to the land-derived inputs triggering surface algal blooms in this region. Low density (initiation stage) of such blooms observed in clear oceanic waters southeast and northeast of Sri Lanka may be caused by the vertical mixing processes (strong monsoonal winds) and the occurrence of Indian Ocean Dipole events. Findings based on the analyses of time series satellite data indicate that the new information on surface algal blooms will have important bearing on regional fisheries, ecosystem and environmental studies, and implications of climate change scenarios.
Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing
NASA Astrophysics Data System (ADS)
Bulusu, S.
2014-12-01
Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Bourassa, Mark
2017-04-01
Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.
Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan; McDonald, Adrian; Rack, Wolfgang
2016-04-01
Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production of new sea ice through thermodynamic processes.
NASA Astrophysics Data System (ADS)
Chapa, C.; Beier, E.; Durazo, R.; Martin Hernandez-Ayon, J. M.; Alin, S. R.; Lopez-Perez, A.
2016-12-01
The relationship between the surface enrichment of dissolved inorganic carbon (DIC) and wind variability and circulation in the Gulf of Tehuantepec (GT) was examined from satellite images and in situ data from three cruises (June 2010; April and November 2013). Monthly mean wind climatologies (and derived variables), sea surface temperature and sea surface height anomaly fields were analyzed in the GT and part of the NETP. Signal decomposition according to circulation scales (seasonal, inter-annual, mesoscale) was performed using harmonic analysis for the seasonal components, and empirical orthogonal functions for the residuals, applied to satellite sea-level anomaly data. The results show that wind is the main driving force of the variability in the GT. Mesoscale is the variable with the highest percent of local variance (25-75%), due mainly to mesoscale eddies, followed by seasonality (20-55%), and finally the inter-annual signal (10-30%), dominated by ENSO. Mesoscale and seasonality prevailed during the samplings. The changes in circulation led to variations in the concentration of surface DIC ranging between 100 and 300 µmol kg-1 (436 µatm) due to Ekman pumping. The largest enrichment occurred in November 2013 after a strong northerly wind event. However, the predominance of mesoscale events suggests that changes in dissolved inorganic carbon resulting from mesoscale- derived Ekman pumping may become important in the long term and with a larger spatial and temporal coverage. The results suggest that the seasonal cycle of dissolved inorganic carbon may be linked to wind seasonality.
Franchini, D; Cavaliere, L; Valastro, C; Carnevali, F; van der Esch, A; Lai, O; Di Bello, A
2016-05-03
The loggerhead Caretta caretta is the most common sea turtle in the Mediterranean. Currently, sea turtles are considered endangered, mainly due to the impact of human activities. Among traumatic lesions, those involving the skull, if complicated by brain exposure, are often life-threatening. In these cases, death could be the outcome of direct trauma of the cerebral tissue or of secondary meningoencephalitis. This uncontrolled study aims to evaluate the use of a plant-derived dressing (1 Primary Wound Dressing®) in 3 sea turtles with severe lesions of the skull exposing the brain. Following surgical curettage, the treatment protocol involved exclusive use of the plant-derived dressing applied on the wound surface as the primary dressing, daily for the first month and then every other day until the end of treatment. The wound and peri-wound skin were covered with a simple secondary dressing without any active compound (non-woven gauze with petroleum jelly). Data presented herein show an excellent healing process in all 3 cases and no side effects due to contact of the medication with the cerebral tissue.
Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.
1995-01-01
Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.
Enhancement of Chlorophyll Concentration and Growing Harmful Algal Bloom Along the California Coast
NASA Astrophysics Data System (ADS)
Aceves, Joselyn; Singh, Ramesh
2016-07-01
We have carried out detailed analysis of satellite and ground data at different locations, Cal Poly, Goleta, Newport, Santa Monica, and Scripps piers and Monterey, Stearns and Santa Cruz wharfs along the California coast for the period 2008-2015. The sea surface temperature and chlorophyll concentrations derived from satellite data are analyzed together with ground observations of nitrogen, phosphorus, domoic acids and harmful algal blooms. The frequency of harmful algal blooms are found to increase in recent years depending upon the enhancement of chlorophyll concentrations and the discharges along the coast and dynamics of the sea surface temperature. The frequency of harmful algal blooms is higher in the northern California compared to southern California. The anthropogenic activities along the coast have increased which are associated with the forest fires and long range transport of dusts from Asia. The aerosol optical depth derived from satellite data during summer months seems to play an important role in the frequency of harmful algal blooms.
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; Hunke, E. C.; Trantow, T.; Greve, R.; McDonald, B.; Wallin, B.
2014-12-01
Understanding of the state of the cryosphere and its relationship to other components of the Earth system requires both models of geophysical processes and observations of geophysical properties and processes, however linking observations and models is far from trivial. This paper looks at examples from sea ice and land ice model-observation linkages to examine some approaches, challenges and solutions. In a sea-ice example, ice deformation is analyzed as a key process that indicates fundamental changes in the Arctic sea ice cover. Simulation results from the Los Alamos Sea-Ice Model CICE, which is also the sea-ice component of the Community Earth System Model (CESM), are compared to parameters indicative of deformation as derived from mathematical analysis of remote sensing data. Data include altimeter, micro-ASAR and image data from manned and unmanned aircraft campaigns (NASA OIB and Characterization of Arctic Sea Ice Experiment, CASIE). The key problem to linking data and model results is the derivation of matching parameters on both the model and observation side.For terrestrial glaciology, we include an example of a surge process in a glacier system and and example of a dynamic ice sheet model for Greenland. To investigate the surge of the Bering Bagley Glacier System, we use numerical forward modeling experiments and, on the data analysis side, a connectionist approach to analyze crevasse provinces. In the Greenland ice sheet example, we look at the influence of ice surface and bed topography, as derived from remote sensing data, on on results from a dynamic ice sheet model.
NASA Astrophysics Data System (ADS)
Wang, Chuanyuan; Lv, Yingchun; Li, Yuanwei
2018-04-01
The temporal-spatial distribution of the carbon and nitrogen contents and their isotopic compositions of suspended matter and sediments from the Yellow River estuary reach (YRER), the estuary to the offshore area were measured to identify the source of organic matter. The higher relative abundances of suspended and sedimentary carbon and nitrogen (POC, TOC, PN and TN) in the offshore marine area compared to those of the riverine and estuarine areas may be due to the cumulative and biological activity impact. The organic matter in surface sediments of YRER, the estuary and offshore area of Bohai Sea is basically the mixture of continental derived material and marine material. The values of δ13Csed fluctuate from values indicative of a land source (- 22.50‰ ± 0.31) to those indicative of a sea source (- 22.80‰ ± 0.38), which can be attributed to the fine particle size and decrease in terrigenous inputs to the offshore marine area. Contrary to the slight increase of POC and PN during the dry season, TOC and TN contents of the surface sediments during the flood season (October) were higher than those during the dry season (April). The seasonal differences in water discharge and suspended sediment discharge of the Yellow River Estuary may result in seasonal variability in TOC, POC, TN and PN concentrations in some degree. Overall, the surface sediments in the offshore area of Bohai Sea are dominated by marine derived organic carbon, which on average, accounts for 58-82% of TOC when a two end-member mixing model is applied to the isotopic data.
Heat and Freshwater Convergence Anomalies in the Atlantic Ocean Inferred from Observations
NASA Astrophysics Data System (ADS)
Kelly, K. A.; Drushka, K.; Thompson, L.
2015-12-01
Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean. An "unknown control" version of a Kalman filter in each of eight regions extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content. The model is run for 1993-2014. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding a spatially uniform, time-varying MHT derived from updated MHT estimates at 41N (Willis 2010). Estimated anomalies in MHT are comparable to those recently observed at the RAPID/MOCHA line at 26.5N. MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. MHT anomalies at 35S resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates in the Atlantic Ocean (67N to 35S) resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009). Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.
NASA Astrophysics Data System (ADS)
Fernandes, Joana; Lázaro, Clara; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme
2017-04-01
Satellite altimetry missions provide the sea surface height above a reference ellipsoid with centimetric accuracy as long as all terms involved in the altimeter measurement system (satellite orbit, altimeter range between the satellite and the sea surface, and instrumental, range and geophysical corrections) are known with the same accuracy. The wet tropospheric correction (WTC), the range correction that accounts for the delay induced by the presence of water vapour and liquid water in the troposphere, has an absolute value less than 50 cm but large space-time variability, being therefore difficult to model. Despite the progress observed in WTC modelling from numerical weather models (NWM), the accuracy of present NWM-derived WTC is still deficient for most altimetry applications such as e.g. sea level variation. Actually, accurate WTC at time and location of the altimetric measurements can only be achieved through observations of the atmospheric water vapour content, acquired by on-board microwave radiometers (MWR). In open ocean, MWR-derived WTC are centimeter-level accurate; in coastal regions, WTC degrades due to several reasons, among which is the contamination, from the surrounding land surfaces, of the signal measured by the MWR. Also the presence of ice and rain contaminates the MWR observations. Therefore, MWR-derived WTC are generally incorrect or invalid in coastal, rainy and high-latitude regions, and altimeter measurements cannot benefit from MWR corrections. The GNSS-derived Path Delay (GPD) algorithm was developed by the University of Porto (UPorto) aiming at computing the WTC for coastal regions where MWR observations are invalid, envisaging the recovery of the altimeter data in these regions. The GPD-derived WTC is based on a space-time optimal interpolation that combines path delays measured by MWR and computed at more than 800 coastal/island GNSS stations. Its most recent version, the GPD Plus (GPD+) estimates the WTC globally relying also on path delay observations from 19 scanning imaging MWR on-board various remote sensing missions. After adequate tuning, the GPD+ is applicable to any altimetric mission with or without an on-board MWR, as CryoSat-2 for which only a NWM-derived WTC would be, otherwise, available. To ensure consistency and WTC long term stability, and prior to their use in the GPD+, path delay observations from all radiometers were previously inter-calibrated with respect to the Special Sensor Microwave Imager (SSM/I) and SSMI/I Sounder (SSM/IS). The GPD+ WTC were computed, in the scope of several ESA-funded projects e.g., Sea Level CCI, CP4O, for 9 altimetry missions and were independently validated through statistical analyses of sea level anomaly variance. Overall, results show that GPD+ recovers a significant number of measurements in the coastal regions, ensuring the continuity and consistency of the correction in the open-ocean/coastal transition zone and also at high latitudes. As a consequence, GPD+ WTC have been chosen as the best available WTC for climate studies and adopted as reference in the Sea Level CCI products; the GPD+ has also been adopted as reference in CrySat-2 Level 2 IOP and GOP products. The GPD+ algorithm, its implementation, path delay datasets used and sensor calibration are here described.
Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea
Gardner, J.V.; Dean, W.E.; Vallier, T.L.
1980-01-01
Present-day sediment dynamics, combined with lowerings of sea level during the Pleistocene, have created a mixture of sediments on the outer continental shelf of the southern Bering Sea that was derived from the Alaskan Mainland, the Aleutian Islands, and the Pribilof ridge. Concentrations of finer-grained, higher-organic sediments in the region of the St. George basin have further modified regional distribution patterns of sediment composition. Q-mode factor analysis of 58 variables related to sediment size and composition - including content of major, minor, and trace elements, heavy and light minerals, and clay minerals - reveals three dominant associations of sediment: 1. (1) The most significant contribution, forming a coarse-grained sediment scattered over most of the shelf consists of felsic sediment derived from the generally quartz-rich rocks of the Alaskan mainland. This sediment contains relatively high concentrations of Si, Ba, Rb, quartz, garnet, epidote, metamorphic rock fragments, potassium feldspar, and illite. 2. (2) The next most important group, superimposed on the felsic group consists of andesitic sediment derived from the Aleutian Islands. This more mafic sediment contains relatively high concentrations of Na, Ca, Ti, Sr, V, Mn, Cu, Fe, Al, Co, Zn, Y, Yb, Ga, volcanic rock fragments, glass, clinopyroxene, smectite, and vermiculite. 3. (3) A local group of basaltic sediment, derived from rocks of the Pribilof Islands, is a subgroup of the Aleutian andesite group. Accumulation of fine-grained sediment in St. George basin has created a sediment group containing relatively high concentrations of C, S, U, Li, B, Zr, Ga, Hg, silt, and clay. Sediment of the Aleutian andesite group exhibits a strong gradient, or "plume", with concentrations decreasing away from Unimak Pass and toward St. George basin. The absence of present-day currents sufficient to move even clay-size material as well as the presence of Bering submarine canyon between the Aleutian Islands and the outer continental shelf and slope, indicates that Holocene sediment dynamics cannot be used to explain the observed distribution of surface sediment derived from the Aleutian Islands. We suggest that this pattern is relict and resulted from sediment dynamics during lower sea levels of the Pleistocene. ?? 1980.
Plants mediate soil organic matter decomposition in response to sea level rise.
Mueller, Peter; Jensen, Kai; Megonigal, James Patrick
2016-01-01
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR. © 2015 John Wiley & Sons Ltd.
On the use of QuikSCAT data for assessing wind energy resources
NASA Astrophysics Data System (ADS)
Karagali, I.; Peña, A.; Hahmann, A. N.; Hasager, C.; Badger, M.
2011-12-01
As the land space suitable for wind turbine installations becomes saturated, the focus is on offshore sites. Advantages of such a transition include increased power production, smaller environmental and social impact and extended availability of prospective areas. Until recently installation of wind turbines was limited in coastal areas. Nowadays, the search for suitable sites is extended beyond shallow waters, in locations far offshore where available measurements of various environmental parameters are limited. Space-borne observations are ideal due to their global spatial coverage, providing information where in-situ measurements are impracticable. The most widely used satellite observations for wind vector information are obtained by scatterometers; active radars that relate radiation backscattered from the sea surface to wind. SeaWinds, the scatterometer on board the QuikSCAT platform, launched by NASA in 1999 provided information with global coverage until 2009. The potential use of this 10-year long dataset is evaluated in the present study for the characterization of wind resources in the North and Baltic Seas, where most of Europe's offshore wind farms are located. Long-term QuikSCAT data have been extensively and positively validated in open ocean and in enclosed seas. In the present study QuikSCAT rain-free observations are compared with in-situ observations from three locations in the North Sea. As the remotely sensed observations refer to neutral atmospheric stratification, the impact of stability is assessed. Mean wind characteristics along with the Weibull A and k parameters are estimated in order to obtain information regarding the variation of wind. The numerical weather prediction (NWP) model WRF (Weather Research & Forecasting) is used for comparisons against QuikSCAT. Surface winds derived from long-term WRF simulations are compared against QuikSCAT data to evaluate differences in the spatial extend. Preliminary results indicate very good agreement between satellite and in-situ observations. The mean annual wind speed at 10 meters above the sea surface is found significantly higher in the North Sea when compared to the Baltic Sea. Strong lee effects on the 10m wind speeds are observed, in particular the reduced wind speed on the east side of the British Isles as opposed to the west coast of Denmark. An intense flow channelling in the English Channel and the Baltic Sea is highlighted, along with various other effects. Comparisons between WRF and QuikSCAT show biases in the order of 0.4 m/s or lower in extended spatial scales. Higher negative biases, indicating higher QuikSCAT wind speed than the WRF-derived, are observed mainly in coastal areas where representativeness errors due to surface roughness changes are significant.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Cortese, G.; Yu, P.-S.; Chen, M.-T.; Kucera, M.
2017-08-01
Radiolarians are a very diverse microzooplanktonic group, often distributed in regionally restricted assemblages and responding to specific environmental factors. These properties of radiolarian assemblages make the group more conducive for the development and application of basin-wide ecological models. Here we use a new surface sediment data set from the western Pacific to demonstrate that ecological patterns derived from basin-wide open-ocean data sets cannot be transferred on semirestricted marginal seas. The data set consists of 160 surface sediment samples from three tropical-subtropical regions (East China Sea, South China Sea, and western Pacific), combining 54 new assemblage counts with taxonomically harmonized data from previous studies. Multivariate statistical analyses indicate that winter sea surface temperature at 10 m depth (SSTw) was the most significant environmental variable affecting the composition of radiolarian assemblages, allowing the development of an optimal calibration model (Locally Weighted-Weighted Averaging regression inverse deshrinking, R2cv = 0.88, root-mean-square error of prediction = 1.6°C). The dominant effect of SSTw on radiolarian assemblage composition in the western Pacific is attributed to the East Asian Winter Monsoon (EAWM), which is particularly strong in the marginal seas. To test the applicability of the calibration model on fossil radiolarian assemblages from the marginal seas, the calibration model was applied to two downcore records from the Okinawa Trough, covering the last 18 ka. We observe that these assemblages find most appropriate analogs among modern samples from the marginal basins (East China Sea and South China Sea). Downcore temperature reconstructions at both sites show similarities to known regional SST reconstructions, providing proof of concept for the new radiolarian-based SSTw calibration model.
Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106
Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.
1994-01-01
Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.
NASA Astrophysics Data System (ADS)
Suzuki, Takashi; Otosaka, Shigeyoshi; Togawa, Orihiko
2013-01-01
To investigate the migration of anthropogenic 129I in the environment, we measured 129I concentrations at both subarctic (above 40oN) and subtropical (below 40oN) circulations in the surface seawater of the Japan Sea. The averaged concentrations of stations 193, 194, 201, 206 and 210 above 200 m were (2.1 ± 0.3) × 1010 atoms/m3, (2.0 ± 0.2) × 1010 atoms/m3, (1.6 ± 0.3) × 1010 atoms/m3, (1.4 ± 0.3) × 1010 atoms/m3 and (1.7 ± 0.3) × 1010 atoms/m3, respectively. The averaged concentration at the subarctic circulation in the Japan Sea above 200 m (1.9 × 1010 atoms/m3) was higher than that in the subtropical circulation (1.5 × 1010 atoms/m3). This latitudinal distribution pattern of 129I is not consistent with those of bomb-derived radionuclides such as 14C, 90Sr and 137Cs. Taking into account latitudinal location and the total amount of releases from reprocessing plants, this discriminating latitudinal distribution of 129I in the Japan Sea would indicate that a significant amount of 129I originating from active reprocessing plants in Europe is supplied to the surface of the Japan Sea.
Dodge, Kara L.; Galuardi, Benjamin; Miller, Timothy J.; Lutcavage, Molly E.
2014-01-01
Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m−3), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km−1) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity. PMID:24646920
Dodge, Kara L; Galuardi, Benjamin; Miller, Timothy J; Lutcavage, Molly E
2014-01-01
Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity.
Shabangu, Fannie W.; Yemane, Dawit; Stafford, Kathleen M.; Ensor, Paul; Findlay, Ken P.
2017-01-01
Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species. PMID:28222124
Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P
2017-01-01
Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species.
Arctic Sea Ice Freeboard from Icebridge Acquisitions in 2009: Estimates and Comparisons with ICEsat
NASA Technical Reports Server (NTRS)
Kwok, R.; Cunningham, Glenn F.; Manizade, S. S.; Krabill, W. B.
2012-01-01
During the spring of 2009, the Airborne Topographic Mapper (ATM) system on the IceBridge mission acquired cross-basin surveys of surface elevations of Arctic sea ice. In this paper, the total freeboard derived from four 2000 km transects are examined and compared with those from the 2009 ICESat campaign. Total freeboard, the sum of the snow and ice freeboards, is the elevation of the air-snow interface above the local sea surface. Prior to freeboard retrieval, signal dependent range biases are corrected. With data from a near co-incident outbound and return track on 21 April, we show that our estimates of the freeboard are repeatable to within 4 cm but dependent locally on the density and quality of sea surface references. Overall difference between the ATM and ICESat freeboards for the four transects is 0.7 (8.5) cm (quantity in bracket is standard deviation), with a correlation of 0.78 between the data sets of one hundred seventy-eight 50 km averages. This establishes a level of confidence in the use of ATM freeboards to provide regional samplings that are consistent with ICESat. In early April, mean freeboards are 41 cm and 55 cm over first year and multiyear sea ice (MYI), respectively. Regionally, the lowest mean ice freeboard (28 cm) is seen on 5 April where the flight track sampled the large expanse of seasonal ice in the western Arctic. The highest mean freeboard (71 cm) is seen in the multiyear ice just west of Ellesmere Island from 21 April. The relatively large unmodeled variability of the residual sea surface resolved by ATM elevations is discussed.
Arctic sea ice albedo - A comparison of two satellite-derived data sets
NASA Technical Reports Server (NTRS)
Schweiger, Axel J.; Serreze, Mark C.; Key, Jeffrey R.
1993-01-01
Spatial patterns of mean monthly surface albedo for May, June, and July, derived from DMSP Operational Line Scan (OLS) satellite imagery are compared with surface albedos derived from the International Satellite Cloud Climatology Program (ISCCP) monthly data set. Spatial patterns obtained by the two techniques are in general agreement, especially for June and July. Nevertheless, systematic differences in albedo of 0.05 - 0.10 are noted which are most likely related to uncertainties in the simple parameterizations used in the DMSP analyses, problems in the ISCCP cloud-clearing algorithm and other modeling simplifications. However, with respect to the eventual goal of developing a reliable automated retrieval algorithm for compiling a long-term albedo data base, these initial comparisons are very encouraging.
A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2001-01-01
The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable patterns related to seasonal variations of atmospheric general circulation. This dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models and can be accessed through the NASA/GSFC Distributed Active Archive Center.
Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy
Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao
2013-01-01
Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188
1986-09-01
collision, etc.) originate from largely biogenically derived component particles. Local loss terms include sinking, advection and decomposition which...Some quarry or scrape away the aggregate surface, others consume entire particles. Bacterial decomposition on the particle surfaces may also weaken...major role in the degradation of aggregates. Only limited information is available regarding microbial colonization, hydrolysis , and metabolism of the
Detailed ocean current maps may lie over the horizon
NASA Astrophysics Data System (ADS)
Carlowicz, Michael
In another case of military swords being turned into scientific plowshares, two American researchers have used radar systems once designed to detect Soviet planes during the Cold War to map open-ocean currents instead.In the name of science, Thomas Georges and Jack Harlan of NOAA's Environmental Technology Laboratory borrowed some time last summer on the U.S. Navy's over-the-horizon (OTH) radar systems in both Virginia and Texas. Training the radars on the waters off of the southern coast of Florida, the researchers gathered enough data to deduce the surface motion of two 70,000 km2 swatches of the Caribbean Sea and Gulf of Mexico. By bouncing 5-28 MHz radio waves off the ionosphere down to the sea surface and back, the researchers were able to derive the characteristics of the ocean surface from Bragg backscatter resonance.
Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.
Laureano-Rosario, Abdiel E; Garcia-Rejon, Julian E; Gomez-Carro, Salvador; Farfan-Ale, Jose A; Muller-Karger, Frank E
2017-08-01
Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide. Changes in environmental parameters such as precipitation, air temperature, and humidity are known to influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such as El Niño Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental variables best explained increased dengue incidence rates. SST, minimum air temperature, precipitation, and humidity substantially explained 42% of the observed variation (r 2 =0.42). Infectious diseases are characterized by the influence of past cases on current cases and results show that previous dengue cases alone explained 89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20±0.03°C in SST from 2006 to 2015. An important element of this study is to help develop strategic recommendations for public health officials in Mexico by providing a simple early warning capability for dengue incidence. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prigent, Catherine; Aires, Filipe; Heygster, Georg
2017-04-01
Ocean surface characterization from satellites is required to understand, monitor and predict the general circulation of the ocean and atmosphere. With more than 70% global cloud coverage at any time, visible and infrared satellite observations only provide limited information. The polar regions are particularly vulnerable to the climate changes and are home to complex mesoscale mechanisms that are still poorly understood. They are also under very persis- tent cloudiness. Passive microwave observations can provide surface information such as Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) regardless of the cloud cover, but up to now they were limited in spatial resolution. Here, we propose a passive microwave conically scanning imager, MICROWAT, in a polar orbit, for the retrieval of the SST and SIC, with a spatial resolution of 15km. It observes at 6 and 10GHz, with low-noise dual polarization receivers, and a foldable mesh antenna of 5m-diameter. Furthermore, MICROWAT will fly in tandem with MetOp-SG B to benefit from the synergy with scatterometers (SCA) and microwave imagers (MWI). MICROWAT will provide global SST estimates, twice daily, regardless of cloud cover, with an accuracy of 0.3K and a spatial resolution of 15km. The SIC will be derived with an accuracy of 3%. With its unprecedented "all weather" accurate SST and SIC at 15km, MICROWAT will provide the atmospheric and oceanic forecasting sys- tems with products compatible with their increasing spatial resolution and complexity, with impact for societal applications. It will also answer fundamental science questions related to the ocean, the atmosphere and their interactions. * Prigent, Aires, Bernardo, Orlhac, Goutoule, Roquet, & Donlon, Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition
NASA Astrophysics Data System (ADS)
Lamare, Maxim; Hedley, John; King, Martin
2016-04-01
Knowledge of the albedo in the cryosphere is essential to monitor a range of climatic processes that have an impact on a global scale. Optical Earth Observation satellites are ideal for the synoptic observation of expansive and inaccessible areas, providing large datasets used to derive essential products, such as albedo. The application of remote sensing to investigate climate processes requires the combination of data from different sensors. However, although there is significant value in the analysis of data from individual sensors, global observing systems require accurate knowledge of sensor-to-sensor biases. Therefore, the inter-calibration of sensors used for climate studies is essential to avoid inconsistencies, which may mask climate effects. CEOS (Committee on Earth Observing Satellites) has established a number of natural Earth targets to serve as international reference standards, amongst which sea ice has great potential. The reflectance of natural surfaces is not isotropic and reflectance varies with the illumination and viewing geometries, consequently impacting satellite observations. Furthermore, variations in the physical properties (sea ice type, thickness) and the light absorbing impurities deposited in the sea ice have a strong impact on reflectance. Thus, the characterisation of the bi-directional reflectance distribution function (BRDF) of sea ice is a fundamental step toward the inter-calibration of optical satellite sensors. This study provides a characterisation of the effects of mineral aerosol and black carbon deposits on the BRDF of three different sea ice types. BRDF measurements were performed on bare sea ice grown in an experimental ice tank, using a state-of-the-art laboratory goniometer. The sea ice was "poisoned" with concentrations of mineral dust and black carbon varying between 100 and 5 000 ng g-1 deposited uniformly in a 5 cm surface layer. Using measurements from the experimental facility, novel information about sea ice BRDF as a function of sea ice type, thickness and light-absorbing impurities was derived using a radiative-transfer model (PlanarRad). This extensive characterisation of the multi angular reflectance of sea ice reveals the importance of BRDF for the validation and calibration of Earth Observation satellite sensor data.
NASA Technical Reports Server (NTRS)
Maximenko, Nikolai A.
2003-01-01
Mean absolute sea level reflects the deviation of the Ocean surface from geoid due to the ocean currents and is an important characteristic of the dynamical state of the ocean. Values of its spatial variations (order of 1 m) are generally much smaller than deviations of the geoid shape from ellipsoid (order of 100 m) that makes the derivation of the absolute mean sea level a difficult task for gravity and satellite altimetry observations. Technique used by Niiler et al. for computation of the absolute mean sea level in the Kuroshio Extension was then developed into more general method and applied by Niiler et al. (2003b) to the global Ocean. The method is based on the consideration of balance of horizontal momentum.
Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Han, Gi Myung; Shim, Won Joon
2015-10-01
Microplastic contamination of the marine environment is a worldwide concern. The abundance of microplastics was evaluated in the sea surface microlayer in Jinhae Bay, on the southern coast of Korea. The microplastics in this study are divided into paint resin particles and plastics by polymer type. The mean abundance of paint resin particles (94 ± 68 particles/L) was comparable to that of plastics (88 ± 68 particles/L). Fragmented microplastics, including paint resin particles, accounted for 75 % of total particles, followed by spherules (14 %), fibers (5.8 %), expanded polystyrene (4.6 %), and sheets (1.6 %). Alkyd (35 %) and poly(acrylate/styrene) (16 %) derived from ship paint resin were dominant, and the other microplastic samples consisted of polypropylene, polyethylene, phenoxy resin, polystyrene, polyester, synthetic rubber, and other polymers. The abundance of plastics was significantly (p < 0.05) higher in Jinhae Bay, which is surrounded by a coastal city, than along the east coast of Geoje, which is relatively open sea. The floating microplastic abundance in surface water was the highest reported worldwide.
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2010-05-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main influences on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on ENVISAT) and SeaWiFS (Sea viewing Wide Fiels Sensor on OrbView-2) observations are the existence of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. Normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface BRDF is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with AERONET data over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for trends in AOT.
Global Surface Temperature Change and Uncertainties Since 1861
NASA Technical Reports Server (NTRS)
Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)
2002-01-01
The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.
NASA Astrophysics Data System (ADS)
Adhikari, Surendra; Ivins, Erik R.; Larour, Eric
2016-03-01
A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.
NASA Astrophysics Data System (ADS)
Nam, S.; Yoon, S.; Park, J. H.; Kim, Y. H.; Chang, K. I.
2016-02-01
The intermediate water known as `East Sea Intermediate Water' and its coastal mode `North Korea Cold Water' found south of the Subpolar Front (SF) is formed in the northern East (Japan) Sea, and its physical properties are known to be determined by wintertime air-sea interaction north of the SF. Hydrographic data collected off the coast bi-monthly from 1994 to 2011 show significant decadal oscillations in spiciness following isopycnals of intermediate water (27.1-27.2 sigma-theta typically corresponding to 150 m depth), which are explained by the Arctic Oscillation (AO) and consequent cold-air outbreaks. During positive AO phases over the decades, the cold-air outbreak and water formation are more active and the intermediate water having the same spiciness reaches higher density (higher spiciness following the same isopycnals). At interannual timescale, however, the spiciness variability is well beyond the relationship with the AO. Especially, significantly lower spiciness (or both less saline and lower temperature) intermediate water was observed in spring of 2010 than 2001 under the similar AO condition (negative peaks). Strong cooling with common negative peaks in surface net-heat flux (with different patterns) and common negative peaks in the AO index are prominent in winter of the two years over past two decades. Such contrasting characteristics of intermediate water between 2001 and 2010 are consistent with the HYCOM reanalysis results which, along with the satellite altimetry-derived sea surface height maps, indicates widespread extension of low (high) spiciness intermediate water in the southwestern East Sea in 2010 (2001). A clear contrast in circulation pattern, along with net-heat flux pattern, is suggested to derive the observational results in the distinctly different characteristics of the intermediate water.
Influence of the Yukon River on the Bering Sea
NASA Technical Reports Server (NTRS)
Dean, Kenneson G.; Mcroy, C. Peter
1988-01-01
Physical and biological oceanography of the northern Bering Sea including the influence of the Yukon River were studied. Satellite data acquired by the Advanced Very High Resolution Radiometer (AVHRR), the LANDSAT Multispectral Scanner (MSS) and the Thematic Mapper (TM) sensor were used to detect sea surface temperatures and suspended sediments. Shipboard measurements of temperature, salinity and nutrients were acquired through the Inner Shelf Transfer and Recycling (ISHTAR) project and were compared to digitally enhanced and historical satellite images. The satellite data reveal north-flowing, warm water along the Alaskan coast that is highly turbid with complex patterns of surface circulation near the Yukon River delta. To the west near the Soviet Union, cold water, derived from an upwelling, mixes with shelf water and also flows north. The cold and warm water coincide with the Anadyr, Bering Shelf and Alaskan coastal water masses. Generally, warm Alaskan coastal water forms near the coast and extends offshore as the summer progresses. Turbid water discharged by the Yukon River progresses in the same fashion but extends northward across the entrance to Norton Sound, attaining its maximum surface extent in October. The Anadyr water flows northward and around St. Lawrence Island, but its extent is highly variable and depends upon mesoscale pressure fields in the Arctic Ocean and the Bering Sea.
Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity
NASA Technical Reports Server (NTRS)
Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.
1989-01-01
Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.
NASA Technical Reports Server (NTRS)
Parkinson, C. L.; Comiso, J. C.; Zwally, H. J.
1987-01-01
A summary data set for four years (mid 70's) of Arctic sea ice conditions is available on magnetic tape. The data include monthly and yearly averaged Nimbus 5 electrically scanning microwave radiometer (ESMR) brightness temperatures, an ice concentration parameter derived from the brightness temperatures, monthly climatological surface air temperatures, and monthly climatological sea level pressures. All data matrices are applied to 293 by 293 grids that cover a polar stereographic map enclosing the 50 deg N latitude circle. The grid size varies from about 32 X 32 km at the poles to about 28 X 28 km at 50 deg N. The ice concentration parameter is calculated assuming that the field of view contains only open water and first-year ice with an ice emissivity of 0.92. To account for the presence of multiyear ice, a nomogram is provided relating the ice concentration parameter, the total ice concentration, and the fraction of the ice cover which is multiyear ice.
Environmental Variability in the Florida Keys: Impacts on Coral Reef Resilience and Health
NASA Astrophysics Data System (ADS)
Soto, I. M.; Muller-Karger, F. E.
2005-12-01
Environmental variability contributes to both mass mortality and resilience in tropical coral reef communities. We assess variations in sea surface temperature (SST) and ocean color in the Florida Keys using satellite imagery, and provide insight into how this variability is associated with locations of resilient coral communities (those unaffected by or able to recover from major events). The project tests the hypothesis that areas with historically low environmental variability promote lower levels of coral reef resilience. Time series of SST from the Advanced Very High Resolution Radiometer (AVHRR) sensors and ocean color derived quantities (e.g., turbidity and chlorophyll) from the Sea-viewing Wide Field of View Sensor (SeaWiFS) are being constructed over the entire Florida Keys region for a period of twelve and nine years, respectively. These data will be compared with historical coral cover data derived from Landsat imagery (1984-2002). Improved understanding of the causes of coral reef decline or resilience will help protect and manage these natural treasures.
Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region
NASA Astrophysics Data System (ADS)
Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang
2017-01-01
We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice recovery occurs through thermodynamic rather than dynamic processes.
Sea Ice and Ice Temperature Variability as Observed by Microwave and Infrared Satellite Data
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Recent reports of a retreating and thinning sea ice cover in the Arctic have pointed to a strong suggestion of significant warming in the polar regions. It is especially important to understand what these reports mean in light of the observed global warning and because the polar regions are expected to be most sensitive to changes in climate. To gain insight into this phenomenon, co-registered ice concentrations and surface temperatures derived from two decades of satellite microwave and infrared data have been processed and analyzed. While observations from meteorological stations indicate consistent surface warming in both regions during the last fifty years, the last 20 years of the same data set show warming in the Arctic but a slight cooling in the Antarctic. These results are consistent with the retreat in the Arctic ice cover and the advance in the Antarctic ice cover as revealed by historical satellite passive microwave data. Surface temperatures derived from satellite infrared data are shown to be consistent within 3 K with surface temperature data from the limited number of stations. While not as accurate, the former provides spatially detailed changes over the twenty year period. In the Arctic, for example, much of the warming occurred in the Beaufort Sea and the North American region in 1998 while slight cooling actually happened in parts of the Laptev Sea and Northern Siberia during the same time period. Big warming anomalies are also observed during the last five years but a periodic cycle of about ten years is apparent suggesting a possible influence of the North Atlantic Oscillation. In the Antarctic, large interannual and seasonal changes are also observed in the circumpolar ice cover with regional changes showing good coherence with surface temperature anomalies. However, a mode 3 is observed to be more dominant than the mode 2 wave reported in the literature. Some of these spatial and temporal changes appear to be influenced by the Antarctic Circumpolar Wave (ACW) and changes in coastal polynya activities.
Assessment of satellite derived diffuse attenuation coefficients ...
Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD < 13% and R2 ~1.0 for MODIS/Aqua and SeaWiFS). Two algorithms based on empirical regressions performed well for offshore clear waters, but underestimated Kd_490 and Kd_PAR in coastal waters due to high turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that
Terrestrial Observations from NOAA Operational Satellites.
Yates, H; Strong, A; McGinnis, D; Tarpley, D
1986-01-31
Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.
Black Sea impact on its west-coast land surface temperature
NASA Astrophysics Data System (ADS)
Cheval, Sorin; Constantin, Sorin
2018-03-01
This study investigates the Black Sea influence on the thermal characteristics of its western hinterland based on satellite imagery acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). The marine impact on the land surface temperature (LST) values is detected at daily, seasonal and annual time scales, and a strong linkage with the land cover is demonstrated. The remote sensing products used within the study supply LST data with complete areal coverage during clear sky conditions at 1-km spatial resolution, which is appropriate for climate studies. The sea influence is significant up to 4-5 km, by daytime, while the nighttime influence is very strong in the first 1-2 km, and it gradually decreases westward. Excepting the winter, the daytime temperature increases towards the plateau with the distance from the sea, e.g. with a gradient of 0.9 °C/km in the first 5 km in spring or with 0.7 °C/km in summer. By nighttime, the sea water usually remains warmer than the contiguous land triggering higher LST values in the immediate proximity of the coastline in all seasons, e.g. mean summer LST is 19.0 °C for the 1-km buffer, 16.6 °C for the 5-km buffer and 16.0 °C for the 10-km buffer. The results confirm a strong relationship between the land cover and thermal regime in the western hinterland of the Black Sea coast. The satellite-derived LST and air temperature values recorded at the meteorological stations are highly correlated for similar locations, but the marine influence propagates differently, pledging for distinct analysis. Identified anomalies in the general observed trends are investigated in correlation with sea surface temperature dynamics in the coastal area.
Rate and state dependent processes in sea ice deformation
NASA Astrophysics Data System (ADS)
Sammonds, P. R.; Scourfield, S.; Lishman, B.
2014-12-01
Realistic models of sea ice processes and properties are needed to assess sea ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea ice is a key control on the Arctic Ocean dynamics. But the deformation of sea ice is dependent not only on the rate of the processes involved but also the state of the sea ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea ice friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.
NASA Astrophysics Data System (ADS)
Lange, B. A.; Haas, C.; Beckers, J.; Hendricks, S.
2011-12-01
Satellite observations demonstrate a decreasing summer Arctic sea ice extent over the past ~40 years, as well as a smaller perennial sea ice zone, with a significantly accelerated decline in the last decade. Recent ice extent observations are significantly lower than predicted by any model employed by the Intergovernmental Panel on Climate Change. The disagreement of the modeled and observed results, along with the large variability of model results, can be in part attributed to a lack of consistent and long term sea ice mass balance observations for the High Arctic. This study presents the derivation of large scale (individual floe) seasonal sea ice mass balance in the Lincoln Sea and Nares Strait. Large scale melt estimates are derived by comparing aerial borne electromagnetic induction thickness surveys conducted in spring with surveys conducted in summer 2009. The comparison of coincident floes is ensured by tracking sea ice using ENIVSAT ASAR and MODIS satellite imagery. Only EM thickness survey sections of floes that were surveyed in both spring and summer are analyzed and the resulting modal thicknesses of the distributions, which represent the most abundant ice type, are compared to determine the difference in thickness and therefore total melt (snow+basal ice+surface ice melt). Preliminary analyses demonstrate a bulk (regional ice tracking) seasonal total thickness variability of 1.1m, Lincoln Sea modal thickness 3.7m (April, 2009) and Nares Strait modal thickness 2.6m (August 2009)(Fig1). More detailed floe tracking, in depth analysis of EM surveys and removal of deformed ridged/rafted sea ice (due to inaccuracies over deformed ice) will result in more accurate melt estimates for this region and will be presented. The physical structure of deformed sea ice and the footprint of the EM instrument typically underestimate the total thicknesses observed. Seasonal variations of sea ice properties can add additional uncertainty to the response of the EM instrument over deformed ridged/rafted sea ice. Here we will present additional analysis of the data comparing total thickness to ridge height that will provide some insight into the magnitude of seasonal discrepancies experienced by the EM instrument over deformed ice.
Monsoon control on faunal composition of planktic foraminifera in the Arabian Sea
NASA Astrophysics Data System (ADS)
Munz, P.; Siccha, M.; Kucera, M.; Schulz, H.
2013-12-01
Being among the most productive open ocean basins, sea surface properties in the Arabian Sea are highly influenced by the seasonal reversal of the monsoonal wind system. During boreal summer wind direction from the southwest induces strong upwelling along the coast off Somalia and Oman. Vertical transport of cold and nutrient-rich deep-water masses by Ekman pumping reduces sea surface temperature and triggers primary productivity. Reversed cold and dry winds during boreal winter lead to cooling of the surface- and subsurface-waters and hereby to deep convective mixing, bringing nutrients into the photic zone and enhancing primary productivity especially in the northern part of the Arabian Sea. Here, we study the influence of the different seasonal monsoon systems on the faunal composition of planktic foraminifera, in order to improve our understanding how the faunal community record is influenced by the respective monsoon systems and to provide baseline information for the reconstruction of ancient monsoon conditions. We used published core-top foraminiferal databases, significantly increased in spatial coverage by new contributions. The resulting combined database consists of 413 core-top samples spanning the Arabian Sea and the Northern Indian Ocean to 10° S. The seasonal sea surface properties at these stations could be binned into categories of different monsoon influence, based on satellite-derived chlorophyll-a concentrations. Interpretation of species response to environmental control is based on multivariate statistical analyses of each of the categorical bins. First results show that samples influenced only by winter- and summer monsoon conditions, respectively, feature specifiable faunal composition. Globigerina bulloides is mostly associated with summer upwelling conditions, whereas Globigerina falconensis and Pulleniatina obliquiloculata are typical species of winter conditions. Redundancy analysis reveals preferences of species populations with respect to particular environmental gradients and may help to disentangle winter- from summer monsoon impact on modern and fossil faunas.
NASA Technical Reports Server (NTRS)
Zlotnicki, V.; Stammer, D.; Fukumori, I.
2003-01-01
Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.
NASA Technical Reports Server (NTRS)
Cox, C.; Au, A.; Klosko, S.; Chao, B.; Smith, David E. (Technical Monitor)
2001-01-01
The upcoming GRACE mission promises to open a window on details of the global mass budget that will have remarkable clarity, but it will not directly answer the question of what the state of the Earth's mass budget is over the critical last quarter of the 20th century. To address that problem we must draw upon existing technologies such as SLR, DORIS, and GPS, and climate modeling runs in order to improve our understanding. Analysis of long-period geopotential changes based on SLR and DORIS tracking has shown that addition of post 1996 satellite tracking data has a significant impact on the recovered zonal rates and long-period tides. Interannual effects such as those causing the post 1996 anomalies must be better characterized before refined estimates of the decadal period changes in the geopotential can be derived from the historical database of satellite tracking. A possible cause of this anomaly is variations in ocean mass distribution, perhaps associated with the recent large El Nino/La Nina. In this study, a low-degree spherical harmonic gravity time series derived from satellite tracking is compared with a TOPEX/POSEIDON-derived sea surface height time series. Corrections for atmospheric mass effects, continental hydrology, snowfall accumulation, and ocean steric model predictions will be considered.
NASA Astrophysics Data System (ADS)
Kheireddine, M.; Jones, B. H.
2016-02-01
Until recently, satellite-derived ocean color observations have been the only means of evaluating optical variability of the Red Sea. The optical properties of the Red Sea have been empirically related to the chlorophyll concentration, [Chl], historically used as an index of the trophic state and of the abundance of the biological materials. The natural variability around the mean statistical relationships is here examined by comparing the optical properties as a function of [Chl] in different area of the Red Sea: the North Red Sea (NRS), the North Central Red Sea (NCRS) and the South Central Red Sea (SCRS) waters. The systematic deviations, with respect to the average laws provided for the global ocean, mainly result from the differing contents in non-algal particles, phytoplankton communities and dissolved colored substance for a given [Chl] level. These optical anomalies relate to the specific biological and environmental conditions occurring in the Red Sea ecosystem, showing the peculiar character of the Red Sea. Specifically, absorption's values of colored dissolved organic matter are lower than the values predicted from the global relationships, the surface specific phytoplankton absorption coefficients are lower than the values predicted from the global relationships due to a high proportion of relatively large sized phytoplankton. Conversely, bbp values are much higher than the mean standard values for a given [Chl] concentration. This presumably results from the influence of highly refractive submicrometer particles of Saharan or Arabian origin in the surface layer of the water column.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.; Liu, Xiang
2000-01-01
A combination of satellite microwave data sets are used in conjunction with ECMWF (Medium Range Weather Forecasts) and NCEP (National Center for Environment Prediction) meteorological analysis fields to investigate seasonal variability in the circulation and sea-ice dynamics of the Weddell and Ross Seas. Results of sea-ice tracking using SSM/I (Special Sensor Microwave Imager), Scatterometer and SAR images are combined with in-situ data derived from Argos buoys and GPS drifters to validate observed drift patterns. Seasonal 3-month climatologies of ice motion and drift speed variance illustrate the response of the sea-ice system to seasonal forcing. A melt-detection algorithm is used to track the onset of seasonal melt, and to determine the extent and duration of atmospherically-led surface melting during austral summer. Results show that wind-driven drift regulates the seasonal distribution and characteristics of sea-ice and the intensity of the cyclonic Gyre circulation in these two regions.
Atmospheric and oceanic forcing of Weddell Sea ice motion
NASA Astrophysics Data System (ADS)
Kottmeier, C.; Sellmann, Lutz
1996-09-01
The data from sea ice buoys, which were deployed during the Winter Weddell Sea Project 1986, the Winter Weddell Gyre Studies 1989 and 1992, the Ice Station Weddell in 1992, the Antarctic Zone Flux Experiment in 1994, and several ship cruises in Austral summers, are uniformly reanalyzed by the same objective methods. Geostrophic winds are derived after matching of the buoy pressure data with the surface pressure fields of the European Centre for Medium Range Weather Forecasts. The ratio between ice drift and geostrophic wind speeds is reduced when winds and currents oppose each other, when the atmospheric surface layer is stably stratified, and when the ice is under pressure near coasts. Over the continental shelves, the spatial inhomogeneity of tidal and inertial motion effectively controls the variability of divergence for periods below 36 hours. Far from coasts, speed ratios, which presumably reflect internal stress variations in the ice cover, are independent of drift divergence on the spatial scale of 100 km. To study basin-scale ice dynamics, all ice drift data are related to the geostrophic winds based on the complex linear model [Thorndike and Colony, 1982] for daily averaged data. The composite patterns of mean ice motion, geostrophic winds, and geostrophic surface currents document cyclonic basin-wide circulations. Geostrophic ocean currents are generally small in the Weddell Sea. Significant features are the coastal current near the southeastern coasts and the bands of larger velocities of ≈6 cm s-1 following the northward and eastward orientation of the continental shelf breaks in the western and northwestern Weddell Sea. In the southwestern Weddell Sea the mean ice drift speed is reduced to less than 0.5% of the geostrophic wind speed and increases rather continuously to 1.5% in the northern, central, and eastern Weddell Sea. The linear model accounts for less than 50% of the total variance of drift speeds in the southwestern Weddell Sea and up to 80% in the northern and eastern Weddell Sea.
Sources of Meridional Heat and Freshwater Transport Anomalies in the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Kelly, K. A.; Thompson, L.; Drushka, K.
2016-02-01
Observations of thermosteric and halosteric sea level from hydrographic data, ocean mass from GRACE and altimetric sea surface height are used to infer meridional heat transport (MHT) and freshwater convergence (FWC) anomalies for the Atlantic Ocean for 1993-2014. A Kalman filter extracts smooth estimates of heat transport convergence (HTC) and FWC from discrepancies between the sea level response to monthly surface heat and freshwater fluxes and observed heat and freshwater content in each of eight regions. Estimates of MHT anomalies are derived by summing the HTC from north to south and adding an integration constant derived from updated MHT estimates at 41N (Willis 2010). MHT estimates are relatively insensitive to the choice of heat flux products and are highly coherent spatially. Anomalies in MHT are comparable to those observed at the RAPID/MOCHA line at 26.5N and show a continued recovery from the minimum in 2010 throughout the Atlantic. MHT anomalies resemble estimates of Agulhas Leakage derived from altimeter (LeBars et al 2014) suggesting that the Indian Ocean is the source of the anomalous heat inflow. FWC estimates are also insensitive to choice of flux products. Interannual anomalies of FWC integrated from 67N to 35S resemble estimates of Atlantic river inflow (de Couet and Maurer, GRDC 2009), whereas the trend is consistent with estimates of freshwater input from Greenland. Increasing values of FWC after 2002 at a time when MHT was decreasing may indicate a feedback between the Atlantic Meridional Overturning Circulation and FWC that would accelerate the AMOC slowdown.
Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico
Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, Steve W.
2011-01-01
Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.
NASA Astrophysics Data System (ADS)
Xiao, Xiaotong; Zhao, Meixun; Knudsen, Karen Luise; Sha, Longbin; Eiríksson, Jón; Gudmundsdóttir, Esther; Jiang, Hui; Guo, Zhigang
2017-08-01
Sea-ice conditions on the North Icelandic shelf constitute a key component for the study of the climatic gradients between the Arctic and the North Atlantic Oceans at the Polar Front between the cold East Icelandic Current delivering Polar surface water and the relatively warm Irminger Current derived from the North Atlantic Current. The variability of sea ice contributes to heat reduction (albedo) and gas exchange between the ocean and the atmosphere, and further affects the deep-water formation. However, lack of long-term and high-resolution sea-ice records in the region hinders the understanding of palaeoceanographic change mechanisms during the last glacial-interglacial cycle. Here, we present a sea-ice record back to 15 ka (cal. ka BP) based on the sea-ice biomarker IP25, phytoplankton biomarker brassicasterol and terrestrial biomarker long-chain n-alkanols in piston core MD99-2272 from the North Icelandic shelf. During the Bølling/Allerød (14.7-12.9 ka), the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence, as well as strong meltwater input in the area. This pattern showed an anti-phase relationship with the ice-free/less ice conditions in marginal areas of the eastern Nordic Seas, where the Atlantic Water inflow was strong, and contributed to an enhanced deep-water formation. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas (12.9-11.7 ka) interrupted by a brief interval of enhanced Irminger Current and deposition of the Vedde Ash, as opposed to abruptly increased sea-ice conditions in the eastern Nordic Seas. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Ice-free conditions and sea surface warming were observed for the Early Holocene, followed by expansion of sea ice during the Mid-Holocene.
Nonlinear diffusion filtering of the GOCE-based satellite-only MDT
NASA Astrophysics Data System (ADS)
Čunderlík, Róbert; Mikula, Karol
2015-04-01
A combination of the GRACE/GOCE-based geoid models and mean sea surface models provided by satellite altimetry allows modelling of the satellite-only mean dynamic topography (MDT). Such MDT models are significantly affected by a stripping noise due to omission errors of the spherical harmonics approach. Appropriate filtering of this kind of noise is crucial in obtaining reliable results. In our study we use the nonlinear diffusion filtering based on a numerical solution to the nonlinear diffusion equation on closed surfaces (e.g. on a sphere, ellipsoid or the discretized Earth's surface), namely the regularized surface Perona-Malik model. A key idea is that the diffusivity coefficient depends on an edge detector. It allows effectively reduce the noise while preserve important gradients in filtered data. Numerical experiments present nonlinear filtering of the satellite-only MDT obtained as a combination of the DTU13 mean sea surface model and GO_CONS_GCF_2_DIR_R5 geopotential model. They emphasize an adaptive smoothing effect as a principal advantage of the nonlinear diffusion filtering. Consequently, the derived velocities of the ocean geostrophic surface currents contain stronger signal.
Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25
NASA Astrophysics Data System (ADS)
Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus
2018-04-01
Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice-conditioned blooms are of much shorter duration than blooms downstream of the permanently sea-ice-free South Georgia, they enabled fast growth and offspring development. Our study shows two rarely considered ways that pelagic grazers may benefit from sea ice: firstly, after their release from sea ice, suspended or sinking ice algae can supplement the grazers' diet if phytoplankton concentrations are low. Secondly, conditioning effects of seasonal sea ice can promote pelagic primary production and therefore food availability in spring and summer.
NASA Astrophysics Data System (ADS)
Perkovic-Martin, D.; Johnson, M. P.; Holt, B.; Panzer, B.; Leuschen, C.
2012-12-01
This paper presents estimates of snow depth over sea ice from the 2009 through 2011 NASA Operation IceBridge [1] spring campaigns over Greenland and the Arctic Ocean, derived from Kansas University's wideband Snow Radar [2] over annually repeated sea-ice transects. We compare the estimates of the top surface interface heights between NASA's Atmospheric Topographic Mapper (ATM) [3] and the Snow Radar. We follow this by comparison of multi-year snow depth records over repeated sea-ice transects to derive snow depth changes over the area. For the purpose of this paper our analysis will concentrate on flights over North/South basin transects off Greenland, which are the closest overlapping tracks over this time period. The Snow Radar backscatter returns allow for surface and interface layer types to be differentiated between snow, ice, land and water using a tracking and classification algorithm developed and discussed in the paper. The classification is possible due to different scattering properties of surfaces and volumes at the radar's operating frequencies (2-6.5 GHz), as well as the geometries in which they are viewed by the radar. These properties allow the returns to be classified by a set of features that can be used to identify the type of the surface or interfaces preset in each vertical profile. We applied a Support Vector Machine (SVM) learning algorithm [4] to the Snow Radar data to classify each detected interface into one of four types. The SVM algorithm was trained on radar echograms whose interfaces were visually classified and verified against coincident aircraft data obtained by CAMBOT [5] and DMS [6] imaging sensors as well as the scanning ATM lidar. Once the interface locations were detected for each vertical profile we derived a range to each interface that was used to estimate the heights above the WGS84 ellipsoid for direct comparisons with ATM. Snow Radar measurements were calibrated against ATM data over areas free of snow cover and over GPS land surveyed areas of Thule and Sondrestrom air bases. The radar measurements were compared against the ATM and the GPS measurements that were located in the estimated radar footprints, which resulted in an overall error of ~ 0.3 m between the radar and ATM. The agreement between ATM and GPS survey is within +/- 0.1 m. References: [1] http://www.nasa.gov/mission_pages/icebridge/ [2] Panzer, B. et. al, "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. of Glaciology Instr. and Tech., July 23, 2012. [3] Krabill, William B. 2009 and 2011, updated current year. IceBridge ATM L1B Qfit Elevation and Return Strength. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [4] Chih-Chung Chang and Chih-Jen Lin. "Libsvm: a library for support vector machines", ACM Transactions on Intelligent Systems and Technology, 2:2:27:1-27:27, 2011. [5] Krabill, William B. 2009 and 2011, updated current year. IceBridge CAMBOT L1B Geolocated Images, [2009-04-25, 2011-04-15]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. [6] Dominguez, Roseanne. 2011, updated current year. IceBridge DMS L1B Geolocated and Orthorectified Images. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media
Ocean colour remote sensing in the southern Laptev Sea: evaluation and applications
NASA Astrophysics Data System (ADS)
Heim, B.; Abramova, E.; Doerffer, R.; Günther, F.; Hölemann, J.; Kraberg, A.; Lantuit, H.; Loginova, A.; Martynov, F.; Overduin, P. P.; Wegner, C.
2014-08-01
Enhanced permafrost warming and increased Arctic river discharges have heightened concern about the input of terrigenous matter into Arctic coastal waters. We used optical operational satellite data from the ocean colour sensor MERIS (Medium-Resolution Imaging Spectrometer) aboard the ENVISAT satellite mission for synoptic monitoring of the pathways of terrigenous matter on the shallow Laptev Sea shelf. Despite the high cloud coverage in summer that is inherent to this Arctic region, time series from MERIS satellite data from 2006 on to 2011 could be acquired and were processed using the Case-2 Regional Processor (C2R) for optically complex surface waters installed in the open-source software ESA BEAM-VISAT. Since optical remote sensing using ocean colour satellite data has seen little application in Siberian Arctic coastal and shelf waters, we assess the applicability of the calculated MERIS C2R parameters with surface water sampling data from the Russian-German ship expeditions LENA2008, LENA2010 and TRANSDRIFT-XVII taking place in August 2008 and August and September 2010 in the southern Laptev Sea. The shallow Siberian shelf waters are optically not comparable to the deeper, more transparent waters of the Arctic Ocean. The inner-shelf waters are characterized by low transparencies, due to turbid river water input, terrestrial input by coastal erosion, resuspension events and, therefore, high background concentrations of suspended particulate matter and coloured dissolved organic matter. We compared the field-based measurements with the satellite data that are closest in time. The match-up analyses related to LENA2008 and LENA2010 expedition data show the technical limits of matching in optically highly heterogeneous and dynamic shallow inner-shelf waters. The match-up analyses using the data from the marine TRANSDRIFT expedition were constrained by several days' difference between a match-up pair of satellite-derived and in situ parameters but are also based on the more stable hydrodynamic conditions of the deeper inner- and the outer-shelf waters. The relationship of satellite-derived turbidity-related parameters versus in situ suspended matter from TRANSDRIFT data shows that the backscattering coefficient C2R_bb_spm can be used to derive a Laptev-Sea-adapted SPM algorithm. Satellite-derived Chl a estimates are highly overestimated by a minimum factor of 10 if applied to the inner-shelf region due to elevated concentrations of terrestrial organic matter. To evaluate the applicability of ocean colour remote sensing, we include the visual analysis of lateral hydrographical features. The mapped turbidity-related MERIS C2R parameters show that the Laptev Sea is dominated by resuspension above submarine shallow banks and by frontal instabilities such as frontal meanders with amplitudes up to 30 km and eddies and filaments with horizontal scales up to 100 km that prevail throughout the sea-ice-free season. The widespread turbidity above submarine shallow banks indicates inner-shelf vertical mixing that seems frequently to reach down to submarine depths of a minimum of 10 m. The resuspension events and the frontal meanders, filaments and eddies indicate enhanced vertical mixing being widespread on the inner shelf. It is a new finding for the Laptev Sea that numerous frontal instabilities are made visible, and how highly time-dependent and turbulent the Laptev Sea shelf is. The meanders, filaments and eddies revealed by the ocean colour parameters indicate the lateral transportation pathways of terrestrial and living biological material in surface waters.
NASA Astrophysics Data System (ADS)
Lee, Seongsuk; Yi, Yu
2016-12-01
The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).
Eddy energy and shelf interactions in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Ohlmann, J. Carter; Niiler, P. Peter; Fox, Chad A.; Leben, Robert R.
2001-02-01
Sea surface height anomaly data from satellite are continuously available for the entire Gulf of Mexico. Surface current velocities derived from these remotely sensed data are compared with surface velocities from drifting buoys. The comparison shows that satellite altimetry does an excellent job resolving gulf eddies over the shelf rise (depths between ˜200 and 2000 m) if the proper length scale is used. Correlations between altimeter- and drifter-derived velocities are statistically significant (r>0.5) when the surface slope is computed over 125 km, indicating that remotely sensed sea surface height anomaly data can be used to aid the understanding of circulation over the shelf rise. Velocity variance over the shelf rise from the altimetry data shows regions of pronounced eddy energy south of the Mississippi outflow, south of the Texas-Louisiana shelf, and in the northwest and northeast corners of the gulf. These are the same locations where surface drifters are most likely to cross the shelf rise, suggesting gulf eddies promote cross-shore flows. This is clearly exemplified with both warm and cold eddies. Finally, the contribution of gulf eddies and wind stress to changes in the mean circulation are compared. Results indicate that the eddy-generated vorticity flux to the mean flow is greater than the contribution from the surface wind stress curl, especially in the region of the Loop current and along the shelf rise base in the western gulf. Future modeling efforts must not neglect the role of eddies in driving gulf circulation over the shelf rise.
Measured and parameterized energy fluxes estimated for Atlantic transects of RV Polarstern
NASA Astrophysics Data System (ADS)
Bumke, Karl; Macke, Andreas; Kalisch, John; Kleta, Henry
2013-04-01
Even to date energy fluxes over the oceans are difficult to assess. As an example the relative paucity of evaporation observations and the uncertainties of currently employed empirical approaches lead to large uncertainties of evaporation products over the ocean (e.g. Large and Yeager, 2009). Within the frame of OCEANET (Macke et al., 2010) we performed such measurements on Atlantic transects between Bremerhaven (Germany) and Cape Town (South Africa) or Punta Arenas (Chile) onboard RV Polarstern during the recent years. The basic measurements of sensible and latent heat fluxes are inertial-dissipation (e.g. Dupuis et al., 1997) flux estimates and measurements of the bulk variables. Turbulence measurements included a sonic anemometer and an infrared hygrometer, both mounted on the crow's nest. Mean meteorological sensors were those of the ship's operational measurement system. The global radiation and the down terrestrial radiation were measured on the OCEANET container placed on the monkey island. At least about 1000 time series of 1 h length were analyzed to derive bulk transfer coefficients for the fluxes of sensible and latent heat. The bulk transfer coefficients were applied to the ship's meteorological data to derive the heat fluxes at the sea surface. The reflected solar radiation was estimated from measured global radiation. The up terrestrial radiation was derived from the skin temperature according to the Stefan-Boltzmann law. Parameterized heat fluxes were compared to the widely used COARE-parameterization (Fairall et al., 2003), the agreement is excellent. Measured and parameterized heat and radiation fluxes gave the total energy budget at the air sea interface. As expected the mean total flux is positive, but there are also areas, where it is negative, indicating an energy loss of the ocean. It could be shown that the variations in the energy budget are mainly due to insolation and evaporation. A comparison between the mean values of measured and parameterized sensible and latent heat fluxes shows that the data are suitable to validate satellite derived fluxes at the sea surface and re-analysis data. References Dupuis, H., P. K. Taylor, A. Weill, and K. Katsaros, 1997: Inertial dissipation method applied to derive turbulent fluxes over the ocean during the surface of the ocean. J. Geophys. Res., 102 (C9), 21 115-21 129. Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, J. B. Edson, 2003: Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Climate, 16, 571-591. Large, W.G., and S.G. Yeager, 2009: The global climatology of an interannually varying air-sea flux data set. Climate Dynamics 33, 341-364. Macke, A., Kalisch, J., Zoll, Y., and Bumke, K., 2010: Radiative effects of the cloudy atmosphere from ground and satellite based observations, EPJ Web of Conferences, 5 9, 83-94
NASA Technical Reports Server (NTRS)
Zhen, Li; Adamec, David
2009-01-01
A state-of-the-art numerical model is used to investigate the possibility of determining freshwater flux fields from temporal changes io sea-surface salinity (SSS), a goal of the satellite salinity-measuring mission, Aquarius/SAC-D. Because the estimated advective temporal scale is usually longer than the Aquarius/SAC-D revisit time, the possibility of producing freshwater flux estimates from temporal salinity changes is first examined by using a correlation analysis. For the mean seasonal cycle, the patterns of the correlations between the freshwater fluxes and surface salinity temporal tendencies are mainly zonally oriented, and are highest where the local precipitation is also relatively high. Nonseasonal (deviations from the monthly mean) correlations are highest along mid-latitude moon tracks and are relatively small in the tropics. The complex correlation patterns presented here suggest that a global retrieval of the difference between evaporation and precipitation (E-P) from salinity changes requires more complex techniques than a simple consideration of local balance with surface forcing.
Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an
2014-11-15
By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Simpson, J. J.; Frouin, R.
1996-01-01
Grant activities accomplished during this reporting period are summarized. The contributions of the principle investigator are reported under four categories: (1) AHVRR (Advanced Very High Resolution Radiometer) data; (2) GOES (Geostationary Operational Environ Satellite) data; (3) system software design; and (4) ATSR (Along Track Scanning Radiometer) data. The contributions of the associate investigator are reported for:(1) longwave irradiance at the surface; (2) methods to derive surface short-wave irradiance; and (3) estimating PAR (photo-synthetically active radiation) surface. Several papers have resulted. Abstracts for each paper are provided.
NASA Astrophysics Data System (ADS)
Fieux, M.; Andrié, C.; Charriaud, E.; Ilahude, A. G.; Metzl, N.; Molcard, R.; Swallow, J. C.
1996-05-01
The Java Australia Dynamic Experiment high-resolution February-March 1992 conductivity-temperature-depth and chlorofluoromethane section obtained between Australia and Bali and on the sills between Flores, Sumba, Sawu, Roti, and the Australian continental shelf allows detailed examination of the water masses distribution and their inferred circulation. A sharp hydrological front between the Indonesian waters and the southern Indian Ocean waters is found between 13°S and 14°S in both seasons (February-March 1992 and August 1989). It separates the high-salinity surface waters to the south from the lower-salinity surface waters derived from the Indonesian Seas to the north. It reaches the surface in February 1992, whereas it was capped by a particularly low salinity surface layer in August 1989. Near Bali, the NW monsoon of February-March produces large intrusions of low-salinity water from the Java Sea, through Lombok Strait in the upper 100 m. At depth, the North Indian Intermediate Water, flowing along the Indonesian coast, brings salty, low-oxygen and low-chlorofluorocarbon water. It enters the Sawu Sea through Sumba Strait toward the east, while it undergoes strong mixing with the Indonesian Seas water. The primary pathway of the Indonesian waters is found north of the front and south of the North Indian Intermediate Water, between 13°S and 9°30'S, and the associated salinity minimum can be followed all across the Indian Ocean.
NASA Astrophysics Data System (ADS)
Sheridan, S. C.; Lee, C. C.; Pirhalla, D.; Ransi, V.
2017-12-01
Sea-level fluctuations over time are a product of short-term weather events, as well as long-term secular trends in sea-level rise. With sea-levl rise, these fluctuations increasingly have substantial impacts upon coastal ecosystems and impact society through coastal flooding events. In this research, we assess the impact of short-term events, combined with sea-level rise, through synoptic climatological analysis, exploring whether circulation pattern identification can be used to enhance probabilistic forecasts of flood likelihood. Self-organizing maps (SOMs) were created for two discrete atmospheric variables: 700-hPa geopotential height (700z) and sea-level pressure (SLP). For each variable, a SOM array of patterns was created based on data spanning 25°-50°N and 60°-90°W for the period 1979-2014. Sea-level values were derived from tidal gauges between Cape May, New Jersey and Charleston, South Carolina, along the mid-Atlantic coast of the US. Both anomalous sea-level values, as well as nuisance flood occurrence (defined using the local gauge threshold), were assessed. Results show the impacts of both the inverted barometer effect as well as surface wind forcing on sea levels. With SLP, higher sea levels are associated with either patterns that were indicative of on-shore flow or cyclones. At 700z, ridges situated along the east coast are associated with higher sea levels. As the SOM matrix arranges atmospheric patterns in a continuum, the nodes of each SOM show a clear spatial pattern in terms of anomalous sea level, including some significant sea-level anomalies associated with relatively ambiguous pressure patterns. Further, multi-day transitions are also analyzed, showing rapidly deepening cyclones, or persistent onshore flow, can be associated with the greatest likelihood of nuisance floods. Results are weaker with 700z than SLP; however, in some cases, it is clear that the mid-tropospheric circulation can modulate the connection between sea-level anomalies and surface circulation.
Temperature history of the Caribbean mixed layer as derived from sclerosponges
NASA Astrophysics Data System (ADS)
Estrella, J.; Winter, A.; Sherman, C.; Mangini, A.; Ramírez, W.
2011-12-01
We present a high resolution record of the Caribbean mixed layer temperature at different depths derived from oxygen isotopic ratios obtained from the sclerosponge Ceratoporella nicholsoni. Sclerosponges precipitate their calcium carbonate skeleton in equilibrium with their surrounding environment and are capable of living at great depths (down to 200 m). The sponges for this project were collected off Puerto Rico and St. Croix in northeastern region of the Caribbean Sea. The record obtained closest to the surface (36 m) indicates a sudden rise in sea surface temperature that started in 1866 and ended in 1877 with a total rise of 0.5 °C. At this time the rise decelerated until it finally stopped in 1935. From there onwards the record shows a declining trend that lasts until present day. We found that up to 51 % of the temperature variability in this record can be attributed to the Atlantic Multidecadal Oscillation (Trenberth and Shea, 2006). Further work is taking place on sponges located at various depths to determine the rate of expansion of the mixed layer.
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Kasemsupaya, Vimonrut; Tsubota, Hiroyuki
1989-11-01
Increasing attention of oceanographers has recently been paied on East Asian marginal seas regarding their role on the global environment, yet geochemical investigations have been few to date. We here report new data on the distribution of 228Ra and 226Ra in the surface water of the East China and the Yellow seas in an effort to constrain the time necessary for the coastal and shelf waters to exchange with offshore waters. Such information is needed in evaluating the exchange of heat and water across the air-sea interface that affects the local climate and the fate of pollutants, nutrients and weathering products supplied from the continent. Based on the Ra isotope signals, we have estimated that the shelf water component contributes ˜ 20 % of the Tsushima Current water passing through the Tsushima Strait and the mean residence time for the shelf water to mix with the Kuroshio surface water is ˜ 2.3 years. As many of materials derived from the continent such as heavy metals and the nutrients have their mean residence times less than a few months in the nearshore and shelf waters, they must largely deposit on the shelf sediments prior to the transport from the shelf to the open sea by mixing.
Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae
2014-05-01
Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2 data were used to identify leads. Rule-based machine learning approaches such as random forest and See5.0 and human-derived decision trees were used to produce rules to identify leads. With the freeboard height calculated from the lead analysis, sea ice thickness was finally estimated using the Archimedes' buoyancy principle with density of sea ice and sea water and the height of freeboard. The results were compared with Arctic sea ice thickness distribution retrieved from CryoSat-2 data by Alfred-Wegener-Institute.
Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)
NASA Astrophysics Data System (ADS)
Jiang, L.; Wang, M.
2016-02-01
The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.
Air-sea interaction in the tropical Pacific Ocean
NASA Technical Reports Server (NTRS)
Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.
1972-01-01
Charts of 3-month sea surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.
NASA Astrophysics Data System (ADS)
Dvornikov, Anton; Sein, Dmitry; Ryabchenko, Vladimir; Gorchakov, Victor; Pugalova, Svetlana
2015-04-01
This study is aimed at modelling the seasonal and inter-annual variability of sea-ice, ocean circulation and marine ecosystems in the Barents Sea in the modern period. Adequate description of marine ecosystems in the ice-covered seas crucially depends on the accuracy in determining of thicknesses of ice and snow on the sea surface which control penetrating photosynthetically active radiation under the ice. One of the few models of ice able to adequately reproduce the dynamics of sea ice is the sea ice model HELMI [1], containing 7 different categories of ice. This model has been imbedded into the Princeton Ocean Model. With this coupled model 2 runs for the period 1998-2007 were performed under different atmospheric forcing prescribed from NCEP/NCAR and ERA-40 archives. For prescribing conditions at the open boundary, all the necessary information about the horizontal velocity, level, temperature and salinity of the water, ice thickness and compactness was taken from the results of the global ocean general circulation model of the Max Planck Institute for Meteorology (Hamburg, Germany) MPIOM [2]. The resulting solution with NCEP forcing with a high accuracy simulates the seasonal and inter-annual variability of sea surface temperature (SST) estimated from MODIS data. The maximum difference between the calculated and satellite-derived SSTs (averaged over 4 selected areas of the Barents Sea) during the period 2000-2007 does not exceed 1.5 °C. Seasonal and inter-annual variations in the area of ice cover are also in good agreement with satellite-derived estimates. Pelagic ecosystem model developed in [3] has been coupled into the above hydrodynamic model and used to calculate the changes in the characteristics of marine ecosystems under NCEP forcing. Preliminarily the ecosystem model has been improved by introducing a parameterization of detritus deposition on the bottom and through the selection of optimal parameters for photosynthesis and zooplankton grazing, providing a solution having acceptable agreement with SeaWiFS estimates of surface chlorophyll "a" concentration. The solution for the period 1998-2007 correctly reproduces the start and end of vegetation period, and, with satisfactory accuracy, the level of the spring phytoplankton bloom, but systematically overestimates the SeaWiFS chlorophyll concentrations in the northern part of the sea and in the summer everywhere except for the southern part. According to the results, the region of phytoplankton blooming during the spring outbreak is bounded by the western boundary of the sea and the edge of solid ice. This work was supported by RFBR project № 13-05-00652 References 1. Haapala, J., Lönnroth, N., Stössel, A., 2005. A numerical study of open water formation in sea ice. J. Geophys. Res., V. 110(C9). P.1-17: doi: 10.1029/2003JC002200. 2. Gröger M., E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein, 2013. NW European shelf under climate warming: implications for open ocean - shelf exchange, primary production, and carbon absorption. Biogeosciences, vol.10, 3767-3792, doi:10.5194/bg-10-3767-2013. 3. Anderson T.R., V. A. Ryabchenko; M. J. Fasham; V. A. Gorchakov. Denitrification in the Arabian Sea: A 3D ecosystem modeling study. Deep-Sea Research, Part I, V. 54, Issue 12, 2007, 2082-2119
NASA Astrophysics Data System (ADS)
Zinke, J.; Dullo, W. Chr; Eisenhauer, A.
2003-04-01
We analysed a 336 year coral oxygen isotope record off southwest Madagascar in the Mozambique Channel. Based on temporal variability of skeletal oxygen isotopes annual mean sea surface temperatures are reconstructed for the period from 1659 to 1995. Sr/Ca ratios were measured for selected windows with monthly resolution (1973 to 1995, 1863 to 1910, 1784 to 1809, 1688 to 1710) to validate the SST reconstructions derived from oxygen isotopes. The coral proxy data were validated against gridded SST data sets. The coral oxygen isotope record is coherent with Kaplan-SST and GISST2.3b on an interdecadal frequency of 17 years, which is the most prominent frequency band observed in this region. The Sr/Ca-SST agree well with SST observations in the validation period (1863 to 1910), whereas the d18O derived SST show largest discrepencies during this time interval. By taking into account the SST values derived from coral Sr/Ca, we were able to reconstruct d18O seawater variability. This indicates that d18O seawater variations contributed significantly to interannual and interdecadal variations in coral d18O. We propose that the local surface-ocean evaporation-precipitation balance and remote forcing by ENSO via South Equatorial Current and/or Indonesian throughflow variability may contribute to observed d18O variability. Our results indicate that coral d18O may be used to reconstruct temporal variations in the fresh water balance within the Indian Ocean on interannual to interdecadal time scales.
NASA Technical Reports Server (NTRS)
Kitzis, S. N.; Kitzis, J. L.
1979-01-01
The accuracy of the SEASAT-A SMMR antenna pattern correction (APC) algorithm was assessed. Interim APC brightness temperature measurements for the SMMR 6.6 GHz channels are compared with surface truth derived sea surface temperatures. Plots and associated statistics are presented for SEASAT-A SMMR data acquired for the Gulf of Alaska experiment. The cross-track gradients observed in the 6.6 GHz brightness temperature data are discussed.
NASA Astrophysics Data System (ADS)
Rezvanbehbahani, S.; Csatho, B. M.; Comiso, J. C.; Babonis, G. S.
2011-12-01
Advanced Very-High Resolution Radiometer (AVHRR) images have been exhaustively used to measure surface temperature time series of the Greenland Ice sheet. The purpose of this study is to assess the accuracy of monthly average ice sheet surface temperatures, derived from thermal infrared AVHRR satellite imagery on a 6.25 km grid. In-situ temperature data sets are from the Greenland Collection Network (GC-Net). GC-Net stations comprise sensors monitoring air temperature at 1 and 2 meter above the snow surface, gathered at every 60 seconds and monthly averaged to match the AVHRR temporal resolution. Our preliminary results confirm the good agreement between satellite and in-situ temperature measurements reported by previous studies. However, some large discrepancies still exist. While AVHRR provides ice surface temperature, in-situ stations measure air temperatures at different elevations above the snow surface. Since most in-situ data on ice sheets are collected by Automatic Weather Station (AWS) instruments, it is important to characterize the difference between surface and air temperatures. Therefore, we compared and analyzed average monthly AVHRR ice surface temperatures using data collected in 2002. Differences between these temperatures correlate with in-situ temperatures and GC-Net station elevations, with increasing differences at lower elevations and higher temperatures. The Summit Station (3199 m above sea level) and the Swiss Camp (1176 m above sea level) results were compared as high altitude and low altitude stations for 2002, respectively. Our results show that AVHRR derived temperatures were 0.5°K warmer than AWS temperature at the Summit Station, while this difference was 2.8°K in the opposite direction for the Swiss Camp with surface temperatures being lower than air temperatures. The positive bias of 0.5°K at the high altitude Summit Station (surface warmer than air) is within the retrieval error of AVHRR temperatures and might be in part due to atmospheric inversion. The large negative bias of 2.8°K at the low altitude Swiss Camp (surface colder than the air) could be caused by a combination of different factors including local effects such as more windy circumstances above the snow surface and biases introduced by the cloud-masking applied on the AVHRR images. Usually only satellite images acquired in clear-sky conditions are used for deriving monthly AVHRR average temperatures. Since cloud-free days are usually warmer, satellite derived temperatures tend to underestimate the real average temperatures, especially regions with frequent cloud cover, such as Swiss Camp. Therefore, cautions must be exercised while using ice surface temperatures derived from satellite imagery for glaciological applications. Eliminating the cloudy day's' temperature from the in-situ data prior to the comparison with AVHRR derived temperatures will provide a better assessment of AVHRR surface temperature measurement accuracy.
Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Wakeham, S. G.; Hayes, J. M.
1994-01-01
Carbon isotopic compositions were determined for individual hydrocarbons in water column and sediment samples from the Cariaco Trench and Black Sea. In order to identify hydrocarbons derived from phytoplankton, the isotopic compositions expected for biomass of autotrophic organisms living in surface waters of both localities were calculated based on the concentrations of CO2(aq) and the isotopic compositions of dissolved inorganic carbon. These calculated values are compared to measured delta values for particulate organic carbon and for individual hydrocarbon compounds. Specifically, we find that lycopane is probably derived from phytoplankton and that diploptene is derived from the lipids of chemoautotrophs living above the oxic/anoxic boundary. Three acyclic isoprenoids that have been considered markers for methanogens, pentamethyleicosane and two hydrogenated squalenes, have different delta values and apparently do not derive from a common source. Based on the concentration profiles and isotopic compositions, the C31 and C33 n-alkanes and n-alkenes have a similar source, and both may have a planktonic origin. If so, previously assigned terrestrial origins of organic matter in some Black Sea sediments may be erroneous.
Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan
NASA Astrophysics Data System (ADS)
Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen
2017-10-01
Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.
NASA Technical Reports Server (NTRS)
Vasilkov, Alexander; Krotkov, Nickolay; Herman, Jay; McClain, Charles; Arrigo, Kevin; Robinson, Wayne
1999-01-01
The global stratospheric ozone-layer depletion results In an increase in biologically harmful ultraviolet (UV) radiation reaching the surface and penetrating to ecologically significant depths in natural waters. Such an increase can be estimated on a global scale by combining satellite estimates of UV irradiance at the ocean surface from the Total Ozone Mapping Spectrometer (TOMS) satellite instrument with the SeaWIFS satellite ocean-color measurements in the visible spectral region. In this paper we propose a model of seawater optical properties in the UV spectral region based on the Case I water model in the visible range. The inputs to the model are standard monthly SeaWiFS products: chlorophyll concentration and the diffuse attenuation coefficient at 490nm. Penetration of solar UV radiation to different depths in open ocean waters is calculated using the RT (radiative transfer) quasi-single scattering approximation (QSSA). The accuracy of the QSSA approximation in the water is tested using more accurate codes. The sensitivity study of the underwater UV irradiance to atmospheric and oceanic optical properties have shown that the main environmental parameters controlling the absolute levels of the UVB (280-320nm) and DNA-weighted irradiance underwater are: solar-zenith angle, cloud transmittance, water optical properties, and total ozone. Weekly maps of underwater UV irradiance and DNA-weighted exposure are calculated using monthly-mean SeaWiFS chlorophyll and diffuse attenuation coefficient products, daily SeaWiFS cloud fraction data, and the TOMS-derived surface UV irradiance daily maps. The final products include global maps of weekly-average UVB irradiance and DNA-weighted daily exposures at 3m and 10m, and depths where the UVB irradiance and DNA-weighted dose rate at local noon are equal to 10% of their surface values.
NASA Astrophysics Data System (ADS)
Brando, V. E.; Braga, F.; Zaggia, L.; Carniel, S.
2016-02-01
Sea surface temperature (SST) and turbidity (T) derived from Landsat-8 (L8) imagery were used to characterize river plumes in the Northern Adriatic Sea (NAS). Sea surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes interaction with the receiving waters and among them. In this study we used L8 OLI and TIRS imagery of 19 November 2014 capturing a significant freshwater inflow into the NAS for mapping both T and SST at 30 meters resolution. Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters. Overall, there was a good agreement of the SSS, T, and SST fields at the mesoscale delineation of the major river plumes. Landsat-8 30m resolution enabled the identification of smaller plume structures and the description at small scale and sub-mesoscale of the plume dynamical regions for all plume structures, as well as their interactions in the NAS. Although this study presents data captured with a sensor having a revisiting time of 16 days, we expect that with the recent launch of ESA's Sentinel 2A and the forthcoming launch of Sentinel 2B the temporal resolution will increase reaching almost the 1-3 days revisit time normally associated with Ocean Colour Radiometry (OCR). Combined with their radiometric resolution similar to OCR missions, these developments will thus offer an opportunity to also describe the temporal evolution of plume structures at the sub-mesoscale.
The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Wang, Yan Ming; Pavlis, Nikolaos K.
1991-01-01
The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort.
NASA Astrophysics Data System (ADS)
de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S. M.; Melling, H.; McLaughlin, F. A.; Kwok, R.; Smethie, W. M.; Schlosser, P.
2013-09-01
Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008-2010, the freshest surface waters in the western Lincoln Sea show water mass properties similar to fresh Canada Basin waters north of the Canadian Arctic Archipelago. In the northeastern Lincoln Sea fresh surface waters showed a strong link with those observed in the Makarov Basin near the North Pole. The freshening in the Lincoln Sea was associated with a return of a subsurface Pacific Water temperature signal although this was not as strong as observed in the early 1990s. Comparison of repeat stations from the 2000s with the data from the 1990s at 65°W showed an increase of the Atlantic temperature maximum which was associated with the arrival of warmer Atlantic water from the Eurasian Basin. Satellite-derived dynamic ocean topography of winter 2009 showed a ridge extending parallel to the Canadian Archipelago shelf as far as the Lincoln Sea, causing a strong flow toward Nares Strait and likely Fram Strait. The total volume of anomalous freshwater observed in the Lincoln Sea and exported by 2011 was close to 1100±250km3, approximately 13% of the total estimated FW increase in the Arctic in 2008.
NASA Astrophysics Data System (ADS)
Isoguchi, O.; Matsui, K.; Kamachi, M.; Usui, N.; Miyazawa, Y.; Ishikawa, Y.; Hirose, N.
2017-12-01
Several operational ocean assimilation models are currently available for the Northwestern Pacific and surrounding marginal seas. One of the main targets is predicting the Kuroshio/Kuroshio Extension, which have an impact not only on social activities, such as fishery and ship routing, but also on local weather. There is a demand to assess their quality comprehensively and make the best out the available products. In the present study, several ocean data assimilation products and their multi-ensemble product were assessed by comparing with satellite-derived sea surface temperature (SST), sea surface height (SSH), and in-situ hydrographic sections. The Kuroshio axes were also computed from the surface currents of these products and were compared with the Kuroshio Axis data produced analyzing satellite-SST, SSH, and in-situ observations by Marine Information Research Center (MIRC). The multi-model ensemble products generally showed the best accuracy in terms of the comparisons with the satellite-derived SST and SSH. On the other hand, the ensemble products didn't result in the best one in the comparison with the hydrographic sections. It is thus suggested that the multi-model ensemble works efficiently for the horizontally 2D parameters for which each assimilation product tends to have random errors while it does not work well for the vertical 2D comparisons for which it tends to have bias errors with respect to in-situ data. In the assessment with the Kuroshio Axis Data, some products showed more energetic behavior than the Kuroshio Axis data, resulting in the large path errors which are defined as a ratio between an area surrounded by the reference and model-derived ones and a path length. It is however not determined which are real, because in-situ observations are still lacking to resolve energetic Kuroshio behavior even though the Kuroshio is one of the strongest current.
Towards a study of synoptic-scale variability of the California current system
NASA Technical Reports Server (NTRS)
1985-01-01
A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.
Barreira, S.; Compagnucci, R.
2007-01-01
Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.
A Decade of High-Resolution Arctic Sea Ice Measurements from Airborne Altimetry
NASA Astrophysics Data System (ADS)
Duncan, K.; Farrell, S. L.; Connor, L. N.; Jackson, C.; Richter-Menge, J.
2017-12-01
Satellite altimeters carried on board ERS-1,-2, EnviSat, ICESat, CryoSat-2, AltiKa and Sentinel-3 have transformed our ability to map the thickness and volume of the polar sea ice cover, on seasonal and decadal time-scales. The era of polar satellite altimetry has coincided with a rapid decline of the Arctic ice cover, which has thinned, and transitioned from a predominantly multi-year to first-year ice cover. In conjunction with basin-scale satellite altimeter observations, airborne surveys of the Arctic Ocean at the end of winter are now routine. These surveys have been targeted to monitor regions of rapid change, and are designed to obtain the full snow and ice thickness distribution, across a range of ice types. Sensors routinely deployed as part of NASA's Operation IceBridge (OIB) campaigns include the Airborne Topographic Mapper (ATM) laser altimeter, the frequency-modulated continuous-wave snow radar, and the Digital Mapping System (DMS). Airborne measurements yield high-resolution data products and thus present a unique opportunity to assess the quality and characteristics of the satellite observations. We present a suite of sea ice data products that describe the snow depth and thickness of the Arctic ice cover during the last decade. Fields were derived from OIB measurements collected between 2009-2017, and from reprocessed data collected during ad-hoc sea ice campaigns prior to OIB. Our bespoke algorithms are designed to accommodate the heterogeneous sea ice surface topography, that varies at short spatial scales. We assess regional and inter-annual variability in the sea ice thickness distribution. Results are compared to satellite-derived ice thickness fields to highlight the sensitivities of satellite footprints to the tails of the thickness distribution. We also show changes in the dynamic forcing shaping the ice pack over the last eight years through an analysis of pressure-ridge sail-height distributions and surface roughness conditions. Variability is linked to the geographic location and extent of multi-year sea ice. Finally, we describe accessing our high-resolution data products at the NOAA Laboratory for Satellite Altimetry.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
Observations of the marine environment from spaceborne side-looking real aperture radars
NASA Technical Reports Server (NTRS)
Kalmykov, A. I.; Velichko, S. A.; Tsymbal, V. N.; Kuleshov, Yu. A.; Weinman, J. A.; Jurkevich, I.
1993-01-01
Real aperture, side looking X-band radars have been operated from the Soviet Cosmos-1500, -1602, -1766 and Ocean satellites since 1984. Wind velocities were inferred from sea surface radar scattering for speeds ranging from approximately 2 m/s to those of hurricane proportions. The wind speeds were within 10-20 percent of the measured in situ values, and the direction of the wind velocity agreed with in situ direction measurements within 20-50 deg. Various atmospheric mesoscale eddies and tropical cyclones were thus located, and their strengths were inferred from sea surface reflectivity measurements. Rain cells were observed over both land and sea with these spaceborne radars. Algorithms to retrieve rainfall rates from spaceborne radar measurements were also developed. Spaceborne radars have been used to monitor various marine hazards. For example, information derived from those radars was used to plan rescue operations of distressed ships trapped in sea ice. Icebergs have also been monitored, and oil spills were mapped. Tsunamis produced by underwater earthquakes were also observed from space by the radars on the Cosmos 1500 series of satellites. The Cosmos-1500 satellite series have provided all weather radar imagery of the earths surface to a user community in real time by means of a 137.4 MHz Automatic Picture Transmission channel. This feature enabled the radar information to be used in direct support of Soviet polar maritime activities.
Behavioral responses of Atlantic cod to sea temperature changes.
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-05-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.
Behavioral responses of Atlantic cod to sea temperature changes
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-01-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species. PMID:26045957
NASA Astrophysics Data System (ADS)
Henderiks, J.; Bollmann, J.
In Holocene deep-sea sediments, the relative abundance of different morphotypes within the coccolithophore genus Gephyrocapsa is closely correlated with sea sur- face temperature (Bollmann, 1997). Based on this relationship, a regional temperature transfer function was established using a set of 35 Holocene sediments from the NE Atlantic, covering a temperature range from 14C to 24C. Using this approach, ab- solute annual mean sea surface temperatures for a given location can be calculated from the relative abundance of two Gephyrocapsa morphotypes, Gephyrocapsa Cold and Gephyrocapsa Equatorial, with a standard deviation of +/-1.06C. A global regres- sion model (N=110) was applied as well, which calculates absolute mean sea surface temperatures from the relative abundance of three Gephyrocapsa morphotypes, with a standard deviation of +/-1.78C. Using both calibration models, we have estimated sea surface temperatures during the Last Glacial Maximum in a dispersed set of eigh- teen well-dated gravity cores off NW Africa (16-35N; 20-8W). The regional model revealed that annual mean temperatures during the LGM were 4 to 6C colder than today in the Canary Islands region, with lowest temperatures (14-15.5C) off-shore Morocco and south of the volcanic islands, likely due to intensified upwelling related to stronger trade winds. These values are consistent with estimates from the CLIMAP Project (1981) and other paleotemperature reconstructions for the same region. In con- trast, offshore Cape Blanc, our temperature estimates for the LGM are significantly warmer (Ttoday -LGM <4C) than proposed by CLIMAP (Ttoday -LGM 6-10C). Nevertheless, our results support temperature reconstructions based on alkenones that also indicate rather small temperature changes (Ttoday -LGM <3C) in this area (e.g. Zhao et al., 2000). Glacial sea surface temperature estimates derived from the global calibration are on average 1C warmer than those derived from the regional model. However, the overall geographic patterns and temperature gradients for both reconstructions are very similar. To compare our Gephyrocapsa proxy with other pa- leotemperature proxies, we investigated a down-core record off Cape Blanc (GeoB 1048; 2055 N, 1943 W) in the vicinity of BOFS core 31K (1900 N, 2010 W). For the latter core, a detailed multiproxy paleotemperature record already exists based on alkenones, Mg/Ca ratios in foraminiferal calcite and planktic foraminifera assem- 1 blages (Chapman et al., 1996; Elderfield Ganssen, 2000). Here, we show an especially good and consistent correspondence between our new proxy and alkenones, reflecting the fact that both proxies originated from the phytoplankton community. References Bollmann, Marine Micropaleontology 29 (3/4), 319-350 (1997). Chapman et al. Paleoceanography 11, 343-357 (1996). Elderfield Ganssen. Nature 405, 442-445 (2000). Zhao et al. Organic Geochemistry 31, 919-930 (2000). 2
NASA Astrophysics Data System (ADS)
Divine, D. V.; Granskog, M. A.; Hudson, S. R.; Pedersen, C. A.; Karlsen, T. I.; Divina, S. A.; Gerland, S.
2014-07-01
The paper presents a case study of the regional (≈ 150 km) broadband albedo of first year Arctic sea ice in advanced stages of melt, estimated from a combination of in situ albedo measurements and aerial imagery. The data were collected during the eight day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic north of Svalbard at 82.3° N from 26 July to 3 August 2012. The study uses in situ albedo measurements representative of the four main surface types: bare ice, dark melt ponds, bright melt ponds and open water. Images acquired by a helicopter borne camera system during ice survey flights covered about 28 km2. A subset of > 8000 images from the area of homogeneous melt with open water fraction of ≈ 0.11 and melt pond coverage of ≈ 0.25 used in the upscaling yielded a regional albedo estimate of 0.40 (0.38; 0.42). The 95% confidence interval on the estimate was derived using the moving block bootstrap approach applied to sequences of classified sea ice images and albedo of the four surface types treated as random variables. Uncertainty in the mean estimates of surface type albedo from in situ measurements contributed some 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea ice cover. The results of the study are of relevance for the modeling of sea ice processes in climate simulations. It particularly concerns the period of summer melt, when the optical properties of sea ice undergo substantial changes, which existing sea ice models have significant diffuculty accurately reproducing.
Impact Studies of a 2 C Global Warming on the Arctic Sea Ice Cover
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.
2004-01-01
The possible impact of an increase in global temperatures of about 2 C, as may be caused by a doubling of atmospheric CO2, is studied using historical satellite records of surface temperatures and sea ice from late 1970s to 2003. Updated satellite data indicate that the perennial ice continued to decline at an even faster rate of 9.2 % per decade than previously reported while concurrently, the surface temperatures have steadily been going up in most places except for some parts of northern Russia. Surface temperature is shown to be highly correlated with sea ice concentration in the seasonal sea ice regions. Results of regression analysis indicates that for every 1 C increase in temperature, the perennial ice area decreases by about 1.48 x 10(exp 6) square kilometers with the correlation coefficient being significant but only -0.57. Arctic warming is estimated to be about 0.46 C per decade on average in the Arctic but is shown to be off center with respect to the North Pole, and is prominent mainly in the Western Arctic and North America. The length of melt has been increasing by 13 days per decade over sea ice covered areas suggesting a thinning in the ice cover. The length of melt also increased by 5 days per decade over Greenland, 7 days per decade over the permafrost areas of North America but practically no change in Eurasia. Statistically derived projections indicate that the perennial sea ice cover would decline considerably in 2025, 2035, and 2060 when temperatures are predicted by models to reach the 2 C global increase.
The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing
NASA Astrophysics Data System (ADS)
Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît
2017-02-01
The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.
NASA Astrophysics Data System (ADS)
Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier
2017-06-01
In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing < 20- 40% interstitial melt develops over a ∼105-yr timescale for basalt fluxes of 0.008 to 0.010 m3 /m2 /yr (∼0.0008 to ∼0.001 km3/yr injection rate) given extension rates at or below the current value of ∼0.01 m/yr (Brothers et al., 2009). These regions of partial melt are a natural consequence of a thermal regime that scales with average surface heat flow in the Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.
Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts
Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.
2015-01-07
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
Applications of AVHRR-Derived Ice Motions for the Arctic and Antarctic
NASA Technical Reports Server (NTRS)
Maslanik, James; Emery, William
1998-01-01
Characterization and diagnosis of sea ice/atmosphere/ocean interactions require a synthesis of observations and modeling to identify the key mechanisms controlling the ice/climate system. In this project, we combined product generation, observational analyses, and modeling to define and interpret variability in ice motion in conjunction with thermodynamic factors such as surface temperature and albedo. The goals of this work were twofold: (1) to develop and test procedures to produce an integrated set of polar products from remotely-sensed and supporting data; and (2) to apply these data to understand processes at work in controlling sea ice distribution.
Boundary layers at a dynamic interface: Air-sea exchange of heat and mass
NASA Astrophysics Data System (ADS)
Szeri, Andrew J.
2017-04-01
Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Satellite Sensed Skin Sea Surface Temperature
NASA Technical Reports Server (NTRS)
Donlon, Craig
1997-01-01
Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to be confidently detected. Some of these activities are focussed to develop and deploy instrumentation suitable for the collection of precise in situ measurements of the SSST which can be used to improve the accuracy of satellite measurements, while others develop techniques to generate improved global analyses of sea surface temperature using historical data.
Analysis of Ultra High Resolution Sea Surface Temperature Level 4 Datasets
NASA Technical Reports Server (NTRS)
Wagner, Grant
2011-01-01
Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.
Stochastic control of inertial sea wave energy converter.
Raffero, Mattia; Martini, Michele; Passione, Biagio; Mattiazzo, Giuliana; Giorcelli, Ermanno; Bracco, Giovanni
2015-01-01
The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks.
Stochastic Control of Inertial Sea Wave Energy Converter
Mattiazzo, Giuliana; Giorcelli, Ermanno
2015-01-01
The ISWEC (inertial sea wave energy converter) is presented, its control problems are stated, and an optimal control strategy is introduced. As the aim of the device is energy conversion, the mean absorbed power by ISWEC is calculated for a plane 2D irregular sea state. The response of the WEC (wave energy converter) is driven by the sea-surface elevation, which is modeled by a stationary and homogeneous zero mean Gaussian stochastic process. System equations are linearized thus simplifying the numerical model of the device. The resulting response is obtained as the output of the coupled mechanic-hydrodynamic model of the device. A stochastic suboptimal controller, derived from optimal control theory, is defined and applied to ISWEC. Results of this approach have been compared with the ones obtained with a linear spring-damper controller, highlighting the capability to obtain a higher value of mean extracted power despite higher power peaks. PMID:25874267
Cloud and surface textural features in polar regions
NASA Technical Reports Server (NTRS)
Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.
1990-01-01
The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.
NASA Astrophysics Data System (ADS)
Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.
2011-07-01
Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.
Analysis of the surface heat balance over the world ocean
NASA Technical Reports Server (NTRS)
Esbenson, S. K.
1981-01-01
The net surface heat fluxes over the global ocean for all calendar months were evaluated. To obtain a formula in the form Qs = Q2(T*A - Ts), where Qs is the net surface heat flux, Ts is the sea surface temperature, T*A is the apparent atmospheric equilibrium temperature, and Q2 is the proportionality constant. Here T*A and Q2, derived from the original heat flux formulas, are functions of the surface meteorological parameters (e.g., surface wind speed, air temperature, dew point, etc.) and the surface radiation parameters. This formulation of the net surface heat flux together with climatological atmospheric parameters provides a realistic and computationally efficient upper boundary condition for oceanic climate modeling.
Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey
2014-05-01
1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.
NASA Astrophysics Data System (ADS)
Kim, K.; Roh, J.
2009-12-01
The first three principal modes of wintertime surface temperature variability in Seoul, Korea (126.59°E, 37.33°N) are extracted from the 1979-2008 observed records via cyclostationary EOF (CSEOF) analysis. Then, physically consistent patterns of several key physical variables over East Asia (97.5°-152.5°E×22.5°-72.5°N) are derived from the NCEP/NCAR reanalysis data in order to understand the physical and dynamical mechanisms of the derived CSEOF modes. The first mode represents the seasonal cycle, the principle physical mechanism of which is associated with the continent/ocean sea level pressure contrast. The second mode mainly describes overall wintertime warming or cooling. The third mode depicts subseasonal fluctuations of surface temperature. Sea level pressure anomalies to the west of Korea (eastern China) and those with an opposite sign to the east of Korea (Japan) are a major physical mechanism both for the second mode and the third mode. These sea level pressure anomalies with opposite signs alter the amount of warm air to the south of Korea, which, in turn, varies the surface temperature in Korea. The PC time series of the seasonal cycle is significantly correlated with the East Asian winter monsoon index and exhibits a conspicuous downward trend. The PC time series of the second mode exhibits a positive trend. These trends imply that the wintertime surface temperature in Korea has increased and the seasonal cycle has weakened gradually in the past 30 years; the sign of greenhouse warming is clear in both PC time series. The seasonal cycle has decreased since the impact of warming as reflected in the sea level pressure change is much stronger over the continent than over the ocean; greater sea level pressure decrease over the continent than over the ocean reduces the wintertime sea level pressure contrast between the continent and the ocean thereby weakening the seasonal cycle. The ~7-day oscillations, also called the three-cold-day/four-warm-day events, are clearly seen in the second and the third CSEOF modes. The ~7-day oscillations are a major component of high-frequency variability in much of the analysis domain and are a manifestation of Rossby waves. Rossby waves aloft result in the concerted variation of physical variables in the atmospheric column; the nature of this response is of nearly barotropic and is clearly felt at the surface. Due to the stronger mean zonal wind, the disturbances by Rossby waves propagate eastward at ~8-12 m/sec; the passing of Rossby waves with alternating signs produces the ~7-day temperature oscillations in Korea. Thus, it is the speed of eastward propagation of Rossby waves not the phase speed of Rossby waves that determines the period of oscillations.
A Combined EOF/Variational Approach for Mapping Radar-Derived Sea Surface Currents
2011-01-01
Section 4 describes the results of experiments with the real observations off the Opal Coast of the Eastern English Channel. It is shown that the...To assess the method’s performance, we conducted twin-data experiments with simulated HFR data (Section 3) and real observations off the Opal Coast...the Opal coast of the Pas de Calais in northern France. 4.1. The data In May-June 2003. two HF radars were deployed to monitor surface currents
Ocean gravity and geoid determination
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Siry, J. W.; Brown, R. D.; Wells, W. T.
1977-01-01
Gravity anomalies have been recovered in the North Atlantic and the Indian Ocean regions. Comparisons of 63 2 deg x 2 deg mean free air gravity anomalies recovered in the North Atlantic area and 24 5 deg x 5 deg mean free air gravity anomalies in the Indian Ocean area with surface gravimetric measurements have shown agreement to + or - 8 mgals for both solutions. Geoids derived from the altimeter solutions are consistent with altimetric sea surface height data to within the precision of the data, about + or - 2 meters.
Comparison Between Sea Surface Wind Speed Estimates From Reflected GPS Signals and Buoy Measurements
NASA Technical Reports Server (NTRS)
Garrison, James L.; Katzberg, Steven J.; Zavorotny, Valery U.
2000-01-01
Reflected signals from the Global Positioning System (GPS) have been collected from an aircraft at approximately 3.7 km altitude on 5 different days. Estimation of surface wind speed by matching the shape of the reflected signal correlation function against analytical models was demonstrated. Wind speed obtained from this method agreed with that recorded from buoys to with a bias of less than 0.1 m/s, and with a standard derivation of 1.3 meters per second.
Improving Hurricane Heat Content Estimates From Satellite Altimeter Data
NASA Astrophysics Data System (ADS)
de Matthaeis, P.; Jacob, S.; Roubert, L. M.; Shay, N.; Black, P.
2007-12-01
Hurricanes are amongst the most destructive natural disasters known to mankind. The primary energy source driving these storms is the latent heat release due to the condensation of water vapor, which ultimately comes from the ocean. While the Sea Surface Temperature (SST) has a direct correlation with wind speeds, the oceanic heat content is dependent on the upper ocean vertical structure. Understanding the impact of these factors in the mutual interaction of hurricane-ocean is critical to more accurately forecasting intensity change in land-falling hurricanes. Use of hurricane heat content derived from the satellite radar altimeter measurements of sea surface height has been shown to improve intensity prediction. The general approach of estimating ocean heat content uses a two-layer model representing the ocean with its anomalies derived from altimeter data. Although these estimates compare reasonably well with in-situ measurements, they are generally about 10% under-biased. Additionally, recent studies show that the comparisons are less than satisfactory in the Western North Pacific. Therefore, our objective is to develop a methodology to more accurately represent the upper ocean structure using in-situ data. As part of a NOAA/ USWRP sponsored research, upper ocean observations were acquired in the Gulf of Mexico during the summers of 1999 and 2000. Overall, 260 expendable profilers (XCTD, XBT and XCP) acquired vertical temperature structure in the high heat content regions corresponding to the Loop Current and Warm Core Eddies. Using the temperature and salinity data from the XCTDs, first the Temperature-Salinity relationships in the Loop Current Water and Gulf Common water are derived based on the depth of the 26° C isotherm. These derived T-S relationships compare well with those inferred from climatology. By means of these relationships, estimated salinity values corresponding to the XBT and XCP temperature measurements are calculated, and used to derive continuous profiles of density. Ocean heat content is then estimated from these profiles, and compared to that derived from altimeter data, showing - as mentioned earlier - a consistent bias. Using a procedure that conserves density in the vertical, these density profiles are discretized into five isopycnic layers representative of the upper ocean in the Gulf of Mexico. Statistical correlations are then derived between the altimetric sea surface height anomalies and the thickness of these layers in the region. Using these correlations, a higher resolution upper ocean structure is derived from the altimeter data. Withholding observations from one snapshot of data in the correlations, and comparing the estimated ocean heat content with in-situ values, will allow us to quantify errors in this approach. This methodology will then be extended to the Western Pacific using Argo data, and results will be presented.
Interannual coherent variability of SSTA and SSHA in the Tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Feng, J. Q.
2012-01-01
Sea surface height derived from the multiple ocean satellite altimeter missions (TOPEX/Poseidon, Jason-1, ERS, Envisat et al.) and sea surface temperature from National Centers for Environmental Prediction (NCEP) over 1993-2008 are analyzed to investigate the coherent patterns between the interannual variability of the sea surface and subsurface in the Tropical Indian Ocean, by jointly adopting Singular Value Decomposition (SVD) and Extended Associate Pattern Analysis (EAPA) methods. Results show that there are two dominant coherent modes with the nearly same main period of about 3-5 yr, accounting for 86 % of the total covariance in all, but 90° phase difference between them. The primary pattern is characterized by a east-west dipole mode associated with the mature phase of ENSO, and the second presents a sandwich mode having one sign anomalies along Sumatra-Java coast and northeast of Madagascar, whilst an opposite sign between the two regions. The robust correlations of the sea surface height anomaly (SSHA) with sea surface temperature anomaly (SSTA) in the leading modes indicate a strong interaction between them, though the highest correlation coefficient appears with a time lag. And there may be some physical significance with respect to ocean dynamics implied in SSHA variability. Analyzing results show that the features of oceanic waves with basin scale, of which the Rossby wave is prominent, are apparent in the dominant modes. It is further demonstrated from the EAPA that the equatorial eastward Kelvin wave and off-equatorial westward Rossby wave as well as their reflection in the east and west boundary, respectively, are important dynamic mechanisms in the evolution of the two leading coherent patterns. Results of the present study suggest that the upper ocean thermal variations on the timescale of interannual coherent with the ocean dynamics in spatial structure and temporal evolution are mainly attributed to the ocean waves.
NASA Astrophysics Data System (ADS)
Garraffo, Z. D.; Nadiga, S.; Krasnopolsky, V.; Mehra, A.; Bayler, E. J.; Kim, H. C.; Behringer, D.
2016-02-01
A Neural Network (NN) technique is used to produce consistent global ocean color estimates, bridging multiple satellite ocean color missions by linking ocean color variability - primarily driven by biological processes - with the physical processes of the upper ocean. Satellite-derived surface variables - sea-surface temperature (SST) and sea-surface height (SSH) fields - are used as signatures of upper-ocean dynamics. The NN technique employs adaptive weights that are tuned by applying statistical learning (training) algorithms to past data sets, providing robustness with respect to random noise, accuracy, fast emulations, and fault-tolerance. This study employs Sea-viewing Wide Field-of-View Sensor (SeaWiFS) chlorophyll-a data for 1998-2010 in conjunction with satellite SSH and SST fields. After interpolating all data sets to the same two-degree latitude-longitude grid, the annual mean was removed and monthly anomalies extracted . The NN technique wass trained for even years of that period and tested for errors and bias for the odd years. The NN output are assessed for: (i) bias, (ii) variability, (iii) root-mean-square error (RMSE), and (iv) cross-correlation. A Jacobian is evaluated to estimate the impact of each input (SSH, SST) on the NN chlorophyll-a estimates. The differences between an ensemble of NNs vs a single NN are examined. After the NN is trained for the SeaWiFS period, the NN is then applied and validated for 2005-2015, a period covered by other satellite missions — the Moderate Resolution Imaging Spectroradiometer (MODIS AQUA) and the Visible Imaging Infrared Radiometer Suite (VIIRS).
Sea Surface Scanner: An advanced catamaran to study the sea surface
NASA Astrophysics Data System (ADS)
Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.
2016-02-01
The Sea Surface Scanner is a remote-controlled catamaran with the capability to sample the sea-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the sea surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the sea surface microlayer. We discuss the variability of biochemical properties of the sea surface and its implication on air-sea interaction.
Integrating space geodesy and coastal sea level observations
NASA Astrophysics Data System (ADS)
Löfgren, J. S.; Haas, R.; Larson, K.; Scherneck, H.-G.
2012-04-01
The goal of the Global Geodetic Observing System (GGOS) is to monitor the Earth system, in particular with observations of the three fundamental geodetic observables: the Earth's shape, the Earth's gravity field and the Earth's rotational motion. A central part of GGOS is the network of globally distributed fundamental geodetic stations that allow the combination and integration of the different space geodetic techniques. One of these stations is the Onsala Space Observatory (OSO), on the west coast of Sweden, which operates equipment for geodetic Very Long Baseline Interferometry, Global Navigation Satellite System (GNSS), and superconducting gravimetry measurements, and additionally water vapour radiometers. The newest addition to the OSO fundamental geodetic station is a GNSS-based tide gauge (GNSS-TG). This installation integrates space geodesy with remote sensing of the local sea level. The GNSS-TG uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. This is done using a zenith-looking Right Hand Circular Polarized (RHCP) and a nadir-looking Left Hand Circular Polarized (LHCP) antenna, respectively. Each of the two antennas is connected to a standard geodetic-type GNSS-receiver. The analysis of the data received with the RHCP-antenna allows one to determine land motion, while the analysis of the data received with the LHCP-antenna allows one to determine the sea surface height. Analysing both data sets together results in local sea level that is automatically corrected for land motion, meaning that the GNSS-TG can provide reliable sea-level estimates even in tectonically active regions. Previous results from the GNSS-TG, using carrier phase data, show a Root-Mean-Square (RMS) agreement of less than 5.9 cm with stilling well gauges located 18 km and 33 km away from OSO (Löfgren et al., 2011). This is lower than the RMS agreement between the two stilling well gauges (6.1 cm). Furthermore, significant ocean tidal signals have been derived from a several months long time series. Additionally, preliminary results from analysis of the Signal-to-Noise Ratio (SNR) from the RHCP antenna show an RMS agreement of 4.5 cm with a linear combination of the previously mentioned stilling well gauges (Larson et al., 2011). We present new sea level results from the GNSS-TG data set, assessing several different analysis strategies. For example, we investigate optimal ways to analyse the carrier phase data (using observations from both antennas) and compare the results to those derived from the SNR analysis (using observations from the RHCP antenna only). Furthermore, the processing results are compared to independently derived sea level observations from co-located pressure sensor gauges.
Assimilating Satellite SST Observations into a Diurnal Cycle Model
NASA Astrophysics Data System (ADS)
Pimentel, S.; Haines, K.; Nichols, N. K.
2006-12-01
The wealth of satellite sea surface temperature (SST) data now available opens the possibility of large improvements in SST estimation. However the use of such data is not straight forward; a major difficulty in assimilating satellite observations is that they represent a near surface temperature, whereas in ocean models the top level represents the temperature at a greater depth. During the day, under favourable conditions of clear skies and calm winds, the near surface temperature is often seen to have a diurnal cycle that is picked up in satellite observations. Current ocean models do not have the vertical or temporal resolution to adequately represent this daytime warming. The usual approach is to discard daytime observations as they are considered diurnally `corrupted'. A new assimilation technique is developed here that assimilates observations into a diurnal cycle model. The diurnal cycle of SSTs are modelled using a 1-D mixed layer model with fine near surface resolution and 6 hourly forcing from NWP analyses. The accuracy of the SST estimates are hampered by uncertainties in the forcing data. The extent of diurnal SST warming at a particular location and time is predominately governed by a non-linear response to cloud cover and sea surface wind speeds which greatly affect the air-sea fluxes. The method proposed here combines infrared and microwave SST satellite observations in order to derive corrections to the cloud cover and wind speed values over the day. By adjusting the forcing, SST estimation and air-sea fluxes should be improved and are at least more consistent with each other. This new technique for assimilating SST data can be considered a tool for producing more accurate diurnal warming estimates.
Simulation of an oil film at the sea surface and its radiometric properties in the SWIR
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Van Eijk, Alexander M. J.
2017-10-01
The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.
Simulating Dust Regional Impact on the Middle East Climate and the Red Sea
NASA Astrophysics Data System (ADS)
Osipov, Sergey; Stenchikov, Georgiy
2017-04-01
Dust is one of the most abundant aerosols, however, currently only a few regional climate downscalings account for dust. This study focuses on the Middle East and the Red Sea regional climate response to the dust aerosol radiative forcing. The Red Sea is located between North Africa and Arabian Peninsula, which are first and third largest source regions of dust, respectively. MODIS and SEVIRI satellite observations show extremely high dust optical depths in the region, especially over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. Modeled atmospheric radiative forcing at the surface, top of the atmosphere and absorption in the atmospheric column indicate that dust significantly perturbs radiative balance. Top of the atmosphere modeled forcing is validated against independently derived GERB satellite product. Due to strong radiative forcing at the sea surface (daily mean forcing during summer reaches -32 Wm-2 and 10 Wm-2 in SW and LW, respectively), using uncoupled ocean model with prescribed atmospheric boundary conditions would result in an unrealistic ocean response. Therefore, here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea thermal regime and circulation. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix, and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.3-0.5 K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, freshwater, and heat budgets are significantly perturbed. This indicates that dust plays an important role in the formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in future modeling studies.
Statistics of surface divergence and their relation to air-water gas transfer velocity
NASA Astrophysics Data System (ADS)
Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.
2012-05-01
Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.
NASA Astrophysics Data System (ADS)
Liu, Dongyan; Wang, Yueqi
2013-09-01
The spatial and temporal variability of sea surface chlorophyll-a (Chl-a) concentrations in the Bohai and Yellow Seas were analyzed, using satellite-derived Chl-a products from SeaWiFS and MODIS sensors over the period of September 1997-September 2011. A set of monthly and cloud-free Chl-a data was produced by the Data Interpolating Empirical Orthogonal Function (DINEOF) method. The results indicate that there are different Chl-a seasonal patterns existing in the Yangtze River mouth, coastal and offshore waters, respectively. In the Yangtze River mouth, a long-lasting Chl-a peak (May-September) is seen in summer. In coastal waters, two significant Chl-a maxima occur in winter-spring and late summer, respectively. In offshore waters, only one significant spring (March-April) Chl-a maximum is evident with a time lag of 1-3 months to coastal waters and the signal of autumn maximum is very weak. In coastal waters, wind-tide-thermohaline circulations and East Asia summer rainy monsoon may important physical factors to impact the seasonal pattern of Chl-a, but increased human activity (e.g., eutrophication, dam) could significantly enhance this process. In offshore waters, the impact on the circulation of the YSWC in winter and YSCW in summer in the central Yellow Sea could be important physical factor in explaining the variability of Chl-a in seasonal patterns. The decadal trends of Chl-a and sea surface temperature are decreasing in coastal waters, with a significantly positive correlation. In offshore waters, the decadal trends of Chl-a is increasing but a slight decreasing sea surface temperature trend is seen, and they indicate a negative correlation. The highest Chl-a values (3.0-5.0 mg m-3) and the lowest variability (STD < 0.3 mg m-3) are observed in coastal waters, in the adjacent sea area of the Yangtze River and Yellow River mouths where the water depth is less than 20 m. Compared with coastal waters and the sea adjacent to the large river mouths, the central Bohai Sea and the offshore waters of the Yellow Sea with the water depth of 20-40 m have lower Chl-a concentrations (1.5-3.5 mg m-3) but higher variability (STD = 0.4-0.6 mg m-3). In contrast to (1) and (2), the lowest Chl-a values (0.5-2.0 mg m-3, with most of values below 1 mg m-3) and the highest variability (STD > 0.8 mg m-3) occurred in the center Yellow Sea where the water depth with a range of 40-120 m. Linear statistical analysis further verifies the relationship between Chl-a and water depth (Fig. 5). Chl-a concentrations and water depths display a significant negative correlation (R = -0.87, P < 0.0001) (Fig. 5a), and there is a significant positive correlation (R = 0.69, P < 0.0001) between STD and water depths (Fig. 5b). These results indicated a significant spatial correlation between water depth and Chl-a concentrations.
NASA Astrophysics Data System (ADS)
Soloviev, Alexander; Schluessel, Peter
The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.
Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B.; Schenk, T.
2016-06-01
During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.
Mesoscale Numerical Simulations of the IAS Circulation
NASA Astrophysics Data System (ADS)
Mooers, C. N.; Ko, D.
2008-05-01
Real-time nowcasts and forecasts of the IAS circulation have been made for several years with mesoscale resolution using the Navy Coastal Ocean Model (NCOM) implemented for the IAS. It is commonly called IASNFS and is driven by the lower resolution Global NCOM on the open boundaries, synoptic atmospheric forcing obtained from the Navy Global Atmospheric Prediction System (NOGAPS), and assimilated satellite-derived sea surface height anomalies and sea surface temperature. Here, examples of the model output are demonstrated; e.g., Gulf of Mexico Loop Current eddy shedding events and the meandering Caribbean Current jet and associated eddies. Overall, IASNFS is ready for further analysis, application to a variety of studies, and downscaling to even higher resolution shelf models. Its output fields are available online through NOAA's National Coastal Data Development Center (NCDDC), located at the Stennis Space Center.
Hakvåg, Sigrid; Fjaervik, Espen; Klinkenberg, Geir; Borgos, Sven Even F; Josefsen, Kjell D; Ellingsen, Trond E; Zotchev, Sergey B
2009-11-12
A new strain belonging to the genus Collimonas was isolated from the sea surface microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, produced an antibacterial compound active against Micrococcus luteus. Subsequent studies using LC-MS identified this antibacterial compound as violacein, known to be produced by several marine-derived bacteria. Fragments of the violacein biosynthesis genes vioA and vioB were amplified by PCR from the Collimonas CT genome and sequenced. Phylogenetic analysis of these sequences demonstrated close relatedness of the Collimonas CT violacein biosynthetic gene cluster to those in Janthinobacterium lividum and Duganella sp., suggesting relatively recent horizontal gene transfer. Considering diverse biological activities of violacein, Collimonas CT shall be further studied as a potential producer of this compound.
Hakvåg, Sigrid; Fjærvik, Espen; Klinkenberg, Geir; Borgos, Sven Even F.; Josefsen, Kjell D.; Ellingsen, Trond E.; Zotchev, Sergey B.
2009-01-01
A new strain belonging to the genus Collimonas was isolated from the sea surface microlayer off the coast of Trøndelag, Norway. The bacterium, designated Collimonas CT, produced an antibacterial compound active against Micrococcus luteus. Subsequent studies using LC-MS identified this antibacterial compound as violacein, known to be produced by several marine-derived bacteria. Fragments of the violacein biosynthesis genes vioA and vioB were amplified by PCR from the Collimonas CT genome and sequenced. Phylogenetic analysis of these sequences demonstrated close relatedness of the Collimonas CT violacein biosynthetic gene cluster to those in Janthinobacterium lividum and Duganella sp., suggesting relatively recent horizontal gene transfer. Considering diverse biological activities of violacein, Collimonas CT shall be further studied as a potential producer of this compound. PMID:20098599
NASA Technical Reports Server (NTRS)
Tsaoussi, Lucia S.; Koblinsky, Chester J.
1994-01-01
In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.
NASA Astrophysics Data System (ADS)
Uebbing, Bernd; Roscher, Ribana; Kusche, Jürgen
2016-04-01
Satellite radar altimeters allow global monitoring of mean sea level changes over the last two decades. However, coastal regions are less well observed due to influences on the returned signal energy by land located inside the altimeter footprint. The altimeter emits a radar pulse, which is reflected at the nadir-surface and measures the two-way travel time, as well as the returned energy as a function of time, resulting in a return waveform. Over the open ocean the waveform shape corresponds to a theoretical model which can be used to infer information on range corrections, significant wave height or wind speed. However, in coastal areas the shape of the waveform is significantly influenced by return signals from land, located in the altimeter footprint, leading to peaks which tend to bias the estimated parameters. Recently, several approaches dealing with this problem have been published, including utilizing only parts of the waveform (sub-waveforms), estimating the parameters in two steps or estimating additional peak parameters. We present a new approach in estimating sub-waveforms using conditional random fields (CRF) based on spatio-temporal waveform information. The CRF piece-wise approximates the measured waveforms based on a pre-derived dictionary of theoretical waveforms for various combinations of the geophysical parameters; neighboring range gates are likely to be assigned to the same underlying sub-waveform model. Depending on the choice of hyperparameters in the CRF estimation, the classification into sub-waveforms can either be more fine or coarse resulting in multiple sub-waveform hypotheses. After the sub-waveforms have been detected, existing retracking algorithms can be applied to derive water heights or other desired geophysical parameters from particular sub-waveforms. To identify the optimal heights from the multiple hypotheses, instead of utilizing a known reference height, we apply a Dijkstra-algorithm to find the "shortest path" of all possible heights. We apply our approach to Jason-2 data in different coastal areas, such as the Bangladesh coast or in the North Sea and compare our sea surface heights to various existing retrackers. Using the sub-waveform approach, we are able to derive meaningful water heights up to a few kilometers off the coast, where conventional retrackers, such as the standard ocean retracker, no longer provide useful data.
NASA Astrophysics Data System (ADS)
Park, K.; Hahm, D.; Lee, D. G.; Rhee, T. S.; Kim, H. C.
2014-12-01
The Amundsen Sea, Antarctica, has been known for one of the most susceptible region to the current climate change such as sea ice melting and sea surface temperature change. In the Southern Ocean, a predominant amount of primary production is occurring in the continental shelf region. Phytoplankton blooms take place during the austral summer due to the limited sunlit and sea ice cover. Thus, quantifying the variation of summer season net community production (NCP) in the Amundsen Sea is essential to analyze the influence of climate change to the variation of biogeochemical cycle in the Southern Ocean. During the past three years of 2011, 2012 and 2014 in austral summer, we have conducted underway observations of ΔO2/Ar and derived NCP of the Amundsen Sea. Despite the importance of NCP for understanding biological carbon cycle of the ocean, the observations are rather limited to see the spatio-temporal variation in the Amundsen Sea. Therefore, we applied self-organizing map (SOM) analysis to expand our observed data sets and estimate the NCP during the summer season. SOM analysis, a type of artificial neural network, has been proved to be a useful method for extracting and classifying features in geoscience. In oceanography, SOM has applied for the analysis of various properties of the seawater such as sea surface temperature, chlorophyll concentration, pCO2, and NCP. Especially it is useful to expand a spatial coverage of direct measurements or to estimate properties whose satellite observations are technically or spatially limited. In this study, we estimate summer season NCP and find a variables set which optimally delineates the NCP variation in the Amundsen Sea as well. Moreover, we attempt to analyze the interannual variation of the Amundsen Sea NCP by taking climatological factors into account for the SOM analysis.
NASA Astrophysics Data System (ADS)
Ferreira, B. P.; Costa, M. B. S. F.; Coxey, M. S.; Gaspar, A. L. B.; Veleda, D.; Araujo, M.
2013-06-01
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009-2010 El Niño event was equivalent to the anomaly observed during the 1997-1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.
NASA Technical Reports Server (NTRS)
Mueller, James L.; Trees, Charles C.
1989-01-01
A site-specific ocean color remote sensing algorithm was developed and used to convert Multispectral Airborne Radiometer System (MARS) spectral radiance measurements to chlorophyll-a concentration profiles along aircraft tracklines in the Greenland Sea. The analysis is described and the results given in graphical or tabular form. Section 2 describes the salient characteristics and history of development of the MARS instrument. Section 3 describes the analyses of MARS flight segments over consolidated sea ice, resulting in a set of altitude dependent ratios used (over water) to estimate radiance reflected by the surface and atmosphere from total radiance measured. Section 4 presents optically weighted pigment concentrations calculated from profile data, and spectral reflectances measured in situ from the top meter of the water column; this data was analyzed to develop an algorithm relating chlorophyll-a concentrations to the ratio of radiance reflectances at 441 and 550 nm (with a selection of coefficients dependent upon whether significant gelvin presence is implied by a low ratio of reflectances at 410 and 550 nm). Section 5 describes the scaling adjustments which were derived to reconcile the MARS upwelled radiance ratios at 410:550 nm and 441:550 nm to in situ reflectance ratios measured simultaneously on the surface. Section 6 graphically presents the locations of MARS data tracklines and positions of the surface monitoring R/V. Section 7 presents stick-plots of MARS tracklines selected to illustrate two-dimensional spatial variability within the box covered by each day's flight. Section 8 presents curves of chlorophyll-a concentration profiles derived from MARS data along survey tracklines. Significant results are summarized in Section 1.
Liu, Liang-Ying; Wei, Gao-Ling; Wang, Ji-Zhong; Guan, Yu-Feng; Wong, Charles S; Wu, Feng-Chang; Zeng, Eddy Y
2013-10-15
Sediment has been recognized as a gigantic sink of organic materials and therefore can record temporal input trends. To examine the impact of anthropogenic activities on the marginal seas off China, sediment cores were collected from the Yellow Sea, the inner shelf of the East China Sea (ECS), and the South China Sea (SCS) to investigate the sources and spatial and temporal variations of organic materials, i.e., total organic carbon (TOC) and aliphatic hydrocarbons. The concentration ranges of TOC were 0.5-1.29, 0.63-0.83, and 0.33-0.85%, while those of Σn-C14-35 (sum of n-alkanes with carbon numbers of 14-35) were 0.08-1.5, 0.13-1.97, and 0.35-0.96 μg/g dry weight in sediment cores from the Yellow Sea, ECS inner shelf, and the SCS, respectively. Terrestrial higher plants were an important source of aliphatic hydrocarbons in marine sediments off China. The spatial distribution of Σn-C14-35 concentrations and source diagnostic ratios suggested a greater load of terrestrial organic materials in the Yellow Sea than in the ECS and SCS. Temporally, TOC and Σn-C14-35 concentrations increased with time and peaked at either the surface or immediate subsurface layers. This increase was probably reflective of elevated inputs of organic materials to marginal seas off China in recent years, and attributed partly to the impacts of intensified anthropogenic activities in mainland China. Source diagnostics also suggested that aliphatic hydrocarbons were mainly derived from biogenic sources, with a minority in surface sediment layers from petroleum sources, consistent with the above-mentioned postulation.
NASA Astrophysics Data System (ADS)
Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.
2017-05-01
We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.
NASA Astrophysics Data System (ADS)
Sala, M.; Delmonte, B.; Frezzotti, M.; Proposito, M.; Scarchilli, C.; Maggi, V.; Artioli, G.; Dapiaggi, M.; Marino, F.; Ricci, P. C.; De Giudici, G.
2008-07-01
Micrometre-sized aeolian dust particles stored in Antarctic firn and ice layers are a useful tool for reconstructing climate and environmental changes in the past. The mineral content, particle concentration and chemical composition of modern dust in firn cores from the peripherycal dome (Talos Dome) and coastal area of East Antarctica (Ross Sea sector) were investigated. During analyses there was a considerable decrease in microparticle concentrations within a few hours of ice sample melting, accompanied by a systematic increase in the concentration of calcium ions (Ca 2+) in solution. Based on mineralogical phase analyses, which reveal the presence of anhydrous and hydrous calcium carbonates such as calcite (CaCO 3), monohydrocalcite (CaCO 3·H 2O) and ikaite (CaCO 3·6H 2O, hexahydrate calcium carbonate), the observed variations in concentrations are ascribed to the partial dissolution of the carbonate content of samples. Soluble carbonate compounds are thus primary aerosols included into the samples along with insoluble aluminosilicate minerals. We hypothesize hydrous carbonates may derive from the sea ice surface, where ikaite typically forms at the early stages of sea ice formation. Back trajectory calculations show that favourable events for air mass advection from the sea ice surface to Talos Dome are rare but likely to occur.
Late Holocene sea level variability and Atlantic Meridional Overturning Circulation
Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.
2014-01-01
Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.
NASA Technical Reports Server (NTRS)
Beckley, B. D.; Zelensky, N. P.; Holmes, S. A.; Lemoine, F. G.; Ray, R. D.; Mitchum, G. T.; Dedai, S. D.; Brown, S. T.
2010-01-01
The Jason-2 (OSTM) follow-on mission to Jason-I provides for the continuation of global and regional mean sea level estimates along the ground-track of the initial phase of the TOPEX/Poseidon mission. During the first several months, Jason-I and Jason-2 flew in formation separated by only 55 seconds, enabling the isolation of intermission instrument biases through direct collinear differencing of near simultaneous observations. The Jason-2 Ku-band range bias with respect to Jason-I is estimated to be -84 +/- 9 mm, based on the orbit altitudes provided on the Geophysical Data Records. Modest improved agreement is achieved with the GSFC replacement orbits, which further enables the isolation of subtle 1 cm) instrument-dependent range correction biases. Inter-mission bias estimates are confirmed with an independent assessment from comparisons to a 64-station tide-gauge network, also providing an estimate of the stability of the 17-year time series to be less than 0.1 mm/yr +/- 0.4 mm/yr. The global mean sea level derived from the multi-mission altimeter sea-surface height record from January 1993 through September 2009 is 3.3 +/- 0.4 mm/yr. Recent trends over the period from 2004 through 2008 are smaller and estimated to be 2.0 +/- 0.4 mm/yr.
NASA Technical Reports Server (NTRS)
Tilley, D. G.
1986-01-01
Directional ocean wave spectra were derived from Shuttle Imaging Radar (SIR-B) imagery in regions where nearly simultaneous aircraft-based measurements of the wave spectra were also available as part of the NASA Shuttle Mission 41G experiments. The SIR-B response to a coherently speckled scene is used to estimate the stationary system transfer function in the 15 even terms of an eighth-order two-dimensional polynomial. Surface elevation contours are assigned to SIR-B ocean scenes Fourier filtered using a empirical model of the modulation transfer function calibrated with independent measurements of wave height. The empirical measurements of the wave height distribution are illustrated for a variety of sea states.
Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling
NASA Astrophysics Data System (ADS)
Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.
2009-04-01
With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of the surface waters can be deduced from the isotopic composition of the diols, we can calculate the degree of mixing between freshwater (isotopically light) and seawater (isotopically heavy) in the surface waters. This way we quantify Eocene Arctic surface water salinity, which in turn will shed light on the degree of (seasonal) mixing and stratification.
Sequential webcam monitoring and modeling of marine debris abundance.
Kako, Shin'ichiro; Isobe, Atsuhiko; Kataoka, Tomoya; Yufu, Kei; Sugizono, Shuto; Plybon, Charlie; Murphy, Thomas A
2018-05-14
The amount of marine debris washed ashore on a beach in Newport, Oregon, USA was observed automatically and sequentially using a webcam system. To investigate potential causes of the temporal variability of marine debris abundance, its time series was compared with those of satellite-derived wind speeds and sea surface height off the Oregon coast. Shoreward flow induced by downwelling-favorable southerly winds increases marine debris washed ashore on the beach in winter. We also found that local sea-level rise caused by westerly winds, especially at spring tide, moved the high-tide line toward the land, so that marine debris littered on the beach was likely to re-drift into the ocean. Seasonal and sub-monthly fluctuations of debris abundance were well reproduced using a simple numerical model driven by satellite-derived wind data, with significant correlation at 95% confidence level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sea spray aerosol structure and composition using cryogenic transmission electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.
The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less
Sea spray aerosol structure and composition using cryogenic transmission electron microscopy
Patterson, Joseph P.; Collins, Douglas B.; Michaud, Jennifer M.; ...
2016-01-15
The surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface structure often undergoes chemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of a cryo-TEM approach where sea spray aerosol particles are flash frozen in their native state and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including wholemore » hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets. As a result, we anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.« less
NASA Technical Reports Server (NTRS)
Pandey, Prem C.
1987-01-01
The retrieval of ocean-surface wind speed from different channel combinations of Seasat SMMR measurements is demonstrated. Wind speeds derived using the best two channel subsets (10.6 H and 18.0 V) were compared with in situ data collected during the Joint Air-Sea Interaction (JASIN) experiment and an rms difference of 1.5 m/s was found. Global maps of wind speed generated with the present algorithm show that the averaged winds are arranged in well-ordered belts.
NASA Astrophysics Data System (ADS)
Medley, B.; Kurtz, N. T.; Brunt, K. M.
2015-12-01
The large ice shelves surrounding the Antarctic continent buttress inland ice, limiting the grounded ice-sheet flow. Many, but not all, of the thick ice shelves located along the Amundsen-Bellingshausen Seas are experiencing rapid thinning due to enhanced basal melting driven by the intrusion of warm circumpolar deep water. Determination of their mass balance provides an indicator as to the future of the shelves buttressing capability; however, measurements of surface accumulation are few, limiting the precision of the mass balance estimates. Here, we present new radar-derived measurements of snow accumulation primarily over the Getz and Abbott Ice Shelves, as well as the Dotson and Crosson, which have been the focus of several of NASA's Operation IceBridge airborne surveys between 2009 and 2014. Specifically, we use the Center for Remote Sensing of Ice Sheets (CReSIS) snow radar to map the near-surface (< 30 m) internal stratigraphy to measure snow accumulation. Due to the complexities of the local topography (e.g., ice rises and rumples) and their relative proximity to the ocean, the spatial pattern of accumulation can be equally varied. Therefore, atmospheric models might not be able to reproduce these small-scale features because of their limited spatial resolution. To evaluate whether this is the case over these narrow shelves, we will compare the radar-derived accumulation rates with those from atmospheric models.
A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets.
Li, Xiaofeng; Zheng, Weizhong; Zou, Cheng-Zhi; Pichel, William G
2008-05-21
The sea surface imprints of Atmospheric Vortex Street (AVS) off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR) images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS's in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.
Potential controls of isoprene in the surface ocean
NASA Astrophysics Data System (ADS)
Hackenberg, S. C.; Andrews, S. J.; Airs, R.; Arnold, S. R.; Bouman, H. A.; Brewin, R. J. W.; Chance, R. J.; Cummings, D.; Dall'Olmo, G.; Lewis, A. C.; Minaeian, J. K.; Reifel, K. M.; Small, A.; Tarran, G. A.; Tilstone, G. H.; Carpenter, L. J.
2017-04-01
Isoprene surface ocean concentrations and vertical distribution, atmospheric mixing ratios, and calculated sea-to-air fluxes spanning approximately 125° of latitude (80°N-45°S) over the Arctic and Atlantic Oceans are reported. Oceanic isoprene concentrations were associated with a number of concurrently monitored biological variables including chlorophyll a (Chl a), photoprotective pigments, integrated primary production (intPP), and cyanobacterial cell counts, with higher isoprene concentrations relative to all respective variables found at sea surface temperatures greater than 20°C. The correlation between isoprene and the sum of photoprotective carotenoids, which is reported here for the first time, was the most consistent across all cruises. Parameterizations based on linear regression analyses of these relationships perform well for Arctic and Atlantic data, producing a better fit to observations than an existing Chl a-based parameterization. Global extrapolation of isoprene surface water concentrations using satellite-derived Chl a and intPP reproduced general trends in the in situ data and absolute values within a factor of 2 between 60% and 85%, depending on the data set and algorithm used.
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Iskandar, Ahmad; Singh Jit Singh, Mandeep; Alauddin Mohd Ali, Mohd; Yatim, Baharudin; Tangang, Fredolin
2013-04-01
We observe an ENSO activity by using ground-based GPS receiver as an effort to study the effects of global warming and climate change in the tropical region. The precipitable water vapor (PWV) derived from Global Positioning System (GPS) meteorology in line with the sea surface temperature anomaly (SSTa) is used to indicate their response on ENSO activities. The PWV data used in this study was taken from the station at Universiti Malaysia Sabah, Kota Kinabalu (UMSK) over 2011, together with NTUS station (in the Singapore), PIMO (in Philippines) and BAKO (in Indonesia) are also compared. The relationship between PWV and SSTa at all stations on weekly basis exhibited modest with correlation coefficients between -0.30 and -0.78 significantly at the 99% confidence level. The negative correlation indicates that during a La Niña phase, the PWV is increased when the sea surface temperatures getting cold causes warm air mass in the central Pacific moved to west Pacific. The increased of PWV causes the GPS signals will be getting slower.
NASA Astrophysics Data System (ADS)
Donders, Timme H.; van Helmond, Niels A. G. M.; Verreussel, Roel; Munsterman, Dirk; ten Veen, Johan; Speijer, Robert P.; Weijers, Johan W. H.; Sangiorgi, Francesca; Peterse, Francien; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Lourens, Lucas; Kuhlmann, Gesa; Brinkhuis, Henk
2018-03-01
We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (˜ 2.6-1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial-interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm-cold alterations are synchronous between land and sea, but lead the relative sea level change by 3000-8000 years. The record provides evidence for a dominantly Northern Hemisphere-driven cooling that leads the glacial buildup and varies on the obliquity timescale. Southward migration of Arctic surface water masses during glacials, indicated by cool-water dinoflagellate cyst assemblages, is furthermore relevant for the discussion on the relation between the intensity of the Atlantic meridional overturning circulation and ice sheet growth.
Seasat microwave wind and rain observations in severe tropical and midlatitude marine storms
NASA Technical Reports Server (NTRS)
Black, P. G.; Hawkins, J. D.; Gentry, R. C.; Cardone, V. J.
1985-01-01
Initial results of studies concerning Seasat measurements in and around tropical and severe midlatitude cyclones over the open ocean are presented, together with an assessment of their accuracy and usefulness. Complementary measurements of surface wind speed and direction, rainfall rate, and the sea surface temperature obtained with the Seasat-A Satellite Scatterometer (SASS), the Scanning Multichannel Microwave Radiometer (SMMR), and the Seasat SAR are analyzed. The Seasat data for the Hurrricanes Fico, Ella, and Greta and the QE II storm are compared with data obtained from aircraft, buoys, and ships. It is shown that the SASS-derived wind speeds are accurate to within 10 percent, and the directions are accurate to within 20 percent. In general, the SASS estimates tend to measure light winds too high and intense winds too low. The errors of the SMMR-derived measurements of the winds in hurricanes tend to be higher than those of the SASS-derived measurements.
Sea Surface Temperature and Ocean Color Variability in the South China Sea
NASA Astrophysics Data System (ADS)
Conaty, A. P.
2001-12-01
The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.
Xu, Gang; Liu, Jian; Hu, Gang; Jonell, Tara N; Chen, Lilei
2017-10-15
To constrain organic matter compositions and origins, elemental (TOC, TN, C/N) and stable carbon (δ 13 C) and nitrogen isotope (δ 15 N) compositions are measured for surface sediments collected from muddy deposit along the Zhejiang coast, East China Sea. The results showed that the TOC, TN, C/N, δ 13 C, and δ 15 N were 0.19-0.67%, 0.03-0.09%, 6.76-9.22, -23.43 to -20.26‰, and 3.93-5.27‰, respectively. The δ 13 C values showed that the mixing inputs of terrigenous and marine organic matter generally dominated sedimentary organic matter in the west part, and the sedimentary organic matters were mainly influenced by the marine organic matter in the east part of the study area. A stable carbon isotope two end member mixing model estimates ~38% terrestrial -derived and ~62% marine-derived inputs to sedimentary organic matter. Microbial mineralization strongly controls δ 15 N values, and therefore cannot be used to identify the provenance of organic matter for the Zhenjiang coast. Copyright © 2017. Published by Elsevier Ltd.
10-Year Observations of Cloud and Surface Longwave Radiation at Ny-Ålesund, Svalbard
NASA Astrophysics Data System (ADS)
Yeo, H.; Kim, S. W.; Kim, B. M.; Kim, J. H.; Shiobara, M.; Choi, T. J.; Son, S. W.; Kim, M. H.; Jeong, J. H.; Kim, S. J.
2015-12-01
Arctic clouds play a key role in surface radiation budget and may influence sea ice and snow melting. In this study, 10-year (2004-2013) observations of cloud from Micro-Pulse Lidar (MPL) and surface longwave (LW) radiation at Ny-Ålesund, Svalbard are analyzed to investigate cloud radiative effect. The cloud fraction (CF) derived from MPL shows distinct monthly variation, having higher CF (0.90) in summer and lower CF (0.79) in winter. Downward longwave radiation (DLW) during wintertime (Nov., Dec., Jan., and Feb.) decreases as cloud base height (CBH) increases. The DLW for CBH < 1km (264.7±35.4 W m-2) is approximately 1.46 times larger than that for cloud-free (181.8±25.8 W m-2) conditions. The temperature difference (ΔT) and DLW difference (ΔDLW), which are calculated as the difference of monthly mean temperature and DLW between all-sky and cloud-free conditions, are positively correlated (R2 = 0.83). This implies that an increase of DLW may influence surface warming, which can result in snow and sea ice melting. However, dramatic changes in surface temperature, cloud and DLW are observed with a time scale of a few days. The averaged surface temperature on the presence of low-level clouds (CBH < 2km) and under cloud-free conditions are estimated to be -6.9±6.1°C and -14.5±5.7°C, respectively. The duration of low-level clouds, showing relatively high DLW and high surface temperature, is about 2.5 days. This suggests that DLW induced by low-level clouds may not have a critical effect on surface temperature rising and sea ice melting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amakawa, Hiroshi; Alibo, D.S.; Nozaki, Yoshiyuki
2000-05-01
The Nd isotopic composition and dissolved rare earth elements (REEs) have been measured in the surface waters along the 1996/97 R.V. Hakuho-Maru Expedition route from Tokyo to the Southern Ocean, southwest of Australia, through the Philippine and Indonesian Archipelago, the eastern Indian Ocean, the Bay of Bengal and the South China Sea. The radiogenic {epsilon}{sub Nd} values of {minus}1.3 and {minus}1.4 were found in the Sulu Sea and near the Lombok Strait, indicating the strong influence of surrounding volcanic islands, whereas non-radiogenic {epsilon}{sub Nd} values of less than {minus}10 were found in the Southern Ocean and the Bay of Bengalmore » suggesting Nd of continental origin. The dissolved Nd concentrations also showed a wide range of variation from 2.8 to 19.6 pmol/kg and the trivalent REE patterns exhibited characteristic features that can be grouped into each different oceanic province. The geographical distribution of dissolved Nd is different from that of atmospherically derived {sup 210}Pb, but generally resembles that of coastally derived {sup 228}Ra. This strongly suggests that fluvial and coastal input predominates over eolian input for dissolved Nd in the surface ocean. However, the riverine dissolved Nd flux appears to be relatively minor, and remobilization of Nd from coastal and shelf sediments may play an important role in the total Nd input to the ocean. By modeling the distributions of the isotopic composition and concentration of Nd together with the activity ratio of {sup 228}Ra/{sup 226}Ra in the southeastern Indian Ocean, the authors estimate a mean residence time of Nd in the surface mixed layer to be 1.5--2.6 years. The short mean residence time is comparable with, or slightly longer than that of {sup 210}Pb suggesting similar chemical reactivity.« less
Uptake and distribution of organo-iodine in deep-sea corals.
Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih
2018-07-01
Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope variability captured in proteinaceous deep-sea corals is a promising geochronometer as well as an emerging tracer for continental material flux. Published by Elsevier Ltd.
Uptake and distribution of organo-iodine in deep-sea corals
Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih
2018-01-01
Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope variability captured in proteinaceous deep-sea corals is a promising geochronometer as well as an emerging tracer for continental material flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, P.R.; Baum, G.R.
1991-03-01
Early Eocene to late Oligocene marine sedimentary units in southwestern Alabama were sampled at closely spaced intervals to derive a precise time-stratigraphic framework and to determine the paleoecological and mineralogical responses to fluctuations in sea level. Paleontologic control consisted of planktonic, smaller and larger benthonic foraminifera, calcareous nannofossils, dinoflagellates, and megafossils. Paleomagnetic reversals were delineated in two boreholes which, when supplemented by strontium isotope dates and the biostratigraphic control, provided a robust in situ chronostratigraphy for the Gulf Coast lower Tertiary. Paleoecologic trends in regression and transgression can be clearly correlated across major regional facies changes. Using the chronostratigraphy developedmore » here, the second-, third-, and fourth-orders of Vail's global sea-level cycles can be recognized and demonstrate the influence of sea-level change on sedimentation. Stratigraphic systems tracts (SSTs) and bounding surfaces in outcrop were determined by lithologic variations and paleoecologic trends, and additionally by gamma logs in the cores. The lower sequence boundary occurs at a contact where an older, relatively fine-grained, deep-water, fossiliferous unit was abruptly succeeded by a coarse-grained, shallow-water, poorly fossiliferous unit. The transgressive surface occurs at the base of a fining- and deepening-upwards unit that was commonly glauconitic and very fossiliferous. Transgression culminated with a pulse of planktonic microfossils in a bed having reduced clastic sedimentation; on the log the surface of maximum starvation was marked by a gamma spike.« less
NASA Astrophysics Data System (ADS)
Baumann, Marion
One long-term and three short-term sedimenttrap-deployments have been installed in the Norwegian Sea shortly after the reactor-accident at Chernobyl in April 1986. Radiocesium investigations of the sedimenttrap material were combined with detailed biological investigations on sedimentation processes in the photic Zone. Lacking efficient export processes in the photic Zone, radiocesium first was retained in the photic Zone for several weeks. Then the break down and successive sedimentation of the heterotrophic community exported about 10 % of surface deposition of radiocesium to larger water depths and to the seafloor at 1450 m.
Magnetic character of a large continental transform: an aeromagnetic survey of the Dead Sea Fault
ten Brink, Uri S.; Rybakov, Michael; Al-Zoubi, Abdallah S.; Rotstein, Yair
2007-01-01
New high-resolution airborne magnetic (HRAM) data along a 120-km-long section of the Dead Sea Transform in southern Jordan and Israel shed light on the shallow structure of the fault zone and on the kinematics of the plate boundary. Despite infrequent seismic activity and only intermittent surface exposure, the fault is delineated clearly on a map of the first vertical derivative of the magnetic intensity, indicating that the source of the magnetic anomaly is shallow. The fault is manifested by a 10–20 nT negative anomaly in areas where the fault cuts through magnetic basement and by a
NASA Astrophysics Data System (ADS)
Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.
1997-02-01
Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.
Advances in Airborne Altimetric Techniques for the Measurement of Snow on Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Newman, T.; Farrell, S. L.; Richter-Menge, J.; Elder, B. C.; Ruth, J.; Connor, L. N.
2014-12-01
Current sea ice observations and models indicate a transition towards a more seasonal Arctic ice pack with a smaller, and geographically more variable, multiyear ice component. To gain a comprehensive understanding of the processes governing this transition it is important to include the impact of the snow cover, determining the mechanisms by which snow is both responding to and forcing changes to the sea ice pack. Data from NASA's Operation IceBridge (OIB) snow radar system, which has been making yearly surveys of the western Arctic since 2009, offers a key resource for investigating the snow cover. In this work, we characterize the OIB snow radar instrument response to ascertain the location of 'side-lobes', aiding the interpretation of snow radar data. We apply novel wavelet-based techniques to identify the primary reflecting interfaces within the snow pack from which snow depth estimates are derived. We apply these techniques to the range of available snow radar data collected over the last 6 years during the NASA OIB mission. Our results are validated through comparison with a range of in-situ data. We discuss the impact of sea ice surface morphology on snow radar returns (with respect to ice type) and the topographic conditions over which accurate snow-radar-derived snow depths may be obtained. Finally we present improvements to in situ survey design that will allow for both an improved sampling of the snow radar footprint and more accurate assessment of the uncertainties in radar-derived snow depths in the future.
NASA Astrophysics Data System (ADS)
Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.
2007-12-01
The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.
Global Land Surface Temperature From the Along-Track Scanning Radiometers
NASA Astrophysics Data System (ADS)
Ghent, D. J.; Corlett, G. K.; Göttsche, F.-M.; Remedios, J. J.
2017-11-01
The Leicester Along-Track Scanning Radiometer (ATSR) and Sea and Land Surface Temperature Radiometer (SLSTR) Processor for LAnd Surface Temperature (LASPLAST) provides global land surface temperature (LST) products from thermal infrared radiance data. In this paper, the state-of-the-art version of LASPLAST, as deployed in the GlobTemperature project, is described and applied to data from the Advanced Along-Track Scanning Radiometer (AATSR). The LASPLAST retrieval formulation for LST is a nadir-only, two-channel, split-window algorithm, based on biome classification, fractional vegetation, and across-track water vapor dependences. It incorporates globally robust retrieval coefficients derived using highly sampled atmosphere profiles. LASPLAST benefits from appropriate spatial resolution auxiliary information and a new probabilistic-based cloud flagging algorithm. For the first time for a satellite-derived LST product, pixel-level uncertainties characterized in terms of random, locally correlated, and systematic components are provided. The new GlobTemperature GT_ATS_2P Version 1.0 product has been validated for 1 year of AATSR data (2009) against in situ measurements acquired from "gold standard reference" stations: Gobabeb, Namibia, and Evora, Portugal; seven Surface Radiation Budget stations, and the Atmospheric Radiation Measurement station at Southern Great Plains. These data show average absolute biases for the GT_ATS_2P Version 1.0 product of 1.00 K in the daytime and 1.08 K in the nighttime. The improvements in data provenance including better accuracy, fully traceable retrieval coefficients, quantified uncertainty, and more detailed information in the new harmonized format of the GT_ATS_2P product will allow for more significant exploitation of the historical LST data record from the ATSRs and a valuable near-real-time service from the Sea and Land Surface Temperature Radiometers (SLSTRs).
Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions
NASA Astrophysics Data System (ADS)
Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.
2017-12-01
Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.
Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties
NASA Technical Reports Server (NTRS)
Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)
2000-01-01
To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of CERES is systematically larger than the model calculations by -3 W M-2. In the equatorial region, the CERES-derived net downward solar flux is even larger than the model calculations without including aerosols. It is possible that the CERES incorrectly identified regions of high humidity and high aerosol concentration as being cloud contaminated and, hence, overestimated the clear sky net downward solar flux.
Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion
NASA Astrophysics Data System (ADS)
Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.
2011-12-01
Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites affected by this process yields an average net accretion rate of 3.5 mm/yr, similar to the long term rate of 3-5 mm/yr derived from dated organic material from the base of marsh cores and local sea level rise of 3.8 mm/yr since 1984 recorded at the Washington, DC tide gage. The Potomac River shore sites affected by berm sedimentation average 45 mm/yr of accretion, though the majority of this was deposited as a 20-cm-thick packet in the winter of 2009-2010. Some additional elevation control is provided by a land survey of the marsh performed in 1992 in conjunction with a hydraulic modeling study, which indicates an average of 11 mm/yr of accretion across the marsh. All available evidence suggests that marsh surfaces have the capacity to keep up with sea level rise; however, rapid bank erosion poses a severe threat to the sustainability of the marsh.
Weinman, J A
1988-10-01
A simulated analysis is presented that shows that returns from a single-frequency space-borne lidar can be combined with data from conventional visible satellite imagery to yield profiles of aerosol extinction coefficients and the wind speed at the ocean surface. The optical thickness of the aerosols in the atmosphere can be derived from visible imagery. That measurement of the total optical thickness can constrain the solution to the lidar equation to yield a robust estimate of the extinction profile. The specular reflection of the lidar beam from the ocean can be used to determine the wind speed at the sea surface once the transmission of the atmosphere is known. The impact on the retrieved aerosol profiles and surface wind speed produced by errors in the input parameters and noise in the lidar measurements is also considered.
The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula
NASA Technical Reports Server (NTRS)
King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.
Doubly-focused echos from spheres unfold into a hyperbolic umbilic diffraction catastrophe
NASA Astrophysics Data System (ADS)
Dzikowicz, Ben; Marston, Philip L.
2003-04-01
An underwater spherical target resides in an Airy field formed by reflection off a curved surface representing the sea floor or sea surface. In prior work [B. Dzikowicz and P. L. Marston, J. Acoust. Soc Am. 110, 2778 (2001)] direct returns of a tone burst from the surface reflection focused toward the target were shown to have a dependence on the target position described by an Airy function. The return echo can also be focused again by the surface onto the source and receive transducer. This gives the square of an Airy function for the case of a point target. With a finite sized target (as in the experiment) this goes over to a hyperbolic umbilic catastrophe with symmetric arguments. The arguments of the hyperbolic umbilic function are derived from only the relative return times of a transient pulse. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method would allow for the observation of a target at a greater distance in the presence of a focusing surface. [Research supported by ONR.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong
2016-02-01
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. In Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
Zhang, Kai; Zhao, Chun; Wan, Hui; ...
2016-02-12
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Zhao, Chun; Wan, Hui
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less
NASA Astrophysics Data System (ADS)
Dammann, D. O.; Eicken, H.; Meyer, F. J.; Mahoney, A. R.
2016-12-01
Arctic landfast sea ice provides important services to people, including coastal communities and industry, as well as key marine biota. In many regions of the Arctic, the use of landfast sea ice by all stakeholders is increasingly limited by reduced stability of the ice cover, which results in more deformation and rougher ice conditions as well as reduced extent and an increased likelihood of detachment from the shore. Here, we use Synthetic Aperture Radar Interferometry (InSAR) to provide stakeholder-relevant data on key constraints for sea ice use, in particular ice stability and morphology, which are difficult to assess using conventional SAR. InSAR has the capability to detect small-scale landfast ice displacements, which are linked to important coastal hazards, including the formation of cracks, ungrounding of ice pressure ridges, and catastrophic breakout events. While InSAR has previously been used to identify the extent of landfast ice and regions of deformation within, quantitative analysis of small-scale ice motion has yet to be thoroughly validated and its potential remains largely underutilized in sea ice science. Using TanDEM-X interferometry, we derive surface displacements of landfast ice within Elson Lagoon near Barrow, Alaska, which we validate using in-situ DGPS data. We then apply an inverse model to estimate rates and patterns of shorefast ice deformation in other regions of landfast ice using interferograms generated with long-temporal baseline L-band ALOS-1 PALSAR-1 data. The model is able to correctly identify deformation modes and proxies for the associated relative internal elastic stress. The derived potential for fractures corresponds well with large-scale sea ice patterns and local in-situ observations. The utility of InSAR to quantify sea ice roughness has also been explored using TanDEM-X bistatic interferometry, which eliminates the effects of temporal changes in the ice cover. The InSAR-derived DEM shows good correlation with a high-resolution Structure from Motion DEM and laser surveys collected during a field campaign utilizing unmanned aircraft.
Oceanographic Aspects of Recent Changes in the Arctic
NASA Astrophysics Data System (ADS)
Morison, J. H.
2002-12-01
In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important climate feedback is that the changes in ocean circulation and ice production have increased the amount of relatively fresh surface water exported to the sub-Arctic Seas, increasing stratification there, and arguably reducing the strength of the global thermohaline circulation. Since the mid-1990s the strength of the Polar Vortex (AO) has relaxed partially toward earlier levels. Recent observations show that Arctic Ocean water mass structure has relaxed somewhat towards climatology near the surface but is still changing at depth. The cold halocline has recovered in some areas. This reinforces the notion that the changes in the Arctic are tied to the atmospheric circulation of the whole northern hemisphere. The events of the last 10-15 years suggest ways the Arctic environment may be an indicator and agent of climate change and highlight the importance of a systematic program to observe the changing Arctic. References Parkinson C. L., D. J. Cavalieri, P. Gloersen, H. J. Zwally, and J. C. Comiso, 1999, Arctic sea ice extents, areas, and trends, 1978-1996, J. Geophys. Res., 104, 20,387-20,856. Rothrock, D. A., Y. Yu, and G. A. Maykut, 1999, Thinning of the Arctic sea-ice cover, Geophys. Res. Lett., 26(23), 3469-3472. Steele, M., and T. Boyd, 1998, Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res., 103, 10,419-10,435.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.;
1996-01-01
This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters
NASA Astrophysics Data System (ADS)
Miller, L. A.; Papakyriakou, T. N.
2015-12-01
In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.
NASA Astrophysics Data System (ADS)
von Hoyningen-Huene, W.; Yoon, J.; Vountas, M.; Istomina, L. G.; Rohen, G.; Dinter, T.; Kokhanovsky, A. A.; Burrows, J. P.
2011-02-01
For the determination of aerosol optical thickness (AOT) Bremen AErosol Retrieval (BAER) has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite - ENVISAT - of the European Space Agency - ESA) and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft) observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6) channels (0.412-0.670 μm) and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI), taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF) is considered by the Raman-Pinty-Verstraete (RPV) model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC) or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET) over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time. For the investigated Asian region increasing AOT have been found.
NASA Astrophysics Data System (ADS)
Petrick, Benjamin; McClymont, Erin; van der Meer, Marcel; Marret, Fabienne
2015-04-01
The Southeast Atlantic Ocean is an important component of global ocean circulation, as it includes heat and salt transfer into the Atlantic through Agulhas Leakage. Here, we reconstruct sea surface temperatures (SSTs) and sea surface salinity from Ocean Drilling Program (ODP) Site 1087 in the Southeast Atlantic to investigate surface ocean circulation patterns during the late Pleistocene (0-500 ka). The alkenone-derived U37K'index and assemblages of dinoflagellate cysts are used to reconstruct SSTs. The hydrogen isotope composition of the alkenones (δDalkenone) is used to reconstruct changes in sea-surface salinity. The greatest amplitude of SST warming precedes decreases in benthic δ18O and therefore occurs early in the transition from glacials to interglacials. The timing of the early warming is consistent with previously published foraminifera reconstructions from the same site (Caley et al., 2012). However, δDalkenone decreases at the start of interglacials, suggesting that sea surface salinity increased earlier than the deglacial warmings, and indicating that the pattern of Agulhas leakage is more complex than suggested by SST proxies alone. Furthermore, the δDalkenonevalues indicate a strong salinity increases occurred before both MIS 11 and MIS 1, which are both periods where there is evidence of connection between increased Agulhas Leakage and a stronger Atlantic meridional overturning circulation (AMOC). Finally, the ODP site 1087 record shows an overall trend of increasing SSTs and δDalkenone towards the present day, suggesting that Agulhas leakage has strengthened since 500 ka, which may have impacted the intensity of the AMOC. Caley, T., Giraudeau, J., Malaize, B., Rossignol, L., Pierre, C., 2012. Agulhas leakage as a key process in the modes of Quaternary climate changes. Proc. Natl. Acad. Sci. 109, 6835-6839. doi:10.1073/pnas.1115545109
Calibration of Sea Ice Motion from QuikSCAT with those from SSM/I and Buoy
NASA Technical Reports Server (NTRS)
Liu, Antony K.; Zhao, Yun-He; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
QuikSCAT backscatter and DMSP SSM/I radiance data are used to derive sea ice motion for both the Arctic and Antarctic region using wavelet analysis method. This technique provides improved spatial coverage over the existing array of Arctic Ocean buoys and better temporal resolution over techniques utilizing satellite data from Synthetic Aperture Radar (SAR). Sea ice motion of the Arctic for the period from October 1999 to March 2000 derived from QuikSCAT and SSM/I data agrees well with that derived from ocean buoys quantitatively. Thus the ice tracking results from QuikSCAT and SSM/I are complement to each other, Then, three sea-ice drift daily results from QuikSCAT, SSM/I, and buoy data can be merged to generate composite maps with more complete coverage of sea ice motion than those from single data source. A series of composite sea ice motion maps for December 1999 show that the major circulation patterns of sea ice motion are changing and shifting significantly within every four days and they are dominated by wind forcing. Sea-ice drift in the summer can not be derived from NSCAT and SSM/I data. In later summer of 1999 (in September), however, QuikSCAT data can provide good sea ice motion information in the Arctic. QuiksCAT can also provide at least partial sea ice motion information until June 15 in early summer 1999. For the Antarctic, case study shows that sea ice motion derived from QuikSCAT data is predominantly forced by and is consistent with wind field derived from QuikSCAT around the polar region. These calibrated/validated results indicate that QuikSCAT, SSM/I, and buoy merged daily ice motion are suitably accurate to identify and closely locate sea ice processes, and to improve our current knowledge of sea ice drift and related processes through the data assimilation of ocean-ice numerical model.
Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity from Observations
NASA Technical Reports Server (NTRS)
Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.
2018-01-01
An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2-radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.
Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations
NASA Astrophysics Data System (ADS)
Marvel, Kate; Pincus, Robert; Schmidt, Gavin A.; Miller, Ron L.
2018-02-01
An emerging literature suggests that estimates of equilibrium climate sensitivity (ECS) derived from recent observations and energy balance models are biased low because models project more positive climate feedback in the far future. Here we use simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to show that across models, ECS inferred from the recent historical period (1979-2005) is indeed almost uniformly lower than that inferred from simulations subject to abrupt increases in CO2 radiative forcing. However, ECS inferred from simulations in which sea surface temperatures are prescribed according to observations is lower still. ECS inferred from simulations with prescribed sea surface temperatures is strongly linked to changes to tropical marine low clouds. However, feedbacks from these clouds are a weak constraint on long-term model ECS. One interpretation is that observations of recent climate changes constitute a poor direct proxy for long-term sensitivity.
Satellite-Derived Sea Surface Temperature: Workshop 3
NASA Technical Reports Server (NTRS)
1985-01-01
This is the third of a series of three workshops, sponsored by the National Aeronautics and Space Administration, to investigate the state of the art in global sea surface temperature measurements from space. Three workshops were necessary to process and analyze sufficient data from which to draw conclusions on the accuracy and reliability of the satellite measurements. In this workshop, the final two (out of a total of four) months of satellite and in situ data chosen for study were processed and evaluated. Results from the AVHRR, HIRS, SMMR, and VAS sensors, in comparison with in situ data from ships, XBTs, and buoys, confirmed satellite rms accuracies in the 0.5 to 1.0 C range, but with variable biases. These accuracies may degrade under adverse conditions for specific sensors. A variety of color maps, plots, and statistical tables are provided for detailed study of the individual sensor SST measurements.
Variations in Transport Derived from Satellite Altimeter Data over the Gulf Stream
NASA Technical Reports Server (NTRS)
Molinelli, Eugene; Lambert, Richard B., Jr.
1981-01-01
Variations in total change of sea surface height (delta h) across the Gulf Stream are observed using Seasat radar altimeter data. The sea surface height is related to transport within the stream by a two layer model. Variations in delta h are compared with previously observed changes in transport found to increase with distance downstream. No such increase is apparent since the satellite transports show no significant dependence on distance. Though most discrepancies are less than 50 percent, a few cases differ by about 100 percent and more. Several possible reasons for these discrepancies are advanced, including geoid error, but only two oceanographic contributions to the variability are examined, namely, limitations in the two layer model and meanders in the current. It is concluded that some of the discrepancies could be explained as changes in the density structure not accounted for by the two layer model.
Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies
NASA Technical Reports Server (NTRS)
Chen, Yang; Randerson, James T.; Morton, Douglas C.; Jin, Yufang; DeFries, Ruth S.; Collatz, George J.; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam
2011-01-01
Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions.
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
NASA Astrophysics Data System (ADS)
Sparrow, K. J.; Kessler, J. D.
2017-12-01
In response to climate change, methane can be released to ocean sediments and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown if methane derived from these massive stores of frozen, ancient carbon reaches the atmosphere. We quantified the fraction of methane sourced from ancient carbon in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. While the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that modern sources of methane predominate in surface waters of relatively shallow mid-outer shelf stations. These results suggest that even if there is a heightened liberation of ancient methane as climate change proceeds, oceanic dispersion and oxidation processes can strongly limit its emission to the atmosphere.
Indicators of sewage contamination in sediments beneath a deep-ocean dump site off New York
Bothner, Michael H.; Takada, H.; Knight, I.T.; Hill, R.T.; Butman, B.; Farrington, J.W.; Colwell, R.R.; Grassle, J. F.
1994-01-01
The world's largest discharge of municipal sewage sludge to surface waters of the deep sea has caused measurable changes in the concentration of sludge indicators in sea-floor sediments, in a spatial pattern which agrees with the predictions of a recent sludge deposition model. Silver, linear alkylbenzenes, coprostanol, and spores of the bacterium Clostridium perfringens, in bottom sediments and in near-bottom suspended sediment, provide evidence for rapid settling of a portion of discharged solids, accumulation on the sea floor, and biological mixing beneath the water sediment interface. Biological effects include an increase in 1989 of two species of benthic polychaete worm not abundant at the dump site before sludge dumping began in 1986. These changes in benthic ecology are attributed to the increased deposition of utilizable food in the form of sludge-derived organic matter.
Transport of the Norwegian Atlantic current as determined from satellite altimetry
NASA Technical Reports Server (NTRS)
Pistek, Pavel; Johnson, Donald R.
1992-01-01
Relatively warm and salty North Atlantic surface waters flow through the Faeroe-Shetland Channel into the higher latitudes of the Nordic Seas, preserving an ice-free winter environment for much of the exterior coast of northern Europe. This flow was monitored along the Norwegian coast using Geosat altimetry on two ascending arcs during the Exact Repeat Mission in 1987-1989. Concurrent undertrack CTD surveys were used to fix a reference surface for the altimeter-derived SSH anomalies, in effect creating time series of alongtrack surface dynamic height topographies. Climatologic CTD casts were then used, with empirical orthogonal function (EOF) analysis, to derive relationships between historical surface dynamic heights and vertical temperature and salinity profiles. Applying these EOF relationships to the altimeter signals, mean transports of volume, heat, and salt were calculated at approximately 2.9 Sverdrups, 8.1 x 10 exp 11 KCal/s and 1.0 x 10 exp 8 Kg/s, respectively. Maximum transports occurred in February/March and minimum in July/August.
Inoue, M; Shirotani, Y; Nagao, S; Kofuji, H; Volkov, Y N; Nishioka, J
2016-10-01
We examined lateral distributions of 134 Cs, 137 Cs, 226 Ra, and 228 Ra in the surface seawaters around the Kuril Islands and the Kamchatka Peninsula in the northwestern North Pacific Ocean during June 2014. The sampling area included three water current areas, the Oyashio Current, the current from the Okhotsk Sea, and the coastal current along the east Kamchatka Peninsula. 226 Ra and 228 Ra distributions differed along the three currents. Low levels of 134 Cs were detected in the surface waters of the Oyashio Current (0.09-0.35 mBq/L), but it was <∼0.1 mBq/L at the surface along the other two currents. This indicates that the distribution of Fukushima Dai-ichi Nuclear Power Plant (FDNPP)-derived radiocesium in surface waters off the Kamchatka and along the Kuril Islands is predominantly governed by the Oyashio current system. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tidal analysis of surface currents in the Porsanger fjord in northern Norway
NASA Astrophysics Data System (ADS)
Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata
2016-04-01
In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).
NASA Astrophysics Data System (ADS)
Schlundt, Cathleen; Tegtmeier, Susann; Lennartz, Sinikka T.; Bracher, Astrid; Cheah, Wee; Krüger, Kirstin; Quack, Birgit; Marandino, Christa A.
2017-09-01
A suite of oxygenated volatile organic compounds (OVOCs - acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.
Pütz, Klemens; Trathan, Phil N; Pedrana, Julieta; Collins, Martin A; Poncet, Sally; Lüthi, Benno
2014-01-01
Most studies concerning the foraging ecology of marine vertebrates are limited to breeding adults, although other life history stages might comprise half the total population. For penguins, little is known about juvenile dispersal, a period when individuals may be susceptible to increased mortality given their naïve foraging behaviour. Therefore, we used satellite telemetry to study king penguin fledglings (n = 18) from two sites in the Southwest Atlantic in December 2007. The two sites differed with respect to climate and proximity to the Antarctic Polar Front (APF), a key oceanographic feature generally thought to be important for king penguin foraging success. Accordingly, birds from both sites foraged predominantly in the vicinity of the APF. Eight king penguins were tracked for periods greater than 120 days; seven of these (three from the Falkland Islands and four from South Georgia) migrated into the Pacific. Only one bird from the Falkland Islands moved into the Indian Ocean, visiting the northern limit of the winter pack-ice. Three others from the Falkland Islands migrated to the eastern coast of Tierra del Fuego before travelling south. Derived tracking parameters describing their migratory behaviour showed no significant differences between sites. Nevertheless, generalized linear habitat modelling revealed that juveniles from the Falkland Islands spent more time in comparatively shallow waters with low sea surface temperature, sea surface height and chlorophyll variability. Birds from South Georgia spent more time in deeper waters with low sea surface temperature and sea surface height, but high concentrations of chlorophyll. Our results indicate that inexperienced king penguins, irrespective of the location of their natal site in relation to the position of the APF, develop their foraging skills progressively over time, including specific adaptations to the environment around their prospective breeding site.
Pütz, Klemens; Trathan, Phil N.; Pedrana, Julieta; Collins, Martin A.; Poncet, Sally; Lüthi, Benno
2014-01-01
Most studies concerning the foraging ecology of marine vertebrates are limited to breeding adults, although other life history stages might comprise half the total population. For penguins, little is known about juvenile dispersal, a period when individuals may be susceptible to increased mortality given their naïve foraging behaviour. Therefore, we used satellite telemetry to study king penguin fledglings (n = 18) from two sites in the Southwest Atlantic in December 2007. The two sites differed with respect to climate and proximity to the Antarctic Polar Front (APF), a key oceanographic feature generally thought to be important for king penguin foraging success. Accordingly, birds from both sites foraged predominantly in the vicinity of the APF. Eight king penguins were tracked for periods greater than 120 days; seven of these (three from the Falkland Islands and four from South Georgia) migrated into the Pacific. Only one bird from the Falkland Islands moved into the Indian Ocean, visiting the northern limit of the winter pack-ice. Three others from the Falkland Islands migrated to the eastern coast of Tierra del Fuego before travelling south. Derived tracking parameters describing their migratory behaviour showed no significant differences between sites. Nevertheless, generalized linear habitat modelling revealed that juveniles from the Falkland Islands spent more time in comparatively shallow waters with low sea surface temperature, sea surface height and chlorophyll variability. Birds from South Georgia spent more time in deeper waters with low sea surface temperature and sea surface height, but high concentrations of chlorophyll. Our results indicate that inexperienced king penguins, irrespective of the location of their natal site in relation to the position of the APF, develop their foraging skills progressively over time, including specific adaptations to the environment around their prospective breeding site. PMID:24828545
NASA Astrophysics Data System (ADS)
Nozaki, Yoshiyuki; Dobashi, Fumi; Kato, Yoshihisa; Yamamoto, Yoshiyuki
1998-08-01
210Po, 210Pb, 228Ra, and 226Ra were measured in surface sea waters along the 1989-1990 global traverse of the oceans using the new R.V. Hakuho-Maru. Where the traverse intersects other expedition routes, the data are generally confirmatory. In the high-productivity regimes like the Red Sea, and the Arabian Sea 210Po is removed from the mixed layer at much faster rates than 210Pb. This fractionation occurs during scavenging presumably because 210Po is strongly sorbed by organic particles, whereas 210Pb is more likely associated with inorganic detritus. The 210Po/ 210Pb activity ratios leaving the mixed layer by particulate transport can be estimated from the steady state balance of 210Pb and 210Po in the surface waters for different oceanic regions, and are compared with those in the literature obtained by sediment-trap experiments. Although this comparison appears to merge, there exist some inconsistencies, which may be attributable to one of the following possibilities: (1) the model-derived atmospheric 210Pb flux is overestimated for the North Pacific and the North Atlantic, or (2) the sediment-trap data do not represent the real 210Po/ 210Pb ratio in the vertical particulate flux due to some experimental artifacts, such as incomplete trapping and size fractionation. Further careful studies of sediment trapping including seasonal variation are needed to resolve this issue. Our Ra data confirmed that strong sources for 228Ra exist in the Bay of Bengal and the Southeast Asian continental shelf zone, whereas the Mediterranean and the Red Sea, though they are surrounded by land, are not effective sources of 228Ra in the surface water.
Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific
NASA Astrophysics Data System (ADS)
McNeil, C.; Steiner, N.; Vagle, S.
2008-12-01
In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.
Gulin, S B; Mirzoyeva, N Yu; Egorov, V N; Polikarpov, G G; Sidorov, I G; Proskurnin, V Yu
2013-10-01
The recent radionuclide measurements have showed that concentrations of the Chernobyl-derived (137)Cs and (90)Sr in the surface Black Sea waters are still relatively high, reaching 56 and 32 Bq m(-3), respectively. This is comparable or even exceeds the pre-Chernobyl levels (∼16 Bq (137)Cs and 22 Bq (90)Sr per m(3) as the basin-wide average values). The measurements have revealed that the Black Sea continues to receive Chernobyl radionuclides, particularly (90)Sr, by the runoff from the Dnieper River. An additional source of (90)Sr and (137)Cs was found in the area adjacent to the Kerch Strait that connects the Black Sea and the Sea of Azov. This may be caused by the inflow of the contaminated Dnieper waters, which come to this area through the North-Crimean Canal. The long-term monitoring of (137)Cs and (90)Sr concentration in the Black Sea surface waters and in the benthic brown seaweed Cystoseira sp., in comparison with the earlier published sediment records of the radionuclides, have showed signs of a secondary radioactive contamination, which has started to increase since the late 1990's. This may be the result of the combined effect of a higher input of radionuclides from the rivers in 1995-1999 due to an increased runoff; and a slow transport of the particulate bound radionuclides from the watersheds followed by their desorption in seawater from the riverine suspended matter and remobilization from the sediments adjacent to the river mouths. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.
2011-01-01
It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.
NASA Astrophysics Data System (ADS)
Qiong, Liu; Pan, Delu; Huang, Haiqing; Lu, Jianxin; Zhu, Qiankun
2011-11-01
A cruise was conducted in the East China Sea (ECS) in autumn 2010 to collect Dissolved Organic Carbon (DOC) and Colored Dissolved Organic Matter (CDOM) samples. The distribution of DOC mainly controlled by the hydrography since the relationship between DOC and salinity was significant in both East China Sea. The biological activity had a significant influence on the concentration of DOC with a close correlation between DOC and Chl a. The absorption coefficient of CDOM (a355) decreased with the salinity increasing in the shelf of East China Sea (R2=0.9045). CDOM and DOC were significantly correlated in ECS where DOC distribution was dominated largely by the Changjiang diluted water. Based on the relationship of CDOM and DOC, we estimated the DOC concentration of the surface in ECS from satellite-derived CDOM images. Some deviations induced by the biological effect and related marine DOC accumulations were discussed.
Bhushan, R; Dutta, K; Somayajulu, B L K
2008-10-01
Radiocarbon measurements were made in the water column of the Arabian Sea and the equatorial Indian Ocean during 1994, 1995 and 1997 to assess the temporal variations in bomb 14C distribution and its inventory in the region with respect to GEOSECS measurements made during 1977-1978. Four GEOSECS stations were reoccupied (three in the Arabian Sea and one in the equatorial Indian Ocean) during this study, with all of them showing increased penetration of bomb 14C along with decrease in its surface water activity. The upwelling rates derived by model simulation of bomb 14C depth profile using the calculated exchange rates ranged from 3 to 9 m a(-1). The western region of the Arabian Sea experiencing high wind-induced upwelling has higher estimated upwelling rates. However, lower upwelling rates obtained for the stations occupied during this study could be due to reduced 14C gradient compared to that during GEOSECS.
Measurements of CO{sub 2} fluxes and bubbles from a tower during ASGASEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeuw, G. de; Kunz, G.J.; Larsen, S.E.
1994-12-31
The Air-Sea Gas Exchange experiment ASGASEX was conducted from August 30 until October 1st from the Meetpost Noordwijk (MPN), a research tower in the North Sea at 9 km from the Dutch coast. The objective of ASGASEX was a study of parameters affecting the air-sea exchange of gases, and a comparison of experimental methods to derive the exchange coefficient for CO{sub 2}. A detailed description of the ASGASEX experiment is presented in Oost. The authors` contribution to ASGASEX was a micro-meteorological package to measure the fluxes of CO{sub 2}, momentum, heat and water vapor, and an instrument to measure themore » size distribution of bubbles just below the sea surface. In this contribution the authors report preliminary results from the CO{sub 2} flux measurements and the bubble measurements. The latter was made as part of a larger study on the influence of bubbles on gas exchange in cooperation with the University of Southampton and the University of Galway.« less
NASA Astrophysics Data System (ADS)
Bélanger, S.; Babin, M.; Tremblay, J.-É.
2013-06-01
The Arctic Ocean and its marginal seas are among the marine regions most affected by climate change. Here we present the results of a diagnostic model used to assess the primary production (PP) trends over the 1998-2010 period at pan-Arctic, regional and local (i.e. 9.28 km resolution) scales. Photosynthetically active radiation (PAR) above and below the sea surface was estimated using precomputed look-up tables of spectral irradiance, taking as input satellite-derived cloud optical thickness and cloud fraction parameters from the International Satellite Cloud Climatology Project (ISCCP) and sea ice concentration from passive microwaves data. A spectrally resolved PP model, designed for optically complex waters, was then used to assess the PP trends at high spatial resolution. Results show that PP is rising at a rate of +2.8 TgC yr-1 (or +14% decade-1) in the circum-Arctic and +5.1 TgC yr-1 when sub-Arctic seas are considered. In contrast, incident PAR above the sea surface (PAR(0+)) has significantly decreased over the whole Arctic and sub-Arctic Seas, except over the perennially sea-ice covered waters of the Central Arctic Ocean. This fading of PAR(0+) (-8% decade-1) was caused by increasing cloudiness during summer. Meanwhile, PAR penetrating the ocean (PAR(0-)) increased only along the sea ice margin over the large Arctic continental shelf where sea ice concentration declined sharply since 1998. Overall, PAR(0-) slightly increased in the circum-Arctic (+3.4% decade-1), while it decreased when considering both Arctic and sub-Arctic Seas (-3% decade-1). We showed that rising phytoplankton biomass (i.e. chlorophyll a) normalized by the diffuse attenuation of photosynthetically usable radiation (PUR), accounted for a larger proportion of the rise in PP than did the increase in light availability due to sea-ice loss in several sectors, and particularly in perennially and seasonally open waters. Against a general backdrop of rising productivity over Arctic shelves, significant negative PP trends and the timing of phytoplankton spring-summer bloom were observed in regions known for their great biological importance such as the coastal polynyas of northern Greenland.
Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn
NASA Astrophysics Data System (ADS)
Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.
2012-12-01
Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.
NASA Technical Reports Server (NTRS)
Steffen, K.; Schweiger, A. J.
1990-01-01
The validation of sea ice products derived from the Special Sensor Microwave Imager (SSM/I) on board a DMSP platform is examined using data from the Landsat MSS and NOAA-AVHRR sensors. Image processing techniques for retrieving ice concentrations from each type of imagery are developed and results are intercompared to determine the ice parameter retrieval accuracy of the SSM/I NASA-Team algorithm. For case studies in the Beaufort Sea and East Greenland Sea, average retrieval errors of the SSM/I algorithm are between 1.7 percent for spring conditions and 4.3 percent during freeze up in comparison with Landsat derived ice concentrations. For a case study in the East Greenland Sea, SSM/I derived ice concentration in comparison with AVHRR imagery display a mean error of 9.6 percent.
NASA Astrophysics Data System (ADS)
Anzenhofer, M.; Gruber, T.
1998-04-01
Global mean sea level observations are necessary to answer the urgent questions about climate changes and their impact on socio-economy. At GeoForschungsZentrum/Geman Processing and Archiving Facility ERS altimeter data is used to systematically generate geophysical products such as sea surface topography, high-resolution geoid and short- and long-period sea surface height models. On the basis of this experience, fully reprocessed ERS-1 altimeter data is used to generated a time series of monthly sea surface height models from April 1992 to April 1995. The reprocessing consists of improved satellite ephemerides, merging of Grenoble tidal model, and application of range corrections due to timing errors. With the new data set the TOPEX/POSEIDON prelaunch accuracy requirements are fulfilled. The 3-year time series is taken to estimate the rate of change of global mean sea level. A careful treatment of seasonal effects is considered. A masking of continents, sea ice, and suspect sea surface heights is chosen that is common for all sea surface height models. The obtained rate of change is compared to external results from tide gauge records and TOPEX/POSEIDON data. The relation of sea level changes and sea surface temperature variations is examined by means of global monthly sea surface temperature maps. Both global wind speed and wave height maps are investigated and correlated with sea surface heights and sea surface temperatures in order to find other indicators of climate variations. The obtained rate of changes of the various global maps is compared to an atmospheric CO2 anomaly record, which is highly correlated to El Niño events. The relatively short period of 3 years, however, does not allow definite conclusions with respect to possible long-term climate changes.
NASA Astrophysics Data System (ADS)
Kheireddine, Malika; Ouhssain, Mustapha; Organelli, Emanuele; Bricaud, Annick; Jones, Burton H.
2018-02-01
The light absorption properties of phytoplankton (aph(λ)) and nonalgal particles (anap(λ)) associated with phytoplankton pigments were analyzed across the Red Sea, in the upper 200 m depth, between October 2014 and August 2016. The contribution by nonalgal particles to the total particulate light absorption (aph(λ) + anap(λ)) was highly variable (23 ± 17% at 440 nm) and no relationship between anap(440) and chlorophyll a concentration, [TChl a], was observed. Phytoplankton-specific phytoplankton absorption coefficients at 440 and 676 nm for a given [TChl a], aph*(440), and aph∗(676) were slightly higher than those derived from average relationships for open ocean waters within the surface layer as well as along the water column. Variations in the concentration of photosynthetic and photoprotective pigments were noticeable by changes in phytoplankton community size structure as well as in aph∗(λ). This study revealed that a higher proportion of picophytoplankton and an increase in photoprotective pigments (mainly driven by zeaxanthin) tended to be responsible for the higher aph∗(λ) values found in the Red Sea as compared to other oligotrophic regions with similar [TChl a]. Understanding this variability across the Red Sea may help improve the accuracy of biogeochemical parameters, such as [TChl a], derived from in situ measurements and ocean color remote sensing at a regional scale.
Interannual Variability of Sea Level in Tropical Pacific during 1993-2014
NASA Astrophysics Data System (ADS)
Zhu, X.; Greatbatch, R. J.; Claus, M.
2016-12-01
More than 40 years ago, sea level variability in the tropical Pacific was being studied using linear shallow water models driven by observed estimates of the surface wind stress. At that time, the only available sea level data was from the sparse tide gauge record. However, with the advent of satellite data, there has been a revolution in the available data coverage for sea level. Here, a linear model, consisting of the first five baroclinic normal modes, and driven by ERA-Interim monthly wind stress anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altimeter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical profile for the wind forcing, and showing that a signature from modes higher than mode six cannot be extracted from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level variability both on and off the equator. The correlation between modelled and satellite-derived sea level data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed ENSO events. Overall, the combination of the first, second and third and fifth modes can provide a robust estimate of the interannual sea level variability, the second mode being the most dominant. A remarkable feature of both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator. We show that the westward displacement of the pivot point from the centre of the basin is partly a signature of the recharge/discharge mechanism but is also strongly influenced by the fact that most of the wind stress variance along the equator is found in the western part of the basin. We also show that the Sverdrup transport plays no role in the recharge/discharge mechanism in our model.
NASA Astrophysics Data System (ADS)
Pourmand, A.; Marcantonio, F.; Bianchi, T.
2006-12-01
Uranium-series radionuclides and organic compounds, which represent major groups of planktonic organisms, have been measured in western Arabian Sea sediments that span the past 28 ka. Variability of the Indian Ocean monsoons and their influence on primary productivity, sea surface temperature (SST), and planktonic community structure has been investigated. The average alkenone-derived SST for the glacial was ~3°C lower than that measured for the Holocene. We also identify, for the first time, an interval of exceptionally low SSTs between 19-18.1 ka BP (15.3°C at 18.5 ka). During this time, the low SSTs coincide with high cumulative biomarker fluxes (CBF). We propose that intensification of winter northeast monsoon winds during the glacial period resulted in cold SSTs, deep convective mixing, and enhanced primary productivity. Following the last termination, and within the Holocene, SSTs vary by ~2°C with high CBFs occurring at times of relatively warmer SSTs. The fluxes of dinoflagellates and zooplankton relative to the total flux of organisms remain constant throughout the record. However, transitioning from the glacial to the Holocene, diatom fluxes comparatively increase relative to the total flux of organisms, while those of coccolithophorids decrease. Considering that the Indian Ocean monsoons are an important component of the global climate system, a shift in the planktonic ecosystem structure in the Arabian Sea may have important implications for the global biogeochemical cycle of carbon.
Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice
Underwood, Graham J. C.; Aslam, Shazia N.; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M.; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N.
2013-01-01
Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions. PMID:24019487
Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice.
Underwood, Graham J C; Aslam, Shazia N; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N
2013-09-24
Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.
Studies of Antarctic Sea Ice Concentrations from Satellite Data and Their Applications
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Steffen, Konrad; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
Large changes in the sea ice cover have been observed recently. Because of the relevance of such changes to climate change studies it is important that key ice concentration data sets used for evaluating such changes are interpreted properly. High and medium resolution visible and infrared satellite data are used in conjunction with passive microwave data to study the true characteristics of the Antarctic sea ice cover, assess errors in currently available ice concentration products, and evaluate the applications and limitations of the latter in polar process studies. Cloud-free high resolution data provide valuable information about the natural distribution, stage of formation, and composition of the ice cover that enables interpretation of the large spatial and temporal variability of the microwave emissivity of Antarctic sea ice. Comparative analyses of co-registered visible, infrared and microwave data were used to evaluate ice concentrations derived from standard ice algorithms (i.e., Bootstrap and Team) and investigate the 10 to 35% difference in derived values from large areas within the ice pack, especially in the Weddell Sea, Amundsen Sea, and Ross Sea regions. Landsat and OLS data show a predominance of thick consolidated ice in these areas and show good agreement with the Bootstrap Algorithm. While direct measurements were not possible, the lower values from the Team Algorithm results are likely due to layering within the ice and snow and/or surface flooding, which are known to affect the polarization ratio. In predominantly new ice regions, the derived ice concentration from passive microwave data is usually lower than the true percentage because the emissivity of new ice changes with age and thickness and is lower than that of thick ice. However, the product provides a more realistic characterization of the sea ice cover, and are more useful in polar process studies since it allows for the identification of areas of significant divergence and polynya activities. Also, heat and salinity fluxes are proportionately increased in these areas compared to those from the thicker ice areas. A slight positive trend in ice extent and area from 1978 through 2000 is observed consistent with slight continental cooling during the period. However, the confidence in this result is only moderate because the overlap period for key instruments is just one month and the sensitivity to changes in sensor characteristics, calibration and threshold for the ice edge is quite high.
Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, S.; Abe-Ouchi, A.
2017-12-01
Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.
NASA Astrophysics Data System (ADS)
Gonsior, Michael; Luek, Jenna; Schmitt-Kopplin, Philippe; Grebmeier, Jacqueline M.; Cooper, Lee W.
2017-10-01
Changes in the molecular composition of dissolved organic matter (DOM) and its light absorbing chromophoric component (CDOM) are of particular interest in the Arctic region because of climate change effects that lead to warmer sea surface temperatures and longer exposure to sunlight. We used continuous UV-vis (UV-vis) spectroscopy, excitation emission matrix fluorescence and ultrahigh resolution mass spectrometry during a transect from the Aleutian Islands in the Bering Sea to the Chukchi Sea ice edge through Bering Strait to determine the variability of DOM and CDOM. These data were combined with discrete sampling for stable oxygen isotopes of seawater, in order to evaluate the contributions of melted sea ice versus runoff to the DOM and CDOM components. This study demonstrated that high geographical resolution of optical properties in conjunction with stable oxygen ratios and non-targeted ultrahigh resolution mass spectrometry was able to distinguish between different DOM sources in the Arctic, including identification of labile DOM sources in Bering Strait associated with high algal blooms and sampling locations influenced by terrestrially-derived DOM, such as the terrestrial DOM signal originating from Arctic rivers and dirty/anchor sea ice. Results of this study also revealed the overall variability and chemodiversity of Arctic DOM present in the Bering and Chukchi Seas.
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
In Situ Global Sea Surface Salinity and Variability from the NCEI Global Thermosalinograph Database
NASA Astrophysics Data System (ADS)
Wang, Z.; Boyer, T.; Zhang, H. M.
2017-12-01
Sea surface salinity (SSS) plays an important role in the global ocean circulations. The variations of sea surface salinity are key indicators of changes in air-sea water fluxes. Using nearly 30 years of in situ measurements of sea surface salinity from thermosalinographs, we will evaluate the variations of the sea surface salinity in the global ocean. The sea surface salinity data used are from our newly-developed NCEI Global Thermosalinograph Database - NCEI-TSG. This database provides a comprehensive set of quality-controlled in-situ sea-surface salinity and temperature measurements collected from over 340 vessels during the period 1989 to the present. The NCEI-TSG is the world's most complete TSG dataset, containing all data from the different TSG data assembly centers, e.g. COAPS (SAMOS), IODE (GOSUD) and AOML, with more historical data from NCEI's archive to be added. Using this unique dataset, we will investigate the spatial variations of the global SSS and its variability. Annual and interannual variability will also be studied at selected regions.
NASA Astrophysics Data System (ADS)
Ballabrera, Joaquim; Hoareau, Nina; Umbert, Marta; Martínez, Justino; Turiel, Antonio
2013-04-01
Prediction of El Niño/Southern Oscillation (ENSO), and its relation with global climate anomalies, continues to be an important research effort in short-term climate forecasting. This task has become even more challenging as researchers are becoming more and more convinced that there is not a single archetypical El Niño (or La Niña) pattern, but several. During some events (called now Standard or East Pacific), the largest temperature anomalies are located at the eastern part of the Pacific. However, during some of the most recent events, the largest anomalies are restricted to the central part of the Pacific Ocean, and are now called Central Pacific or Modoki (a Japanese word for "almost") events. Although the role of salinity in operational ENSO forecasting was initially neglected (in contrast with temperature, sea level, or surface winds), recent studies have shown that salinity does play a role in the preconditioning of ENSO. Moreover, some researchers suggest that sea surface salinity might play a role (through the modulation of the western Pacific barrier layer) to favor the Standard or the Modoki nature of each event. Sea Surface Salinity maps are being operationally generated from microwave (L-band, 1.4 Ghz) brightness temperature maps. The L-band frequency was chosen because is the optimal one for ocean salinity measurements. However, after three years of satellite data, it has been found that noise in brightness temperatures (due to natural and artificial sources) is larger than expected. Moreover, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Despite of all these facts, current accuracy of SS maps ranges from 0.2-0.4, depending on the processing level and the region being considered. We present here our study about the salinity variability in the tropical Pacific Ocean from the 9-day, 0.25 bins salinity maps derived from the SMOS reprocessing campaign released to the SMOS user community on March 2011. During the period under study, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with the largest anomalous values in the western warm-fresh pool. The anomalies derived from the SMOS data do indeed display a positive anomaly. The persistence of the feature, its geographical pattern, the time modulation of the anomaly amplitude indicate, and its resemblance with in situ observations indicate this novel observation technology is currently able to capture seasonal and interannual signatures of climate interest.
Applications of seismic spatial wavefield gradient and rotation data in exploration seismology
NASA Astrophysics Data System (ADS)
Schmelzbach, C.; Van Renterghem, C.; Sollberger, D.; Häusler, M.; Robertsson, J. O. A.
2017-12-01
Seismic spatial wavefield gradient and rotation data have the potential to open up new ways to address long-standing problems in land-seismic exploration such as identifying and separating P-, S-, and surface waves. Gradient-based acquisition and processing techniques could enable replacing large arrays of densely spaced receivers by sparse spatially-compact receiver layouts or even one single multicomponent station with dedicated instruments (e.g., rotational seismometers). Such approaches to maximize the information content of single-station recordings are also of significant interest for seismic measurements at sites with limited access such as boreholes, the sea bottom, and extraterrestrial seismology. Arrays of conventional three-component (3C) geophones enable measuring not only the particle velocity in three dimensions but also estimating their spatial gradients. Because the free-surface condition allows to express vertical derivatives in terms of horizontal derivatives, the full gradient tensor and, hence, curl and divergence of the wavefield can be computed. In total, three particle velocity components, three rotational components, and divergence, result seven-component (7C) seismic data. Combined particle velocity and gradient data can be used to isolate the incident P- or S-waves at the land surface or the sea bottom using filtering techniques based on the elastodynamic representation theorem. Alternatively, as only S-waves exhibit rotational motion, rotational measurements can directly be used to identify S-waves. We discuss the derivations of the gradient-based filters as well as their application to synthetic and field data, demonstrating that rotational data can be of particular interest to S-wave reflection and P-to-S-wave conversion imaging. The concept of array-derived gradient estimation can be extended to source arrays as well. Therefore, source arrays allow us to emulate rotational (curl) and dilatational (divergence) sources. Combined with 7C recordings, a total of 49 components of the seismic wavefield can be excited and recorded. Such data potentially allow to further improve wavefield separation and may find application in directional imaging and coherent noise suppression.
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
A combined mean dynamic topography model - DTU17cMDT
NASA Astrophysics Data System (ADS)
Knudsen, P.; Andersen, O. B.; Nielsen, K.; Maximenko, N. A.
2017-12-01
Within the ESA supported Optimal Geoid for Modelling Ocean Circulation (OGMOC) project a new geoid model have been derived. It is based on the GOCO05C setup though the newer DTU15GRA altimetric surface gravity has been used in the combination. Subsequently the model has been augmented using the EIGEN-6C4 coefficients to d/o 2160. Compared to the DTU13MSS, the DTU15MSS has been derived by including re-tracked CRYOSAT-2 altimetry also, hence, increasing its resolution. Also, some issues in the Polar regions have been solved. The new DTU17MDT has been derived using this new geoid model and the DTU15MSS mean sea surface. Compared to other geoid models the new OGMOC geoid model has been optimized to avoid striations and orange skin like features. The filtering was re-evaluated by adjusting the quasi-gaussian filter width to optimize the fit to drifter velocities. The results show that the new MDT improves the resolution of the details of the ocean circulation. Subsequently, the drifter velocities were integrated to enhance the resolution of the MDT. As a contribution to the ESA supported GOCE++ project DYCOT a special concern was devoted to the coastal areas to optimize the extrapolation towards the coast and to integrate mean sea levels at tide gauges into that process. The presentation will focus on the coastal zone when assessing the methodology, the data and the final model DTU17cMDT.
NASA Astrophysics Data System (ADS)
Matsuoka, A.; Hooker, S. B.; Bricaud, A.; Gentili, B.; Babin, M.
2012-10-01
A series of papers have suggested that freshwater discharge, including a large amount of dissolved organic matter (DOM), has increased since the middle of the 20th century. In this study, a semi-analytical algorithm for estimating light absorption coefficients of the colored fraction of DOM (CDOM) was developed for Southern Beaufort Sea waters using remote sensing reflectance at six wavelengths in the visible spectral domain corresponding to MODIS ocean color sensor. This algorithm allows to separate colored detrital matter (CDM) into CDOM and non-algal particles (NAP) by determining NAP absorption using an empirical relationship between NAP absorption and particle backscattering coefficients. Evaluation using independent datasets, that were not used for developing the algorithm, showed that CDOM absorption can be estimated accurately to within an uncertainty of 35% and 50% for oceanic and turbid waters, respectively. In situ measurements showed that dissolved organic carbon (DOC) concentrations were tightly correlated with CDOM absorption (r2 = 0.97). By combining the CDOM absorption algorithm together with the DOC versus CDOM relationship, it is now possible to estimate DOC concentrations in the near-surface layer of the Southern Beaufort Sea using satellite ocean color data. DOC concentrations in the surface waters were estimated using MODIS ocean color data, and the estimates showed reasonable values compared to in situ measurements. We propose a routine and near real-time method for deriving DOC concentrations from space, which may open the way to an estimate of DOC budgets for Arctic coastal waters.
Corrigenda of 'explicit wave-averaged primitive equations using a generalized Lagrangian Mean'
NASA Astrophysics Data System (ADS)
Ardhuin, F.; Rascle, N.; Belibassakis, K. A.
2017-05-01
Ardhuin et al. (2008) gave a second-order approximation in the wave slope of the exact Generalized Lagrangian Mean (GLM) equations derived by Andrews and McIntyre (1978), and also performed a coordinate transformation, going from GLM to a 'GLMz' set of equations. That latter step removed the wandering of the GLM mean sea level away from the Eulerian-mean sea level, making the GLMz flow non-divergent. That step contained some inaccuarate statements about the coordinate transformation, while the rest of the paper contained an error on the surface dynamic boundary condition for viscous stresses. I am thankful to Mathias Delpey and Hidenori Aiki for pointing out these errors, which are corrected below.
Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.
2016-09-02
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
Titan's Sand Seas properties from the modelling of microwave-backscattered signal of Cassini/SAR
NASA Astrophysics Data System (ADS)
Lucas, Antoine; Rodriguez, Sébastien; Lommonier, Florentin; Ferrari, Cécile; Paillou, Philippe; Le Gall, Alice; Narteau, Clément
2016-04-01
Titan's sand seas may reflect the current and past surface conditions. Assessing the physicochemical properties and the morphodynamics of the equatorial linear dunes is a milestone in our comprehension of the climatic and geological history of the largest Saturn's moon. Based on enhanced SAR processing leading to despeckled Cassini RADAR data sets, we analyzed quantitatively the surface properties (e.g., slopes, texture, composition...) over the sand seas. First, using a large amount of overlaps and a wide range of incidence angle and azimuths, we show that the radar cross-section over the inter-dunes strongly differs from the one over the dunes. This strongly suggests significant difference in the physical properties between these two geomorphic units. Then, we derived quantitatively the surface properties from the modelling of microwave-backscattered signal using a Monte-Carlo inversion. Our results show that dunes are globally more microwaves absorbent than the inter-dunes. The inter-dunes are smoother with a higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs mainly composed of water ice, suggesting the presence of a shallow layer of sediment in between the dunes. This may suggest that Titan dunes are developing over a coarser sediment bed similarly to what is observed in some terrestrial sand seas such as in Ténéré desert (Niger, see also contribution #EGU2016-13383). Additionally, potential secondary bedforms (such as ripples) as well as avalanche faces may have been detected.
Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds
NASA Astrophysics Data System (ADS)
Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.
2015-12-01
Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.
Seasonal and Interannual Variability of Eddy Field and Surface Circulation in the Gulf of Aden
NASA Astrophysics Data System (ADS)
Al Saafani, M. A.; Shenoi, S. S. C.
2006-07-01
The circulation in the Gulf of Aden is inferred from three different data sets: h istorical sh ip drifts , hydrography , and satellite altimeter derived sea level (Topex/Poseidon, Jason and ERS) . The circulation in th is semi-enclosed basin is marked with strong seasonality with reversals in the direction of flows twice a year follow ing the reversal in mon soonal winds. During the win ter mon soon (November - February) there is an inflow from Arabian Sea; an extension of Arabian Coastal Current (ACC) . During sou thwest mon soon (June - August) the flow is generally towards east especially along the northern coast of Gulf of Aden. The geostrophic currents also show that the circulation in the gulf is embedded with mesoscale eddies. These westward propagating eddies appear to enter the Gulf of Aden from the western Arabian Sea in win ter. The relative contribu tion of mesoscale eddies to the circulation in the gulf were estimated using altimeter derived Sea level anomaly (SLA) for the years 1993 to 2003 . The effect of these mesoscale eddies extend over the entire water colu mn . The propagation speeds, of these eddies, estimated using weekly spaced altimeter derived SLA (2002 - 2003) is ~ 4 .0 - 5 .3 cm s . The sum of the speeds of second mode Ro ssby wave and the mean current (4.8 cm s ) matches with the propagation speeds of eddies estimated using SLA . Hence, second mode baroclin ic Rossby waves appear to be responsib le for the westward propagation of eddies in the Gulf of Aden. The presence of these eddies in the temperaturesalin ity climato logy confirms that they are no t transient features.
A joint method to retrieve directional ocean wave spectra from SAR and wave spectrometer data
NASA Astrophysics Data System (ADS)
Ren, Lin; Yang, Jingsong; Zheng, Gang; Wang, Juan
2016-07-01
This paper proposes a joint method to simultaneously retrieve wave spectra at different scales from spaceborne Synthetic Aperture Radar (SAR) and wave spectrometer data. The method combines the output from the two different sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coefficient is estimated using an effective significant wave height (SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coefficient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as first guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length (PWL), and peak wave direction (PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR (ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting (ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
NASA Astrophysics Data System (ADS)
Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.
2018-02-01
Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya; Lorenz, Ralph D.
2016-05-01
Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.
Glacier Changes in the Russian High Arctic.
NASA Astrophysics Data System (ADS)
Pritchard, M. E.; Willis, M. J.; Melkonian, A. K.; Golos, E. M.; Stewart, A.; Ornelas, G.; Ramage, J. M.
2014-12-01
We provide new surveys of ice speeds and surface elevation changes for ~40,000 km2 of glaciers and ice caps at the Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) Archipelagoes in the Russian High Arctic. The contribution to sea level rise from this ice is expected to increase as the region continues to warm at above average rates. We derive ice speeds using pixel-tracking on radar and optical imagery, with additional information from InSAR. Ice speeds have generally increased at outlet glaciers compared to those measured using interferometry from the mid-1990s'. The most pronounced acceleration is at Inostrantseva Glacier, one of the northernmost glaciers draining into the Barents Sea on NovZ. Thinning rates over the last few decades are derived by regressing stacked elevations from multiple Digital Elevations Models (DEMs) sourced from ASTER and Worldview stereo-imagery and cartographically derived DEMs. DEMs are calibrated and co-registered using ICESat returns over bedrock. On NovZ thinning of between 60 and 100 meters since the 1950s' is common. Similar rates between the late 1980s' and the present are seen at SevZ. We examine in detail the response of the outlet glaciers of the Karpinsky and Russanov Ice Caps on SevZ to the rapid collapse of the Matusevich Ice Shelf in the late summer of 2012. We do not see a dynamic thinning response at the largest feeder glaciers. This may be due to the slow response of the cold polar glaciers to changing boundary conditions, or the glaciers may be grounded well above sea level. Speed increases in the interior are difficult to assess with optical imagery as there are few trackable features. We therefore use pixel tracking on Terra SARX acquisitions before and after the collapse of the ice shelf to compute rates of flow inland, at slow moving ice. Interior ice flow has not accelerated in response to the collapse of the ice shelf but interior rates at the Karpinsky Ice Cap have increased by about 50% on the largest outlet glacier compared to rates found using ERS data in the mid-90s. Speeds have at least doubled at some of the smaller glaciers that feed the Matusevich from the south. We investigate the causes of acceleration at both archipelagoes by comparing sea surface temperatures and passive microwave observations of the timing and duration of ice surface melting.
Spatio-temporal variability in the freshwater input to the surface water of Southern Ocean
NASA Astrophysics Data System (ADS)
Naidu, P. K.; Ghosh, P.; N, A.
2015-12-01
Ocean heat content is rising rapidly in high-latitude regions of both hemispheres as a consequence of global warming (e.g., Gille 2002; Karcher et al. 2003; Bindoff et al. 2007; Purkey and Johnson 2010). Recent warming and freshening of Southern Ocean has affected hydrological cycle in terms of increasing tendency of precipitation as liquid water instead of snow. Limited data is available on the extent of fresh water flux by precipitation and sea ice melting to the surface ocean. The spatial extent of sea ice formation is documented based on remote sensing observation. We investigate here spatial variability in freshwater inputs to the Indian sector of Southern Ocean region using combined observation of oxygen isotopes ratios and salinity of surface water during the summer of 2011, 2012 and 2013. Together with this, the measured isotopic ratios of meteoric water and sea ice melt were used in the mass balance equation for deriving the contribution of both of these components in the surface water of southern ocean. The three component mixing equations (Meredith et al., 2013) allowed estimation of fractional contribution of rain over the years. The δ18O of meteoric water followed the pattern nearly similar to the observation documented in the continental stations (Global Network of Isotopes in Precipitation, GNIP) located in the southern hemisphere. However, a slight but consistent heavier composition was documented in rainwater as compared to the GNIP stations. Our observation suggests that the meteoric water is the dominant freshwater source over the ocean, accounting for up to 10-15% of the water present in the surface ocean during the austral summer whereas Sea-ice melt accounts for a much smaller percentage (maximum around 1%). Our observation is consistent with previous studies where similar magnitude of fresh water input was proposed based on observation from coastal region (Meredith et al., 2013).
The Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, M.; Liu, F.
2013-12-01
A stratus-sea fog event occurred on 3 June 2011 over the Yellow and East China Seas (as shown in figure) is investigated observationally and numerically. Emphasis is put on the influences of the sea surface temperature front (SSTF) and of the synoptic circulations on the transition of stratus to sea fog. The southerly winds from a synoptic high pressure transport water vapor from the East China Sea to the Yellow Sea, while the subsidence induced by the high contributes to the formation of the temperature inversion on the top of the stratus or stratocumulus that appears mainly over the warm flank of a sea surface temperature front in the East China Sea. Forced by the SSTF, there is a secondary cell within the atmospheric boundary layer (ABL), with a sinking branch on the cold flank and a rising one on the warm flank of the SSTF. This sinking branch, in phase with the synoptic subsidence, forces the stratus or stratocumulus to lower in the elevation getting close to the sea surface as these clouds move northward driven by the southerly winds. The cloud droplets can either reach to the sea surface directly or evaporate into water vapor that may condense again when coming close to the cold sea surface to form fog. In this later case, the stratus and fog may separate. The cooling effect of cold sea surface counteracts the adiabatic heating induced by the subsidence and thus helps the transition of stratus to sea fog in the southern Yellow Sea. By smoothing the SSTF in the numerical experiment, the secondary cell weakens and the sea fog patches shrink obviously over the cold flank of the SSTF though the synoptic subsidence and moist advection still exist. A conceptual model is suggested for the transition of stratus to sea fog in the Yellow and East China Seas, which is helpful for the forecast of sea fog over these areas. The satellite visible image of the stratus-fog event. The fog appears in the Yellow Sea and the stratocumulus in the East China Sea.
Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity
Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi
2016-01-01
This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning. PMID:27272505
Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.
Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi
2016-01-01
This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
Clear-Sky Surface Solar Radiation During South China Sea Monsoon Experiment
NASA Technical Reports Server (NTRS)
Lin, Po-Hsiung; Chou, Ming-Dah; Ji, Qiang; Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)
2000-01-01
Downward solar fluxes measured at Dungsha coral island (20 deg. 42 min. N, 116 deg. 43 min. E) during the South China Sea Monsoon Experiment (May-June 1998) have been calibrated and compared with radiative transfer calculations for three clear-sky days. Model calculations use water vapor and temperature profiles from radiosound measurements and the aerosol optical thickness derived from sunphotometric radiance measurements at the surface. Results show that the difference between observed and model-calculated downward fluxes is less than 3% of the daily mean. Averaged over the three clear days, the difference reduces to 1%. The downward surface solar flux averaged over the three days is 314 W per square meters from observations and 317 W per square meters from model calculations, This result is consistent with a previous study using TOGA CAORE measurements, which found good agreements between observations and model calculations. This study provides an extra piece of useful information on the modeling of radiative transfer, which fills in the puzzle of the absorption of solar radiation in the atmosphere.
A 17-My-old whale constrains onset of uplift and climate change in east Africa
NASA Astrophysics Data System (ADS)
Wichura, Henry; Jacobs, Louis L.; Lin, Andrew; Polcyn, Michael J.; Manthi, Fredrick K.; Winkler, Dale A.; Strecker, Manfred R.; Clemens, Matthew
2015-03-01
Timing and magnitude of surface uplift are key to understanding the impact of crustal deformation and topographic growth on atmospheric circulation, environmental conditions, and surface processes. Uplift of the East African Plateau is linked to mantle processes, but paleoaltimetry data are too scarce to constrain plateau evolution and subsequent vertical motions associated with rifting. Here, we assess the paleotopographic implications of a beaked whale fossil (Ziphiidae) from the Turkana region of Kenya found 740 km inland from the present-day coastline of the Indian Ocean at an elevation of 620 m. The specimen is ∼17 My old and represents the oldest derived beaked whale known, consistent with molecular estimates of the emergence of modern strap-toothed whales (Mesoplodon). The whale traveled from the Indian Ocean inland along an eastward-directed drainage system controlled by the Cretaceous Anza Graben and was stranded slightly above sea level. Surface uplift from near sea level coincides with paleoclimatic change from a humid environment to highly variable and much drier conditions, which altered biotic communities and drove evolution in east Africa, including that of primates.
Spectra of Baroclinic Inertia-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1996-01-01
Baroclinic inertia-gravity (IG) waves form a persistent background of thermocline depth and sea surface height oscillations. They also contribute to the kinetic energy of horizontal motions in the subsurface layer. Measured by the ratio of water particle velocity to wave phase speed, the wave nonlinearity may be rather high. Given a continuous supply of energy from external sources, nonlinear wave-wave interactions among IG waves would result in inertial cascades of energy, momentum, and wave action. Based on a recently developed theory of wave turbulence in scale-dependent systems, these cascades are investigated and IG wave spectra are derived for an arbitrary degree of wave nonlinearity. Comparisons with satellite-altimetry-based spectra of surface height variations and with energy spectra of horizontal velocity fluctuations show good agreement. The well-known spectral peak at the inertial frequency is thus explained as a result of the inverse cascade. Finally, we discuss a possibility of inferring the internal Rossby radius of deformation and other dynamical properties of the upper thermocline from the spectra of SSH (sea surface height) variations based on altimeter measurements.
A 17-My-old whale constrains onset of uplift and climate change in east Africa
Wichura, Henry; Lin, Andrew; Polcyn, Michael J.; Manthi, Fredrick K.; Winkler, Dale A.; Strecker, Manfred R.; Clemens, Matthew
2015-01-01
Timing and magnitude of surface uplift are key to understanding the impact of crustal deformation and topographic growth on atmospheric circulation, environmental conditions, and surface processes. Uplift of the East African Plateau is linked to mantle processes, but paleoaltimetry data are too scarce to constrain plateau evolution and subsequent vertical motions associated with rifting. Here, we assess the paleotopographic implications of a beaked whale fossil (Ziphiidae) from the Turkana region of Kenya found 740 km inland from the present-day coastline of the Indian Ocean at an elevation of 620 m. The specimen is ∼17 My old and represents the oldest derived beaked whale known, consistent with molecular estimates of the emergence of modern strap-toothed whales (Mesoplodon). The whale traveled from the Indian Ocean inland along an eastward-directed drainage system controlled by the Cretaceous Anza Graben and was stranded slightly above sea level. Surface uplift from near sea level coincides with paleoclimatic change from a humid environment to highly variable and much drier conditions, which altered biotic communities and drove evolution in east Africa, including that of primates. PMID:25775586
Mountain Glaciers and Ice Caps
Ananichheva, Maria; Arendt, Anthony; Hagen, Jon-Ove; Hock, Regine; Josberger, Edward G.; Moore, R. Dan; Pfeffer, William Tad; Wolken, Gabriel J.
2011-01-01
Projections of future rates of mass loss from mountain glaciers and ice caps in the Arctic focus primarily on projections of changes in the surface mass balance. Current models are not yet capable of making realistic forecasts of changes in losses by calving. Surface mass balance models are forced with downscaled output from climate models driven by forcing scenarios that make assumptions about the future rate of growth of atmospheric greenhouse gas concentrations. Thus, mass loss projections vary considerably, depending on the forcing scenario used and the climate model from which climate projections are derived. A new study in which a surface mass balance model is driven by output from ten general circulation models (GCMs) forced by the IPCC (Intergovernmental Panel on Climate Change) A1B emissions scenario yields estimates of total mass loss of between 51 and 136 mm sea-level equivalent (SLE) (or 13% to 36% of current glacier volume) by 2100. This implies that there will still be substantial glacier mass in the Arctic in 2100 and that Arctic mountain glaciers and ice caps will continue to influence global sea-level change well into the 22nd century.
Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.
Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua
2014-04-01
Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.
NASA Astrophysics Data System (ADS)
Chappell, John; Omura, Akio; Esat, Tezer; McCulloch, Malcolm; Pandolfi, John; Ota, Yoko; Pillans, Brad
1996-06-01
A major discrepancy between the Late Quaternary sea level changes derived from raised coral reef terraces at the Huon Peninsula in Papua New Guinea and from oxygen isotopes in deep sea cores is resolved. The two methods agree closely from 120 ka to 80 ka and from 20 ka to 0 ka (ka = 1000 yr before present), but between 70 and 30 ka the isotopic sea levels are 20-40 m lower than the Huon Peninsula sea levels derived in earlier studies. New, high precision U-series age measurements and revised stratigraphic data for Huon Peninsula terraces aged between 30 and 70 ka now give similar sea levels to those based on deep sea oxygen isotope data planktonic and benthic δ 18O data. Using the sea level and deep sea isotopic data, oxygen isotope ratios are calculated for the northern continental ice sheets through the last glacial cycle and are consistent with results from Greenland ice cores. The record of ice volume changes through the last glacial cycle now appears to be reasonably complete.
NASA Astrophysics Data System (ADS)
Cho, K. H.; Chang, E. C.
2017-12-01
In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, E.Y.; Vista, C.L.
1997-02-01
Samples collected in January and June 1994 from the Point Loma Wastewater Treatment Plant (PLWTP) effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the PLWTP outfall, mouth of the Tijuana River, and San Diego Bay were analyzed in an attempt to identify and assess the sources of hydrocarbon inputs into the coastal marine environment off San Diego. Several compositional indices of polycyclic aromatic hydrocarbons (PAHs), for example, alkyl homologue distributions, parent compound distributions, and other individual PAH ratios, were used to identify the sources of PAHs. Partially due to the decline ofmore » PAH emission from the PLWTP outfall, PAHs found in the sea surface microlayer, sediments, and water column particulates near the PLWTP outfall were predominantly derived from nonpoint sources. The sea microlayer near the mouth of the Tijuana River appeared to accumulate enhanced amounts of PAHs and total organic carbon and total nitrogen, probably discharged from the river, although they were in extremely low abundance in the sediments at the same location. Surprisingly, PAHs detected in the microlayer and sediments in San Diego Bay were mainly derived from combustion sources rather than oil spills, despite the heavy shipping activities in the area.« less
The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod
NASA Astrophysics Data System (ADS)
Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.
1991-07-01
Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.
NASA Technical Reports Server (NTRS)
Mueller-Karger, Frank E.; Walsh, John J.; Meyers, Mark B.; Evans, Robert H.
1991-01-01
Multiyear series of coastal zone color scanner (CZCS) and AVHRR observations are presently used to derive monthly climatologies of near-surface phytoplankton pigment concentration and SST for the Gulf of Mexico; these, in combination with 1946-1987 SST data and NOAA hydrographic profile data covering 1914-1985, show that the most important single factor controlling seasonal cycle surface-pigment concentration is the depth of the mixed layer. The CZCS images indicate that seasonal variation seaward of the continental shelf is synchronous throughout the Gulf. The combination of ocean color and IR images allows year-round observation of surface circulation spatial structure in the Gulf, as well as of the dispersal pattern of the Mississippi River's plume.
NASA Astrophysics Data System (ADS)
Pourmand, Ali; Marcantonio, Franco; Bianchi, Thomas S.; Canuel, Elizabeth A.; Waterson, Elizabeth J.
2007-12-01
Uranium series radionuclides and organic biomarkers, which represent major groups of planktonic organisms, were measured in western Arabian Sea sediments that span the past 28 ka. Variability in the past strength of the southwest and northeast monsoons and its influence on primary productivity, sea surface temperature (SST), and planktonic community structure were investigated. The average alkenone-derived SST for the last glacial period was ˜3°C lower than that measured for the Holocene. Prior to the deglacial, the lowest SSTs coincide with the highest measured fluxes of organic biomarkers, which represent primarily a planktonic suite of diatoms, coccolithophorids, dinoflagellates, and zooplankton. We propose that intensification of winter northeast monsoon winds during the last glacial period resulted in deep convective mixing, cold SSTs and enhanced primary productivity. In contrast, postdeglacial (<17 ka) SSTs are warmer during times in which biomarker fluxes are high. Associated with this transition is a planktonic community structure change, in which the ratio of the average cumulative flux of diatom biomarkers to the cumulative flux of coccolithophorid biomarkers is twice as high during the deglacial and Holocene than the average ratio during the last glacial period. We suggest that this temporal transition represents a shift from a winter northeast monsoon-dominated (pre-17 ka) to a summer southwest monsoon-dominated (post-17 ka) wind system.
Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong
2016-07-01
To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating the recharge properties of the deep ocean using noble gases and helium isotopes
NASA Astrophysics Data System (ADS)
Loose, Brice; Jenkins, William J.; Moriarty, Roisin; Brown, Peter; Jullion, Loic; Naveira Garabato, Alberto C.; Torres Valdes, Sinhue; Hoppema, Mario; Ballentine, Chris; Meredith, Michael P.
2016-08-01
The distribution of noble gases and helium isotopes in the dense shelf waters of Antarctica reflects the boundary conditions near the ocean surface: air-sea exchange, sea ice formation, and subsurface ice melt. We use a nonlinear least squares solution to determine the value of the recharge temperature and salinity, as well as the excess air injection and glacial meltwater content throughout the water column and in the precursor to Antarctic Bottom Water. The noble gas-derived recharge temperature and salinity in the Weddell Gyre are -1.95°C and 34.95 psu near 5500 m; these cold, salty recharge values are a result of surface cooling as well as brine rejection during sea ice formation in Antarctic polynyas. In comparison, the global value for deep water recharge temperature is -0.44°C at 5500 m, which is 1.5°C warmer than the southern hemisphere deep water recharge temperature, reflecting a distinct contribution from the north Atlantic. The contrast between northern and southern hemisphere recharge properties highlights the impact of sea ice formation on setting the gas properties in southern sourced deep water. Below 1000 m, glacial meltwater averages 3.5‰ by volume and represents greater than 50% of the excess neon and argon found in the water column. These results indicate glacial melt has a nonnegligible impact on the atmospheric gas content of Antarctic Bottom Water.
NASA Astrophysics Data System (ADS)
Stolper, Daniel A.; Eiler, John M.; Higgins, John A.
2018-04-01
The measurement of multiply isotopically substituted ('clumped isotope') carbonate groups provides a way to reconstruct past mineral formation temperatures. However, dissolution-reprecipitation (i.e., recrystallization) reactions, which commonly occur during sedimentary burial, can alter a sample's clumped-isotope composition such that it partially or wholly reflects deeper burial temperatures. Here we derive a quantitative model of diagenesis to explore how diagenesis alters carbonate clumped-isotope values. We apply the model to a new dataset from deep-sea sediments taken from Ocean Drilling Project site 807 in the equatorial Pacific. This dataset is used to ground truth the model. We demonstrate that the use of the model with accompanying carbonate clumped-isotope and carbonate δ18O values provides new constraints on both the diagenetic history of deep-sea settings as well as past equatorial sea-surface temperatures. Specifically, the combination of the diagenetic model and data support previous work that indicates equatorial sea-surface temperatures were warmer in the Paleogene as compared to today. We then explore whether the model is applicable to shallow-water settings commonly preserved in the rock record. Using a previously published dataset from the Bahamas, we demonstrate that the model captures the main trends of the data as a function of burial depth and thus appears applicable to a range of depositional settings.
NASA Astrophysics Data System (ADS)
Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.
1999-04-01
A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.
NASA Astrophysics Data System (ADS)
Bollmann, J.; Brabec, B.
2001-12-01
Abundance and assemblage compositions of microplankton, together with their chemical and stable isotopic composition, have been among the most successful methods in paleoceanography. One of the most frequently applied techniques for reconstruction of paleo-temperature is a transfer function using the relative abundance of planktic foraminifera in sediment samples. Here we present evidence, suggesting that absolute sea surface temperature for a given location can be also calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples with an accuracy comparable to foraminifera transfer functions. By extrapolating this finding, paleo-enviromental interpretations can be obtained for the Late Pleistocene and discrepancies between the different currently used methods (e.g., foraminifer, alkenone and Ca/Mg derived temperature estimates) might be resolved. Eighty-one Holocene sediment samples were selected from the Pacific, Indian and Atlantic Oceans covering a temperature gradient from 13.4° C to 29.4° C, a salinity gradient from 32.21 to 37.34 and a productivity gradient of 0.045 to 0.492μ g chlorophyll/L. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to mean sea surface temperature. The best model revealed an r2 of 0.8 with a standard residual error of 1.8° C for calculation of the mean sea surface temperature.
NASA Astrophysics Data System (ADS)
Sangiorgi, Francesca; Willmott, Veronica; Kim, Jung-Hyun; Schouten, Stefan; Brinkhuis, Henk; Sinninghe Damsté, Jaap S.; Florindo, Fabio; Harwood, David; Naish, Tim; Powell, Ross
2010-05-01
During the austral summers 2006 and 2007 the ANtarctic DRILLing Program (ANDRILL) drilled two cores, each recovering more than 1000m of sediment from below the McMurdo Ice-Shelf (MIS, AND-1B), and sea-ice in Southern McMurdo Sound (SMS, AND-2A), respectively, revealing new information about Neogene Antarctic cryosphere evolution. Core AND-1B was drilled in a more distal location than core AND-2A. With the aim of obtaining important information for the understanding of the history of Antarctic climate and environment during selected interval of the Neogene, we applied novel organic geochemistry proxies such as TEX86 (Tetra Ether IndeX of lipids with 86 carbon atoms) using a new calibration equation specifically developed for polar areas and based on 116 surface sediment samples collected from polar oceans (Kim et al., subm.), and BIT (Branched and Isoprenoid Tetraether), to derive absolute (sea surface) temperature values and to evaluate the relative contribution of soil organic matter versus marine organic matter, respectively. We will present the state-of-the-art of the methodology applied, discussing its advantages and limitations, and the results so far obtained from the analysis of 60 samples from core AND-2A covering the Miocene Climatic Optimum (and the Mid-late Miocene transition) and of 20 pilot samples from core AND-1B covering the late Pliocene.
Arctic atmospheric preconditioning: do not rule out shortwave radiation just yet
NASA Astrophysics Data System (ADS)
Sedlar, J.
2017-12-01
Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus in recent years. A general consensus points to enhanced poleward atmospheric transport of moisture and heat during spring, effectively increasing the emission of longwave radiation to the surface. Studies have essentially ruled out the role of shortwave radiation as an effective preconditioning mechanism because of the relatively weak incident solar radiation and high surface albedo from sea ice and snow during spring. These conclusions, however, are derived primarily from atmospheric reanalysis data, which may not always represent an accurate depiction of the Arctic climate system. Here, observations of top of atmosphere radiation from state of the art satellite sensors are examined and compared with reanalysis and climate model data to examine the differences in the spring radiative budget over the Arctic Ocean for years with extreme low/high ice extent at the end of the ice melt season (September). Distinct biases are observed between satellite-based measurements and reanalysis/models, particularly for the amount of shortwave radiation trapped (warming effect) within the Arctic climate system during spring months. A connection between the differences in reanalysis/model surface albedo representation and the albedo observed by satellite is discussed. These results suggest that shortwave radiation should not be overlooked as a significant contributing mechanism to springtime Arctic atmospheric preconditioning.
NASA Astrophysics Data System (ADS)
Yang, Pengju; Guo, Lixin
2016-11-01
Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.
Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.
1996-01-01
Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.
NASA Astrophysics Data System (ADS)
Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael
2017-04-01
During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake levels were synchronous across the northern Dead Sea, although differences do exist. These discrepancies can possibly be explained in part by the tectonic nature of the basin. Within the 5017-1-A section, the interpreted changes in depositional environments derived primarily from the gamma ray log patterns show a good correlation in time with sequence-chronostratigraphic framework, extracted lake level curves and paleohydrological records of other areas worldwide. Sequence stratigraphic analysis presented here allows for a detailed, high resolution examination of the sedimentary sequences in the Northern Dead Sea Basin together with an independent proxy that is an indirect indicator of changes in relative lake level.
Biogeographic classification of the Caspian Sea
NASA Astrophysics Data System (ADS)
Fendereski, F.; Vogt, M.; Payne, M. R.; Lachkar, Z.; Gruber, N.; Salmanmahiny, A.; Hosseini, S. A.
2014-11-01
Like other inland seas, the Caspian Sea (CS) has been influenced by climate change and anthropogenic disturbance during recent decades, yet the scientific understanding of this water body remains poor. In this study, an eco-geographical classification of the CS based on physical information derived from space and in situ data is developed and tested against a set of biological observations. We used a two-step classification procedure, consisting of (i) a data reduction with self-organizing maps (SOMs) and (ii) a synthesis of the most relevant features into a reduced number of marine ecoregions using the hierarchical agglomerative clustering (HAC) method. From an initial set of 12 potential physical variables, 6 independent variables were selected for the classification algorithm, i.e., sea surface temperature (SST), bathymetry, sea ice, seasonal variation of sea surface salinity (DSSS), total suspended matter (TSM) and its seasonal variation (DTSM). The classification results reveal a robust separation between the northern and the middle/southern basins as well as a separation of the shallow nearshore waters from those offshore. The observed patterns in ecoregions can be attributed to differences in climate and geochemical factors such as distance from river, water depth and currents. A comparison of the annual and monthly mean Chl a concentrations between the different ecoregions shows significant differences (one-way ANOVA, P < 0.05). In particular, we found differences in phytoplankton phenology, with differences in the date of bloom initiation, its duration and amplitude between ecoregions. A first qualitative evaluation of differences in community composition based on recorded presence-absence patterns of 25 different species of plankton, fish and benthic invertebrate also confirms the relevance of the ecoregions as proxies for habitats with common biological characteristics.
Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)
2001-01-01
A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.
Bio-geographic classification of the Caspian Sea
NASA Astrophysics Data System (ADS)
Fendereski, F.; Vogt, M.; Payne, M. R.; Lachkar, Z.; Gruber, N.; Salmanmahiny, A.; Hosseini, S. A.
2014-03-01
Like other inland seas, the Caspian Sea (CS) has been influenced by climate change and anthropogenic disturbance during recent decades, yet the scientific understanding of this water body remains poor. In this study, an eco-geographical classification of the CS based on physical information derived from space and in-situ data is developed and tested against a set of biological observations. We used a two-step classification procedure, consisting of (i) a data reduction with self-organizing maps (SOMs) and (ii) a synthesis of the most relevant features into a reduced number of marine ecoregions using the Hierarchical Agglomerative Clustering (HAC) method. From an initial set of 12 potential physical variables, 6 independent variables were selected for the classification algorithm, i.e., sea surface temperature (SST), bathymetry, sea ice, seasonal variation of sea surface salinity (DSSS), total suspended matter (TSM) and its seasonal variation (DTSM). The classification results reveal a robust separation between the northern and the middle/southern basins as well as a separation of the shallow near-shore waters from those off-shore. The observed patterns in ecoregions can be attributed to differences in climate and geochemical factors such as distance from river, water depth and currents. A comparison of the annual and monthly mean Chl a concentrations between the different ecoregions shows significant differences (Kruskal-Wallis rank test, P < 0.05). In particular, we found differences in phytoplankton phenology, with differences in the date of bloom initiation, its duration and amplitude between ecoregions. A first qualitative evaluation of differences in community composition based on recorded presence-absence patterns of 27 different species of plankton, fish and benthic invertebrate also confirms the relevance of the ecoregions as proxies for habitats with common biological characteristics.
Detailed real-time infrared radiation simulation applied to the sea surface
NASA Astrophysics Data System (ADS)
Zhang, Xuemin; Wu, Limin; Long, Liang; Zhang, Lisha
2018-01-01
In this paper, the infrared radiation characteristics of sea background have been studied. First, MODTRAN4.0 was used to calculate the transmittance of mid-infrared and far-infrared, and the solar spectral irradiance, the atmospheric and sea surface radiation. Secondly, according to the JONSWAP sea spectrum model, the different sea conditions grid model based on gravity wave theory was generated. The spectral scattering of the sun and the atmospheric background radiation was studied. The total infrared radiation of the sea surface was calculated. Finally, the infrared radiation of a piece of sea surface was mapped to each pixel of the detector, and the infrared radiation is simulated. The conclusion is that solar radiance has a great influence on the infrared radiance. When the detector angle is close to the sun's height angle, there will be bright spots on the sea surface.
Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.
He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an
2018-03-01
A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.
Lusher, Amy L.; Tirelli, Valentina; O’Connor, Ian; Officer, Rick
2015-01-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment. PMID:26446348
NASA Astrophysics Data System (ADS)
Lusher, Amy L.; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-01
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Lusher, Amy L; Tirelli, Valentina; O'Connor, Ian; Officer, Rick
2015-10-08
Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment.
Morozov, Andrey K; Colosi, John A
2017-09-01
Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.
NASA Technical Reports Server (NTRS)
1975-01-01
Data acquisition using single image and seven image data processing is used to provide a precise and accurate geometric description of the earth's surface. Transformation parameters and network distortions are determined, Sea slope along the continental boundaries of the U.S. and earth rotation are examined, along with close grid geodynamic satellite system. Data are derived for a mathematical description of the earth's gravitational field; time variations are determined for geometry of the ocean surface, the solid earth, gravity field, and other geophysical parameters.
Patterns of Seasonal Heat Uptake and Release Over the Arctic Ocean Between 1979-2016
NASA Astrophysics Data System (ADS)
Helmberger, M. N.; Serreze, M. C.
2017-12-01
As the Arctic Ocean loses its sea ice cover, there is a stronger oceanic heat gain from the surface fluxes throughout the spring and summer; ultimately meaning that there is more energy to transfer out of the ocean to the atmosphere and outer space in the autumn and winter. Recent work has shown that the increased oceanic heat content at the end of summer in turn delays autumn ice growth, with implications for marine shipping and other economic activities. Some of the autumn and winter heat loss to the atmosphere is represented by evaporation, which increases the atmospheric water vapor content, and there is growing evidence that this is contributing to increases in regional precipitation. However, depending on patterns of seasonal sea ice retreat and weather conditions, the spring-summer heat uptake and autumn-winter heat loss can be highly variable from year to year and regionally. Here, we examine how the seasonality in upper ocean heat uptake and release has evolved over the past 37 years and the relationships between this seasonal heat gain and loss and the evolution of sea ice cover. We determine which regions have seen the largest increases in total seasonal heat uptake and how variable this uptake can be. Has the timing at which the Arctic Ocean (either as a whole or by region) transitions from an atmospheric energy sink to an atmospheric energy source (or from a source to a sink) appreciably changed? What changes have been observed in the seasonal rates of seasonal heat uptake and release? To begin answering these questions, use is made of surface fluxes from the ERA-Interim reanalysis and satellite-derived sea ice extent spanning the period 1979 through the present. Results from ERA-Interim will be compared to those from other reanalyses and satellite-derived flux estimates.
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Zaki A.; Gingras, Murray K.; Pemberton, S. George
Unusually large biogenic sedimentary structures from the shallow quiescent-marine siliciclastics of the Upper Eocene Birket Qarun Formation in the Fayum area of Egypt display pronounced concretion formation around the trace fossils. The structures are massive, and vary morphologically, forming branched pillars (up to dm-scale), vertical (up to 180 cm height) amphora-like masses, and 3-D box-work "maze". Bioturbation, mainly Thalassinoides attributable to the Glossifungites ichnofacies, mediated and modified the physical and chemical microenvironments influencing early diagenesis; i.e., burrows promote the precipitation of pervasive calcite-dominated cement. The inferred paragenesis, combined with the negative (light) carbon and oxygen stable-isotopic values of the bulk calcite (δ 13C PDB from -0.94 to -4.98‰ and δ 18O PDB from -4.63 to -7.22‰) and bulk dolomite (δ 13C PDB from -2.05 to -8.23‰ and δ 18O PDB from -1.41 to -11.20‰), imply that the pore-water carbon was derived directly from seawater and dissolution of metastable carbonate, which was mediated by bacterial decomposition of organic matter and mixing of meteoric ground water. Thereby, the carbonate cement precipitated mostly under eodiagenetic conditions near the sediment/water interface (<~3 m in depth). The distribution of these structures is confined to parasequence-bounding flooding surfaces (generally expressed as transgressive surfaces of erosion). Notably, sedimentological, ichnological and paragenetic data can be related to stratigraphic evolution such that geochemical and textural evidence is distinctly associated with (1) early cementation of the host sandstone during highstands of relative sea level, (2) the formation of firmgrounds during low relative sea level, (3) the development of a Glossifungites-demarcated discontinuity during initial relative sea-level rise, and (4) continued cementation with rising relative sea level. This was followed by burial diagenesis, evidence for which is derived from petrographic and isotopic data.
NASA Astrophysics Data System (ADS)
Singh, A.; Seitz, F.; Schwatke, C.; Güntner, A.
2012-04-01
Satellite altimetry is capable of measuring surface water level changes of large water bodies. This is especially interesting for regions where in-situ gauges are sparse or not available. Temporal variations of coastline and horizontal extent of a water body can be derived from optical remote sensing data. A joint analysis of both data types together with a digital elevation model allows for the estimation of water volume changes. Related variations of water mass map into the observations of the satellite gravity field mission GRACE. In this presentation, we demonstrate the application of heterogeneuous remote sensing methods for studying chages of water volume and mass of the Aral Sea and compare the results with respect to their consistency. Our analysis covers the period 2002-2011. In particular we deal with data from multi-mission radar and laser satellite altimetry that are analyzed in combination with coastlines from Landsat images. The resultant vertical and horizontal variations of the lake surface are geometrically intersected with the bathymetry of the Aral Sea in order to compute volumetric changes. These are transformed into variations of water mass that are subsequently compared with storage changes derived from GRACE satellite gravimetry. Hence we obtain a comprehensive picture of the hydrological changes in the region. Observations from all datasets correspond quite well with each other with respect to their temporal development. However, geometrically determined volume changes and mass changes observed by GRACE agree less well during years of heavy water inflow in to the Aral Sea from its southern tributary 'Amu Darya' since the GRACE signals are contaminated by the large mass of water stored in the river delta and prearalie region On the other hand, GRACE observations of the river basins of Syr Darya and Amu Dayra correspond very well with hydrological models and mass changes computed from the balance of precipitation, evaporation and runoff determined from the atmospheric-terrestrial water balance.
NASA Astrophysics Data System (ADS)
Rowley, David
2017-04-01
On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.
NASA Astrophysics Data System (ADS)
Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.
2012-11-01
Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July-September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.
NASA Astrophysics Data System (ADS)
Papadimitriou, Stathys; Kennedy, Hilary; Kennedy, Paul; Thomas, David N.
2014-09-01
The kinetics of calcium carbonate hexahydrate (ikaite) precipitation and dissolution were investigated in seawater and seawater-derived brines at sub-zero temperatures using the constant addition experimental technique. The steady state rate of these two processes was found to be a function of the deviation of the solution from equilibrium with respect to ikaite and conformed to the same empirical rate law as the anhydrous CaCO3 polymorphs, calcite and aragonite. In addition to the saturation state of the brine with respect to ikaite, the salinity of the brine and the temperature of the reaction evidently exerted some control on the ikaite precipitation kinetics, while the dissolution kinetics of the polymorph were not noticeably influenced by these two parameters. The experimental salinity and temperature conditions were equivalent to those at thermal equilibrium between brine and ice in the sea ice cover of polar seas. Simple modelling of the CO2 system by extrapolation of the oceanic equivalent to sea ice brines showed that the physical concentration of seawater ions and the changes in ikaite solubility as a function of salinity and temperature, both inherent in the sea ice system, would be insufficient to drive the emergent brines to ikaite supersaturation and precipitation in sea ice down to -8 °C. The loss of dissolved inorganic carbon to the gas phase of sea ice and to sympagic autotrophs are two independent mechanisms which, in nature, could prompt the brine CO2 system towards ikaite supersaturation and precipitation. Under these conditions, the steady state precipitation rate of ikaite was found to be fast enough for rapid formation within short time scales (days to weeks) in sea ice. The observed ikaite dissolution kinetics were also found conducive to short turn-over time scales of a few hours to a few days in corrosive solutions, such as surface seawater.
Contribution of mesoscale eddies to Black Sea ventilation
NASA Astrophysics Data System (ADS)
Capet, Arthur; Mason, Evan; Pascual, Ananda; Grégoire, Marilaure
2017-04-01
The shoaling of the Black Sea oxycline is one of the most urgent environmental issues in the Black Sea. The permanent oxycline derives directly from the Black Sea permanent stratification and has shoaled alarmingly in the last decades, due to a shifting balance between oxygen consumption and ventilation processes (Capet et al. 2016). The understanding of this balance is thus of the utmost importance and requires to quantify 1) the export of nutrients and organic materials from the shelf regions to the open sea and 2) the ventilation processes. These two processes being influenced by mesoscale features, it is critical to understand the role of the semi-permanent mesoscale structures in horizontal (center/periphery) and vertical (diapycnal and isopycnal) exchanges. A useful insight can be obtained by merging observations from satellite altimeter and in situ profilers (ARGO). In such composite analyses, eddies are first automatically identified and tracked from altimeter data (Mason et al. 2014, py-eddy-tracker). Vertical ARGO profiles are then expressed in terms of their position relative to eddy centers and radii. Derived statistics indicate how consistently mesoscale eddies alter the vertical structure, and provide a deeper understanding of the associated horizontal and vertical fluxes. However, this data-based approach is limited in the Black Sea due to the lower quality of gridded altimetric products in the vicinity of the coast, where semi-permanent mesoscale structures prevail. To complement the difficult analysis of this sparse dataset, a compositing methodology. is also applied to model outputs from the 5km GHER-BHAMBI Black Sea implementation (CMEMS BS-MFC). Characteristic biogeochemical anomalies associated with eddies in the model are analyzed per se, and compared to the observation-based analysis. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287-1297, doi:10.5194/bg-13-1287-2016, 2016. Mason, Evan, Ananda Pascual, and James C. McWilliams. "A new sea surface height-based code for oceanic mesoscale eddy tracking." Journal of Atmospheric and Oceanic Technology 31.5 (2014): 1181-1188.
On the tidally driven circulation in the South China Sea: modeling and analysis
NASA Astrophysics Data System (ADS)
Nelko, Varjola; Saha, Abhishek; Chua, Vivien P.
2014-03-01
The South China Sea is a large marginal sea surrounded by land masses and island chains, and characterized by complex bathymetry and irregular coastlines. An unstructured-grid SUNTANS model is employed to perform depth-averaged simulations of the circulation in the South China Sea. The model is tidally forced at the open ocean boundaries using the eight main tidal constituents as derived from the OSU Tidal Prediction Software. The model simulations are performed for the year 2005 using a time step of 60 s. The model reproduces the spring-neap and diurnal and semidiurnal variability in the observed data. Skill assessment of the model is performed by comparing model-predicted surface elevations with observations. For stations located in the central region of the South China Sea, the root mean squared errors (RMSE) are less than 10 % and the Pearson's correlation coefficient ( r) is as high as 0.9. The simulations show that the quality of the model prediction is dependent on the horizontal grid resolution, coastline accuracy, and boundary locations. The maximum RMSE errors and minimum correlation coefficients occur at Kaohsiung (located in northern South China Sea off Taiwan coast) and Tioman (located in southern South China Sea off Malaysia coast). This may be explained with spectral analysis of sea level residuals and winds, which reveal dynamics at Kaohsiung and Tioman are strongly influenced by the seasonal monsoon winds. Our model demonstrates the importance of tidally driven circulation in the central region of the South China Sea.
NASA Astrophysics Data System (ADS)
Alsahli, Mohammad M. M.
Kuwait sea surface temperature (SST) and water clarity are important water characteristics that influence the entire Kuwait coastal ecosystem. The spatial and temporal distributions of these important water characteristics should be well understood to obtain a better knowledge about this productive coastal environment. The aim of this project was therefore to study the spatial and temporal distributions of: Kuwait SST using Moderate Resolution Imaging Spectroradiometer (MODIS) images collected from January 2003 to July 2007; and Kuwait Secchi Disk Depth (SDD), a water clarity measure, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and MODIS data collected from November 1998 to October 2004 and January 2003 to June 2007, respectively. Kuwait SST was modeled based on the linear relationship between level 2 MODIS SST data and in situ SST data. MODIS SST images showed a significant relationship with in situ SST data ( r2= 0.98, n = 118, RMSE = 0.7°C). Kuwait SST images derived from MODIS data exhibited three spatial patterns of Kuwait SST across the year that were mainly attributed to the northwestern counterclockwise water circulation of the Arabian Gulf, and wind direction and intensity. The temporal variation of Kuwait SST was greatly influenced by the seasonal variation of solar intensity and air temperatures. Kuwait SDD was measured through two steps: first, computing the diffuse light attenuation coefficient at 490 nm, Kd(490), and 488 nm, Kd(488), derived from SeaWiFS and MODIS, respectively, using a semi-analytical algorithm; second, establishing two SDD models based on the empirical relationship of Kd(490) and Kd(488) with in situ SDD data. Kd(490) and Kd(488) showed a significant relationship with in situ SDD data ( r2= 0.67 and r2= 0.68, respectively). Kuwait SDD images showed distinct spatial and temporal patterns of Kuwait water clarity that were mainly attributed to three factors: the Shatt Al-Arab discharge, water circulation, and coastal currents. The SeaWiFS and MODIS data compared to in situ measurements provided a comprehensive view of the studied seawater characteristics that improved their overall estimation within Kuwait's waters. Also, the near-real-time availability of SeaWiFS and MODIS data and their highly temporal resolution make them a very advantageous tool for studying coastal environments. Thus, I recommend involving this method in monitoring Kuwait coastal environments.
NASA Astrophysics Data System (ADS)
Nikolaidis, Andreas; Stylianou, Stavros; Georgiou, Georgios; Hajimitsis, Diofantos; Gravanis, Elias; Akylas, Evangelos
2015-04-01
During the last decade, Rixen (2005) and Alvera-Azkarate (2010) presented the DINEOF (Data Interpolating Empirical Orthogonal Functions) method, a EOF-based technique to reconstruct missing data in satellite images. The application of DINEOF method, proved to provide relative success in various experimental trials (Wang and Liu, 2013; Nikolaidis et al., 2013;2014), and tends to be an effective and computationally affordable solution, on the problem of data reconstruction, for missing data from geophysical fields, such as chlorophyll-a, sea surface temperatures or salinity and geophysical fields derived from satellite data. Implementation of this method in a GIS system will provide with a more complete, integrated approach, permitting the expansion of the applicability over various aspects. This may be especially useful in studies where various data of different kind, have to be examined. For this purpose, in this study we have implemented and present a GIS toolbox that aims to automate the usage of the algorithm, incorporating the DINEOF codes provided by GHER (GeoHydrodynamics and Environment Research Group of University of Liege) into the ArcGIS®. ArcGIS® is a well known standard on Geographical Information Systems, used over the years for various remote sensing procedures, in sea and land environment alike. A case-study of filling the missing satellite derived current data in the Eastern Mediterranean Sea area, for a monthly period is analyzed, as an example for the effectiveness and simplicity of the usage of this toolbox. The specific study focuses to OSCAR satellite data (http://www.oscar.noaa.gov/) collected by NOAA/NESDIS Operational Surface Current Processing and Data Center, from the respective products of OSCAR Project Office Earth and Space Research organization, that provides free online access to unfiltered (1/3 degree) resolution. All the 5-day mean products data coverage were successfully reconstructed. KEY WORDS: Remote Sensing, Cyprus, Mediterranean, DINEOF, ArcGIS, data reconstruction.
Observational evidence of seasonality in the timing of loop current eddy separation
NASA Astrophysics Data System (ADS)
Hall, Cody A.; Leben, Robert R.
2016-12-01
Observational datasets, reports and analyses over the time period from 1978 through 1992 are reviewed to derive pre-altimetry Loop Current (LC) eddy separation dates. The reanalysis identified 20 separation events in the 15-year record. Separation dates are estimated to be accurate to approximately ± 1.5 months and sufficient to detect statistically significant LC eddy separation seasonality, which was not the case for previously published records because of the misidentification of separation events and their timing. The reanalysis indicates that previously reported LC eddy separation dates, determined for the time period before the advent of continuous altimetric monitoring in the early 1990s, are inaccurate because of extensive reliance on satellite sea surface temperature (SST) imagery. Automated LC tracking techniques are used to derive LC eddy separation dates in three different altimetry-based sea surface height (SSH) datasets over the time period from 1993 through 2012. A total of 28-30 LC eddy separation events were identified in the 20-year record. Variations in the number and dates of eddy separation events are attributed to the different mean sea surfaces and objective-analysis smoothing procedures used to produce the SSH datasets. Significance tests on various altimetry and pre-altimetry/altimetry combined date lists consistently show that the seasonal distribution of separation events is not uniform at the 95% confidence level. Randomization tests further show that the seasonal peak in LC eddy separation events in August and September is highly unlikely to have occurred by chance. The other seasonal peak in February and March is less significant, but possibly indicates two seasons of enhanced probability of eddy separation centered near the spring and fall equinoxes. This is further quantified by objectively dividing the seasonal distribution into two seasons using circular statistical techniques and a k-means clustering algorithm. The estimated spring and fall centers are March 2nd and August 23rd, respectively, with season boundaries in May and December.
Middle Miocene environmental and climatic evolution at the Wilkes Land margin, East Antarctica
NASA Astrophysics Data System (ADS)
Sangiorgi, Francesca; Bijl, Peter; Passchier, Sandra; Salzmann, Ulrich; Schouten, Stefan; Pross, Jörg; Escutia, Carlota; Brinkhuis, Henk
2015-04-01
Integrated Ocean Drilling Program (IODP) Expedition 318 successfully drilled a Middle Miocene (~ 17 - 12.5 Ma) record from the Wilkes Land Margin at Site U1356A (63°18.6138'S, 135°59.9376'E), located at the transition between the continental rise and the abyssal plain at 4003 mbsl. We present a multiproxy palynological (dinoflagellate cyst, pollen and spores), sedimentological and organic geochemical (TEX86, MBT/CBT) study, which unravels the environmental and climate variability across the Miocene Climatic Optimum (MCO, ~17-15 Ma) and the Mid Miocene Climate Transition (MMCT). Several independent lines of evidence suggest a relatively warm climate during the MCO. Dinocyst and pollen assemblage diversity at the MCO is unprecedented for a Neogene Antarctic record and indicates a temperate, sea ice-free marine environment, with woody sub-antarctic vegetation with elements of forest/shrub tundra and peat lands along the coast. These results are further confirmed by relatively warm TEX86-derived Sea Surface Temperatures and mild MBT-derived continental temperatures, and by the absence of glacially derived deposits and very few ice-rafted clasts. A generally colder but highly dynamic environment is suggested for the interval 15-12.5 Ma.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2014-09-30
profiler (AXCP) ocean velocity shear (Morison), UpTempO buoy measurements of sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and...and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity Visible and Thermal Images of the SIZ from the Coast Guard...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, SIC=Sea Ice
Modeling sea-surface temperature and its variability
NASA Technical Reports Server (NTRS)
Sarachik, E. S.
1985-01-01
A brief review is presented of the temporal scales of sea surface temperature variability. Progress in modeling sea surface temperature, and remaining obstacles to the understanding of the variability is discussed.
GNSS Remote Sensing at GFZ: Overview and Recent Results
NASA Astrophysics Data System (ADS)
Wickert, Jens; Alshawaf, Fadwa; Arras, Christina; Asgarimehr, Milad; Dick, Galina; Heise, Stefan; Larson, Kristine; Li, Xingxing; Lu, Cuixian; Peraza, Luis; Ramatschi, Markus; Schmidt, Torsten; Schuh, Harald; Semmling, Maximilian; Simeonov, Tzvetan; Vey, Sibylle; Zus, Florian
2017-04-01
GNSS atmospheric remote sensing was successfully established during the last two decades and evolved into a major application for high precision GNSS. The most prominent example for this development is the use of GNSS atmospheric data to improve day-by-day regional and global weather forecasts since 2006. Globally distributed vertical profiles of refractivity, temperature and water vapour are derived from satellite based GNSS data (Radio Occultation, RO). Ground based measurements, provided by global and regional GNSS networks, allow for the derivation of vertically (IWV) or along the line-of-sight integrated water vapour (SWV). Another important GNSS remote sensing technique, the exploitation of Earth reflected signals (GNSS Reflectometry, GNSS-R), is not yet operationally applied. But the huge potential for the determination of various physical parameters, as, e.g., sea surface height, wind speed over water and soil moisture on regional and global scales is recognized by the Earth Observation community. Therefore GNSS-R is recently a major challenge of international geophysical research. We review related activities at the German Research Centre for Geosciences GFZ and introduce recent results. The status of the GNSS-RO experiments aboard the satellites GRACE-A, TerraSAR-X and TanDEM-X, which are coordinated by GFZ, is reviewed. Examples of GNSS RO applications are given, as, e.g., climatological investigations of the global vertical temperature structure or the detection of ionospheric irregularities in the E-region. We also focus on ground based activities for GNSS water vapour monitoring. Observations of a global and regionally densified German network, with about 600 stations in total, are processed in near-real time to operationally provide IWV data. These data are assimilated into atmospheric models by several European weather centers. Current research activities are focused on the generation and meteorological application of GNSS based slant data, on real-time and multi-GNSS meteorology. In addition, climatological investigations are described to analyse long-term trends of the atmospheric water vapour over Germany but also as part of the Global Climate Observing System (GCOS) of the WMO (World Meteorological Organization). Multipath data from standard GNSS receivers are used to derive information on soil moisture, vegetation and snow properties. This technique exhibits a large potential to get geophysical parameters for Earth surface monitoring from the existing global and regional GNSS networks. GFZ also applies dedicated GNSS receivers aboard flight and ship platforms to derive sea surface heights using the GNSS-R phase altimetry technique. Other research activities contribute to the preparation of satellite missions for geophysical GNSS-R applications on a global scale. The most prominent current example is the ESA mission GEROS-ISS for global sea surface monitoring.
Ballasting by cryogenic gypsum enhances carbon export in a Phaeocystis under-ice bloom.
Wollenburg, J E; Katlein, C; Nehrke, G; Nöthig, E-M; Matthiessen, J; Wolf-Gladrow, D A; Nikolopoulos, A; Gázquez-Sanchez, F; Rossmann, L; Assmy, P; Babin, M; Bruyant, F; Beaulieu, M; Dybwad, C; Peeken, I
2018-05-16
Mineral ballasting enhances carbon export from the surface to the deep ocean; however, little is known about the role of this process in the ice-covered Arctic Ocean. Here, we propose gypsum ballasting as a new mechanism that likely facilitated enhanced vertical carbon export from an under-ice phytoplankton bloom dominated by the haptophyte Phaeocystis. In the spring 2015 abundant gypsum crystals embedded in Phaeocystis aggregates were collected throughout the water column and on the sea floor at a depth below 2 km. Model predictions supported by isotopic signatures indicate that 2.7 g m -2 gypsum crystals were formed in sea ice at temperatures below -6.5 °C and released into the water column during sea ice melting. Our finding indicates that sea ice derived (cryogenic) gypsum is stable enough to survive export to the deep ocean and serves as an effective ballast mineral. Our findings also suggest a potentially important and previously unknown role of Phaeocystis in deep carbon export due to cryogenic gypsum ballasting. The rapidly changing Arctic sea ice regime might favour this gypsum gravity chute with potential consequences for carbon export and food partitioning between pelagic and benthic ecosystems.
Snow and Ice Products from the Moderate Resolution Imaging Spectroradiometer
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.
2003-01-01
Snow and sea ice products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and Ice Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea ice products begins with a swath product at 1-km resolution that provides sea ice extent and ice-surface temperature (IST). The sea ice swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea ice tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea ice products in the EASE-Grid projection at 4-km resolution are planned for early 2003.
Superior underwater vision in a human population of sea gypsies.
Gislén, Anna; Dacke, Marie; Kröger, Ronald H H; Abrahamsson, Maths; Nilsson, Dan-Eric; Warrant, Eric J
2003-05-13
Humans are poorly adapted for underwater vision. In air, the curved corneal surface accounts for two-thirds of the eye's refractive power, and this is lost when air is replaced by water. Despite this, some tribes of sea gypsies in Southeast Asia live off the sea, and the children collect food from the sea floor without the use of visual aids. This is a remarkable feat when one considers that the human eye is not focused underwater and small objects should remain unresolved. We have measured the visual acuity of children in a sea gypsy population, the Moken, and found that the children see much better underwater than one might expect. Their underwater acuity (6.06 cycles/degree) is more than twice as good as that of European children (2.95 cycles/degree). Our investigations show that the Moken children achieve their superior underwater vision by maximally constricting the pupil (1.96 mm compared to 2.50 mm in European children) and by accommodating to the known limit of human performance (15-16 D). This extreme reaction-which is routine in Moken children-is completely absent in European children. Because they are completely dependent on the sea, the Moken are very likely to derive great benefit from this strategy.
A wind-driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska
NASA Astrophysics Data System (ADS)
Hirano, Daisuke; Fukamachi, Yasushi; Watanabe, Eiji; Ohshima, Kay I.; Iwamoto, Katsushi; Mahoney, Andrew R.; Eicken, Hajo; Simizu, Daisuke; Tamura, Takeshi
2016-01-01
The nature of the Barrow Coastal Polynya (BCP), which forms episodically off the Alaska coast in winter, is examined using mooring data, atmospheric reanalysis data, and satellite-derived sea-ice concentration and production data. We focus on oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP. Two moorings were deployed off Barrow, Alaska in the northeastern Chukchi Sea from August 2009 to July 2010. For sea-ice season from December to May, a characteristic sequence of five events associated with the BCP has been identified; (1) dominant northeasterly wind parallel to the Barrow Canyon, with an offshore component off Barrow, (2) high sea-ice production, (3) upwelling of warm and saline Atlantic Water beneath the BCP, (4) strong up-canyon shear flow associated with displaced density surfaces due to the upwelling, and (5) sudden suppression of ice growth. A baroclinic current structure, established after the upwelling, caused enhanced vertical shear and corresponding vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from the upwelled warm water into the surface layer played an important role in formation/maintenance of the open water area (i.e., sensible heat polynya). The transition from a latent to a sensible heat polynya is well reproduced by a high-resolution pan-Arctic ice-ocean model. We propose that the BCP, previously considered to be a latent heat polynya, is a wind-driven hybrid latent and sensible heat polynya, with both features caused by the same northeasterly wind.
Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness
NASA Astrophysics Data System (ADS)
Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.
2003-04-01
BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.
Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea
2006-01-01
ANALYSES OF SEA SURFACE HEIGHT, BOTTOM PRESSURE AND ACOUSTIC TRAVEL TIME IN THE JAPAN/EAST SEA BY YONGSHENG XU A DISSERTATION SUBMITTED IN PARTIAL...COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea...1999 to July 2001. The PIESs recorded hourly vertical acoustic travel time and pressure, which are respectively good proxies of baroclinic and
Rogowska, Justyna; Wolska, Lidia; Namieśnik, Jacek
2010-11-01
In 1943 the German hospital ship s/s Stuttgart (Lazaretschiff "C") was sunk close to the port of Gdynia (Gulf of Gdańsk - Polish coast). This and other actions (undertaken after the war to remove the wreck) led to pollution of the sea bottom with oil derivatives. During our studies (2009) 11 surface sediment and water samples were collected as well as sediment core samples at 4 locations in order to determine the concentration levels of priority pollutants belonging to polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB). The concentrations of 16 PAH and 7 PCB were analysed with GC-MS. ΣPAH varied between 11.54 ± 0.39 and 206.7 ± 6.5mg/kg dry weight in the surface sediments, and from 0.686 ± 0.026 to 1291 ± 53 mg/kg dry weight in the core samples. Contamination in the core samples collected may reach a depth of at least 230-240 cm (deepest sample studied). The PAH-group profiles in all surface sediment samples suggest a pyrolytic source of PAH, while the results obtained for core samples indicate a mixed pattern of pyrolytic and petrogenic inputs of PAH. Results obtained may suggest also that fuel residues being present at sea bottom is not crude oil derived but results from coal processing (synthetic fuel). The sum of PCB in surface sediments ranged from 0.761 ± 0.068 to 6.82 ± 0.28 μg/kg dry weight (except for sampling point W2, where ΣPCB was 108.8 ± 4.4 μg/kg dry weight). The strong correlation between PAH and PCB levels, and the fact that PCB are present only in the surface sediments, suggest that the compounds in these sediments got there as a result of emission from urban areas, entering the aquatic environment via atmospheric deposition. PCB levels in the sediment core samples were generally very low and in most cases did not exceed the method quantification limit. Copyright © 2010 Elsevier B.V. All rights reserved.